151
|
Śledzińska A, Menger L, Bergerhoff K, Peggs KS, Quezada SA. Negative immune checkpoints on T lymphocytes and their relevance to cancer immunotherapy. Mol Oncol 2015; 9:1936-65. [PMID: 26578451 DOI: 10.1016/j.molonc.2015.10.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 10/09/2015] [Accepted: 10/12/2015] [Indexed: 02/07/2023] Open
Abstract
The term 'inhibitory checkpoint' refers to the broad spectrum of co-receptors expressed by T cells that negatively regulate T cell activation thus playing a crucial role in maintaining peripheral self-tolerance. Co-inhibitory receptor ligands are highly expressed by a variety of malignancies allowing evasion of anti-tumour immunity. Recent studies demonstrate that manipulation of these co-inhibitory pathways can remove the immunological brakes that impede endogenous immune responses against tumours. Antibodies that block the interactions between co-inhibitory receptors and their ligands have delivered very promising clinical responses, as has been shown by recent successful trials targeting the CTLA-4 and PD-1 pathways. In this review, we discuss the mechanisms of action and expression pattern of co-inhibitory receptors on different T cells subsets, emphasising differences between CD4(+) and CD8(+) T cells. We also summarise recent clinical findings utilising immune checkpoint blockade.
Collapse
Affiliation(s)
- Anna Śledzińska
- Cancer Immunology Unit, UCL Cancer Institute, UCL, London, UK
| | - Laurie Menger
- Cancer Immunology Unit, UCL Cancer Institute, UCL, London, UK
| | | | - Karl S Peggs
- Cancer Immunology Unit, UCL Cancer Institute, UCL, London, UK.
| | | |
Collapse
|
152
|
Herpesvirus entry mediator on radiation-resistant cell lineages promotes ocular herpes simplex virus 1 pathogenesis in an entry-independent manner. mBio 2015; 6:e01532-15. [PMID: 26489863 PMCID: PMC4620471 DOI: 10.1128/mbio.01532-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ocular herpes simplex virus 1 (HSV-1) infection leads to a potentially blinding immunoinflammatory syndrome, herpes stromal keratitis (HSK). Herpesvirus entry mediator (HVEM), a widely expressed tumor necrosis factor (TNF) receptor superfamily member with diverse roles in immune signaling, facilitates viral entry through interactions with viral glycoprotein D (gD) and is important for HSV-1 pathogenesis. We subjected mice to corneal infection with an HSV-1 mutant in which HVEM-mediated entry was specifically abolished and found that the HVEM-entry mutant produced clinical disease comparable to that produced by the control virus. HVEM-mediated induction of corneal cytokines, which correlated with an HVEM-dependent increase in levels of corneal immune cell infiltrates, was also gD independent. Given the complexity of HVEM immune signaling, we used hematopoietic chimeric mice to determine which HVEM-expressing cells mediate HSV-1 pathogenesis in the eye. Regardless of whether the donor was a wild-type (WT) or HVEM knockout (KO) strain, HVEM KO recipients were protected from ocular HSV-1, suggesting that HVEM on radiation-resistant cell types, likely resident cells of the cornea, confers wild-type-like susceptibility to disease. Together, these data indicate that HVEM contributes to ocular pathogenesis independently of entry and point to an immunomodulatory role for this protein specifically on radiation-resistant cells. Immune privilege is maintained in the eye in order to protect specialized ocular tissues, such as the translucent cornea, from vision-reducing damage. Ocular herpes simplex virus 1 (HSV-1) infection can disrupt this immune privilege, provoking a host response that ultimately brings about the majority of the damage seen with the immunoinflammatory syndrome herpes stromal keratitis (HSK). Our previous work has shown that HVEM, a host TNF receptor superfamily member that also serves as a viral entry receptor, is a critical component contributing to ocular HSV-1 pathogenesis, although its precise role in this process remains unclear. We hypothesized that HVEM promotes an inflammatory microenvironment in the eye through immunomodulatory actions, enhancing disease after ocular inoculation of HSV-1. Investigating the mechanisms responsible for orchestrating this aberrant immune response shed light on the initiation and maintenance of HSK, one of the leading causes of infectious blindness in the developed world.
Collapse
|
153
|
Abstract
The immune system is designed to discriminate between self and tumor tissue. Through genetic recombination, there is fundamentally no limit to the number of tumor antigens that immune cells can recognize. Yet, tumors use a variety of immunosuppressive mechanisms to evade immunity. Insight into how the immune system interacts with tumors is expanding rapidly and has accelerated the translation of immunotherapies into medical breakthroughs. Herein, we appraise novel strategies that exploit the patient's immune system to kill cancer. We review various forms of immune-based therapies, which have shown significant promise in patients with hematologic malignancies, including (i) conventional monoclonal therapies like rituximab; (ii) engineered monoclonal antibodies called bispecific T-cell engagers; (iii) monoclonal antibodies and pharmaceutical drugs that block inhibitory T-cell pathways (i.e. PD-1, CTLA-4, and IDO); and (iv) adoptive cell transfer therapy with T cells engineered to express chimeric antigen receptors or T-cell receptors. We also assess the idea of using these therapies in combination and conclude by suggesting multi-prong approaches to improve treatment outcomes and curative responses in patients.
Collapse
Affiliation(s)
- Michelle H Nelson
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA; Department of Surgery, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | | |
Collapse
|
154
|
Lv M, Wu W, Zhang Y, Zhu M. Herpes virus entry mediator licenses Listeria infection induced immunopathology through control of type I interferon. Sci Rep 2015; 5:12954. [PMID: 26245828 PMCID: PMC4526852 DOI: 10.1038/srep12954] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 07/15/2015] [Indexed: 01/28/2023] Open
Abstract
Apoptosis of the splenic lymphocytes is often induced during the acute phase of Listeria infection in mice. However, the underlying mechanism remains incompletely understood. Here, we found that herpes virus entry mediator (HVEM) plays an important role for Listeria infection induced lymphocyte apoptosis. Mechanistically, HVEM is not directly involved in listeriolysin O (LLO) induced lymphocyte apoptosis or interferon beta induced T cell activation per se. Interestingly, HVEM is partially required for Listeria induced interferon (IFN)-I production in the spleen, particularly in macrophages. Consequently, the bystander activation of lymphocytes is significantly lower in HVEM deficient mice than that in wild-type (WT) mice upon Listeria infection. Thus, our results have revealed a novel role of HVEM on the regulation of IFN-I and immunopathology during Listeria infection.
Collapse
Affiliation(s)
- Mengjie Lv
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiwei Wu
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuejiao Zhang
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Mingzhao Zhu
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
155
|
de Aquino MTP, Malhotra A, Mishra MK, Shanker A. Challenges and future perspectives of T cell immunotherapy in cancer. Immunol Lett 2015; 166:117-33. [PMID: 26096822 PMCID: PMC4499494 DOI: 10.1016/j.imlet.2015.05.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 05/10/2015] [Accepted: 05/27/2015] [Indexed: 12/15/2022]
Abstract
Since the formulation of the tumour immunosurveillance theory, considerable focus has been on enhancing the effectiveness of host antitumour immunity, particularly with respect to T cells. A cancer evades or alters the host immune response by various ways to ensure its development and survival. These include modifications of the immune cell metabolism and T cell signalling. An inhibitory cytokine milieu in the tumour microenvironment also leads to immune suppression and tumour progression within a host. This review traces the development in the field and attempts to summarize the hurdles that the approach of adoptive T cell immunotherapy against cancer faces, and discusses the conditions that must be improved to allow effective eradication of cancer.
Collapse
Affiliation(s)
- Maria Teresa P de Aquino
- Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA
| | - Anshu Malhotra
- Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA
| | - Manoj K Mishra
- Department of Biological Sciences, Alabama State University, Montgomery, AL 36101, USA
| | - Anil Shanker
- Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA; Tumor-Host Interactions Research Program, Vanderbilt-Ingram Cancer Center, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
156
|
Liu W, Vigdorovich V, Zhan C, Patskovsky Y, Bonanno JB, Nathenson SG, Almo SC. Increased Heterologous Protein Expression in Drosophila S2 Cells for Massive Production of Immune Ligands/Receptors and Structural Analysis of Human HVEM. Mol Biotechnol 2015. [DOI: 10.1007/s12033-015-9881-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
157
|
de Mare-Bredemeijer ELD, Shi XL, Mancham S, van Gent R, van der Heide-Mulder M, de Boer R, Heemskerk MHM, de Jonge J, van der Laan LJW, Metselaar HJ, Kwekkeboom J. Cytomegalovirus-Induced Expression of CD244 after Liver Transplantation Is Associated with CD8+ T Cell Hyporesponsiveness to Alloantigen. THE JOURNAL OF IMMUNOLOGY 2015; 195:1838-48. [DOI: 10.4049/jimmunol.1500440] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 06/02/2015] [Indexed: 12/31/2022]
|
158
|
|
159
|
Decoy receptor 3 suppresses FasL-induced apoptosis via ERK1/2 activation in pancreatic cancer cells. Biochem Biophys Res Commun 2015; 463:1144-51. [PMID: 26102031 DOI: 10.1016/j.bbrc.2015.06.074] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 06/10/2015] [Indexed: 12/31/2022]
Abstract
Resistance to Fas Ligand (FasL) mediated apoptosis plays an important role in tumorigenesis. Decoy receptor 3 (DcR3) is reported to interact with FasL and is overexpressed in some malignant tumors. We sought to investigate the role of DcR3 in resistance to FasL in pancreatic cancer. We compared expression of apoptosis related genes between FasL-resistant SW1990 and FasL-sensitive Patu8988 pancreatic cell lines by microarray analysis. We explored the impact of siRNA knockdown of, or exogenous supplementation with, DcR3 on FasL-induced cell growth inhibition in pancreatic cancer cell lines and expression of proteins involved in apoptotic signaling. We assessed the level of DcR3 protein and ERK1/2 phosphorylation in tumor and non-tumor tissue samples of 66 patients with pancreatic carcinoma. RNAi knockdown of DcR3 expression in SW1990 cells reduced resistance to FasL-induced apoptosis, and supplementation of Patu8988 with rDcR3 had the opposite effect. RNAi knockdown of DcR3 in SW1990 cells elevated expression of caspase 3, 8 and 9, and reduced ERK1/2 phosphorylation (P < 0.05), but did not alter phosphorylated-Akt expression. 47 tumor tissue specimens, but only 15 matched non-tumor specimens stained for DcR3 (χ(2) = 31.1447, P < 0.001). The proliferation index of DcR3 positive specimens (14.26 ± 2.67%) was significantly higher than that of DcR3 negative specimens (43.58 ± 7.88%, P < 0.01). DcR3 expression positively correlated with p-ERK1/2 expression in pancreatic cancer tissues (r = 0.607, P < 0.001). DcR3 enhances ERK1/2 phosphorylation and opposes FasL signaling in pancreatic cancer cells.
