151
|
Abstract
Calcium is an important ion in cell signaling, hormone regulation, and bone health. Its regulation is complex and intimately connected to that of phosphate homeostasis. Both ions are maintained at appropriate levels to maintain the extracellular to intracellular gradients, allow for mineralization of bone, and to prevent extra skeletal and urinary calcification. The homeostasis involves the target organs intestine, parathyroid glands, kidney, and bone. Multiple hormones converge to regulate the extracellular calcium level: parathyroid hormone, vitamin D (principally 25(OH)D or 1,25(OH)2D), fibroblast growth factor 23, and α-klotho. Fine regulation of calcium homeostasis occurs in the thick ascending limb and collecting tubule segments via actions of the calcium sensing receptor and several channels/transporters. The kidney participates in homeostatic loops with bone, intestine, and parathyroid glands. Initially in the course of progressive kidney disease, the homeostatic response maintains serum levels of calcium and phosphorus in the desired range, and maintains neutral balance. However, once the kidneys are no longer able to appropriately respond to hormones and excrete calcium and phosphate, positive balance ensues leading to adverse cardiac and skeletal abnormalities. © 2016 American Physiological Society. Compr Physiol 6:1781-1800, 2016.
Collapse
Affiliation(s)
- Sharon M Moe
- Division of Nephrology, Indiana University School of Medicine, Roudebush Veterans Administration Medical Center, Indianapolis, Indiana.,Section of Nephrology, Roudebush Veterans Administration Medical Center, Indianapolis, Indiana
| |
Collapse
|
152
|
Abstract
Fibroblast growth factor-23 (FGF23) is a bone-derived hormone known to suppress phosphate reabsorption and vitamin D hormone production in the kidney. Klotho was originally discovered as an anti-aging factor, but the functional role of Klotho is still a controversial issue. Three major functions have been proposed, a hormonal function of soluble Klotho, an enzymatic function as glycosidase, and the function as an obligatory co-receptor for FGF23 signaling. The purpose of this review is to highlight the recent advances in the area of FGF23 and Klotho signaling in the kidney, in the parathyroid gland, in the cardiovascular system, in bone, and in the central nervous system. During recent years, major new functions of FGF23 and Klotho have been discovered in these organ systems. Based on these novel findings, FGF23 has emerged as a pleiotropic endocrine and auto-/paracrine factor influencing not only mineral metabolism but also cardiovascular function.
Collapse
|
153
|
Effects of N-Glycosylation of the human cation channel TRPA1 on agonist-sensitivity. Biosci Rep 2016; 36:BSR20160149. [PMID: 27582506 PMCID: PMC5052711 DOI: 10.1042/bsr20160149] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/30/2016] [Indexed: 12/30/2022] Open
Abstract
Determining the functional significance of post-translational modifications advances our understanding of many broadly-expressed proteins, and particularly ion channels. The enzymes that catalyze these modifications are often expressed in a cell-type specific manner, resulting in considerable structural diversity among post-translationally modified proteins that are expressed across a variety of cell types. TRP channels exhibit notably variable behavior between cell types in vitro and in vivo , and they are frequently modified with N-glycans that contribute to protein function. TRPA1 possesses two putative N-linked glycosylation sites at N747 and N753 that have not yet been studied in detail. Here, we show that both of these sites can be modified with an N-glycan and that the glycan at position N747 modulates agonist-sensitivity of TRPA1 in vitro Additionally, we found that N-glycosylation also modulates cooperative effects of temperature and the agonist cinnamaldehyde on TRPA1 channel activation. Collectively, these findings suggest a dynamic role played by the N-glycosylation of human TRPA1. They also provide further evidence of the versatility of N-glycans and will assist in efforts to fully understand the complex regulation of TRPA1 activity.
Collapse
|
154
|
Klotho: a humeral mediator in CSF and plasma that influences longevity and susceptibility to multiple complex disorders, including depression. Transl Psychiatry 2016; 6:e876. [PMID: 27576165 PMCID: PMC5022081 DOI: 10.1038/tp.2016.135] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 03/24/2015] [Indexed: 01/04/2023] Open
Abstract
Klotho is a hormone secreted into human cerebrospinal fluid (CSF), plasma and urine that promotes longevity and influences the onset of several premature senescent phenotypes in mice and humans, including atherosclerosis, cardiovascular disease, stroke and osteoporosis. Preliminary studies also suggest that Klotho possesses tumor suppressor properties. Klotho's roles in these phenomena were first suggested by studies demonstrating that a defect in the Klotho gene in mice results in a significant decrease in lifespan. The Klotho-deficient mouse dies prematurely at 8-9 weeks of age. At 4-5 weeks of age, a syndrome resembling human ageing emerges consisting of atherosclerosis, osteoporosis, cognitive disturbances and alterations of hippocampal architecture. Several deficits in Klotho-deficient mice are likely to contribute to these phenomena. These include an inability to defend against oxidative stress in the central nervous system and periphery, decreased capacity to generate nitric oxide to sustain normal endothelial reactivity, defective Klotho-related mediation of glycosylation and ion channel regulation, increased insulin/insulin-like growth factor signaling and a disturbed calcium and phosphate homeostasis accompanied by altered vitamin D levels and ectopic calcification. Identifying the mechanisms by which Klotho influences multiple important pathways is an emerging field in human biology that will contribute significantly to understanding basic physiologic processes and targets for the treatment of complex diseases. Because many of the phenomena seen in Klotho-deficient mice occur in depressive illness, major depression and bipolar disorder represent illnesses potentially associated with Klotho dysregulation. Klotho's presence in CSF, blood and urine should facilitate its study in clinical populations.
Collapse
|
155
|
Kalaitzidis RG, Duni A, Siamopoulos KC. Klotho, the Holy Grail of the kidney: from salt sensitivity to chronic kidney disease. Int Urol Nephrol 2016; 48:1657-66. [PMID: 27215557 DOI: 10.1007/s11255-016-1325-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/17/2016] [Indexed: 01/05/2023]
Abstract
The Klotho gene displays an extremely shortened life span with loss of function missense mutations leading to premature multiple organ failure, thus resembling human premature aging syndromes. The transmembrane form of Klotho protein functions as an obligatory co-receptor for FGF23. Klotho and FGF23 are crucial components for the regulation of vitamin D metabolism and subsequently blood phosphate levels. The secreted Klotho protein has multiple regulatory functions, including effects on electrolyte homeostasis, on growth factor pathways as well as on oxidative stress, which are currently the object of extensive research. Klotho protein deficiency is observed in many experimental and clinical disease models. Genetic polymorphisms such as the G-395A polymorphism in the promoter region of the Klotho gene have been associated with the development of essential hypertension. The kidneys are the primary site of Klotho production, and renal Klotho is decreased in CKD, followed by a reduction in plasma Klotho. Klotho deficiency has been both associated with progression of CKD as well as with its cardinal systemic manifestations, including cardiovascular disease. Thus, Klotho has been suggested both as a risk biomarker for early detection of CKD and additionally as a potential therapeutic tool in the future.
Collapse
Affiliation(s)
- Rigas G Kalaitzidis
- Department of Nephrology, University Hospital of Ioannina, Ioannina, Greece.
| | - Anila Duni
- Department of Nephrology, University Hospital of Ioannina, Ioannina, Greece
| | | |
Collapse
|
156
|
Abstract
PURPOSE OF REVIEW Fibroblast growth factor-23 (FGF23) is a bone-derived hormone known to suppress phosphate reabsorption in the kidney. The purpose of this review was to highlight the recent advances in the area of FGF23-regulated solute transport in the kidney. RECENT FINDINGS Recent evidence suggests that FGF23 suppresses phosphate reabsorption in renal proximal tubular epithelium by a Klotho-dependent, FGF receptor (FGFR)-1 and FGFR4-mediated signaling mechanism that may also involve Janus kinase 3. Moreover, it was recently established that FGF23 signaling in the distal renal tubule targets with-no-lysine kinase-4 (WNK4), a key molecule in the regulation of solute transport in the distal nephron. By targeting WNK4, FGF23 has been shown to increase the membrane abundance of the epithelial calcium channel TRPV5 and of the sodium-chloride cotransporter NCC, resulting in augmented renal calcium and sodium reabsorption. SUMMARY Significant progress has been made in the further characterization of the signaling pathways involved in the FGF23-induced inhibition of phosphate transport in proximal tubular epithelium, and major new functions of FGF23 in solute transport have been discovered in distal renal tubules. The calcium- and sodium-conserving functions of FGF23 may have major implications for the pathophysiology of cardiovascular diseases. VIDEO ABSTRACT.
Collapse
|
157
|
Keles N, Caliskan M, Dogan B, Keles NN, Kalcik M, Aksu F, Kostek O, Aung SM, Isbilen B, Oguz A. Low Serum Level of Klotho Is an Early Predictor of Atherosclerosis. TOHOKU J EXP MED 2016; 237:17-23. [PMID: 26289053 DOI: 10.1620/tjem.237.17] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Klotho gene, identified as an 'aging suppressor' gene, encodes a single-pass transmembrane protein. The extracellular domain of Klotho is cleaved and released in the blood stream, where it may function as a vasculoprotective hormone. Carotid artery intima-media thickness (CIMT), flow-mediated dilation (FMD) of the brachial artery and epicardial fat thickness (EFT) have been reported as early predictors of atherosclerosis. We aimed to investigate the relationship between serum Klotho levels and early atherosclerotic predictors, including EFT, FMD and CIMT in healthy adults. Fifty healthy volunteers were enrolled in this study, consisting of 21 males and 29 females with median age of 32 years. They were free of known risk factors for cardiovascular diseases. Serum Klotho levels were determined by the ELISA method. The study population was divided into two groups (n = 25 for each) according to the median serum Klotho level (459.4 pg/mL): higher Klotho (HK) group (613.6 pg/mL; ranges of 501.2-772.6 pg/mL) and lower Klotho (LK) group (338.7 pg/mL; ranges of 278.8-430.3 pg/mL). EFT was measured by transthoracic echocardiography, and CIMT and FMD were measured with standard procedures. The LK group showed lower values of FMD (p = 0.012) and larger values of EFT (p = 0.01) and CIMT (p < 0.001), compared to the HK group. Thus, the low serum Klotho levels were associated with increased EFT and CIMT and with the decreased FMD in the study population. We propose that the lower serum Klotho level is a newly identified predictor of atherosclerosis.
