151
|
Kong N, Lin K, Li H, Chang J. Synergy effects of copper and silicon ions on stimulation of vascularization by copper-doped calcium silicate. J Mater Chem B 2014; 2:1100-1110. [PMID: 32261627 DOI: 10.1039/c3tb21529f] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Copper (Cu) has been reported to be able to stimulate vascularization/angiogenesis, which is critical for regeneration of vascularized tissue in tissue engineering. Silicate bioceramics have also been reported to have stimulatory effects on vascularization due to the silicon (Si) ions released from silicate biomaterials. Therefore, we hypothesize that a combination of Cu and Si ions may show synergy effects on vascularization. Therefore, a copper-doped calcium silicate bioceramic (Cu-CaSiO3, Cu-CS) was designed and synthesized with the purpose to enhance the stimulatory effects of copper salts or pure silicate bioceramics on vascularization by combining the effects of Cu and Si ions. The cytocompatibility of Cu-CS was firstly assessed by testing the influence of Cu-CS ion extracts on proliferation of human umbilical vein endothelial cells (HUVECs). Thereafter, vascularization of HUVECs on ECMatrix™ gel or co-cultured with human dermal fibroblasts (HDFs) in Cu-CS extracts was evaluated and expression of angiogenic growth factors was analyzed. Results revealed that, as compared to CS extracts and media containing soluble CuSO4, Cu-CS extracts possessed stronger stimulatory effects on upregulation of angiogenic growth factors, which finally resulted in better stimulatory effects on vascularization. During the vascularization process, paracrine effects dominated in the co-culture system. In addition, lower concentrations of Cu and Si ions released from Cu-CS than those released from pure CS or CuSO4 were enough to stimulate vascularization, which indicated that there were synergy effects between Cu and Si ions during stimulation of vascularization by Cu-CS. Taken together, the designed Cu-CS may be suitable as a new biomaterial for regenerating blood vessels in tissue engineering.
Collapse
Affiliation(s)
- Ni Kong
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiaotong University, 1954 HuaShan Road, Shanghai 200030, China.
| | | | | | | |
Collapse
|
152
|
The ginsenoside Rg1 prevents transverse aortic constriction-induced left ventricular hypertrophy and cardiac dysfunction by inhibiting fibrosis and enhancing angiogenesis. J Cardiovasc Pharmacol 2013; 62:50-7. [PMID: 23846802 DOI: 10.1097/fjc.0b013e31828f8d45] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Ginsenoside Rg1, an important and active ingredient of Panax ginseng, has been shown to exert cardioprotective effects in vivo. The present study aimed to test the hypothesis that ginsenoside Rg1 attenuates cardiac dysfunction in a transverse aortic constriction (TAC)-induced left ventricular hypertrophy in vivo via proangiogenic and antifibrotic effects. METHODS This study investigated the effects of ginsenoside Rg1 in a rat model of TAC-induced left ventricular hypertrophy. Cardiac function was assessed by echocardiography. The antifibrotic and proangiogenic effects were assessed by histopathology and mRNA expression of procollagen I, III, and vascular endothelial growth factor (VEGF) through quantitative real-time PCR. The expression of phosphorylation of Akt, p38 mitogen-activated protein kinase (MAPK), hypoxia inducible factor-1 (HIF-1), and VEGF proteins were examined by Western blotting. RESULTS Ginsenoside Rg1 treatment significantly decreased TAC-induced myocardial fibrosis and left ventricular hypertrophy, and preserved cardiac function. Ginsenoside Rg1 administration enhanced angiogenesis by increasing the expression of HIF-1 and VEGF. These cardioprotective effects of ginsenoside Rg1 are partially related to the activation of phospho-Akt and inhibition of p38 MAPK. CONCLUSIONS Ginsenoside Rg1 exhibited protective effect against TAC-induced left ventricular hypertrophy and cardiac dysfunction, which is potentially associated with phospho-Akt activation and p38 MAPK inhibition.
Collapse
|
153
|
Kang YJ, Zheng L. Rejuvenation: an integrated approach to regenerative medicine. Regen Med Res 2013; 1:7. [PMID: 25984326 PMCID: PMC4376090 DOI: 10.1186/2050-490x-1-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 10/02/2013] [Indexed: 02/05/2023] Open
Abstract
The word "rejuvenate" found in the Merriam-Webster dictionary is (1) to make young or youthful again: give new vigor to, and (2) to restore to an original or new state. Regenerative medicine is the process of creating living, functional tissues to repair or replace tissue or organ function lost due to age, disease, damage, or congenital defects. To accomplish this, approaches including transplantation, tissue engineering, cell therapy, and gene therapy are brought into action. These all use exogenously prepared materials to forcefully mend the failed organ. The adaptation of the materials in the host and their integration into the organ are all uncertain. It is a common sense that tissue injury in the younger is easily repaired and the acute injury is healed better and faster. Why does the elder have a diminished capacity of self-repairing, or why does chronic injury cause the loss of the self-repairing capacity? There must be some critical elements that are involved in the repair process, but are suppressed in the elder or under the chronic injury condition. Rejuvenation of the self-repair mechanism would be an ideal solution for functional recovery of the failed organ. To achieve this, it would involve renewal of the injury signaling, reestablishment of the communication and transportation system, recruitment of the materials for repairing, regeneration of the failed organ, and rehabilitation of the renewed organ. It thus would require a comprehensive understanding of developmental biology and a development of new approaches to activate the critical players to rejuvenate the self-repair mechanism in the elder or under chronic injury condition. Efforts focusing on rejuvenation would expect an alternative, if not a better, accomplishment in the regenerative medicine.
