151
|
Flow Synthesis of Nature-Inspired Mitochondria-Targeted Phenolic Derivatives as Potential Neuroprotective Agents. Antioxidants (Basel) 2022; 11:antiox11112160. [DOI: 10.3390/antiox11112160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
A series of phenolic derivatives designed to selectively target mitochondria were synthesized under flow conditions starting from natural phenolic acids. The two-step continuous flow protocol, performed in Cyrene, a bioavailable dipolar aprotic solvent, allowed the isolation of the MITO compounds in moderate to good yields. The MITO compounds obtained, as a first step, were tested for their safety by cell viability analysis. The cytocompatible dose, in human neuronal cell line SH-SH5Y, depends on the type of compound and the non-toxic dose is between 3.5 and 125 µM. Among the seven MITO compounds synthesized, two of them have shown interesting performances, being able to protect mitochondria from oxidative insult.
Collapse
|
152
|
Guna A, Stevens TA, Inglis AJ, Replogle JM, Esantsi TK, Muthukumar G, Shaffer KCL, Wang ML, Pogson AN, Jones JJ, Lomenick B, Chou TF, Weissman JS, Voorhees RM. MTCH2 is a mitochondrial outer membrane protein insertase. Science 2022; 378:317-322. [PMID: 36264797 PMCID: PMC9674023 DOI: 10.1126/science.add1856] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In the mitochondrial outer membrane, α-helical transmembrane proteins play critical roles in cytoplasmic-mitochondrial communication. Using genome-wide CRISPR screens, we identified MTCH2, and its paralog MTCH1, and showed that it is required for insertion of biophysically diverse tail-anchored (TA), signal-anchored, and multipass proteins, but not outer membrane β-barrel proteins. Purified MTCH2 was sufficient to mediate insertion into reconstituted proteoliposomes. Functional and mutational studies suggested that MTCH2 has evolved from a solute carrier transporter. MTCH2 uses membrane-embedded hydrophilic residues to function as a gatekeeper for the outer membrane, controlling mislocalization of TAs into the endoplasmic reticulum and modulating the sensitivity of leukemia cells to apoptosis. Our identification of MTCH2 as an insertase provided a mechanistic explanation for the diverse phenotypes and disease states associated with MTCH2 dysfunction. We showed that MTCH2 was both necessary and sufficient for insertion of diverse α-helical proteins into the mitochondrial outer membrane, and was the defining member of a family of insertases that have co-opted the SLC25 transporter fold.
Collapse
Affiliation(s)
- Alina Guna
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Taylor A Stevens
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Avenue, Pasadena, CA 91125, USA
| | - Alison J Inglis
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Avenue, Pasadena, CA 91125, USA
| | - Joseph M Replogle
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA 94158, USA.,Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA 94158, USA.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Theodore K Esantsi
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Gayathri Muthukumar
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Kelly C L Shaffer
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Avenue, Pasadena, CA 91125, USA
| | - Maxine L Wang
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Avenue, Pasadena, CA 91125, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Angela N Pogson
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Jeff J Jones
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Avenue, Pasadena, CA 91125, USA
| | - Brett Lomenick
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Avenue, Pasadena, CA 91125, USA
| | - Tsui-Fen Chou
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Avenue, Pasadena, CA 91125, USA
| | - Jonathan S Weissman
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Rebecca M Voorhees
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 East California Avenue, Pasadena, CA 91125, USA
| |
Collapse
|
153
|
Houlihan KL, Keoseyan PP, Juba AN, Margaryan T, Voss ME, Babaoghli AM, Norris JM, Adrian GJ, Tovmasyan A, Buhlman LM. Folic Acid Improves Parkin-Null Drosophila Phenotypes and Transiently Reduces Vulnerable Dopaminergic Neuron Mitochondrial Hydrogen Peroxide Levels and Glutathione Redox Equilibrium. Antioxidants (Basel) 2022; 11:antiox11102068. [PMID: 36290790 PMCID: PMC9598960 DOI: 10.3390/antiox11102068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Loss-of-function parkin mutations cause oxidative stress and degeneration of dopaminergic neurons in the substantia nigra. Several consequences of parkin mutations have been described; to what degree they contribute to selective neurodegeneration remains unclear. Specific factors initiating excessive reactive oxygen species production, inefficient antioxidant capacity, or a combination are elusive. Identifying key oxidative stress contributors could inform targeted therapy. The absence of Drosophila parkin causes selective degeneration of a dopaminergic neuron cluster that is functionally homologous to the substantia nigra. By comparing observations in these to similar non-degenerating neurons, we may begin to understand mechanisms by which parkin loss of function causes selective degeneration. Using mitochondrially targeted redox-sensitive GFP2 fused with redox enzymes, we observed a sustained increased mitochondrial hydrogen peroxide levels in vulnerable dopaminergic neurons of parkin-null flies. Only transient increases in hydrogen peroxide were observed in similar but non-degenerating neurons. Glutathione redox equilibrium is preferentially dysregulated in vulnerable neuron mitochondria. To shed light on whether dysregulated glutathione redox equilibrium primarily contributes to oxidative stress, we supplemented food with folic acid, which can increase cysteine and glutathione levels. Folic acid improved survival, climbing, and transiently decreased hydrogen peroxide and glutathione redox equilibrium but did not mitigate whole-brain oxidative stress.
Collapse
Affiliation(s)
- Katherine L. Houlihan
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA
| | - Petros P. Keoseyan
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA
| | - Amber N. Juba
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA
| | - Tigran Margaryan
- Department of Translational Neuroscience, Ivy Brain Tumor Center, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Max E. Voss
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA
| | | | - Justin M. Norris
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA
| | - Greg J. Adrian
- Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ 85308, USA
| | - Artak Tovmasyan
- Department of Translational Neuroscience, Ivy Brain Tumor Center, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Lori M. Buhlman
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA
- Correspondence: ; Tel.: +1-623-752-3668
| |
Collapse
|
154
|
Pandey SK, Singh RK. Recent developments in nucleic acid-based therapies for Parkinson's disease: Current status, clinical potential, and future strategies. Front Pharmacol 2022; 13:986668. [PMID: 36339626 PMCID: PMC9632735 DOI: 10.3389/fphar.2022.986668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/06/2022] [Indexed: 11/23/2022] Open
Abstract
Parkinson's disease is the second most common progressive neurodegenerative disease diagnosed mainly based on clinical symptoms caused by loss of nigrostriatal dopaminergic neurons. Although currently available pharmacological therapies provide symptomatic relief, however, the disease continues to progress eventually leading to severe motor and cognitive decline and reduced quality of life. The hallmark pathology of Parkinson's disease includes intraneuronal inclusions known as Lewy bodies and Lewy neurites, including fibrillar α-synuclein aggregates. These aggregates can progressively spread across synaptically connected brain regions leading to emergence of disease symptoms with time. The α-synuclein level is considered important in its fibrillization and aggregation. Nucleic acid therapeutics have recently been shown to be effective in treating various neurological diseases, raising the possibility of developing innovative molecular therapies for Parkinson's disease. In this review, we have described the advancements in genetic dysregulations in Parkinson's disease along with the disease-modifying strategies involved in genetic regulation with particular focus on downregulation of α-synuclein gene using various novel technologies, notably antisense oligonucleotides, microRNA, short interfering RNA, short hairpin RNAs, DNA aptamers, and gene therapy of vector-assisted delivery system-based therapeutics. In addition, the current status of preclinical and clinical development for nucleic acid-based therapies for Parkinson's disease have also been discussed along with their limitations and opportunities.
Collapse
Affiliation(s)
| | - Rakesh Kumar Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, Uttar Pradesh, India
| |
Collapse
|
155
|
Mantle D, Hargreaves IP. Mitochondrial Dysfunction and Neurodegenerative Disorders: Role of Nutritional Supplementation. Int J Mol Sci 2022; 23:12603. [PMID: 36293457 PMCID: PMC9604531 DOI: 10.3390/ijms232012603] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/14/2022] [Accepted: 10/16/2022] [Indexed: 08/27/2023] Open
Abstract
Mitochondrial dysfunction has been implicated in the pathogenesis of a number of neurodegenerative disorders, including Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis, multisystem atrophy, and progressive supranuclear palsy. This article is concerned specifically with mitochondrial dysfunction as defined by reduced capacity for ATP production, the role of depleted levels of key nutritionally related metabolites, and the potential benefit of supplementation with specific nutrients of relevance to normal mitochondrial function in the above neurodegenerative disorders. The article provides a rationale for a combination of CoQ10, B-vitamins/NADH, L-carnitine, vitamin D, and alpha-lipoic acid for the treatment of the above neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Iain Parry Hargreaves
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Merseyside L3 5UX, UK
| |
Collapse
|
156
|
Trigo D, Vitória JJ, da Cruz e Silva OAB. Novel therapeutic strategies targeting mitochondria as a gateway in neurodegeneration. Neural Regen Res 2022; 18:991-995. [PMID: 36254979 PMCID: PMC9827793 DOI: 10.4103/1673-5374.355750] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
In recent years, multiple disciplines have focused on mitochondrial biology and contributed to understanding its relevance towards adult-onset neurodegenerative disorders. These are complex dynamic organelles that have a variety of functions in ensuring cellular health and homeostasis. The plethora of mitochondrial functionalities confers them an intrinsic susceptibility to internal and external stressors (such as mutation accumulation or environmental toxins), particularly so in long-lived postmitotic cells such as neurons. Thus, it is reasonable to postulate an involvement of mitochondria in aging-associated neurological disorders, notably neurodegenerative pathologies including Alzheimer's disease and Parkinson's disease. On the other hand, biological effects resulting from neurodegeneration can in turn affect mitochondrial health and function, promoting a feedback loop further contributing to the progression of neuronal dysfunction and cellular death. This review examines state-of-the-art knowledge, focus on current research exploring mitochondrial health as a contributing factor to neuroregeneration, and the development of therapeutic approaches aimed at restoring mitochondrial homeostasis in a pathological setting.
Collapse
Affiliation(s)
- Diogo Trigo
- Neuroscience and Signalling Laboratory, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal,Correspondence to: Diogo Trigo, .
| | - José João Vitória
- Neuroscience and Signalling Laboratory, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Odete A. B. da Cruz e Silva
- Neuroscience and Signalling Laboratory, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
157
|
Na C, Wen-Wen C, Li W, Ao-Jia Z, Ting W. Significant Role of Long Non-coding RNAs in Parkinson's Disease. Curr Pharm Des 2022; 28:3085-3094. [PMID: 36154598 DOI: 10.2174/1381612828666220922110551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/27/2022] [Indexed: 01/28/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is the second most common neurodegenerative disease in the world, with clinical manifestations of resting tremor, akinesia (or bradykinesia), rigidity, and postural instability. However, the molecular pathogenesis of PD is still unclear, and its effective treatments are limited. Substantial evidence demonstrates that long non-coding RNAs (lncRNAs) have important functions in various human diseases, such as cancer, cardiovascular disease, and neurodegenerative diseases. Therefore, the main purpose of this study is to review the role of lncRNAs in the pathogenesis of PD. METHODS The role of lncRNAs in the pathogenesis of PD is summarized by reviewing Pubmed. RESULTS Thirty different lncRNAs are aberrantly expressed in PD and promote or inhibit PD by mediating ubiquitin-proteasome system, autophagy-lysosomal pathway, dopamine (DA) neuronal apoptosis, mitochondrial function, oxidative stress, and neuroinflammation. CONCLUSION In this direction, lncRNA may contribute to the treatment of PD as a diagnostic and therapeutic target for PD.
Collapse
Affiliation(s)
- Chen Na
- Department of Pharmacy, Institute of Advanced Pharmaceutical Technology, College of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Chen Wen-Wen
- Department of Pharmacy, Institute of Advanced Pharmaceutical Technology, College of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Wang Li
- Department of Pharmacy, Institute of Advanced Pharmaceutical Technology, College of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Zhou Ao-Jia
- Department of Pharmacy, Institute of Advanced Pharmaceutical Technology, College of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Wang Ting
- Department of Pharmacy, Institute of Advanced Pharmaceutical Technology, College of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China.,Academy of Nutrition and Health, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan 430065, China
| |
Collapse
|
158
|
Transcriptomics analysis of human iPSC-derived dopaminergic neurons reveals a novel model for sporadic Parkinson's disease. Mol Psychiatry 2022; 27:4355-4367. [PMID: 35725899 DOI: 10.1038/s41380-022-01663-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/31/2022] [Accepted: 06/07/2022] [Indexed: 02/07/2023]
Abstract
Parkinson's disease (PD) is a progressive, neurodegenerative disease affecting over 1% of the population beyond 65 years of age. Although some PD cases are inheritable, the majority of PD cases occur in a sporadic manner. Risk factors comprise next to heredity, age, and gender also exposure to neurotoxins from for instance pesticides and herbicides. As PD is characterized by a loss of dopaminergic neurons in the substantia nigra, it is nearly impossible to access and extract these cells from patients for investigating disease mechanisms. The emergence of induced pluripotent stem (iPSC) technology allows differentiating and growing human dopaminergic neurons, which can be used for in vitro disease modeling. Here, we differentiated human iPSCs into dopaminergic neurons, and subsequently exposed the cells to increasing concentrations of the neurotoxin MPP+. Temporal transcriptomics analysis revealed a strong time- and dose-dependent response with genes over-represented across pathways involved in PD etiology such as "Parkinson's Disease", "Dopaminergic signaling" and "calcium signaling". Moreover, we validated this disease model by showing robust overlap with a meta-analysis of transcriptomics data from substantia nigra from post-mortem PD patients. The overlap included genes linked to e.g. mitochondrial dysfunction, neuron differentiation, apoptosis and inflammation. Our data shows, that MPP+-induced, human iPSC-derived dopaminergic neurons present molecular perturbations as observed in the etiology of PD. Therefore we propose iPSC-derived dopaminergic neurons as a foundation for a novel sporadic PD model to study the pathomolecular mechanisms of PD, but also to screen for novel anti-PD drugs and to develop and test new treatment strategies.
