151
|
Willis WT, Miranda-Grandjean D, Hudgens J, Willis EA, Finlayson J, De Filippis EA, Zapata Bustos R, Langlais PR, Mielke C, Mandarino LJ. Dominant and sensitive control of oxidative flux by the ATP-ADP carrier in human skeletal muscle mitochondria: Effect of lysine acetylation. Arch Biochem Biophys 2018; 647:93-103. [PMID: 29653079 DOI: 10.1016/j.abb.2018.04.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/29/2018] [Accepted: 04/08/2018] [Indexed: 02/01/2023]
Abstract
The adenine nucleotide translocase (ANT) of the mitochondrial inner membrane exchanges ADP for ATP. Mitochondria were isolated from human vastus lateralis muscle (n = 9). Carboxyatractyloside titration of O2 consumption rate (Jo) at clamped [ADP] of 21 μM gave ANT abundance of 0.97 ± 0.14 nmol ANT/mg and a flux control coefficient of 82% ± 6%. Flux control fell to 1% ± 1% at saturating (2 mM) [ADP]. The KmADP for Jo was 32.4 ± 1.8 μM. In terms of the free (-3) ADP anion this KmADP was 12.0 ± 0.7 μM. A novel luciferase-based assay for ATP production gave KmADP of 13.1 ± 1.9 μM in the absence of ATP competition. The free anion KmADP in this case was 2.0 ± 0.3 μM. Targeted proteomic analyses showed significant acetylation of ANT Lysine23 and that ANT1 was the most abundant isoform. Acetylation of Lysine23 correlated positively with KmADP, r = 0.74, P = 0.022. The findings underscore the central role played by ANT in the control of oxidative phosphorylation, particularly at the energy phosphate levels associated with low ATP demand. As predicted by molecular dynamic modeling, ANT Lysine23 acetylation decreased the apparent affinity of ADP for ANT binding.
Collapse
Affiliation(s)
- W T Willis
- University of Arizona, College of Medicine, Department of Medicine, 1501 N. Campbell Avenue, P.O. Box 245099, Tucson, AZ 85724-5099, USA.
| | - D Miranda-Grandjean
- Mayo Clinic, Division of Endocrinology, East Shea Boulevard and 134th Street, Scottsdale, AZ 85259, USA.
| | - J Hudgens
- Mayo Clinic, Division of Endocrinology, East Shea Boulevard and 134th Street, Scottsdale, AZ 85259, USA.
| | - E A Willis
- Mayo Clinic, Division of Endocrinology, East Shea Boulevard and 134th Street, Scottsdale, AZ 85259, USA.
| | - J Finlayson
- University of Arizona, College of Medicine, Department of Medicine, 1501 N. Campbell Avenue, P.O. Box 245099, Tucson, AZ 85724-5099, USA.
| | - E A De Filippis
- Mayo Clinic, Division of Endocrinology, East Shea Boulevard and 134th Street, Scottsdale, AZ 85259, USA.
| | - R Zapata Bustos
- University of Arizona, College of Medicine, Department of Medicine, 1501 N. Campbell Avenue, P.O. Box 245099, Tucson, AZ 85724-5099, USA.
| | - P R Langlais
- University of Arizona, College of Medicine, Department of Medicine, 1501 N. Campbell Avenue, P.O. Box 245099, Tucson, AZ 85724-5099, USA.
| | - C Mielke
- Mayo Clinic, Division of Endocrinology, East Shea Boulevard and 134th Street, Scottsdale, AZ 85259, USA.
| | - L J Mandarino
- University of Arizona, College of Medicine, Department of Medicine, 1501 N. Campbell Avenue, P.O. Box 245099, Tucson, AZ 85724-5099, USA.
| |
Collapse
|
152
|
Hakim MA, Buchholz JN, Behringer EJ. Electrical dynamics of isolated cerebral and skeletal muscle endothelial tubes: Differential roles of G-protein-coupled receptors and K + channels. Pharmacol Res Perspect 2018; 6:e00391. [PMID: 29636977 PMCID: PMC5889193 DOI: 10.1002/prp2.391] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 02/12/2018] [Indexed: 12/13/2022] Open
Abstract
Electrical dynamics of freshly isolated cerebral endothelium have not been determined independently of perivascular nerves and smooth muscle. We tested the hypothesis that endothelium of cerebral and skeletal muscle arteries differentially utilizes purinergic and muscarinic signaling pathways to activate endothelium‐derived hyperpolarization. Changes in membrane potential (Vm) were recorded in intact endothelial tubes freshly isolated from posterior cerebral and superior epigastric arteries of male and female C57BL/6 mice (age: 3‐8 months). Vm was measured in response to activation of purinergic (P2Y) and muscarinic (M3) receptors in addition to small‐ and intermediate‐conductance Ca2+‐activated K+ (SKCa/IKCa) and inward rectifying K+ (KIR) channels using ATP (100 μmol·L−1), acetylcholine (ACh; 10 μmol·L−1), NS309 (0.01‐10 μmol·L−1), and 15 mmol·L−1 KCl, respectively. Intercellular coupling was demonstrated via transfer of propidium iodide dye and electrical current (±0.5‐3 nA) through gap junctions. With similarities observed across gender, peak hyperpolarization to ATP and ACh in skeletal muscle endothelial tubes was ~twofold and ~sevenfold higher, respectively, vs cerebral endothelial tubes, whereas responses to NS309 were similar (from resting Vm ~−30 mV to maximum ~−80 mV). Hyperpolarization (~8 mV) occurred during 15 mmol·L−1 KCl treatment in cerebral but not skeletal muscle endothelial tubes. Despite weaker hyperpolarization during endothelial GPCR stimulation in cerebral vs skeletal muscle endothelium, the capability for robust SKCa/IKCa activity is preserved across brain and skeletal muscle. As vascular reactivity decreases with aging and cardiovascular disease, endothelial K+ channel activity may be calibrated to restore blood flow to respective organs regardless of gender.
Collapse
Affiliation(s)
- Md A Hakim
- Basic Sciences Loma Linda University Loma Linda CA USA
| | | | | |
Collapse
|
153
|
Creze M, Nordez A, Soubeyrand M, Rocher L, Maître X, Bellin MF. Shear wave sonoelastography of skeletal muscle: basic principles, biomechanical concepts, clinical applications, and future perspectives. Skeletal Radiol 2018; 47:457-471. [PMID: 29224123 DOI: 10.1007/s00256-017-2843-y] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 11/20/2017] [Accepted: 11/30/2017] [Indexed: 02/02/2023]
Abstract
Imaging plays an important role in the diagnosis and therapeutic response evaluation of muscular diseases. However, one important limitation is its incapacity to assess the in vivo biomechanical properties of the muscles. The emerging shear wave sonoelastography technique offers a quantifiable spatial representation of the viscoelastic characteristics of skeletal muscle. Elastography is a non-invasive tool used to analyze the physiologic and biomechanical properties of muscles in healthy and pathologic conditions. However, radiologists need to familiarize themselves with the muscular biomechanical concepts and technical challenges of shear wave elastography. This review introduces the basic principles of muscle shear wave elastography, analyzes the factors that can influence measurements and provides an overview of its potential clinical applications in the field of muscular diseases.
Collapse
Affiliation(s)
- Maud Creze
- Radiology Department, Bicêtre Hospital, APHP, Le Kremlin-Bicetre, France. .,Laboratory Complexité, Innovations, Activités Motrices et Sportives, CIAMS (EA4532), University Paris-Sud, Université Paris-Saclay, Orsay, France. .,Imagerie par Résonance Magnétique Médicale et Multi-Modalités, IR4M, CNRS, Univ Paris-Sud, Université Paris-Saclay, Orsay, France. .,Service de Radiologie, CHU de Bicêtre, Le Kremlin-Bicetre, France.
| | - Antoine Nordez
- Laboratory "Movement, Interactions, Performance" (EA 4334), Faculty of Sport Sciences, University of Nantes, Nantes Cedex 3, France
| | - Marc Soubeyrand
- Orthopedic Department, Bicêtre Hospital, APHP, Le Kremlin-Bicetre, France
| | - Laurence Rocher
- Radiology Department, Bicêtre Hospital, APHP, Le Kremlin-Bicetre, France.,Imagerie par Résonance Magnétique Médicale et Multi-Modalités, IR4M, CNRS, Univ Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Xavier Maître
- Imagerie par Résonance Magnétique Médicale et Multi-Modalités, IR4M, CNRS, Univ Paris-Sud, Université Paris-Saclay, Orsay, France
| | - Marie-France Bellin
- Radiology Department, Bicêtre Hospital, APHP, Le Kremlin-Bicetre, France.,Imagerie par Résonance Magnétique Médicale et Multi-Modalités, IR4M, CNRS, Univ Paris-Sud, Université Paris-Saclay, Orsay, France
| |
Collapse
|
154
|
Ishii N, Tomita K, Suetake S, Okuno Y, Kawamura K, Takeshima R, Ohse H, Imura S. Oxygen cost of thoracic and diaphragmatic breathing during hyperventilation in healthy males. J Phys Ther Sci 2018; 30:238-241. [PMID: 29545685 PMCID: PMC5851354 DOI: 10.1589/jpts.30.238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 11/08/2017] [Indexed: 12/01/2022] Open
Abstract
[Purpose] It is unclear whether diaphragmatic breathing (DB) results in lower respiratory
muscle oxygen consumption during dynamic exercise. The purpose of this study was to
compare oxygen consumption in the respiratory muscles (VO2rm) with
thoracic breathing (TB) and with DB, in healthy males during hyperventilation. [Subjects
and Methods] Ten healthy men participated in this study. The subjects sat on a chair with
the backrest reclined at an angle of 60 degrees. Respiratory parameters were measured
breath by breath, using an expired gas analyzer. Oxygen consumption was measured for three
minutes during quiet breathing. Measurements during TB and DB were performed for one
minute each, after connecting a rebreather loading device. The breathing pattern was
analyzed by inductance plethysmography, using transducer bands placed over the chest and
abdomen that recorded thoracoabdominal movements. [Results] Both ΔVO2/body
weight and VO2rm decreased significantly with DB when compared to that
with TB, during hyperventilation. [Conclusion] DB results in less respiratory muscle
oxygen consumption, even during dynamic exercise.
Collapse
Affiliation(s)
- Nobuhisa Ishii
- Graduate School of Health Science, Ibaraki Prefectural University of Health Sciences: 4669-2 Ami, Ibaraki 300-0394, Japan.,Ibaraki Prefectural Central Hospital, Japan
| | - Kazuhide Tomita
- Graduate School of Health Science, Ibaraki Prefectural University of Health Sciences: 4669-2 Ami, Ibaraki 300-0394, Japan.,Department of Physical Therapy, Ibaraki Prefectural University of Health Sciences, Japan
| | - Shinsuke Suetake
- Department of Physical Therapy, Ibaraki Prefectural University of Health Sciences, Japan
| | - Yukako Okuno
- Department of Physical Therapy, Ibaraki Prefectural University of Health Sciences, Japan
| | - Kenta Kawamura
- Graduate School of Health Science, Ibaraki Prefectural University of Health Sciences: 4669-2 Ami, Ibaraki 300-0394, Japan
| | - Reiko Takeshima
- Center for Medical Sciences, Ibaraki Prefectural University of Health Sciences, Japan
| | - Hirotaka Ohse
- Graduate School of Health Science, Ibaraki Prefectural University of Health Sciences: 4669-2 Ami, Ibaraki 300-0394, Japan
| | - Shigeyuki Imura
- Master Course of Science in Physical Therapy, Takasaki University of Health and Welfare Graduate School of Health Care, Japan
| |
Collapse
|
155
|
Behringer EJ. Calcium and electrical signaling in arterial endothelial tubes: New insights into cellular physiology and cardiovascular function. Microcirculation 2018; 24. [PMID: 27801542 DOI: 10.1111/micc.12328] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 10/25/2016] [Indexed: 12/23/2022]
Abstract
The integral role of the endothelium during the coordination of blood flow throughout vascular resistance networks has been recognized for several decades now. Early examination of the distinct anatomy and physiology of the endothelium as a signaling conduit along the vascular wall has prompted development and application of an intact endothelial "tube" study model isolated from rodent skeletal muscle resistance arteries. Vasodilatory signals such as increased endothelial cell (EC) Ca2+ ([Ca2+ ]i ) and hyperpolarization take place in single ECs while shared between electrically coupled ECs through gap junctions up to distances of millimeters (≥2 mm). The small- and intermediate-conductance Ca2+ activated K+ (SKCa /IKCa or KCa 2.3/KCa 3.1) channels function at the interface of Ca2+ signaling and hyperpolarization; a bidirectional relationship whereby increases in [Ca2+ ]i activate SKCa /IKCa channels to produce hyperpolarization and vice versa. Further, the spatial domain of hyperpolarization among electrically coupled ECs can be finely tuned via incremental modulation of SKCa /IKCa channels to balance the strength of local and conducted electrical signals underlying vasomotor activity. Multifunctional properties of the voltage-insensitive SKCa /IKCa channels of resistance artery endothelium may be employed for therapy during the aging process and development of vascular disease.