Collapse
|
160
|
Sadighi Akha AA, McDermott AJ, Theriot CM, Carlson PE, Frank CR, McDonald RA, Falkowski NR, Bergin IL, Young VB, Huffnagle GB. Interleukin-22 and CD160 play additive roles in the host mucosal response to Clostridium difficile infection in mice. Immunology 2015; 144:587-97. [PMID: 25327211 PMCID: PMC4368165 DOI: 10.1111/imm.12414] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 10/06/2014] [Accepted: 10/13/2014] [Indexed: 01/02/2023] Open
Abstract
Our previous work has shown the significant up-regulation of Il22 and increased phosphorylation of signal transducer and activator of transcription 3 (STAT3) as part of the mucosal inflammatory response to Clostridium difficile infection in mice. Others have shown that phosphorylation of STAT3 at mucosal surfaces includes interleukin-22 (IL-22) and CD160-mediated components. The current study sought to determine the potential role(s) of IL-22 and/or CD160 in the mucosal response to C. difficile infection. Clostridium difficile-infected mice treated with anti-IL-22, anti-CD160 or a combination of the two showed significantly reduced STAT3 phosphorylation in comparison to C. difficile-infected mice that had not received either antibody. In addition, C. difficile-infected mice treated with anti-IL-22/CD160 induced a smaller set of genes, and at significantly lower levels than the untreated C. difficile-infected mice. The affected genes included pro-inflammatory chemokines and cytokines, and anti-microbial peptides. Furthermore, histopathological and flow cytometric assessments both showed a significantly reduced influx of neutrophils in C. difficile-infected mice treated with anti-IL-22/CD160. These data demonstrate that IL-22 and CD160 are together responsible for a significant fraction of the colonic STAT3 phosphorylation in C. difficile infection. They also underscore the additive effects of IL-22 and CD160 in mediating both the pro-inflammatory and pro-survival aspects of the host mucosal response in this infection.
Collapse
MESH Headings
- Animals
- Anti-Bacterial Agents
- Antibodies/pharmacology
- Antigens, CD/genetics
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Clostridioides difficile/immunology
- Clostridioides difficile/pathogenicity
- Disease Models, Animal
- Enterocolitis, Pseudomembranous/genetics
- Enterocolitis, Pseudomembranous/immunology
- Enterocolitis, Pseudomembranous/metabolism
- Enterocolitis, Pseudomembranous/microbiology
- Enterocolitis, Pseudomembranous/prevention & control
- GPI-Linked Proteins/antagonists & inhibitors
- GPI-Linked Proteins/genetics
- GPI-Linked Proteins/immunology
- GPI-Linked Proteins/metabolism
- Gene Expression Regulation
- Immunity, Mucosal/drug effects
- Interleukins/antagonists & inhibitors
- Interleukins/genetics
- Interleukins/immunology
- Interleukins/metabolism
- Intestinal Mucosa/drug effects
- Intestinal Mucosa/immunology
- Intestinal Mucosa/metabolism
- Intestinal Mucosa/microbiology
- Male
- Mice, Inbred C57BL
- Neutrophil Infiltration
- Phosphorylation
- Receptors, Immunologic/antagonists & inhibitors
- Receptors, Immunologic/genetics
- Receptors, Immunologic/immunology
- Receptors, Immunologic/metabolism
- STAT3 Transcription Factor/immunology
- STAT3 Transcription Factor/metabolism
- Signal Transduction
- Time Factors
- Interleukin-22
Collapse
Affiliation(s)
- Amir A Sadighi Akha
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical SchoolAnn Arbor, MI, USA
| | - Andrew J McDermott
- Department of Microbiology and Immunology, University of Michigan Medical SchoolAnn Arbor, MI, USA
| | - Casey M Theriot
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan Medical SchoolAnn Arbor, MI, USA
| | - Paul E Carlson
- Department of Microbiology and Immunology, University of Michigan Medical SchoolAnn Arbor, MI, USA
| | - Charles R Frank
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical SchoolAnn Arbor, MI, USA
| | - Roderick A McDonald
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical SchoolAnn Arbor, MI, USA
| | - Nicole R Falkowski
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical SchoolAnn Arbor, MI, USA
| | - Ingrid L Bergin
- Unit for Laboratory Animal Medicine, University of Michigan Medical SchoolAnn Arbor, MI, USA
| | - Vincent B Young
- Department of Microbiology and Immunology, University of Michigan Medical SchoolAnn Arbor, MI, USA
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan Medical SchoolAnn Arbor, MI, USA
| | - Gary B Huffnagle
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical SchoolAnn Arbor, MI, USA
- Department of Microbiology and Immunology, University of Michigan Medical SchoolAnn Arbor, MI, USA
| |
Collapse
|
161
|
Tu TC, Brown NK, Kim TJ, Wroblewska J, Yang X, Guo X, Lee SH, Kumar V, Lee KM, Fu YX. CD160 is essential for NK-mediated IFN-γ production. ACTA ACUST UNITED AC 2015; 212:415-29. [PMID: 25711213 PMCID: PMC4354368 DOI: 10.1084/jem.20131601] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Tu et al. generated a novel CD160-deficient mouse and showed impaired NK cell–mediated tumor elimination and IFN-γ production. CD160+ NK cells are functionally distinct in secretion of IFN-γ from their CD160− NK cell counterparts. NK-derived cytokines play important roles for natural killer (NK) function, but how the cytokines are regulated is poorly understood. CD160 is expressed on activated NK or T cells in humans but its function is unknown. We generated CD160-deficient mice to probe its function. Although CD160−/− mice showed no abnormalities in lymphocyte development, the control of NK-sensitive tumors was severely compromised in CD160−/− mice. Surprisingly, the cytotoxicity of NK cells was not impaired, but interferon-γ (IFN-γ) secretion by NK cells was markedly reduced in CD160−/− mice. Functionally targeting CD160 signaling with a soluble CD160-Ig also impaired tumor control and IFN-γ production, suggesting an active role of CD160 signaling. Using reciprocal bone marrow transfer and cell culture, we have identified the intrinsic role of CD160 on NK cells, as well as its receptor on non-NK cells, for regulating cytokine production. To demonstrate sufficiency of the CD160+ NK cell subset in controlling NK-dependent tumor growth, intratumoral transfer of the CD160+ NK fraction led to tumor regression in CD160−/− tumor-bearing mice, indicating demonstrable therapeutic potential for controlling early tumors. Therefore, CD160 is not only an important biomarker but also functionally controls cytokine production by NK cells.
Collapse
Affiliation(s)
- Tony C Tu
- Department of Pathology, The University of Chicago, Chicago, IL 60637
| | - Nicholas K Brown
- Department of Pathology, The University of Chicago, Chicago, IL 60637
| | - Tae-Jin Kim
- Department of Pathology, The University of Chicago, Chicago, IL 60637 Global Research Lab, Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul 136-705, South Korea
| | - Joanna Wroblewska
- Department of Pathology, The University of Chicago, Chicago, IL 60637
| | - Xuanming Yang
- Department of Pathology, The University of Chicago, Chicago, IL 60637
| | - Xiaohuan Guo
- Department of Pathology, The University of Chicago, Chicago, IL 60637
| | - Seoyun Hyunji Lee
- Department of Pathology, The University of Chicago, Chicago, IL 60637 Global Research Lab, Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul 136-705, South Korea
| | - Vinay Kumar
- Department of Pathology, The University of Chicago, Chicago, IL 60637
| | - Kyung-Mi Lee
- Department of Pathology, The University of Chicago, Chicago, IL 60637 Global Research Lab, Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul 136-705, South Korea Department of Melanoma Medical Oncology and Immunology, MD Anderson Cancer Center, Houston, TX 77054
| | - Yang-Xin Fu
- Department of Pathology, The University of Chicago, Chicago, IL 60637
| |
Collapse
|
162
|
Linch SN, McNamara MJ, Redmond WL. OX40 Agonists and Combination Immunotherapy: Putting the Pedal to the Metal. Front Oncol 2015; 5:34. [PMID: 25763356 PMCID: PMC4329814 DOI: 10.3389/fonc.2015.00034] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 01/30/2015] [Indexed: 12/24/2022] Open
Abstract
Recent studies have highlighted the therapeutic efficacy of immunotherapy, a class of cancer treatments that utilize the patient’s own immune system to destroy cancerous cells. Within a tumor the presence of a family of negative regulatory molecules, collectively known as “checkpoint inhibitors,” can inhibit T cell function to suppress anti-tumor immunity. Checkpoint inhibitors, such as CTLA-4 and PD-1, attenuate T cell proliferation and cytokine production. Targeted blockade of CTLA-4 or PD-1 with antagonist monoclonal antibodies (mAbs) releases the “brakes” on T cells to boost anti-tumor immunity. Generating optimal “killer” CD8 T cell responses also requires T cell receptor activation plus co-stimulation, which can be provided through ligation of tumor necrosis factor receptor family members, including OX40 (CD134) and 4-1BB (CD137). OX40 is of particular interest as treatment with an activating (agonist) anti-OX40 mAb augments T cell differentiation and cytolytic function leading to enhanced anti-tumor immunity against a variety of tumors. When used as single agents, these drugs can induce potent clinical and immunologic responses in patients with metastatic disease. However, each of these agents only benefits a subset of patients, highlighting the critical need for more effective combinatorial therapeutic strategies. In this review, we will discuss our current understanding of the cellular and molecular mechanisms by which OX40 agonists synergize with checkpoint inhibitor blockade to augment T cell-mediated anti-tumor immunity and the potential opportunities for clinical translation of combinatorial immunotherapeutic strategies.
Collapse
Affiliation(s)
- Stefanie N Linch
- Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Portland Medical Center , Portland, OR , USA
| | - Michael J McNamara
- Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Portland Medical Center , Portland, OR , USA
| | - William L Redmond
- Robert W. Franz Cancer Research Center, Earle A. Chiles Research Institute, Providence Portland Medical Center , Portland, OR , USA
| |
Collapse
|
163
|
Shin DS, Ribas A. The evolution of checkpoint blockade as a cancer therapy: what's here, what's next? Curr Opin Immunol 2015; 33:23-35. [PMID: 25621841 DOI: 10.1016/j.coi.2015.01.006] [Citation(s) in RCA: 254] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 01/09/2015] [Accepted: 01/11/2015] [Indexed: 12/22/2022]
Abstract
Unleashing the immune system to fight cancer has become one of the main treatment modalities since the anti-CTLA-4 antibody, ipilimumab was approved for patients with advanced melanoma in 2011. Pembrolizumab and nivolumab, two anti-PD-1 antibodies recently approved for the treatment of patients with metastatic melanoma, are being actively investigated for the treatment of multiple caners including lung, breast, bladder and renal cancers along with other anti-PD-1/L1 antibodies. Early results of combining of anti-CTLA-4 antibody and anti-PD-1 antibody treatment for advanced melanoma patients are showing impressive response rates with manageable toxicity profiles. There are several other checkpoint molecules that are likely potential inhibitory targets. The outcome of blocking some of these negative immune regulators, such as LAG-3 or TIM-3, is being pursued in the clinic or about to enter clinical development. Blockade of these molecules is demonstrating promising preclinical activity alone or when combined with anti-PD-1/L1. Future studies will define bio-markers of these therapies and how to target them alone or in combination with other immunotherapies, chemotherapy, radiotherapy and small molecule inhibitors.
