151
|
Mechanisms of NAFLD development and therapeutic strategies. Nat Med 2018; 24:908-922. [PMID: 29967350 DOI: 10.1038/s41591-018-0104-9] [Citation(s) in RCA: 2753] [Impact Index Per Article: 393.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 05/30/2018] [Indexed: 02/07/2023]
Abstract
There has been a rise in the prevalence of nonalcoholic fatty liver disease (NAFLD), paralleling a worldwide increase in diabetes and metabolic syndrome. NAFLD, a continuum of liver abnormalities from nonalcoholic fatty liver (NAFL) to nonalcoholic steatohepatitis (NASH), has a variable course but can lead to cirrhosis and liver cancer. Here we review the pathogenic and clinical features of NAFLD, its major comorbidities, clinical progression and risk of complications and in vitro and animal models of NAFLD enabling refinement of therapeutic targets that can accelerate drug development. We also discuss evolving principles of clinical trial design to evaluate drug efficacy and the emerging targets for drug development that involve either single agents or combination therapies intended to arrest or reverse disease progression.
Collapse
|
152
|
Wilson CH, Kumar S. Caspases in metabolic disease and their therapeutic potential. Cell Death Differ 2018; 25:1010-1024. [PMID: 29743560 PMCID: PMC5988802 DOI: 10.1038/s41418-018-0111-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/26/2018] [Accepted: 03/22/2018] [Indexed: 12/13/2022] Open
Abstract
Caspases, a family of cysteine-dependent aspartate-specific proteases, are central to the maintenance of cellular and organismal homoeostasis by functioning as key mediators of the inflammatory response and/or apoptosis. Both metabolic inflammation and apoptosis play a central role in the pathogenesis of metabolic disease such as obesity and the progression of nonalcoholic steatohepatisis (NASH) to more severe liver disease. Obesity and nonalcoholic fatty liver disease (NAFLD) are the leading global health challenges associated with the development of numerous comorbidities including insulin resistance, type-2 diabetes and early mortality. Despite the high prevalence, current treatment strategies including lifestyle, dietary, pharmaceutical and surgical interventions, are often limited in their efficacy to manage or treat obesity, and there are currently no clinical therapies for NAFLD/NASH. As mediators of inflammation and cell death, caspases are attractive therapeutic targets for the treatment of these metabolic diseases. As such, pan-caspase inhibitors that act by blocking apoptosis have reached phase I/II clinical trials in severe liver disease. However, there is still a lack of knowledge of the specific and differential functions of individual caspases. In addition, cross-talk between alternate cell death pathways is a growing concern for long-term caspase inhibition. Evidence is emerging of the important cell-death-independent, non-apoptotic functions of caspases in metabolic homoeostasis that may be of therapeutic value. Here, we review the current evidence for roles of caspases in metabolic disease and discuss their potential targeting as a therapeutic strategy.
Collapse
Affiliation(s)
- Claire H Wilson
- Centre for Cancer Biology, University of South Australia & SA Pathology, Adelaide, SA, 5001, Australia.
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia & SA Pathology, Adelaide, SA, 5001, Australia.
| |
Collapse
|
153
|
Emricasan, a pan-caspase inhibitor, improves survival and portal hypertension in a murine model of common bile-duct ligation. J Mol Med (Berl) 2018; 96:575-583. [PMID: 29728708 DOI: 10.1007/s00109-018-1642-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 04/10/2018] [Accepted: 04/22/2018] [Indexed: 12/16/2022]
Abstract
Development of portal hypertension (PHT) is a central prognostic factor in patients with cirrhosis. Circulating microparticles (MPs) are released by hepatocytes in a caspase-dependent manner, are increased in circulation of patients with cirrhosis, and contribute to PHT via induction of impaired vasoconstrictor responses. Here, we tested the hypothesis that emricasan, a pan-caspase inhibitor, ameliorates PHT and reduction in release of MPs. We used a short-term and long-term protocol following common bile-duct ligation (BDL) in C57BL/6 mice (10 and 20 days, respectively). Mice were treated daily via intraperitoneal injection with 10 mg/kg/day of emricasan or placebo. Circulating MP levels were analyzed using flow cytometry and function via ex vivo angiogenesis assays. In contrast to BDL-placebo group, nearly all BDL-emricasan-treated mice survived after long-term BDL. Assessment of portal pressure showed a significant increase in BDL-placebo mice compared to sham-placebo mice. In contrast, BDL-emricasan mice had significantly lower levels of portal pressure compared to BDL-placebo mice. Although emricasan treatment resulted in a decrease in fibrosis, the changes did not reach statistical significance, suggesting that the effects on PHT are at least in part independent of the anti-fibrotic effects of the drug. Following short-term BDL, hepatocellular cell death as well as liver fibrosis had improved and circulating MPs were significantly reduced in BDL-emricasan mice compared to BDL-placebo. Circulating MPs from BDL-placebo mice induced endothelial cell activation, and this was significantly reduced in MPs from BDL-emricasan mice. Our results indicate that emricasan treatment improves survival and PHT in a murine model of long-term BDL. Emricasan is a promising agent for the treatment of PHT. KEY MESSAGE Emricasan, a pan-caspase inhibitor, improves survival and portal hypertension induced by long-term bile-duct ligation (BDL) in mice Emricasan reduces liver damage, hepatocyte death, and fibrosis, following short-term BDL in mice, and these changes are associated with a decrease in circulating microparticle (MPs) Circulating MPs from BDL-placebo but not from BDL-emiricasan-treated mice activate endothelial cells ex vivo.
Collapse
|
154
|
Mirea AM, Tack CJ, Chavakis T, Joosten LAB, Toonen EJM. IL-1 Family Cytokine Pathways Underlying NAFLD: Towards New Treatment Strategies. Trends Mol Med 2018; 24:458-471. [PMID: 29665983 PMCID: PMC5939989 DOI: 10.1016/j.molmed.2018.03.005] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/11/2018] [Accepted: 03/12/2018] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease worldwide. Pathways responsible for the activation of IL-1 family cytokines are key in the development of NAFLD but underlying mechanisms are not fully understood. Many studies have focused on the inflammasome-caspase-1 pathway and have shown that this pathway is an important inducer of inflammation in NAFLD. However, this pathway is not solely responsible for the activation of proinflammatory cytokines. Also, neutrophil serine proteases (NSPs) are capable of activating cytokines and recent studies reported that these proteases also contribute to NAFLD. These studies provided, for the first time, evidence that this inflammasome-independent pathway is involved in NAFLD. In our opinion, these new insights open up new approaches for therapeutic intervention.
Collapse
Affiliation(s)
- Andreea-Manuela Mirea
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Cees J Tack
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, University Clinic Carl-Gustav-Carus, Technische Universität Dresden, Dresden, Germany
| | - Leo A B Joosten
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Erik J M Toonen
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands; R&D Department, Hycult Biotech, Uden, The Netherlands.
| |
Collapse
|
155
|
Borrelli A, Bonelli P, Tuccillo FM, Goldfine ID, Evans JL, Buonaguro FM, Mancini A. Role of gut microbiota and oxidative stress in the progression of non-alcoholic fatty liver disease to hepatocarcinoma: Current and innovative therapeutic approaches. Redox Biol 2018; 15:467-479. [PMID: 29413959 PMCID: PMC5975181 DOI: 10.1016/j.redox.2018.01.009] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/10/2018] [Accepted: 01/17/2018] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) represents the most common chronic liver disease in industrialized countries. NAFLD progresses through the inflammatory phase of non-alcoholic steatohepatitis (NASH) to fibrosis and cirrhosis, with some cases developing liver failure or hepatocellular carcinoma (HCC). Liver biopsy remains the gold standard approach to a definitive diagnosis of NAFLD and the distinction between simple steatosis and NASH. The pathogenesis of NASH is still not clear. Several theories have been proposed ranging from the "Two Hit Theory" to the "Multiple Hit Theory". However, the general consensus is that the gut microbiota, oxidative stress, and mitochondrial damage play key roles in the pathogenesis of NASH. The interaction between the gut epithelia and some commensal bacteria induces the rapid generation of reactive oxygen species (ROS). The main goal of any therapy addressing NASH is to reverse or prevent progression to liver fibrosis/cirrhosis. This problem represents the first "Achilles' heel" of the new molecules being evaluated in most ongoing clinical trials. The second is the inability of these molecules to reach the mitochondria, the primary sites of energy production and ROS generation. Recently, a variety of non-pharmacological and pharmacological treatment approaches for NASH have been evaluated including vitamin E, the thiazolidinediones, and novel molecules related to NASH pathogenesis (including obeticholic acid and elafibranor). Recently, a new isoform of human manganese superoxide dismutase (MnSOD) was isolated and obtained in a synthetic recombinant form designated rMnSOD. This protein has been shown to be a powerful antioxidant capable of mediating ROS dismutation, penetrating biological barriers via its uncleaved leader peptide, and reducing portal hypertension and fibrosis in rats affected by liver cirrhosis. Based on these distinctive characteristics, it can be hypothesized that this novel recombinant protein (rMnSOD) potentially represents a new and highly efficient adjuvant therapy to counteract the progression from NASH to HCC.
Collapse
Affiliation(s)
- Antonella Borrelli
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS "Fondazione G Pascale", 80131 Napoli, Italy.
| | - Patrizia Bonelli
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS "Fondazione G Pascale", 80131 Napoli, Italy
| | - Franca Maria Tuccillo
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS "Fondazione G Pascale", 80131 Napoli, Italy
| | | | | | - Franco Maria Buonaguro
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS "Fondazione G Pascale", 80131 Napoli, Italy
| | - Aldo Mancini
- Leadhexa Biotechnologies Inc., Belvedere, CA, USA
| |
Collapse
|
156
|
Ibrahim SH, Hirsova P, Gores GJ. Non-alcoholic steatohepatitis pathogenesis: sublethal hepatocyte injury as a driver of liver inflammation. Gut 2018; 67:963-972. [PMID: 29367207 PMCID: PMC5889737 DOI: 10.1136/gutjnl-2017-315691] [Citation(s) in RCA: 198] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/20/2017] [Accepted: 01/04/2018] [Indexed: 02/06/2023]
Abstract
A subset of patients with non-alcoholic fatty liver disease develop an inflammatory condition, termed non-alcoholic steatohepatitis (NASH). NASH is characterised by hepatocellular injury, innate immune cell-mediated inflammation and progressive liver fibrosis. The mechanisms whereby hepatic inflammation occurs in NASH remain incompletely understood, but appear to be linked to the proinflammatory microenvironment created by toxic lipid-induced hepatocyte injury, termed lipotoxicity. In this review, we discuss the signalling pathways induced by sublethal hepatocyte lipid overload that contribute to the pathogenesis of NASH. Furthermore, we will review the role of proinflammatory, proangiogenic and profibrotic hepatocyte-derived extracellular vesicles as disease biomarkers and pathogenic mediators during lipotoxicity. We also review the potential therapeutic strategies to block the feed-forward loop between sublethal hepatocyte injury and liver inflammation.