Collapse
Affiliation(s)
- Erik J Behringer
- Department of Basic Sciences, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
156
|
Hammer SM, Alexander AM, Didier KD, Smith JR, Caldwell JT, Sutterfield SL, Ade CJ, Barstow TJ. The noninvasive simultaneous measurement of tissue oxygenation and microvascular hemodynamics during incremental handgrip exercise. J Appl Physiol (1985) 2018; 124:604-614. [DOI: 10.1152/japplphysiol.00815.2017] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Limb blood flow increases linearly with exercise intensity; however, invasive measurements of muscle microvascular blood flow during incremental exercise have demonstrated submaximal plateaus. We tested the hypotheses that 1) brachial artery blood flow (Q̇BA) would increase with increasing exercise intensity until task failure, 2) blood flow index of the flexor digitorum superficialis (BFIFDS) measured noninvasively via diffuse correlation spectroscopy would plateau at a submaximal work rate, and 3) muscle oxygenation characteristics (total-[heme], deoxy-[heme], and percentage saturation) measured noninvasively with near-infrared spectroscopy would demonstrate a plateau at a similar work rate as BFIFDS. Sixteen subjects (23.3 ± 3.9 yr, 170.8 ± 1.9 cm, 72.8 ± 3.4 kg) participated in this study. Peak power (Ppeak) was determined for each subject (1.8 ± 0.4 W) via an incremental handgrip exercise test. Q̇BA, BFIFDS, total-[heme], deoxy-[heme], and percentage saturation were measured during each stage of the exercise test. On a subsequent testing day, muscle activation measurements of the FDS (RMSFDS) were collected during each stage of an identical incremental handgrip exercise test via electromyography from a subset of subjects ( n = 7). Q̇BA increased with exercise intensity until the final work rate transition ( P < 0.05). No increases in BFIFDS or muscle oxygenation characteristics were observed at exercise intensities greater than 51.5 ± 22.9% of Ppeak. No submaximal plateau in RMSFDS was observed. Whereas muscle activation of the FDS increased until task failure, noninvasively measured indices of perfusive and diffusive muscle microvascular oxygen delivery demonstrated submaximal plateaus. NEW & NOTEWORTHY Invasive measurements of muscle microvascular blood flow during incremental exercise have demonstrated submaximal plateaus. We demonstrate that indices of perfusive and diffusive microvascular oxygen transport to skeletal muscle, measured completely noninvasively, plateau at submaximal work rates during incremental exercise, even though limb blood flow and muscle recruitment continued to increase.
Collapse
Affiliation(s)
- Shane M. Hammer
- Department of Kinesiology, Kansas State University, Manhattan, Kansas
| | | | - Kaylin D. Didier
- Department of Kinesiology, Kansas State University, Manhattan, Kansas
| | - Joshua R. Smith
- Department of Kinesiology, Kansas State University, Manhattan, Kansas
| | - Jacob T. Caldwell
- Department of Kinesiology, Kansas State University, Manhattan, Kansas
| | | | - Carl J. Ade
- Department of Kinesiology, Kansas State University, Manhattan, Kansas
| | - Thomas J. Barstow
- Department of Kinesiology, Kansas State University, Manhattan, Kansas
| |
Collapse
|
157
|
Reitzner SM, Norrbom J, Sundberg CJ, Gidlund E. Expression of striated activator of rho-signaling in human skeletal muscle following acute exercise and long-term training. Physiol Rep 2018; 6:e13624. [PMID: 29504288 PMCID: PMC5835521 DOI: 10.14814/phy2.13624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 01/31/2018] [Indexed: 12/20/2022] Open
Abstract
The striated activator of rho-signaling (STARS) protein acts as a link between external stimuli and exercise adaptation such as muscle hypertrophy. However, the acute and long-term adaptational response of STARS is still unclear. This study aimed at investigating the acute and long-term endurance training response on the mRNA and protein expression of STARS and its related upstream and downstream factors in human skeletal muscle. mRNA and protein levels of STARS and related factors were assessed in skeletal muscle of healthy young men and women following an acute bout of endurance exercise (n = 15) or 12 weeks of one-legged training (n = 23). Muscle biopsies were obtained before (acute and long-term), at 30 min, 2, and 6 h following acute exercise, and at 24 h following both acute exercise and long-term training. Following acute exercise, STARS mRNA was significantly elevated 3.9-fold at 30 min returning back to baseline 24 h after exercise. STARS protein levels were numerically but nonsignificantly increased 7.2-fold at 24 h. No changes in STARS or ERRα mRNA or STARS protein expression were seen following long-term training. PGC-1α mRNA increased 1.7-fold following long-term training. MRTF-A mRNA was increased both following acute exercise and long-term training, in contrast to SRF mRNA and protein which did not change. STARS mRNA is acutely upregulated with exercise, but there is no cumulative effect to long-term training as seen in PGC-1α mRNA expression. Exercise intensity might play a role in manifestation of protein expression, suggesting a more complex regulation of STARS.
Collapse
Affiliation(s)
- Stefan M. Reitzner
- Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden
| | - Jessica Norrbom
- Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden
| | - Carl Johan Sundberg
- Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden
- Department of Learning, Informatics, Management and EthicsKarolinska InstitutetStockholmSweden
| | - Eva‐Karin Gidlund
- Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden
| |
Collapse
|
158
|
Boulton D, Taylor CE, Green S, Macefield VG. The metaboreflex does not contribute to the increase in muscle sympathetic nerve activity to contracting muscle during static exercise in humans. J Physiol 2018; 596:1091-1102. [PMID: 29315576 DOI: 10.1113/jp275526] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 01/02/2018] [Indexed: 12/22/2022] Open
Abstract
KEY POINTS It is not clear how sympathetic activity to contracting muscle is controlled. We recorded muscle sympathetic nerve activity (MSNA) to the ipsilateral tibialis anterior muscle during 4 min of isometric dorsiflexion of the ankle and 6 min of post-exercise ischaemia, which was repeated contralaterally. MSNA to the contracting muscle increased within 1 min of static exercise and returned to pre-contraction levels at the end. Unlike the increase in MSNA seen in the non-contracting muscle, post-exercise ischaemia had no effect on MSNA to the contracted muscle. We conclude that central command is the primary mechanism responsible for increasing MSNA to contracting muscle and also that the metaboreflex is not expressed in contracting muscle. ABSTRACT Both central command and metaboreflex inputs from contracting muscles increase muscle sympathetic nerve activity (MSNA) to non-contracting muscle during sustained isometric exercise. We recently showed that MSNA to contracting muscle also increases in an intensity-dependent manner, although whether this can be sustained by the metaboreflex is unknown. MSNA was recorded from the left common peroneal nerve and individual spikes of MSNA extracted from the nerve signal. Eleven subjects performed a series of 4 min dorsiflexions of the left ankle at 10% of maximum voluntary contraction under three conditions: without ischaemia, with 6 min of post-exercise ischaemia, and with ischaemia during and after exercise; these were repeated in the right leg. Compared with pre-contraction values, MSNA to the contracting muscles increased and plateaued in the first minute of contraction (50 ± 18 vs. 34 ± 10 spikes min-1 , P = 0.01), returned to pre-contraction levels within 1 min of the contraction ending and was not influenced by ischaemia during or after contraction. Conversely, MSNA to the non-contracting muscles was not different from pre-contraction levels in the first minute of contraction (34 ± 9 vs. 32 ± 5 spikes min-1 , P = 0.48), whereas it increased each minute and was significantly greater by the second minute (44 ± 8 spikes min-1 , P = 0.01). Ischaemia augmented the MSNA response to contraction (63 ± 25 spikes min-1 after 4 min, P < 0.05) and post-exercise ischaemia (63 ± 27 spikes min-1 after 6 min, P < 0.01) for the non-contracting muscles only. These findings support our conclusion that the metaboreflex is not expressed in the contracting muscle during sustained static exercise.
Collapse
Affiliation(s)
- Daniel Boulton
- School of Science and Health, Western Sydney University, Sydney, NSW, Australia
| | - Chloe E Taylor
- School of Science and Health, Western Sydney University, Sydney, NSW, Australia.,School of Medicine, Western Sydney University, Sydney, NSW, Australia
| | - Simon Green
- School of Science and Health, Western Sydney University, Sydney, NSW, Australia.,School of Medicine, Western Sydney University, Sydney, NSW, Australia.,Neuroscience Research Australia, Sydney, NSW, Australia
| | - Vaughan G Macefield
- School of Medicine, Western Sydney University, Sydney, NSW, Australia.,Neuroscience Research Australia, Sydney, NSW, Australia.,Mohammed Bin Rashid University of Medicine & Health Sciences, Dubai, UAE
| |
Collapse
|
159
|
Hellsten Y, Gliemann L. Limb vascular function in women-Effects of female sex hormones and physical activity. TRANSLATIONAL SPORTS MEDICINE 2018. [DOI: 10.1002/tsm2.3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Y. Hellsten
- Department of Nutrition Exercise and Sports; University of Copenhagen; Copenhagen Denmark
| | - L. Gliemann
- Department of Nutrition Exercise and Sports; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
160
|
Piil P, Jørgensen TS, Egelund J, Gliemann L, Hellsten Y, Nyberg M. Effect of high-intensity exercise training on functional sympatholysis in young and older habitually active men. TRANSLATIONAL SPORTS MEDICINE 2018. [DOI: 10.1002/tsm2.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- P. Piil
- Department of Nutrition, Exercise and Sports; University of Copenhagen; Copenhagen Denmark
| | - T. S. Jørgensen
- Department of Nutrition, Exercise and Sports; University of Copenhagen; Copenhagen Denmark
- Department of Orthopedics; Herlev and Gentofte Hospital; Copenhagen Denmark
| | - J. Egelund
- Department of Nutrition, Exercise and Sports; University of Copenhagen; Copenhagen Denmark
| | - L. Gliemann
- Department of Nutrition, Exercise and Sports; University of Copenhagen; Copenhagen Denmark
| | - Y. Hellsten
- Department of Nutrition, Exercise and Sports; University of Copenhagen; Copenhagen Denmark
| | - M. Nyberg
- Department of Nutrition, Exercise and Sports; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
161
|
Bentley RF, Walsh JJ, Drouin PJ, Velickovic A, Kitner SJ, Fenuta AM, Tschakovsky ME. Absence of compensatory vasodilation with perfusion pressure challenge in exercise: evidence for and implications of the noncompensator phenotype. J Appl Physiol (1985) 2018; 124:374-387. [PMID: 28706000 DOI: 10.1152/japplphysiol.00952.2016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Compromising oxygen delivery (O2D) during exercise requires compensatory vasodilatory and/or pressor responses to protect O2D:demand matching. The purpose of the study was to determine whether compensatory vasodilation is absent in some healthy young individuals in the face of a sudden reduction in exercising forearm perfusion pressure and whether this affects the exercise pressor response. Twenty-one healthy young men (21.6 ± 2.0 yr) completed rhythmic forearm exercise at a work rate equivalent to 70% of their own maximal exercise vasodilation. During steady-state exercise, the exercising arm was rapidly adjusted from below to above heart level, resulting in a reduction in forearm perfusion pressure of -30.7 ± 0.9 mmHg. Forearm blood flow (ml/min; brachial artery Doppler and echo ultrasound), mean arterial blood pressure (mmHg; finger photoplethysmography), and exercising forearm venous effluent (antecubital vein catheter) measurements revealed distinct compensatory vasodilatory differences. Thirteen individuals responded with compensatory vasodilation (509 ± 128 vs. 632 ± 136 ml·min-1·100 mmHg-1; P < 0.001), while eight individuals did not (663 ± 165 vs. 667 ± 167 ml·min-1·100 mmHg-1; P = 0.6). Compensatory pressor responses between groups were not different (5.5 ± 5.5 and 9.7 ± 9.5 mmHg; P = 0.2). Forearm blood flow, O2D, and oxygen consumption were all protected in compensators (all P > 0.05) but not in noncompensators, who therefore suffered compromises to exercise performance (6 ± 14 vs. -36 ± 29 N; P = 0.004). Phenotypic differences were not explained by potassium or nitric oxide bioavailability. In conclusion, both compensator and noncompensator vasodilator phenotype responses to a sudden compromise to exercising muscle blood flow are evident. Interindividual differences in the mechanisms governing O2D:demand matching should be considered as factors influencing exercise tolerance. NEW & NOTEWORTHY In healthy young individuals, compromising submaximally exercising muscle perfusion appears to evoke compensatory vasodilation to defend oxygen delivery. Here we report the absence of compensatory vasodilation in 8 of 21 such individuals, despite their vasodilatory capacity and increases in perfusion with increasing exercise intensity being indistinguishable from compensators. The absence of compensation impaired exercise tolerance. These findings suggest that interindividual differences in oxygen delivery:demand matching efficacy affect exercise tolerance and depend on the nature of a delivery:demand matching challenge.