Collapse
Affiliation(s)
- Daniel Sanghoon Shin
- Department of Medicine, Division of Hematology-Oncology, University of California Los Angeles (UCLA), Los Angeles, CA, USA; Department of Molecular, Cellular and Integrative Physiology, UCLA, Los Angeles, CA, USA
| | - Antoni Ribas
- Department of Medicine, Division of Hematology-Oncology, University of California Los Angeles (UCLA), Los Angeles, CA, USA; Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA, USA; Department of Surgery, Division of Surgical-Oncology, UCLA, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center at UCLA, 10833 Le Conte Avenue, Los Angeles, CA 90095-1782, USA; Department of Molecular, Cellular and Integrative Physiology, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
164
|
T cell exhaustion during persistent viral infections. Virology 2015; 479-480:180-93. [PMID: 25620767 DOI: 10.1016/j.virol.2014.12.033] [Citation(s) in RCA: 225] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 12/17/2014] [Accepted: 12/19/2014] [Indexed: 02/08/2023]
Abstract
Although robust and highly effective anti-viral T cells contribute to the clearance of many acute infections, viral persistence is associated with the development of functionally inferior, exhausted, T cell responses. Exhaustion develops in a step-wise and progressive manner, ranges in severity, and can culminate in the deletion of the anti-viral T cells. This disarming of the response is consequential as it compromises viral control and potentially serves to dampen immune-mediated damage. Exhausted T cells are unable to elaborate typical anti-viral effector functions. They are characterized by the sustained upregulation of inhibitory receptors and display a gene expression profile that distinguishes them from prototypic effector and memory T cell populations. In this review we discuss the properties of exhausted T cells; the virological and immunological conditions that favor their development; the cellular and molecular signals that sustain the exhausted state; and strategies for preventing and reversing exhaustion to favor viral control.
Collapse
|
165
|
Breloer M, Hartmann W, Blankenhaus B, Eschbach ML, Pfeffer K, Jacobs T. Cutting Edge: the BTLA-HVEM regulatory pathway interferes with protective immunity to intestinal Helminth infection. THE JOURNAL OF IMMUNOLOGY 2015; 194:1413-6. [PMID: 25595777 DOI: 10.4049/jimmunol.1402510] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Helminths exploit intrinsic regulatory pathways of the mammalian immune system to dampen the immune response directed against them. In this article, we show that infection with the parasitic nematode Strongyloides ratti induced upregulation of the coinhibitory receptor B and T lymphocyte attenuator (BTLA) predominantly on CD4(+) T cells but also on a small fraction of innate leukocytes. Deficiency of either BTLA or its ligand herpes virus entry mediator (HVEM) resulted in reduced numbers of parasitic adults in the small intestine and reduced larval output throughout infection. Reduced parasite burden in BTLA- and HVEM-deficient mice was accompanied by accelerated degranulation of mucosal mast cells and increased Ag-specific production of the mast cell-activating cytokine IL-9. Our combined results support a model whereby BTLA on CD4(+) T cells and additional innate leukocytes is triggered by HVEM and delivers negative signals into BTLA(+) cells, thereby interfering with the protective immune response to this intestinal parasite.
Collapse
Affiliation(s)
- Minka Breloer
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; and
| | - Wiebke Hartmann
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; and
| | - Birte Blankenhaus
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; and
| | | | - Klaus Pfeffer
- University Hospital Düsseldorf, 40225 Düsseldorf, Germany
| | - Thomas Jacobs
- Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany; and
| |
Collapse
|
166
|
Šedý J, Bekiaris V, Ware CF. Tumor necrosis factor superfamily in innate immunity and inflammation. Cold Spring Harb Perspect Biol 2014; 7:a016279. [PMID: 25524549 DOI: 10.1101/cshperspect.a016279] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The tumor necrosis factor superfamily (TNFSF) and its corresponding receptor superfamily (TNFRSF) form communication pathways required for developmental, homeostatic, and stimulus-responsive processes in vivo. Although this receptor-ligand system operates between many different cell types and organ systems, many of these proteins play specific roles in immune system function. The TNFSF and TNFRSF proteins lymphotoxins, LIGHT (homologous to lymphotoxins, exhibits inducible expression, and competes with HSV glycoprotein D for herpes virus entry mediator [HVEM], a receptor expressed by T lymphocytes), lymphotoxin-β receptor (LT-βR), and HVEM are used by embryonic and adult innate lymphocytes to promote the development and homeostasis of lymphoid organs. Lymphotoxin-expressing innate-acting B cells construct microenvironments in lymphoid organs that restrict pathogen spread and initiate interferon defenses. Recent results illustrate how the communication networks formed among these cytokines and the coreceptors B and T lymphocyte attenuator (BTLA) and CD160 both inhibit and activate innate lymphoid cells (ILCs), innate γδ T cells, and natural killer (NK) cells. Understanding the role of TNFSF/TNFRSF and interacting proteins in innate cells will likely reveal avenues for future therapeutics for human disease.
Collapse
Affiliation(s)
- John Šedý
- Laboratory of Molecular Immunology, Infectious and Inflammatory Disease Center, Sanford Burnham Medical Research Institute, La Jolla, California 92037
| | - Vasileios Bekiaris
- Laboratory of Molecular Immunology, Infectious and Inflammatory Disease Center, Sanford Burnham Medical Research Institute, La Jolla, California 92037
| | - Carl F Ware
- Laboratory of Molecular Immunology, Infectious and Inflammatory Disease Center, Sanford Burnham Medical Research Institute, La Jolla, California 92037
| |
Collapse
|
167
|
Hokuto D, Sho M, Yamato I, Yasuda S, Obara S, Nomi T, Nakajima Y. Clinical impact of herpesvirus entry mediator expression in human hepatocellular carcinoma. Eur J Cancer 2014; 51:157-65. [PMID: 25468715 DOI: 10.1016/j.ejca.2014.11.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 11/05/2014] [Accepted: 11/09/2014] [Indexed: 02/08/2023]
Abstract
BACKGROUND Herpes virus entry mediator (HVEM), also known as tumour necrosis factor receptor (TNFR) superfamily 14, regulates a variety of physiological and pathological responses in both innate and acquired immunity. Although HVEM is also suggested to be a critical regulator in tumours, actual roles in human cancer are largely unknown. This study aimed to clarify clinical importance of HVEM in human hepatocellular carcinoma (HCC). PATIENTS AND METHODS We studied HVEM expression in 150 HCC patients to explore its clinical relevance, and we examined tumour infiltrating T cells and local immune status of them. RESULTS HVEM was expressed in HCC cells, while no or only limited expression was observed in normal tissues in the liver. Tumour HVEM expression was significantly correlated with age, serum protein induced by vitamin K absence or antagonist-II (PIVKA-II) level, vascular invasion and tumour node metastasis (TNM) stage. Furthermore, tumour HVEM expression significantly correlated with postoperative recurrence and survival. Importantly, multivariate analysis indicated that the HVEM status had an independent prognostic value. Furthermore, HVEM status was inversely correlated with tumour-infiltrating CD4(+), CD8(+) and CD45RO(+) lymphocytes. In addition, it was also associated with reduced expression of perforin, granzyme B and interferon-γ (IFN-γ). Taken together, tumour-expressing HVEM plays a functionally important role in HCC. CONCLUSION Tumour-expressing HVEM plays a critical role in human HCC, possibly through regulating immune evasion. Therefore, targeting HVEM may be a novel promising therapeutic strategy for HCC.
Collapse
MESH Headings
- Aged
- CD4-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/metabolism
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Female
- Follow-Up Studies
- Gene Expression Regulation, Neoplastic
- Granzymes/genetics
- Granzymes/metabolism
- Humans
- Interferon-gamma/genetics
- Interferon-gamma/metabolism
- Leukocyte Common Antigens/metabolism
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Lymphatic Metastasis
- Lymphocytes, Tumor-Infiltrating/metabolism
- Male
- Multivariate Analysis
- Neoplasm Recurrence, Local
- Neoplasm Staging
- Perforin/genetics
- Perforin/metabolism
- Prognosis
- Receptors, Tumor Necrosis Factor, Member 14/genetics
- Receptors, Tumor Necrosis Factor, Member 14/metabolism
- Survival Analysis
Collapse
Affiliation(s)
- Daisuke Hokuto
- Department of Surgery, Nara Medical University, Nara 6348522, Japan
| | - Masayuki Sho
- Department of Surgery, Nara Medical University, Nara 6348522, Japan.
| | - Ichiro Yamato
- Department of Surgery, Nara Medical University, Nara 6348522, Japan
| | - Satoshi Yasuda
- Department of Surgery, Nara Medical University, Nara 6348522, Japan
| | - Shinsaku Obara
- Department of Surgery, Nara Medical University, Nara 6348522, Japan
| | - Takeo Nomi
- Department of Surgery, Nara Medical University, Nara 6348522, Japan
| | | |
Collapse
|
168
|
Viganò S, Banga R, Bellanger F, Pellaton C, Farina A, Comte D, Harari A, Perreau M. CD160-associated CD8 T-cell functional impairment is independent of PD-1 expression. PLoS Pathog 2014; 10:e1004380. [PMID: 25255144 PMCID: PMC4177992 DOI: 10.1371/journal.ppat.1004380] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 08/02/2014] [Indexed: 12/11/2022] Open
Abstract
Expression of co-inhibitory molecules is generally associated with T-cell dysfunction in chronic viral infections such as HIV or HCV. However, their relative contribution in the T-cell impairment remains unclear. In the present study, we have evaluated the impact of the expression of co-inhibitory molecules such as 2B4, PD-1 and CD160 on the functions of CD8 T-cells specific to influenza, EBV and CMV. We show that CD8 T-cell populations expressing CD160, but not PD-1, had reduced proliferation capacity and perforin expression, thus indicating that the functional impairment in CD160+ CD8 T cells may be independent of PD-1 expression. The blockade of CD160/CD160-ligand interaction restored CD8 T-cell proliferation capacity, and the extent of restoration directly correlated with the ex vivo proportion of CD160+ CD8 T cells suggesting that CD160 negatively regulates TCR-mediated signaling. Furthermore, CD160 expression was not up-regulated upon T-cell activation or proliferation as compared to PD-1. Taken together, these results provide evidence that CD160-associated CD8 T-cell functional impairment is independent of PD-1 expression. T-cell immune response is regulated by a variety of molecules known as co-inhibitory receptors. The over expression of co-inhibitory receptors has been observed in several chronic viral infections such as HIV disease, and is found to be associated with severe T-cell dysfunction. Recent studies have demonstrated that the co-expression of several co-inhibitory receptors correlated with greater impairment of CD8 T cells. However, the relative contribution of individual co-inhibitory receptors to the regulation of T-cell functions remains unclear. In order to shed light on these issues, we have evaluated the influence of the expression of 3 major co-inhibitory receptors such as PD-1, 2B4 and CD160 on CD8 T-cell functions such as proliferation, cytokines production and expression of cytotoxic granules. We demonstrate that CD160-associated CD8 T-cell functional impairment is independent of PD-1 expression and that the blockade of CD160 signaling may partially restore CD8 T-cell functions.