Collapse
Affiliation(s)
- Samar H Ibrahim
- Division of Pediatrics Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA,Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Petra Hirsova
- Institute of Clinical Biochemistry and Diagnostics, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic,Department of Pharmacology, Faculty of Medicine, Charles University, Hradec Kralove, Czech Republic
| | - Gregory J Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
157
|
Gehrke N, Nagel M, Straub BK, Wörns MA, Schuchmann M, Galle PR, Schattenberg JM. Loss of cellular FLICE-inhibitory protein promotes acute cholestatic liver injury and inflammation from bile duct ligation. Am J Physiol Gastrointest Liver Physiol 2018; 314:G319-G333. [PMID: 29191940 DOI: 10.1152/ajpgi.00097.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cholestatic liver injury results from impaired bile flow or metabolism and promotes hepatic inflammation and fibrogenesis. Toxic bile acids that accumulate in cholestasis induce apoptosis and contribute to early cholestatic liver injury, which is amplified by accompanying inflammation. The aim of the current study was to evaluate the role of the antiapoptotic caspase 8-homolog cellular FLICE-inhibitory (cFLIP) protein during acute cholestatic liver injury. Transgenic mice exhibiting hepatocyte-specific deletion of cFLIP (cFLIP-/-) were used for in vivo and in vitro analysis of cholestatic liver injury using bile duct ligation (BDL) and the addition of bile acids ex vivo. Loss of cFLIP in hepatocytes promoted acute cholestatic liver injury early after BDL, which was characterized by a rapid release of proinflammatory and chemotactic cytokines (TNF, IL-6, IL-1β, CCL2, CXCL1, and CXCL2), an increased presence of CD68+ macrophages and an influx of neutrophils in the liver, and resulting apoptotic and necrotic hepatocyte cell death. Mechanistically, liver injury in cFLIP-/- mice was aggravated by reactive oxygen species, and sustained activation of the JNK signaling pathway. In parallel, cytoprotective NF-κB p65, A20, and the MAPK p38 were inhibited. Increased injury in cFLIP-/- mice was accompanied by activation of hepatic stellate cells and profibrogenic regulators. The antagonistic caspase 8-homolog cFLIP is a critical regulator of acute, cholestatic liver injury. NEW & NOTEWORTHY The current paper explores the role of a classical modulator of hepatocellular apoptosis in early, cholestatic liver injury. These include activation of NF-κB and MAPK signaling, production of inflammatory cytokines, and recruitment of neutrophils in response to cholestasis. Because these signaling pathways are currently exploited in clinical trials for the treatment of nonalcoholic steatohepatitis and cirrhosis, the current data will help in the development of novel pharmacological options in these indications.
Collapse
Affiliation(s)
- Nadine Gehrke
- Department of Medicine, University Medical Center of the Johannes Gutenberg University , Mainz , Germany
| | - Michael Nagel
- Department of Medicine, University Medical Center of the Johannes Gutenberg University , Mainz , Germany
| | - Beate K Straub
- Institute of Pathology, University Medical Center Mainz , Mainz , Germany
| | - Marcus A Wörns
- Department of Medicine, University Medical Center of the Johannes Gutenberg University , Mainz , Germany
| | | | - Peter R Galle
- Department of Medicine, University Medical Center of the Johannes Gutenberg University , Mainz , Germany
| | - Jörn M Schattenberg
- Department of Medicine, University Medical Center of the Johannes Gutenberg University , Mainz , Germany
| |
Collapse
|
158
|
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent liver disease worldwide, and there is no approved pharmacotherapy. The efficacy of vitamin E and pioglitazone has been established in nonalcoholic steatohepatitis (NASH), a progressive form of NAFLD. GLP-1RA and SGLT2 inhibitors, which are currently approved for use in diabetes, have shown early efficacy in NASH, and also have beneficial cardiovascular or renal effects. Innovative NASH therapies include four main pathways. The first approach is targeting hepatic fat accumulation. Medications in this approach include modulation of peroxisome proliferator-activator receptors (e.g., pemafibrate, elafibranor), medications targeting farnesoid X receptor axis [obeticholic acid; OCA)], inhibitors of de novo lipogenesis (aramchol, ACC inhibitor), and fibroblast growth factor-21 analogues. A second target is oxidative stress, inflammation, and apoptosis. This class of drug includes apoptosis signaling kinase 1 (ASK1) inhibitor and emricasan (an irreversible caspase inhibitor). A third target is intestinal microbiomes and metabolic endotoxemia. Several agents are in ongoing trials, including IMMe124, TLR4 antagonist, and solithromycin (macrolide antibiotics). The final target is hepatic fibrosis, which is strongly associated with all-cause or liver-related mortality in NASH. Antifibrotic agents are a cysteine-cysteine motif chemokine receptor-2/5 antagonist (cenicriviroc; CVC) and galectin 3 antagonist. Among a variety of medications in development, four agents such as OCA, elafibranor, ASK1 inhibitor, and CVC are currently being evaluated in an international phase 3 trial for the treatment of NASH. Within the next few years, the availability of therapeutic options for NASH will hopefully curb the rising trend of NASH-related diseases.
Collapse
Affiliation(s)
- Yoshio Sumida
- Division of Hepatology and Pancreatology, Department of Internal Medicine, Aichi Medical University, Nagakute, Aichi, 480-1195, Japan.
| | - Masashi Yoneda
- Division of Hepatology and Pancreatology, Department of Internal Medicine, Aichi Medical University, Nagakute, Aichi, 480-1195, Japan
| |
Collapse
|
159
|
Konerman MA, Jones JC, Harrison SA. Pharmacotherapy for NASH: Current and emerging. J Hepatol 2018; 68:362-375. [PMID: 29122694 DOI: 10.1016/j.jhep.2017.10.015] [Citation(s) in RCA: 223] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 10/16/2017] [Accepted: 10/17/2017] [Indexed: 12/13/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become one of the most prominent forms of chronic liver disease worldwide, reflecting the epidemic of global obesity. Those with the progressive variant of NAFLD, non-alcoholic steatohepatitis (NASH), are at significantly increased risk of multisystem morbidity and mortality. However, there are currently no approved pharmacologic therapies for NASH. Given the disease burden, there is an important unmet need for pharmacologic treatment options for this patient population. The underlying pathophysiologic mechanisms that contribute to the development and progression of NAFLD and NASH are complex and reflected by the myriad of therapies, with different targets, currently under investigation. In broad strokes, drug development has focused on modulation of metabolic pathways, inflammatory cascades, and/or mechanisms impacting fibrosis. Although much progress has been made in enhancing our understanding of NAFLD pathogenesis, development of pharmacologic treatments has been hindered by challenges in clinical trial enrollment and complexities in clinical trial design. The compounds in phase IIa have provided promising results in terms of potential benefits on various aspects of histopathology. Agents in later stages of development have shown fairly modest results in terms of reduction of hepatic steatosis, necroinflammation and fibrosis. If longer term safety and efficacy are established among heterogeneous cohorts, these medications may help mitigate potential morbidity and mortality for this burgeoning patient population.
Collapse
Affiliation(s)
- Monica A Konerman
- University of Michigan, Department of Internal Medicine, Division of Gastroenterology and Hepatology, Ann Arbor, MI, USA
| | | | - Stephen A Harrison
- University of Oxford, Radcliffe Department of Medicine, Oxford, United Kingdom.
| |
Collapse
|
160
|
SPARC expression is associated with hepatic injury in rodents and humans with non-alcoholic fatty liver disease. Sci Rep 2018; 8:725. [PMID: 29335425 PMCID: PMC5768809 DOI: 10.1038/s41598-017-18981-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 12/15/2017] [Indexed: 12/29/2022] Open
Abstract
Mechanisms that control progression from simple steatosis to steato-hepatitis and fibrosis in patients with non-alcoholic fatty liver disease (NAFLD) are unknown. SPARC, a secreted matricellular protein, is over-expressed in the liver under chronic injury. Contribution of SPARC accumulation to disease severity is largely unknown in NAFLD. We assessed the hypothesis that SPARC is increased in livers with more necrosis and inflammation and could be associated with more fibrosis. qrt-PCR, immunohistochemistry, and ELISA were employed to localize and quantify changes in SPARC in 62 morbidly obese patients with NAFLD/NASH and in a mouse model of diet-induced-NASH. Results were correlated with the severity of NAFLD/NASH. In obese patients 2 subgroups were identified with either high SPARC expression (n = 16) or low SPARC expression (n = 46) in the liver, with a cutoff of 1.2 fold expression. High expression of SPARC paralleled hepatocellular damage and increased mRNA expression of pro-fibrogenic factors in the liver. In line with these findings, in the NASH animal model SPARC knockout mice were protected from inflammatory injury, and showed less inflammation and fibrosis. Hepatic SPARC expression is associated with liver injury and fibrogenic processes in NAFLD. SPARC has potential as preventive or therapeutic target in NAFLD patients.
Collapse
|
161
|
Machado MV, Diehl AM. Pathogenesis of Nonalcoholic Fatty Liver Disease. ZAKIM AND BOYER'S HEPATOLOGY 2018:369-390.e14. [DOI: 10.1016/b978-0-323-37591-7.00025-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
162
|
Steiner CA, Higgins PDR. Anti-Fibrotic Therapies from Other Organs: What the Gut Can Learn from the Liver, Skin, Lung and Heart. FIBROSTENOTIC INFLAMMATORY BOWEL DISEASE 2018:347-385. [DOI: 10.1007/978-3-319-90578-5_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
163
|
Inouye BM, Hughes FM, Sexton SJ, Purves JT. The Emerging Role of Inflammasomes as Central Mediators in Inflammatory Bladder Pathology. Curr Urol 2017; 11:57-72. [PMID: 29593464 DOI: 10.1159/000447196] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 07/09/2017] [Indexed: 12/18/2022] Open
Abstract
Irritative voiding symptoms (e.g. increased frequency and urgency) occur in many common pathologic conditions such as urinary tract infections and bladder outlet obstruction, and these conditions are well-established to have underlying inflammation that directly triggers these symptoms. However, it remains unclear as to how such diverse stimuli individually generate a common inflammatory process. Jürg Tschopp provided substantial insight into this conundrum when, working with extracts from THP-1 cells, he reported the existence of the inflammasome. He described it as a structure that senses multiple diverse signals from intracellular/extracellular sources and pathogens and triggers inflammation by the maturation and release of the pro-inflammatory cytokines interleukin-1β and interleukin-18. Recently, many of these sensors were found in the bladder and the nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3, has been shown to be a central mediator of inflammation in several urological diseases. In this review, we introduce the nucleotide-binding domain, leucine-rich-containing family, pyrin domaincontaining-3 inflammasome, highlight its emerging role in several common urologic conditions, and speculate on the potential involvement of other inflammasomes in bladder pathology.