Collapse
Affiliation(s)
- Robert F Bentley
- School of Kinesiology and Health Studies, Queen's University , Kingston, Ontario , Canada
| | - Jeremy J Walsh
- School of Kinesiology and Health Studies, Queen's University , Kingston, Ontario , Canada
| | - Patrick J Drouin
- School of Kinesiology and Health Studies, Queen's University , Kingston, Ontario , Canada
| | - Aleksandra Velickovic
- School of Kinesiology and Health Studies, Queen's University , Kingston, Ontario , Canada
| | - Sarah J Kitner
- School of Kinesiology and Health Studies, Queen's University , Kingston, Ontario , Canada
| | - Alyssa M Fenuta
- School of Kinesiology and Health Studies, Queen's University , Kingston, Ontario , Canada
| | - Michael E Tschakovsky
- School of Kinesiology and Health Studies, Queen's University , Kingston, Ontario , Canada
| |
Collapse
|
162
|
Sgrò P, Sansone M, Sansone A, Romanelli F, Di Luigi L. Effects of erythropoietin abuse on exercise performance. PHYSICIAN SPORTSMED 2018; 46:105-115. [PMID: 29113535 DOI: 10.1080/00913847.2018.1402663] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The present review provides a comprehensive overview on the erythropoietic and non-erythropoietic effects of rHuEpo on human sport performance, paying attention to quantifying numerically how rHuEpo affects exercise performance and describing physiological changes regarding the most important exercise variables. Much attention has been paid to treatment schedules, in particular, to assess the effects of microdoses of rHuEpo and the prolonged effects on sport performance following withdrawal. Moreover, the review takes into account non-erythropoietic ergogenic effects of rHuEpo, including cognitive benefits of rHuEpo. A significant increase in both Vo2max and maximal cycling power was evidenced in studies taken into account for this review. rHuEpo, administered at clinical dosage, may have significant effects on haematological values, maximal and submaximal physiological variables, whereas few reports show positive effects on exercise perfomance. However, the influence of micro-dose rHuEpo on endurance performance in athletes is still unclear and further studies are warranted.
Collapse
Affiliation(s)
- Paolo Sgrò
- a Department of Movement, Human and Health Sciences, Unit of Endocrinology , Università degli Studi di Roma "Foro Italico" Piazza Lauro de Bosis , Rome , Italy
| | - Massimiliano Sansone
- b Department of Experimental Medicine , "Sapienza" Università di Roma , Rome , Italy
| | - Andrea Sansone
- b Department of Experimental Medicine , "Sapienza" Università di Roma , Rome , Italy
| | - Francesco Romanelli
- b Department of Experimental Medicine , "Sapienza" Università di Roma , Rome , Italy
| | - Luigi Di Luigi
- a Department of Movement, Human and Health Sciences, Unit of Endocrinology , Università degli Studi di Roma "Foro Italico" Piazza Lauro de Bosis , Rome , Italy
| |
Collapse
|
163
|
Craig JC, Colburn TD, Hirai DM, Schettler MJ, Musch TI, Poole DC. Sex and nitric oxide bioavailability interact to modulate interstitial Po 2 in healthy rat skeletal muscle. J Appl Physiol (1985) 2018; 124:1558-1566. [PMID: 29369738 DOI: 10.1152/japplphysiol.01022.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Premenopausal women express reduced blood pressure and risk of cardiovascular disease relative to age-matched men. This purportedly relates to elevated estrogen levels increasing nitric oxide synthase (NOS) activity and NO-mediated vasorelaxation. We tested the hypotheses that female rat skeletal muscle would: 1) evince a higher O2 delivery-to-utilization ratio (Q̇o2/V̇o2) during contractions; and 2) express greater modulation of Q̇o2/V̇o2 with changes to NO bioavailability compared with male rats. The spinotrapezius muscle of Sprague-Dawley rats (females = 8, males = 8) was surgically exposed and electrically-stimulated (180 s, 1 Hz, 6 V). OxyphorG4 was injected into the muscle and phosphorescence quenching employed to determine the temporal profile of interstitial Po2 (Po2is, determined by Q̇o2/V̇o2). This was performed under three conditions: control (CON), 300 µM sodium nitroprusside (SNP; NO donor), and 1.5 mM Nω-nitro-l-arginine methyl ester (l-NAME; NOS blockade) superfusion. No sex differences were found for the Po2is kinetics parameters in CON or l-NAME ( P > 0.05), but females elicited a lower baseline following SNP (males 42 ± 3 vs. females 36 ± 2 mmHg, P < 0.05). Females had a lower ΔPo2is during contractions following SNP (males 22 ± 3 vs. females 17 ± 2 mmHg, P < 0.05), but there were no sex differences for the temporal response to contractions ( P > 0.05). The total NO effect (SNP minus l-NAME) on Po2is was not different between sexes. However, the spread across both conditions was shifted to a lower absolute range for females (reduced SNP baseline and greater reduction following l-NAME). These data support that females have a greater reliance on basal NO bioavailability and males have a greater responsiveness to exogenous NO and less responsiveness to reduced endogenous NO. NEW & NOTEWORTHY Interstitial Po2 (Po2is; determined by O2 delivery-to-utilization matching) plays an important role for O2 flux into skeletal muscle. We show that both sexes regulate Po2is at similar levels at rest and during skeletal muscle contractions. However, modulating NO bioavailability exposes sex differences in this regulation with females potentially having a greater reliance on basal NO bioavailability and males having a greater responsiveness to exogenous NO and less responsiveness to reduced endogenous NO.
Collapse
Affiliation(s)
- Jesse C Craig
- Department of Kinesiology, Kansas State University , Manhattan, Kansas
| | - Trenton D Colburn
- Department of Kinesiology, Kansas State University , Manhattan, Kansas
| | - Daniel M Hirai
- Department of Kinesiology, Kansas State University , Manhattan, Kansas
| | - Michael J Schettler
- Department of Anatomy and Physiology, Kansas State University , Manhattan, Kansas
| | - Timothy I Musch
- Department of Kinesiology, Kansas State University , Manhattan, Kansas.,Department of Anatomy and Physiology, Kansas State University , Manhattan, Kansas
| | - David C Poole
- Department of Kinesiology, Kansas State University , Manhattan, Kansas.,Department of Anatomy and Physiology, Kansas State University , Manhattan, Kansas
| |
Collapse
|
164
|
Mueller PJ, Clifford PS, Crandall CG, Smith SA, Fadel PJ. Integration of Central and Peripheral Regulation of the Circulation during Exercise: Acute and Chronic Adaptations. Compr Physiol 2017; 8:103-151. [DOI: 10.1002/cphy.c160040] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
165
|
Lundberg Slingsby MH, Nyberg M, Egelund J, Mandrup CM, Frikke-Schmidt R, Kirkby NS, Hellsten Y. Aerobic exercise training lowers platelet reactivity and improves platelet sensitivity to prostacyclin in pre- and postmenopausal women. J Thromb Haemost 2017; 15:2419-2431. [PMID: 29027349 DOI: 10.1111/jth.13866] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Indexed: 12/12/2022]
Abstract
Essentials It is unknown how regular exercise affects platelet function after menopause. We studied the effect of 3-months of high-intensity exercise in pre- and postmenopausal women. Platelet sensitivity to the inhibitory effect of arterially infused prostacyclin was increased. Reduced basal platelet reactivity was seen in the premenopausal women only. SUMMARY Background The risk of atherothrombotic events increases after the menopause. Regular physical activity has been shown to reduce platelet reactivity in younger women, but it is unknown how regular exercise affects platelet function after the menopause. Objectives To examine the effects of regular aerobic exercise in late premenopausal and recent postmenopausal women by testing basal platelet reactivity and platelet sensitivity to prostacyclin and nitric oxide. Methods Twenty-five sedentary, but healthy, late premenopausal and 24 matched recently postmenopausal women, mean (95% confidence interval) 49.1 (48.2-49.9) and 53.7 (52.5-55.0) years old, participated in an intervention study: 3-month high-intensity supervised aerobic spinning-cycle training (1 h, × 3/week). Basal platelet reactivity was analyzed in platelet-rich plasma from venous blood as agonist-induced % aggregation. In a subgroup of 13 premenopausal and 14 postmenopausal women, platelet reactivity was tested ex vivo after femoral arterial infusion of prostacyclin, acetylcholine, a cyclooxygenase inhibitor, and after acute one-leg knee extensor exercise. Results Basal platelet reactivity (%aggregation) to TRAP-6 (1 μm) was higher in the postmenopausal, 59% (50-68), than the premenopausal women, 45% (35-55). Exercise training reduced basal platelet reactivity to collagen (1 μg mL-1 ) in the premenopausal women only: from 63% (55-71%) to 51% (41-62%). After the training intervention, platelet aggregation was more inhibited by the arterial prostacyclin infusion and the acute exercise in both premenopausal and postmenopausal women. Conclusions These results highlight previously unknown cardioprotective aspects of regular aerobic exercise in premenopausal and postmenopausal women, improving their regulation of platelet reactivity through an increased platelet sensitivity to prostacyclin, which may counterbalance the increased atherothrombotic risk associated with the menopause.
Collapse
Affiliation(s)
- M H Lundberg Slingsby
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - M Nyberg
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - J Egelund
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - C M Mandrup
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - R Frikke-Schmidt
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - N S Kirkby
- Department of Vascular Biology, National Heart and Lung Institute, Imperial College London, London, UK
| | - Y Hellsten
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
166
|
Murphy E, Rocha J, Gildea N, Green S, Egaña M. Venous occlusion plethysmography vs. Doppler ultrasound in the assessment of leg blood flow kinetics during different intensities of calf exercise. Eur J Appl Physiol 2017; 118:249-260. [DOI: 10.1007/s00421-017-3765-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/14/2017] [Indexed: 11/30/2022]
|
167
|
Trangmar SJ, Chiesa ST, Kalsi KK, Secher NH, González-Alonso J. Whole body hyperthermia, but not skin hyperthermia, accelerates brain and locomotor limb circulatory strain and impairs exercise capacity in humans. Physiol Rep 2017; 5:5/2/e13108. [PMID: 28108645 PMCID: PMC5269410 DOI: 10.14814/phy2.13108] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 12/08/2016] [Accepted: 12/09/2016] [Indexed: 12/26/2022] Open
Abstract
Cardiovascular strain and hyperthermia are thought to be important factors limiting exercise capacity in heat‐stressed humans, however, the contribution of elevations in skin (Tsk) versus whole body temperatures on exercise capacity has not been characterized. To ascertain their relationships with exercise capacity, blood temperature (TB), oxygen uptake (V̇O2), brain perfusion (MCA Vmean), locomotor limb hemodynamics, and hematological parameters were assessed during incremental cycling exercise with elevated skin (mild hyperthermia; HYPmild), combined core and skin temperatures (moderate hyperthermia; HYPmod), and under control conditions. Both hyperthermic conditions increased Tsk versus control (6.2 ± 0.2°C; P < 0.001), however, only HYPmod increased resting TB, leg blood flow and cardiac output (Q̇), but not MCA Vmean. Throughout exercise, Tsk remained elevated in both hyperthermic conditions, whereas only TB was greater in HYPmod. At exhaustion, oxygen uptake and exercise capacity were reduced in HYPmod in association with lower leg blood flow, MCA Vmean and mean arterial pressure (MAP), but similar maximal heart rate and TB. The attenuated brain and leg perfusion with hyperthermia was associated with a plateau in MCA and two‐legged vascular conductance (VC). Mechanistically, the falling MCA VC was coupled to reductions in PaCO2, whereas the plateau in leg vascular conductance was related to markedly elevated plasma [NA] and a plateau in plasma ATP. These findings reveal that whole‐body hyperthermia, but not skin hyperthermia, compromises exercise capacity in heat‐stressed humans through the early attenuation of brain and active muscle blood flow.