Collapse
Affiliation(s)
- Nursen Keles
- Department of Cardiology, Goztepe Training and Research Hospital, Istanbul Medeniyet University
| | | | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Salanova Villanueva L, Sánchez González C, Sánchez Tomero JA, Aguilera A, Ortega Junco E. Bone mineral disorder in chronic kidney disease: Klotho and FGF23; cardiovascular implications. Nefrologia 2016; 36:368-75. [PMID: 27118192 DOI: 10.1016/j.nefro.2016.01.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 12/17/2015] [Accepted: 01/02/2016] [Indexed: 12/30/2022] Open
Abstract
Cardiovascular factors are one of the main causes of morbidity and mortality in patients with chronic kidney disease. Bone mineral metabolism disorders and inflammation are pathological conditions that involve increased cardiovascular risk in chronic kidney disease. The cardiovascular risk involvement of bone mineral metabolism classical biochemical parameters such as phosphorus, calcium, vitamin D and PTH is well known. The newest markers, FGF23 and klotho, could also be implicated in cardiovascular disease.
Collapse
|
159
|
Bae EH. Is Klotho deficiency independently associated with cardiovascular risk in chronic kidney disease? Kidney Res Clin Pract 2016; 35:1-2. [PMID: 27069850 PMCID: PMC4811982 DOI: 10.1016/j.krcp.2016.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 01/12/2016] [Indexed: 01/22/2023] Open
Affiliation(s)
- Eun Hui Bae
- Department of Internal Medicine, Chonnam National University Medical School, 42 Jebong ro, Dong-gu, Gwangju 501-757, Korea
| |
Collapse
|
160
|
Rubinek T, Wolf I. The Role of Alpha-Klotho as a Universal Tumor Suppressor. VITAMINS AND HORMONES 2016; 101:197-214. [PMID: 27125743 DOI: 10.1016/bs.vh.2016.03.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The klotho gene is implicated in many physiological activities, among them aging, glucose metabolism, and phosphate and calcium metabolism. Many cellular activities of klotho were implicated in promoting these activities. Two of them, inhibition of the insulin-like growth factor-1 pathway and of the Wnt signaling pathway, are also major pathways associated with cancer development and progression. These discoveries prompted a surge of research aiming to elucidate the role of klotho in cancer. Studies show that klotho is universally silenced in a wide array of malignancies, including breast, pancreatic, ovarian, lung, colorectal, and melanoma, and that klotho's expression can serve as an invaluable prognostic marker. Epigenetic mechanisms, ie, promoter hypermethylation and histone deacetylation, are mainly associated with klotho's silencing; however, different micro-RNAs were also demonstrated to be involved in the process. The activity of klotho on cancer cells growth was also widely investigated, and accumulating data suggest that klotho forced expression or treatment with the soluble protein can inhibit cancer development and progression. Moreover, studies now aim to reveal the specific region in klotho protein that underlies this anticancer activity in order to develop efficient and safe klotho-based medications.
Collapse
Affiliation(s)
- T Rubinek
- Institute of Oncology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.
| | - I Wolf
- Institute of Oncology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
161
|
Tang X, Fan Z, Wang Y, Ji G, Wang M, Lin J, Huang S. Expression of klotho and β-catenin in esophageal squamous cell carcinoma, and their clinicopathological and prognostic significance. Dis Esophagus 2016; 29:207-14. [PMID: 25287007 DOI: 10.1111/dote.12289] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Esophageal carcinoma is one of the most common types of cancers in the world; the molecular mechanism underlying its tumorigenesis is still not well understood. This study was aimed at investigating the expression of klotho and β-catenin in patients with esophageal squamous cell carcinoma (ESCC) and analyzing their association with clinicopathological variables and their effects on prognosis. The expression patterns of klotho and β-catenin were determined by tissue microarray and immunohistochemical technique in ESCC and normal tissues, and their correlations with clinicopathological characteristics were investigated using univariate and multivariate analysis. The serum klotho levels in 40 ESCC patients and controls were measured by sandwich enzyme-linked immunosorbent assay system (ELISA). The expression level of klotho was significantly lower in ESCC than in the adjacent noncancerous tissues (30 vs. 50%, P < 0.000), and the protein level was negative correlated with clinical staging, histological grade, lymph node metastasis, and invasion depth (P < 0.05). Whereas, the expression of β-catenin was much higher in ESCC than their corresponding normal mucosa tissues (78.3 vs. 11.5%, P < 0.000), and the level of protein correlated only with histological grade and invasion depth (P < 0.05). Correlation analysis showed the expression level of klotho inversely correlated with that of β-catenin (r = -0.214, P < 0.01). Patients with klotho-positive tumors had longer survival than those with klotho-negative tumors (P < 0.01). Cox proportional hazards model analysis demonstrated that positive expression of klotho was an important factor indicating good prognosis (hazard ratio, 0.371; 95% confidence interval, 0.201-0.685; P < 0.01). ELISA showed that the level of serum klotho was markedly higher (461.50 ± 43.30 pg/mL) than control group (239.37 ± 20.65 pg/mL) (P < 0.001). Receiver operating characteristic analysis gave a cut-off value of 327.031 of serum klotho with a sensitivity of 81.3% and specificity of 81.2% (P < 0.000). Our present study demonstrated for the first time that klotho might be a novel biomarker candidate for predicting progression and prognosis in patients with ESCC.
Collapse
Affiliation(s)
- X Tang
- Medical Center for Digestive Diseases, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China.,Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Z Fan
- Medical Center for Digestive Diseases, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Y Wang
- Medical Center for Digestive Diseases, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - G Ji
- Medical Center for Digestive Diseases, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - M Wang
- Medical Center for Digestive Diseases, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - J Lin
- Medical Center for Digestive Diseases, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - S Huang
- Medical Center for Digestive Diseases, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China.,Center of Cellular Therapy, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
162
|
Zhou Y, Greka A. Calcium-permeable ion channels in the kidney. Am J Physiol Renal Physiol 2016; 310:F1157-67. [PMID: 27029425 DOI: 10.1152/ajprenal.00117.2016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 03/29/2016] [Indexed: 02/07/2023] Open
Abstract
Calcium ions (Ca(2+)) are crucial for a variety of cellular functions. The extracellular and intracellular Ca(2+) concentrations are thus tightly regulated to maintain Ca(2+) homeostasis. The kidney, one of the major organs of the excretory system, regulates Ca(2+) homeostasis by filtration and reabsorption. Approximately 60% of the Ca(2+) in plasma is filtered, and 99% of that is reabsorbed by the kidney tubules. Ca(2+) is also a critical signaling molecule in kidney development, in all kidney cellular functions, and in the emergence of kidney diseases. Recently, studies using genetic and molecular biological approaches have identified several Ca(2+)-permeable ion channel families as important regulators of Ca(2+) homeostasis in kidney. These ion channel families include transient receptor potential channels (TRP), voltage-gated calcium channels, and others. In this review, we provide a brief and systematic summary of the expression, function, and pathological contribution for each of these Ca(2+)-permeable ion channels. Moreover, we discuss their potential as future therapeutic targets.
Collapse
Affiliation(s)
- Yiming Zhou
- Department of Medicine and Glom-NExT Center for Glomerular Kidney Disease and Novel Experimental Therapeutics, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; and
| | - Anna Greka
- Department of Medicine and Glom-NExT Center for Glomerular Kidney Disease and Novel Experimental Therapeutics, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; and The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| |
Collapse
|
163
|
Moor MB, Bonny O. Ways of calcium reabsorption in the kidney. Am J Physiol Renal Physiol 2016; 310:F1337-50. [PMID: 27009338 DOI: 10.1152/ajprenal.00273.2015] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 03/17/2016] [Indexed: 11/22/2022] Open
Abstract
The role of the kidney in calcium homeostasis has been reshaped from a classic view in which the kidney was regulated by systemic calcitropic hormones such as vitamin D3 or parathyroid hormone to an organ actively taking part in the regulation of calcium handling. With the identification of the intrinsic renal calcium-sensing receptor feedback system, the regulation of paracellular calcium transport involving claudins, and new paracrine regulators such as klotho, the kidney has emerged as a crucial modulator not only of calciuria but also of calcium homeostasis. This review summarizes recent molecular and endocrine contributors to renal calcium handling and highlights the tight link between calcium and sodium reabsorption in the kidney.
Collapse
Affiliation(s)
- Matthias B Moor
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland; and
| | - Olivier Bonny
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland; and Service of Nephrology, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
164
|
Abraham CR, Mullen PC, Tucker-Zhou T, Chen CD, Zeldich E. Klotho Is a Neuroprotective and Cognition-Enhancing Protein. VITAMINS AND HORMONES 2016; 101:215-38. [PMID: 27125744 DOI: 10.1016/bs.vh.2016.02.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this chapter, we will describe what has been learned about Klotho and its potential functions in the brain. Klotho is localized in the choroid plexus and, to a lesser extent, in hippocampal neurons. Cognitive decline is a common issue in human aging affecting over 50% of the population. This cognitive decline can also be seen in animal models such as the Rhesus monkey. A long-term study undertaken by our lab demonstrated that normal brain aging in rhesus monkeys and other animal models is associated with a significant downregulation of Klotho expression. This observation substantiates data from other laboratories that have reported that loss of Klotho accelerates the development of aging-like phenotypes, including cognitive deficits, whereas Klotho overexpression extends life span and enhances cognition in mice and humans. Klotho is a type 1 transmembrane pleiotropic protein predominantly expressed in kidney and brain and shed by ADAM 10 and 17 into the blood and cerebral spinal fluid, respectively. While the renal functions of Klotho are well known, its roles in the brain remain to be fully elucidated. We recently demonstrated that Klotho protects hippocampal neurons from amyloid and glutamate toxicity via the activation of an antioxidant enzymatic system suggesting Klotho is a neuroprotective protein. Furthermore, Klotho is necessary for oligodendrocyte maturation and myelin integrity. Through its diverse roles in the brain, Klotho has become a new therapeutic target for neurodegenerative diseases such as Alzheimer's disease and demyelinating diseases like multiple sclerosis. Discovery of small molecule Klotho enhancers may lead to novel treatments for these incurable disorders.