Collapse
Affiliation(s)
- Y James Kang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041 P.R. China ; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY 40292 USA
| | - Lily Zheng
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041 P.R. China
| |
Collapse
|
154
|
Copper promotion of angiogenesis in isolated rat aortic ring: role of vascular endothelial growth factor. J Nutr Biochem 2013; 25:44-9. [PMID: 24314864 DOI: 10.1016/j.jnutbio.2013.08.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 08/07/2013] [Accepted: 08/29/2013] [Indexed: 02/05/2023]
Abstract
Copper stimulation of angiogenesis at the organ system level is vascular endothelial growth factor (VEGF) dependent, but copper stimulation of vascular endothelial cell proliferation in cultures is VEGF independent. The present study was undertaken to use isolated rat aortic rings to understand the seemly controversial observations between in vivo and in vitro studies. The thoracic aorta was isolated from Sprague Dawley rats (8-10 weeks) and sectioned into 1.0-mm thick vascular rings for culturing. Copper sulfide at a final concentration of 5, 25, 50 or 100 μM was added to the cultures and maintained for 8 days. A copper chelator, tetraethylenepentamine (TEPA) at a final concentration of 25 μM, was added to some cultures to block the effect of copper. An anti-VEGF antibody was used to determine the role of VEGF in copper promotion of angiogenesis. The data obtained showed that copper at 5 μM in cultures stimulated the vascular formation; an effect was blocked by TEPA. Copper at concentrations above 50 μM lost the proangiogenesis effect. However, copper at 5 μM did not enhance the production of VEGF, and concentrations above 50 μM significantly increased VEGF production. On the other hand, the treatment with anti-VEGF antibody completely blocked the proangiogenesis effect of 5-μM copper. This study thus demonstrates that VEGF is essential for angiogenesis but the proangiogenesis effect of copper does not act through enhanced production of VEGF.
Collapse
|
155
|
Waqar M, Vohra AH. Hepatocellular carcinoma in a young man with resting and postural tremors. BMJ Case Rep 2013; 2013:bcr-2013-201198. [PMID: 24081601 DOI: 10.1136/bcr-2013-201198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
A 25-year-old man who was normally fit and well, presented with a 2-year history of progressively worsening tremor. His tremor was generalised, affecting head, neck and all four limbs. One of the patient's brothers had suffered from similar problems, but never sought medical attention. Examination revealed a generalised tremor, of greater amplitude on the patient's left side, which increased in its amplitude upon exertion. Slit-lamp examination revealed bilateral Kayser-Fleischer rings and serum caeruloplasmin was found to be low, while 24 h urinary copper excretion was elevated. A diagnosis of Wilson's disease was made and an abdominal ultrasound was performed, revealing evidence of portal hypertension and a hyperechoic hepatic nodule, later confirmed to be hepatocellular carcinoma. The patient underwent partial hepatic resection and was started on D-penicillamine.
Collapse
|
156
|
Narayanan G, R. BS, Vuyyuru H, Muthuvel B, Konerirajapuram Natrajan S. CTR1 silencing inhibits angiogenesis by limiting copper entry into endothelial cells. PLoS One 2013; 8:e71982. [PMID: 24039729 PMCID: PMC3767743 DOI: 10.1371/journal.pone.0071982] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 07/05/2013] [Indexed: 11/19/2022] Open
Abstract
Increased levels of intracellular copper stimulate angiogenesis in human umbilical vein endothelial cells (HUVECs). Copper transporter 1 (CTR1) is a copper importer present in the cell membrane and plays a major role in copper transport. In this study, three siRNAs targeting CTR1 mRNA were designed and screened for gene silencing. HUVECs when exposed to 100 µM copper showed 3 fold increased proliferation, migration by 1.8-fold and tube formation by 1.8-fold. One of the designed CTR1 siRNA (si 1) at 10 nM concentration decreased proliferation by 2.5-fold, migration by 4-fold and tube formation by 2.8-fold. Rabbit corneal packet assay also showed considerable decrease in matrigel induced blood vessel formation by si 1 when compared to untreated control. The designed si 1 when topically applied inhibited angiogenesis. This can be further developed for therapeutic application.