Collapse
Affiliation(s)
- Brian M Inouye
- Department of Surgery, Division of Urology, Duke University Medical Center, Durham, NC, USA
| | - Francis M Hughes
- Department of Surgery, Division of Urology, Duke University Medical Center, Durham, NC, USA
| | - Stephanie J Sexton
- Department of Surgery, Division of Urology, Duke University Medical Center, Durham, NC, USA
| | - J Todd Purves
- Department of Surgery, Division of Urology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
164
|
Wu X, Dong L, Lin X, Li J. Relevance of the NLRP3 Inflammasome in the Pathogenesis of Chronic Liver Disease. Front Immunol 2017; 8:1728. [PMID: 29312290 PMCID: PMC5732938 DOI: 10.3389/fimmu.2017.01728] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/22/2017] [Indexed: 12/28/2022] Open
Abstract
Inflammation is a common characteristic of chronic liver disease (CLD). Inflammasomes are multiprotein complexes that can sense and recognize various exogenous and endogenous danger signals, eventually activating interleukin (IL)-1β and IL-18. The sensor component of the inflammasome system is a nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs). The NLRs family pyrin domain containing 3 (NLRP3) inflammasome has been involved in the initiation and progression of CLD. However, the molecular mechanisms by which it triggers liver inflammation and damage remain unclear. Here, we focus on recent advances on the potential role of NLRP3 inflammasome activation in the progression of CLD, including viral hepatitis, non-alcoholic steatohepatitis and alcoholic liver disease, and in particular, its ability to alleviate liver inflammation in animal models. Additionally, we also discuss various pharmacological inhibitors identifying the NLRP3 inflammasome signaling cascade as novel therapeutic targets in the treatment of CLD. In summary, this review summarizes the relevance of the NLRP3 inflammasome in the initiation and progression of CLD, and provides critical targets to suppress the development of CLD in clinical management.
Collapse
Affiliation(s)
- Xiaoqin Wu
- Department of Cardiology, First Affiliated Hospital of Anhui Medical University, Hefei, China.,Department of Pediatrics, Division of Hematology/Oncology, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, United States.,School of Pharmacy, Institute for Liver Diseases of Anhui Medical University, ILDAMU, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Lei Dong
- Department of Pediatrics, Division of Hematology/Oncology, Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, United States.,School of Life Science, Beijing Institute of Technology, Beijing, China
| | - Xianhe Lin
- Department of Cardiology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jun Li
- School of Pharmacy, Institute for Liver Diseases of Anhui Medical University, ILDAMU, Key Laboratory of Anti-Inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| |
Collapse
|
165
|
Cole BK, Feaver RE, Wamhoff BR, Dash A. Non-alcoholic fatty liver disease (NAFLD) models in drug discovery. Expert Opin Drug Discov 2017; 13:193-205. [PMID: 29190166 DOI: 10.1080/17460441.2018.1410135] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION The progressive disease spectrum of non-alcoholic fatty liver disease (NAFLD), which includes non-alcoholic steatohepatitis (NASH), is a rapidly emerging public health crisis with no approved therapy. The diversity of various therapies under development highlights the lack of consensus around the most effective target, underscoring the need for better translatable preclinical models to study the complex progressive disease and effective therapies. Areas covered: This article reviews published literature of various mouse models of NASH used in preclinical studies, as well as complex organotypic in vitro and ex vivo liver models being developed. It discusses translational challenges associated with both kinds of models, and describes some of the studies that validate their application in NAFLD. Expert opinion: Animal models offer advantages of understanding drug distribution and effects in a whole body context, but are limited by important species differences. Human organotypic in vitro and ex vivo models with physiological relevance and translatability need to be used in a tiered manner with simpler screens. Leveraging newer technologies, like metabolomics, proteomics, and transcriptomics, and the future development of validated disease biomarkers will allow us to fully utilize the value of these models to understand disease and evaluate novel drugs in isolation or combination.
Collapse
Affiliation(s)
| | | | | | - Ajit Dash
- b Early Development Safety , Genentech Inc , South San Francisco , CA , USA
| |
Collapse
|
166
|
Guo L, Zhang P, Chen Z, Xia H, Li S, Zhang Y, Kobberup S, Zou W, Lin JD. Hepatic neuregulin 4 signaling defines an endocrine checkpoint for steatosis-to-NASH progression. J Clin Invest 2017; 127:4449-4461. [PMID: 29106384 PMCID: PMC5707158 DOI: 10.1172/jci96324] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/26/2017] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is characterized by progressive liver injury, inflammation, and fibrosis; however, the mechanisms that govern the transition from hepatic steatosis, which is relatively benign, to NASH remain poorly defined. Neuregulin 4 (Nrg4) is an adipose tissue-enriched endocrine factor that elicits beneficial metabolic effects in obesity. Here, we show that Nrg4 is a key component of an endocrine checkpoint that preserves hepatocyte health and counters diet-induced NASH in mice. Nrg4 deficiency accelerated liver injury, fibrosis, inflammation, and cell death in a mouse model of NASH. In contrast, transgenic expression of Nrg4 in adipose tissue alleviated diet-induced NASH. Nrg4 attenuated hepatocyte death in a cell-autonomous manner by blocking ubiquitination and proteasomal degradation of c-FLIPL, a negative regulator of cell death. Adeno-associated virus-mediated (AAV-mediated) rescue of hepatic c-FLIPL expression in Nrg4-deficent mice functionally restored the brake for steatosis to NASH transition. Thus, hepatic Nrg4 signaling serves as an endocrine checkpoint for steatosis-to-NASH progression by activating a cytoprotective pathway to counter stress-induced liver injury.
Collapse
Affiliation(s)
- Liang Guo
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, Michigan, USA
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, and Department of Biochemistry and Molecular Biology, Fudan University Shanghai Medical College, Shanghai, China
| | - Peng Zhang
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Zhimin Chen
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Houjun Xia
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Siming Li
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Yanqiao Zhang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Sune Kobberup
- Metabolic Disease Research, Novo Nordisk, Maaloev, Denmark
| | - Weiping Zou
- Department of Surgery, University of Michigan School of Medicine, Ann Arbor, Michigan, USA
| | - Jiandie D Lin
- Life Sciences Institute and Department of Cell & Developmental Biology, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| |
Collapse
|
167
|
Nobili V, Miele L, Alisi A. Preventing liver fibrosis in patients with NAFLD and the road ahead. Expert Rev Gastroenterol Hepatol 2017; 11:1081-1083. [PMID: 28994314 DOI: 10.1080/17474124.2017.1389276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Valerio Nobili
- a Hepato-Metabolic Disease Unit , Bambino Gesù Children's Hospital, IRCCS , Rome , Italy
| | - Luca Miele
- b Institute of Internal Medicine, Gastroenterology and Liver Diseases Unit, Fondazione Policlinico Gemelli , Catholic University of Rome , Rome , Italy
| | - Anna Alisi
- c Liver Research Unit , Bambino Gesù Children's Hospital, IRCCS , Rome , Italy
| |
Collapse
|
168
|
Li X, Zhu L, Wang B, Yuan M, Zhu R. Drugs and Targets in Fibrosis. Front Pharmacol 2017; 8:855. [PMID: 29218009 PMCID: PMC5703866 DOI: 10.3389/fphar.2017.00855] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 11/08/2017] [Indexed: 01/18/2023] Open
Abstract
Fibrosis contributes to the development of many diseases and many target molecules are involved in fibrosis. Currently, the majority of fibrosis treatment strategies are limited to specific diseases or organs. However, accumulating evidence demonstrates great similarities among fibroproliferative diseases, and more and more drugs are proved to be effective anti-fibrotic therapies across different diseases and organs. Here we comprehensively review the current knowledge on the pathological mechanisms of fibrosis, and divide factors mediating fibrosis progression into extracellular and intracellular groups. Furthermore, we systematically summarize both single and multiple component drugs that target fibrosis. Future directions of fibrosis drug discovery are also proposed.
Collapse
Affiliation(s)
- Xiaoyi Li
- Department of Gastroenterology, School of Life Sciences and Technology, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Lixin Zhu
- Department of Pediatrics, Digestive Diseases and Nutrition Center, State University of New York at Buffalo, Buffalo, NY, United States
- Genome, Environment and Microbiome Community of Excellence, State University of New York at Buffalo, Buffalo, NY, United States
| | - Beibei Wang
- Department of Gastroenterology, School of Life Sciences and Technology, Shanghai East Hospital, Tongji University, Shanghai, China
| | - Meifei Yuan
- Center for Drug Discovery, SINO High Goal Chemical Technology Co., Ltd., Shanghai, China
| | - Ruixin Zhu
- Department of Gastroenterology, School of Life Sciences and Technology, Shanghai East Hospital, Tongji University, Shanghai, China
| |
Collapse
|
169
|
Javed F, Manzoor KN, Ali M, Haq IU, Khan AA, Zaib A, Manzoor S. Zika virus: what we need to know? J Basic Microbiol 2017; 58:3-16. [DOI: 10.1002/jobm.201700398] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 09/19/2017] [Accepted: 09/03/2017] [Indexed: 01/22/2023]
Affiliation(s)
- Farakh Javed
- Department of Microbiology; University of Haripur; Haripur Pakistan
| | | | - Mubashar Ali
- Department of Microbiology; University of Haripur; Haripur Pakistan
| | - Irshad U. Haq
- Department of Microbiology; University of Haripur; Haripur Pakistan
| | - Abid A. Khan
- Department of Biosciences; COMSATS Institute of Information Technology; Islamabad Pakistan
| | - Assad Zaib
- Department of Medical Lab Technology; University of Haripur; Haripur Pakistan
| | - Sobia Manzoor
- Atta-ur-Rehman School of Applied Bio-Sciences; National University of Science and Technology; Islamabad Pakistan
| |
Collapse
|
170
|
Combination of Emricasan with Ponatinib Synergistically Reduces Ischemia/Reperfusion Injury in Rat Brain Through Simultaneous Prevention of Apoptosis and Necroptosis. Transl Stroke Res 2017; 9:382-392. [PMID: 29103102 DOI: 10.1007/s12975-017-0581-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/20/2017] [Accepted: 10/26/2017] [Indexed: 12/12/2022]
Abstract
Apoptosis and receptor-interacting protein kinase 1/3(RIPK1/3)-mediated necroptosis contribute to the cerebral ischemia/reperfusion (I/R) injury. Emricasan is an inhibitor of caspases in clinical trials for liver diseases while ponatinib could be a potential inhibitor for RIPK1/3. This study aims to investigate the effect of emricasan and/or ponatinib on cerebral I/R injury and the underlying mechanisms. Firstly, we evaluated the status of apoptosis and necroposis in a rat model of cerebral I/R under different conditions, which showed noticeable apoptosis and necroptosis under condition of 2-h ischemia and 24-h reperfusion; next, the preventive or therapeutic effect of emricasan or ponatinib on cerebral I/R injury was tested. Administration of emricasan or ponatinib either before or after ischemia could decrease the neurological deficit score and infarct volume; finally, the combined therapeutic effect of emricasan with ponatinib on I/R injury was examined. Combined application of emricasan and ponatinib could further decrease the I/R injury compared to single application. Emricasan decreased the activities of capase-8/-3 in the I/R-treated brain but not the protein levels of necroptosis-relevant proteins: RIPK1, RIPK3, and mixed lineage kinase domain-like (MLKL), whereas ponatinib suppressed the expressions of these proteins but not the activities of capase-8/-3. Combination of emricasan with ponatinib could suppress both capase-8/-3 and necroptosis-relevant proteins. Based on these observations, we conclude that combination of emricasan with ponatinib could synergistically reduce I/R injury in rat brain through simultaneous prevention of apoptosis and necroptosis. Our findings might lay a basis on extension of the clinical indications for emricasan and ponatinib in treating ischemic stroke.