Collapse
Affiliation(s)
- C R Abraham
- Boston University School of Medicine, Boston, MA, United States.
| | - P C Mullen
- Boston University School of Medicine, Boston, MA, United States
| | - T Tucker-Zhou
- Boston University School of Medicine, Boston, MA, United States
| | - C D Chen
- Boston University School of Medicine, Boston, MA, United States
| | - E Zeldich
- Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
165
|
Rubinek T, Modan-Moses D. Klotho and the Growth Hormone/Insulin-Like Growth Factor 1 Axis: Novel Insights into Complex Interactions. VITAMINS AND HORMONES 2016; 101:85-118. [PMID: 27125739 DOI: 10.1016/bs.vh.2016.02.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The growth hormone (GH)/insulin-like growth factor (IGF)-1 axis is pivotal for many metabolic functions, including proper development and growth of bones, skeletal muscles, and adipose tissue. Defects in the axis' activity during childhood result in growth abnormalities, while increased secretion of GH from the pituitary results in acromegaly. In order to keep narrow physiologic concentration, GH and IGF-1 secretion and activity are tightly regulated by hypothalamic, pituitary, endocrine, paracrine, and autocrine factors. Klotho was first discovered as an aging-suppressor gene. Mice that do not express klotho die prematurely with multiple symptoms of aging, several of them are also characteristic of decreased GH/IGF-1 axis activity. Klotho is highly expressed in the brain, the kidney, and parathyroid and pituitary glands, but can also serve as a circulating hormone by its shedding, forming soluble klotho that can be detected in blood, cerebrospinal fluid, and urine. Several lines of evidence suggest an association between klotho levels and activity of the GH/IGF-1 axis: the GH-secreting cells in the anterior pituitary of klotho-deficient mice are hypotrophic; klotho levels are altered in subjects with pathologies of the GH/IGF-1 axis; and accumulating data indicate that klotho is a direct regulator of GH secretion. Thus, klotho seems to be a new player in the intricate regulation of the GH/IGF-1 axis.
Collapse
Affiliation(s)
- T Rubinek
- Institute of Oncology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.
| | - D Modan-Moses
- The Edmond and Lily Safra Children's Hospital, Chaim Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel; Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
166
|
Buendía P, Ramírez R, Aljama P, Carracedo J. Klotho Prevents Translocation of NFκB. VITAMINS AND HORMONES 2016; 101:119-50. [PMID: 27125740 DOI: 10.1016/bs.vh.2016.02.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Klotho protein is a β-glucuronidase capable of hydrolyzing steroid β-glucuronides. Two molecules are produced by the Klotho gene, a membrane bound form and a circulating form. This protein is recognized as an antiaging gene with pleiotropic functions. The activation of cellular systems is associated with the pathogenesis of several chronic and degenerative diseases associated with an inflammatory state. Inflammation is characterized by an activation of NFκB. Klotho suppresses nuclear factor NFκB activation and the subsequent transcription of proinflammatory genes. This review focuses on the current understanding of Klotho protein function and its relationship with NFκB regulation, emphasizing its potential involvement in the pathophysiologic process.
Collapse
Affiliation(s)
- P Buendía
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba/Hospital Universitario Reina Sofía, Córdoba, Spain
| | - R Ramírez
- Alcalá de Henares University, Madrid, Spain
| | - P Aljama
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba/Hospital Universitario Reina Sofía, Córdoba, Spain
| | - J Carracedo
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Universidad de Córdoba/Hospital Universitario Reina Sofía, Córdoba, Spain.
| |
Collapse
|
167
|
Abstract
The α-Klotho mouse is an animal model that prematurely shows phenotypes resembling human aging, such as osteoporosis, arteriosclerosis, pulmonary emphysema, and kidney damage. Interestingly, these abnormalities are triggered by a deficiency of a single protein, α-Klotho. The kidney is an organ that highly expresses α-Klotho, suggesting that α-Klotho is important for kidney function. Recent studies suggest that α-Klotho is associated with phosphate, vitamin D, and calcium homeostasis. The calcium imbalance in α-Klotho mice may induce calpain overactivation, leading to cell death and tissue destruction. α-Klotho is predicted to have glycosidase activity, capable of modifying the N-glycans of channels and transporters and regulating transmembrane movement of several ions, including calcium. Interestingly, N-glycan changes are observed in the kidney of α-Klotho mice and normal aged mice in association with decreased α-Klotho levels. These results imply that glycobiology and α-Klotho function are interesting targets for future studies.
Collapse
|
168
|
Sopjani M, Dërmaku-Sopjani M. Klotho-Dependent Cellular Transport Regulation. VITAMINS AND HORMONES 2016; 101:59-84. [PMID: 27125738 DOI: 10.1016/bs.vh.2016.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Klotho is a transmembrane protein that in humans is encoded by the hKL gene. This protein is known to have aging suppressor effects and is predominantly expressed in the distal convoluted tubule of the kidney, parathyroid glands, and choroid plexus of the brain. The Klotho protein exists in both full-length membrane form and a soluble secreted form, which exerts numerous distinct functions. The extracellular domain of Klotho can be enzymatically cleaved off and released into the systemic circulation where it functions as β-glucuronidase and a hormone. Soluble Klotho is a multifunction protein present in the biological fluids including blood, urine, and cerebrospinal fluid of mammals. Klotho deficiency leads to multiple organ failure accompanied by early appearance of multiple age-related disorders and early death, whereas overexpression of Klotho results in the opposite effects. Klotho, an enzyme and hormone, has been reported to participate in the regulation of cellular transport processes across the plasma membrane either indirectly through inhibiting calcitriol (1,25(OH)2D3) formation or other mechanism, or by directly affecting transporter proteins, including ion channels, cellular carriers, and Na(+)/K(+)-ATPase. Accordingly, Klotho protein serves as a powerful regulator of cellular transport across the plasma membrane. Importantly, Klotho-dependent cellular transport regulation implies stimulatory or inhibitory effects. Klotho has been shown to play a key role in the regulation of multiple calcium and potassium ion channels, and various cellular carriers including the Na(+)-coupled cotransporters such as NaPi-IIa, NaPi-IIb, EAAT3, and EAAT4, CreaT1 as well as Na(+)/K(+)-ATPase. These regulations are parts of the antiaging function of Klotho, which will be discussing throughout this chapter. Clearly, further experimental efforts are required to investigate the effect of Klotho on other transport proteins and underlying molecular mechanisms by which Klotho exerts its effect.
Collapse
Affiliation(s)
- M Sopjani
- University of Prishtina, Prishtinë, Republic of Kosova.
| | | |
Collapse
|
169
|
Wei K, Yin Z, Xie Y. Roles of the kidney in the formation, remodeling and repair of bone. J Nephrol 2016; 29:349-357. [PMID: 26943181 PMCID: PMC4879154 DOI: 10.1007/s40620-016-0284-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 02/05/2016] [Indexed: 12/14/2022]
Abstract
The relationship between the kidney and bone is highly complex, and the kidney plays an important role in the regulation of bone development and metabolism. The kidney is the major organ involved in the regulation of calcium and phosphate homeostasis, which is essential for bone mineralization and development. Many substances synthesized by the kidney, such as 1,25(OH)2D3, Klotho, bone morphogenetic protein-7, and erythropoietin, are involved in different stages of bone formation, remodeling and repair. In addition, some cytokines which can be affected by the kidney, such as osteoprotegerin, sclerostin, fibroblast growth factor -23 and parathyroid hormone, also play important roles in bone metabolism. In this paper, we summarize the possible effects of these kidney-related cytokines on bone and their possible mechanisms. Most of these cytokines can interact with one another, constituting an intricate network between the kidney and bone. Therefore, kidney diseases should be considered among patients presenting with osteodystrophy and disturbances in bone and mineral metabolism, and treatment for renal dysfunction may accelerate their recovery.
Collapse
Affiliation(s)
- Kai Wei
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, 28 Fuxing Road, Beijing, 100853, People's Republic of China.,Medical College, NanKai University, Tianjin, 300071, People's Republic of China
| | - Zhiwei Yin
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, 28 Fuxing Road, Beijing, 100853, People's Republic of China
| | - Yuansheng Xie
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, 28 Fuxing Road, Beijing, 100853, People's Republic of China.
| |
Collapse
|
170
|
Kinoshita S, Kawai M. The FGF23/KLOTHO Regulatory Network and Its Roles in Human Disorders. VITAMINS AND HORMONES 2016; 101:151-74. [PMID: 27125741 DOI: 10.1016/bs.vh.2016.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The functions of Klotho (KL) are multifaceted and include the regulation of aging and mineral metabolism. It was originally identified as the gene responsible for premature aging-like symptoms in mice and was subsequently shown to function as a coreceptor in the fibroblast growth factor (FGF) 23 signaling pathway. The discovery of KL as a partner for FGF23 led to significant advances in understanding of the molecular mechanisms underlying phosphate and vitamin D metabolism, and simultaneously clarified the pathogenic roles of the FGF23 signaling pathway in human diseases. These novel insights led to the development of new strategies to combat disorders associated with the dysregulated metabolism of phosphate and vitamin D, and clinical trials on the blockade of FGF23 signaling in X-linked hypophosphatemic rickets are ongoing. Molecular and functional insights on KL and FGF23 have been discussed in this review and were extended to how dysregulation of the FGF23/KL axis causes human disorders associated with abnormal mineral metabolism.
Collapse
Affiliation(s)
- S Kinoshita
- Osaka Medical Center and Research Institute for Maternal and Child Health, Izumi, Japan
| | - M Kawai
- Osaka Medical Center and Research Institute for Maternal and Child Health, Izumi, Japan.
| |
Collapse
|
171
|
Maltare A, Nietz AK, Laszczyk AM, Dunn TS, Ballestas ME, Accavitti-Loper MA, King GD. Development and characterization of monoclonal antibodies to detect klotho. Monoclon Antib Immunodiagn Immunother 2016; 33:420-7. [PMID: 25513981 DOI: 10.1089/mab.2014.0040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Although antibodies are commercially available to allow investigation into the biology of the age-regulating protein Klotho, problems with antibody specificity and application functionality are significant barriers to progress. Chief among these limitations is the inability of current tools to allow in vivo validation of binding partners originally identified through transfection of tagged proteins. To overcome this barrier, we generated a series of hybridoma cell lines by immunizing rats with a GST-KL1 fusion protein. Purified antibodies generated from these cell lines differentially detect human or mouse Klotho protein via Western blot, immunocyto/histochemistry, and immunoprecipitation. Specificity of antibody binding to Klotho was confirmed by mass spectrometry following immunoprecipitation. With this confidence in antibody specificity, co-immunoprecipitation was utilized to validate the interaction of Klotho/FGFR and Klotho/wnt7a in mouse kidney lysates.