Collapse
|
159
|
Abdelgawad MA, Oh JM, Parambi DG, Kumar S, Musa A, Ghoneim MM, Nayl A, El-Ghorab AH, Ahmad I, Patel H, Kim H, Mathew B. Development of bromo- and fluoro-based α, β-unsaturated ketones as highly potent MAO-B inhibitors for the treatment of Parkinson's disease. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133545] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
160
|
Chen B, Zhang W, Lin C, Zhang L. A Comprehensive Review on Beneficial Effects of Catechins on Secondary Mitochondrial Diseases. Int J Mol Sci 2022; 23:ijms231911569. [PMID: 36232871 PMCID: PMC9569714 DOI: 10.3390/ijms231911569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/13/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
Mitochondria are the main sites for oxidative phosphorylation and synthesis of adenosine triphosphate in cells, and are known as cellular power factories. The phrase "secondary mitochondrial diseases" essentially refers to any abnormal mitochondrial function other than primary mitochondrial diseases, i.e., the process caused by the genes encoding the electron transport chain (ETC) proteins directly or impacting the production of the machinery needed for ETC. Mitochondrial diseases can cause adenosine triphosphate (ATP) synthesis disorder, an increase in oxygen free radicals, and intracellular redox imbalance. It can also induce apoptosis and, eventually, multi-system damage, which leads to neurodegenerative disease. The catechin compounds rich in tea have attracted much attention due to their effective antioxidant activity. Catechins, especially acetylated catechins such as epicatechin gallate (ECG) and epigallocatechin gallate (EGCG), are able to protect mitochondria from reactive oxygen species. This review focuses on the role of catechins in regulating cell homeostasis, in which catechins act as a free radical scavenger and metal ion chelator, their protective mechanism on mitochondria, and the protective effect of catechins on mitochondrial deoxyribonucleic acid (DNA). This review highlights catechins and their effects on mitochondrial functional metabolic networks: regulating mitochondrial function and biogenesis, improving insulin resistance, regulating intracellular calcium homeostasis, and regulating epigenetic processes. Finally, the indirect beneficial effects of catechins on mitochondrial diseases are also illustrated by the warburg and the apoptosis effect. Some possible mechanisms are shown graphically. In addition, the bioavailability of catechins and peracetylated-catechins, free radical scavenging activity, mitochondrial activation ability of the high-molecular-weight polyphenol, and the mitochondrial activation factor were also discussed.
Collapse
|
161
|
Khot M, Sood A, Tryphena KP, Khan S, Srivastava S, Singh SB, Khatri DK. NLRP3 inflammasomes: A potential target to improve mitochondrial biogenesis in Parkinson's disease. Eur J Pharmacol 2022; 934:175300. [PMID: 36167151 DOI: 10.1016/j.ejphar.2022.175300] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/18/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative condition for which no approved treatment exists to prevent collective neuronal death. There is ample evidence that mitochondrial dysfunction, reactive oxygen species (ROS), and associated caspase activity underlie the pathology observed. Neurons rely on mitochondrial activity since they have such high energy consumption. Therefore, it is not surprising that mitochondrial alterations favour neuronal degeneration. In particular, mitochondrial dysregulation contributes to PD, based on the observation that mitochondrial toxins can cause parkinsonism in humans and animal models. Also, it is known that inflammatory cytokine-mediated neuroinflammation is the key pathogenic mechanism in neuronal loss. In recent years, the research has focussed on mitochondria being the platform for nucleotide-binding oligomerization domain-like receptors 3 (NLRP3) inflammasome activation. Mitochondrial dysfunction and NLRP3 activation are emerging as critical players in inducing and sustaining neuroinflammation. Moreover, mitochondrial-derived ROS and mitochondrial DNA (mtDNA) could serve as the priming signal for forming inflammasome complexes responsible for the activation, maturation, and release of pro-inflammatory cytokines, including interleukin-1(IL-1) and interleukin-18 (IL-18). The current review takes a more comprehensive approach to elucidating the link between mitochondrial dysfunction and aberrant NLRP3 activation in PD. In addition, we focus on some inhibitors of NLRP3 inflammatory pathways to alleviate the progression of PD.
Collapse
Affiliation(s)
- Mayuri Khot
- Molecular and Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana, 500037, India
| | - Anika Sood
- Molecular and Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana, 500037, India
| | - Kamatham Pushpa Tryphena
- Molecular and Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana, 500037, India
| | - Sabiya Khan
- Molecular and Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana, 500037, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana, 500037, India
| | - Shashi Bala Singh
- Molecular and Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana, 500037, India
| | - Dharmendra Kumar Khatri
- Molecular and Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana, 500037, India.
| |
Collapse
|
162
|
Robins L, Kwon M, McGlynn ML, Rosales AM, Pekas EJ, Collins C, Park SY, Slivka DR. Influence of Local Muscle Cooling on Mitochondrial-Related Gene Expression at Rest. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12028. [PMID: 36231330 PMCID: PMC9566196 DOI: 10.3390/ijerph191912028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/17/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
The purpose of this study was to determine the impact of localized cooling of the skeletal muscle during rest on mitochondrial related gene expression. Thermal wraps were applied to the vastus lateralis of each limb of 12 participants. One limb received a cold application (randomized) (COLD), while the other did not (RT). Wraps were removed at the 4 h time point and measurements of skin temperature, blood flow, and intramuscular temperature were taken prior to a muscle biopsy. RT-qPCR was used to measure expression of genes associated with mitochondrial development. Skin and muscle temperatures were lower in COLD than RT (p < 0.05). Femoral artery diameter was lower in COLD after 4 h (0.62 ± 0.05 cm, to 0.60 ± 0.05 cm, p = 0.018). Blood flow was not different in COLD compared to RT (259 ± 69 mL·min-1 vs. 275 ± 54 mL·min-1, p = 0.20). PGC-1α B and GABPA expression was higher in COLD relative to RT (1.57-fold, p = 0.037 and 1.34-fold, p = 0.006, respectively). There was no difference (p > 0.05) in the expression of PGC-1α, NT-PGC-1α, PGC-1α A, TFAM, ESRRα, NRF1, GABPA, VEGF, PINK1, PARK 2, or BNIP3-L. The impact of this small magnitude of difference in gene expression of PGC-1α B and GABPA without alterations in other genes are unknown. There appears to be only limited impact of local muscle cooling on the transcriptional response related to mitochondrial development.
Collapse
Affiliation(s)
- Larry Robins
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE 68182, USA
| | - Monica Kwon
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE 68182, USA
| | - Mark L. McGlynn
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE 68182, USA
| | - Alejandro M. Rosales
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE 68182, USA
- School of Integrated Physiology and Athletic Training, University of Montana, Missoula, MT 59812, USA
| | - Elizabeth J. Pekas
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE 68182, USA
| | - Christopher Collins
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE 68182, USA
| | - Song-Young Park
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE 68182, USA
| | - Dustin R. Slivka
- School of Health and Kinesiology, University of Nebraska at Omaha, Omaha, NE 68182, USA
- School of Integrated Physiology and Athletic Training, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
163
|
Naoi M, Maruyama W, Shamoto-Nagai M. Neuroprotective Function of Rasagiline and Selegiline, Inhibitors of Type B Monoamine Oxidase, and Role of Monoamine Oxidases in Synucleinopathies. Int J Mol Sci 2022; 23:ijms231911059. [PMID: 36232361 PMCID: PMC9570229 DOI: 10.3390/ijms231911059] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 11/27/2022] Open
Abstract
Synucleinopathies are a group of neurodegenerative disorders caused by the accumulation of toxic species of α-synuclein. The common clinical features are chronic progressive decline of motor, cognitive, behavioral, and autonomic functions. They include Parkinson’s disease, dementia with Lewy body, and multiple system atrophy. Their etiology has not been clarified and multiple pathogenic factors include oxidative stress, mitochondrial dysfunction, impaired protein degradation systems, and neuroinflammation. Current available therapy cannot prevent progressive neurodegeneration and “disease-modifying or neuroprotective” therapy has been proposed. This paper presents the molecular mechanisms of neuroprotection by the inhibitors of type B monoamine oxidase, rasagiline and selegiline. They prevent mitochondrial apoptosis, induce anti-apoptotic Bcl-2 protein family, and pro-survival brain- and glial cell line-derived neurotrophic factors. They also prevent toxic oligomerization and aggregation of α-synuclein. Monoamine oxidase is involved in neurodegeneration and neuroprotection, independently of the catalytic activity. Type A monoamine oxidases mediates rasagiline-activated signaling pathways to induce neuroprotective genes in neuronal cells. Multi-targeting propargylamine derivatives have been developed for therapy in various neurodegenerative diseases. Preclinical studies have presented neuroprotection of rasagiline and selegiline, but beneficial effects have been scarcely presented. Strategy to improve clinical trials is discussed to achieve disease-modification in synucleinopathies.
Collapse
Affiliation(s)
- Makoto Naoi
- Correspondence: ; Tel.: +81-05-6173-1111 (ext. 3494); Fax: +81-561-731-142
| | | | | |
Collapse
|
164
|
Reich N, Hölscher C. The neuroprotective effects of glucagon-like peptide 1 in Alzheimer's and Parkinson's disease: An in-depth review. Front Neurosci 2022; 16:970925. [PMID: 36117625 PMCID: PMC9475012 DOI: 10.3389/fnins.2022.970925] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/08/2022] [Indexed: 12/16/2022] Open
Abstract
Currently, there is no disease-modifying treatment available for Alzheimer's and Parkinson's disease (AD and PD) and that includes the highly controversial approval of the Aβ-targeting antibody aducanumab for the treatment of AD. Hence, there is still an unmet need for a neuroprotective drug treatment in both AD and PD. Type 2 diabetes is a risk factor for both AD and PD. Glucagon-like peptide 1 (GLP-1) is a peptide hormone and growth factor that has shown neuroprotective effects in preclinical studies, and the success of GLP-1 mimetics in phase II clinical trials in AD and PD has raised new hope. GLP-1 mimetics are currently on the market as treatments for type 2 diabetes. GLP-1 analogs are safe, well tolerated, resistant to desensitization and well characterized in the clinic. Herein, we review the existing evidence and illustrate the neuroprotective pathways that are induced following GLP-1R activation in neurons, microglia and astrocytes. The latter include synaptic protection, improvements in cognition, learning and motor function, amyloid pathology-ameliorating properties (Aβ, Tau, and α-synuclein), the suppression of Ca2+ deregulation and ER stress, potent anti-inflammatory effects, the blockage of oxidative stress, mitochondrial dysfunction and apoptosis pathways, enhancements in the neuronal insulin sensitivity and energy metabolism, functional improvements in autophagy and mitophagy, elevated BDNF and glial cell line-derived neurotrophic factor (GDNF) synthesis as well as neurogenesis. The many beneficial features of GLP-1R and GLP-1/GIPR dual agonists encourage the development of novel drug treatments for AD and PD.
Collapse
Affiliation(s)
- Niklas Reich
- Biomedical and Life Sciences Division, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Christian Hölscher
- Neurology Department, Second Associated Hospital, Shanxi Medical University, Taiyuan, China
- Henan University of Chinese Medicine, Academy of Chinese Medical Science, Zhengzhou, China
| |
Collapse
|
165
|
Chen Y, Qin Q, Zhao W, Luo D, Huang Y, Liu G, Kuang Y, Cao Y, Chen Y. Carnosol Reduced Pathogenic Protein Aggregation and Cognitive Impairment in Neurodegenerative Diseases Models via Improving Proteostasis and Ameliorating Mitochondrial Disorders. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10490-10505. [PMID: 35973126 DOI: 10.1021/acs.jafc.2c02665] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Neurodegenerative diseases (NDs) such as Alzheimer's disease, Parkinson's disease, and Huntington's disease are incurable diseases with progressive loss of neural function and require urgent development of effective treatments. Carnosol (CL) reportedly has a pharmacological effect in the prevention of dementia. Nevertheless, the mechanisms of CL's neuroprotection are not entirely clear. The present study aimed to investigate the effects and mechanisms of CL-mediated neuroprotection through Caenorhabditis elegans models. First, CL restored ND protein homeostasis via inhibiting the IIS pathway, regulating MAPK signaling, and simultaneously activating molecular chaperone, thus inhibiting amyloid peptide (Aβ), polyglutamine (polyQ), and α-synuclein (α-syn) deposition and reducing protein disruption-mediated behavioral and cognitive impairments as well as neuronal damages. Furthermore, CL could repair mitochondrial structural damage via improving the mitochondrial membrane protein function and mitochondrial structural homeostasis and improve mitochondrial functional defects via increasing adenosine triphosphate contents, mitochondrial membrane potential, and reactive oxygen species levels, suggesting that CL could improve the ubiquitous mitochondrial defects in NDs. More importantly, we found that CL activated mitochondrial kinetic homeostasis related genes to improve the mitochondrial homeostasis and dysfunction in NDs. Meanwhile, CL up-regulated unc-17, cho-1, and cha-1 genes to alleviate Aβ-mediated cholinergic neurological disorders and activated Notch signaling and the Wnt pathway to diminish polyQ- and α-syn-induced ASH neurons as well as dopaminergic neuron damages. Overall, our study clarified the beneficial anti-ND neuroprotective effects of CL in different aspects and provided new insights into developing CL into products with preventive and therapeutic effects on NDs.