Collapse
Affiliation(s)
- Steven J Trangmar
- Centre for Human Performance, Exercise and Rehabilitation, Brunel University London, Uxbridge, United Kingdom
| | - Scott T Chiesa
- Centre for Human Performance, Exercise and Rehabilitation, Brunel University London, Uxbridge, United Kingdom
| | - Kameljit K Kalsi
- Centre for Human Performance, Exercise and Rehabilitation, Brunel University London, Uxbridge, United Kingdom
| | - Niels H Secher
- Centre for Human Performance, Exercise and Rehabilitation, Brunel University London, Uxbridge, United Kingdom.,The Copenhagen Muscle Research Centre, Department of Anaesthesia, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - José González-Alonso
- Centre for Human Performance, Exercise and Rehabilitation, Brunel University London, Uxbridge, United Kingdom
| |
Collapse
|
168
|
Sinkler SY, Segal SS. Rapid versus slow ascending vasodilatation: intercellular conduction versus flow-mediated signalling with tetanic versus rhythmic muscle contractions. J Physiol 2017; 595:7149-7165. [PMID: 28981145 DOI: 10.1113/jp275186] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 09/28/2017] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS In response to exercise, vasodilatation ascends from downstream arterioles into upstream feed arteries (FAs). We hypothesized that the signalling events underlying ascending vasodilatation variy with the intensity and duration of skeletal muscle contraction. In the gluteus maximus muscle of C57BL/6 mice, brief tetanic contraction evoked rapid onset vasodilatation (ROV) (<1 s) throughout the resistance network. Selective damage to endothelium midway between FAs and primary arterioles eliminated ROV only in FAs. Blocking SKCa and IKCa channels attenuated ROV, implicating hyperpolarization as the underlying signal. During rhythmic twitch contractions, slow onset vasodilatation (10-15 s) in FAs remained intact following loss of ROV and was eliminated following nitric oxide synthase inhibition. Tetanic contraction initiates hyperpolarization that conducts along endothelium into FAs. Rhythmic twitch contractions stimulate FA endothelium to release nitric oxide in response to elevated shear stress secondary to metabolic dilatation of arterioles. Complementary endothelial signalling pathways for ascending vasodilatation ensure increased oxygen delivery to active skeletal muscle. ABSTRACT In response to exercise, vasodilatation initiated within the microcirculation of skeletal muscle ascends the resistance network into upstream feed arteries (FAs) located external to the tissue. Ascending vasodilatation (AVD) is essential for reducing FA resistance that otherwise restricts blood flow into the microcirculation. In the present study, we tested the hypothesis that signalling events underlying AVD vary with the intensity and duration of muscle contraction. In the gluteus maximus muscle of anaesthetized male C57BL/6 mice (aged 3-4 months), brief tetanic contraction (100 Hz for 500 ms) evoked rapid onset vasodilatation (ROV) in FAs that peaked within 4 s. By contrast, during rhythmic twitch contractions (4 Hz), slow onset vasodilatation (SOV) of FAs began after ∼10 s and plateaued within 30 s. Selectively damaging the endothelium with light-dye treatment midway between a FA and its primary arteriole eliminated ROV in the FA along with conducted vasodilatation of the FA initiated on the arteriole using ACh microiontophoresis. Superfusion of SKCa and IKCa channel blockers UCL 1684 + TRAM 34 attenuated ROV, implicating endothelial hyperpolarization as the underlying signal. Nevertheless, the SOV of FAs during rhythmic contractions persisted until inhibition of nitric oxide synthase with Nω -nitro-l-arginine methyl ester. Thus, ROV of FAs reflects hyperpolarization of downstream arterioles that conducts along the endothelium into proximal FAs. By contrast, SOV of FAs reflects the local production of nitric oxide by the endothelium in response to luminal shear stress, which increases secondary to arteriolar dilatation downstream. Thus, AVD ensures increased oxygen delivery to active muscle fibres by reducing upstream resistance via complementary signalling pathways that reflect the intensity and duration of muscle contraction.
Collapse
Affiliation(s)
- Shenghua Y Sinkler
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA
| | - Steven S Segal
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, USA.,Dalton Cardiovascular Research Center, Columbia, MO, USA
| |
Collapse
|
169
|
Trangmar SJ, González-Alonso J. New Insights Into the Impact of Dehydration on Blood Flow and Metabolism During Exercise. Exerc Sport Sci Rev 2017; 45:146-153. [PMID: 28419001 DOI: 10.1249/jes.0000000000000109] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Exercise-induced dehydration can lead to impaired perfusion to multiple regional tissues and organs. We propose that the impact of dehydration on regional blood flow and metabolism is dependent on the extent of the cardiovascular demand imposed by exercise, with the greatest physiological strain seen when approaching cardiovascular and aerobic capacities.
Collapse
Affiliation(s)
- Steven J Trangmar
- 1Department of Life Sciences, University of Roehampton, London; and 2Centre for Human Performance, Exercise and Rehabilitation, Brunel University London, Uxbridge, United Kingdom
| | | |
Collapse
|
170
|
McGarrah RW, Slentz CA, Kraus WE. The Effect of Vigorous- Versus Moderate-Intensity Aerobic Exercise on Insulin Action. Curr Cardiol Rep 2017; 18:117. [PMID: 27796854 DOI: 10.1007/s11886-016-0797-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Due to the beneficial effects on a wide range of modern medical conditions, most professional societies recommend regular aerobic exercise as part of a healthy lifestyle. Many of the exercise-related health benefits exhibit a dose-response relationship: Up to a point, more exercise is more beneficial. However, recent studies have suggested that different exercise intensities may provide distinct health benefits, independent of energy expenditure (i.e., exercise dose). One of these benefits, primarily mediated by the skeletal muscle, is exercise-related changes in insulin action and glucose homeostasis. Glucose uptake in the exercising muscle occurs through insulin-independent mechanisms whose downstream signaling events ultimately converge with insulin-signaling pathways, a fact that may explain why exercise and insulin have additive effect on skeletal muscle glucose uptake. Although the existing evidence is somewhat conflicting, well-controlled randomized studies suggest that, when controlled for total energy expenditure, moderate-intensity aerobic exercise improves insulin sensitivity more than vigorous-intensity aerobic exercise. The mechanisms underlying this difference are largely unknown. One possible explanation involves enhanced metabolism of fatty acid stores in the skeletal muscle by moderate-intensity exercise, which may directly improve insulin sensitivity. Overall, new technologic and physiologic investigative tools are beginning to shed light on the biology. Further understanding of these mechanisms will lead to better understanding of the clinical implications of a healthy lifestyle and may ultimately offer new therapeutic targets for common medical conditions such as insulin resistance and diabetes.
Collapse
Affiliation(s)
- Robert W McGarrah
- Duke Molecular Physiology Institute, Duke University Medical Center, 300 North Duke Street, Durham, NC, 27701, USA. .,Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC, USA.
| | - Cris A Slentz
- Duke Molecular Physiology Institute, Duke University Medical Center, 300 North Duke Street, Durham, NC, 27701, USA
| | - William E Kraus
- Duke Molecular Physiology Institute, Duke University Medical Center, 300 North Duke Street, Durham, NC, 27701, USA.,Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
171
|
Piil P, Smith Jørgensen T, Egelund J, Damsgaard R, Gliemann L, Hellsten Y, Nyberg M. Exercise training improves blood flow to contracting skeletal muscle of older men via enhanced cGMP signaling. J Appl Physiol (1985) 2017; 124:109-117. [PMID: 28982945 DOI: 10.1152/japplphysiol.00634.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Physical activity has the potential to offset age-related impairments in the regulation of blood flow and O2 delivery to the exercising muscles; however, the mechanisms underlying this effect of physical activity remain poorly understood. The present study examined the role of cGMP in training-induced adaptations in the regulation of skeletal muscle blood flow and oxidative metabolism during exercise in aging humans. We measured leg hemodynamics and oxidative metabolism during exercise engaging the knee extensor muscles in young [ n = 15, 25 ± 1 (SE) yr] and older ( n = 15, 72 ± 1 yr) subjects before and after a period of aerobic high-intensity exercise training. To determine the role of cGMP signaling, pharmacological inhibition of phosphodiesterase 5 (PDE5) was performed. Before training, inhibition of PDE5 increased ( P < 0.05) skeletal muscle blood flow and O2 uptake during moderate-intensity exercise in the older group; however, these effects of PDE5 inhibition were not detected after training. These findings suggest a role for enhanced cGMP signaling in the training-induced improvement of regulation of blood flow in contracting skeletal muscle of older men. NEW & NOTEWORTHY The present study provides evidence for enhanced cyclic GMP signaling playing an essential role in the improved regulation of blood flow in contracting skeletal muscle of older men with aerobic exercise training.
Collapse
Affiliation(s)
- Peter Piil
- Department of Nutrition, Exercise and Sports, University of Copenhagen , Copenhagen , Denmark
| | - Tue Smith Jørgensen
- Department of Nutrition, Exercise and Sports, University of Copenhagen , Copenhagen , Denmark.,Department of Orthopedics, Herlev and Gentofte Hospital, Copenhagen, Denmark
| | - Jon Egelund
- Department of Nutrition, Exercise and Sports, University of Copenhagen , Copenhagen , Denmark
| | - Rasmus Damsgaard
- Department of Nutrition, Exercise and Sports, University of Copenhagen , Copenhagen , Denmark
| | - Lasse Gliemann
- Department of Nutrition, Exercise and Sports, University of Copenhagen , Copenhagen , Denmark
| | - Ylva Hellsten
- Department of Nutrition, Exercise and Sports, University of Copenhagen , Copenhagen , Denmark
| | - Michael Nyberg
- Department of Nutrition, Exercise and Sports, University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
172
|
Nyberg M, Fiorenza M, Lund A, Christensen M, Rømer T, Piil P, Hostrup M, Christensen PM, Holbek S, Ravnholt T, Gunnarsson TP, Bangsbo J. Adaptations to Speed Endurance Training in Highly Trained Soccer Players. Med Sci Sports Exerc 2017; 48:1355-64. [PMID: 26885636 DOI: 10.1249/mss.0000000000000900] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE The present study examined whether a period of additional speed endurance training would improve intense intermittent exercise performance in highly trained soccer players during the season and whether the training changed aerobic metabolism and the level of oxidative enzymes in type I and type II muscle fibers. METHODS During the last 9 wk of the season, 13 semiprofessional soccer players performed additional speed endurance training sessions consisting of two to three sets of 8-10 repetitions of 30-m sprints with 10 s of passive recovery (SET). Before and after SET, subjects completed a double-step exercise protocol that included transitions from standing to moderate-intensity running (~75% HRmax), followed by transitions from moderate- to high-intensity running (~90% HRmax) in which pulmonary oxygen uptake (V˙O2) was determined. In addition, the yo-yo intermittent recovery test level 1 was performed, and a muscle biopsy was obtained at rest. RESULTS The yo-yo intermittent recovery test level 1 performance was 11.6% ± 6.4% (mean ± SD) better (2803 ± 330 vs 3127 ± 383 m, P < 0.05) after SET compared with before SET. In the transition from standing to moderate-intensity running, phase II pulmonary V˙O2 kinetics was 11.4% ± 16.5% faster (P < 0.05), and the running economy at this intensity was 2.3% ± 3.0% better (P < 0.05). These improvements were apparent despite the content of muscle proteins regulating oxidative metabolism (3-hydroxyacyl CoA dehydrogenase, COX IV, and OXPHOS), and capillarization was reduced (P < 0.05). The content of 3-hydroxyacyl CoA dehydrogenase and citrate synthase in type I and type II fibers did not change. CONCLUSION In highly trained soccer players, additional speed endurance training is associated with an improved ability to perform repeated high-intensity work. To what extent the training-induced changes in V˙O2 kinetics and mechanical efficiency in type I fibers caused the improvement in performance warrants further investigation.
Collapse
Affiliation(s)
- Michael Nyberg
- 1Department of Nutrition, Exercise and Sports, University of Copenhagen, DENMARK; 2Team Denmark (Danish Elite Sport Organization), Copenhagen, DENMARK; and 3DTect, Copenhagen, DENMARK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
173
|
Dominelli PB, Archiza B, Ramsook AH, Mitchell RA, Peters CM, Molgat-Seon Y, Henderson WR, Koehle MS, Boushel R, Sheel AW. Effects of respiratory muscle work on respiratory and locomotor blood flow during exercise. Exp Physiol 2017; 102:1535-1547. [DOI: 10.1113/ep086566] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 08/21/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Paolo B. Dominelli
- School of Kinesiology; University of British Columbia; Vancouver BC Canada
| | - Bruno Archiza
- School of Kinesiology; University of British Columbia; Vancouver BC Canada
- Department of Physical Therapy; Federal University of São Carlos; São Carlos São Paulo Brazil
| | - Andrew H. Ramsook
- Centre for Heart Lung Innovation, Providence Health Care Research Institute; University of British Columbia; Vancouver BC Canada
| | - Reid A. Mitchell
- Centre for Heart Lung Innovation, Providence Health Care Research Institute; University of British Columbia; Vancouver BC Canada
| | - Carli M. Peters
- School of Kinesiology; University of British Columbia; Vancouver BC Canada
| | | | | | - Michael S. Koehle
- School of Kinesiology; University of British Columbia; Vancouver BC Canada
- Faculty of Medicine; University of British Columbia; Vancouver BC Canada
| | - Robert Boushel
- School of Kinesiology; University of British Columbia; Vancouver BC Canada
| | - A. William Sheel
- School of Kinesiology; University of British Columbia; Vancouver BC Canada
| |
Collapse
|
174
|
Iepsen UW, Munch GW, Rugbjerg M, Ryrsø CK, Secher NH, Hellsten Y, Lange P, Pedersen BK, Thaning P, Mortensen SP. Leg blood flow is impaired during small muscle mass exercise in patients with COPD. J Appl Physiol (1985) 2017; 123:624-631. [DOI: 10.1152/japplphysiol.00178.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 07/05/2017] [Accepted: 07/12/2017] [Indexed: 11/22/2022] Open
Abstract
Skeletal muscle blood flow is regulated to match the oxygen demand and dysregulation could contribute to exercise intolerance in patients with chronic obstructive pulmonary disease (COPD). We measured leg hemodynamics and metabolites from vasoactive compounds in muscle interstitial fluid and plasma at rest, during one-legged knee-extensor exercise, and during arterial infusions of sodium nitroprusside (SNP) and acetylcholine (ACh), respectively. Ten patients with moderate to severe COPD and eight age- and sex-matched healthy controls were studied. During knee-extensor exercise (10 W), leg blood flow was lower in the patients compared with the controls (1.82 ± 0.11 vs. 2.36 ± 0.14 l/min, respectively; P < 0.05), which compromised leg oxygen delivery (372 ± 26 vs. 453 ± 32 ml O2/min, respectively; P < 0.05). At rest, plasma endothelin-1 (vasoconstrictor) was higher in the patients with COPD ( P < 0.05) and also tended to be higher during exercise ( P = 0.07), whereas the formation of interstitial prostacyclin (vasodilator) was only increased in the controls. There was no difference between groups in the nitrite/nitrate levels (vasodilator) in plasma or interstitial fluid during exercise. Moreover, patients and controls showed similar vasodilatory capacity in response to both endothelium-independent (SNP) and endothelium-dependent (ACh) stimulation. The results suggest that leg muscle blood flow is impaired during small muscle mass exercise in patients with COPD possibly due to impaired formation of prostacyclin and increased levels of endothelin-1. NEW & NOTEWORTHY This study demonstrates that chronic obstructive pulmonary disease (COPD) is associated with a reduced blood flow to skeletal muscle during small muscle mass exercise. In contrast to healthy individuals, interstitial prostacyclin levels did not increase during exercise and plasma endothelin-1 levels were higher in the patients with COPD.