Collapse
Affiliation(s)
- Astha Maltare
- 1 Department of Neurobiology, University of Alabama at Birmingham , Alabama
| | | | | | | | | | | | | |
Collapse
|
172
|
Ohya S, Kito H, Hatano N, Muraki K. Recent advances in therapeutic strategies that focus on the regulation of ion channel expression. Pharmacol Ther 2016; 160:11-43. [PMID: 26896566 DOI: 10.1016/j.pharmthera.2016.02.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A number of different ion channel types are involved in cell signaling networks, and homeostatic regulatory mechanisms contribute to the control of ion channel expression. Profiling of global gene expression using microarray technology has recently provided novel insights into the molecular mechanisms underlying the homeostatic and pathological control of ion channel expression. It has demonstrated that the dysregulation of ion channel expression is associated with the pathogenesis of neural, cardiovascular, and immune diseases as well as cancers. In addition to the transcriptional, translational, and post-translational regulation of ion channels, potentially important evidence on the mechanisms controlling ion channel expression has recently been accumulated. The regulation of alternative pre-mRNA splicing is therefore a novel therapeutic strategy for the treatment of dominant-negative splicing disorders. Epigenetic modification plays a key role in various pathological conditions through the regulation of pluripotency genes. Inhibitors of pre-mRNA splicing and histone deacetyalase/methyltransferase have potential as potent therapeutic drugs for cancers and autoimmune and inflammatory diseases. Moreover, membrane-anchoring proteins, lysosomal and proteasomal degradation-related molecules, auxiliary subunits, and pharmacological agents alter the protein folding, membrane trafficking, and post-translational modifications of ion channels, and are linked to expression-defect channelopathies. In this review, we focused on recent insights into the transcriptional, spliceosomal, epigenetic, and proteasomal regulation of ion channel expression: Ca(2+) channels (TRPC/TRPV/TRPM/TRPA/Orai), K(+) channels (voltage-gated, KV/Ca(2+)-activated, KCa/two-pore domain, K2P/inward-rectifier, Kir), and Ca(2+)-activated Cl(-) channels (TMEM16A/TMEM16B). Furthermore, this review highlights expression of these ion channels in expression-defect channelopathies.
Collapse
Affiliation(s)
- Susumu Ohya
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan.
| | - Hiroaki Kito
- Department of Pharmacology, Division of Pathological Sciences, Kyoto Pharmaceutical University, Kyoto 607-8414, Japan
| | - Noriyuki Hatano
- Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, Nagoya 464-8650, Japan
| | - Katsuhiko Muraki
- Laboratory of Cellular Pharmacology, School of Pharmacy, Aichi-Gakuin University, Nagoya 464-8650, Japan.
| |
Collapse
|
173
|
Kovesdy CP, Quarles LD. FGF23 from bench to bedside. Am J Physiol Renal Physiol 2016; 310:F1168-74. [PMID: 26864938 DOI: 10.1152/ajprenal.00606.2015] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 02/04/2016] [Indexed: 12/31/2022] Open
Abstract
There is a strong association between elevated circulating fibroblast growth factor-23 (FGF23) levels and adverse outcomes in patients with chronic kidney disease (CKD) of all stages. Initially discovered as a regulator of phosphate and vitamin D homeostasis, FGF23 has now been implicated in several pathophysiological mechanisms that may negatively impact the cardiovascular and renal systems. FGF23 is purported to have direct (off-target) effects in the myocardium, as well as canonical effects on FGF receptor/α-klotho receptor complexes in the kidney to activate the renin-angiotensin-aldosterone system, modulate soluble α-klotho levels, and increase sodium retention, to cause left ventricular hypertrophy (LVH). Conversely, FGF23 could be an innocent bystander produced in response to chronic inflammation or other processes associated with CKD that cause LVH and adverse cardiovascular outcomes. Further exploration of these complex mechanisms is needed before modulation of FGF23 can become a legitimate clinical target in CKD.
Collapse
Affiliation(s)
- Csaba P Kovesdy
- University of Tennessee Health Science Center, Memphis, Tennessee; and Memphis Veterans Affairs Medical Center, Memphis, Tennessee
| | - L Darryl Quarles
- University of Tennessee Health Science Center, Memphis, Tennessee; and
| |
Collapse
|
174
|
Han X, Yang J, Li L, Huang J, King G, Quarles LD. Conditional Deletion of Fgfr1 in the Proximal and Distal Tubule Identifies Distinct Roles in Phosphate and Calcium Transport. PLoS One 2016; 11:e0147845. [PMID: 26839958 PMCID: PMC4739706 DOI: 10.1371/journal.pone.0147845] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 01/08/2016] [Indexed: 01/10/2023] Open
Abstract
A postnatal role of fibroblast growth factor receptor-1 (FGFR1) in the kidney is suggested by its binding to α-Klotho to form an obligate receptor for the hormone fibroblast growth factor-23 (FGF-23). FGFR1 is expressed in both the proximal and distal renal tubular segments, but its tubular specific functions are unclear. In this study, we crossed Fgfr1flox/flox mice with either gamma-glutamyltransferase-Cre (γGT-Cre) or kidney specific-Cre (Ksp-Cre) mice to selectively create proximal tubule (PT) and distal tubule (DT) Fgfr1 conditional knockout mice (designated Fgfr1PT-cKOand Fgfr1DT-cKO, respectively). Fgfr1PT-cKO mice exhibited an increase in sodium-dependent phosphate co-transporter expression, hyperphosphatemia, and refractoriness to the phosphaturic actions of FGF-23, consistent with a direct role of FGFR1 in mediating the proximal tubular phosphate responses to FGF-23. In contrast, Fgfr1DT-cKO mice unexpectedly developed hypercalciuria, secondary elevations of parathyroid hormone (PTH), hypophosphatemia and enhanced urinary phosphate excretion. Fgfr1PT-cKO mice also developed a curly tail/spina bifida-like skeletal phenotype, whereas Fgfr1DT-cKO mice developed renal tubular micro-calcifications and reductions in cortical bone thickness. Thus, FGFR1 has dual functions to directly regulate proximal and distal tubule phosphate and calcium reabsorption, indicating a physiological role of FGFR1 signaling in both phosphate and calcium homeostasis.
Collapse
Affiliation(s)
- Xiaobin Han
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Jiancheng Yang
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Linqiang Li
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Jinsong Huang
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Gwendalyn King
- University of Alabama in Birmingham, Birmingham, Alabama, United States of America
| | - L. Darryl Quarles
- Department of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
175
|
Takenaka T, Inoue T, Miyazaki T, Hayashi M, Suzuki H. Xeno-Klotho Inhibits Parathyroid Hormone Signaling. J Bone Miner Res 2016; 31:455-62. [PMID: 26287968 DOI: 10.1002/jbmr.2691] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 08/02/2015] [Accepted: 08/14/2015] [Indexed: 01/13/2023]
Abstract
Although fibroblast growth factor (FGF) 23 was recently identified as a phosphatonin that influences vitamin D metabolism, the underlying signaling mechanisms remain unclear. FGF23 elevates the renal levels of membrane-associated klotho as well as soluble klotho. Klotho is expressed on distal tubules. Upon enzymatic cleavage, soluble klotho is released into the renal interstitial space and then into the systemic circulation. The expression of 25-hydroxyvitamin D3 1α-hydroxylase (1-OH) on proximal tubular cells is controlled by parathyroid hormone (PTH). Klotho binds to various membrane proteins to alter their function. Here, the interaction between the PTH receptor and klotho was studied using various approaches, including immunoprecipitation, in vitro cell culture, and in vivo animal experiments. Immunoprecipitation studies demonstrate, for the first time, that recombinant human klotho protein interacts with human PTH receptors to inhibit the binding of human PTH. Furthermore, when applied to human proximal tubular cells, recombinant human klotho suppresses PTH-stimulated generation of inositol trisphosphate in vitro. Moreover, PTH-induced increase of cyclic AMP secretion and 1α,25-dihydroxyvitamin D3 (1,25VD) was attenuated by recombinant human klotho in vivo. In addition, recombinant human klotho inhibits the expression of 1-OH by PTH both in vitro and in vivo. These results suggest that free klotho mediates the FGF23-induced inhibition of 1,25VD synthesis.
Collapse
Affiliation(s)
- Tsuneo Takenaka
- Department of Medicine, International University of Health and Welfare, Clinical Research Center, Sanno Hospital, Tokyo, Japan
| | - Tsutomu Inoue
- Department of Nephrology, Saitama Medical University, Saitama, Japan
| | - Takashi Miyazaki
- Community Health Science Center, Saitama Medical University, Saitama, Japan
| | - Matsuhiko Hayashi
- Dialysis and Blood Purification Center, Keio University, Tokyo, Japan
| | - Hiromichi Suzuki
- Department of Nephrology, Saitama Medical University, Saitama, Japan
| |
Collapse
|
176
|
Tang X, Wang Y, Fan Z, Ji G, Wang M, Lin J, Huang S, Meltzer SJ. Klotho: a tumor suppressor and modulator of the Wnt/β-catenin pathway in human hepatocellular carcinoma. J Transl Med 2016; 96:197-205. [PMID: 26237271 PMCID: PMC4731258 DOI: 10.1038/labinvest.2015.86] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 05/15/2015] [Accepted: 05/19/2015] [Indexed: 02/08/2023] Open
Abstract
Klotho, an anti-aging gene, has recently been shown to contribute to human hepatic tumorigenesis. In addition, it is known that Wnt signaling is antagonized by the protein klotho. Because augmented Wnt signaling has an important role in tumorigenesis of human hepatocellular carcinoma (HCC), we studied the relationship of klotho expression and activity to the Wnt pathway in this malignancy. Immunohistochemical analysis performed on tissue arrays revealed that klotho expression levels were significantly lower in HCC than in adjacent noncancerous tissues, while klotho staining was inversely correlated with clinical stage and histologic grade. Patients with klotho-expressing tumors had longer survival periods than did those with klotho-negative tumors. Overexpression of klotho as well as treatment with soluble klotho protein reduced hepatoma cell growth in vitro and in vivo, whereas klotho silencing enhanced cellular proliferation. Moreover, forced expression of klotho inhibited Wnt/β-catenin signaling, as confirmed by reduced expression of β-catenin, inhibition of translocation of β-catenin from the cytoplasm to the nucleus, and reduced expression of c-myc and cyclin D1, two known target genes of the Wnt/β-catenin pathway. In contrast, activation of the Wnt/β-catenin pathway was enhanced when klotho was silenced by inhibitory RNAs. Furthermore, serum levels of soluble klotho in patients with malignant tumors were studied, and results suggested a significant increase in these levels in HCC patients. These data suggest that klotho acts as a tumor suppressor and an inhibitor of the Wnt/β-catenin pathway in HCC, and moreover, that soluble klotho is a potential serum biomarker for HCC.