Collapse
|
171
|
Impact of intracellular glyceraldehyde-derived advanced glycation end-products on human hepatocyte cell death. Sci Rep 2017; 7:14282. [PMID: 29079763 PMCID: PMC5660208 DOI: 10.1038/s41598-017-14711-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/16/2017] [Indexed: 02/06/2023] Open
Abstract
Hepatocyte cell death is a key feature of nonalcoholic steatohepatitis (NASH); however, the pathogenesis of NASH currently remains unclear. We aimed to investigate the effects of intracellular glyceraldehyde (GA)-derived advanced glycation end-products (GA-AGEs) on human hepatocyte cell death. The accumulation of intracellular GA-AGEs has been associated with the induction of DNA damage and hepatocyte necrotic cell death. Among intracellular GA-AGEs, caspase-3 has been identified as a GA-AGE-modified protein with abrogated protein function. Furthermore, the activation of caspase-3 and induction of hepatocyte apoptosis by camptothecin, a DNA-damaging agent, was suppressed by a treatment with GA. These results suggest the inhibitory effects of GA-AGE-modified caspase-3 on the induction of DNA-damage-induced apoptosis, which is associated with hepatocyte necrosis. Therefore, the suppression of necrosis, the inflammatory form of cell death, by the accumulation of GA-AGEs and GA-AGE-modified caspase-3 may represent a novel therapeutic target for the pathogenesis of NASH.
Collapse
|
172
|
Inhibition of Caspase-8 does not protect from alcohol-induced liver apoptosis but alleviates alcoholic hepatic steatosis in mice. Cell Death Dis 2017; 8:e3152. [PMID: 29072704 PMCID: PMC5680911 DOI: 10.1038/cddis.2017.532] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 08/11/2017] [Accepted: 09/13/2017] [Indexed: 12/15/2022]
Abstract
Hepatic apoptosis is involved in the progression of alcoholic liver disease (ALD). Caspase-8, the apical initiator in death receptor-mediated apoptosis, has been implicated in acute liver injury and in non-alcoholic steatohepatitis. However, the relevance of Caspase-8 in the pathogenesis of ALD remains unclear. In the present study, we investigated the impact of Caspase-8 in human and murine alcohol-induced apoptosis and in ALD. We investigated human samples from ALD patients, primary mouse hepatocytes, and hepatocyte-specific Caspase-8 knockout (Casp8Δhepa) mice in acute and chronic models of ethanol (EtOH) administration. Caspase-8 activation was detected in liver biopsies from ALD patients, as well as in livers of wild-type (WT) mice after chronic ethanol feeding for 8 weeks using the Lieber-DeCarli model. Lack of Caspase-8 expression in Casp8Δhepa animals failed to prevent alcohol-induced liver damage and apoptosis. Instead, inhibition of Caspase-8 shifted the ethanol-induced death signals towards pronounced activation of the intrinsic, mitochondria-dependent apoptosis pathway in Casp8Δhepa livers involving enhanced release of cytochrome c, stronger Caspase-9 activation and specific morphological changes of mitochondria. In vitro and in vivo intervention using a pan-caspase inhibitor markedly attenuated alcohol-induced hepatocyte damage in a Caspase-8-independent manner. Surprisingly, EtOH-fed Casp8Δhepa mice displayed significantly attenuated steatosis and reduced hepatic triglyceride and free fatty acids content. Caspase-8 is dispensable for alcohol-induced apoptosis, but plays an unexpected role for alcohol-dependent fat metabolism. We provide evidence that simultaneous inhibition of extrinsic and intrinsic apoptosis signaling using pan-caspase inhibitors in vivo might be an optimal approach to treat alcohol-induced liver injury.
Collapse
|
173
|
Liang D, Chen H, Zhao L, Zhang W, Hu J, Liu Z, Zhong P, Wang W, Wang J, Liang G. Inhibition of EGFR attenuates fibrosis and stellate cell activation in diet-induced model of nonalcoholic fatty liver disease. Biochim Biophys Acta Mol Basis Dis 2017; 1864:133-142. [PMID: 29038049 DOI: 10.1016/j.bbadis.2017.10.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 09/27/2017] [Accepted: 10/11/2017] [Indexed: 12/12/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease. NAFLD begins with steatosis and advances to nonalcoholic steatohepatitis (NASH) and cirrhosis. The molecular mechanisms involved in NAFLD progression are not understood. Based on recent studies showing dysregulation of epidermal growth factor receptor (EGFR) in animal models of liver injury, we sought to determine if inhibition of EGFR mitigates liver fibrosis and HSC activation in NAFLD. We utilized the high fat diet (HFD)-induced murine model of liver injury to study the role of EGFR in NAFLD. The lipid accumulation, oxidative stress, hepatic stellate cell (HSC) activation and matrix deposition were examined in the liver tissues. We also evaluated the EGFR signaling pathway, ROS activation and pro-fibrogenic phenotype in oxidized low density lipoproteins (ox-LDL) challenged cultured HSCs. We demonstrate that EGFR was phosphorylated in liver tissues of HFD murine model of NAFLD. Inhibition of EGFR prevented diet-induced lipid accumulation, oxidative stress, and HSC activation and matrix deposition. In cultured HSCs, we show that ox-LDL caused rapid activation of the EGFR signaling pathway and induce the production of reactive oxygen species. EGFR also mediated HSC activation and promoted a pro-fibrogenic phenotype. In conclusion, our data demonstrate that EGFR plays an important role in NAFLD and is an attractive target for NAFLD therapy.
Collapse
Affiliation(s)
- Dandan Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Hongjin Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Department of Pharmacy, Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou 325000, China
| | - Leping Zhao
- Department of Pharmacy, Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou 325000, China
| | - Wenxin Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Jie Hu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Zhiguo Liu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Peng Zhong
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Wei Wang
- School of Medicine, Qingdao University, Qingdao, Shandong 266071, China
| | - Jingying Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China; Department of Pharmacy, Affiliated Yueqing Hospital, Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
174
|
Townsend SA, Newsome PN. Review article: new treatments in non-alcoholic fatty liver disease. Aliment Pharmacol Ther 2017; 46:494-507. [PMID: 28677333 DOI: 10.1111/apt.14210] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 04/13/2017] [Accepted: 06/08/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Non-alcoholic fatty liver disease is the fastest growing cause of liver disease in the Western world, yet there is no approved pharmacotherapy. While lifestyle modifications remain the mainstay of treatment, only a proportion of individuals are able to make or sustain them, and so more treatment options are required. AIM To review the potential benefit of drugs used in clinical practice, those entering phase II trials, and compounds being investigated in pre-clinical studies. METHODS A literature search was performed using PubMed to identify relevant studies; linked references were also reviewed. RESULTS Vitamin E and pioglitazone have shown efficacy in non-alcoholic steatohepatitis (NASH), but long-term safety concerns, specifically bladder cancer and osteoporosis with pioglitazone, have limited their use. GLP-1 analogues and SGLT-2 inhibitors are currently approved for use in diabetes, have shown early efficacy in NASH and also have beneficial cardiovascular effects. Peroxisome proliferator-activator receptors and FXR agonists have potent effects on lipogenesis, inflammation and fibrosis, respectively, with their efficacy and safety being currently tested in phase 3. As inflammation and apoptosis are key features of NASH agents modulating these pathways are of interest; CCR2/5 antagonists downregulate inflammatory pathways and reduce fibrosis with caspase and apoptosis signal-regulating kinase 1 inhibitors reducing apoptosis and fibrosis. CONCLUSIONS Rising demand and an improved understanding of NASH pathophysiology has led to a surge in development of new therapies. Tailoring pharmacotherapy to the dominant pathogenic pathway in a given patient along with use of combination therapy is likely to represent the future direction in treatment of patients with NASH.
Collapse
Affiliation(s)
- S A Townsend
- National Institute for Health Research (NIHR) Birmingham Liver Biomedical Research Unit and Centre for Liver Research, University of Birmingham, Birmingham, UK.,Liver Unit, University Hospital Birmingham NHS Foundation Trust, Birmingham, UK
| | - P N Newsome
- National Institute for Health Research (NIHR) Birmingham Liver Biomedical Research Unit and Centre for Liver Research, University of Birmingham, Birmingham, UK.,Liver Unit, University Hospital Birmingham NHS Foundation Trust, Birmingham, UK
| |
Collapse
|
175
|
Hirsova P, Weng P, Salim W, Bronk SF, Griffith TS, Ibrahim SH, Gores GJ. TRAIL Deletion Prevents Liver, but Not Adipose Tissue, Inflammation during Murine Diet-Induced Obesity. Hepatol Commun 2017; 1:648-662. [PMID: 29124251 PMCID: PMC5673124 DOI: 10.1002/hep4.1069] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Tumor necrosis factor‐related apoptosis‐inducing ligand (TRAIL) and its cognate receptor(s) are up‐regulated in human and murine nonalcoholic steatohepatitis (NASH); however, the consequence of this enhanced expression on NASH pathogenesis remains unclear. TRAIL may either accentuate liver injury by promoting hepatic steatosis and inflammation or it may mitigate the disease process by improving systemic insulin resistance and averting hepatic fibrosis. Herein, we investigated the role of TRAIL in an obesity‐induced murine model of NASH. C57BL/6 wild‐type mice and Trail–/– mice were placed on a 20‐week standard chow or a high‐fat, high‐fructose, and high‐cholesterol (FFC) diet, which induces obesity, insulin resistance, and NASH. Metabolic phenotype, liver injury, inflammation and fibrosis, and adipose tissue homeostasis were examined. FFC diet‐fed Trail–/– mice displayed no difference in weight gain and metabolic profile when compared to wild‐type mice on the same diet. All FFC‐fed mice developed significant hepatic steatosis, which was attenuated in Trail–/– mice. TRAIL deficiency also significantly decreased FFC diet‐induced liver injury as manifested by reduced serum alanine aminotransferase values, hepatic terminal deoxynucleotidyl transferase‐mediated deoxyuridine triphosphate nick‐end labeling‐positive cells, and macrophage‐associated inflammation. FFC diet‐associated hepatic stellate cell activation and hepatic collagen deposition were also abrogated in Trail–/– mice. In contrast to the liver, TRAIL deletion did not improve FFC diet‐induced adipose tissue injury and inflammation and actually aggravated insulin resistance. Conclusion: NASH pathogenesis may be dissociated from other features of the metabolic syndrome, and liver‐targeted inhibition of TRAIL signaling may be salutary. (Hepatology Communications 2017;1:648–662)
Collapse
Affiliation(s)
- Petra Hirsova
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Peggy Weng
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Warda Salim
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Steven F Bronk
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Thomas S Griffith
- Department of Urology, University of Minnesota, Minneapolis, MN 55455, USA.,Microbiology, Immunology, and Cancer Biology Graduate Program, University of Minnesota, Minneapolis, MN 55455, USA.,Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Samar H Ibrahim
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA.,Division of Pediatric Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Gregory J Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
176
|
Issa D, Wattacheril J, Sanyal AJ. Treatment options for nonalcoholic steatohepatitis - a safety evaluation. Expert Opin Drug Saf 2017. [PMID: 28641031 DOI: 10.1080/14740338.2017.1343299] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION There is an urgent as yet unmet need to develop highly effective and safe therapeutics for nonalcoholic fatty liver disease (NAFLD). The remarkable progress in understanding NAFLD pathogenesis allowed the identification of injury pathways which may be recruited as therapy targets. Areas covered: This article reviews the safety and tolerability data of the NAFLD therapies and explains the mechanistic basis for each of the established and investigational drugs. Treatment targets include: weight loss, anti-metabolic agents such as lipid lowering and anti-diabetic drugs, inflammation, fibrosis and others such as targeting gut microbiota, immune modulation and apoptosis. Expert opinion: Current therapies continue to remain suboptimal. Weight loss is effective but hard to achieve. Traditional and endoscopic bariatric procedures are promising although more randomized trials are needed and the long-term safety remains to be established. Clinical trials have demonstrated the efficacy of several drugs for the treatment of NASH. Of these, there remains some uncertainty about the long-term safety of vitamin E. Pioglitazone is associated with osteopenia, fluid retention and weight gain. Obeticholic acid causes pruritus in a substantial proportion of subjects and elafibranor has been associated with transient rises in creatinine. Several exciting therapies are under development and results of clinical and post-marketing trials will help elucidate their safety.