Collapse
Affiliation(s)
- U. W. Iepsen
- Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - G. W. Munch
- Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - M. Rugbjerg
- Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - C. K. Ryrsø
- Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - N. H. Secher
- Department of Anesthesiology, the Copenhagen Muscle Research Center, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Y. Hellsten
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - P. Lange
- Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Respiratory Medicine, University Hospital Hvidovre, Hvidovre, Denmark
- Department of Public Health, Section of Social Medicine, University of Copenhagen, Copenhagen, Denmark; and
| | - B. K. Pedersen
- Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - P. Thaning
- Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Respiratory Medicine, University Hospital Hvidovre, Hvidovre, Denmark
| | - S. P. Mortensen
- Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
175
|
Mortensen SP, Egginton S, Madsen M, Hansen JB, Munch GDW, Iepsen UW, Åkerström T, Pedersen BK, Hellsten Y. Alpha adrenergic receptor blockade increases capillarization and fractional O 2 extraction and lowers blood flow in contracting human skeletal muscle. Acta Physiol (Oxf) 2017; 221:32-43. [PMID: 28199786 DOI: 10.1111/apha.12857] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 01/17/2017] [Accepted: 02/10/2017] [Indexed: 12/28/2022]
Abstract
AIM To assess the effect of elevated basal shear stress on angiogenesis in humans and the role of enhanced skeletal muscle capillarization on blood flow and O2 extraction. METHODS Limb haemodynamics and O2 extraction were measured at rest and during one-leg knee-extensor exercise (12 and 24 W) in 10 healthy untrained young men before and after 4-week treatment with an α1 receptor-antagonist (Terazosin, 1-2 mg day-1 ). Corresponding biopsies were taken from the m. vastus lateralis. RESULTS Resting leg blood flow was increased by 57% 6 h following Terazosin treatment (P < 0.05), while basal capillary-to-fibre ratio was 1.69 ± 0.08 and increased to 1.90 ± 0.08 after treatment (P < 0.05). Leg O2 extraction during knee-extensor exercise was higher (4-5%; P < 0.05), leg blood flow and venous lactate levels lower (6-7%; P < 0.05), while leg VO2 was not different after Terazosin treatment. CONCLUSIONS These results demonstrate that daily treatment with an α-adrenergic receptor blocker induces capillary growth in human skeletal muscle, likely due to increased shear stress. The increase in capillarization resulted in an increased fractional O2 extraction, a lower blood flow and venous lactate levels in the exercising leg. The increase in capillarization, and concomitant functional readouts in the exercising leg, may provide a basis for novel angiotherapy.
Collapse
Affiliation(s)
- S. P. Mortensen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research; Rigshospitalet; University of Copenhagen; Copenhagen Denmark
- Department of Cardiovascular and Renal Research; Institute of Molecular Medicine; University of Southern Denmark; Odense Denmark
| | - S. Egginton
- School of Biomedical Sciences; University of Leeds; Leeds UK
| | - M. Madsen
- Department of Nutrition, Exercise and Sport; University of Copenhagen; Copenhagen Denmark
| | - J. B. Hansen
- Department of Nutrition, Exercise and Sport; University of Copenhagen; Copenhagen Denmark
| | - G. D. W. Munch
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research; Rigshospitalet; University of Copenhagen; Copenhagen Denmark
| | - U. W. Iepsen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research; Rigshospitalet; University of Copenhagen; Copenhagen Denmark
| | - T. Åkerström
- Department of Nutrition, Exercise and Sport; University of Copenhagen; Copenhagen Denmark
| | - B. K. Pedersen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research; Rigshospitalet; University of Copenhagen; Copenhagen Denmark
| | - Y. Hellsten
- Department of Nutrition, Exercise and Sport; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
176
|
Kent JA, Ørtenblad N, Hogan MC, Poole DC, Musch TI. No Muscle Is an Island: Integrative Perspectives on Muscle Fatigue. Med Sci Sports Exerc 2017; 48:2281-2293. [PMID: 27434080 DOI: 10.1249/mss.0000000000001052] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Muscle fatigue has been studied with a variety approaches, tools and technologies. The foci of these studies have ranged tremendously, from molecules to the entire organism. Single cell and animal models have been used to gain mechanistic insight into the fatigue process. The theme of this review is the concept that the mechanisms of muscle fatigue do not occur in isolation in vivo: muscular work is supported by many complex physiological systems, any of which could fail during exercise and thus contribute to fatigue. To advance our overall understanding of fatigue, a combination of models and approaches is necessary. In this review, we examine the roles that neuromuscular properties, intracellular glycogen, oxygen metabolism, and blood flow play in the fatigue process during exercise and pathological conditions.
Collapse
Affiliation(s)
- Jane A Kent
- 1Department of Kinesiology, University of Massachusetts, Amherst MA; 2Institute of Sports Science and Clinical Biomechanics, University of Southern Denmark, Odense, DENMARK; 3Department of Health Sciences, Mid Sweden University, Östersund, SWEDEN; 4Department of Medicine, University of California, San Diego, CA; and 5Department of Kinesiology, Kansas State University, Manhattan, KS
| | | | | | | | | |
Collapse
|
177
|
Absence of resting cardiovascular dysfunction in middle-aged endurance-trained athletes with exaggerated exercise blood pressure responses. J Hypertens 2017; 35:1586-1593. [DOI: 10.1097/hjh.0000000000001365] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
178
|
Bentley RF, Walsh JJ, Drouin PJ, Velickovic A, Kitner SJ, Fenuta AM, Tschakovsky ME. Dietary nitrate restores compensatory vasodilation and exercise capacity in response to a compromise in oxygen delivery in the noncompensator phenotype. J Appl Physiol (1985) 2017; 123:594-605. [PMID: 28596274 DOI: 10.1152/japplphysiol.00953.2016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 06/07/2017] [Accepted: 06/07/2017] [Indexed: 12/16/2022] Open
Abstract
Recently, dietary nitrate supplementation has been shown to improve exercise capacity in healthy individuals through a potential nitrate-nitrite-nitric oxide pathway. Nitric oxide has been shown to play an important role in compensatory vasodilation during exercise under hypoperfusion. Previously, we established that certain individuals lack a vasodilation response when perfusion pressure reductions compromise exercising muscle blood flow. Whether this lack of compensatory vasodilation in healthy, young individuals can be restored with dietary nitrate supplementation is unknown. Six healthy (21 ± 2 yr), recreationally active men completed a rhythmic forearm exercise. During steady-state exercise, the exercising arm was rapidly transitioned from an uncompromised (below heart) to a compromised (above heart) position, resulting in a reduction in local pressure of -31 ± 1 mmHg. Exercise was completed following 5 days of nitrate-rich (70 ml, 0.4 g nitrate) and nitrate-depleted (70 ml, ~0 g nitrate) beetroot juice consumption. Forearm blood flow (in milliliters per minute; brachial artery Doppler and echo ultrasound), mean arterial blood pressure (in millimeters of mercury; finger photoplethysmography), exercising forearm venous effluent (ante-cubital vein catheter), and plasma nitrite concentrations (chemiluminescence) revealed two distinct vasodilatory responses: nitrate supplementation increased (plasma nitrite) compared with placebo (245 ± 60 vs. 39 ± 9 nmol/l; P < 0.001), and compensatory vasodilation was present following nitrate supplementation (568 ± 117 vs. 714 ± 139 ml ⋅ min-1 ⋅ 100 mmHg-1; P = 0.005) but not in placebo (687 ± 166 vs. 697 ± 171 min-1 ⋅ 100 mmHg-1; P = 0.42). As such, peak exercise capacity was reduced to a lesser degree (-4 ± 39 vs. -39 ± 27 N; P = 0.01). In conclusion, dietary nitrate supplementation during a perfusion pressure challenge is an effective means of restoring exercise capacity and enabling compensatory vasodilation.NEW & NOTEWORTHY Previously, we identified young, healthy persons who suffer compromised exercise tolerance when exercising muscle perfusion pressure is reduced as a result of a lack of compensatory vasodilation. The ability of nitrate supplementation to restore compensatory vasodilation in such noncompensators is unknown. We demonstrated that beetroot juice supplementation led to compensatory vasodilation and restored perfusion and exercise capacity. Elevated plasma nitrite is an effective intervention for correcting the absence of compensatory vasodilation in the noncompensator phenotype.
Collapse
Affiliation(s)
- Robert F Bentley
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Jeremy J Walsh
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Patrick J Drouin
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Aleksandra Velickovic
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Sarah J Kitner
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Alyssa M Fenuta
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| | - Michael E Tschakovsky
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
179
|
Bentley RF, Poitras VJ, Hong T, Tschakovsky ME. Characteristics and effectiveness of vasodilatory and pressor compensation for reduced relaxation time during rhythmic forearm contractions. Exp Physiol 2017; 102:621-634. [PMID: 28397384 DOI: 10.1113/ep086069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 03/30/2017] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Reduced relaxation time between contractions in exercise requires increased vasodilatation and/or pressor response to prevent hypoperfusion and potential compromise to exercise tolerance. However, it remains unknown whether and to what extent local vasodilatation and/or systemic pressor compensation occurs and whether the efficacy of compensation is exercise intensity dependent. What is the main finding and its importance? We demonstrate that in a forearm exercise model vasodilatory but not pressor compensation occurs and is adequate to prevent hypoperfusion below but not above ∼40% peak work rate. Inadequate compensation occurs with exercise still well inside the submaximal domain, despite a vasodilatory reserve, and compromises exercise performance. During muscle contraction in rhythmic exercise, muscle blood flow is significantly impeded by microvascular compression. The purpose of this study was to establish the nature and magnitude of vasodilatory and/or pressor compensatory responses during forearm exercise in the face of an increased duration of mechanical microvascular compression, and whether the effectiveness of such compensation was exercise intensity dependent. Seven healthy males (21.0 ± 1.8 years old) completed progressive forearm exercise (24.5 N every 3 min; 2 s contraction-4 s relaxation duty cycle) in two conditions: control (CON), 2 s 100 mmHg forearm cuff inflation during contraction; and impedance (IMP), extension of cuff inflation 2 s beyond contraction. Forearm blood flow (in millilitres per minute); brachial artery Doppler and echo ultrasound), mean arterial blood pressure (in millimetres of mercury; finger photoplethysmography) and exercising forearm venous effluent (antecubital vein catheter) measurements revealed an exercise intensity-dependent compensatory vasodilatation effectiveness whereby increased vasodilatation fully protected forearm blood flow up to the 30% exercise intensity in IMP. Above this exercise intensity, forearm blood flow was defended only in part, although submaximal oxygen uptake was not compromised for any completed work rate. As a result, peak exercise intensity (175 ± 22 versus 196 ± 28 N, P = 0.04) and oxygen delivery (76 ± 14 versus 112 ± 22 ml O2 min-1 , P = 0.01) were significantly reduced in IMP compared with CON. In conclusion, reducing relaxation time compromised exercise capacity without compromise to oxygen uptake. Vasodilatory compensation was complete at lower but not higher exercise intensities, whereas pressor compensation was absent. The reasons for the exercise intensity dependence of the efficacy of vasodilatory compensation remain to be determined.