Collapse
Affiliation(s)
- Gomathy Narayanan
- R. S. Mehta Jain Department of Biochemistry and Cell Biology, Vision Research Foundation, Chennai, India
- Birla Institute of Technology and Science, Pilani (Rajasthan), India
| | - Bharathidevi S. R.
- R. S. Mehta Jain Department of Biochemistry and Cell Biology, Vision Research Foundation, Chennai, India
| | - Harish Vuyyuru
- R. S. Mehta Jain Department of Biochemistry and Cell Biology, Vision Research Foundation, Chennai, India
| | - Bharathselvi Muthuvel
- R. S. Mehta Jain Department of Biochemistry and Cell Biology, Vision Research Foundation, Chennai, India
- Birla Institute of Technology and Science, Pilani (Rajasthan), India
| | | |
Collapse
|
157
|
Thattil R, Dufour JF. Hepatocellular carcinoma in a non-cirrhotic patient with Wilson's disease. World J Gastroenterol 2013; 19:2110-3. [PMID: 23599633 PMCID: PMC3623991 DOI: 10.3748/wjg.v19.i13.2110] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Revised: 12/03/2012] [Accepted: 12/15/2012] [Indexed: 02/06/2023] Open
Abstract
We report the exceptional case of hepatocellular carcinoma in a non-cirrhotic patient, whose Wilson’s disease was diagnosed at the unusual age of 58 years. The liver histology revealed macrovesicular steatosis with fibrosis, but no cirrhosis. The disease was treated with D-penicillamine for 3 years until acute discomfort in the right upper quadrant led to detection of multifocal hepatocellular carcinoma, which was successfully resected. The histological examination confirmed the malignant nature of the 4 lesions, which were classified according to Edmondson and Steiner as poorly differentiated hepatocellular carcinoma grade 3. The non-tumoral parenchyma showed 80% steatosis with ballooned cells, lobular inflammation, septal fibrosis but no cirrhosis. Hepatocellular carcinoma is rare in Wilson’s disease, especially in the absence of cirrhosis. The literature’s 28 published cases are reviewed and the contributory role of copper in the hepatocarcinogenic process is discussed.
Collapse
|
158
|
Matak P, Zumerle S, Mastrogiannaki M, El Balkhi S, Delga S, Mathieu JRR, Canonne-Hergaux F, Poupon J, Sharp PA, Vaulont S, Peyssonnaux C. Copper deficiency leads to anemia, duodenal hypoxia, upregulation of HIF-2α and altered expression of iron absorption genes in mice. PLoS One 2013; 8:e59538. [PMID: 23555700 PMCID: PMC3610650 DOI: 10.1371/journal.pone.0059538] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 02/15/2013] [Indexed: 01/25/2023] Open
Abstract
Iron and copper are essential trace metals, actively absorbed from the proximal gut in a regulated fashion. Depletion of either metal can lead to anemia. In the gut, copper deficiency can affect iron absorption through modulating the activity of hephaestin - a multi-copper oxidase required for optimal iron export from enterocytes. How systemic copper status regulates iron absorption is unknown. Mice were subjected to a nutritional copper deficiency-induced anemia regime from birth and injected with copper sulphate intraperitoneally to correct the anemia. Copper deficiency resulted in anemia, increased duodenal hypoxia and Hypoxia inducible factor 2α (HIF-2α) levels, a regulator of iron absorption. HIF-2α upregulation in copper deficiency appeared to be independent of duodenal iron or copper levels and correlated with the expression of iron transporters (Ferroportin - Fpn, Divalent Metal transporter - Dmt1) and ferric reductase - Dcytb. Alleviation of copper-dependent anemia with intraperitoneal copper injection resulted in down regulation of HIF-2α-regulated iron absorption genes in the gut. Our work identifies HIF-2α as an important regulator of iron transport machinery in copper deficiency.