Collapse
Affiliation(s)
- Yun Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510640 Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong, China
| | - Qiao Qin
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510640 Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong, China
| | - Wen Zhao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510640 Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong, China
| | - Danxia Luo
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510640 Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong, China
| | - Yingyin Huang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510640 Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong, China
| | - Guo Liu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510640 Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong, China
| | - Yong Kuang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510640 Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510640 Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong, China
| | - Yunjiao Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, 510640 Guangdong, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510640 Guangdong, China
| |
Collapse
|
166
|
The Degradation of TMEM166 by Autophagy Promotes AMPK Activation to Protect SH-SY5Y Cells Exposed to MPP+. Cells 2022; 11:cells11172706. [PMID: 36078115 PMCID: PMC9454683 DOI: 10.3390/cells11172706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/22/2022] [Accepted: 08/25/2022] [Indexed: 11/19/2022] Open
Abstract
Neuronal oxidative stress caused by mitochondrial dysfunction plays a crucial role in the development of Parkinson’s disease (PD). Growing evidence shows that autophagy confers neuroprotection in oxidative-stress-associated PD. This work aims to investigate the involvement of TMEM166, an endoplasmic-reticulum-localized autophagy-regulating protein, in the process of PD-associated oxidative stress through the classic cellular PD model of neuroblastoma SH-SY5Y cells exposed to 1-methyl-4-phenylpyridinium (MPP+). Reactive oxygen species (ROS) production and mitochondrial membrane potential were checked to assess the oxidative stress induced by MPP+ and the cellular ATP generated was determined to evaluate mitochondrial function. The effect on autophagy induction was evaluated by analyzing p62 and LC3-II/I expression and by observing the LC3 puncta and the colocalization of LC3 with LAMP1/ LAMP2. The colocalization of mitochondria with LC3, the colocalization of Tom20 with LAMP1 and Tom20 expression were analyzed to evaluate mitophagy. We found that TMEM166 is up-regulated in transcript levels, but up-regulated first and then down-regulated by autophagic degradation in protein levels upon MPP+-treatment. Overexpression of TMEM166 induces mitochondria fragmentation and dysfunction and exacerbates MPP+-induced oxidative stress and cell viability reduction. Overexpression of TMEM166 is sufficient to induce autophagy and mitophagy and promotes autophagy and mitophagy under MPP+ treatment, while knockdown of TMEM166 inhibits basal autophagic degradation. In addition, overexpressed TMEM166 suppresses AMPK activation, while TMEM166 knockdown enhances AMPK activation. Pharmacological activation of AMPK alleviates the exacerbation of oxidative stress induced by TMEM166 overexpression and increases cell viability, while pharmacological inhibition mitophagy aggravates the oxidative stress induced by MPP+ treatment combined with TMEM166 overexpression. Finally, we find that overexpressed TMEM166 partially localizes to mitochondria and, simultaneously, the active AMPK in mitochondria is decreased. Collectively, these findings suggest that TMEM166 can translocate from ER to mitochondria and inhibit AMPK activation and, in response to mitochondrial oxidative stress, neuronal cells choose to up-regulate TMEM166 to promote autophagy/mitophagy; then, the enhancing autophagy/mitophagy degrades the TMEM166 to activate AMPK, by the two means to maintain cell survival. The continuous synthesis and degradation of TMEM166 in autophagy/mitochondria flux suggest that TMEM166 may act as an autophagy/mitochondria adaptor.
Collapse
|
167
|
Zhang ZW, Tu H, Jiang M, Vanan S, Chia SY, Jang SE, Saw WT, Ong ZW, Ma DR, Zhou ZD, Xu J, Guo KH, Yu WP, Ling SC, Margolin RA, Chain DG, Zeng L, Tan EK. The APP intracellular domain promotes LRRK2 expression to enable feed-forward neurodegenerative mechanisms in Parkinson's disease. Sci Signal 2022; 15:eabk3411. [PMID: 35998231 DOI: 10.1126/scisignal.abk3411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Gain-of-function mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are common in familial forms of Parkinson's disease (PD), which is characterized by progressive neurodegeneration that impairs motor and cognitive function. We previously demonstrated that LRRK2-mediated phosphorylation of β-amyloid precursor protein (APP) triggers the production and nuclear translocation of the APP intracellular domain (AICD). Here, we connected LRRK2 to AICD in a feed-forward cycle that enhanced LRRK2-mediated neurotoxicity. In cooperation with the transcription factor FOXO3a, AICD promoted LRRK2 expression, thus increasing the abundance of LRRK2 that promotes AICD activation. APP deficiency in LRRK2G2019S mice suppressed LRRK2 expression, LRRK2-mediated mitochondrial dysfunction, α-synuclein accumulation, and tyrosine hydroxylase (TH) loss in the brain, phenotypes associated with toxicity and loss of dopaminergic neurons in PD. Conversely, AICD overexpression increased LRRK2 expression and LRRK2-mediated neurotoxicity in LRRK2G2019S mice. In LRRK2G2019S mice or cultured dopaminergic neurons from LRRK2G2019S patients, treatment with itanapraced reduced LRRK2 expression and was neuroprotective. Itanapraced showed similar effects in a neurotoxin-induced PD mouse model, suggesting that inhibiting the AICD may also have therapeutic benefits in idiopathic PD. Our findings reveal a therapeutically targetable, feed-forward mechanism through which AICD promotes LRRK2-mediated neurotoxicity in PD.
Collapse
Affiliation(s)
- Zhi-Wei Zhang
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore 308433, Singapore
| | - Haitao Tu
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore 308433, Singapore
| | - Mei Jiang
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore 308433, Singapore.,Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Sarivin Vanan
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore 308433, Singapore
| | - Sook Yoong Chia
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore 308433, Singapore
| | - Se-Eun Jang
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore 308433, Singapore
| | - Wuan-Ting Saw
- Research Department, National Neuroscience Institute, Singapore General Hospital (SGH) Campus, Singapore 169856, Singapore
| | - Zhi-Wei Ong
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore 308433, Singapore
| | - Dong-Rui Ma
- Department of Neurology, Singapore General Hospital, Singapore 169609, Singapore
| | - Zhi-Dong Zhou
- Research Department, National Neuroscience Institute, Singapore General Hospital (SGH) Campus, Singapore 169856, Singapore.,Neuroscience and Behavioral Disorders Program, DUKE-NUS Graduate Medical School, Singapore 169857, Singapore
| | - Jie Xu
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Kai-Hua Guo
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Wei-Ping Yu
- Animal Gene Editing Laboratory, Biological Resource Center, A*STAR, Singapore 138673, Singapore.,Institute of Molecular and Cell Biology, A*STAR, Singapore 138673, Singapore
| | - Shuo-Chien Ling
- Neuroscience and Behavioral Disorders Program, DUKE-NUS Graduate Medical School, Singapore 169857, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | | | | | - Li Zeng
- Neural Stem Cell Research Lab, Research Department, National Neuroscience Institute, Singapore 308433, Singapore.,Neuroscience and Behavioral Disorders Program, DUKE-NUS Graduate Medical School, Singapore 169857, Singapore.,Centre for Molecular Neuropathology, Lee Kong Chian School of Medicine, Nanyang Technology University, Novena Campus, Singapore 308232, Singapore
| | - Eng-King Tan
- Research Department, National Neuroscience Institute, Singapore General Hospital (SGH) Campus, Singapore 169856, Singapore.,Neuroscience and Behavioral Disorders Program, DUKE-NUS Graduate Medical School, Singapore 169857, Singapore.,Department of Neurology, National Neuroscience Institute, Singapore 308433, Singapore
| |
Collapse
|
168
|
Yari H, Mikhailova MV, Mardasi M, Jafarzadehgharehziaaddin M, Shahrokh S, Thangavelu L, Ahmadi H, Shomali N, Yaghoubi Y, Zamani M, Akbari M, Alesaeidi S. Emerging role of mesenchymal stromal cells (MSCs)-derived exosome in neurodegeneration-associated conditions: a groundbreaking cell-free approach. Stem Cell Res Ther 2022; 13:423. [PMID: 35986375 PMCID: PMC9389725 DOI: 10.1186/s13287-022-03122-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 06/16/2022] [Indexed: 11/10/2022] Open
Abstract
Accumulating proofs signify that pleiotropic effects of mesenchymal stromal cells (MSCs) are not allied to their differentiation competencies but rather are mediated mainly by the releases of soluble paracrine mediators, making them a reasonable therapeutic option to enable damaged tissue repair. Due to their unique immunomodulatory and regenerative attributes, the MSC-derived exosomes hold great potential to treat neurodegeneration-associated neurological diseases. Exosome treatment circumvents drawbacks regarding the direct administration of MSCs, such as tumor formation or reduced infiltration and migration to brain tissue. Noteworthy, MSCs-derived exosomes can cross the blood-brain barrier (BBB) and then efficiently deliver their cargo (e.g., protein, miRNAs, lipid, and mRNA) to damaged brain tissue. These biomolecules influence various biological processes (e.g., survival, proliferation, migration, etc.) in neurons, oligodendrocytes, and astrocytes. Various studies have shown that the systemic or local administration of MSCs-derived exosome could lead to the favored outcome in animals with neurodegeneration-associated disease mainly by supporting BBB integrity, eliciting pro-angiogenic effects, attenuating neuroinflammation, and promoting neurogenesis in vivo. In the present review, we will deliver an overview of the therapeutic benefits of MSCs-derived exosome therapy to ameliorate the pathological symptoms of acute and chronic neurodegenerative disease. Also, the underlying mechanism behind these favored effects has been elucidated.
Collapse
Affiliation(s)
- Hadi Yari
- Medical Biotechnology Department, National Institute of Genetics Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Maria V. Mikhailova
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Mahsa Mardasi
- Biotechnology Department, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University G. C, Evin, Tehran, Iran
| | - Mohsen Jafarzadehgharehziaaddin
- Translational Neuropsychology Lab, Department of Education and Psychology and William James Center for Research (WJCR), University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Somayeh Shahrokh
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Shahrekord, Shahrekord, Iran
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
| | - Hosein Ahmadi
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Navid Shomali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yoda Yaghoubi
- School of Paramedical, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Majid Zamani
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Morteza Akbari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samira Alesaeidi
- Department of Internal Medicine and Rheumatology, Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
169
|
Targeting Mitochondria as a Therapeutic Approach for Parkinson's Disease. Cell Mol Neurobiol 2022; 43:1499-1518. [PMID: 35951210 DOI: 10.1007/s10571-022-01265-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/21/2022] [Indexed: 11/03/2022]
Abstract
Neurodegeneration is among the most critical challenges that involve modern societies and annually influences millions of patients worldwide. While the pathophysiology of Parkinson's disease (PD) is complicated, the role of mitochondrial is demonstrated. The in vitro and in vivo models and genome-wide association studies in human cases proved that specific genes, including PINK1, Parkin, DJ-1, SNCA, and LRRK2, linked mitochondrial dysfunction with PD. Also, mitochondrial DNA (mtDNA) plays an essential role in the pathophysiology of PD. Targeting mitochondria as a therapeutic approach to inhibit or slow down PD formation and progression seems to be an exciting issue. The current review summarized known mutations associated with both mitochondrial dysfunction and PD. The significance of mtDNA in Parkinson's disease pathogenesis and potential PD therapeutic approaches targeting mitochondrial dysfunction was then discussed.
Collapse
|
170
|
Ayajuddin M, Phom L, Koza Z, Modi P, Das A, Chaurasia R, Thepa A, Jamir N, Neikha K, Yenisetti SC. Adult health and transition stage-specific rotenone-mediated Drosophila model of Parkinson’s disease: Impact on late-onset neurodegenerative disease models. Front Mol Neurosci 2022; 15:896183. [PMID: 36017079 PMCID: PMC9398202 DOI: 10.3389/fnmol.2022.896183] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022] Open
Abstract
Parkinson’s disease (PD) affects almost 1% of the population worldwide over the age of 50 years. Exposure to environmental toxins like paraquat and rotenone is a risk factor for sporadic PD which constitutes 95% of total cases. Herbicide rotenone has been shown to cause Parkinsonian symptoms in multiple animal models. Drosophila is an excellent model organism for studying neurodegenerative diseases (NDD) including PD. The aging process is characterized by differential expression of genes during different life stages. Hence it is necessary to develop life-stage-matched animal models for late-onset human disease(s) such as PD. Such animal models are critical for understanding the pathophysiology of age-related disease progression and important to understand if a genotropic drug/nutraceutical can be effective during late stages. With this idea, we developed an adult life stage-specific (health and transition phase, during which late-onset NDDs such as PD sets in) rotenone-mediated Drosophila model of idiopathic PD. Drosophila is susceptible to rotenone in dose-time dependent manner. Rotenone-mediated fly model of sporadic PD exhibits mobility defects (independent of mortality), inhibited mitochondrial complex I activity, dopaminergic (DAergic) neuronal dysfunction (no loss of DAergic neuronal number; however, reduction in rate-limiting enzyme tyrosine hydroxylase (TH) synthesis), and alteration in levels of dopamine (DA) and its metabolites; 3,4-Dihydroxyphenylacetic acid (DOPAC) and Homovanilic acid (HVA) in brain-specific fashion. These PD-linked behaviors and brain-specific phenotypes denote the robustness of the present fly model of PD. This novel model will be of great help to decipher life stage-specific genetic targets of small molecule mediated DAergic neuroprotection; understanding of which is critical for formulating therapeutic strategies for PD.