Collapse
Affiliation(s)
- Danny Issa
- a Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine , Virginia Commonwealth University School of Medicine , Richmond , VA , USA
| | - Julia Wattacheril
- b Center for Liver Disease and Transplantation and Division of Digestive and Liver Diseases, Department of Medicine , Columbia University College of Physicians and Surgeons , New York , NY , USA
| | - Arun J Sanyal
- a Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine , Virginia Commonwealth University School of Medicine , Richmond , VA , USA
| |
Collapse
|
177
|
冷 雪, 颜 学. 非酒精性脂肪性肝炎的药物治疗进展. Shijie Huaren Xiaohua Zazhi 2017; 25:1645-1654. [DOI: 10.11569/wcjd.v25.i18.1645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
非酒精性脂肪性肝炎(non-alcoholic steatohepatitis, NASH)是非酒精性脂肪肝病的进展形式, 可能会进展为肝硬化或肝细胞性肝癌. 单纯的节食及生活方式改变难以坚持, 且无法减缓疾病进展. 传统治疗方法对脂肪变性和炎症有效, 但其对纤维化无效, 而纤维化恰巧是判断患者预后的一种重要标准. 随着对NASH发病机制和进展了解的不断深入, 目前正在进行的研究评估了一些前景良好的、靶向治疗, 同时可逆转纤维化的新型治疗方法, 这些均使得未来NASH治疗前景更加乐观.
Collapse
|
178
|
Athyros VG, Alexandrides TK, Bilianou H, Cholongitas E, Doumas M, Ganotakis ES, Goudevenos J, Elisaf MS, Germanidis G, Giouleme O, Karagiannis A, Karvounis C, Katsiki N, Kotsis V, Kountouras J, Liberopoulos E, Pitsavos C, Polyzos S, Rallidis LS, Richter D, Tsapas AG, Tselepis AD, Tsioufis K, Tziomalos K, Tzotzas T, Vasiliadis TG, Vlachopoulos C, Mikhailidis DP, Mantzoros C. The use of statins alone, or in combination with pioglitazone and other drugs, for the treatment of non-alcoholic fatty liver disease/non-alcoholic steatohepatitis and related cardiovascular risk. An Expert Panel Statement. Metabolism 2017; 71:17-32. [PMID: 28521870 DOI: 10.1016/j.metabol.2017.02.014] [Citation(s) in RCA: 192] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/23/2017] [Accepted: 02/25/2017] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD), the most common liver disease, is characterized by accumulation of fat (>5% of the liver tissue), in the absence of alcohol abuse or other chronic liver diseases. It is closely related to the epidemic of obesity, metabolic syndrome or type 2 diabetes mellitus (T2DM). NAFLD can cause liver inflammation and progress to non-alcoholic steatohepatitis (NASH), fibrosis, cirrhosis or hepatocellular cancer (HCC). Nevertheless, cardiovascular disease (CVD) is the most common cause of death in NAFLD/NASH patients. Current guidelines suggest the use of pioglitazone both in patients with T2DM and in those without. The use of statins, though considered safe by the guidelines, have very limited use; only 10% in high CVD risk patients are on statins by tertiary centers in the US. There are data from several animal studies, 5 post hoc analyses of prospective long-term survival studies, and 5 rather small biopsy proven NASH studies, one at baseline and on at the end of the study. All these studies provide data for biochemical and histological improvement of NAFLD/NASH with statins and in the clinical studies large reductions in CVD events in comparison with those also on statins and normal liver. Ezetimibe was also reported to improve NAFLD. Drugs currently in clinical trials seem to have potential for slowing down the evolution of NAFLD and for reducing liver- and CVD-related morbidity and mortality, but it will take time before they are ready to be used in everyday clinical practice. The suggestion of this Expert Panel is that, pending forthcoming randomized clinical trials, physicians should consider using a PPARgamma agonist, such as pioglitazone, or, statin use in those with NAFLD/NASH at high CVD or HCC risk, alone and/or preferably in combination with each other or with ezetimibe, for the primary or secondary prevention of CVD, and the avoidance of cirrhosis, liver transplantation or HCC, bearing in mind that CVD is the main cause of death in NAFLD/NASH patients.
Collapse
Affiliation(s)
- Vasilios G Athyros
- 2nd Prop. Department of Internal Medicine, Hippocration Hospital, Medical School of Aristotle University Thessaloniki, Greece.
| | - Theodore K Alexandrides
- Department of Internal Medicine, Division of Endocrinology, University of Patras Medical School, Patras, Greece
| | - Helen Bilianou
- Lipid Clinic, Cardiology Department, Tzaneio Hospital, Piraeus, Greece
| | - Evangelos Cholongitas
- 4th Prop. Department of Internal Medicine, Hippocration Hospital, Division of Gastroenterology and Hepatology, Medical School of Aristotle University Thessaloniki, Greece
| | - Michael Doumas
- 2nd Prop. Department of Internal Medicine, Hippocration Hospital, Medical School of Aristotle University Thessaloniki, Greece
| | - Emmanuel S Ganotakis
- Department of Internal Medicine University Hospital of Crete, University of Crete Medical School, Heraklion, Greece
| | - John Goudevenos
- Department of Cardiology Medical School, University Hospital of Ioannina, Ioannina, Greece
| | - Moses S Elisaf
- Department of Internal Medicine, School of Health Sciences, Faculty of Medicine, University of Ioannina, Ioannina, Greece
| | - Georgios Germanidis
- 1st Department of Internal Medicine, Gastroenterology and Hepatology Section, AHEPA Hospital, Aristotle University Medical School, Thessaloniki, Greece
| | - Olga Giouleme
- 2nd Prop. Department of Internal Medicine, Hippocration Hospital, Medical School of Aristotle University Thessaloniki, Greece
| | - Asterios Karagiannis
- 2nd Prop. Department of Internal Medicine, Hippocration Hospital, Medical School of Aristotle University Thessaloniki, Greece
| | - Charalambos Karvounis
- First Cardiology Department, AHEPA Hospital, Medical School, Aristotle University Thessaloniki, Greece
| | - Niki Katsiki
- 2nd Prop. Department of Internal Medicine, Hippocration Hospital, Medical School of Aristotle University Thessaloniki, Greece
| | - Vasilios Kotsis
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Aristotle University Thessaloniki, Greece
| | - Jannis Kountouras
- 2nd Prop. Department of Internal Medicine, Hippocration Hospital, Medical School of Aristotle University Thessaloniki, Greece
| | - Evangelos Liberopoulos
- Department of Internal Medicine, School of Health Sciences, Faculty of Medicine, University of Ioannina, Ioannina, Greece
| | - Christos Pitsavos
- 1st Cardiology Clinic, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Stergios Polyzos
- 2nd Prop. Propedeutic Department of Internal Medicine, Hippocration Hospital, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Loukianos S Rallidis
- 2nd Department of Cardiology, University General Hospital Attikon, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Apostolos G Tsapas
- 2nd Department of Internal Medicine-Diabetology, Hippocration Hospital, Aristotle University Thessaloniki, Medical School, Thessaloniki, Greece
| | - Alexandros D Tselepis
- Atherothrombosis Research Centre/Department of Chemistry, University of Ioannina, Ioannina, Greece
| | - Konstantinos Tsioufis
- 1st Cardiology Clinic, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Tziomalos
- 1st Prop. Department of Internal Medicine, AHEPA Hospital, Aristotle University Medical School, Thessaloniki, Greece
| | | | - Themistoklis G Vasiliadis
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Aristotle University Thessaloniki, Greece
| | - Charalambos Vlachopoulos
- 1st Cardiology Clinic, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitri P Mikhailidis
- Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, UK
| | - Christos Mantzoros
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
179
|
Abstract
Proteases target many substrates, triggering changes in distinct biological processes correlated with cell migration, EMT/EndMT and fibrosis. Extracellular protease activity, demonstrated by secreted and membrane-bound protease forms, leads to ECM degradation, activation of other proteases (i.e., proteolysis of nonactive zymogens), decomposition of cell-cell junctions, release of sequestered growth factors (TGF-β and VEGF), activation of signal proteins and receptors, degradation of inflammatory inhibitors or inflammation-related proteins, and changes in cell mechanosensing and motility. Intracellular proteases, mainly caspases and cathepsins, modulate lysosome activity and signal transduction pathways. Herein, we discuss the current knowledge on the multidimensional impact of proteases on the development of fibrosis.
Collapse
|
180
|
Schwabl P, Laleman W. Novel treatment options for portal hypertension. Gastroenterol Rep (Oxf) 2017; 5:90-103. [PMID: 28533907 PMCID: PMC5421460 DOI: 10.1093/gastro/gox011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 03/12/2017] [Indexed: 12/13/2022] Open
Abstract
Portal hypertension is most frequently associated with cirrhosis and is a major driver for associated complications, such as variceal bleeding, ascites or hepatic encephalopathy. As such, clinically significant portal hypertension forms the prelude to decompensation and impacts significantly on the prognosis of patients with liver cirrhosis. At present, non-selective β-blockers, vasopressin analogues and somatostatin analogues are the mainstay of treatment but these strategies are far from satisfactory and only target splanchnic hyperemia. In contrast, safe and reliable strategies to reduce the increased intrahepatic resistance in cirrhotic patients still represent a pending issue. In recent years, several preclinical and clinical trials have focused on this latter component and other therapeutic avenues. In this review, we highlight novel data in this context and address potentially interesting therapeutic options for the future.