Collapse
Affiliation(s)
- Pavle Matak
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- Department of Pharmacology and Cancer Biology, Duke University, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Sara Zumerle
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Maria Mastrogiannaki
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | | | - Stephanie Delga
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Jacques R. R. Mathieu
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - François Canonne-Hergaux
- INSERM U1043-CPTP, Toulouse, France
- CNRS, U5282, Toulouse, France
- Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, France
| | - Joel Poupon
- Laboratoire de Toxicologie Biologique, Hôpital Lariboisière, Paris, France
| | - Paul A. Sharp
- King’s College London, Diabetes & Nutritional Sciences Division, London, United Kingdom
| | - Sophie Vaulont
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Carole Peyssonnaux
- INSERM, U1016, Institut Cochin, Paris, France
- CNRS, UMR8104, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- * E-mail:
| |
Collapse
|
159
|
Alfaidy N, Chauvet S, Donadio-Andrei S, Salomon A, Saoudi Y, Richaud P, Aude-Garcia C, Hoffmann P, Andrieux A, Moulis JM, Feige JJ, Benharouga M. Prion protein expression and functional importance in developmental angiogenesis: role in oxidative stress and copper homeostasis. Antioxid Redox Signal 2013; 18:400-11. [PMID: 22861352 DOI: 10.1089/ars.2012.4637] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
AIM It has been convincingly shown that oxidative stress and toxicity by deregulated metals, such as copper (Cu), are tightly linked to the development of pre-eclampsia and intrauterine growth retardation (IUGR), the most threatening pathologies of human pregnancy. However, mechanisms implemented to control these effects are far from being understood. Among proteins that bind Cu and insure cellular protection against oxidative stress is the cellular prion protein (PrP(C)), a glycosyl phosphatidyl inositol-anchored glycoprotein, which we reported to be highly expressed in human placenta. Herein, we investigated the pathophysiological role of PrP(C) in Cu and oxidative stress homeostasis in vitro using human placenta and trophoblast cells, and in vivo using three strains of mice (C57Bl6, PrP(C) knockout mice [PrP(-/-)], and PrP(C) overexpressing mice [Tga20]). RESULTS At the cellular level, PrP(C) protection against oxidative stress was established in multiple angiogenic processes: proliferation, migration, and tube-like organization. For the animal models, lack (PrP(-/-)) or overexpression (Tga20) of PrP(C) in gravid mice caused severe IUGR that was correlated with a decrease in litter size, changes in Cu homeostasis, increase in oxidative stress response, development of hypoxic environment, failure in placental function, and maintenance of growth defects of the offspring even 7.5 months after delivery. INNOVATION PrP(C) could serve as a marker for the idiopathic IUGR disease. CONCLUSION These findings demonstrate the stress-protective role of PrP(C) during development, and propose PrP(C) dysregulation as a novel causative element of IUGR.
Collapse
Affiliation(s)
- Nadia Alfaidy
- Commissariat à l'Energie Atomique (CEA), DSV-iRTSV, Grenoble, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Stähli C, Muja N, Nazhat SN. Controlled Copper Ion Release from Phosphate-Based Glasses Improves Human Umbilical Vein Endothelial Cell Survival in a Reduced Nutrient Environment. Tissue Eng Part A 2013; 19:548-57. [DOI: 10.1089/ten.tea.2012.0223] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Christoph Stähli
- Department of Mining and Materials Engineering, McGill University, Montreal, Canada
| | - Naser Muja
- Department of Mining and Materials Engineering, McGill University, Montreal, Canada
| | - Showan N. Nazhat
- Department of Mining and Materials Engineering, McGill University, Montreal, Canada
| |
Collapse
|
161
|
Han J, Fei G, Li G, Xia H. High Intensity Focused Ultrasound Triggered Shape Memory and Drug Release from Biodegradable Polyurethane. MACROMOL CHEM PHYS 2013. [DOI: 10.1002/macp.201200576] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
162
|
Piret JP, Jacques D, Audinot JN, Mejia J, Boilan E, Noël F, Fransolet M, Demazy C, Lucas S, Saout C, Toussaint O. Copper(II) oxide nanoparticles penetrate into HepG2 cells, exert cytotoxicity via oxidative stress and induce pro-inflammatory response. NANOSCALE 2012; 4:7168-7184. [PMID: 23070296 DOI: 10.1039/c2nr31785k] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The potential toxic effects of two types of copper(II) oxide (CuO) nanoparticles (NPs) with different specific surface areas, different shapes (rod or spheric), different sizes as raw materials and similar hydrodynamic diameter in suspension were studied on human hepatocarcinoma HepG2 cells. Both CuO NPs were shown to be able to enter into HepG2 cells and induce cellular toxicity by generating reactive oxygen species. CuO NPs increased the abundance of several transcripts coding for pro-inflammatory interleukins and chemokines. Transcriptomic data, siRNA knockdown and DNA binding activities suggested that Nrf2, NF-κB and AP-1 were implicated in the response of HepG2 cells to CuO NPs. CuO NP incubation also induced activation of MAPK pathways, ERKs and JNK/SAPK, playing a major role in the activation of AP-1. In addition, cytotoxicity, inflammatory and antioxidative responses and activation of intracellular transduction pathways induced by rod-shaped CuO NPs were more important than spherical CuO NPs. Measurement of Cu(2+) released in cell culture medium suggested that Cu(2+) cations released from CuO NPs were involved only to a small extent in the toxicity induced by these NPs on HepG2 cells.