Collapse
|
171
|
Zou Y, Pei J, Wang Y, Chen Q, Sun M, Kang L, Zhang X, Zhang L, Gao X, Lin Z. The Deficiency of SCARB2/LIMP-2 Impairs Metabolism via Disrupted mTORC1-Dependent Mitochondrial OXPHOS. Int J Mol Sci 2022; 23:ijms23158634. [PMID: 35955761 PMCID: PMC9368982 DOI: 10.3390/ijms23158634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/02/2022] [Accepted: 08/02/2022] [Indexed: 02/05/2023] Open
Abstract
Deficiency in scavenger receptor class B, member 2 (SCARB2) is related to both Gaucher disease (GD) and Parkinson’s disease (PD), which are both neurodegenerative-related diseases without cure. Although both diseases lead to weight loss, which affects the quality of life and the progress of diseases, the underlying molecular mechanism is still unclear. In this study, we found that Scarb2−/− mice showed significantly reduced lipid storage in white fat tissues (WAT) compared to WT mice on a regular chow diet. However, the phenotype is independent of heat production, activity, food intake or energy absorption. Furthermore, adipocyte differentiation and cholesterol homeostasis were unaffected. We found that the impaired lipid accumulation of Adiponectin-cre; Scarb2fl/fl mice was due to the imbalance between glycolysis and oxidative phosphorylation (OXPHOS). Mechanistically, the mechanistic target of rapamycin complex 1 (mTORC1)/ eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1) pathway was down-regulated in Scarb2 deficient adipocytes, leading to impaired mitochondrial respiration and enhanced glycolysis. Altogether, we reveal the role of SCARB2 in metabolism regulation besides the nervous system, which provides a theoretical basis for weight loss treatment of patients with neurodegenerative diseases.
Collapse
Affiliation(s)
- Yujie Zou
- Ministry of Education Key Laboratory of Model Animal for Disease Study, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, Medical School, Nanjing University, 12 Xuefu Road, Pukou Area, Nanjing 210061, China; (Y.Z.); (J.P.); (Y.W.); (M.S.); (L.K.)
| | - Jingwen Pei
- Ministry of Education Key Laboratory of Model Animal for Disease Study, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, Medical School, Nanjing University, 12 Xuefu Road, Pukou Area, Nanjing 210061, China; (Y.Z.); (J.P.); (Y.W.); (M.S.); (L.K.)
| | - Yushu Wang
- Ministry of Education Key Laboratory of Model Animal for Disease Study, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, Medical School, Nanjing University, 12 Xuefu Road, Pukou Area, Nanjing 210061, China; (Y.Z.); (J.P.); (Y.W.); (M.S.); (L.K.)
| | - Qin Chen
- Department of Oral Surgery, Shanghai Jiao Tong University, 639 Zhizaoju Road, Huangpu District, Shanghai 200240, China;
| | - Minli Sun
- Ministry of Education Key Laboratory of Model Animal for Disease Study, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, Medical School, Nanjing University, 12 Xuefu Road, Pukou Area, Nanjing 210061, China; (Y.Z.); (J.P.); (Y.W.); (M.S.); (L.K.)
| | - Lulu Kang
- Ministry of Education Key Laboratory of Model Animal for Disease Study, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, Medical School, Nanjing University, 12 Xuefu Road, Pukou Area, Nanjing 210061, China; (Y.Z.); (J.P.); (Y.W.); (M.S.); (L.K.)
| | - Xuyuan Zhang
- The Center of Infection and Immunity, The Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China; (X.Z.); (L.Z.)
| | - Liguo Zhang
- The Center of Infection and Immunity, The Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China; (X.Z.); (L.Z.)
| | - Xiang Gao
- Ministry of Education Key Laboratory of Model Animal for Disease Study, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, Medical School, Nanjing University, 12 Xuefu Road, Pukou Area, Nanjing 210061, China; (Y.Z.); (J.P.); (Y.W.); (M.S.); (L.K.)
- Correspondence: (X.G.); (Z.L.)
| | - Zhaoyu Lin
- Ministry of Education Key Laboratory of Model Animal for Disease Study, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, Medical School, Nanjing University, 12 Xuefu Road, Pukou Area, Nanjing 210061, China; (Y.Z.); (J.P.); (Y.W.); (M.S.); (L.K.)
- Correspondence: (X.G.); (Z.L.)
| |
Collapse
|
172
|
Tan LJ, Yu Y, Fang ZH, Zhang JL, Huang HL, Liu HJ. Potential Molecular Mechanism of Guishao Pingchan Recipe in the Treatment of Parkinson’s Disease Based on Network Pharmacology and Molecular Docking. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221118486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Objective: To investigate the potential mechanism of Guishao Pingchan Recipe (GPR) against Parkinson's disease (PD) based on network pharmacology and molecular docking. Methods: The main components of GPR were collected based on TCMSP database, Batman-TCM database, Chinese Pharmacopoeia, and Literatures. The potential therapeutic targets of PD were predicted by Drug Bank Database and Gene Cards database. Cytoscape 3.8.2 software was used to construct herb–component–target network. Then, String database was used to construct a PPI network, and DAVID database was used for gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation of targets function. Core components of GPR and hub targets were imported into AutoDock Vina for molecular docking verification and results were visualized by Pymol. Results: 13 candidate components were selected and 288 corresponding targets of GPR for treating PD were obtained. The GO enrichment analysis mainly involved 135 cell components, 187 molecular functions, and 1753 biological processes. Moreover, KEGG pathway enrichment analysis mainly involved 200 signaling pathways. Molecular docking simulation indicated a good binding ability of components and targets. Conclusion: Based on network pharmacology and molecular docking, we found that sitosterol, 4-Cholesten-3-one and stigmasterol in GPR could combine with MAPK3, APP, VEGFA, and CXCR4 and involved in the cAMP, PI3K/Akt, Rap1 signaling pathways. It is suggested that GPR may have therapeutic effects on PD through multi-component, multi-target, and multi-pathway and predict the relevant mechanism of the anti-PD effect of GPR.
Collapse
Affiliation(s)
- Li-Juan Tan
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Ying Yu
- In Station Post-doctorate, Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ze-Hai Fang
- School of Nursing, Zibo Vocational Institute, Zibo, China
| | - Jiong-Lu Zhang
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Hai-Liang Huang
- College of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hong-Jie Liu
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| |
Collapse
|
173
|
Guo M, Ji X, Liu J. Hypoxia and Alpha-Synuclein: Inextricable Link Underlying the Pathologic Progression of Parkinson's Disease. Front Aging Neurosci 2022; 14:919343. [PMID: 35959288 PMCID: PMC9360429 DOI: 10.3389/fnagi.2022.919343] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease, with typical motor symptoms as the main clinical manifestations. At present, there are about 10 million patients with PD in the world, and its comorbidities and complications are numerous and incurable. Therefore, it is particularly important to explore the pathogenesis of PD and find possible therapeutic targets. Because the etiology of PD is complex, involving genes, environment, and aging, finding common factors is the key to identifying intervention targets. Hypoxia is ubiquitous in the natural environment and disease states, and it is considered to be closely related to the etiology of PD. Despite research showing that hypoxia increases the expression and aggregation of alpha-synuclein (α-syn), the most important pathogenic protein, there is still a lack of systematic studies on the role of hypoxia in α-syn pathology and PD pathogenesis. Considering that hypoxia is inextricably linked with various causes of PD, hypoxia may be a co-participant in many aspects of the PD pathologic process. In this review, we describe the risk factors for PD, and we discuss the possible role of hypoxia in inducing PD pathology by these risk factors. Furthermore, we attribute the pathological changes caused by PD etiology to oxygen uptake disorder and oxygen utilization disorder, thus emphasizing the possibility of hypoxia as a critical link in initiating or promoting α-syn pathology and PD pathogenesis. Our study provides novel insight for exploring the pathogenesis and therapeutic targets of PD.
Collapse
Affiliation(s)
- Mengyuan Guo
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Xunming Ji
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Xunming Ji
| | - Jia Liu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
- *Correspondence: Jia Liu
| |
Collapse
|
174
|
Apiraksattayakul S, Pingaew R, Prachayasittikul V, Ruankham W, Jongwachirachai P, Songtawee N, Suwanjang W, Tantimongcolwat T, Prachayasittikul S, Prachayasittikul V, Phopin K. Neuroprotective Properties of Bis-Sulfonamide Derivatives Against 6-OHDA-Induced Parkinson's Model via Sirtuin 1 Activity and in silico Pharmacokinetic Properties. Front Mol Neurosci 2022; 15:890838. [PMID: 35935335 PMCID: PMC9354714 DOI: 10.3389/fnmol.2022.890838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Parkinson's disease (PD) is considered one of the health problems in the aging society. Due to the limitations of currently available drugs in preventing disease progression, the discovery of novel neuroprotective agents has been challenged. Sulfonamide and its derivatives were reported for several biological activities. Herein, a series of 17 bis-sulfonamide derivatives were initially tested for their neuroprotective potential and cytotoxicity against the 6-hydroxydopamine (6-OHDA)-induced neuronal death in SH-SY5Y cells. Subsequently, six compounds (i.e., 2, 4, 11, 14, 15, and 17) were selected for investigations on underlying mechanisms. The data demonstrated that the pretreatment of selected compounds (5 μM) can significantly restore the level of cell viability, protect against mitochondrial membrane dysfunction, decrease the activity of lactate dehydrogenase (LDH), decrease the intracellular oxidative stress, and enhance the activity of NAD-dependent deacetylase sirtuin-1 (SIRT1). Molecular docking was also performed to support that these compounds could act as SIRT1 activators. In addition, in silico pharmacokinetic and toxicity profile prediction was also conducted for guiding the potential development. Thus, the six neuroprotective bis-sulfonamides were highlighted as potential agents to be further developed for PD management.
Collapse
Affiliation(s)
- Setthawut Apiraksattayakul
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Ratchanok Pingaew
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Bangkok, Thailand
- Ratchanok Pingaew
| | - Veda Prachayasittikul
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Waralee Ruankham
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Papitcha Jongwachirachai
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Napat Songtawee
- Department of Clinical Chemistry, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Wilasinee Suwanjang
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Tanawut Tantimongcolwat
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Supaluk Prachayasittikul
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Virapong Prachayasittikul
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Kamonrat Phopin
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
- *Correspondence: Kamonrat Phopin
| |
Collapse
|
175
|
Wang W, Xu C, Zhou X, Zhang L, Gu L, Liu Z, Ma J, Hou J, Jiang Z. Lactobacillus plantarum Combined with Galactooligosaccharides Supplement: A Neuroprotective Regimen Against Neurodegeneration and Memory Impairment by Regulating Short-Chain Fatty Acids and the c-Jun N-Terminal Kinase Signaling Pathway in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8619-8630. [PMID: 35816280 DOI: 10.1021/acs.jafc.2c01950] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Probiotics and prebiotics have received attention in alleviating neurodegenerative diseases. Lactobacillus plantarum (L. plantarum) 69-2 was combined with galactooligosaccharides (GOS) and supplemented in a d-galactose (d-gal)-induced neurodegeneration and memory impairment mice model to explore its effects on the brain and the regulation of short-chain fatty acids. The results showed that the L. plantarum-GOS supplementation inhibited d-gal-induced oxidative stress and increased the brain's nuclear factor erythroid 2-related factor 2 (Nrf2) levels. Butyrate, a metabolite of the gut microbiota regulated by L. plantarum combined with GOS, inhibits p-JNK expression, downregulates pro-apoptotic proteins expression and the activation of inflammatory mediators, and upregulates synaptic protein expression. This might be a potential mechanism for L. plantarum 69-2 combined with GOS supplementation to alleviate d-gal-induced neurodegeneration and memory impairment. This study sheds new light on the development of aging-related neuroprotective dietary supplements based on the gut-brain axis.
Collapse
Affiliation(s)
- Wan Wang
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Cong Xu
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Xuan Zhou
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Le Zhang
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Liya Gu
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Zhijing Liu
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Jiage Ma
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Juncai Hou
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Zhanmei Jiang
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
176
|
Maurya SK, Gupta S, Bakshi A, Kaur H, Jain A, Senapati S, Baghel MS. Targeting mitochondria in the regulation of neurodegenerative diseases: A comprehensive review. J Neurosci Res 2022; 100:1845-1861. [PMID: 35856508 DOI: 10.1002/jnr.25110] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/21/2022] [Accepted: 07/09/2022] [Indexed: 11/09/2022]
Abstract
Mitochondria are one of the essential cellular organelles. Apart from being considered as the powerhouse of the cell, mitochondria have been widely known to regulate redox reaction, inflammation, cell survival, cell death, metabolism, etc., and are implicated in the progression of numerous disease conditions including neurodegenerative diseases. Since brain is an energy-demanding organ, mitochondria and their functions are important for maintaining normal brain homeostasis. Alterations in mitochondrial gene expression, mutations, and epigenetic modification contribute to inflammation and neurodegeneration. Dysregulation of reactive oxygen species production by mitochondria and aggregation of proteins in neurons leads to alteration in mitochondria functions which further causes neuronal death and progression of neurodegeneration. Pharmacological studies have prioritized mitochondria as a possible drug target in the regulation of neurodegenerative diseases. Therefore, the present review article has been intended to provide a comprehensive understanding of mitochondrial role in the development and progression of neurodegenerative diseases mainly Alzheimer's, Parkinson's, multiple sclerosis, and amyotrophic lateral sclerosis followed by possible intervention and future treatment strategies to combat mitochondrial-mediated neurodegeneration.