Collapse
Affiliation(s)
- Robert F Bentley
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada, K7L 3N6
| | - Veronica J Poitras
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada, K7L 3N6
| | - Terrence Hong
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada, K7L 3N6
| | - Michael E Tschakovsky
- School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario, Canada, K7L 3N6
| |
Collapse
|
180
|
Silinskas V, GrŪnovas A, Stanislovaitiene J, Buliuolis A, Trinkunas E, Poderys J. Effect of Electrical Myostimulation on the Function of Lower Leg Muscles. J Strength Cond Res 2017; 31:1577-1584. [PMID: 28538308 DOI: 10.1519/jsc.0000000000001594] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Electrical myostimulation (EMS) method is applied to improve skeletal muscle function. The aim of this study was to evaluate the efficacy of EMS applied to the sole and calf muscles on their strength and on maximal sprint performance. Each of 10 training sessions involved 10 seconds of stimulation and 50 seconds of rest for a total of 10 minutes. After the 10 training sessions, the maximal voluntary contraction (MVC) of right calf muscles increased by 6.0% from 830.0 ± 47.0 N to 878.0 ± 45.3 N (p ≤ 0.05). When EMS was applied to trained athletes, their 10-m sprint performance improved by 2.1% (p ≤ 0.05). In the second part of the study, a 3-week training program with EMS was applied to athletes, which significantly improved their 10-m sprint performance from a standing start by 5.3% and from a running start by 4.7% (p ≤ 0.05). Thus, 10 EMS cycles up to the maximal tolerated intensity applied every other day improved the MVC of foot flexion muscles and 10-m sprint performance from both standing and running starts. Three weeks of EMS training did not affect the intensity of calf muscle blood flow and oxygen saturation at rest. The training program supplemented with 10 EMS sessions produced significantly greater effects on the 10-m sprint performance from both a standing and a running start.
Collapse
Affiliation(s)
- Viktoras Silinskas
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | | | | | | | | | | |
Collapse
|
181
|
Shannon CE, Ghasemi R, Greenhaff PL, Stephens FB. Increasing skeletal muscle carnitine availability does not alter the adaptations to high-intensity interval training. Scand J Med Sci Sports 2017; 28:107-115. [PMID: 28345160 DOI: 10.1111/sms.12885] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2017] [Indexed: 11/27/2022]
Abstract
Increasing skeletal muscle carnitine availability alters muscle metabolism during steady-state exercise in healthy humans. We investigated whether elevating muscle carnitine, and thereby the acetyl-group buffering capacity, altered the metabolic and physiological adaptations to 24 weeks of high-intensity interval training (HIIT) at 100% maximal exercise capacity (Wattmax ). Twenty-one healthy male volunteers (age 23±2 years; BMI 24.2±1.1 kg/m2 ) performed 2 × 3 minute bouts of cycling exercise at 100% Wattmax , separated by 5 minutes of rest. Fourteen volunteers repeated this protocol following 24 weeks of HIIT and twice-daily consumption of 80 g carbohydrate (CON) or 3 g l-carnitine+carbohydrate (CARN). Before HIIT, muscle phosphocreatine (PCr) degradation (P<.0001), glycogenolysis (P<.0005), PDC activation (P<.05), and acetylcarnitine (P<.005) were 2.3-, 2.1-, 1.5-, and 1.5-fold greater, respectively, in exercise bout two compared to bout 1, while lactate accumulation tended (P<.07) to be 1.5-fold greater. Following HIIT, muscle free carnitine was 30% greater in CARN vs CON at rest and remained 40% elevated prior to the start of bout 2 (P<.05). Following bout 2, free carnitine content, PCr degradation, glycogenolysis, lactate accumulation, and PDC activation were all similar between CON and CARN, albeit markedly lower than before HIIT. VO2max , Wattmax , and work output were similarly increased in CON and CARN, by 9, 15, and 23% (P<.001). In summary, increased reliance on non-mitochondrial ATP resynthesis during a second bout of intense exercise is accompanied by increased carnitine acetylation. Augmenting muscle carnitine during 24 weeks of HIIT did not alter this, nor did it enhance muscle metabolic adaptations or performance gains beyond those with HIIT alone.
Collapse
Affiliation(s)
- Christopher E Shannon
- MRC/ARUK Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Nottingham, UK.,Diabetes Division, University of Texas Health Science Centre, San Antonio, TX, USA
| | - Reza Ghasemi
- MRC/ARUK Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Paul L Greenhaff
- MRC/ARUK Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Francis B Stephens
- MRC/ARUK Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Nottingham, UK.,Sport and Health Sciences, University of Exeter, Exeter, UK
| |
Collapse
|
182
|
Physiological responses to incremental, interval, and continuous counterweighted single-leg and double-leg cycling at the same relative intensities. Eur J Appl Physiol 2017; 117:1423-1435. [DOI: 10.1007/s00421-017-3635-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 05/05/2017] [Indexed: 12/20/2022]
|
183
|
Murrant CL, Lamb IR, Novielli NM. Capillary endothelial cells as coordinators of skeletal muscle blood flow during active hyperemia. Microcirculation 2017; 24. [DOI: 10.1111/micc.12348] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 12/28/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Coral L. Murrant
- Department of Human Health and Nutritional Sciences; University of Guelph; Guelph ON Canada
| | - Iain R. Lamb
- Department of Human Health and Nutritional Sciences; University of Guelph; Guelph ON Canada
| | - Nicole M. Novielli
- Department of Human Health and Nutritional Sciences; University of Guelph; Guelph ON Canada
| |
Collapse
|
184
|
Guadalupe-Grau A, Fernández-Elías VE, Ortega JF, Dela F, Helge JW, Mora-Rodriguez R. Effects of 6-month aerobic interval training on skeletal muscle metabolism in middle-aged metabolic syndrome patients. Scand J Med Sci Sports 2017; 28:585-595. [DOI: 10.1111/sms.12881] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2017] [Indexed: 12/20/2022]
Affiliation(s)
- A. Guadalupe-Grau
- Xlab; Department of Biomedical Sciences; Faculty of Health Sciences; Center for Healthy Aging; University of Copenhagen; Copenhagen Denmark
- ImFINE Research Group; Department of Health and Human Performance; Technical University of Madrid; Madrid Spain
| | - V. E. Fernández-Elías
- Exercise Physiology Laboratory at Toledo; University of Castilla-La Mancha; Toledo Spain
- Department of Sport Science; European University of Madrid; Madrid Spain
| | - J. F. Ortega
- Exercise Physiology Laboratory at Toledo; University of Castilla-La Mancha; Toledo Spain
| | - F. Dela
- Xlab; Department of Biomedical Sciences; Faculty of Health Sciences; Center for Healthy Aging; University of Copenhagen; Copenhagen Denmark
| | - J. W. Helge
- Xlab; Department of Biomedical Sciences; Faculty of Health Sciences; Center for Healthy Aging; University of Copenhagen; Copenhagen Denmark
| | - R. Mora-Rodriguez
- Exercise Physiology Laboratory at Toledo; University of Castilla-La Mancha; Toledo Spain
| |
Collapse
|
185
|
Laine MK, Kujala R, Eriksson JG, Kautiainen H, Sarna S, Kujala UM. Costs of diabetes medication among male former elite athletes in later life. Acta Diabetol 2017; 54:335-341. [PMID: 27933516 DOI: 10.1007/s00592-016-0947-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 11/21/2016] [Indexed: 11/30/2022]
Abstract
AIMS Regular physical activity plays a major role, in both prevention and treatment of type 2 diabetes. Less is known whether vigorous physical activity during young adulthood is associated with costs of diabetes medication in later life. The aim of this study is to evaluate this question. METHODS The study population consisted of 1314 former elite-class athletes and 860 matched controls. The former athletes were divided into three groups based on their active career sport: endurance, mixed and power sports. Information on purchases of diabetes medication between 1995 and 2009 was obtained from the drug purchase register of the Finnish Social Insurance Institution. RESULTS The total cost of diabetes medication per person year was significantly lower among the former endurance (mean 81 € [95% CI 33-151 €]) and mixed group athletes (mean 272 € [95% CI 181-388 €]) compared with the controls (mean 376 € [95% CI 284-485 €]), (p < 0.001 and p = 0.045, respectively). Of the former endurance athletes, 0.4% used insulin, while 5.2% of the controls used insulin (p = 0.018). CONCLUSIONS A career as former endurance, sprint, jumper or team game athlete seems to reduce the costs of diabetes medication in later life.
Collapse
Affiliation(s)
- M K Laine
- Department of General Practice and Primary Health Care, Helsinki University Hospital, University of Helsinki, Tukholmankatu 8 B, PL 20, 00140, Helsinki, Finland.
- Vantaa Health Center, Vantaa, Finland.
| | - R Kujala
- Department of Computer Science, Aalto University, Espoo, Finland
| | - J G Eriksson
- Department of General Practice and Primary Health Care, Helsinki University Hospital, University of Helsinki, Tukholmankatu 8 B, PL 20, 00140, Helsinki, Finland
- Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
| | - H Kautiainen
- Primary Health Care Unit, Kuopio University Hospital, Kuopio, Finland
| | - S Sarna
- Department of Public Health, University of Helsinki, Helsinki, Finland
| | - U M Kujala
- Department of Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
186
|
Nyberg M, Egelund J, Mandrup CM, Andersen CB, Hansen KMBE, Hergel IMF, Valbak-Andersen N, Frikke-Schmidt R, Stallknecht B, Bangsbo J, Hellsten Y. Leg vascular and skeletal muscle mitochondrial adaptations to aerobic high-intensity exercise training are enhanced in the early postmenopausal phase. J Physiol 2017; 595:2969-2983. [PMID: 28231611 DOI: 10.1113/jp273871] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/08/2017] [Indexed: 12/15/2022] Open
Abstract
KEY POINTS Exercise training effectively improves vascular and skeletal muscle function; however, these effects of training may be blunted in postmenopausal women as a result of the loss of oestrogens. Accordingly, the capacity to deliver oxygen to the active muscles may also be impaired in postmenopausal women. In both premenopausal and recent postmenopausal women, exercise training was shown to improve leg vascular and skeletal muscle mitochondrial function. Interestingly, these effects were more pronounced in postmenopausal women. Skeletal muscle oxygen supply and utilization were similar in the two groups of women. These findings suggest that the early postmenopausal phase is associated with an enhanced capacity of the leg vasculature and skeletal muscle mitochondria to adapt to exercise training and that the ability to deliver oxygen to match the demand of the active muscles is preserved in the early phase following the menopausal transition. ABSTRACT Exercise training leads to favourable adaptations within skeletal muscle; however, this effect of exercise training may be blunted in postmenopausal women as a result of the loss of oestrogens. Furthermore, postmenopausal women may have an impaired vascular response to acute exercise. We examined the haemodynamic response to acute exercise in matched pre- and postmenopausal women before and after 12 weeks of aerobic high intensity exercise training. Twenty premenopausal and 16 early postmenopausal (mean ± SEM: 3.1 ± 0.5 years after final menstrual period) women only separated by 4 years of age (mean ± SEM: 50 ± 0 years vs. 54 ± 1 years) were included. Before training, leg blood flow, O2 delivery, O2 uptake and lactate release during knee-extensor exercise were similar in pre- and postmenopausal women. Exercise training reduced (P < 0.05) leg blood flow, O2 delivery, O2 uptake, lactate release, blood pressure and heart rate during the same absolute workloads in postmenopausal women. These effects were not detected in premenopausal women. Quadriceps muscle protein contents of mitochondrial complex II, III and IV; endothelial nitric oxide synthase (eNOS); cyclooxygenase (COX)-1; COX-2; and oestrogen-related receptor α (ERRα) were increased (P < 0.05) with training in postmenopausal women, whereas only the levels of mitochondrial complex V, eNOS and COX-2 were increased (P < 0.05) in premenopausal women. These findings demonstrate that vascular and skeletal muscle mitochondrial adaptations to aerobic high intensity exercise training are more pronounced in recent post- compared to premenopausal women, possibly as an effect of enhanced ERRα signalling. Also, the hyperaemic response to acute exercise appears to be preserved in the early postmenopausal phase.
Collapse
Affiliation(s)
- Michael Nyberg
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Jon Egelund
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Camilla M Mandrup
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Caroline B Andersen
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Karen M B E Hansen
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Ida-Marie F Hergel
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | | | - Ruth Frikke-Schmidt
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Bente Stallknecht
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Bangsbo
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Ylva Hellsten
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
187
|
Barclay CJ. Energy demand and supply in human skeletal muscle. J Muscle Res Cell Motil 2017; 38:143-155. [PMID: 28286928 DOI: 10.1007/s10974-017-9467-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 02/14/2017] [Indexed: 12/18/2022]
Abstract
The energy required for muscle contraction is provided by the breakdown of ATP but the amount of ATP in muscles cells is sufficient to power only a short duration of contraction. Buffering of ATP by phosphocreatine, a reaction catalysed by creatine kinase, extends the duration of activity possible but sustained activity depends on continual regeneration of PCr. This is achieved using ATP generated by oxidative processes and, during intense activity, by anaerobic glycolysis. The rate of ATP breakdown ranges from 70 to 140 mM min-1 during isometric contractions of various intensity to as much as 400 mM min-1 during intense, dynamic activity. The maximum rate of oxidative energy supply in untrained people is ~50 mM min-1 which, if the contraction duty cycle is 0.5 as is often the case in cyclic activity, is sufficient to match an ATP breakdown rate during contraction of 100 mM min-1. During brief, intense activity the rate of ATP turnover can exceed the rates of PCr regeneration by combined oxidative and glycolytic energy supply, resulting in a net decrease in PCr concentration. Glycolysis has the capacity to produce between 30 and 50 mM of ATP so that, for example, anaerobic glycolysis could provide ATP at an average of 100 mM min-1 over 30 s of exhausting activity. The creatine kinase reaction plays an important role not only in buffering ATP but also in communicating energy demand from sites of ATP breakdown to the mitochondria. In that role, creatine kinases acts to slow and attenuate the response of mitochondria to changes in energy demand.