Collapse
Affiliation(s)
- Jean-Pascal Piret
- URBC, Namur Nanosafety Center (NNC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (FUNDP), 61 rue de Bruxelles, B-5000 Namur, Belgium.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Hou J, Kang YJ. Regression of pathological cardiac hypertrophy: signaling pathways and therapeutic targets. Pharmacol Ther 2012; 135:337-54. [PMID: 22750195 DOI: 10.1016/j.pharmthera.2012.06.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 06/12/2012] [Indexed: 02/05/2023]
Abstract
Pathological cardiac hypertrophy is a key risk factor for heart failure. It is associated with increased interstitial fibrosis, cell death and cardiac dysfunction. The progression of pathological cardiac hypertrophy has long been considered as irreversible. However, recent clinical observations and experimental studies have produced evidence showing the reversal of pathological cardiac hypertrophy. Left ventricle assist devices used in heart failure patients for bridging to transplantation not only improve peripheral circulation but also often cause reverse remodeling of the geometry and recovery of the function of the heart. Dietary supplementation with physiologically relevant levels of copper can reverse pathological cardiac hypertrophy in mice. Angiogenesis is essential and vascular endothelial growth factor (VEGF) is a constitutive factor for the regression. The action of VEGF is mediated by VEGF receptor-1, whose activation is linked to cyclic GMP-dependent protein kinase-1 (PKG-1) signaling pathways, and inhibition of cyclic GMP degradation leads to regression of pathological cardiac hypertrophy. Most of these pathways are regulated by hypoxia-inducible factor. Potential therapeutic targets for promoting the regression include: promotion of angiogenesis, selective enhancement of VEGF receptor-1 signaling pathways, stimulation of PKG-1 pathways, and sustention of hypoxia-inducible factor transcriptional activity. More exciting insights into the regression of pathological cardiac hypertrophy are emerging. The time of translating the concept of regression of pathological cardiac hypertrophy to clinical practice is coming.
Collapse
Affiliation(s)
- Jianglong Hou
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | | |
Collapse
|
164
|
Ischemia-induced Copper Loss and Suppression of Angiogenesis in the Pathogenesis of Myocardial Infarction. Cardiovasc Toxicol 2012; 13:1-8. [DOI: 10.1007/s12012-012-9174-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
165
|
Qiu L, Ding X, Zhang Z, Kang YJ. Copper Is Required for Cobalt-Induced Transcriptional Activity of Hypoxia-Inducible Factor-1. J Pharmacol Exp Ther 2012; 342:561-7. [DOI: 10.1124/jpet.112.194662] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
166
|
Wang Y, Kirpich I, Liu Y, Ma Z, Barve S, McClain CJ, Feng W. Lactobacillus rhamnosus GG treatment potentiates intestinal hypoxia-inducible factor, promotes intestinal integrity and ameliorates alcohol-induced liver injury. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 179:2866-75. [PMID: 22093263 DOI: 10.1016/j.ajpath.2011.08.039] [Citation(s) in RCA: 188] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 07/20/2011] [Accepted: 08/24/2011] [Indexed: 02/08/2023]
Abstract
Gut-derived endotoxin is a critical factor in the development and progression of alcoholic liver disease (ALD). Probiotics can treat alcohol-induced liver injury associated with gut leakiness and endotoxemia in animal models, as well as in human ALD; however, the mechanism or mechanisms of their beneficial action are not well defined. We hypothesized that alcohol impairs the adaptive response-induced hypoxia-inducible factor (HIF) and that probiotic supplementation could attenuate this impairment, restoring barrier function in a mouse model of ALD by increasing HIF-responsive proteins (eg, intestinal trefoil factor) and reversing established ALD. C57BJ/6N mice were fed the Lieber DeCarli diet containing 5% alcohol for 8 weeks. Animals received Lactobacillus rhamnosus GG (LGG) supplementation in the last 2 weeks. LGG supplementation significantly reduced alcohol-induced endotoxemia and hepatic steatosis and improved liver function. LGG restored alcohol-induced reduction of HIF-2α and intestinal trefoil factor levels. In vitro studies using the Caco-2 cell culture model showed that the addition of LGG supernatant prevented alcohol-induced epithelial monolayer barrier dysfunction. Furthermore, gene silencing of HIF-1α/2α abolished the LGG effects, indicating that the protective effect of LGG is HIF-dependent. The present study provides a mechanistic insight for utilization of probiotics for the treatment of ALD, and suggests a critical role for intestinal hypoxia and decreased trefoil factor in the development of ALD.