Collapse
Affiliation(s)
| | - Suchi Gupta
- Stem Cell Facility, All India Institute of Medical Sciences, Delhi, India
| | - Amrita Bakshi
- Department of Zoology, University of Delhi, Delhi, India
| | - Harpreet Kaur
- Department of Zoology, University of Delhi, Delhi, India.,Division of Infectious Disease, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Arushi Jain
- Immunogenomics Laboratory, Department of Human Genetics & Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Sabyasachi Senapati
- Immunogenomics Laboratory, Department of Human Genetics & Molecular Medicine, Central University of Punjab, Bathinda, India
| | | |
Collapse
|
177
|
Lu L, Mao H, Zhou M, Lin Y, Dai W, Qiu J, Xiao Y, Mo M, Zhu X, Wu Z, Pei Z, Guo W, Xu P, Chen X. CHCHD2 maintains mitochondrial contact site and cristae organizing system stability and protects against mitochondrial dysfunction in an experimental model of Parkinson's disease. Chin Med J (Engl) 2022; 135:00029330-990000000-00025. [PMID: 35830185 PMCID: PMC9532036 DOI: 10.1097/cm9.0000000000002053] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's dementia. Mitochondrial dysfunction is involved in the pathology of PD. Coiled-coil-helix-coiled-coil-helix domain-containing 2 (CHCHD2) was identified as associated with autosomal dominant PD. However, the mechanism of CHCHD2 in PD remains unclear. METHODS Short hairpin RNA (ShRNA)-mediated CHCHD2 knockdown or lentivirus-mediated CHCHD2 overexpression was performed to investigate the impact of CHCHD2 on mitochondrial morphology and function in neuronal tumor cell lines represented with human neuroblastoma (SHSY5Y) and HeLa cells. Blue-native polyacrylamide gel electrophoresis (PAGE) and two-dimensional sodium dodecyl sulfate-PAGE analysis were used to illustrate the role of CHCHD2 in mitochondrial contact site and cristae organizing system (MICOS). Co-immunoprecipitation and immunoblotting were used to address the interaction between CHCHD2 and Mic10. Serotype injection of adeno-associated vector-mediated CHCHD2 and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration were used to examine the influence of CHCHD2 in vivo. RESULTS We found that the overexpression of CHCHD2 can protect against methyl-4-phenylpyridinium (MPP+)-induced mitochondrial dysfunction and inhibit the loss of dopaminergic neurons in the MPTP-induced mouse model. Furthermore, we identified that CHCHD2 interacted with Mic10, and overexpression of CHCHD2 can protect against MPP+-induced MICOS impairment, while knockdown of CHCHD2 impaired the stability of MICOS. CONCLUSION This study indicated that CHCHD2 could interact with Mic10 and maintain the stability of the MICOS complex, which contributes to protecting mitochondrial function in PD.
Collapse
Affiliation(s)
- Lin Lu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Hengxu Mao
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Miaomiao Zhou
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Yuwan Lin
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Wei Dai
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Jiewen Qiu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Yousheng Xiao
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China
| | - Mingshu Mo
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Xiaoqin Zhu
- School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Zhuohua Wu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Zhong Pei
- Department of Neurology, National Key Clinical Department and Key Discipline of Neurology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong 510080, China
| | - Wenyuan Guo
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Pingyi Xu
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Xiang Chen
- Department of Neurology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| |
Collapse
|
178
|
K A, Mishra A, Singh S. Implications of intracellular protein degradation pathways in Parkinson's disease and therapeutics. J Neurosci Res 2022; 100:1834-1844. [PMID: 35819247 DOI: 10.1002/jnr.25101] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 05/31/2022] [Accepted: 06/18/2022] [Indexed: 12/20/2022]
Abstract
Parkinson's disease (PD) pathology is the most common motor neurodegenerative disease that occurs due to the progressive degeneration of dopaminergic neurons of the nigrostriatal pathway of the brain. The histopathological hallmark of the disease is fibrillary aggregate called Lewy bodies which majorly contain α-synuclein, suggesting the critical implication of diminished protein degradation mechanisms in disease pathogenesis. This α-synuclein-containing Lewy bodies are evident in both experimental models as well as in postmortem PD brain and are speculated to be pathogenic but still, the lineal association between these aggregates and the complexity of disease pathology is not yet well established and needs further attention. However, it has been reported that α-synuclein aggregates have consorted with the declined proteasome and lysosome activities. Therefore, in this review, we reappraise intracellular protein degradation mechanisms during PD pathology. This article focused on the findings of the last two decades suggesting the implications of protein degradation mechanisms in disease pathogenesis and based on shreds of evidence, some of the approaches are also suggested which may be adopted to find out the novel therapeutic targets for the management of PD patients.
Collapse
Affiliation(s)
- Amrutha K
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, India
| | - Sarika Singh
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute, Lucknow, India.,Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
179
|
Suárez-Rivero JM, Pastor-Maldonado CJ, Povea-Cabello S, Álvarez-Córdoba M, Villalón-García I, Talaverón-Rey M, Suárez-Carrillo A, Munuera-Cabeza M, Reche-López D, Cilleros-Holgado P, Piñero-Pérez R, Sánchez-Alcázar JA. Activation of the Mitochondrial Unfolded Protein Response: A New Therapeutic Target? Biomedicines 2022; 10:1611. [PMID: 35884915 PMCID: PMC9313171 DOI: 10.3390/biomedicines10071611] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 12/18/2022] Open
Abstract
Mitochondrial dysfunction is a key hub that is common to many diseases. Mitochondria's role in energy production, calcium homeostasis, and ROS balance makes them essential for cell survival and fitness. However, there are no effective treatments for most mitochondrial and related diseases to this day. Therefore, new therapeutic approaches, such as activation of the mitochondrial unfolded protein response (UPRmt), are being examined. UPRmt englobes several compensation processes related to proteostasis and antioxidant mechanisms. UPRmt activation, through an hormetic response, promotes cell homeostasis and improves lifespan and disease conditions in biological models of neurodegenerative diseases, cardiopathies, and mitochondrial diseases. Although UPRmt activation is a promising therapeutic option for many conditions, its overactivation could lead to non-desired side effects, such as increased heteroplasmy of mitochondrial DNA mutations or cancer progression in oncologic patients. In this review, we present the most recent UPRmt activation therapeutic strategies, UPRmt's role in diseases, and its possible negative consequences in particular pathological conditions.
Collapse
Affiliation(s)
- Juan M. Suárez-Rivero
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Carmen J. Pastor-Maldonado
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Suleva Povea-Cabello
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Mónica Álvarez-Córdoba
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Irene Villalón-García
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Marta Talaverón-Rey
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Alejandra Suárez-Carrillo
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Manuel Munuera-Cabeza
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Diana Reche-López
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Paula Cilleros-Holgado
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - Rocío Piñero-Pérez
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
| | - José A. Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III, 41013 Sevilla, Spain; (J.M.S.-R.); (C.J.P.-M.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.T.-R.); (A.S.-C.); (M.M.-C.); (D.R.-L.); (P.C.-H.); (R.P.-P.)
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas, Universidad Pablo de Olavide, Carretera de Utrera Km 1, 41013 Sevilla, Spain
| |
Collapse
|
180
|
Rodrigues JA, Narasimhamurthy RK, Joshi MB, Dsouza HS, Mumbrekar KD. Pesticides Exposure-Induced Changes in Brain Metabolome: Implications in the Pathogenesis of Neurodegenerative Disorders. Neurotox Res 2022; 40:1539-1552. [PMID: 35781222 PMCID: PMC9515138 DOI: 10.1007/s12640-022-00534-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 11/25/2022]
Abstract
Pesticides have been used in agriculture, public health programs, and pharmaceuticals for many decades. Though pesticides primarily target pests by affecting their nervous system and causing other lethal effects, these chemical entities also exert toxic effects in inadvertently exposed humans through inhalation or ingestion. Mounting pieces of evidence from cellular, animal, and clinical studies indicate that pesticide-exposed models display metabolite alterations of pathways involved in neurodegenerative diseases. Hence, identifying common key metabolites/metabolic pathways between pesticide-induced metabolic reprogramming and neurodegenerative diseases is necessary to understand the etiology of pesticides in the rise of neurodegenerative disorders. The present review provides an overview of specific metabolic pathways, including tryptophan metabolism, glutathione metabolism, dopamine metabolism, energy metabolism, mitochondrial dysfunction, fatty acids, and lipid metabolism that are specifically altered in response to pesticides. Furthermore, we discuss how these metabolite alterations are linked to the pathogenesis of neurodegenerative diseases and to identify novel biomarkers for targeted therapeutic approaches.
Collapse
Affiliation(s)
- Joel Arvin Rodrigues
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104
| | - Rekha K Narasimhamurthy
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104
| | - Manjunath B Joshi
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104
| | - Herman Sunil Dsouza
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104
| | - Kamalesh Dattaram Mumbrekar
- Department of Radiation Biology and Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India, 576104.
| |
Collapse
|
181
|
Olesen MA, Villavicencio-Tejo F, Quintanilla RA. The use of fibroblasts as a valuable strategy for studying mitochondrial impairment in neurological disorders. Transl Neurodegener 2022; 11:36. [PMID: 35787292 PMCID: PMC9251940 DOI: 10.1186/s40035-022-00308-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/26/2022] [Indexed: 11/10/2022] Open
Abstract
Neurological disorders (NDs) are characterized by progressive neuronal dysfunction leading to synaptic failure, cognitive impairment, and motor injury. Among these diseases, Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS) have raised a significant research interest. These disorders present common neuropathological signs, including neuronal dysfunction, protein accumulation, oxidative damage, and mitochondrial abnormalities. In this context, mitochondrial impairment is characterized by a deficiency in ATP production, excessive production of reactive oxygen species, calcium dysregulation, mitochondrial transport failure, and mitochondrial dynamics deficiencies. These defects in mitochondrial health could compromise the synaptic process, leading to early cognitive dysfunction observed in these NDs. Interestingly, skin fibroblasts from AD, PD, HD, and ALS patients have been suggested as a useful strategy to investigate and detect early mitochondrial abnormalities in these NDs. In this context, fibroblasts are considered a viable model for studying neurodegenerative changes due to their metabolic and biochemical relationships with neurons. Also, studies of our group and others have shown impairment of mitochondrial bioenergetics in fibroblasts from patients diagnosed with sporadic and genetic forms of AD, PD, HD, and ALS. Interestingly, these mitochondrial abnormalities have been observed in the brain tissues of patients suffering from the same pathologies. Therefore, fibroblasts represent a novel strategy to study the genesis and progression of mitochondrial dysfunction in AD, PD, HD, and ALS. This review discusses recent evidence that proposes fibroblasts as a potential target to study mitochondrial bioenergetics impairment in neurological disorders and consequently to search for new biomarkers of neurodegeneration.
Collapse
Affiliation(s)
- Margrethe A Olesen
- Laboratory of Neurodegenerative Diseases, Facultad de Ciencias de La Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Francisca Villavicencio-Tejo
- Laboratory of Neurodegenerative Diseases, Facultad de Ciencias de La Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Rodrigo A Quintanilla
- Laboratory of Neurodegenerative Diseases, Facultad de Ciencias de La Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile.
| |
Collapse
|
182
|
Chen Y, Zhang B, Yu L, Zhang J, Zhao Y, Yao L, Yan H, Tian W. A novel nanoparticle system targeting damaged mitochondria for the treatment of Parkinson's disease. BIOMATERIALS ADVANCES 2022; 138:212876. [PMID: 35913233 DOI: 10.1016/j.bioadv.2022.212876] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Mitochondrial damage is one of the primary causes of neuronal cell death in Parkinson's disease (PD). In PD patients, the mitochondrial damage can be repaired or irreversible. Therefore, mitochondrial damage repair becomes a promising strategy for PD treatment. In this research, hyaluronic acid nanoparticles (HA-NPs) of different molecular weights are used to protect the mitochondria and salvage the mild and limited damage in mitochondria. The HA-NPs with 2190 k Dalton (kDa) HA can improve the mitochondrial function of SH-SY5Y cells and PTEN induced putative kinase 1 (PINK1) knockout mouse embryo fibroblast (MEF) cells. In cases of irreversible damage, NPs with ubiquitin specific peptidase 30 (USP30) siRNA are used to promote mitophagy. Meanwhile, by adding PINK1 antibodies, the NPs can selectively target the irreversibly damaged mitochondria, preventing the excessive clearance of healthy mitochondria.