Collapse
Affiliation(s)
- C J Barclay
- School of Allied Health Sciences, Griffith University, Gold Coast, QLD, 4222, Australia.
| |
Collapse
|
188
|
Galdino G, Silva AM, Bogão JA, Braz de Oliveira MP, Araújo HAGDO, Oliveira MS, Maldonado ACD, Ulisses de Oliveira H, Borges JBC. Association between respiratory muscle strength and reduction of arterial blood pressure levels after aerobic training in hypertensive subjects. J Phys Ther Sci 2017; 28:3421-3426. [PMID: 28174465 PMCID: PMC5276774 DOI: 10.1589/jpts.28.3421] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 08/23/2016] [Indexed: 11/24/2022] Open
Abstract
[Purpose] The purpose of present study was associate the increase of respiratory muscle
strength with blood pressure levels in hypertensive subjects who underwent an aerobic
exercise program. [Subjects and Methods] 90 hypertensive subjects were divided in two
groups: intervention and control. All participants had an interview with a physiotherapist
and were evaluated by 6-minute walk test, maximal inspiratory pressure, maximal expiratory
pressure, heart rate, systolic blood pressure and diastolic blood pressure, before and
after the 8 weeks. In the intervention group, the subjects underwent aerobic exercise
program, 2 times a week for 8 weeks [Results] After the program, the levels of blood
pressure were significantly reduced and the distance walked in the 6-minute walk test and
the respiratory muscle strength were increased, compared to pre intervention and control
group values. However, there was no correlation between the results provided by 6-minute
walk test, maximal inspiratory pressure and maximal expiratory pressure with systolic
arterial blood pressure levels. Nonetheless, the distance walked correlated with
respiratory muscle strength values, in the intervention group. [Conclusion] The present
study demonstrated that the aerobic training was effective in reducing the arterial blood
pressure in hypertensive subjects associated with an improvement of physical conditioning
and respiratory muscle strength.
Collapse
|
189
|
MacInnis MJ, McGlory C, Gibala MJ, Phillips SM. Investigating human skeletal muscle physiology with unilateral exercise models: when one limb is more powerful than two. Appl Physiol Nutr Metab 2017; 42:563-570. [PMID: 28177712 DOI: 10.1139/apnm-2016-0645] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Direct sampling of human skeletal muscle using the needle biopsy technique can facilitate insight into the biochemical and histological responses resulting from changes in exercise or feeding. However, the muscle biopsy procedure is invasive, and analyses are often expensive, which places pragmatic restraints on sample sizes. The unilateral exercise model can serve to increase statistical power and reduce the time and cost of a study. With this approach, 2 limbs of a participant are randomized to 1 of 2 treatments that can be applied almost concurrently or sequentially depending on the nature of the intervention. Similar to a typical repeated measures design, comparisons are made within participants, which increases statistical power by reducing the amount of between-person variability. A washout period is often unnecessary, reducing the time needed to complete the experiment and the influence of potential confounding variables such as habitual diet, activity, and sleep. Variations of the unilateral exercise model have been employed to investigate the influence of exercise, diet, and the interaction between the 2, on a wide range of variables including mitochondrial content, capillary density, and skeletal muscle hypertrophy. Like any model, unilateral exercise has some limitations: it cannot be used to study variables that potentially transfer across limbs, and it is generally limited to exercises that can be performed in pairs of treatments. Where appropriate, however, the unilateral exercise model can yield robust, well-controlled investigations of skeletal muscle responses to a wide range of interventions and conditions including exercise, dietary manipulation, and disuse or immobilization.
Collapse
Affiliation(s)
- Martin J MacInnis
- Department of Kinesiology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada.,Department of Kinesiology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Chris McGlory
- Department of Kinesiology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada.,Department of Kinesiology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Martin J Gibala
- Department of Kinesiology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada.,Department of Kinesiology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Stuart M Phillips
- Department of Kinesiology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada.,Department of Kinesiology, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
190
|
Bailey DM, Rasmussen P, Overgaard M, Evans KA, Bohm AM, Seifert T, Brassard P, Zaar M, Nielsen HB, Raven PB, Secher NH. Nitrite and
S
-Nitrosohemoglobin Exchange Across the Human Cerebral and Femoral Circulation. Circulation 2017; 135:166-176. [DOI: 10.1161/circulationaha.116.024226] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 11/02/2016] [Indexed: 12/22/2022]
Abstract
Background:
The mechanisms underlying red blood cell (RBC)–mediated hypoxic vasodilation remain controversial, with separate roles for nitrite (
) and
S
-nitrosohemoglobin (SNO-Hb) widely contested given their ability to transduce nitric oxide bioactivity within the microcirculation. To establish their relative contribution in vivo, we quantified arterial-venous concentration gradients across the human cerebral and femoral circulation at rest and during exercise, an ideal model system characterized by physiological extremes of O
2
tension and blood flow.
Methods:
Ten healthy participants (5 men, 5 women) aged 24±4 (mean±SD) years old were randomly assigned to a normoxic (21% O
2
) and hypoxic (10% O
2
) trial with measurements performed at rest and after 30 minutes of cycling at 70% of maximal power output in hypoxia and equivalent relative and absolute intensities in normoxia. Blood was sampled simultaneously from the brachial artery and internal jugular and femoral veins with plasma and RBC nitric oxide metabolites measured by tri-iodide reductive chemiluminescence. Blood flow was determined by transcranial Doppler ultrasound (cerebral blood flow) and constant infusion thermodilution (femoral blood flow) with net exchange calculated via the Fick principle.
Results:
Hypoxia was associated with a mild increase in both cerebral blood flow and femoral blood flow (
P
<0.05 versus normoxia) with further, more pronounced increases observed in femoral blood flow during exercise (
P
<0.05 versus rest) in proportion to the reduction in RBC oxygenation (
r
=0.680–0.769,
P
<0.001). Plasma
gradients reflecting consumption (arterial>venous;
P
<0.05) were accompanied by RBC iron nitrosylhemoglobin formation (venous>arterial;
P
<0.05) at rest in normoxia, during hypoxia (
P
<0.05 versus normoxia), and especially during exercise (
P
<0.05 versus rest), with the most pronounced gradients observed across the bioenergetically more active, hypoxemic, and acidotic femoral circulation (
P
<0.05 versus cerebral). In contrast, we failed to observe any gradients consistent with RBC SNO-Hb consumption and corresponding delivery of plasma
S
-nitrosothiols (
P
>0.05).
Conclusions:
These findings suggest that hypoxia and, to a far greater extent, exercise independently promote arterial-venous delivery gradients of intravascular nitric oxide, with deoxyhemoglobin-mediated
reduction identified as the dominant mechanism underlying hypoxic vasodilation.
Collapse
Affiliation(s)
- Damian M. Bailey
- From Faculty of Medicine, Reichwald Health Sciences Centre, University of British Columbia–Okanagan, Kelowna, BC, Canada (D.M.B.); Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Glamorgan, UK (K.A.E.); Department of Anesthesia, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark (P.R., M.D., A.M.B., T.S., P.B., M.Z., H.B.N., N.H.S.); Université Laval, Québec, QC, Canada (P.B.); and Department of Integrative Physiology and Anatomy,
| | - Peter Rasmussen
- From Faculty of Medicine, Reichwald Health Sciences Centre, University of British Columbia–Okanagan, Kelowna, BC, Canada (D.M.B.); Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Glamorgan, UK (K.A.E.); Department of Anesthesia, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark (P.R., M.D., A.M.B., T.S., P.B., M.Z., H.B.N., N.H.S.); Université Laval, Québec, QC, Canada (P.B.); and Department of Integrative Physiology and Anatomy,
| | - Morten Overgaard
- From Faculty of Medicine, Reichwald Health Sciences Centre, University of British Columbia–Okanagan, Kelowna, BC, Canada (D.M.B.); Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Glamorgan, UK (K.A.E.); Department of Anesthesia, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark (P.R., M.D., A.M.B., T.S., P.B., M.Z., H.B.N., N.H.S.); Université Laval, Québec, QC, Canada (P.B.); and Department of Integrative Physiology and Anatomy,
| | - Kevin A. Evans
- From Faculty of Medicine, Reichwald Health Sciences Centre, University of British Columbia–Okanagan, Kelowna, BC, Canada (D.M.B.); Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Glamorgan, UK (K.A.E.); Department of Anesthesia, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark (P.R., M.D., A.M.B., T.S., P.B., M.Z., H.B.N., N.H.S.); Université Laval, Québec, QC, Canada (P.B.); and Department of Integrative Physiology and Anatomy,
| | - Aske M. Bohm
- From Faculty of Medicine, Reichwald Health Sciences Centre, University of British Columbia–Okanagan, Kelowna, BC, Canada (D.M.B.); Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Glamorgan, UK (K.A.E.); Department of Anesthesia, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark (P.R., M.D., A.M.B., T.S., P.B., M.Z., H.B.N., N.H.S.); Université Laval, Québec, QC, Canada (P.B.); and Department of Integrative Physiology and Anatomy,
| | - Thomas Seifert
- From Faculty of Medicine, Reichwald Health Sciences Centre, University of British Columbia–Okanagan, Kelowna, BC, Canada (D.M.B.); Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Glamorgan, UK (K.A.E.); Department of Anesthesia, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark (P.R., M.D., A.M.B., T.S., P.B., M.Z., H.B.N., N.H.S.); Université Laval, Québec, QC, Canada (P.B.); and Department of Integrative Physiology and Anatomy,
| | - Patrice Brassard
- From Faculty of Medicine, Reichwald Health Sciences Centre, University of British Columbia–Okanagan, Kelowna, BC, Canada (D.M.B.); Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Glamorgan, UK (K.A.E.); Department of Anesthesia, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark (P.R., M.D., A.M.B., T.S., P.B., M.Z., H.B.N., N.H.S.); Université Laval, Québec, QC, Canada (P.B.); and Department of Integrative Physiology and Anatomy,
| | - Morten Zaar
- From Faculty of Medicine, Reichwald Health Sciences Centre, University of British Columbia–Okanagan, Kelowna, BC, Canada (D.M.B.); Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Glamorgan, UK (K.A.E.); Department of Anesthesia, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark (P.R., M.D., A.M.B., T.S., P.B., M.Z., H.B.N., N.H.S.); Université Laval, Québec, QC, Canada (P.B.); and Department of Integrative Physiology and Anatomy,
| | - Henning B. Nielsen
- From Faculty of Medicine, Reichwald Health Sciences Centre, University of British Columbia–Okanagan, Kelowna, BC, Canada (D.M.B.); Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Glamorgan, UK (K.A.E.); Department of Anesthesia, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark (P.R., M.D., A.M.B., T.S., P.B., M.Z., H.B.N., N.H.S.); Université Laval, Québec, QC, Canada (P.B.); and Department of Integrative Physiology and Anatomy,
| | - Peter B. Raven
- From Faculty of Medicine, Reichwald Health Sciences Centre, University of British Columbia–Okanagan, Kelowna, BC, Canada (D.M.B.); Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Glamorgan, UK (K.A.E.); Department of Anesthesia, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark (P.R., M.D., A.M.B., T.S., P.B., M.Z., H.B.N., N.H.S.); Université Laval, Québec, QC, Canada (P.B.); and Department of Integrative Physiology and Anatomy,
| | - Niels H. Secher
- From Faculty of Medicine, Reichwald Health Sciences Centre, University of British Columbia–Okanagan, Kelowna, BC, Canada (D.M.B.); Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Glamorgan, UK (K.A.E.); Department of Anesthesia, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark (P.R., M.D., A.M.B., T.S., P.B., M.Z., H.B.N., N.H.S.); Université Laval, Québec, QC, Canada (P.B.); and Department of Integrative Physiology and Anatomy,
| |
Collapse
|
191
|
Ives SJ, Amann M, Venturelli M, Witman MAH, Groot HJ, Wray DW, Morgan DE, Stehlik J, Richardson RS. The Mechanoreflex and Hemodynamic Response to Passive Leg Movement in Heart Failure. Med Sci Sports Exerc 2017; 48:368-76. [PMID: 26418560 DOI: 10.1249/mss.0000000000000782] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BACKGROUND Sensitization of mechanosensitive afferents, which contribute to the exercise pressor reflex, has been recognized as a characteristic of patients with heart failure (HF); however, the hemodynamic implications of this hypersensitivity are unclear. OBJECTIVES The present study used passive leg movement (PLM) and intrathecal injection of fentanyl to blunt the afferent portion of this reflex arc to better understand the role of the mechanoreflex on central and peripheral hemodynamics in HF. METHODS Femoral blood flow (FBF), mean arterial pressure, femoral vascular conductance, HR, stroke volume, cardiac output, ventilation, and muscle oxygenation of the vastus lateralis were assessed in 10 patients with New York Heart Association class II HF at baseline and during 3 min of PLM both with fentanyl and without (control). RESULTS Fentanyl had no effect on baseline measures but increased (control vs fentanyl, P < 0.05) the peak PLM-induced change in FBF (493 ± 155 vs 804 ± 198 ΔmL·min(-1)) and femoral vascular conductance (4.7 ± 2 vs 8.5 ± 3 ΔmL·min(-1)·mm Hg)(-1) while norepinephrine spillover (103% ± 19% vs 58% ± 17%Δ) and retrograde FBF (371 ± 115 vs 260 ± 68 ΔmL·min(-1)) tended to be reduced (P < 0.10). In addition, fentanyl administration resulted in greater PLM-induced increases in muscle oxygenation, suggestive of increased microvascular perfusion. Fentanyl had no effect on the ventilation, mean arterial pressure, HR, stroke volume, or cardiac output response to PLM. CONCLUSIONS Although movement-induced central hemodynamics were unchanged by afferent blockade, peripheral hemodynamic responses were significantly enhanced. Thus, in patients with HF, a heightened mechanoreflex seems to augment peripheral sympathetic vasoconstriction in response to movement, a phenomenon that may contribute to exercise intolerance in this population.