Collapse
Affiliation(s)
- Yuhua Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, China
| | | | | | | | | | | | | |
Collapse
|
167
|
Copper deficiency induced emphysema is associated with focal adhesion kinase inactivation. PLoS One 2012; 7:e30678. [PMID: 22276220 PMCID: PMC3262830 DOI: 10.1371/journal.pone.0030678] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 12/20/2011] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Copper is an important regulator of hypoxia inducible factor 1 alpha (HIF-1α) dependent vascular endothelial growth factor (VEGF) expression, and is also required for the activity of lysyl oxidase (LOX) to effect matrix protein cross-linking. Cell detachment from the extracellular matrix can induce apoptosis (anoikis) via inactivation of focal adhesion kinase (FAK). METHODOLOGY To examine the molecular mechanisms whereby copper depletion causes the destruction of the normal alveolar architecture via anoikis, Male Sprague-Dawley rats were fed a copper deficient diet for 6 weeks while being treated with the copper chelator, tetrathiomolybdate. Other groups of rats were treated with the inhibitor of auto-phosphorylation of FAK, 1,2,4,5-benzenetetraamine tetrahydrochloride (1,2,4,5-BT) or FAK small interfering RNA (siRNA). PRINCIPAL FINDINGS Copper depletion caused emphysematous changes, decreased HIF-1α activity, and downregulated VEGF expression in the rat lungs. Cleaved caspase-3, caspase-8 and Bcl-2 interacting mediator of cell death (Bim) expression was increased, and the phosphorylation of FAK was decreased in copper depleted rat lungs. Administration of 1,2,4,5-BT and FAK siRNA caused emphysematous lung destruction associated with increased expression of cleaved capase-3, caspase-8 and Bim. CONCLUSIONS These data indicate that copper-dependent mechanisms contribute to the pathogenesis of emphysema, which may be associated with decreased HIF-1α and FAK activity in the lung.
Collapse
|
168
|
Li S, Xie H, Li S, Kang YJ. Copper stimulates growth of human umbilical vein endothelial cells in a vascular endothelial growth factor-independent pathway. Exp Biol Med (Maywood) 2012; 237:77-82. [PMID: 22185917 DOI: 10.1258/ebm.2011.011267] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Studies in vivo have shown that dietary copper (Cu) supplementation reverses pressure overload-induced cardiac hypertrophy in a mouse model, which is vascular endothelial growth factor (VEGF)-dependent and correlates with enhanced angiogenesis. Because Cu stimulation of endothelial cell growth and differentiation would play a critical role in angiogenesis, the present study was undertaken to examine the effect of Cu on growth of human umbilical vein endothelial cells (HUVECs) in cultures. The HUVECs were treated with CuSO4 at a final concentration of 5 μmol/L Cu element in cultures or with a Cu chelator, tetraethylenepentamine (TEPA), at a final concentration of 25 μmol/L in cultures. Cell growth and Cu effect on cell cycle were determined. In addition, the effect of Cu on VEGF and endothelial nitric oxide synthase (eNOS) mRNA levels was determined, and anti-VEGF antibody and siRNA targeting eNOS were applied to determine the role of VEGF or eNOS in the Cu effect on cell growth. Cu significantly stimulated and TEPA significantly inhibited cell growth, and the TEPA effect was blocked by excess Cu. Cu increased the number of cells in the S phase and correspondingly decreased the number in the G1 phase. Interestingly, Cu did not increase the level of VEGF mRNA, but significantly increased eNOS mRNA. Furthermore, neutralizing VEGF by anti-VEGF antibody did not suppress Cu stimulation of cell growth. However, siRNA targeting eNOS completely blocked Cu reversal of TEPA inhibition of cell growth. The data demonstrate that Cu stimulation of HUVEC cell growth is VEGF-independent, but eNOS-dependent.
Collapse
Affiliation(s)
- Shun Li
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy
| | - Huiqi Xie
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy
- Regenerative Medicine Research Center
| | - Shengfu Li
- Regenerative Medicine Research Center
- Key Laboratory of Transplant Engineering and Immunology of Ministry of Health, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Y James Kang
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy
- Regenerative Medicine Research Center
- Department of Pharmacology and Toxicology, University of Louisville, School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
169
|
Li G, Fei G, Xia H, Han J, Zhao Y. Spatial and temporal control of shape memory polymers and simultaneous drug release using high intensity focused ultrasound. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm30848g] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
170
|
Mouriño V, Cattalini JP, Boccaccini AR. Metallic ions as therapeutic agents in tissue engineering scaffolds: an overview of their biological applications and strategies for new developments. J R Soc Interface 2011; 9:401-19. [PMID: 22158843 PMCID: PMC3262432 DOI: 10.1098/rsif.2011.0611] [Citation(s) in RCA: 222] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
This article provides an overview on the application of metallic ions in the fields of regenerative medicine and tissue engineering, focusing on their therapeutic applications and the need to design strategies for controlling the release of loaded ions from biomaterial scaffolds. A detailed summary of relevant metallic ions with potential use in tissue engineering approaches is presented. Remaining challenges in the field and directions for future research efforts with focus on the key variables needed to be taken into account when considering the controlled release of metallic ions in tissue engineering therapeutics are also highlighted.