Collapse
Affiliation(s)
- Yue Chen
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Bosong Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Lina Yu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Jinyu Zhang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Yufang Zhao
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Lifen Yao
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150080, China
| | - Hongji Yan
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH, Royal Institute of Technology, AlbaNova University Center, 106 91 Stockholm, Sweden; AIMES-Center for the Advancement of Integrated Medical and Engineering Sciences at Karolinska Institutet, KTH Royal Institute of Technology, Stockholm, Sweden; Department of Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Weiming Tian
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, People's Republic of China.
| |
Collapse
|
183
|
Ren Q, Jiang X, Paudel YN, Gao X, Gao D, Zhang P, Sheng W, Shang X, Liu K, Zhang X, Jin M. Co-treatment with natural HMGB1 inhibitor Glycyrrhizin exerts neuroprotection and reverses Parkinson's disease like pathology in Zebrafish. JOURNAL OF ETHNOPHARMACOLOGY 2022; 292:115234. [PMID: 35358621 DOI: 10.1016/j.jep.2022.115234] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 02/28/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Parkinson's disease (PD) is the second most devastating age-related neurodegenerative diseases after Alzheimer diseases (AD) and is characterized by the loss of dopaminergic (DA) neurons in the substantia nigra (SN) and aggregation of α-synuclein (α-syn). The precise etiology of PD is not yet fully understood and lacks the disease-modifying therapeutic strategies that could reverse the ongoing neurodegeneration. In the quest of exploring novel disease modifying therapeutic strategies, natural compounds from plant sources have gained much attention in recent days. Glycyrrhizin (GL) is the main active ingredient of the roots and rhizomes of licorice (Glycyrrhiza glabra L), which are generally used in the treatment of inflammatory diseases or as a tonifying herbal medicine. In Persia, GL is a conventional neuroprotective agent that are used to treat neurological disorders. The traditional use of GL in Japan is to treat chronic hepatitis B. In addition, GL is a natural inhibitor of high mobility group box 1 (HMGB1) which has exerted neuroprotective effect against several HMGB1 mediated pathological conditions. AIM OF THE STUDY The study is aimed to evaluate therapeutic effect of GL against PD in zebrafish. MATERIAL AND METHODS PD in zebrafish larvae is induced by administration of neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Apoptosis was assessed with TUNEL assay. Gene expression was performed to assess the modulation in genes related to neuroinflammatory and autophagy. RESULTS We observed that GL co-treatment increased the length of DA neurons, decreased the number of apoptotic cells in zebrafish brain, and inhibited the loss of vasculature and disorganized vasculature induced by MPTP. GL co-treatment relieved the MPTP-induced locomotor impairment in zebrafish. GL co-treatment suppressed MPTP-induced upregulated mRNA expression of inflammatory markers such as hmgb1a, tlr4b, nfκb, il1β, and il6. GL co-treatment suppressed the autophagy related genes α-syn and atg5 whereas increased the mRNA expression level of parkin and pink1. In addition, molecular docking study reveals that GL has binding interaction with HMGB1, TLR4, and RAGE. CONCLUSION Hence, the effect of GL co-treatment on MPTP-induced PD-like condition in zebrafish is to alleviate apoptosis and autophagy, as well as suppress inflammatory responses.
Collapse
Affiliation(s)
- Qingyu Ren
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; School of Psychology, North China University of Science and Technology, 21 Bohai Road, Tang'shan, 063210, Hebei Province, PR China
| | - Xin Jiang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), 3501 Daxue Road, Ji'nan, 250353, Shandong Province, PR China
| | - Yam Nath Paudel
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, 47500, Selangor, Malaysia
| | - Xin Gao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China
| | - Daili Gao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China
| | - Pengyu Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; School of Psychology, North China University of Science and Technology, 21 Bohai Road, Tang'shan, 063210, Hebei Province, PR China
| | - Wenlong Sheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China
| | - Xueliang Shang
- School of Psychology, North China University of Science and Technology, 21 Bohai Road, Tang'shan, 063210, Hebei Province, PR China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China
| | - Xiujun Zhang
- School of Psychology, North China University of Science and Technology, 21 Bohai Road, Tang'shan, 063210, Hebei Province, PR China.
| | - Meng Jin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China; Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, 28789 East Jingshi Road, Ji'nan, 250103, Shandong Province, PR China.
| |
Collapse
|
184
|
O'Hanlon ME, Tweedy C, Scialo F, Bass R, Sanz A, Smulders-Srinivasan TK. Mitochondrial electron transport chain defects modify Parkinson's disease phenotypes in a Drosophila model. Neurobiol Dis 2022; 171:105803. [PMID: 35764292 DOI: 10.1016/j.nbd.2022.105803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Mitochondrial defects have been implicated in Parkinson's disease (PD) since complex I poisons were found to cause accelerated parkinsonism in young people in the early 1980s. More evidence of mitochondrial involvement arose when many of the genes whose mutations caused inherited PD were discovered to be subcellularly localized to mitochondria or have mitochondrial functions. However, the details of how mitochondrial dysfunction might impact or cause PD remain unclear. The aim of our study was to better understand mitochondrial dysfunction in PD by evaluating mitochondrial respiratory complex mutations in a Drosophila melanogaster (fruit fly) model of PD. METHODS We have conducted a targeted heterozygous enhancer/suppressor screen using Drosophila mutations within mitochondrial electron transport chain (ETC) genes against a null PD mutation in parkin. The interactions were assessed by climbing assays at 2-5 days as an indicator of motor function. A strong enhancer mutation in COX5A was examined further for L-dopa rescue, oxygen consumption, mitochondrial content, and reactive oxygen species. A later timepoint of 16-20 days was also investigated for both COX5A and a suppressor mutation in cyclope. Generalized Linear Models and similar statistical tests were used to verify significance of the findings. RESULTS We have discovered that mutations in individual genes for subunits within the mitochondrial respiratory complexes have interactions with parkin, while others do not, irrespective of complex. One intriguing mutation in a complex IV subunit (cyclope) shows a suppressor rescue effect at early time points, improving the gross motor defects caused by the PD mutation, providing a strong candidate for drug discovery. Most mutations, however, show varying degrees of enhancement or slight suppression of the PD phenotypes. Thus, individual mitochondrial mutations within different oxidative phosphorylation complexes have different interactions with PD with regard to degree and direction. Upon further investigation of the strongest enhancer (COX5A), the mechanism by which these interactions occur initially does not appear to be based on defects in ATP production, but rather may be related to increased levels of reactive oxygen species. CONCLUSIONS Our work highlights some key subunits potentially involved in mechanisms underlying PD pathogenesis, implicating ETC complexes other than complex I in PD.
Collapse
Affiliation(s)
- Maria E O'Hanlon
- School of Health & Life Sciences, Teesside University, Middlesbrough TS1 3BX, United Kingdom; National Horizons Centre, Teesside University, Darlington DL1 1HG, United Kingdom. M.O'
| | - Clare Tweedy
- Biosciences Institute, Newcastle University, Medical School, Framlington Place, Newcastle-upon-Tyne NE2 4HH, UK.
| | - Filippo Scialo
- Institute for Cell and Molecular Biosciences, Newcastle University Institute for Ageing, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, United Kingdom.
| | - Rosemary Bass
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK.
| | - Alberto Sanz
- Institute for Cell and Molecular Biosciences, Newcastle University Institute for Ageing, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne NE4 5PL, United Kingdom.
| | - Tora K Smulders-Srinivasan
- School of Health & Life Sciences, Teesside University, Middlesbrough TS1 3BX, United Kingdom; National Horizons Centre, Teesside University, Darlington DL1 1HG, United Kingdom; Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK.
| |
Collapse
|
185
|
Sola P, Krishnamurthy PT, Kumari M, Byran G, Gangadharappa HV, Garikapati KK. Neuroprotective approaches to halt Parkinson's disease progression. Neurochem Int 2022; 158:105380. [PMID: 35718278 DOI: 10.1016/j.neuint.2022.105380] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 02/07/2023]
Abstract
One of the most significant threats in Parkinson's disease (PD) is neurodegeneration. Neurodegeneration at both nigral as well as non-nigral regions of the brain is considered responsible for disease progression in PD. The key factors that initiate neurodegeneration are oxidative stress, neuroinflammation, mitochondrial complex-1 inhibition, and abnormal α-synuclein (SNCA) protein aggregations. Nigral neurodegeneration results in motor symptoms (tremor, bradykinesia, rigidity, shuffling gait, and postural instability) whereas; non-nigral neurodegeneration is responsible for non-motor symptoms (depression, cognitive dysfunctions, sleep disorders, hallucination, and psychosis). The available therapies for PD aim at increasing dopamine levels. The medications such as Monoamine oxidase B (MAO-B) inhibitors, catechol o-methyltransferase (COMT) inhibitors, Dopamine precursor (Levodopa), dopamine agonists, and dopamine reuptake inhibitors drastically improve the motor symptoms and quality of life only in the early stages of the disease. However, dopa resistant motor symptoms (abnormality in posture, speech impediment, gait, and balance problems), dopa resistant non-motor signs (sleep problems, autonomic dysfunction, mood, and cognitive impairment, pain), and drug-related side effects (motor fluctuations, psychosis, and dyskinesias) are considered responsible for the failure of these therapies. Further, none of the treatments, alone or in combination, are capable of halting the disease progression in the long run. Therefore, there is a need to develop safe and efficient neuroprotective agents, which can slow or stop the disease progression for the better management of PD. In this review, an effort has been made to discuss the various mechanisms responsible for progressive neurodegeneration (disease progression) in PD and also multiple strategies available for halting disease progression.
Collapse
Affiliation(s)
- Piyong Sola
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, 643001, India
| | - Praveen Thaggikuppe Krishnamurthy
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, 643001, India.
| | - Mamta Kumari
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, 643001, India
| | - Gowramma Byran
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, 643001, India
| | | | - Kusuma Kumari Garikapati
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, The Nilgiris, Tamil Nadu, 643001, India
| |
Collapse
|
186
|
Dorostgou Z, Yadegar N, Dorostgou Z, Khorvash F, Vakili O. Novel insights into the role of circular RNAs in Parkinson disease: An emerging renaissance in the management of neurodegenerative diseases. J Neurosci Res 2022; 100:1775-1790. [PMID: 35642104 DOI: 10.1002/jnr.25094] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 05/11/2022] [Accepted: 05/15/2022] [Indexed: 11/06/2022]
Abstract
Parkinson's disease (PD), as a debilitating neurodegenerative disease, particularly affects the elderly population, and is clinically identified by resting tremor, rigidity, and bradykinesia. Pathophysiologically, PD is characterized by an early loss of dopaminergic neurons in the Substantia nigra pars compacta, accompanied by the extensive aggregation of alpha-synuclein (α-Syn) in the form of Lewy bodies. The onset of PD has been reported to be influenced by multiple biological molecules. In this context, circular RNAs (circRNAs), as tissue-specific noncoding RNAs with closed structures, have been recently demonstrated to involve in a set of PD's pathogenic processes. These RNA molecules can either up- or downregulate the expression of α-Syn, as well as moderating its accumulation through different regulatory mechanisms, in which targeting microRNAs (miRNAs) is considered the most common pathway. Since circRNAs have prominent structural and biological characteristics, they could also be considered as promising candidates for PD diagnosis and treatment. Unfortunately, PD has become a global health concern, and a large number of its pathogenic processes are still unclear; thus, it is crucial to elucidate the ambiguous aspects of PD pathophysiology to improve the efficiency of diagnostic and therapeutic strategies. In line with this fact, the current review aims to highlight the interplay between circRNAs and PD pathogenesis, and then discusses the diagnostic and therapeutic potential of circRNAs in PD progression. This study will thus be the first of its kind reviewing the relationship between circRNAs and PD.
Collapse
Affiliation(s)
- Zahra Dorostgou
- Department of Biochemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Negar Yadegar
- Department of Medical Laboratory Sciences, School of Paramedical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zeynab Dorostgou
- Department of Biology, Kavian Institute of Higher Education, Mashhad, Iran
| | - Fariborz Khorvash
- Department of Neurology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Isfahan Neurosciences Research Center, Al-zahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
187
|
Motawi TK, Al-Kady RH, Abdelraouf SM, Senousy MA. Empagliflozin alleviates endoplasmic reticulum stress and augments autophagy in rotenone-induced Parkinson's disease in rats: Targeting the GRP78/PERK/eIF2α/CHOP pathway and miR-211-5p. Chem Biol Interact 2022; 362:110002. [PMID: 35654124 DOI: 10.1016/j.cbi.2022.110002] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/18/2022] [Accepted: 05/28/2022] [Indexed: 12/12/2022]
Abstract
Empagliflozin, a selective sodium-glucose co-transporter-2 inhibitor, has been demonstrated to provide additional non-glycemic benefits, including neuroprotection. Endoplasmic reticulum (ER) stress is a key player in neurodegeneration and occurs at the crossroads of other pathologic mechanisms; however, its role in the pathogenesis of Parkinson's disease (PD) is still elusive. miR-211-5p regulates neuronal differentiation and viability and was predicted to target CHOP, a downstream effector in the ER stress pathway. For the first time, this study investigated the possible neuroprotective effect of empagliflozin in a rotenone-induced rat model of PD from the perspective of ER stress. Rotenone (1.5 mg/kg) was administered subcutaneously every other day for 3 weeks. Meanwhile, the treated group received empagliflozin 10 mg/kg/day orally for 15 consecutive days post-PD induction. On the molecular level, the ER stress pathway components; GRP78, total and phosphorylated PERK, eIF2α and CHOP, along with miR-211-5p expression were upregulated in the striatum of rotenone-injected rats. Concurrently, the untreated rats showed elevated striatal α-synuclein levels along with diminished autophagy and the proteasome system as evidenced by reduced beclin-1 protein and ELF2/NERF mRNA expression levels. The rotenone-induced striatal oxidative stress and neuroinflammation were expressed by reduced catalase activity and elevated interleukin (IL)-1β levels. miR-211-5p was positively correlated with PERK/eIF2α/CHOP, IL-1β and α-synuclein, while negatively correlated with ELF2/NERF, beclin-1 and catalase activity. Empagliflozin treatment showed a restorative effect on all biochemical alterations and improved the motor function of rats tested by open field, grip strength and footprint gait analysis. In the histopathological examination, empagliflozin increased the intact neuron count and attenuated astrogliosis and microgliosis by reducing the glial fibrillary protein and ionized calcium-binding adaptor protein 1 immunostaining. Conclusively, these results emphasize the neurotherapeutic impact of empagliflozin in PD by moderating the GRP78/PERK/eIF2α/CHOP ER stress pathway, downregulating miR-211-5p, resolving oxidative stress, lessening astrocyte/microglial activation and neuroinflammation, along with augmenting autophagy.