Collapse
Affiliation(s)
- Philipp Schwabl
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Wim Laleman
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| |
Collapse
|
181
|
Perazzo H, Dufour JF. The therapeutic landscape of non-alcoholic steatohepatitis. Liver Int 2017; 37:634-647. [PMID: 27727520 DOI: 10.1111/liv.13270] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 10/05/2016] [Indexed: 12/19/2022]
Abstract
Non-alcoholic steatohepatitis (NASH) is characterized by lobular inflammation and hepatocellular ballooning, and may be associated with liver fibrosis leading to cirrhosis and its complications. A pharmacological approach is necessary to treat NASH because of failure to change dietary habits and lifestyle in most patients. Insulin resistance with an increased release of free fatty acids, oxidative stress and activation of inflammatory cytokines seem to be key features for disease progression. Thiazolidinediones, such as pioglitazone and antioxidant agents, such as vitamin E, were the first pharmacological options to be evaluated for NASH. In recent years, several new molecules that target different pathways related to NASH pathogenesis, such as liver metabolic homeostasis, inflammation, oxidative stress and fibrosis, have been developed. Obeticholic acid (INT-747) and elafibranor (GFT-505) have provided promising results in phase IIb, randomized, placebo-controlled clinical trials and they are being evaluated in ongoing phase III studies. Most of the potential treatments for NASH are under investigation in phase II studies, with some at phase I. This diversity in possible treatments calls for a better understanding of NASH in order to enrich trial populations with patients more susceptible to progress and to respond. This manuscript aims to review the pharmacological NASH treatment landscape.
Collapse
Affiliation(s)
- Hugo Perazzo
- Evandro Chagas National Institute of Infectious Disease (INI)-Oswaldo Cruz Foundation (FIOCRUZ), Laboratory of clinical research on STD/AIDS, Manguinhos, Rio de Janeiro, Brazil
| | - Jean-François Dufour
- University Clinic for Visceral Surgery and Medicine, University of Bern, Inselspital, Bern, Switzerland.,Hepatology, Department of Clinical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
182
|
Abstract
PURPOSE OF REVIEW Nonalcoholic steatohepatitis (NASH), the aggressive form of nonalcoholic fatty liver disease (NAFLD), can progress to cirrhosis and hepatocellular cancer in 5-15% of patients and is rapidly becoming the leading cause for end-stage liver disease. Dietary caloric restriction and exercise, currently the cornerstone of therapy for NAFLD, can be difficult to achieve and maintain, underscoring the dire need for pharmacotherapy. This review presents the agents currently used in managing NAFLD and their pharmacologic targets. It also provides an overview of NAFLD agents currently under development. RECENT FINDINGS Therapies for NASH can be broadly classified into agents that target the metabolic perturbations driving disease pathogenesis (such as insulin resistance and de novo lipogenesis) and agents that target downstream processes including cell stress, apoptosis, inflammation, and fibrosis. Modulation of peroxisome proliferator-activator receptors, farnesoid-X-receptors, and the glucagon-like peptide 1 pathway have been shown to improve liver histology. The intestinal microbiome and metabolic endotoxemia are novel targets that are currently under review. Antioxidants such as vitamin E, and more recently anti-inflammatory agents such as apoptosis signal-regulating kinase 1 inhibitors show promise as therapy for NASH. Several antifibrotic agents including cysteine-cysteine motif chemokine receptor type 2 and type 5 antagonists have been shown to inhibit the progression of fibrosis toward cirrhosis. SUMMARY There are currently several agents in the drug pipeline for NASH. Within the next few years, the availability of therapeutic options for NAFLD will hopefully curb the rising trend of NAFLD-related end stage liver disease.
Collapse
Affiliation(s)
- Bubu A Banini
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | | |
Collapse
|
183
|
AISF position paper on nonalcoholic fatty liver disease (NAFLD): Updates and future directions. Dig Liver Dis 2017; 49:471-483. [PMID: 28215516 DOI: 10.1016/j.dld.2017.01.147] [Citation(s) in RCA: 239] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 01/08/2017] [Accepted: 01/10/2017] [Indexed: 02/07/2023]
Abstract
This review summarizes our current understanding of nonalcoholic fatty liver disease (NAFLD), a multi-factorial systemic disease resulting from a complex interaction between a specific genetic background and multiple environmental/metabolic "hits". The role of gut microbiota, lipotoxicity, inflammation and their molecular pathways is reviewed in-depth. We also discuss the epidemiology and natural history of NAFLD by pinpointing the remarkably high prevalence of NAFLD worldwide and its inherent systemic complications: hepatic (steatohepatitis, advanced fibrosis and cirrhosis), cardio-metabolic (cardiovascular disease, cardiomyopathy, arrhythmias and type 2 diabetes) and neoplastic (primary liver cancers and extra-hepatic cancers). Moreover, we critically report on the diagnostic role of non-invasive biomarkers, imaging techniques and liver biopsy, which remains the reference standard for diagnosing the disease, but cannot be proposed to all patients with suspected NAFLD. Finally, the management of NAFLD is also reviewed, by highlighting the lifestyle changes and the pharmacological options, with a focus on the innovative drugs. We conclude that the results of ongoing studies are eagerly expected to lead to introduce into the clinical arena new diagnostic and prognostic biomarkers, prevention and surveillance strategies as well as to new drugs for a tailored approach to the management of NAFLD in the individual patient.
Collapse
|
184
|
Lazaridis N, Tsochatzis E. Current and future treatment options in non-alcoholic steatohepatitis (NASH). Expert Rev Gastroenterol Hepatol 2017; 11:357-369. [PMID: 28276821 DOI: 10.1080/17474124.2017.1293523] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Non-alcoholic steatohepatitis (NASH) is a chronic liver disease that can progress to cirrhosis and hepatocellular carcinoma. Diagnosis of NASH requires a liver biopsy and is defined as presence of hepatic steatosis, ballooning and lobular inflammation with or without fibrosis. Although NASH is the most common cause of liver disease in the west world and among the top three indications for liver transplantation, there are no universally accepted pharmacological therapies and therapeutic advances have been slow. Areas covered: Current evidence about lifestyle interventions, bariatric surgery and pharmacotherapy is reviewed. Dietary recommendations and lifestyle interventions have shown promising results but are difficult to maintain. At the moment, there is no universally approved medical treatment for NASH. Pioglitazone and vitamin E are recommended by guidelines in selected patients. An increasing number of phase II and III trials in non-cirrhotic NASH are currently recruiting and their preliminary results discussed. Expert commentary: As NASH is classified as a medical condition of an unmet therapeutic need, it has gained an accelerated access pathway for drug approval based on surrogate endpoints. It is therefore expected that within the next five years, there will be at least one approved agent for the pharmacological treatment of pre-cirrhotic NASH.
Collapse
Affiliation(s)
- Nikos Lazaridis
- a UCL Institute for Liver and Digestive Health , Royal Free Hospital and UCL , London , UK
| | - Emmanuel Tsochatzis
- a UCL Institute for Liver and Digestive Health , Royal Free Hospital and UCL , London , UK
| |
Collapse
|
185
|
Abstract
In chronic liver diseases, an ongoing hepatocellular injury together with inflammatory reaction results in activation of hepatic stellate cells (HSCs) and increased deposition of extracellular matrix (ECM) termed as liver fibrosis. It can progress to cirrhosis that is characterized by parenchymal and vascular architectural changes together with the presence of regenerative nodules. Even at late stage, liver fibrosis is reversible and the underlying mechanisms include a switch in the inflammatory environment, elimination or regression of activated HSCs and degradation of ECM. While animal models have been indispensable for our understanding of liver fibrosis, they possess several important limitations and need to be further refined. A better insight into the liver fibrogenesis resulted in a large number of clinical trials aiming at reversing liver fibrosis, particularly in patients with non-alcoholic steatohepatitis. Collectively, the current developments demonstrate that reversal of liver fibrosis is turning from fiction to reality.
Collapse
Affiliation(s)
- Miguel Eugenio Zoubek
- Department of Internal Medicine III, RWTH Aachen University Hospital, Aachen, Germany
| | - Christian Trautwein
- Department of Internal Medicine III, RWTH Aachen University Hospital, Aachen, Germany.
| | - Pavel Strnad
- Department of Internal Medicine III, RWTH Aachen University Hospital, Aachen, Germany
| |
Collapse
|
186
|
Vizuete J, Camero A, Malakouti M, Garapati K, Gutierrez J. Perspectives on Nonalcoholic Fatty Liver Disease: An Overview of Present and Future Therapies. J Clin Transl Hepatol 2017; 5:67-75. [PMID: 28507929 PMCID: PMC5411359 DOI: 10.14218/jcth.2016.00061] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 02/10/2017] [Accepted: 02/15/2017] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) represents a major public health epidemic. Pharmacologic therapies for this condition are scarce, but multiple agents with novel mechanisms of action are in development. Here we review the pathophysiology and natural history of NALFD, diagnostic testing and data for currently available treatment strategies. We then turn our attention to promising developmental drugs and their respective trials. As the prevalence of fatty liver disease increases, clinicians will have more tools at hand for management of this condition. We conclude the horizon is bright for patients and doctors who deal with NAFLD.
Collapse
Affiliation(s)
- John Vizuete
- Department of Medicine, Division of Gastroenterology, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Alfredo Camero
- Department of Medicine, Division of Gastroenterology, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Mazyar Malakouti
- Department of Medicine, Division of Gastroenterology, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Karthik Garapati
- Department of Medicine, Division of Gastroenterology, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Julio Gutierrez
- Department of Medicine, Division of Gastroenterology, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
- The Texas Liver Institute, San Antonio, TX, USA
| |
Collapse
|
187
|
Komiya C, Tanaka M, Tsuchiya K, Shimazu N, Mori K, Furuke S, Miyachi Y, Shiba K, Yamaguchi S, Ikeda K, Ochi K, Nakabayashi K, Hata KI, Itoh M, Suganami T, Ogawa Y. Antifibrotic effect of pirfenidone in a mouse model of human nonalcoholic steatohepatitis. Sci Rep 2017; 7:44754. [PMID: 28303974 PMCID: PMC5355985 DOI: 10.1038/srep44754] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 02/13/2017] [Indexed: 12/16/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is characterized by steatosis with lobular inflammation and hepatocyte injury. Pirfenidone (PFD) is an orally bioavailable pyridone derivative that has been clinically used for the treatment of idiopathic pulmonary fibrosis. However, it remains unknown whether PFD improves liver fibrosis in a mouse model with human NASH-like phenotypes. In this study, we employed melanocortin 4 receptor-deficient (MC4R-KO) mice as a mouse model with human NASH-like phenotypes to elucidate the effect and action mechanisms of PFD on the development of NASH. PFD markedly attenuated liver fibrosis in western diet (WD)-fed MC4R-KO mice without affecting metabolic profiles or steatosis. PFD prevented liver injury and fibrosis associated with decreased apoptosis of liver cells in WD-fed MC4R-KO mice. Pretreatment of PFD inhibited the tumor necrosis factor-α (TNF-α)-induced liver injury and fibrogenic responses associated with decreased apoptosis of liver cells in wild-type mice. PFD also prevented TNF-α-induced hepatocyte apoptosis in vitro with reduced activation of caspase-8 and -3. This study provides evidence for the antifibrotic effect of PFD in a mouse model of human NASH. The data of this study highlight hepatocyte apoptosis as a potential therapeutic target, and suggest that PFD can be repositioned as an antifibrotic drug for human NASH.