Collapse
Affiliation(s)
- Viviana Mouriño
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Buenos Aires, 956 Junín Street, Sixth Floor, Buenos Aires CP1113, Argentina
| | | | | |
Collapse
|
171
|
Cerrada-Gimenez M, Weisell J, Hyvönen MT, Park MH, Alhonen L, Vepsäläinen J, Keinänen TA. Complex N-acetylation of triethylenetetramine. Drug Metab Dispos 2011; 39:2242-9. [PMID: 21878558 DOI: 10.1124/dmd.111.041798] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Triethylenetetramine (TETA) is an efficient copper chelator that has versatile clinical potential. We have recently shown that spermidine/spermine-N(1)-acetyltransferase (SSAT1), the key polyamine catabolic enzyme, acetylates TETA in vitro. Here, we studied the metabolism of TETA in three different mouse lines: syngenic, SSAT1-overexpressing, and SSAT1-deficient (SSAT1-KO) mice. The mice were sacrificed at 1, 2, or 4 h after TETA injection (300 mg/kg i.p.). We found only N(1)-acetyltriethylenetetramine (N(1)AcTETA) and/or TETA in the liver, kidney, and plasma samples. As expected, SSAT1-overexpressing mice acetylated TETA at an accelerated rate compared with syngenic and SSAT1-KO mice. It is noteworthy that SSAT1-KO mice metabolized TETA as syngenic mice did, probably by thialysine acetyltransferase, which had a K(m) value of 2.5 ± 0.3 mM and a k(cat) value of 1.3 s(-1) for TETA when tested in vitro with the human recombinant enzyme. Thus, the present results suggest that there are at least two N-acetylases potentially metabolizing TETA. However, their physiological significance for TETA acetylation requires further studies. Furthermore, we detected chemical intramolecular N-acetyl migration from the N(1) to N(3) position of N(1)AcTETA and N(1),N(8)-diacetyltriethylenetetramine in an acidified high-performance liquid chromatography sample matrix. The complex metabolism of TETA together with the intramolecular N-acetyl migration may explain the huge individual variations in the acetylation rate of TETA reported earlier.
Collapse
Affiliation(s)
- Marc Cerrada-Gimenez
- Department of Medicine, Biocenter Kuopio, University of Eastern Finland, Kuopio, Finland
| | | | | | | | | | | | | |
Collapse
|
172
|
The significance of copper chelators in clinical and experimental application. J Nutr Biochem 2011; 22:301-10. [DOI: 10.1016/j.jnutbio.2010.06.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2010] [Revised: 06/08/2010] [Accepted: 06/30/2010] [Indexed: 01/17/2023]
|
173
|
Kang YJ. Copper and homocysteine in cardiovascular diseases. Pharmacol Ther 2010; 129:321-31. [PMID: 21130114 DOI: 10.1016/j.pharmthera.2010.11.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 11/08/2010] [Indexed: 02/05/2023]
Abstract
High blood copper (Cu) and homocysteine (Hcy) concentrations have been independently reported as risk factors for cardiovascular diseases. When they are simultaneously measured, a concomitant increase in both parameters in association with vascular dysfunction has been observed. Cu chelator penicillamine can significantly diminish the inhibitory effect of Hcy on endothelial function, which has led to the interpretation that Cu mediates the deleterious effect of Hcy. However, Cu itself has been shown to be beneficial to the cardiovascular system. In particular, Cu promotion of angiogenesis has been well documented. Cu stimulates endothelial cell proliferation and differentiation and promotes microtubule formation in cultured saphenous veins. High levels of Hcy do not affect the process of microtubule formation, but the combination of Cu and Hcy leads to a significant inhibitory effect. Under other conditions, Cu does not affect, but Hcy inhibits, the endothelium-dependent relaxation of blood vessels and the combination of both augments the inhibition. Why does Cu produce adverse effects when it co-exists with Hcy? Cu forms complexes with Hcy and the Cu-Hcy complexes possess a deleterious potential due to their redox properties. Cu chelation can remove Cu from the Cu-Hcy complexes, but leaves behind high levels of Hcy and produces Cu deficiency. An alternative approach should focus on the reduction of Hcy, but maintenance of Cu, making detrimental Cu beneficial. A comprehensive understanding of Cu speciation and a development of selective modulation of Cu coordination to Cu-binding molecules to avoid Cu-Hcy complex formation would effectively improve the condition of cardiovascular disease.