Collapse
Affiliation(s)
- Selena Viganò
- Division of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Riddhima Banga
- Division of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Florence Bellanger
- Division of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Céline Pellaton
- Division of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Alex Farina
- Division of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Denis Comte
- Division of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Alexandre Harari
- Division of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
- Swiss Vaccine Research Institute, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Matthieu Perreau
- Division of Immunology and Allergy, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
169
|
Liu W, Zhan C, Cheng H, Kumar PR, Bonanno JB, Nathenson SG, Almo SC. Mechanistic basis for functional promiscuity in the TNF and TNF receptor superfamilies: structure of the LIGHT:DcR3 assembly. Structure 2014; 22:1252-1262. [PMID: 25087510 PMCID: PMC4163024 DOI: 10.1016/j.str.2014.06.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 06/23/2014] [Accepted: 06/27/2014] [Indexed: 01/01/2023]
Abstract
LIGHT initiates intracellular signaling via engagement of the two TNF receptors, HVEM and LTβR. In humans, LIGHT is neutralized by DcR3, a unique soluble member of the TNFR superfamily, which tightly binds LIGHT and inhibits its interactions with HVEM and LTβR. DcR3 also neutralizes two other TNF ligands, FasL and TL1A. Due to its ability to neutralize three distinct different ligands, DcR3 contributes to a wide range of biological and pathological processes, including cancer and autoimmune diseases. However, the mechanisms that support the broad specificity of DcR3 remain to be fully defined. We report the structures of LIGHT and the LIGHT:DcR3 complex, which reveal the structural basis for the DcR3-mediated neutralization of LIGHT and afford insights into DcR3 function and binding promiscuity. Based on these structures, we designed LIGHT mutants with altered affinities for DcR3 and HVEM, which may represent mechanistically informative probe reagents.
Collapse
Affiliation(s)
- Weifeng Liu
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Chenyang Zhan
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Huiyong Cheng
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - P Rajesh Kumar
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jeffrey B Bonanno
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Stanley G Nathenson
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Steven C Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Physiology and Biophysics, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
170
|
Zhang Y, Ertl HCJ. The effect of adjuvanting cancer vaccines with herpes simplex virus glycoprotein D on melanoma-driven CD8+ T cell exhaustion. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 193:1836-46. [PMID: 25024391 PMCID: PMC4254702 DOI: 10.4049/jimmunol.1302029] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Two vaccines expressing CD4(+) and CD8(+) T cell epitopes of melanoma-associated Ags (MAAs) by a chimpanzee-derived replication-defective AdC68 vector were compared in a mouse model of melanoma. In one vaccine, termed AdC68-gDMelapoly, the epitopes were expressed as a fusion protein within HSV-1 glycoprotein D (gD), which blocks immunoinhibitory signaling through the herpes virus entry mediator pathway. The other vaccine, termed AdC68-Melapoly, expressed only the MAA epitopes. AdC68-gDMelapoly induced more potent MAA-specific CD8(+) T cell responses especially to the subdominant MAA epitopes. Upon prophylactic vaccination, mice that developed CD8(+) T cell responses to the two vaccines that were comparable in magnitude showed equal protection against tumor challenge. When mice were first challenged with tumor cells and then vaccinated results differed. In animals with comparable CD8(+) T cell responses, the AdC68-gDMelapoly vaccine was more efficacious compared with the AdC68-Melapoly vaccine in delaying tumor growth. This effect was linked to reduced expression of 2B4, LAG-3, and programmed death-1 on tumor-infiltrating MAA-specific CD8(+) T cells elicited by the gD-adjuvanted vaccine, suggesting that CD8(+) T cells induced in presence of gD are less susceptible to tumor-driven exhaustion.
Collapse
MESH Headings
- Adjuvants, Immunologic
- Animals
- Antigens, CD/biosynthesis
- Antigens, Neoplasm/immunology
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/immunology
- Cancer Vaccines/immunology
- Cell Line
- Chemotherapy, Adjuvant
- Epitopes, T-Lymphocyte/immunology
- Female
- Hemagglutinins, Viral/genetics
- Hemagglutinins, Viral/immunology
- Herpesvirus 1, Human/immunology
- Lymphocyte Activation/immunology
- Melanoma/immunology
- Melanoma/prevention & control
- Melanoma/therapy
- Mice
- Mice, Inbred C57BL
- Programmed Cell Death 1 Receptor/biosynthesis
- Receptors, Immunologic/biosynthesis
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Signaling Lymphocytic Activation Molecule Family
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/immunology
- Lymphocyte Activation Gene 3 Protein
Collapse
Affiliation(s)
- Ying Zhang
- Gene Therapy and Vaccines Program, University of Pennsylvania School of Medicine, Philadelphia, PA 19104; and
| | - Hildegund C J Ertl
- Gene Therapy and Vaccines Program, University of Pennsylvania School of Medicine, Philadelphia, PA 19104; and Wistar Institute Vaccine Center, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
171
|
Gaurav R, Agrawal DK. Clinical view on the importance of dendritic cells in asthma. Expert Rev Clin Immunol 2014; 9:899-919. [PMID: 24128155 DOI: 10.1586/1744666x.2013.837260] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Allergic asthma is characterized by airway hyperresponsiveness and inflammation and may lead to airway remodeling in uncontrolled cases. Genetic predisposition to an atopic phenotype plays a major component in the pathophysiology of asthma. However, with tremendous role of epigenetic factors and environmental stimuli in precipitating an immune response, the underlying pathophysiological mechanisms are complicated. Dendritic cells are principal antigen-presenting cells and initiators of the immune response in allergic asthma. Their phenotype, guided by multiple factors may dictate the immune reaction to an allergic or tolerogenic response. Involvement of the local cytokine milieu, microbiome and interplay between immune cells add dimension to the fate of immune response. In addition to allergen exposure, these factors modulate DC phenotype and function. In this article, integration of many factors and pathways associated with the recruitment and activation of DCs in the pathophysiology of allergic asthma is presented in a clinical and translational manner.
Collapse
Affiliation(s)
- Rohit Gaurav
- Department of Biomedical Sciences and Center for Clinical and Translational Science, Creighton University School of Medicine, CRISS II Room 510, 2500 California Plaza Omaha, NE 68178, USA
| | | |
Collapse
|
172
|
Sharma S, Rajasagi NK, Veiga-Parga T, Rouse BT. Herpes virus entry mediator (HVEM) modulates proliferation and activation of regulatory T cells following HSV-1 infection. Microbes Infect 2014; 16:648-60. [PMID: 24956596 DOI: 10.1016/j.micinf.2014.06.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 05/29/2014] [Accepted: 06/06/2014] [Indexed: 02/07/2023]
Abstract
In many infections, especially those that are chronic such as Herpes Simplex Virus-1 (HSV-1), the outcome may be influenced by the activity of one or more types of regulatory T cells (Tregs). Some infections can cause Treg expansion, but how viruses might promote preferential Treg expansion is has been unclear. In this report, we demonstrate a possible mechanism by which HSV (Herpes Simplex virus-1) infection could act to signal and expands the Treg population. We show that CD4(+) FoxP3(+) Tregs up- regulate HVEM (herpes virus entry mediator), which is a binding site for major viral glycoprotein HSVgD, following HSV infection, which is a binding site for major viral glycoprotein HSVgD. Recombinant HSVgD enhanced the proliferation of CD4(+) FoxP3(+) Tregs cells in-vitro. Furthermore, compared to wild type (WT), HVEM deficient mice (HVEM-/-) generated a weaker Treg responses represented by significantly diminished ratios of CD4(+)FoxP3(+)/CD4(+)FoxP3(-) cells along with diminished proportions of FoxP3(+) Tregscells co-expressing Treg activation markers and a reduced MFI of FoxP3 expression on CD4(+) T cells. Consistent with defective Treg responses, HVEM-/- animals were more susceptible to HSV-1 induced ocular immunopathology, with more severe lesions in HVEM-/- animals. Our results indicate that HVEM regulates Treg responses, and its modulation could represent a useful approach to control HSV induced corneal immunopathology.
Collapse
MESH Headings
- Animals
- Cell Proliferation
- Disease Models, Animal
- Female
- Herpesvirus 1, Human/immunology
- Herpesvirus 1, Human/physiology
- Keratitis, Herpetic/immunology
- Keratitis, Herpetic/pathology
- Keratitis, Herpetic/virology
- Lymphocyte Activation
- Mice, Inbred C57BL
- Mice, Knockout
- Receptors, Tumor Necrosis Factor, Member 14/immunology
- Receptors, Tumor Necrosis Factor, Member 14/metabolism
- Receptors, Virus/immunology
- Receptors, Virus/metabolism
- T-Lymphocytes, Regulatory/immunology
- Virus Internalization
Collapse
Affiliation(s)
- Shalini Sharma
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| | - Naveen K Rajasagi
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| | - Tamara Veiga-Parga
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA
| | - Barry T Rouse
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA.
| |
Collapse
|
173
|
Schaer DA, Hirschhorn-Cymerman D, Wolchok JD. Targeting tumor-necrosis factor receptor pathways for tumor immunotherapy. J Immunother Cancer 2014; 2:7. [PMID: 24855562 PMCID: PMC4030310 DOI: 10.1186/2051-1426-2-7] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 03/13/2014] [Indexed: 02/08/2023] Open
Abstract
With the success of ipilimumab and promise of programmed death-1 pathway-targeted agents, the field of tumor immunotherapy is expanding rapidly. Newer targets for clinical development include select members of the tumor necrosis factor receptor (TNFR) family. Agonist antibodies to these co-stimulatory molecules target both T and B cells, modulating T-cell activation and enhancing immune responses. In vitro and in vivo preclinical data have provided the basis for continued development of 4-1BB, OX40, glucocorticoid-induced TNFR-related gene, herpes virus entry mediator, and CD27 as potential therapies for patients with cancer. In this review, we summarize the immune response to tumors, consider preclinical and early clinical data on select TNFR family members, discuss potential translational challenges and suggest possible combination therapies with the aim of inducing durable antitumor responses.
Collapse
Affiliation(s)
- David A Schaer
- Swim Across America Laboratory, Immunology Program, Sloan-Kettering Institute for Cancer Research, New York, NY 10065, USA.,Current address: Department of Cancer Immunobiology, ImClone Systems, a wholly-owned subsidiary of Eli Lilly & Co, New York, NY 10016, USA
| | - Daniel Hirschhorn-Cymerman
- Swim Across America Laboratory, Immunology Program, Sloan-Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Jedd D Wolchok
- Swim Across America Laboratory, Immunology Program, Sloan-Kettering Institute for Cancer Research, New York, NY 10065, USA.,Weill Cornell Medical College, New York, NY 10065, USA.,Ludwig Collaborative Lab, New York, NY 10065, USA.,Ludwig Center for Cancer Immunotherapy at Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
174
|
Chen L, Fabian KL, Taylor JL, Storkus WJ. Therapeutic use of dendritic cells to promote the extranodal priming of anti-tumor immunity. Front Immunol 2013; 4:388. [PMID: 24348473 PMCID: PMC3843121 DOI: 10.3389/fimmu.2013.00388] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 11/05/2013] [Indexed: 12/17/2022] Open
Abstract
Ectopic lymphoid tissue, also known as tertiary lymphoid organs (TLO) develop adaptively within sites of chronic tissue inflammation, thereby allowing the host to efficiently crossprime specific immune effector cells within sites of disease. Recent evidence suggests that the presence of TLO in the tumor microenvironment (TME) predicts better overall survival. We will discuss the relevance of extranodal T cell priming within the TME as a means to effectively promote anti-tumor immunity and the strategic use of dendritic cell (DC)-based therapies to reinforce this clinically preferred process in the cancer-bearing host.