Collapse
Affiliation(s)
- Chikara Komiya
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Miyako Tanaka
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Kyoichiro Tsuchiya
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Noriko Shimazu
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kentaro Mori
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shunsaku Furuke
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yasutaka Miyachi
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kumiko Shiba
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shinobu Yamaguchi
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kenji Ikeda
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kozue Ochi
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Ken-Ichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Michiko Itoh
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Organ Network and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takayoshi Suganami
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Yoshihiro Ogawa
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Medical and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Japan Agency for Medical Research and Development, CREST, Tokyo, Japan
| |
Collapse
|
188
|
Brumatti G, Lalaoui N, Wei AH, Silke J. 'Did He Who Made the Lamb Make Thee?' New Developments in Treating the 'Fearful Symmetry' of Acute Myeloid Leukemia. Trends Mol Med 2017; 23:264-281. [PMID: 28196625 DOI: 10.1016/j.molmed.2017.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 01/12/2017] [Accepted: 01/12/2017] [Indexed: 12/17/2022]
Abstract
Malignant cells must circumvent endogenous cell death pathways to survive and develop into cancers. Acquired cell death resistance also sets up malignant cells to survive anticancer therapies. Acute Myeloid Leukemia (AML) is an aggressive blood cancer characterized by high relapse rate and resistance to cytotoxic therapies. Recent collaborative profiling projects have led to a greater understanding of the 'fearful symmetry' of the genomic landscape of AML, and point to the development of novel potential therapies that can overcome factors linked to chemoresistance. We review here the most recent research in the genetics of AML and how these discoveries have led, or might lead, to therapies that specifically activate cell death pathways to substantially challenge this 'fearful' disease.
Collapse
Affiliation(s)
- Gabriela Brumatti
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Najoua Lalaoui
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Andrew H Wei
- Alfred Hospital and Monash University, Melbourne, Australia
| | - John Silke
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
189
|
Munjal A, Khandia R, Dhama K, Sachan S, Karthik K, Tiwari R, Malik YS, Kumar D, Singh RK, Iqbal HMN, Joshi SK. Advances in Developing Therapies to Combat Zika Virus: Current Knowledge and Future Perspectives. Front Microbiol 2017; 8:1469. [PMID: 28824594 PMCID: PMC5541032 DOI: 10.3389/fmicb.2017.01469] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 07/20/2017] [Indexed: 02/05/2023] Open
Abstract
Zika virus (ZIKV) remained largely quiescent for nearly six decades after its first appearance in 1947. ZIKV reappeared after 2007, resulting in a declaration of an international "public health emergency" in 2016 by the World Health Organization (WHO). Until this time, ZIKV was considered to induce only mild illness, but it has now been established as the cause of severe clinical manifestations, including fetal anomalies, neurological problems, and autoimmune disorders. Infection during pregnancy can cause congenital brain abnormalities, including microcephaly and neurological degeneration, and in other cases, Guillain-Barré syndrome, making infections with ZIKV a substantial public health concern. Genomic and molecular investigations are underway to investigate ZIKV pathology and its recent enhanced pathogenicity, as well as to design safe and potent vaccines, drugs, and therapeutics. This review describes progress in the design and development of various anti-ZIKV therapeutics, including drugs targeting virus entry into cells and the helicase protein, nucleosides, inhibitors of NS3 protein, small molecules, methyltransferase inhibitors, interferons, repurposed drugs, drugs designed with the aid of computers, neutralizing antibodies, convalescent serum, antibodies that limit antibody-dependent enhancement, and herbal medicines. Additionally, covalent inhibitors of viral protein expression and anti-Toll-like receptor molecules are discussed. To counter ZIKV-associated disease, we need to make rapid progress in developing novel therapies that work effectually to inhibit ZIKV.
Collapse
Affiliation(s)
- Ashok Munjal
- Department of Biochemistry and Genetics, Barkatullah UniversityBhopal, India
| | - Rekha Khandia
- Department of Biochemistry and Genetics, Barkatullah UniversityBhopal, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research InstituteBareilly, India
- *Correspondence: Kuldeep Dhama,
| | - Swati Sachan
- Immunology Section, ICAR-Indian Veterinary Research InstituteBareilly, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences UniversityChennai, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan SansthanMathura, India
| | - Yashpal S. Malik
- Division of Biological Standardization, ICAR-Indian Veterinary Research InstituteBareilly, India
| | - Deepak Kumar
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research InstituteBareilly, India
| | - Raj K. Singh
- ICAR-Indian Veterinary Research InstituteBareilly, India
| | - Hafiz M. N. Iqbal
- School of Engineering and Science, Tecnologico de Monterrey, Campus MonterreyMonterrey, Mexico
| | - Sunil K. Joshi
- Cellular Immunology Lab, Frank Reidy Research Center of Bioelectrics, Old Dominion University, NorfolkVA, United States
| |
Collapse
|
190
|
Obeticholic acid protects against carbon tetrachloride-induced acute liver injury and inflammation. Toxicol Appl Pharmacol 2017; 314:39-47. [DOI: 10.1016/j.taap.2016.11.006] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/07/2016] [Accepted: 11/14/2016] [Indexed: 12/12/2022]
|
191
|
Rotman Y, Sanyal AJ. Current and upcoming pharmacotherapy for non-alcoholic fatty liver disease. Gut 2017; 66:180-190. [PMID: 27646933 DOI: 10.1136/gutjnl-2016-312431] [Citation(s) in RCA: 333] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/29/2016] [Accepted: 08/30/2016] [Indexed: 02/06/2023]
Abstract
Given the high prevalence and rising incidence of non-alcoholic fatty liver disease (NAFLD), the absence of approved therapies is striking. Although the mainstay of treatment of NAFLD is weight loss, it is hard to maintain, prompting the need for pharmacotherapy as well. A greater understanding of disease pathogenesis in recent years was followed by development of new classes of medications, as well as potential repurposing of currently available agents. NAFLD therapies target four main pathways. The dominant approach is targeting hepatic fat accumulation and the resultant metabolic stress. Medications in this group include peroxisome proliferator-activator receptor agonists (eg, pioglitazone, elafibranor, saroglitazar), medications targeting the bile acid-farnesoid X receptor axis (obeticholic acid), inhibitors of de novo lipogenesis (aramchol, NDI-010976), incretins (liraglutide) and fibroblast growth factor (FGF)-21 or FGF-19 analogues. A second approach is targeting the oxidative stress, inflammation and injury that follow the metabolic stress. Medications from this group include antioxidants (vitamin E), medications with a target in the tumour necrosis factor α pathway (emricasan, pentoxifylline) and immune modulators (amlexanox, cenicriviroc). A third group has a target in the gut, including antiobesity agents such as orlistat or gut microbiome modulators (IMM-124e, faecal microbial transplant, solithromycin). Finally, as the ongoing injury leads to fibrosis, the harbinger of liver-related morbidity and mortality, antifibrotics (simtuzumab and GR-MD-02) will be an important element of therapy. It is very likely that in the next few years several medications will be available to clinicians treating patients with NAFLD across the entire spectrum of disease.
Collapse
Affiliation(s)
- Yaron Rotman
- Liver and Energy Metabolism Unit, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Health, Bethesda, Maryland, USA
| | - Arun J Sanyal
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| |
Collapse
|
192
|
Ramachandran P, Henderson NC. Antifibrotics in chronic liver disease: tractable targets and translational challenges. Lancet Gastroenterol Hepatol 2016; 1:328-340. [PMID: 28404203 DOI: 10.1016/s2468-1253(16)30110-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 07/22/2016] [Accepted: 07/26/2016] [Indexed: 12/30/2022]
Abstract
Chronic liver disease prevalence is increasing globally. Iterative liver damage, secondary to any cause of liver injury, results in progressive fibrosis, disrupted hepatic architecture, and aberrant regeneration, which are defining characteristics of liver cirrhosis. Liver transplantation is an effective treatment for end-stage liver disease; however, demand greatly outweighs donor organ supply, and in many parts of the world liver transplantation is unavailable. Hence, effective antifibrotic therapies are urgently required. In the past decade, rapid progress has been made in our understanding of the pathophysiology of liver fibrosis and a large number of potential cellular and molecular antifibrotic targets have been identified. This has led to numerous clinical trials of antifibrotic agents in patients with chronic liver disease. However, none of these have resulted in a robust and reproducible effect on fibrosis. It is therefore imperative that the ongoing translational challenges are addressed, to convert scientific discoveries into potent antifibrotics and enable bridging of the translational gap between putative therapeutic targets and effective treatments for patients with chronic liver disease.
Collapse
Affiliation(s)
- Prakash Ramachandran
- Medical Research Council (MRC) Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Neil C Henderson
- Medical Research Council (MRC) Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
193
|
Yeluru A, Cuthbert JA, Casey L, Mitchell MC. Alcoholic Hepatitis: Risk Factors, Pathogenesis, and Approach to Treatment. Alcohol Clin Exp Res 2016; 40:246-55. [PMID: 26842243 DOI: 10.1111/acer.12956] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 11/02/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND Alcoholic hepatitis (AH) is an inflammatory disorder of the liver characterized clinically by jaundice, hepatomegaly, and abdominal pain, and histologically by macrovesicular steatosis and necroinflammation. METHODS This clinical review will cover what is known about the pathogenesis, clinical presentation, current treatments, and novel therapies for AH. RESULTS The pathogenesis and treatment of AH remain areas of active research. Although abstinence is the cornerstone of therapy for all stages of alcoholic liver disease, corticosteroids have shown modest short-term benefits in treatment of severe AH. CONCLUSIONS Improved understanding of the pathogenesis of AH has expanded the range of potential treatments for this devastating disease. Several novel therapies are also currently in various stages of testing through clinical trials.