Collapse
Affiliation(s)
- Tarek K Motawi
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Rawan H Al-Kady
- Biochemistry Department, Faculty of Pharmacy, Misr International University, Cairo, Egypt.
| | - Sahar M Abdelraouf
- Biochemistry Department, Faculty of Pharmacy, Misr International University, Cairo, Egypt.
| | - Mahmoud A Senousy
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| |
Collapse
|
188
|
Kozubek M, Hoenke S, Schmidt T, Ströhl D, Csuk R. Platanic acid derived amides are more cytotoxic than their corresponding oximes. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02902-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Abstract
Albeit platanic acid has been known since 1956, its potential to act as a valuable starting material for the synthesis of cytotoxic agents has been neglected for many years. Hereby we describe the synthesis of a small library of amides and oximes derived from 3-O-acetyl-platanic acid, and the results of their screening as cytotoxic agents for several human tumor cell lines. As a result, while the cytotoxicity of the oximes was diminished as compared to the parent amides, the homopiperazinyl amide 5 held the highest cytoxicity (EC50 = 0.9 μM for A375 human melanoma cells). Extra FACS and cell cycle measurements showed compound 5 to act onto A375 cells rather by apoptosis than by necrosis.
Clinical trial registration
No clinical trials are associated with this study
Collapse
|
189
|
Convergent Molecular Pathways in Type 2 Diabetes Mellitus and Parkinson’s Disease: Insights into Mechanisms and Pathological Consequences. Mol Neurobiol 2022; 59:4466-4487. [DOI: 10.1007/s12035-022-02867-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 05/02/2022] [Indexed: 10/18/2022]
|
190
|
Yoshida S, Hasegawa T. Beware of Misdelivery: Multifaceted Role of Retromer Transport in Neurodegenerative Diseases. Front Aging Neurosci 2022; 14:897688. [PMID: 35601613 PMCID: PMC9120357 DOI: 10.3389/fnagi.2022.897688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Retromer is a highly integrated multimeric protein complex that mediates retrograde cargo sorting from endosomal compartments. In concert with its accessory proteins, the retromer drives packaged cargoes to tubular and vesicular structures, thereby transferring them to the trans-Golgi network or to the plasma membrane. In addition to the endosomal trafficking, the retromer machinery participates in mitochondrial dynamics and autophagic processes and thus contributes to cellular homeostasis. The retromer components and their associated molecules are expressed in different types of cells including neurons and glial cells, and accumulating evidence from genetic and biochemical studies suggests that retromer dysfunction is profoundly involved in the pathogenesis of neurodegenerative diseases including Alzheimer’s Disease and Parkinson’s disease. Moreover, targeting retromer components could alleviate the neurodegenerative process, suggesting that the retromer complex may serve as a promising therapeutic target. In this review, we will provide the latest insight into the regulatory mechanisms of retromer and discuss how its dysfunction influences the pathological process leading to neurodegeneration.
Collapse
Affiliation(s)
- Shun Yoshida
- Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Neurology, National Hospital Organization Yonezawa Hospital, Yonezawa, Japan
| | - Takafumi Hasegawa
- Division of Neurology, Department of Neuroscience and Sensory Organs, Tohoku University Graduate School of Medicine, Sendai, Japan
- *Correspondence: Takafumi Hasegawa,
| |
Collapse
|
191
|
Hippocampal Mitochondrial Abnormalities Induced the Dendritic Complexity Reduction and Cognitive Decline in a Rat Model of Spinal Cord Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9253916. [PMID: 35571236 PMCID: PMC9095360 DOI: 10.1155/2022/9253916] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/19/2022] [Accepted: 04/12/2022] [Indexed: 11/18/2022]
Abstract
Spinal cord injury (SCI) is a progressive neurodegenerative disease in addition to a traumatic event. Cognitive dysfunction following SCI has been widely reported in patients and animal models. However, the neuroanatomical changes affecting cognitive function after SCI, as well as the mechanisms behind these changes, have so far remained elusive. Herein, we found that SCI accelerates oxidative stress damage of hippocampal neuronal mitochondria. Then, for the first time, we presented a three-dimensional morphological atlas of rat hippocampal neurons generated using a fluorescence Micro-Optical Sectioning Tomography system, a method that accurately identifies the spatial localization of neurons and trace neurites. We showed that the number of dendritic branches and dendritic length was decreased in late stage of SCI. Western blot and transmission electron microscopy analyses also showed a decrease in synaptic communication. In addition, a battery of behavioral tests in these animals revealed hippocampal based cognitive dysfunction, which could be attributed to changes in the dendritic complexity of hippocampal neurons. Taken together, these results suggested that mitochondrial abnormalities in hippocampal neurons induced the dendritic complexity reduction and cognitive decline following SCI. Our study highlights the neuroanatomical basis and importance of mitochondria in brain degeneration following SCI, which might contribute to propose new therapeutic strategies.
Collapse
|
192
|
Behl T, Kumar S, Althafar ZM, Sehgal A, Singh S, Sharma N, Badavath VN, Yadav S, Bhatia S, Al-Harrasi A, Almoshari Y, Almikhlafi MA, Bungau S. Exploring the Role of Ubiquitin-Proteasome System in Parkinson's Disease. Mol Neurobiol 2022; 59:4257-4273. [PMID: 35505049 DOI: 10.1007/s12035-022-02851-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/25/2022] [Indexed: 02/06/2023]
Abstract
Over the last decade, researchers have discovered that a group of apparently unrelated neurodegenerative disorders, such as Parkinson's disease, have remarkable cellular and molecular biology similarities. Protein misfolding and aggregation are involved in all of the neurodegenerative conditions; as a result, inclusion bodies aggregation starts in the cells. Chaperone proteins and ubiquitin (26S proteasome's proteolysis signal), which aid in refolding misfolded proteins, are frequently found in these aggregates. The discovery of disease-causing gene alterations that code for multiple ubiquitin-proteasome pathway proteins in Parkinson's disease has strengthened the relationship between the ubiquitin-proteasome system and neurodegeneration. The specific molecular linkages between these systems and pathogenesis, on the other hand, are unknown and controversial. We outline the current level of knowledge in this article, focusing on important unanswered problems.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Sachin Kumar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Ziyad M Althafar
- Department of Medical Laboratories Sciences, College of Applied Medical Sciences in Alquwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Neelam Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | - Shivam Yadav
- Yashraj Institute of Pharmacy, Uttar Pradesh, India
| | - Saurabh Bhatia
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman.,School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Yosif Almoshari
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mohannad A Almikhlafi
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibha University, Madinah, Saudi Arabia
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
193
|
Chen J, Xu J, Huang P, Luo Y, Shi Y, Ma P. The potential applications of traditional Chinese medicine in Parkinson's disease: A new opportunity. Biomed Pharmacother 2022; 149:112866. [PMID: 35367767 DOI: 10.1016/j.biopha.2022.112866] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/20/2022] [Accepted: 03/23/2022] [Indexed: 11/02/2022] Open
Abstract
Parkinson's disease (PD) presents a common challenge for people all over the world and has become a major research hotspot due to the large population affected by the illness and the difficulty of clinical treatment. The prevalence of PD is increasing every year, the pathogenesis is complex, and the current treatment is ineffective. Therefore, it has become imperative to find effective drugs for PD. With the advantages of low cost, high safety and high biological activity, Chinese medicine has great advantages in the prevention and treatment of PD. This review systematically summarizes the potential of Chinese medicine for the treatment of PD, showing that Chinese medicine can exert anti-PD effects through various pathways, such as anti-inflammatory and antioxidant pathways, reducing mitochondrial dysfunction, inhibiting endoplasmic reticulum stress and iron death, and regulating intestinal flora. These mainly involve HMGB1/TLR4, PI3K/Akt, NLRP3/ caspase-1/IL-1β, Nrf2/HO-1, SIRT1/Akt1, PINK1/parkin, Bcl-2/Bax, BDNF-TrkB and other signaling pathways. In sum, based on modern phytochemistry, pharmacology and genomic proteomics, Chinese medicine is likely to be a potential candidate for PD treatment, which requires more clinical trials to further elucidate its importance in the treatment of PD.
Collapse
Affiliation(s)
- Jiaxue Chen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jingke Xu
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ping Huang
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yining Luo
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuanshu Shi
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ping Ma
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
194
|
Tabikh M, Chahla C, Okdeh N, Kovacic H, Sabatier JM, Fajloun Z. Parkinson disease: Protective role and function of neuropeptides. Peptides 2022; 151:170713. [PMID: 34929264 DOI: 10.1016/j.peptides.2021.170713] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/16/2021] [Accepted: 12/16/2021] [Indexed: 01/07/2023]
Abstract
Neuropeptides are bioactive molecules, made up of small chains of amino acids, with many neuromodulatory properties. Several lines of evidence suggest that neuropeptides, mainly expressed in the central nervous system (CNS), play an important role in the onset of Parkinson's Disease (PD) pathology. The wide spread disruption of neuropeptides has been excessively demonstrated to be related to the pathophysiological symptoms in PD where impairment in motor function per example was correlated with neuropeptides dysregulation in the substantia niagra (SN). Moreover, the levels of different neuropeptides have been found modified in the cerebrospinal fluid and blood of PD patients, indicating their potential role in the manifestation of PD symptoms and dysfunctions. In this review, we outlined the neuroprotective effects of neuropeptides on dopaminergic neuronal loss, oxidative stress and neuroinflammation in several models and tissues of PD. Our main focus was to elaborate the role of orexin, pituitary adenylate cyclase activating polypeptide (PACAP), vasoactive intestinal peptide (VIP), opioids, angiotensin, carnosine and many others in the protection and/or involvement in the neurodegeneration of striatal dopaminergic cells. Further studies are required to better assess the mode of action and cellular mechanisms of neuropeptides in order to shift the focus from the in vitro and in vivo testing to applicable clinical testing. This review, allows a support for future use of neuropeptides as therapeutic solution for PA pathophysiology.
Collapse
Affiliation(s)
- Mireille Tabikh
- Faculty of Sciences 3, Department of Biology, Lebanese University, Campus Michel Slayman Ras Maska, 1352, Tripoli, Lebanon
| | - Charbel Chahla
- Faculty of Sciences 3, Department of Biology, Lebanese University, Campus Michel Slayman Ras Maska, 1352, Tripoli, Lebanon
| | - Nathalie Okdeh
- Faculty of Sciences 3, Department of Biology, Lebanese University, Campus Michel Slayman Ras Maska, 1352, Tripoli, Lebanon
| | - Herve Kovacic
- Faculté de Médecine, Université Aix-Marseille, Institut de Neuro-Physiopathologie, UMR 7051, Boulevard Pierre Dramard-CS80011, 13344, Marseille Cedex 15, France
| | - Jean-Marc Sabatier
- Faculté de Médecine, Université Aix-Marseille, Institut de Neuro-Physiopathologie, UMR 7051, Boulevard Pierre Dramard-CS80011, 13344, Marseille Cedex 15, France.
| | - Ziad Fajloun
- Faculty of Sciences 3, Department of Biology, Lebanese University, Campus Michel Slayman Ras Maska, 1352, Tripoli, Lebanon; Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and its Applications, EDST, Lebanese University, 1300, Tripoli, Lebanon.
| |
Collapse
|
195
|
Glycation modulates glutamatergic signaling and exacerbates Parkinson's disease-like phenotypes. NPJ Parkinsons Dis 2022; 8:51. [PMID: 35468899 PMCID: PMC9038780 DOI: 10.1038/s41531-022-00314-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/31/2022] [Indexed: 01/17/2023] Open
Abstract
Alpha-synuclein (aSyn) is a central player in the pathogenesis of synucleinopathies due to its accumulation in typical protein aggregates in the brain. However, it is still unclear how it contributes to neurodegeneration. Type-2 diabetes mellitus is a risk factor for Parkinson's disease (PD). Interestingly, a common molecular alteration among these disorders is the age-associated increase in protein glycation. We hypothesized that glycation-induced neuronal dysfunction is a contributing factor in synucleinopathies. Here, we dissected the impact of methylglyoxal (MGO, a glycating agent) in mice overexpressing aSyn in the brain. We found that MGO-glycation potentiates motor, cognitive, olfactory, and colonic dysfunction in aSyn transgenic (Thy1-aSyn) mice that received a single dose of MGO via intracerebroventricular injection. aSyn accumulates in the midbrain, striatum, and prefrontal cortex, and protein glycation is increased in the cerebellum and midbrain. SWATH mass spectrometry analysis, used to quantify changes in the brain proteome, revealed that MGO mainly increase glutamatergic-associated proteins in the midbrain (NMDA, AMPA, glutaminase, VGLUT and EAAT1), but not in the prefrontal cortex, where it mainly affects the electron transport chain. The glycated proteins in the midbrain of MGO-injected Thy1-aSyn mice strongly correlate with PD and dopaminergic pathways. Overall, we demonstrated that MGO-induced glycation accelerates PD-like sensorimotor and cognitive alterations and suggest that the increase of glutamatergic signaling may underly these events. Our study sheds new light into the enhanced vulnerability of the midbrain in PD-related synaptic dysfunction and suggests that glycation suppressors and anti-glutamatergic drugs may hold promise as disease-modifying therapies for synucleinopathies.