Collapse
Affiliation(s)
- Lu Chen
- Department of Immunology, University of Pittsburgh School of Medicine , Pittsburgh, PA , USA
| | - Kellsye L Fabian
- Department of Immunology, University of Pittsburgh School of Medicine , Pittsburgh, PA , USA
| | - Jennifer L Taylor
- Department of Dermatology, University of Pittsburgh School of Medicine , Pittsburgh, PA , USA
| | - Walter J Storkus
- Department of Immunology, University of Pittsburgh School of Medicine , Pittsburgh, PA , USA ; Department of Dermatology, University of Pittsburgh School of Medicine , Pittsburgh, PA , USA ; University of Pittsburgh Cancer Institute , Pittsburgh, PA , USA
| |
Collapse
|
175
|
Göthert JR, Eisele L, Klein-Hitpass L, Weber S, Zesewitz ML, Sellmann L, Röth A, Pircher H, Dührsen U, Dürig J. Expanded CD8+ T cells of murine and human CLL are driven into a senescent KLRG1+ effector memory phenotype. Cancer Immunol Immunother 2013; 62:1697-1709. [PMID: 24022692 PMCID: PMC11029347 DOI: 10.1007/s00262-013-1473-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2012] [Accepted: 08/28/2013] [Indexed: 10/26/2022]
Abstract
Altered numbers and functions of T cells have previously been demonstrated in chronic lymphocytic leukemia (CLL) patients. However, dynamics and specific T-cell subset alterations have not been studied in great detail. Therefore, we studied CLL blood lymphocyte subsets of individual patients in a longitudinal manner. Dynamic expansions of blood CD4 + and CD8 + T-cell numbers were consistently associated with a progressively increasing CLL leukemic compartment. Interestingly, the T-cell subset expansion over time was more pronounced in CD38 + CLL. Additionally, we performed gene expression profiling of CD3 + T cells of CLL patients and normal donors. Using gene set enrichment analysis, we found significant enrichment of genes with higher expression in CLL T cells within CD8+ effector memory and terminal effector T-cell gene signatures. In agreement with these data, we observed a marked expansion of phenotypic CD8 + effector memory T cells in CLL by flow cytometry. Moreover, we observed that increments of CD8 + effector memory T cells in human CLL and also mouse CLL (Eμ-TCL1 model) were due to an expansion of the inhibitory killer cell lectin-like receptor G1 (KLRG1) expressing cellular subset. Furthermore, higher plasma levels of the natural KLRG1 ligand E-cadherin were detected in CLL patients compared to normal donor controls. The predominance of KLRG1+ expression within CD8+ T cells in conjunction with increased systemic soluble E-cadherin might significantly contribute to CLL immune dysfunction and might additionally represent an important component of the CLL microenvironment.
Collapse
MESH Headings
- Animals
- CD8-Positive T-Lymphocytes/cytology
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cadherins/genetics
- Cadherins/immunology
- Cadherins/metabolism
- Cell Membrane/immunology
- Cell Membrane/metabolism
- Cell Proliferation
- Female
- Flow Cytometry
- Humans
- Immunologic Memory/genetics
- Immunologic Memory/immunology
- Immunophenotyping
- Lectins, C-Type/genetics
- Lectins, C-Type/immunology
- Lectins, C-Type/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Male
- Mice
- Mice, Inbred C3H
- Mice, Transgenic
- Oligonucleotide Array Sequence Analysis
- Phenotype
- Receptors, Immunologic/genetics
- Receptors, Immunologic/immunology
- Receptors, Immunologic/metabolism
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Trans-Activators/genetics
- Trans-Activators/immunology
- Trans-Activators/metabolism
- Transcriptome/genetics
- Transcriptome/immunology
Collapse
Affiliation(s)
- Joachim Rudolf Göthert
- Department of Hematology, West German Cancer Center (WTZ), University Hospital Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Lewin Eisele
- Department of Hematology, West German Cancer Center (WTZ), University Hospital Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | | | - Stefanie Weber
- Department of Hematology, West German Cancer Center (WTZ), University Hospital Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Marie-Louise Zesewitz
- Department of Hematology, West German Cancer Center (WTZ), University Hospital Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Ludger Sellmann
- Department of Hematology, West German Cancer Center (WTZ), University Hospital Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Alexander Röth
- Department of Hematology, West German Cancer Center (WTZ), University Hospital Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Hanspeter Pircher
- Department of Immunology, Institute of Medical Microbiology and Hygiene, University of Freiburg, Freiburg, Germany
| | - Ulrich Dührsen
- Department of Hematology, West German Cancer Center (WTZ), University Hospital Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Jan Dürig
- Department of Hematology, West German Cancer Center (WTZ), University Hospital Essen, Hufelandstrasse 55, 45147 Essen, Germany
| |
Collapse
|
176
|
CD8 T cell memory to a viral pathogen requires trans cosignaling between HVEM and BTLA. PLoS One 2013; 8:e77991. [PMID: 24205056 PMCID: PMC3812147 DOI: 10.1371/journal.pone.0077991] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 09/09/2013] [Indexed: 11/20/2022] Open
Abstract
Defining the molecular interactions required to program activated CD8 T cells to survive and become memory cells may allow us to understand how to augment anti-viral immunity. HVEM (herpes virus entry mediator) is a member of the tumor necrosis factor receptor (TNFR) family that interacts with ligands in the TNF family, LIGHT and Lymphotoxin-α, and in the Ig family, B and T lymphocyte attenuator (BTLA) and CD160. The Ig family members initiate inhibitory signaling when engaged with HVEM, but may also activate survival gene expression. Using a model of vaccinia virus infection, we made the unexpected finding that deficiency in HVEM or BTLA profoundly impaired effector CD8 T cell survival and development of protective immune memory. Mixed adoptive transfer experiments indicated that BTLA expressed in CD8α+ dendritic cells functions as a trans-activating ligand that delivers positive co-signals through HVEM expressed in T cells. Our data demonstrate a critical role of HVEM-BTLA bidirectional cosignaling system in antiviral defenses by driving the differentiation of memory CD8 T cells.
Collapse
|
177
|
Concanavalin A-mediated T cell proliferation is regulated by herpes virus entry mediator costimulatory molecule. In Vitro Cell Dev Biol Anim 2013; 50:313-20. [PMID: 24163161 DOI: 10.1007/s11626-013-9705-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 10/09/2013] [Indexed: 01/22/2023]
Abstract
T cell activation is regulated by two distinct signals, signals one and two. Concanavalin A (ConA) is an antigen-independent mitogen and functions as signal one inducer, leading T cells to polyclonal proliferation. CD28 is known to be one of major costimulatory receptors and to provide signal two in the ConA-induced T cell proliferation. Here, we have studied the implication of other costimulatory pathways in the ConA-mediated T cell proliferation by using soluble recombinant proteins consisting of an extracellular domain of costimulatory receptors and Fc portion of human IgG. We found that T cell proliferation induced by ConA, but not PMA plus ionomycin or anti-CD3 mAb, is significantly inhibited by herpes virus entry mediator (HVEM)-Ig, even in the presence of CD28 signaling. Moreover, the high concentration of HVEM-Ig molecules almost completely suppressed ConA-mediated T cell proliferation. These results suggest that HVEM might play more important roles than CD28 in ConA-mediated T cell proliferation.
Collapse
|
178
|
Kim KK, Jin SH, Lee BJ. Herpes virus entry mediator signaling in the brain is imperative in acute inflammation-induced anorexia and body weight loss. Endocrinol Metab (Seoul) 2013; 28:214-20. [PMID: 24396681 PMCID: PMC3811702 DOI: 10.3803/enm.2013.28.3.214] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 07/19/2013] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Reduced appetite and body weight loss are typical symptoms of inflammatory diseases. A number of inflammatory stimuli are responsible for the imbalance in energy homeostasis, leading to metabolic disorders. The herpes virus entry mediator (HVEM) protein plays an important role in the development of various inflammatory diseases, such as intestinal inflammation and diet-induced obesity. However, the role of HVEM in the brain is largely unknown. This study aims to investigate whether HVEM signaling in the brain is involved in inflammation-induced anorexia and body weight loss. METHODS Food intake and body weight were measured at 24 hours after intraperitoneal injection of lipopolysaccharide (LPS) or intracerebroventricular injection of recombinant mouse LIGHT (also called tumor necrosis factor receptor superfamily 14, TNFSF14), an HVEM ligand, into 8- to 10-week-old male C57BL/6 mice and mice lacking HVEM expression (HVEM-/-). We also assessed LPS-induced change in hypothalamic expression of HVEM using immunohistochemistry. RESULTS Administration of LPS significantly reduced food intake and body weight, and moreover, increased expression of HVEM in the hypothalamic arcuate nucleus. However, LPS induced only minor decreases in food intake and body weight in HVEM-/- mice. Administration of LIGHT into the brain was very effective at decreasing food intake and body weight in wild-type mice, but was less effective in HVEM-/- mice. CONCLUSION Activation of brain HVEM signaling is responsible for inflammation-induced anorexia and body weight loss.
Collapse
Affiliation(s)
- Kwang Kon Kim
- Department of Biological Sciences, University of Ulsan College of Natural Sciences, Ulsan, Korea
| | - Sung Ho Jin
- Department of Biological Sciences, University of Ulsan College of Natural Sciences, Ulsan, Korea
| | - Byung Ju Lee
- Department of Biological Sciences, University of Ulsan College of Natural Sciences, Ulsan, Korea
| |
Collapse
|
179
|
B- and T-lymphocyte attenuator/herpes virus entry mediator as early indicators for acute rejection following kidney transplantation. Transplant Proc 2013; 45:157-62. [PMID: 23375291 DOI: 10.1016/j.transproceed.2012.10.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 09/11/2012] [Accepted: 10/09/2012] [Indexed: 12/24/2022]
Abstract
OBJECTIVE The objective of this study was to investigate the roles of B- and T-lymphocyte attenuator (BTLA) and herpes virus entry mediator (HVEM) in acute and chronic transplant rejection and immune tolerance. METHODS The expression patterns of BTLA/HVEM, interleukin (IL)-2, IL-4, IL-10, and interferon (IFN)-γ were analyzed among patients presenting with acute rejection episodes versus those maintaining stable renal function during therapy with mycophenolate mofetil (MMF), cyclosporine, or tacrolimus (FK506) plus prednisolone. RESULTS The expressions of BTLA/HVEM in the rejection group were obviously increased compared with the stable group (P < .05), followed by the elevation of serum levels of IL-2 and IFN-γ. CONCLUSION The expression levels of BTLA/HVEM can be considered to be early indicators of an acute rejection episode following kidney transplantation.