Collapse
Affiliation(s)
- Xiaowei Tang
- Medical Center for Digestive Diseases, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China,Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yun Wang
- Medical Center for Digestive Diseases, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Zhining Fan
- Medical Center for Digestive Diseases, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Guozhong Ji
- Medical Center for Digestive Diseases, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Min Wang
- Medical Center for Digestive Diseases, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Jie Lin
- Medical Center for Digestive Diseases, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Shu Huang
- Medical Center for Digestive Diseases, The Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Stephen J Meltzer
- Departments of Medicine (Gastroenterology Division) and Oncology, Johns Hopkins University School of Medicine and Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA
| |
Collapse
|
177
|
Haussler MR, Whitfield GK, Haussler CA, Sabir MS, Khan Z, Sandoval R, Jurutka PW. 1,25-Dihydroxyvitamin D and Klotho: A Tale of Two Renal Hormones Coming of Age. VITAMINS AND HORMONES 2016; 100:165-230. [PMID: 26827953 DOI: 10.1016/bs.vh.2015.11.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
1,25-Dihydroxyvitamin D3 (1,25D) is the renal metabolite of vitamin D that signals through binding to the nuclear vitamin D receptor (VDR). The ligand-receptor complex transcriptionally regulates genes encoding factors stimulating calcium and phosphate absorption plus bone remodeling, maintaining a skeleton with reduced risk of age-related osteoporotic fractures. 1,25D/VDR signaling exerts feedback control of Ca/PO4 via regulation of FGF23, klotho, and CYP24A1 to prevent age-related, ectopic calcification, fibrosis, and associated pathologies. Vitamin D also elicits xenobiotic detoxification, oxidative stress reduction, neuroprotective functions, antimicrobial defense, immunoregulation, anti-inflammatory/anticancer actions, and cardiovascular benefits. Many of the healthspan advantages conferred by 1,25D are promulgated by its induction of klotho, a renal hormone that is an anti-aging enzyme/coreceptor that protects against skin atrophy, osteopenia, hyperphosphatemia, endothelial dysfunction, cognitive defects, neurodegenerative disorders, and impaired hearing. In addition to the high-affinity 1,25D hormone, low-affinity nutritional VDR ligands including curcumin, polyunsaturated fatty acids, and anthocyanidins initiate VDR signaling, whereas the longevity principles resveratrol and SIRT1 potentiate VDR signaling. 1,25D exerts actions against neural excitotoxicity and induces serotonin mood elevation to support cognitive function and prosocial behavior. Together, 1,25D and klotho maintain the molecular signaling systems that promote growth (p21), development (Wnt), antioxidation (Nrf2/FOXO), and homeostasis (FGF23) in tissues crucial for normal physiology, while simultaneously guarding against malignancy and degeneration. Therefore, liganded-VDR modulates the expression of a "fountain of youth" array of genes, with the klotho target emerging as a major player in the facilitation of health span by delaying the chronic diseases of aging.
Collapse
Affiliation(s)
- Mark R Haussler
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona, USA.
| | - G Kerr Whitfield
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona, USA
| | - Carol A Haussler
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona, USA
| | - Marya S Sabir
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, Arizona, USA
| | - Zainab Khan
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, Arizona, USA
| | - Ruby Sandoval
- School of Mathematical and Natural Sciences, Arizona State University, Glendale, Arizona, USA
| | - Peter W Jurutka
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, Arizona, USA; School of Mathematical and Natural Sciences, Arizona State University, Glendale, Arizona, USA
| |
Collapse
|
178
|
Nunes QM, Li Y, Sun C, Kinnunen TK, Fernig DG. Fibroblast growth factors as tissue repair and regeneration therapeutics. PeerJ 2016; 4:e1535. [PMID: 26793421 PMCID: PMC4715458 DOI: 10.7717/peerj.1535] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 12/05/2015] [Indexed: 12/25/2022] Open
Abstract
Cell communication is central to the integration of cell function required for the development and homeostasis of multicellular animals. Proteins are an important currency of cell communication, acting locally (auto-, juxta-, or paracrine) or systemically (endocrine). The fibroblast growth factor (FGF) family contributes to the regulation of virtually all aspects of development and organogenesis, and after birth to tissue maintenance, as well as particular aspects of organism physiology. In the West, oncology has been the focus of translation of FGF research, whereas in China and to an extent Japan a major focus has been to use FGFs in repair and regeneration settings. These differences have their roots in research history and aims. The Chinese drive into biotechnology and the delivery of engineered clinical grade FGFs by a major Chinese research group were important enablers in this respect. The Chinese language clinical literature is not widely accessible. To put this into context, we provide the essential molecular and functional background to the FGF communication system covering FGF ligands, the heparan sulfate and Klotho co-receptors and FGF receptor (FGFR) tyrosine kinases. We then summarise a selection of clinical reports that demonstrate the efficacy of engineered recombinant FGF ligands in treating a wide range of conditions that require tissue repair/regeneration. Alongside, the functional reasons why application of exogenous FGF ligands does not lead to cancers are described. Together, this highlights that the FGF ligands represent a major opportunity for clinical translation that has been largely overlooked in the West.
Collapse
Affiliation(s)
- Quentin M. Nunes
- Department of Molecular and Clinical Cancer Medicine, NIHR Liverpool Pancreas Biomedical Research Unit, University of Liverpool, Liverpool, United Kingdom
| | - Yong Li
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Changye Sun
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Tarja K. Kinnunen
- Department of Biology, School of Applied Sciences, University of Huddersfield, Huddersfield, United Kingdom
| | - David G. Fernig
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
179
|
Leunissen EHP, Blanchard MG, Sheedfar F, Lavrijsen M, van der Wijst J, Bindels RJM, Hoenderop JGJ. Urinary β-galactosidase stimulates Ca2+ transport by stabilizing TRPV5 at the plasma membrane. Glycobiology 2016; 26:472-81. [PMID: 26747426 DOI: 10.1093/glycob/cwv172] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 12/28/2015] [Indexed: 01/26/2023] Open
Abstract
Transcellular Ca(2+)transport in the late distal convoluted tubule and connecting tubule (DCT2/CNT) of the kidney is a finely controlled process mediated by the transient receptor potential vanilloid type 5 (TRPV5) channel. A complex-type-N-glycan bound at the extracellular residue Asn358 of TRPV5 through post-translational glycosylation has been postulated to regulate the activity of TRPV5 channels. Using in vitro Ca(2+)transport assays, immunoblot analysis, immunohistochemistry, patch clamp electrophysiology and total internal reflection fluorescence microscopy, it is demonstrated that the glycosidase β-galactosidase (β-gal), an enzyme that hydrolyzes galactose, stimulates TRPV5 channel activity. However, the activity of the non-glycosylated TRPV(N358Q)mutant was not altered in the presence of β-gal, showing that the stimulation is dependent on the presence of the TRPV5N-glycan. In addition, β-gal was found to stimulate transcellular Ca(2+)transport in isolated mouse primary DCT2/CNT cells. β-gal expression was detected in the apical membrane of the proximal tubules, and the protein was found in mouse urine. In summary, β-gal is present in the pro-urine from where it is thought to stimulate TRPV5 activity.
Collapse
Affiliation(s)
- Elizabeth H P Leunissen
- Department of Physiology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen 6500 HB, The Netherlands
| | - Maxime G Blanchard
- Department of Physiology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen 6500 HB, The Netherlands
| | - Fareeba Sheedfar
- Department of Physiology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen 6500 HB, The Netherlands
| | - Marla Lavrijsen
- Department of Physiology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen 6500 HB, The Netherlands
| | - Jenny van der Wijst
- Department of Physiology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen 6500 HB, The Netherlands
| | - René J M Bindels
- Department of Physiology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen 6500 HB, The Netherlands
| | - Joost G J Hoenderop
- Department of Physiology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Nijmegen 6500 HB, The Netherlands
| |
Collapse
|
180
|
Kawai M. The FGF23/Klotho axis in the regulation of mineral and metabolic homeostasis. Horm Mol Biol Clin Investig 2016; 28:55-67. [DOI: 10.1515/hmbci-2015-0068] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 01/07/2016] [Indexed: 11/15/2022]
Abstract
AbstractThe function of fibroblast growth factor (FGF) 23 has been suggested to be multifaceted beyond its canonical function as a regulator of mineral metabolism. FGF23 was originally shown to play a central role in phosphate (Pi) and vitamin D metabolism, and a number of diseases associated with dysregulated Pi metabolism have been attributed to abnormal FGF23 signaling activities. The discovery of Klotho as a co-receptor for FGF23 signaling has also accelerated understanding on the molecular mechanisms underlying Pi and vitamin D metabolism. In addition to these canonical functions, FGF23 has recently been implicated in a number of metabolic diseases including chronic kidney disease-associated complications, cardiovascular diseases, and obesity-related disorders; however, the physiological significance and molecular mechanisms of these emerging roles of FGF23 remain largely unknown. Molecular and functional insights into the FGF23 pathway will be discussed in the present review, with an emphasis on its role in human disorders related to dysregulated Pi metabolism as well as metabolic disorders.
Collapse
|
181
|
Hu MC, Shi M, Zhang J, Addo T, Cho HJ, Barker SL, Ravikumar P, Gillings N, Bian A, Sidhu SS, Kuro-o M, Moe OW. Renal Production, Uptake, and Handling of Circulating αKlotho. J Am Soc Nephrol 2016; 27:79-90. [PMID: 25977312 PMCID: PMC4696570 DOI: 10.1681/asn.2014101030] [Citation(s) in RCA: 183] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 03/14/2015] [Indexed: 01/13/2023] Open
Abstract
αKlotho is a multifunctional protein highly expressed in the kidney. Soluble αKlotho is released through cleavage of the extracellular domain from membrane αKlotho by secretases to function as an endocrine/paracrine substance. The role of the kidney in circulating αKlotho production and handling is incompletely understood, however. Here, we found higher αKlotho concentration in suprarenal compared with infrarenal inferior vena cava in both rats and humans. In rats, serum αKlotho concentration dropped precipitously after bilateral nephrectomy or upon treatment with inhibitors of αKlotho extracellular domain shedding. Furthermore, the serum half-life of exogenous αKlotho in anephric rats was four- to five-fold longer than that in normal rats, and exogenously injected labeled recombinant αKlotho was detected in the kidney and in urine of rats. Both in vivo (micropuncture) and in vitro (proximal tubule cell line) studies showed that αKlotho traffics from the basal to the apical side of the proximal tubule via transcytosis. Thus, we conclude that the kidney has dual roles in αKlotho homeostasis, producing and releasing αKlotho into the circulation and clearing αKlotho from the blood into the urinary lumen.