Collapse
Affiliation(s)
- Y James Kang
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
174
|
Xue W, Cai L, Tan Y, Thistlethwaite P, Kang YJ, Li X, Feng W. Cardiac-specific overexpression of HIF-1{alpha} prevents deterioration of glycolytic pathway and cardiac remodeling in streptozotocin-induced diabetic mice. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:97-105. [PMID: 20566749 PMCID: PMC2893654 DOI: 10.2353/ajpath.2010.091091] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/24/2010] [Indexed: 12/15/2022]
Abstract
Defective glycolysis and angiogenesis in the heart of diabetic patients and in experimental diabetic animal models have been reported. The aim of this study was to determine whether overexpression of hypoxia-inducible factor (HIF)-1alpha protects from myocardial injury in diabetic mice by increasing myocardial glycolysis and angiogenesis. Cardiac-specific HIF-1alpha-overexpressing transgenic and age-matched wild-type control mice were treated with streptozotocin to induce diabetes. Changes in glucose transporters, glycolytic enzymes, angiogenic factors and cardiac morphology were examined in the hearts by real-time RT-PCR, Western blotting, enzymatic assay, and histological assays. HIF-1alpha overexpression elevated hexokinase II (HK-II) protein level and total HK activity in nondiabetic heart and prevented the decreases in HK-II mRNA, protein, and total HK activity in diabetic heart. In addition, the reduction of glucose transporter I, but not glucose transporter 4, was restored in HIF transgenic mouse heart along with a recovery of myocardium ATP production. HIF-1alpha overexpression also normalized diabetes-reduced vascular endothelial growth factor concentration along with a sustained myocardial capillary density and an inhibition of cardiomyocyte hypertrophy and cardiac fibrosis. Therefore, elevation of HIF-1alpha provides a cardiac protection from diabetic-induced impairment in glucose metabolism and angiogenesis via up-regulation of HIF-1 target genes.
Collapse
Affiliation(s)
- Wanli Xue
- Departments of Medicine, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | | | | | | | | | | | | |
Collapse
|
175
|
Abstract
Interactions between the essential dietary metals, iron and copper, have been known for many years. This review highlights recent advances in iron-copper interactions with a focus on tissues and cell types important for regulating whole-body iron and copper homeostasis. Cells that mediate dietary assimilation (enterocytes) and storage and distribution (hepatocytes) of iron and copper are considered, along with the principal users (erythroid cells) and recyclers of red cell iron (reticuloendothelial macrophages). Interactions between iron and copper in the brain are also discussed. Many unanswered questions regarding the role of these metals and their interactions in health and disease emerge from this synopsis, highlighting extensive future research opportunities.
Collapse
Affiliation(s)
- James F Collins
- Food Science and Human Nutrition Department, University of Florida, Gainesville, Florida 32611, USA
| | | | | |
Collapse
|
176
|
Gérard C, Bordeleau LJ, Barralet J, Doillon CJ. The stimulation of angiogenesis and collagen deposition by copper. Biomaterials 2009; 31:824-31. [PMID: 19854506 DOI: 10.1016/j.biomaterials.2009.10.009] [Citation(s) in RCA: 222] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Accepted: 10/05/2009] [Indexed: 12/12/2022]
Abstract
Copper is known to trigger endothelial cells towards angiogenesis. Different approaches have been investigated to develop vascularisation in biomaterials. The angiogenic and healing potential of copper ions in combination with two major angiogenic factors was examined. A 3D culture system in which, under stimulation by FGF-2 and to a lesser degree with VEGF, endothelial cells assembled into structures resembling to an angiogenic process was used. The combination of CuSO(4) with increasing doses of VEGF or FGF-2 enhanced the complexity of angiogenic networks in a significant manner. In vivo studies were also conducted by incorporating FGF-2 with CuSO(4) in a cylindrical collagen-based scaffold. CuSO(4) enhanced significantly the invasion of microvessel compared to control implants and to 20ng FGF-2+/-CuSO(4). Vascular infiltration was also significantly improved by combination of CuSO(4) with FGF-2, compared to FGF-2 alone (0.2 and 1microg). Nevertheless, in comparison with CuSO(4) alone, there was a significant increase only with 1microg of FGF-2 combined with CuSO(4). Significantly, collagen fiber deposition was enhanced following the combinatory loading in comparison to that with FGF-2 alone but not with CuSO(4) only. Thus, copper associated with growth factors may have synergistic effects which are highly attractive in the fields of tissue engineering (e.g., bone) and biomaterials.
Collapse
|
177
|
Why is effective treatment of asthma so difficult? An integrated systems biology hypothesis of asthma. Immunol Cell Biol 2009; 87:601-5. [PMID: 19546879 DOI: 10.1038/icb.2009.45] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A hypothesis is presented that asthma is not only an airway disease, but that the disease involves the entire lung, and that the chronicity of asthma and asthma exacerbations can perhaps be explained if one considers asthma as a systemic disease. Increased lung-not only airway-vascularity may be the result of the action of angiogenesis factors, such as vascular endothelial growth factor (VEGF) and sphingosine-1-phosphate (S1P). A bone-marrow lung axis can be postulated as one element of the systemic nature of the asthma syndrome, in which the inflamed lung emits chemotactic signals, which the bone marrow responds to by releasing cells that contribute to lung angiogenesis. A molecular model of the pathobiology of asthma can be built by connecting hypoxia-inducible transcription factor-1 alpha, VEGF S1P, and bone-marrow precursor cell mobilization and acknowledging that angiogenesis is part of the inflammatory response.
Collapse
|