Collapse
|
180
|
HVEM gene polymorphisms are associated with sporadic breast cancer in Chinese women. PLoS One 2013; 8:e71040. [PMID: 23976978 PMCID: PMC3745383 DOI: 10.1371/journal.pone.0071040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 06/27/2013] [Indexed: 11/19/2022] Open
Abstract
As a costimulatory molecule, Herpesvirus entry mediator (HVEM) can bind with several costimulatory members, thus HVEM plays different roles in T cell immunity. HVEM and its ligands have been involved in the pathogenesis of various autoimmune, inflammatory diseases and tumors. In the current study, we conducted a case-control study comparing polymorphisms of HVEM and breast cancer. Subjects included 575 females with breast cancer and 604 age-matched healthy controls. Six HVEM SNPs (rs2281852, rs1886730, rs2234163, rs11573979, rs2234165, and rs2234167) were genotyped by PCR-RFLP. The results showed significant differences in genotypes and alleles between rs1886730 and rs2234167 (P<0.05). One haplotype (CTGCGG) that was associated with breast cancer was found via haplotype analysis. Our research also indicated an association between polymorphisms of HVEM and clinicopathologic features, including lymph node metastasis, estrogen receptor, progesterone receptor and P53. Our results primarily indicate that polymorphisms of the HVEM gene were associated with the risk of sporadic breast cancer in northeast Chinese females.
Collapse
|
181
|
Santana VC, Diniz MO, Cariri FAMO, Ventura AM, Cunha-Neto E, Almeida RR, Campos MA, Lima GK, Ferreira LCS. Bicistronic DNA vaccines simultaneously encoding HIV, HSV and HPV antigens promote CD8⁺ T cell responses and protective immunity. PLoS One 2013; 8:e71322. [PMID: 23951135 PMCID: PMC3738591 DOI: 10.1371/journal.pone.0071322] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 07/04/2013] [Indexed: 12/31/2022] Open
Abstract
Millions of people worldwide are currently infected with human papillomavirus (HPV), herpes simplex virus (HSV) or human immunodeficiency virus (HIV). For this enormous contingent of people, the search for preventive and therapeutic immunological approaches represents a hope for the eradication of latent infection and/or virus-associated cancer. To date, attempts to develop vaccines against these viruses have been mainly based on a monovalent concept, in which one or more antigens of a virus are incorporated into a vaccine formulation. In the present report, we designed and tested an immunization strategy based on DNA vaccines that simultaneously encode antigens for HIV, HSV and HPV. With this purpose in mind, we tested two bicistronic DNA vaccines (pIRES I and pIRES II) that encode the HPV-16 oncoprotein E7 and the HIV protein p24 both genetically fused to the HSV-1 gD envelope protein. Mice i.m. immunized with the DNA vaccines mounted antigen-specific CD8+ T cell responses, including in vivo cytotoxic responses, against the three antigens. Under experimental conditions, the vaccines conferred protective immunity against challenges with a vaccinia virus expressing the HIV-derived protein Gag, an HSV-1 virus strain and implantation of tumor cells expressing the HPV-16 oncoproteins. Altogether, our results show that the concept of a trivalent HIV, HSV, and HPV vaccine capable to induce CD8+ T cell-dependent responses is feasible and may aid in the development of preventive and/or therapeutic approaches for the control of diseases associated with these viruses.
Collapse
Affiliation(s)
- Vinicius C. Santana
- Department of Microbiology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | - Mariana O. Diniz
- Department of Microbiology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | - Francisco A. M. O. Cariri
- Department of Microbiology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | - Armando M. Ventura
- Department of Microbiology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
| | - Edécio Cunha-Neto
- Laboratory of Clinical Immunology and Allergy-LIM60, Division of Clinical Immunology and Allergy, Department of Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Rafael R. Almeida
- Laboratory of Clinical Immunology and Allergy-LIM60, Division of Clinical Immunology and Allergy, Department of Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Marco A. Campos
- René Rachou Research Center, Fiocruz, Belo Horizonte, Brazil
| | | | - Luís C. S. Ferreira
- Department of Microbiology, Biomedical Sciences Institute, University of São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
182
|
Abstract
Co-stimulatory and co-inhibitory receptors have a pivotal role in T cell biology, as they determine the functional outcome of T cell receptor (TCR) signalling. The classic definition of T cell co-stimulation continues to evolve through the identification of new co-stimulatory and co-inhibitory receptors, the biochemical characterization of their downstream signalling events and the delineation of their immunological functions. Notably, it has been recently appreciated that co-stimulatory and co-inhibitory receptors display great diversity in expression, structure and function, and that their functions are largely context dependent. Here, we focus on some of these emerging concepts and review the mechanisms through which T cell activation, differentiation and function is controlled by co-stimulatory and co-inhibitory receptors.
Collapse
Affiliation(s)
- Lieping Chen
- Department of Immunobiology and Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut 06519, USA.
| | | |
Collapse
|
183
|
del Rio ML, Schneider P, Fernandez-Renedo C, Perez-Simon JA, Rodriguez-Barbosa JI. LIGHT/HVEM/LTβR interaction as a target for the modulation of the allogeneic immune response in transplantation. Am J Transplant 2013; 13:541-51. [PMID: 23356438 DOI: 10.1111/ajt.12089] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 11/12/2012] [Accepted: 11/30/2012] [Indexed: 01/25/2023]
Abstract
The exchange of information during interactions of T cells with dendritic cells, B cells or other T cells regulates the course of T, B and DC-cell activation and their differentiation into effector cells. The tumor necrosis factor superfamily member LIGHT (homologous to lymphotoxin, exhibits inducible expression and competes with HSV glycoprotein D for binding to herpesvirus entry mediator, a receptor expressed on T lymphocytes) is transiently expressed upon T cell activation and modulates CD8 T cell-mediated alloreactive responses upon herpes virus entry mediator (HVEM) and lymphotoxin β receptor (LTβR) engagement. LIGHT-deficient mice, or WT mice treated with LIGHT-targeting decoy receptors HVEM-Ig, LTβR-Ig or sDcR3-Ig, exhibit prolonged graft survival compared to untreated controls, suggesting that LIGHT modulates the course and severity of graft rejection. Therefore, targeting the interaction of LIGHT with HVEM and/or LTβR using recombinant soluble decoy receptors or monoclonal antibodies represent an innovative therapeutic strategy for the prevention and treatment of allograft rejection and for the promotion of donor-specific tolerance.
Collapse
Affiliation(s)
- M-L del Rio
- Transplantation Immunobiology Section, Institute of Biomedicine, University of Leon, Leon, Spain
| | | | | | | | | |
Collapse
|
184
|
Mocellin S, Benna C, Pilati P. Coinhibitory molecules in cancer biology and therapy. Cytokine Growth Factor Rev 2013; 24:147-61. [PMID: 23380546 DOI: 10.1016/j.cytogfr.2013.01.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Accepted: 01/09/2013] [Indexed: 12/31/2022]
Abstract
The adaptive immune response is controlled by checkpoints represented by coinhibitory molecules, which are crucial for maintaining self-tolerance and minimizing collateral tissue damage under physiological conditions. A growing body of preclinical evidence supports the hypothesis that unleashing this immunological break might be therapeutically beneficial in the fight against cancer, as it would elicit an effective antitumor immune response. Remarkably, recent clinical trials have demonstrated that this novel strategy can be highly effective in the treatment of patients with cancer, as shown by the paradigmatic case of ipilimumab (a monoclonal antibody blocking the coinhibitory molecule cytotoxic T lymphocyte associated antigen-4 [CTLA4]) that is opening a new era in the therapeutic approach to a chemoresistant tumor such as cutaneous melanoma. In this review we summarize the biology of coinhibitory molecules, overview the experimental and clinical attempts to interfere with these immune checkpoints to treat cancer and critically discuss the challenges posed by such a promising antitumor modality.
Collapse
Affiliation(s)
- Simone Mocellin
- Department of Surgery, Oncology and Gastroenterology, University of Padova, via Giustiniani 2, 35128 Padova, Italy.
| | | | | |
Collapse
|
185
|
Frebel H, Oxenius A. The risks of targeting co-inhibitory pathways to modulate pathogen-directed T cell responses. Trends Immunol 2013; 34:193-9. [PMID: 23333205 PMCID: PMC7106470 DOI: 10.1016/j.it.2012.12.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 12/18/2012] [Accepted: 12/21/2012] [Indexed: 12/22/2022]
Abstract
The identification of T cell co-inhibition as a central mechanism in the regulation of adaptive immunity during infectious diseases provides new opportunities for immunotherapeutic interventions. However, the fact that T cell activity is frequently downregulated during pathogen-directed responses suggests a pivotal physiological role of co-inhibitory pathways during infectious disease. Reports of exacerbated immunopathology in conditions of impaired co-inhibition foster the view that downregulation of T cell activity is an essential negative feedback mechanism that protects from excessive pathogen-directed immunity. Thus, targeting co-inhibitory pathways can bear detrimental potential through the deregulation of physiological processes. Here, we summarize recent preclinical and clinical interventions that report immune-related adverse events after targeting co-inhibitory pathways.
Collapse
Affiliation(s)
- Helge Frebel
- Institute of Microbiology, ETH Zurich, Wolfgang-Pauli-Str. 10, 8093 Zurich, Switzerland
| | | |
Collapse
|
186
|
Stojanovic A, Correia MP, Cerwenka A. Shaping of NK cell responses by the tumor microenvironment. CANCER MICROENVIRONMENT 2012; 6:135-46. [PMID: 23242671 DOI: 10.1007/s12307-012-0125-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 10/22/2012] [Indexed: 02/07/2023]
Abstract
Natural killer (NK) cells belong to the innate immune system and are potent cytolytic and cytokine-producing effector cells in response to tumor targets. NK cell based anti-tumor immunotherapy was so far mainly successful in patients with different types of leukemia. For instance, acute myeloid leukemia (AML) patients displayed a prolonged survival if transplanted with haploidentical stem cells giving rise to NK cells with a mismatch in inhibitory killer immunoglobulin receptors (KIRs) and recipients' HLA class I. Although promising results have been achieved with hematological tumors, solid tumors are in most cases poorly controlled by NK cells. Therapeutic protocols that aimed at improving NK cell responses in patients with solid malignancies succeeded in increasing NK cell numbers and functional responses of NK cells isolated from the patients' peripheral blood. However, in the majority of cases tumor progression and overall survival of patients were not significantly improved. There is increasing evidence that tumor-associated NK cells become gradually impaired during tumor progression compared to NK cells from peripheral blood and healthy tissues. Future protocols of NK cell based immunotherapy should integrate three important aspects to improve NK cell anti-tumor activity: facilitating NK cell migration to the tumor site, enhancing their infiltration into the tumor tissue and ensuring subsequent efficient activation in the tumor. This review summarizes the current knowledge of tumor-infiltrating NK cells and the influence of the tumor microenvironment on their phenotype and function.