Collapse
Affiliation(s)
- Ming Chang Hu
- Departments of Internal Medicine, Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas;
| | - Mingjun Shi
- Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | | | | | - Han Ju Cho
- Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Sarah L Barker
- Banting and Best Department of Medical Research and Department of Molecular Genetics, The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada; and
| | - Priya Ravikumar
- Departments of Internal Medicine, Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Nancy Gillings
- Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ao Bian
- Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Sachdev S Sidhu
- Banting and Best Department of Medical Research and Department of Molecular Genetics, The Donnelly Centre, University of Toronto, Toronto, Ontario, Canada; and
| | - Makoto Kuro-o
- Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas; Pathology, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Orson W Moe
- Departments of Internal Medicine, Charles and Jane Pak Center of Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas; Physiology, and
| |
Collapse
|
182
|
Semba RD, Ferrucci L, Sun K, Simonsick E, Turner R, Miljkovic I, Harris T, Schwartz AV, Asao K, Kritchevsky S, Newman AB. Low Plasma Klotho Concentrations and Decline of Knee Strength in Older Adults. J Gerontol A Biol Sci Med Sci 2016; 71:103-8. [PMID: 26359247 PMCID: PMC4706099 DOI: 10.1093/gerona/glv077] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 12/18/2014] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Although the "anti-aging hormone" klotho is associated with sarcopenia in mice, the relationship between klotho and muscle strength in older adults is not well known. METHODS Plasma klotho concentrations were measured in 2,734 older adults, aged 71-80 years, who participated in the Health, Aging and Body Composition Study, a prospective observational cohort study conducted in Memphis, TN and Pittsburgh, PA. Knee extension strength was measured using isokinetic dynamometry at baseline and follow-up 2 and 4 years later. Knee extension strength was normalized for weight. RESULTS At baseline, participants in the highest tertile of plasma klotho had higher knee extension strength (β = .72, standard error [SE] = .018, p < .0001) compared with those in the lowest tertile in a multivariable linear regression model adjusting for age, sex, race, smoking, study site, C-reactive protein, interleukin-6, and diabetes. Participants in the highest tertile of plasma klotho at baseline had less of a decline in knee strength over 4 years of follow-up (β = -.025, SE = .011, p = .02) compared with those in the lowest tertile in a multivariable linear regression model adjusting for the same covariates above. CONCLUSIONS Plasma klotho concentrations were an independent predictor of changes in knee strength over time in older adults. Further studies are needed to identify the biological mechanisms by which circulating klotho could modify skeletal muscle strength.
Collapse
Affiliation(s)
- Richard D Semba
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | | | - Kai Sun
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | - Randi Turner
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Iva Miljkovic
- Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania
| | - Tamara Harris
- Intramural Research Program, Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIH, Bethesda, Maryland
| | - Ann V Schwartz
- Department of Epidemiology and Biostatistics, University of California San Francisco School of Medicine
| | - Keiko Asao
- Department of Preventive Medicine, University of Tennessee, Memphis
| | - Stephen Kritchevsky
- Sticht Center on Aging, Wake Forest University, Winston-Salem, North Carolina
| | - Anne B Newman
- Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania
| |
Collapse
|
183
|
Christakos S, Dhawan P, Verstuyf A, Verlinden L, Carmeliet G. Vitamin D: Metabolism, Molecular Mechanism of Action, and Pleiotropic Effects. Physiol Rev 2016; 96:365-408. [PMID: 26681795 PMCID: PMC4839493 DOI: 10.1152/physrev.00014.2015] [Citation(s) in RCA: 1087] [Impact Index Per Article: 135.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
1,25-Dihydroxvitamin D3 [1,25(OH)2D3] is the hormonally active form of vitamin D. The genomic mechanism of 1,25(OH)2D3 action involves the direct binding of the 1,25(OH)2D3 activated vitamin D receptor/retinoic X receptor (VDR/RXR) heterodimeric complex to specific DNA sequences. Numerous VDR co-regulatory proteins have been identified, and genome-wide studies have shown that the actions of 1,25(OH)2D3 involve regulation of gene activity at a range of locations many kilobases from the transcription start site. The structure of the liganded VDR/RXR complex was recently characterized using cryoelectron microscopy, X-ray scattering, and hydrogen deuterium exchange. These recent technological advances will result in a more complete understanding of VDR coactivator interactions, thus facilitating cell and gene specific clinical applications. Although the identification of mechanisms mediating VDR-regulated transcription has been one focus of recent research in the field, other topics of fundamental importance include the identification and functional significance of proteins involved in the metabolism of vitamin D. CYP2R1 has been identified as the most important 25-hydroxylase, and a critical role for CYP24A1 in humans was noted in studies showing that inactivating mutations in CYP24A1 are a probable cause of idiopathic infantile hypercalcemia. In addition, studies using knockout and transgenic mice have provided new insight on the physiological role of vitamin D in classical target tissues as well as evidence of extraskeletal effects of 1,25(OH)2D3 including inhibition of cancer progression, effects on the cardiovascular system, and immunomodulatory effects in certain autoimmune diseases. Some of the mechanistic findings in mouse models have also been observed in humans. The identification of similar pathways in humans could lead to the development of new therapies to prevent and treat disease.
Collapse
Affiliation(s)
- Sylvia Christakos
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey; and Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Puneet Dhawan
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey; and Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Annemieke Verstuyf
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey; and Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Lieve Verlinden
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey; and Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Geert Carmeliet
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey; and Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| |
Collapse
|
184
|
Abstract
Maintaining mineral metabolism requires several organs and hormones. Fibroblast growth factor 23 (FGF23) is a phosphatonin produced by bone cells that reduces renal production of calcitriol - 1,25(OH) 2D 3 - and induces phosphaturia. The consequences of a reduction in 1,25(OH) 2D 3 involve changes in calcium homeostasis. There are several factors that regulate FGF23: phosphorus, vitamin D, and parathyroid hormone (PTH). More recently, several studies have demonstrated that calcium also modulates FGF23 production. In a situation of calcium deficiency, the presence of 1,25(OH) 2D 3 is necessary to optimize intestinal absorption of calcium, and FGF23 is decreased to avoid a reduction in 1,25(OH) 2D 3 levels.
Collapse
Affiliation(s)
| | - Mariano Rodríguez
- Nephrology Service and Maimónides Institute for Biomedical Research (IMIBIC), Reina Sofia University Hospital, University of Córdoba, Avda. Menéndez Pidal, S/N, 14004 Córdoba, Spain
| |
Collapse
|
185
|
Gürel A, Üre İ, Temel HE, Çilingir O, Uslu S, Celayir MF, Aslan S, Başeskioğlu AB. The impact of klotho gene polymorphisms on urinary tract stone disease. World J Urol 2015; 34:1045-50. [PMID: 26597587 DOI: 10.1007/s00345-015-1732-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 11/11/2015] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVES To investigate the effect of klotho gene and β-glucuronidase activity on stone formation in patients with urinary tract stone disease (UTSD). METHODS A total of 103 patients with UTSD and 102 controls with no specific urolithiasis history were enrolled into the study. G395A and C1818T polymorphisms of klotho gene were analyzed with PCR method. Serum levels of calcium and phosphorus and 24-h urine levels of β-glucuronidase activity, calcium and phosphorus levels were measured biochemically. RESULTS A total of 103 of patients were male (50.2 %) and 102 were female (49.8 %) (p 0.945). Twenty-four-hour urine levels of calcium were significantly higher in UTSD group, whereas no difference was observed in phosphorus levels (p < 0.001, p 0.074, respectively). As for the G395A polymorphism, type of GG was significantly higher in the patient group compared to the controls (p = 0.02), while GA genotype was significantly higher in the controls (p = 0.001). There was no significant difference in F352V and C1818T polymorphism between the patient and control groups. β-glucuronidase activity was slightly lower in the patient group without significance (p 0.932).When patients with GG genotype and the rest were compared, there were no significant difference in all parameters. CONCLUSIONS Any polymorphism altering the function of klotho gene may result with stone formation. We found that there are more GG sequences of G395A gene in patients with UTSD. That may be a polymorphism of klotho gene which results with stone formation. Further studies with more patients should be accomplished which are combining the genetic and epigenetic factors associated with urolithiasis and klotho gene to enlighten the etiology of this disease.
Collapse
Affiliation(s)
- Abdullah Gürel
- Department of Urology, Faculty of Medicine, Osmangazi University, Eskisehir, Turkey
| | - İyimser Üre
- Department of Urology, Faculty of Medicine, Osmangazi University, Eskisehir, Turkey.
| | - Halide Edip Temel
- Department of Medical Biochemistry, Faculty of Pharmacy, Anadolu University, Eskisehir, Turkey
| | - Oğuz Çilingir
- Department of Medical Genetics, Faculty of Medicine, Osmangazi University, Eskisehir, Turkey
| | - Sema Uslu
- Department of Medical Biochemistry, Faculty of Medicine, Osmangazi University, Eskisehir, Turkey
| | - Mehmet Fatih Celayir
- Department of Urology, Şevket Yılmaz Education and Research Hospital, Bursa, Turkey
| | - Serap Aslan
- Department of Medical Genetics, Faculty of Medicine, Osmangazi University, Eskisehir, Turkey
| | | |
Collapse
|
186
|
Pulskens WP, Verkaik M, Sheedfar F, van Loon EP, van de Sluis B, Vervloet MG, Hoenderop JG, Bindels RJ. Deregulated Renal Calcium and Phosphate Transport during Experimental Kidney Failure. PLoS One 2015; 10:e0142510. [PMID: 26566277 PMCID: PMC4643984 DOI: 10.1371/journal.pone.0142510] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 10/22/2015] [Indexed: 12/17/2022] Open
Abstract
Impaired mineral homeostasis and inflammation are hallmarks of chronic kidney disease (CKD), yet the underlying mechanisms of electrolyte regulation during CKD are still unclear. Here, we applied two different murine models, partial nephrectomy and adenine-enriched dietary intervention, to induce kidney failure and to investigate the subsequent impact on systemic and local renal factors involved in Ca(2+) and Pi regulation. Our results demonstrated that both experimental models induce features of CKD, as reflected by uremia, and elevated renal neutrophil gelatinase-associated lipocalin (NGAL) expression. In our model kidney failure was associated with polyuria, hypercalcemia and elevated urinary Ca(2+) excretion. In accordance, CKD augmented systemic PTH and affected the FGF23-αklotho-vitamin-D axis by elevating circulatory FGF23 levels and reducing renal αklotho expression. Interestingly, renal FGF23 expression was also induced by inflammatory stimuli directly. Renal expression of Cyp27b1, but not Cyp24a1, and blood levels of 1,25-dihydroxy vitamin D3 were significantly elevated in both models. Furthermore, kidney failure was characterized by enhanced renal expression of the transient receptor potential cation channel subfamily V member 5 (TRPV5), calbindin-D28k, and sodium-dependent Pi transporter type 2b (NaPi2b), whereas the renal expression of sodium-dependent Pi transporter type 2a (NaPi2a) and type 3 (PIT2) were reduced. Together, our data indicates two different models of experimental kidney failure comparably associate with disturbed FGF23-αklotho-vitamin-D signalling and a deregulated electrolyte homeostasis. Moreover, this study identifies local tubular, possibly inflammation- or PTH- and/or FGF23-associated, adaptive mechanisms, impacting on Ca(2+)/Pi homeostasis, hence enabling new opportunities to target electrolyte disturbances that emerge as a consequence of CKD development.