Collapse
Affiliation(s)
- Stephen J Ives
- 1Geriatric Research, Education, and Clinical Center, George E. Wahlen Department of Veteran Affairs Medical Center, Salt Lake City, UT; 2Department of Internal Medicine, University of Utah, Salt Lake City, UT; 3Health and Exercise Sciences Department, Skidmore College, Saratoga Springs, NY; 4Department of Exercise and Sport Science, University of Utah, Salt Lake City, UT; 5Department of Biomedical Sciences for Health, University of Milan, Milan, ITALY; 6Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE; and 7Department of Anesthesiology, University of Utah, Salt Lake City, UT
| | | | | | | | | | | | | | | | | |
Collapse
|
192
|
Rashedi E, Nussbaum MA. Quantifying the history dependency of muscle recovery from a fatiguing intermittent task. J Biomech 2017; 51:26-31. [DOI: 10.1016/j.jbiomech.2016.11.061] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 10/05/2016] [Accepted: 11/19/2016] [Indexed: 11/25/2022]
|
193
|
Pereira RM, Moura LPD, Muñoz VR, Silva ASRD, Gaspar RS, Ropelle ER, Pauli JR. Molecular mechanisms of glucose uptake in skeletal muscle at rest and in response to exercise. MOTRIZ: REVISTA DE EDUCACAO FISICA 2017. [DOI: 10.1590/s1980-6574201700si0004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
| | | | | | | | | | | | - José Rodrigo Pauli
- Universidade Estadual de Campinas, Brazil; Universidade Estadual de Campinas, Brazil
| |
Collapse
|
194
|
Abstract
This perspective highlights some of the key contributions of Professor Bengt Saltin (1935-2014) to exercise physiology. The emergence of exercise physiology from work physiology as his career began is discussed as are his contributions in a number of areas. Saltin's open and question-based style of leadership is a model for the future of our field.
Collapse
Affiliation(s)
- Michael J Joyner
- Department of Anesthesiology, Mayo Clinic, Rochester, MN 55905, USA.,Department of Anesthesiology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
195
|
Gibala MJ. Using exercise training to understand control of skeletal muscle metabolism. Appl Physiol Nutr Metab 2016; 42:108-110. [PMID: 27959642 DOI: 10.1139/apnm-2016-0356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bengt Saltin believed that exercise was the unsurpassed tool to study human integrative physiology. He demonstrated this over the course of his career by employing physical training as a model to advance our understanding of skeletal muscle metabolic control and the impact of physical activity on performance and health. Bengt was also a pioneer in advocating the concept of exercise is medicine. His scientific curiosity was perhaps exceeded only by his generosity.
Collapse
Affiliation(s)
- Martin J Gibala
- Department of Kinesiology, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4K1, Canada.,Department of Kinesiology, McMaster University, 1280 Main St. W., Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
196
|
Iepsen UW, Munch GDW, Rugbjerg M, Rinnov AR, Zacho M, Mortensen SP, Secher NH, Ringbaek T, Pedersen BK, Hellsten Y, Lange P, Thaning P. Effect of endurance versus resistance training on quadriceps muscle dysfunction in COPD: a pilot study. Int J Chron Obstruct Pulmon Dis 2016; 11:2659-2669. [PMID: 27822028 PMCID: PMC5087783 DOI: 10.2147/copd.s114351] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Introduction Exercise is an important countermeasure to limb muscle dysfunction in COPD. The two major training modalities in COPD rehabilitation, endurance training (ET) and resistance training (RT), may both be efficient in improving muscle strength, exercise capacity, and health-related quality of life, but the effects on quadriceps muscle characteristics have not been thoroughly described. Methods Thirty COPD patients (forced expiratory volume in 1 second: 56% of predicted, standard deviation [SD] 14) were randomized to 8 weeks of ET or RT. Vastus lateralis muscle biopsies were obtained before and after the training intervention to assess muscle morphology and metabolic and angiogenic factors. Symptom burden, exercise capacity (6-minute walking and cycle ergometer tests), and vascular function were also assessed. Results Both training modalities improved symptom burden and exercise capacity with no difference between the two groups. The mean (SD) proportion of glycolytic type IIa muscle fibers was reduced after ET (from 48% [SD 11] to 42% [SD 10], P<0.05), whereas there was no significant change in muscle fiber distribution with RT. There was no effect of either training modality on muscle capillarization, angiogenic factors, or vascular function. After ET the muscle protein content of phosphofructokinase was reduced (P<0.05) and the citrate synthase content tended increase (P=0.08) but no change was observed after RT. Conclusion Although both ET and RT improve symptoms and exercise capacity, ET induces a more oxidative quadriceps muscle phenotype, counteracting muscle dysfunction in COPD.
Collapse
Affiliation(s)
- Ulrik Winning Iepsen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Denmark
| | - Gregers Druedal Wibe Munch
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Denmark
| | - Mette Rugbjerg
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Denmark
| | - Anders Rasmussen Rinnov
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Denmark
| | - Morten Zacho
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Denmark
| | - Stefan Peter Mortensen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Denmark; Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense
| | - Niels H Secher
- Department of Anesthesiology, University of Copenhagen, Rigshospitalet, Copenhagen
| | - Thomas Ringbaek
- Department of Respiratory Medicine, University Hospital Hvidovre, Hvidovre
| | - Bente Klarlund Pedersen
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Denmark
| | - Ylva Hellsten
- Department of Nutrition, Exercise and Sports, University of Copenhagen
| | - Peter Lange
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Denmark; Department of Respiratory Medicine, University Hospital Hvidovre, Hvidovre; Department of Public Health, Section of Social Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Pia Thaning
- The Centre of Inflammation and Metabolism and the Centre for Physical Activity Research, Rigshospitalet, University of Copenhagen, Denmark; Department of Respiratory Medicine, University Hospital Hvidovre, Hvidovre
| |
Collapse
|
197
|
Evaluation of Cardiac, Vascular, and Skeletal Muscle Function With MRI: Novel Physiological End Points in Cardiac Rehabilitation Research. Can J Cardiol 2016; 32:S388-S396. [DOI: 10.1016/j.cjca.2016.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/23/2016] [Accepted: 07/09/2016] [Indexed: 12/16/2022] Open
|
198
|
Calbet JAL, González-Alonso J, Helge JW, Søndergaard H, Munch-Andersen T, Saltin B, Boushel R. Central and peripheral hemodynamics in exercising humans: leg vs arm exercise. Scand J Med Sci Sports 2016; 25 Suppl 4:144-57. [PMID: 26589128 DOI: 10.1111/sms.12604] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2015] [Indexed: 12/22/2022]
Abstract
In humans, arm exercise is known to elicit larger increases in arterial blood pressure (BP) than leg exercise. However, the precise regulation of regional vascular conductances (VC) for the distribution of cardiac output with exercise intensity remains unknown. Hemodynamic responses were assessed during incremental upright arm cranking (AC) and leg pedalling (LP) to exhaustion (Wmax) in nine males. Systemic VC, peak cardiac output (Qpeak) (indocyanine green) and stroke volume (SV) were 18%, 23%, and 20% lower during AC than LP. The mean BP, the rate-pressure product and the associated myocardial oxygen demand were 22%, 12%, and 14% higher, respectively, during maximal AC than LP. Trunk VC was reduced to similar values at Wmax. At Wmax, muscle mass-normalized VC and fractional O2 extraction were lower in the arm than the leg muscles. However, this was compensated for during AC by raising perfusion pressure to increase O2 delivery, allowing a similar peak VO2 per kg of muscle mass in both extremities. In summary, despite a lower Qpeak during arm cranking the cardiovascular strain is much higher than during leg pedalling. The adjustments of regional conductances during incremental exercise to exhaustion depend mostly on the relative intensity of exercise and are limb-specific.
Collapse
Affiliation(s)
- J A L Calbet
- Department of Physical Education and Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Canary Islands, Spain.,The Copenhagen Muscle Research Centre, Rigshospitalet, Copenhagen N, Denmark
| | - J González-Alonso
- The Copenhagen Muscle Research Centre, Rigshospitalet, Copenhagen N, Denmark.,Centre for Sports Medicine and Human Performance, Brunel University London, Uxbridge, UK
| | - J W Helge
- The Copenhagen Muscle Research Centre, Rigshospitalet, Copenhagen N, Denmark.,Centre for Healthy Ageing, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - H Søndergaard
- The Copenhagen Muscle Research Centre, Rigshospitalet, Copenhagen N, Denmark
| | - T Munch-Andersen
- The Copenhagen Muscle Research Centre, Rigshospitalet, Copenhagen N, Denmark
| | - B Saltin
- The Copenhagen Muscle Research Centre, Rigshospitalet, Copenhagen N, Denmark
| | - R Boushel
- The Copenhagen Muscle Research Centre, Rigshospitalet, Copenhagen N, Denmark.,School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
199
|
Fadel PJ. Reflex control of the circulation during exercise. Scand J Med Sci Sports 2016; 25 Suppl 4:74-82. [PMID: 26589120 DOI: 10.1111/sms.12600] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2015] [Indexed: 12/01/2022]
Abstract
Appropriate cardiovascular and hemodynamic adjustments are necessary to meet the metabolic demands of working skeletal muscle during exercise. Alterations in the sympathetic and parasympathetic branches of the autonomic nervous system are fundamental in ensuring these adjustments are adequately made. Several neural mechanisms are responsible for the changes in autonomic activity with exercise and through complex interactions, contribute to the cardiovascular and hemodynamic changes in an intensity-dependent manner. This short review is from a presentation made at the Saltin Symposium June 2-4, 2015 in Copenhagen, Denmark. As such, the focus will be on reflex control of the circulation with an emphasis on the work of the late Dr. Bengt Saltin. Moreover, a concerted effort is made to highlight the novel and insightful concepts put forth by Dr. Saltin in his last published review article on the regulation of skeletal muscle blood flow in humans. Thus, the multiple roles played by adenosine triphosphate (ATP) including its ability to induce vasodilatation, override sympathetic vasoconstriction and stimulate skeletal muscle afferents (exercise pressor reflex) are discussed and a conceptual framework is set suggesting a major role of ATP in blood flow regulation during exercise.
Collapse
Affiliation(s)
- P J Fadel
- Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, Texas, USA
| |
Collapse
|
200
|
Boushel R. Linking skeletal muscle blood flow and metabolism to the limits of human performance. Appl Physiol Nutr Metab 2016; 42:111-115. [PMID: 28006435 DOI: 10.1139/apnm-2016-0393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Over the last 50 years, Bengt Saltin's contributions to our understanding of physiology of the circulation, the matching of the circulation to muscle metabolism, and the underlying mechanisms that set the limits for exercise performance were enormous. His research addressed the key questions in the field using sophisticated experimental methods including field expeditions. From the Dallas Bedrest Study to the 1-leg knee model to the physiology of lifelong training, his prodigious body of work was foundational in the field of exercise physiology and his leadership propelled integrative human physiology into the mainstream of biological sciences.
Collapse
Affiliation(s)
- Robert Boushel
- School of Kinesiology, University of British Columbia, 210-6100 University Boulevard, Vancouver, BC V6T 1Z1, Canada.,School of Kinesiology, University of British Columbia, 210-6100 University Boulevard, Vancouver, BC V6T 1Z1, Canada
| |
Collapse
|