Collapse
Affiliation(s)
- Ana Stojanovic
- Innate Immunity, German Cancer Research Center, Heidelberg, Germany
| | | | | |
Collapse
|
187
|
Therapeutic potential of B and T lymphocyte attenuator expressed on CD8+ T cells for contact hypersensitivity. J Invest Dermatol 2012. [PMID: 23190882 DOI: 10.1038/jid.2012.396] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the past decade, mechanisms underlying allergic contact dermatitis have been intensively investigated by using contact hypersensitivity (CHS) models in mice. However, the regulatory mechanisms, which could be applicable for the treatment of allergic contact dermatitis, are still largely unknown. To determine the roles of B and T lymphocyte attenuator (BTLA), a CD28 family coinhibitory receptor, in hapten-induced CHS, BTLA-deficient (BTLA(-/-)) mice and littermate wild-type (WT) mice were subjected to DNFB-induced CHS, severe combined immunodeficient (SCID) mice were injected with CD4(+) T cells, and CD8(+) T cells from either WT mice or BTLA(-/-) mice were subjected to CHS. BTLA(-/-) mice showed enhanced DNFB-induced CHS and proliferation and IFN-γ production of CD8(+) T cells as compared with WT mice. SCID mice injected with WT CD4(+) T cells and BTLA(-/-) CD8(+) T cells exhibited more severe CHS as compared with those injected with WT CD4(+) T cells and WT CD8(+) T cells. On the other hand, SCID mice injected with BTLA(-/-) CD4(+) T cells and WT CD8(+) T cells exhibited similar CHS to those injected with WT CD4(+) T cells and WT CD8(+) T cells. Finally, to evaluate the therapeutic potential of an agonistic agent for BTLA on CHS, the effects of an agonistic anti-BTLA antibody (6A6) on CHS were examined. In vivo injection of 6A6 suppressed DNFB-induced CHS and IFN-γ production of CD8(+) T cells. Taken together, these results suggest that stimulation of BTLA with agonistic agents has therapeutic potential in CHS.
Collapse
|
188
|
Sirolimus-based regimen promotes inhibitory costimulatory signal of HVEM/BTLA/CD160/LIGHT pathway in allo-renal recipients. Transpl Immunol 2012; 28:38-47. [PMID: 23165214 DOI: 10.1016/j.trim.2012.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 10/24/2012] [Accepted: 11/09/2012] [Indexed: 02/05/2023]
Abstract
HVEM/BTLA/CD160/LIGHT pathway is a very special costimulatory molecule system which can regulate T-cell immune responses by activating both inflammatory and inhibitory signalings. The regulatory effect of Sirolimus on HVME costimulatory system in allo-renal recipients has not been reported. In this study, we analyzed the expression of HVEM, BTLA, CD160 and LIGHT on circulating T cell subgroups and the expression of HVEM on CD4+ Tregs by flow cytometry and also the pre-dose concentration of Sirolimus by automatic analyzer. Both the allo-renal recipients receiving Sirolimus immunosuppressive regimen and health volunteers were included. The expression of both BTLA and CD160 on T cells increased significantly while the expression of LIGHT on T cells decreased significantly in allo-renal recipients receiving Sirolimus regimen (p<0.05). The expression of HVEM on T cells and CD4+ T-cell subgroup decreased (p<0.05) while that on CD8+ T-cell subgroup remained roughly normal (p>0.05).The expression of HVEM on CD4+ Tregs increased significantly (p<0.05) in allo-renal recipients receiving Sirolimus regimen (p<0.05). Though regulating the expression of HVEM/BTLA/CD160/LIGHT costimulatory system, Sirolimus-based regimen promotes inhibitory costimulatory signal in T cells and enhances the function of CD4+ Tregs in allo-renal recipients, which are in benefit of the control of transplant rejection as well as the induction and maintenance of transplant tolerance.
Collapse
|
189
|
The expression and anatomical distribution of BTLA and its ligand HVEM in rheumatoid synovium. Inflammation 2012; 35:1102-12. [PMID: 22179929 DOI: 10.1007/s10753-011-9417-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Co-inhibitory signaling from B and T lymphocyte attenuator (BTLA) can suppress lymphocyte activation and maintain peripheral tolerance. However, the expression and anatomical distribution of BTLA and its ligand, herpesvirus entry mediator (HVEM), in rheumatoid arthritis (RA) synovium have not been reported. In this study, we analyzed the expression of HVEM and BTLA in RA synovium by immunohistochemistry, and our results showed that both factors were observed in all four cases of RA samples. At the cellular level, both HVEM and BTLA were found on the cell membrane and in the cytoplasm. Fluorescence dual staining demonstrated that HVEM was chiefly on CD3(+) T cells, CD68(+) macrophages, and to a lesser extent was found on CD31(+) endothelial cells. Similarly, the expression of BTLA was observed on infiltrated CD3(+) T cells and CD68(+) macrophages. The co-expression of HVEM and BTLA with some members of the B7 family in these sections was also analyzed, and the results showed that HVEM antigen was also found on B7-H3(+) capillaries, while it was absent on B7-H1(+), B7-DC(+), B7-H4(+), and Z39Ig(+) cells. Interestingly, BTLA was observed on B7-H1(+), B7-H4(+), and HVEM(+) cells in the synovium. The characteristic expression and distribution of BTLA/HVEM in the synovium indicated that their signaling probably affects the pathogenesis of RA, and a clear understanding of their functional roles may further elucidate the pathogenesis of this disease.
Collapse
|
190
|
Abstract
Allergic contact dermatitis is the quintessential example of a delayed-in-time and T-cell-mediated immune response. In the last decade, many of the molecular events required to initiate (or block) such a response have been uncovered. Textbook and journal reviews have emphasized the costimulatory requirements, with less focus on the coinhibitory signals that are of equal importance in understanding this central event of adaptive immunity. To fill this gap, we offer a compendium of discoveries characterizing the ligand-receptor pairs inhibiting T-cell activation and of selected illnesses and therapeutic applications that illuminate their role in health and disease.
Collapse
Affiliation(s)
- Shinjita Das
- Department of Dermatology, The University of Texas Southwestern Medical Center and Dallas Veterans Affairs Medical Center, Dallas, TX, USA.
| | | | | |
Collapse
|
191
|
Peretz Y, He Z, Shi Y, Yassine-Diab B, Goulet JP, Bordi R, Filali-Mouhim A, Loubert JB, El-Far M, Dupuy FP, Boulassel MR, Tremblay C, Routy JP, Bernard N, Balderas R, Haddad EK, Sékaly RP. CD160 and PD-1 co-expression on HIV-specific CD8 T cells defines a subset with advanced dysfunction. PLoS Pathog 2012; 8:e1002840. [PMID: 22916009 PMCID: PMC3420930 DOI: 10.1371/journal.ppat.1002840] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 06/20/2012] [Indexed: 12/27/2022] Open
Abstract
Chronic viral infections lead to persistent CD8 T cell activation and functional exhaustion. Expression of programmed cell death-1 (PD-1) has been associated to CD8 T cell dysfunction in HIV infection. Herein we report that another negative regulator of T cell activation, CD160, was also upregulated on HIV-specific CD8 T lymphocytes mostly during the chronic phase of infection. CD8 T cells that expressed CD160 or PD-1 were still functional whereas co-expression of CD160 and PD-1 on CD8 T cells defined a novel subset with all the characteristics of functionally exhausted T cells. Blocking the interaction of CD160 with HVEM, its natural ligand, increased HIV-specific CD8 T cell proliferation and cytokine production. Transcriptional profiling showed that CD160−PD-1+CD8 T cells encompassed a subset of CD8+ T cells with activated transcriptional programs, while CD160+PD-1+ T cells encompassed primarily CD8+ T cells with an exhausted phenotype. The transcriptional profile of CD160+PD-1+ T cells showed the downregulation of the NFκB transcriptional node and the upregulation of several inhibitors of T cell survival and function. Overall, we show that CD160 and PD-1 expressing subsets allow differentiating between activated and exhausted CD8 T cells further reinforcing the notion that restoration of function will require multipronged approaches that target several negative regulators. HIV infection is widely known to cause generalized immune activation and immune exhaustion ultimately leading to HIV disease progression. Several studies have suggested over the years that the accumulation of inhibitory signalling proteins on the surface of responding cells is linked to immune exhaustion in HIV. It has become paramount to distinguish functionally exhausted CD8 T cells from activated HIV-specific CD8 T cells because both cell types have different fates. Using specific cell surface markers, we were able to identify these different cell types and show that HIV-infected patients accumulate dysfunctional CD8 T cells over time. Importantly, we show that this dysfunction is reversible.
Collapse
Affiliation(s)
- Yoav Peretz
- Caprion/ImmuneCarta Services, Montreal, Quebec, Canada
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Hôpital St-Luc, Montreal, Quebec, Canada
- Laboratoire d'Immunologie, Département de Microbiologie et d'Immunologie, Université de Montreal, Montreal, Quebec, Canada
| | - Zhong He
- Vaccine & Gene Therapy Institute Florida, Port St. Lucie, Florida, United States of America
| | - Yu Shi
- Vaccine & Gene Therapy Institute Florida, Port St. Lucie, Florida, United States of America
| | - Bader Yassine-Diab
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Hôpital St-Luc, Montreal, Quebec, Canada
- Laboratoire d'Immunologie, Département de Microbiologie et d'Immunologie, Université de Montreal, Montreal, Quebec, Canada
| | - Jean-Philippe Goulet
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Hôpital St-Luc, Montreal, Quebec, Canada
- Laboratoire d'Immunologie, Département de Microbiologie et d'Immunologie, Université de Montreal, Montreal, Quebec, Canada
| | - Rebeka Bordi
- Vaccine & Gene Therapy Institute Florida, Port St. Lucie, Florida, United States of America
| | - Ali Filali-Mouhim
- Vaccine & Gene Therapy Institute Florida, Port St. Lucie, Florida, United States of America
| | - Jean-Baptiste Loubert
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Hôpital St-Luc, Montreal, Quebec, Canada
- Laboratoire d'Immunologie, Département de Microbiologie et d'Immunologie, Université de Montreal, Montreal, Quebec, Canada
| | - Mohamed El-Far
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Hôpital St-Luc, Montreal, Quebec, Canada
- Laboratoire d'Immunologie, Département de Microbiologie et d'Immunologie, Université de Montreal, Montreal, Quebec, Canada
| | - Franck P. Dupuy
- Vaccine & Gene Therapy Institute Florida, Port St. Lucie, Florida, United States of America
| | - Mohamed Rachid Boulassel
- Immunodeficiency Service and Division of Hematology, Royal Victoria Hospital, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Cécile Tremblay
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Hôpital St-Luc, Montreal, Quebec, Canada
- Laboratoire d'Immunologie, Département de Microbiologie et d'Immunologie, Université de Montreal, Montreal, Quebec, Canada
| | - Jean-Pierre Routy
- Immunodeficiency Service and Division of Hematology, Royal Victoria Hospital, McGill University Health Centre, McGill University, Montreal, Quebec, Canada
| | - Nicole Bernard
- Department of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Robert Balderas
- BD Biosciences, San Diego, California, United States of America
| | - Elias K. Haddad
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Hôpital St-Luc, Montreal, Quebec, Canada
- Laboratoire d'Immunologie, Département de Microbiologie et d'Immunologie, Université de Montreal, Montreal, Quebec, Canada
- Vaccine & Gene Therapy Institute Florida, Port St. Lucie, Florida, United States of America
| | - Rafick-Pierre Sékaly
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Hôpital St-Luc, Montreal, Quebec, Canada
- Laboratoire d'Immunologie, Département de Microbiologie et d'Immunologie, Université de Montreal, Montreal, Quebec, Canada
- Vaccine & Gene Therapy Institute Florida, Port St. Lucie, Florida, United States of America
- Department of Experimental Medicine, McGill University, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
- Institut National de la Santé et de la Recherche Médicale U743, CRCHUM, Université de Montreal, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
192
|
Abstract
The immune response in patients chronically infected with HCV plays a unique role during the infection because of its potential to contribute not only to viral clearance and, in some cases, protective immunity, but also to liver injury. A detailed understanding of the immunological mechanisms involved in persistence to HCV is essential to fully appreciate the complexity of the disease. In recent years, enormous progress has been made to characterize the dysfunctional natural killer cells and T cells during the chronic phase of infection. This information is important to further optimize treatment strategies based on the strengthening antiviral and immunomodulatory activities in patients chronically infected with HCV.