Collapse
Affiliation(s)
- Wilco P. Pulskens
- Dept. of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
- Dept. of Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Melissa Verkaik
- Dept. of Nephrology, VU University Medical Center, Amsterdam, The Netherlands
| | - Fareeba Sheedfar
- Dept. of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ellen P. van Loon
- Dept. of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bart van de Sluis
- Dept. of Pediatrics, Molecular Genetics Section, University Medical Center Groningen, Groningen, The Netherlands
| | - Mark G. Vervloet
- Dept. of Nephrology, VU University Medical Center, Amsterdam, The Netherlands
| | - Joost G. Hoenderop
- Dept. of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - René J. Bindels
- Dept. of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | |
Collapse
|
187
|
Blake DJ, Reese CM, Garcia M, Dahlmann EA, Dean A. Soluble extracellular Klotho decreases sensitivity to cigarette smoke induced cell death in human lung epithelial cells. Toxicol In Vitro 2015; 29:1647-52. [PMID: 26100223 PMCID: PMC4604604 DOI: 10.1016/j.tiv.2015.06.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 05/06/2015] [Accepted: 06/18/2015] [Indexed: 12/21/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is currently the third leading cause of death in the US and is associated with an abnormal inflammatory response to cigarette smoke (CS). Exposure to CS induces oxidative stress and can result in cellular senescence in the lung. Cellular senescence can then lead to decreased proliferation of epithelial cells, the destruction of alveolar structure and pulmonary emphysema. The anti-aging gene, klotho, encodes a membrane bound protein that has been shown to be a key regulator of oxidative stress and cellular senescence. In this study the role of Klotho (KL) with regard to oxidative stress and cellular senescence was investigated in human pulmonary epithelial cells exposed to cigarette smoke. Individual clones that stably overexpress Klotho were generated through retroviral transfection and geneticin selection. Klotho overexpression was confirmed through RT-qPCR, Western blotting and ELISA. Compared to control cells, constitutive Klotho overexpression resulted in decreased sensitivity to cigarette smoke induced cell death in vitro via a reduction of reactive oxygen species and a decrease in the expression of p21. Our results suggest that increasing Klotho level in pulmonary epithelial cells may be a promising strategy to reduce cellular senescence and mitigate the risk for the development of COPD.
Collapse
Affiliation(s)
- David J Blake
- Department of Biology, Fort Lewis College, 1000 Rim Drive, Durango, CO 81301, United States.
| | - Caitlyn M Reese
- Department of Biology, Fort Lewis College, 1000 Rim Drive, Durango, CO 81301, United States
| | - Mario Garcia
- Department of Biology, Fort Lewis College, 1000 Rim Drive, Durango, CO 81301, United States
| | - Elizabeth A Dahlmann
- Department of Biology, Fort Lewis College, 1000 Rim Drive, Durango, CO 81301, United States
| | - Alexander Dean
- Department of Biology, Fort Lewis College, 1000 Rim Drive, Durango, CO 81301, United States
| |
Collapse
|
188
|
Tomilin V, Mamenko M, Zaika O, Pochynyuk O. Role of renal TRP channels in physiology and pathology. Semin Immunopathol 2015; 38:371-83. [PMID: 26385481 DOI: 10.1007/s00281-015-0527-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 09/04/2015] [Indexed: 01/05/2023]
Abstract
Kidneys critically contribute to the maintenance of whole-body homeostasis by governing water and electrolyte balance, controlling extracellular fluid volume, plasma osmolality, and blood pressure. Renal function is regulated by numerous systemic endocrine and local mechanical stimuli. Kidneys possess a complex network of membrane receptors, transporters, and ion channels which allows responding to this wide array of signaling inputs in an integrative manner. Transient receptor potential (TRP) channel family members with diverse modes of activation, varied permeation properties, and capability to integrate multiple downstream signals are pivotal molecular determinants of renal function all along the nephron. This review summarizes experimental data on the role of TRP channels in a healthy mammalian kidney and discusses their involvement in renal pathologies.
Collapse
Affiliation(s)
- Viktor Tomilin
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, 6431 Fannin, Houston, TX, 77030, USA.,Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russian Federation
| | - Mykola Mamenko
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, 6431 Fannin, Houston, TX, 77030, USA
| | - Oleg Zaika
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, 6431 Fannin, Houston, TX, 77030, USA
| | - Oleh Pochynyuk
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, 6431 Fannin, Houston, TX, 77030, USA.
| |
Collapse
|
189
|
Abstract
The aim of this study was to analyze the placental expression and allele status of promoter region of Klotho in association with preeclampsia, which represents the most common hypertensive disease of pregnancy. Klotho mRNA and protein levels were determined using real-time PCR and Western blot, respectively, in placental tissue samples obtained from 34 patients affected with preeclampsia and 34 controls. A PCR-based genotyping analysis was carried out in the promoter region of Klotho gene. Moreover, expression levels of pluripotency markers, Nanog and Oct4, and telomere length were assessed using real-time PCR. Klotho mRNA and protein levels were reduced in preeclamptic placentas compared with controls. -744delA single-nucleotide polymorphism was significantly associated with preeclampsia. In pathological placentas, there was a downregulation of pluripotency markers and a reduced telomere length. This study is the first to evaluate the placental expression level of Klotho in association with preeclampsia. Further analyses will clarify its role in the pathogenesis of this pregnancy hypertensive disorder.
Collapse
|
190
|
Affiliation(s)
- Min Liu
- Department of Life Science and Graduate Institute of Biotechnology, Chinese Culture University, Taipei, Republic of China
| |
Collapse
|
191
|
Shardell M, Semba RD, Rosano C, Kalyani RR, Bandinelli S, Chia CW, Ferrucci L. Plasma Klotho and Cognitive Decline in Older Adults: Findings From the InCHIANTI Study. J Gerontol A Biol Sci Med Sci 2015; 71:677-82. [PMID: 26297657 DOI: 10.1093/gerona/glv140] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 07/20/2015] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND The hormone klotho, encoded by the gene klotho, is primarily expressed in the kidney and choroid plexus of the brain. Higher klotho concentrations and certain genetic variants of klotho have been linked to better cognition; however, it is unknown whether klotho relates prospectively to slower cognitive decline in older adults. METHODS Plasma klotho was measured in 833 participants aged 55 or older without dementia enrolled in InCHIANTI, a prospective cohort study comprising Italian adults. Cognition was measured by Mini-Mental State Examination (MMSE) and Trail-Making Tests A and B (Trails A and Trails B) at enrollment and at 3 and 6 years after enrollment. We assessed whether klotho concentrations measured at the 3-year visit related to cognition and cognitive decline. RESULTS Each additional natural logarithm of klotho (pg/mL) was associated with 35% lower risk of meaningful decline in MMSE, defined as decline exceeding three points (relative risk = 0.65; 95% confidence interval 0.45, 0.95; p value = .02), and 0.75-point smaller average 3-year decline (baseline to 3-year visit) in MMSE (95% confidence interval 0.02, 1.48; p value = .04). No statistically significant associations were found between klotho and declining Trails A (relative risk = 0.99; 95% confidence interval 0.75, 1.32; p value = .97) and B (relative risk = 1.02; 95% confidence interval 0.84, 1.24; p value = .82). CONCLUSIONS Higher plasma klotho concentrations were associated with lower risk of meaningful decline and smaller average decline in MMSE. We did not observe such findings with Trails A and B, perhaps because they test executive function and motor skills, whereas MMSE measures global cognition. Future studies should investigate mechanisms through which klotho may affect domain-specific cognitive changes.
Collapse
Affiliation(s)
- Michelle Shardell
- Translational Gerontology Branch, National Institute on Aging, Baltimore, Maryland.
| | - Richard D Semba
- Wilmer Eye Institute, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Caterina Rosano
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pennsylvania
| | - Rita R Kalyani
- Department of Medicine, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | | | - Chee W Chia
- Translational Gerontology Branch, National Institute on Aging, Baltimore, Maryland
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, Baltimore, Maryland
| |
Collapse
|
192
|
Abstract
Aging is an inevitable and progressive biological process involving dysfunction and eventually destruction of every tissue and organ. This process is driven by a tightly regulated and complex interplay between genetic and acquired factors. Klotho is an antiaging gene encoding a single-pass transmembrane protein, klotho, which serves as an aging suppressor through a wide variety of mechanisms, such as antioxidation, antisenescence, antiautophagy, and modulation of many signaling pathways, including insulin-like growth factor and Wnt. Klotho deficiency activates Wnt expression and activity contributing to senescence and depletion of stem cells, which consequently triggers tissue atrophy and fibrosis. In contrast, the klotho protein was shown to suppress Wnt-signaling transduction, and inhibit cell senescence and preserve stem cells. A better understanding of the potential effects of klotho on stem cells could offer novel insights into the cellular and molecular mechanisms of klotho deficiency-related aging and disease. The klotho protein may be a promising therapeutic agent for aging and aging-related disorders.
Collapse
Affiliation(s)
- Ao Bian
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA ; Department of Nephrology, First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Javier A Neyra
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, USA
| | - Ming Zhan
- Methodist Hospital Research Institute, Weill Cornell Medical College, Houston, TX, USA
| | - Ming Chang Hu
- Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, USA ; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, USA
| |
Collapse
|
193
|
Carmeliet G, Dermauw V, Bouillon R. Vitamin D signaling in calcium and bone homeostasis: a delicate balance. Best Pract Res Clin Endocrinol Metab 2015; 29:621-31. [PMID: 26303088 DOI: 10.1016/j.beem.2015.06.001] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Loss-of-function mutations in genes involved in the vitamin D/vitamin D receptor system have clearly evidenced its critical role for mineral and skeletal homeostasis. Adequate levels of 1,25-dihydroxyvitamin D [1,25(OH)2D], the active form of vitamin D are therefore required and depend on sufficient sunlight exposure or dietary intake. Intestinal calcium absorption is a primary target of 1,25(OH)2D action and this pathway indirectly promotes calcium incorporation in bone. Severe vitamin D deficiency may thus decrease bone quality and leads to osteomalacia, whereas less severe deficiency increases the risk of osteoporosis and bone fractures. On the other hand, high vitamin D levels together with low dietary calcium intake will increase bone resorption and decrease bone mineralization in order to maintain normal serum calcium levels. Appropriate dietary calcium intake and sufficient serum vitamin D levels are thus important for skeletal health. Dosing of calcium and vitamin D supplements is still debated and requires further investigation.