Collapse
Affiliation(s)
| | - Jennifer A Cuthbert
- Division of Digestive and Liver Diseases, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas
| | - Lisa Casey
- Division of Digestive and Liver Diseases, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas
| | - Mack C Mitchell
- Division of Digestive and Liver Diseases, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
194
|
Xu M, Lee EM, Wen Z, Cheng Y, Huang WK, Qian X, Tcw J, Kouznetsova J, Ogden SC, Hammack C, Jacob F, Nguyen HN, Itkin M, Hanna C, Shinn P, Allen C, Michael SG, Simeonov A, Huang W, Christian KM, Goate A, Brennand KJ, Huang R, Xia M, Ming GL, Zheng W, Song H, Tang H. Identification of small-molecule inhibitors of Zika virus infection and induced neural cell death via a drug repurposing screen. Nat Med 2016; 22:1101-1107. [PMID: 27571349 PMCID: PMC5386783 DOI: 10.1038/nm.4184] [Citation(s) in RCA: 520] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 08/22/2016] [Indexed: 12/14/2022]
Abstract
In response to the current global health emergency posed by the Zika virus (ZIKV) outbreak and its link to microcephaly and other neurological conditions, we performed a drug repurposing screen of ∼6,000 compounds that included approved drugs, clinical trial drug candidates and pharmacologically active compounds; we identified compounds that either inhibit ZIKV infection or suppress infection-induced caspase-3 activity in different neural cells. A pan-caspase inhibitor, emricasan, inhibited ZIKV-induced increases in caspase-3 activity and protected human cortical neural progenitors in both monolayer and three-dimensional organoid cultures. Ten structurally unrelated inhibitors of cyclin-dependent kinases inhibited ZIKV replication. Niclosamide, a category B anthelmintic drug approved by the US Food and Drug Administration, also inhibited ZIKV replication. Finally, combination treatments using one compound from each category (neuroprotective and antiviral) further increased protection of human neural progenitors and astrocytes from ZIKV-induced cell death. Our results demonstrate the efficacy of this screening strategy and identify lead compounds for anti-ZIKV drug development.
Collapse
Affiliation(s)
- Miao Xu
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Emily M Lee
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| | - Zhexing Wen
- Department of Psychiatry and Behavioral Science, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, USA
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yichen Cheng
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| | - Wei-Kai Huang
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Xuyu Qian
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Biomedical Engineering Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Julia Tcw
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jennifer Kouznetsova
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA
| | - Sarah C Ogden
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| | - Christy Hammack
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| | - Fadi Jacob
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ha Nam Nguyen
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Misha Itkin
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA
| | - Catherine Hanna
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| | - Paul Shinn
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA
| | - Chase Allen
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| | - Samuel G Michael
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA
| | - Wenwei Huang
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA
| | - Kimberly M Christian
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alison Goate
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kristen J Brennand
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ruili Huang
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA
| | - Menghang Xia
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA
| | - Guo-Li Ming
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Biomedical Engineering Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, Maryland, USA
| | - Hongjun Song
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Biomedical Engineering Graduate Program, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hengli Tang
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
| |
Collapse
|
195
|
Villanueva A, Luedde T. The transition from inflammation to cancer in the liver. Clin Liver Dis (Hoboken) 2016; 8:89-93. [PMID: 31041071 PMCID: PMC6490202 DOI: 10.1002/cld.578] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/18/2016] [Accepted: 07/21/2016] [Indexed: 02/04/2023] Open
Affiliation(s)
- Augusto Villanueva
- Division of Liver Diseases, Liver Cancer Program, Department of Medicine, Tisch Cancer InstituteIcahn School of Medicine at Mount SinaiNew YorkNY
- Division of Hematology/Medical Oncology, Department of MedicineIcahn School of Medicine at Mount SinaiNew YorkNY
| | - Tom Luedde
- Division of Gastroenterology, Hepatology and Hepatobiliary OncologyUniversity Hospital RWTH AachenAachenGermany
| |
Collapse
|
196
|
Hirsova P, Ibrabim SH, Gores GJ, Malhi H. Lipotoxic lethal and sublethal stress signaling in hepatocytes: relevance to NASH pathogenesis. J Lipid Res 2016; 57:1758-1770. [PMID: 27049024 PMCID: PMC5036373 DOI: 10.1194/jlr.r066357] [Citation(s) in RCA: 191] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 04/05/2016] [Indexed: 12/12/2022] Open
Abstract
The accumulation of lipids is a histologic and biochemical hallmark of obesity-associated nonalcoholic fatty liver disease (NAFLD). A subset of NALFD patients develops progressive liver disease, termed nonalcoholic steatohepatitis, which is characterized by hepatocellular apoptosis and innate immune system-mediated inflammation. These responses are orchestrated by signaling pathways that can be activated by lipids, directly or indirectly. In this review, we discuss palmitate- and lysophosphatidylcholine (LPC)-induced upregulation of p53-upregulated modulator of apoptosis and cell-surface expression of the death receptor TNF-related apoptosis-inducing ligand receptor 2. Next, we review the activation of stress-induced kinases, mixed lineage kinase 3, and c-Jun N-terminal kinase, and the activation of endoplasmic reticulum stress response and its downstream proapoptotic effector, CAAT/enhancer binding homologous protein, by palmitate and LPC. Moreover, the activation of these stress signaling pathways is linked to the release of proinflammatory, proangiogenic, and profibrotic extracellular vesicles by stressed hepatocytes. This review discusses the signaling pathways induced by lethal and sublethal lipid overload that contribute to the pathogenesis of NAFLD.
Collapse
Affiliation(s)
- Petra Hirsova
- Divisions of Gastroenterology and Hepatology Mayo Clinic, Rochester, MN 55905
| | - Samar H Ibrabim
- Pediatric Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905
| | - Gregory J Gores
- Divisions of Gastroenterology and Hepatology Mayo Clinic, Rochester, MN 55905.
| | - Harmeet Malhi
- Divisions of Gastroenterology and Hepatology Mayo Clinic, Rochester, MN 55905.
| |
Collapse
|
197
|
Oh H, Jun DW, Saeed WK, Nguyen MH. Non-alcoholic fatty liver diseases: update on the challenge of diagnosis and treatment. Clin Mol Hepatol 2016; 22:327-335. [PMID: 27729634 PMCID: PMC5066376 DOI: 10.3350/cmh.2016.0049] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 08/22/2016] [Indexed: 02/07/2023] Open
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) is estimated to be 25-30% of the population, and is the most common cause of elevated liver enzymes in Korea. NAFLD is a “hot potato” for pharmaceutical companies. Many clinical trials are underway to develop a first-in-class drug to treat NAFLD. However, there are several challenging issues regarding the diagnosis of NAFLD. Currently, liver biopsy is the gold standard method for the diagnosis of NAFLD and steatohepatitis. Ideally, globally recognized standards for histological diagnosis and methods to optimize observer agreement on biopsy interpretation should be developed. Liver biopsy is the best method rather than a perfect one. Recently, multi-parametric magnetic resonance imagery can estimate the amount of intrahepatic fat successfully and is widely used in clinical trials. But no diagnostic method can discriminate between steatohepatitis and simple steatosis. The other unresolved issue in regard to NAFLD is the absence of satisfactory treatment options. Vitamin E and obeticholic acid have shown protective effects in randomized controlled trials, but this drug has not been approved for use in Korea. This study will provide a description of diagnostic methods and treatments that are currently recommended for NAFLD.
Collapse
Affiliation(s)
- Hyunwoo Oh
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea.,Medical corp, 7th division, Republic of Korea army, Korea
| | - Dae Won Jun
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Waqar K Saeed
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Korea
| | - Mindie H Nguyen
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Palo Alto, CA, USA
| |
Collapse
|
198
|
Schütte K, Balbisi F, Malfertheiner P. Prevention of Hepatocellular Carcinoma. Gastrointest Tumors 2016; 3:37-43. [PMID: 27722155 PMCID: PMC5040884 DOI: 10.1159/000446680] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 05/10/2016] [Indexed: 12/17/2022] Open
Abstract
The epidemiology of hepatocellular carcinoma (HCC) has significantly changed throughout the past decade and will continue to do so in the future as a consequence of effective primary prevention and treatment of virus-related liver diseases. However, other risk factors for HCC are constantly on the rise, including alcoholic liver disease and nonalcoholic fatty liver disease. The knowledge on these and further risk factors associated with an increased risk of HCC provide the opportunity and chance for the development and implementation of successful preventive strategies to decrease the worldwide burden of HCC. This mini-review gives a short overview on current strategies in primary, secondary, and tertiary prevention of HCC.
Collapse
Affiliation(s)
- Kerstin Schütte
- Department of Internal Medicine and Gastroenterology, Niels-Stensen-Kliniken, Marienhospital Osnabrück, Osnabrück, Germany
| | - Fathi Balbisi
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto von Guericke University of Magdeburg, Magdeburg, Germany
| | - Peter Malfertheiner
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto von Guericke University of Magdeburg, Magdeburg, Germany
| |
Collapse
|
199
|
Noureddin M, Zhang A, Loomba R. Promising therapies for treatment of nonalcoholic steatohepatitis. Expert Opin Emerg Drugs 2016; 21:343-57. [PMID: 27501374 DOI: 10.1080/14728214.2016.1220533] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Non-alcoholic fatty liver disease (NAFLD) has become the most common etiology for abnormal aminotransferase levels and chronic liver disease. Its growing prevalence is largely linked to the presence of metabolic syndrome, particularly diabetes and insulin resistance. It is estimated that 60-80% of the type 2 diabetic population has NAFLD. NAFLD encompasses a range of conditions ranging from simple steatosis to non-alcoholic steatohepatitis (NASH). A subset of patients with hepatic steatosis progress to NASH, while 15-20% of patients with NASH develop cirrhosis. This progression is thought to be multifactorial, and there are currently no FDA-approved medications for the treatment of NASH. AREAS COVERED We review drugs currently in Phase II and III clinical trials for treatment of NAFLD and NASH, including their mechanisms of action, relationship to the pathophysiology of NASH, and rationale for their development. EXPERT OPINION The treatment of NASH is complex and necessitates targeting a number of different pathways. Combination therapy, preferably tailored toward the disease stage and severity, will be needed to achieve maximum therapeutic effect. With multiple agents currently being developed, there may soon be an ability to effectively slow or even reverse the disease process in many NAFLD/NASH patients.
Collapse
Affiliation(s)
- Mazen Noureddin
- a Fatty Liver Program, Division of Digestive and Liver Diseases, Comprehensive Transplant Center , Cedars-Sinai Medical Center , Los Angeles , CA , USA.,b Department of Medicine , Cedars-Sinai Medical Center , Los Angeles , CA , USA
| | - Alice Zhang
- b Department of Medicine , Cedars-Sinai Medical Center , Los Angeles , CA , USA
| | - Rohit Loomba
- c Division of Gastroenterology and Division of Epidemiology , University of California, San Diego , La Jolla , CA , USA
| |
Collapse
|
200
|
Mintziori G, Polyzos SA. Emerging and future therapies for nonalcoholic steatohepatitis in adults. Expert Opin Pharmacother 2016; 17:1937-46. [DOI: 10.1080/14656566.2016.1225727] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|