Collapse
Affiliation(s)
- Michelle Spaan
- Liver Unit, Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | | |
Collapse
|
193
|
Pasero C, Speiser DE, Derré L, Olive D. The HVEM network: new directions in targeting novel costimulatory/co-inhibitory molecules for cancer therapy. Curr Opin Pharmacol 2012; 12:478-85. [DOI: 10.1016/j.coph.2012.03.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 02/29/2012] [Accepted: 03/01/2012] [Indexed: 01/30/2023]
|
194
|
Hobo W, Norde WJ, Schaap N, Fredrix H, Maas F, Schellens K, Falkenburg JHF, Korman AJ, Olive D, van der Voort R, Dolstra H. B and T lymphocyte attenuator mediates inhibition of tumor-reactive CD8+ T cells in patients after allogeneic stem cell transplantation. THE JOURNAL OF IMMUNOLOGY 2012; 189:39-49. [PMID: 22634623 DOI: 10.4049/jimmunol.1102807] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Allogeneic stem cell transplantation (allo-SCT) can cure hematological malignancies by inducing alloreactive T cell responses targeting minor histocompatibility antigens (MiHA) expressed on malignant cells. Despite induction of robust MiHA-specific T cell responses and long-term persistence of alloreactive memory T cells specific for the tumor, often these T cells fail to respond efficiently to tumor relapse. Previously, we demonstrated the involvement of the coinhibitory receptor programmed death-1 (PD-1) in suppressing MiHA-specific CD8(+) T cell immunity. In this study, we investigated whether B and T lymphocyte attenuator (BTLA) plays a similar role in functional impairment of MiHA-specific T cells after allo-SCT. In addition to PD-1, we observed higher BTLA expression on MiHA-specific CD8(+) T cells compared with that of the total population of CD8(+) effector-memory T cells. In addition, BTLA's ligand, herpes virus entry mediator (HVEM), was found constitutively expressed by myeloid leukemia, B cell lymphoma, and multiple myeloma cells. Interference with the BTLA-HVEM pathway, using a BTLA blocking Ab, augmented proliferation of BTLA(+)PD-1(+) MiHA-specific CD8(+) T cells by HVEM-expressing dendritic cells. Notably, we demonstrated that blocking of BTLA or PD-1 enhanced ex vivo proliferation of MiHA-specific CD8(+) T cells in respectively 7 and 9 of 11 allo-SCT patients. Notably, in 3 of 11 patients, the effect of BTLA blockade was more prominent than that of PD-1 blockade. Furthermore, these expanded MiHA-specific CD8(+) T cells competently produced effector cytokines and degranulated upon Ag reencounter. Together, these results demonstrate that BTLA-HVEM interactions impair MiHA-specific T cell functionality, providing a rationale for interfering with BTLA signaling in post-stem cell transplantation therapies.
Collapse
Affiliation(s)
- Willemijn Hobo
- Laboratory of Hematology, Department of Laboratory Medicine, Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences, 6525 GA Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
195
|
Positive and negative regulation of cellular immune responses in physiologic conditions and diseases. Clin Dev Immunol 2012; 2012:485781. [PMID: 22548114 PMCID: PMC3324270 DOI: 10.1155/2012/485781] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 01/20/2012] [Indexed: 12/28/2022]
Abstract
The immune system has evolved to allow robust responses against pathogens while avoiding autoimmunity. This is notably enabled by stimulatory and inhibitory signals which contribute to the regulation of immune responses. In the presence of a pathogen, a specific and effective immune response must be induced and this leads to antigen-specific T-cell proliferation, cytokines production, and induction of T-cell differentiation toward an effector phenotype. After clearance or control of the pathogen, the effector immune response must be terminated in order to avoid tissue damage and chronic inflammation and this process involves coinhibitory molecules. When the immune system fails to eliminate or control the pathogen, continuous stimulation of T cells prevents the full contraction and leads to the functional exhaustion of effector T cells. Several evidences both in vitro and in vivo suggest that this anergic state can be reverted by blocking the interactions between coinhibitory molecules and their ligands. The potential to revert exhausted or inactivated T-cell responses following selective blocking of their function made these markers interesting targets for therapeutic interventions in patients with persistent viral infections or cancer.
Collapse
|
196
|
Targeting costimulatory molecules to improve antitumor immunity. J Biomed Biotechnol 2012; 2012:926321. [PMID: 22500111 PMCID: PMC3303883 DOI: 10.1155/2012/926321] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 10/12/2011] [Accepted: 11/16/2011] [Indexed: 12/12/2022] Open
Abstract
The full activation of T cells necessitates the concomitant activation of two signals, the engagement of T-cell receptor by peptide/major histocompatibility complex II and an additional signal delivered by costimulatory molecules. The best characterized costimulatory molecules belong to B7/CD28 and TNF/TNFR families and play crucial roles in the modulation of immune response and improvement of antitumor immunity. Unfortunately, tumors often generate an immunosuppressive microenvironment, where T-cell response is attenuated by the lack of costimulatory molecules on the surface of cancer cells. Thus, targeting costimulatory pathways represent an attractive therapeutic strategy to enhance the antitumor immunity in several human cancers. Here, latest therapeutic approaches targeting costimulatory molecules will be described.
Collapse
|
197
|
Gommerman JL, Summers deLuca L. LTβR and CD40: working together in dendritic cells to optimize immune responses. Immunol Rev 2012; 244:85-98. [PMID: 22017433 DOI: 10.1111/j.1600-065x.2011.01056.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Generating an immune response tailored to destroy an infecting organism while limiting bystander damage involves guiding T-cell activation using a variety of cues taken from the immunogen (antigen type, dose, and persistence, accompanying danger signals) as well as the host (tissue environment, T-cell frequency, and affinity for antigen). Dendritic cells (DCs) serve as translators of much of this information and are critically required for effective pathogen and tumor clearance. Moreover, dysregulation of DC activation can lead to autoimmunity. Inhibition of the lymphotoxin (LT) and CD40 pathways has been shown to be effective at quieting inflammation in settings where DC-T-cell interactions are key instigators of disease progression. In this review, we compare and contrast the CD40 and LT pathways in the context of receptor/ligand expression, signal transduction, and DC biology. We provide evidence that these two pathways play complementary roles in DC cytokine secretion, thus indirectly shaping the nature of the CD8(+) T-cell response to foreign antigen. Given the distinct role of these pathways in the context of DC function, we propose that dual therapies targeted at both the CD40 and LTβ receptor may have therapeutic potential in silencing DC-driven autoimmunity or in promoting tumor clearance.
Collapse
|
198
|
Baek H, Kim JH, Noh YT, Kwon H. The soluble amino-terminal region of HVEM mediates efficient herpes simplex virus type 1 infection of gD receptor-negative cells. Virol J 2012; 9:15. [PMID: 22239829 DOI: 10.1186/1743-422x-9-15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 01/13/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Previous studies from our own and other labs reported the surprising finding that the soluble V domain of the herpes simplex virus type 1 (HSV-1) entry receptor nectin-1 can both block HSV infection of receptor-bearing cells and mediate infection of receptor-deficient cells. Here we show that this property is not unique to nectin-1. We generated a pair of truncated, soluble forms of the other major HSV-1 entry receptor, herpes virus entry mediator (HVEM or HveA), and examined its effects on HSV-1 infection of receptor-deficient cells. RESULTS In cultures of CHO-K1 cells, sHveA102 comprising the two amino-terminal cysteine-rich pseudorepeats (CRPs) of HVEM enabled infection of greater than 80% of the cells at an MOI of 3, while sHveA162 comprising the complete ectodomain failed to mediate infection. Both sHveA102 and sHveA162 blocked infection of CHO-K1 cells stably expressing HVEM in a dose-dependent manner, indicating that both were capable of binding to viral gD. We found that sHveA102-mediated infection involves pH-independent endocytosis whereas HSV infection of HVEM-expressing CHO-K1 cells is known to be pH-dependent. CONCLUSIONS Our results suggest that the C-terminal portion of the soluble HVEM ectodomain inhibits gD activation and that this effect is neutralized in the full-length form of HVEM in normal infection.
Collapse
Affiliation(s)
- Hyunjung Baek
- Division of Radiation Oncology, Korea Institute of Radiological and Medical Sciences, 215-4, Gongneung-Dong, Nowon-Ku, Seoul 139-706, South Korea
| | | | | | | |
Collapse
|
199
|
Engel P, Angulo A. Viral Immunomodulatory Proteins: Usurping Host Genes as a Survival Strategy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 738:256-76. [DOI: 10.1007/978-1-4614-1680-7_15] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
200
|
The role of costimulatory receptors of the tumour necrosis factor receptor family in atherosclerosis. J Biomed Biotechnol 2011; 2012:464532. [PMID: 22235167 PMCID: PMC3253462 DOI: 10.1155/2012/464532] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 10/11/2011] [Indexed: 11/17/2022] Open
Abstract
Atherosclerosis is a chronic inflammatory disease that is mediated by both the innate and adaptive immune responses. T lymphocytes, that together with B cells are the cellular effectors of the adaptive immune system, are currently endowed with crucial roles in the development and progression of atherosclerosis. Costimulatory receptors are a class of molecules expressed by T lymphocytes that regulate the activation of T cells and the generation of effector T-cell responses. In this review we present the roles of costimulatory receptors of the tumour necrosis factor receptor (TNFR) superfamily in atherosclerosis and discuss the implications for future therapies that could be used to specifically modulate the immune response of pathogenic T cells in this disease.
Collapse
|