Collapse
|
196
|
Qubty D, Frid K, Har-Even M, Rubovitch V, Gabizon R, Pick CG. Nano-PSO Administration Attenuates Cognitive and Neuronal Deficits Resulting from Traumatic Brain Injury. Molecules 2022; 27:molecules27092725. [PMID: 35566074 PMCID: PMC9105273 DOI: 10.3390/molecules27092725] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 11/17/2022] Open
Abstract
Traumatic Brain Injury (TBI), is one of the most common causes of neurological damage in young populations. It is widely considered as a risk factor for neurodegenerative diseases, such as Alzheimer’s disease (AD) and Parkinson’s (PD) disease. These diseases are characterized in part by the accumulation of disease-specific misfolded proteins and share common pathological features, such as neuronal death, as well as inflammatory and oxidative damage. Nano formulation of Pomegranate seed oil [Nano-PSO (Granagard TM)] has been shown to target its active ingredient to the brain and thereafter inhibit memory decline and neuronal death in mice models of AD and genetic Creutzfeldt Jacob disease. In this study, we show that administration of Nano-PSO to mice before or after TBI application prevents cognitive and behavioral decline. In addition, immuno-histochemical staining of the brain indicates that preventive Nano-PSO treatment significantly decreased neuronal death, reduced gliosis and prevented mitochondrial damage in the affected cells. Finally, we examined levels of Sirtuin1 (SIRT1) and Synaptophysin (SYP) in the cortex using Western blotting. Nano-PSO consumption led to higher levels of SIRT1 and SYP protein postinjury. Taken together, our results indicate that Nano-PSO, as a natural brain-targeted antioxidant, can prevent part of TBI-induced damage.
Collapse
Affiliation(s)
- Doaa Qubty
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (D.Q.); (M.H.-E.); (V.R.)
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Kati Frid
- The Agnes Ginges Center for Human Neurogenetics, Department of Neurology, Hadassah University Hospital, Medical School, The Hebrew University, Jerusalem 91120, Israel; (K.F.); (R.G.)
| | - Meirav Har-Even
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (D.Q.); (M.H.-E.); (V.R.)
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
- Sylvan Adams Sports Institute, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Vardit Rubovitch
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (D.Q.); (M.H.-E.); (V.R.)
| | - Ruth Gabizon
- The Agnes Ginges Center for Human Neurogenetics, Department of Neurology, Hadassah University Hospital, Medical School, The Hebrew University, Jerusalem 91120, Israel; (K.F.); (R.G.)
| | - Chaim G Pick
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel; (D.Q.); (M.H.-E.); (V.R.)
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
- Sylvan Adams Sports Institute, Tel Aviv University, Tel Aviv 6997801, Israel
- The Dr. Miriam and Sheldon G. Adelson Chair and Center for the Biology of Addictive Diseases, Tel Aviv University, Tel Aviv 6997801, Israel
- Correspondence:
| |
Collapse
|
197
|
Behl T, Madaan P, Sehgal A, Singh S, Makeen HA, Albratty M, Alhazmi HA, Meraya AM, Bungau S. Demystifying the Neuroprotective Role of Neuropeptides in Parkinson's Disease: A Newfangled and Eloquent Therapeutic Perspective. Int J Mol Sci 2022; 23:4565. [PMID: 35562956 PMCID: PMC9099669 DOI: 10.3390/ijms23094565] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/17/2022] [Accepted: 04/18/2022] [Indexed: 02/07/2023] Open
Abstract
Parkinson's disease (PD) refers to one of the eminently grievous, preponderant, tortuous nerve-cell-devastating ailments that markedly impacts the dopaminergic (DArgic) nerve cells of the midbrain region, namely the substantia nigra pars compacta (SN-PC). Even though the exact etiopathology of the ailment is yet indefinite, the existing corroborations have suggested that aging, genetic predisposition, and environmental toxins tremendously influence the PD advancement. Additionally, pathophysiological mechanisms entailed in PD advancement encompass the clumping of α-synuclein inside the lewy bodies (LBs) and lewy neurites, oxidative stress, apoptosis, neuronal-inflammation, and abnormalities in the operation of mitochondria, autophagy lysosomal pathway (ALP), and ubiquitin-proteasome system (UPS). The ongoing therapeutic approaches can merely mitigate the PD-associated manifestations, but until now, no therapeutic candidate has been depicted to fully arrest the disease advancement. Neuropeptides (NPs) are little, protein-comprehending additional messenger substances that are typically produced and liberated by nerve cells within the entire nervous system. Numerous NPs, for instance, substance P (SP), ghrelin, neuropeptide Y (NPY), neurotensin, pituitary adenylate cyclase-activating polypeptide (PACAP), nesfatin-1, and somatostatin, have been displayed to exhibit consequential neuroprotection in both in vivo and in vitro PD models via suppressing apoptosis, cytotoxicity, oxidative stress, inflammation, autophagy, neuronal toxicity, microglia stimulation, attenuating disease-associated manifestations, and stimulating chondriosomal bioenergetics. The current scrutiny is an effort to illuminate the neuroprotective action of NPs in various PD-experiencing models. The authors carried out a methodical inspection of the published work procured through reputable online portals like PubMed, MEDLINE, EMBASE, and Frontier, by employing specific keywords in the subject of our article. Additionally, the manuscript concentrates on representing the pathways concerned in bringing neuroprotective action of NPs in PD. In sum, NPs exert substantial neuroprotection through regulating paramount pathways indulged in PD advancement, and consequently, might be a newfangled and eloquent perspective in PD therapy.
Collapse
Affiliation(s)
- Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (P.M.); (A.S.); (S.S.)
| | - Piyush Madaan
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (P.M.); (A.S.); (S.S.)
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (P.M.); (A.S.); (S.S.)
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (P.M.); (A.S.); (S.S.)
| | - Hafiz A. Makeen
- Pharmacy Practice Research Unit, Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (H.A.M.); (A.M.M.)
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (M.A.); (H.A.A.)
| | - Hassan A. Alhazmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (M.A.); (H.A.A.)
- Substance Abuse and Toxicology Research Center, Jazan University, Jazan 45142, Saudi Arabia
| | - Abdulkarim M. Meraya
- Pharmacy Practice Research Unit, Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (H.A.M.); (A.M.M.)
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania
- Doctoral School of Biomedical Sciences, University of Oradea, 410028 Oradea, Romania
| |
Collapse
|
198
|
Tang H, Zheng Z, Wang H, Wang L, Zhao G, Wang P. Vitamin K2 Modulates Mitochondrial Dysfunction Induced by 6-Hydroxydopamine in SH-SY5Y Cells via Mitochondrial Quality-Control Loop. Nutrients 2022; 14:1504. [PMID: 35406117 PMCID: PMC9003256 DOI: 10.3390/nu14071504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 11/25/2022] Open
Abstract
Vitamin K2, a natural fat-soluble vitamin, is a potent neuroprotective molecule, owing to its antioxidant effect, but its mechanism has not been fully elucidated. Therefore, we stimulated SH-SY5Y cells with 6-hydroxydopamine (6-OHDA) in a proper dose-dependent manner, followed by a treatment of vitamin K2. In the presence of 6-OHDA, cell viability was reduced, the mitochondrial membrane potential was decreased, and the accumulation of reactive oxygen species (ROS) was increased. Moreover, the treatment of 6-OHDA promoted mitochondria-mediated apoptosis and abnormal mitochondrial fission and fusion. However, vitamin K2 significantly suppressed 6-OHDA-induced changes. Vitamin K2 played a significant part in apoptosis by upregulating and downregulating Bcl-2 and Bax protein expressions, respectively, which inhibited mitochondrial depolarization, and ROS accumulation to maintain mitochondrial structure and functional stabilities. Additionally, vitamin K2 significantly inhibited the 6-OHDA-induced downregulation of the MFN1/2 level and upregulation of the DRP1 level, respectively, and this enabled cells to maintain the dynamic balance of mitochondrial fusion and fission. Furthermore, vitamin K2 treatments downregulated the expression level of p62 and upregulated the expression level of LC3A in 6-OHDA-treated cells via the PINK1/Parkin signaling pathway, thereby promoting mitophagy. Moreover, it induced mitochondrial biogenesis in 6-OHDA damaged cells by promoting the expression of PGC-1α, NRF1, and TFAM. These indicated that vitamin K2 can release mitochondrial damage, and that this effect is related to the participation of vitamin K2 in the regulation of the mitochondrial quality-control loop, through the maintenance of the mitochondrial quality-control system, and repair mitochondrial dysfunction, thereby alleviating neuronal cell death mediated by mitochondrial damage.
Collapse
Affiliation(s)
- Hengfang Tang
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (H.T.); (H.W.); (L.W.); (G.Z.)
- Science Island Branch of Graduate, University of Science and Technology of China, Hefei 230026, China
| | - Zhiming Zheng
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (H.T.); (H.W.); (L.W.); (G.Z.)
| | - Han Wang
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (H.T.); (H.W.); (L.W.); (G.Z.)
- Anhui Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Li Wang
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (H.T.); (H.W.); (L.W.); (G.Z.)
| | - Genhai Zhao
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; (H.T.); (H.W.); (L.W.); (G.Z.)
| | - Peng Wang
- Anhui Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- CAS (Hefei) Institute of Technology Innovation Co., Ltd., Hefei 230088, China
| |
Collapse
|
199
|
Marchetti B, Giachino C, Tirolo C, Serapide MF. "Reframing" dopamine signaling at the intersection of glial networks in the aged Parkinsonian brain as innate Nrf2/Wnt driver: Therapeutical implications. Aging Cell 2022; 21:e13575. [PMID: 35262262 PMCID: PMC9009237 DOI: 10.1111/acel.13575] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 01/11/2022] [Accepted: 02/06/2022] [Indexed: 11/30/2022] Open
Abstract
Dopamine (DA) signaling via G protein-coupled receptors is a multifunctional neurotransmitter and neuroendocrine-immune modulator. The DA nigrostriatal pathway, which controls the motor coordination, progressively degenerates in Parkinson's disease (PD), a most common neurodegenerative disorder (ND) characterized by a selective, age-dependent loss of substantia nigra pars compacta (SNpc) neurons, where DA itself is a primary source of oxidative stress and mitochondrial impairment, intersecting astrocyte and microglial inflammatory networks. Importantly, glia acts as a preferential neuroendocrine-immune DA target, in turn, counter-modulating inflammatory processes. With a major focus on DA intersection within the astrocyte-microglial inflammatory network in PD vulnerability, we herein first summarize the characteristics of DA signaling systems, the propensity of DA neurons to oxidative stress, and glial inflammatory triggers dictating the vulnerability to PD. Reciprocally, DA modulation of astrocytes and microglial reactivity, coupled to the synergic impact of gene-environment interactions, then constitute a further level of control regulating midbrain DA neuron (mDAn) survival/death. Not surprisingly, within this circuitry, DA converges to modulate nuclear factor erythroid 2-like 2 (Nrf2), the master regulator of cellular defense against oxidative stress and inflammation, and Wingless (Wnt)/β-catenin signaling, a key pathway for mDAn neurogenesis, neuroprotection, and immunomodulation, adding to the already complex "signaling puzzle," a novel actor in mDAn-glial regulatory machinery. Here, we propose an autoregulatory feedback system allowing DA to act as an endogenous Nrf2/Wnt innate modulator and trace the importance of DA receptor agonists applied to the clinic as immune modifiers.
Collapse
Affiliation(s)
- Bianca Marchetti
- Department of Biomedical and Biotechnological Sciences (BIOMETEC)Pharmacology SectionMedical SchoolUniversity of CataniaCataniaItaly
- OASI Research Institute‐IRCCS, Troina (EN), ItalyTroinaItaly
| | | | - Cataldo Tirolo
- OASI Research Institute‐IRCCS, Troina (EN), ItalyTroinaItaly
| | - Maria F. Serapide
- Department of Biomedical and Biotechnological Sciences (BIOMETEC)Pharmacology SectionMedical SchoolUniversity of CataniaCataniaItaly
| |
Collapse
|
200
|
Sindhu RK, Kaur P, Kaur P, Singh H, Batiha GES, Verma I. Exploring multifunctional antioxidants as potential agents for management of neurological disorders. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:24458-24477. [PMID: 35064486 DOI: 10.1007/s11356-021-17667-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 11/17/2021] [Indexed: 06/14/2023]
Abstract
Free radical or oxidative stress may be a fundamental mechanism underlying several human neurologic diseases. Therapy using free radical scavengers (antioxidants) has the potential to prevent, delay, or ameliorate many neurologic disorders. However, the biochemistry of oxidative pathobiology is complex, and optimum antioxidant therapeutic options may vary and need to be tailored to individual diseases. In vitro and animal model studies support the potential beneficial role of various antioxidant compounds in neurological disease. Antioxidants generally play an important role in reducing or preventing the cell damage and other changes which occur in the cells like mitochondrial dysfunction, DNA mutations, and lipid peroxidation in the cell membrane. Based on their mechanism of action, antioxidants can be used to treat various neurological disorders like Huntington's disease, Alzheimer's disease, and Parkinson's disease. Vitamin E has a scavenging action for reactive oxygen species (ROS) and also prevents the lipid peroxidation. Creatine generally reduces the mitochondrial dysfunction in Parkinson's disease (PD) patients. Various metal chelators are used in PD for the prevention of accumulation of the metals. Superoxidase dismutase (SOD), lipases, and proteases act as repair enzymes in patients with AD. Accordingly, the antioxidant defense system is found to be most useful for treating various neurological disorders.
Collapse
Affiliation(s)
- Rakesh K Sindhu
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India.
| | - Prabhjot Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Parneet Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Harmanpreet Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt
| | - Inderjeet Verma
- Department of Pharmacy Practice, M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, Haryana, India
| |
Collapse
|