Collapse
Affiliation(s)
- Geert Carmeliet
- Laboratory of Clinical and Experimental Endocrinology, Department of Clinical and Experimental Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Veronique Dermauw
- Laboratory of Clinical and Experimental Endocrinology, Department of Clinical and Experimental Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Roger Bouillon
- Laboratory of Clinical and Experimental Endocrinology, Department of Clinical and Experimental Medicine, KU Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
194
|
Berridge MJ. Vitamin D cell signalling in health and disease. Biochem Biophys Res Commun 2015; 460:53-71. [PMID: 25998734 DOI: 10.1016/j.bbrc.2015.01.008] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 01/05/2015] [Indexed: 12/13/2022]
Abstract
Vitamin D deficiency has been linked to many human diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), hypertension and cardiovascular disease. A Vitamin D phenotypic stability hypothesis, which is developed in this review, attempts to describe how this vital hormone acts to maintain healthy cellular functions. This role of Vitamin D as a guardian of phenotypic stability seems to depend on its ability to maintain the redox and Ca(2+) signalling systems. It is argued that its primary action is to maintain the expression of those signalling components responsible for stabilizing the low resting state of these two signalling pathways. This phenotypic stability role is facilitated through the ability of vitamin D to increase the expression of both Nrf2 and the anti-ageing protein Klotho, which are also major regulators of Ca(2+) and redox signalling. A decline in Vitamin D levels will lead to a decline in the stability of this regulatory signalling network and may account for why so many of the major diseases in man, which have been linked to vitamin D deficiency, are associated with a dysregulation in both ROS and Ca(2+) signalling.
Collapse
|
195
|
Olauson H, Vervloet MG, Cozzolino M, Massy ZA, Ureña Torres P, Larsson TE. New insights into the FGF23-Klotho axis. Semin Nephrol 2015; 34:586-97. [PMID: 25498378 DOI: 10.1016/j.semnephrol.2014.09.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Abnormal mineral metabolism is a hallmark in patients with advanced chronic kidney disease (CKD). Hyperphosphatemia, and the homeostatic mechanisms controlling phosphate metabolism, have received particular attention over the past decade. The phosphate-regulating hormone fibroblast growth factor-23 (FGF23) was discovered through studies of rare hypophosphatemic disorders, whereas Klotho, which subsequently turned out to be a co-receptor for FGF23, was identified in a mouse model showing hyperphosphatemia and multiple aging-like traits. The FGF23-Klotho endocrine axis is a pivotal regulator of mineral metabolism. In CKD, early onset of Klotho deficiency contributes to renal FGF23 resistance and a maladaptive increase in circulating FGF23. FGF23 is an early biomarker of renal injury and increased FGF23 predicts adverse clinical outcomes, in particular cardiovascular disease. A paradigm of FGF23 excess and Klotho deficiency is proposed, in which FGF23 preferentially stimulates left ventricular hypertrophy, and loss of Klotho augments fibrosis, endothelial dysfunction, and vascular calcification. The clinical benefit of FGF23 and Klotho measurements remain uncertain, nevertheless, the FGF23-Klotho axis is a solid candidate for a novel diagnostic and therapeutic target in CKD.
Collapse
Affiliation(s)
- Hannes Olauson
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Marc G Vervloet
- Department of Nephrology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, The Netherlands
| | - Mario Cozzolino
- Department of Health Sciences, University of Milan, Renal Division, San Paolo Hospital, Milan, Italy
| | - Ziad A Massy
- Inserm U-1088, Université de Picardie Jules Verne (UPJV), Amiens, France; Division of Nephrology, Ambroise Paré Hospital, Paris-Ile-de-France-Ouest University (Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)), Paris-Boulogne Billancourt, France
| | - Pablo Ureña Torres
- Service of Nephrology and Dialysis, Clinique du Landy and Department of Renal Physiology, Necker Hospital, University of Paris Descartes, Paris, France
| | - Tobias E Larsson
- Division of Renal Medicine, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden; Department of Nephrology, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
196
|
Fukasawa H, Ishigaki S, Kinoshita-Katahashi N, Niwa H, Yasuda H, Kumagai H, Furuya R. Plasma levels of fibroblast growth factor-23 are associated with muscle mass in haemodialysis patients. Nephrology (Carlton) 2015; 19:784-90. [PMID: 25185859 DOI: 10.1111/nep.12333] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2014] [Indexed: 11/26/2022]
Abstract
AIM Malnutrition is highly prevalent in haemodialysis (HD) patients, and it contributes to morbidity and mortality. Fibroblast growth factor-23 (FGF-23) and Klotho contribute to chronic kidney disease-mineral and bone disorder (CKD-MBD) in HD patients, but the role that these molecules play in determining nutritional status is currently unknown. METHODS A cross-sectional study examining 77 HD patients was performed. The plasma concentrations of FGF-23 and soluble Klotho (s-Klotho) were studied to evaluate their association with muscle mass, which was investigated by abdominal muscle areas measured using computed tomography and by creatinine (Cr) production estimated using the Cr kinetic model. RESULTS Plasma FGF-23 concentrations were significantly and positively correlated with abdominal muscle areas and Cr production (rho = 0.301, P < 0.01 and rho = 0.345, P < 0.01, respectively). In contrast, s-Klotho was not significantly correlated with these muscle mass indices and plasma FGF-23 concentrations. Multiple regression analyses showed that FGF-23 was a significant independent predictor of both muscle mass indices (P < 0.01 and P < 0.05, respectively). CONCLUSION Plasma FGF-23 concentrations were associated with muscle mass indices in HD patients. Our findings suggest that FGF-23 and nutritional status are linked and this link is most likely independent of s-Klotho.
Collapse
Affiliation(s)
- Hirotaka Fukasawa
- Renal Division, Department of Internal Medicine, Iwata City Hospital, Iwata, Japan
| | | | | | | | | | | | | |
Collapse
|
197
|
van Loon EPM, Pulskens WP, van der Hagen EAE, Lavrijsen M, Vervloet MG, van Goor H, Bindels RJM, Hoenderop JGJ. Shedding of klotho by ADAMs in the kidney. Am J Physiol Renal Physiol 2015; 309:F359-68. [PMID: 26155844 DOI: 10.1152/ajprenal.00240.2014] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 07/01/2015] [Indexed: 11/22/2022] Open
Abstract
The anti-aging gene klotho plays an important role in Ca(2+) and phosphate homeostasis. Membrane-bound klotho is an essential coreceptor for fibroblast growth factor-23 and can be cleaved by proteases, including a disintegrin and metalloproteinase (ADAM)10 and ADAM17. Cleavage of klotho occurs at a site directly above the plasma membrane (α-cut) or between the KL1 and KL2 domain (β-cut), resulting in soluble full-length klotho or KL1 and KL2 fragments, respectively. The aim of the present study was to gain insights into the mechanisms behind klotho cleavage processes in the kidney. Klotho shedding was demonstrated using a Madin-Darby canine kidney cell line stably expressing klotho and human embryonic kidney-293 cells transiently transfected with klotho. Here, we report klotho expression on both the basolateral and apical membrane, with a higher abundance of klotho at the apical membrane and in the apical media. mRNA expression of ADAM17 and klotho were enriched in mouse distal convoluted and connecting tubules. In vitro ADAM/matrix metalloproteinase inhibition by TNF484 resulted in a concentration-dependent inhibition of the α-cut, with a less specific effect on β-cut shedding. In vivo TNF484 treatment in wild-type mice did not change urinary klotho levels. However, ADAM/matrix metalloproteinase inhibition did increase renal and duodenal mRNA expression of phosphate transporters, whereas serum phosphate levels were significantly decreased. In conclusion, our data show that renal cells preferentially secrete klotho to the apical side and suggest that ADAMs are responsible for α-cut cleavage.
Collapse
Affiliation(s)
- Ellen P M van Loon
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Wilco P Pulskens
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Eline A E van der Hagen
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marla Lavrijsen
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marc G Vervloet
- Department of Nephrology, VU University Medical Center, Amsterdam, The Netherlands; and
| | - Harry van Goor
- Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, The Netherlands
| | - René J M Bindels
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joost G J Hoenderop
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands;
| |
Collapse
|
198
|
Hruska KA, Seifert M, Sugatani T. Pathophysiology of the chronic kidney disease-mineral bone disorder. Curr Opin Nephrol Hypertens 2015; 24:303-9. [PMID: 26050115 PMCID: PMC4699443 DOI: 10.1097/mnh.0000000000000132] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW The causes of excess cardiovascular mortality associated with chronic kidney disease (CKD) have been attributed in part to the CKD-mineral bone disorder syndrome (CKD-MBD), wherein, novel cardiovascular risk factors have been identified. The causes of the CKD-MBD are not well known and they will be discussed in this review RECENT FINDINGS The discovery of WNT (portmanteau of wingless and int) inhibitors, especially Dickkopf 1, produced during renal repair and participating in the pathogenesis of the vascular and skeletal components of the CKD-MBD implied that additional pathogenic factors are critical, leading to the finding that activin A is a second renal repair factor circulating in increased levels during CKD. Activin A derives from peritubular myofibroblasts of diseased kidneys, where it stimulates fibrosis, and decreases tubular klotho expression. The type 2 activin A receptor, ActRIIA, is decreased by CKD in atherosclerotic aortas, specifically in vascular smooth muscle cells (VSMC). Inhibition of activin signaling by a ligand trap inhibited CKD induced VSMC dedifferentiation, osteogenic transition and atherosclerotic calcification. Inhibition of activin signaling in the kidney decreased renal fibrosis and proteinuria. SUMMARY These studies demonstrate that circulating renal repair factors are causal for the CKD-MBD and CKD associated cardiovascular disease, and identify ActRIIA signaling as a therapeutic target in CKD that links progression of renal disease and vascular disease.
Collapse
Affiliation(s)
- Keith A. Hruska
- Department of Pediatrics, Nephrology, Washington University Saint Louis, MO
- Departments of Medicine and Cell Biology Washington University Saint Louis, MO
| | - Michael Seifert
- Department of Pediatrics, Nephrology, Washington University Saint Louis, MO
- Department of Pediatrics, Nephrology, Southern Illinois University, Springfield IL
| | - Toshifumi Sugatani
- Department of Pediatrics, Nephrology, Washington University Saint Louis, MO
| |
Collapse
|
199
|
Mencke R, Harms G, Mirković K, Struik J, Van Ark J, Van Loon E, Verkaik M, De Borst MH, Zeebregts CJ, Hoenderop JG, Vervloet MG, Hillebrands JL. Membrane-bound Klotho is not expressed endogenously in healthy or uraemic human vascular tissue. Cardiovasc Res 2015; 108:220-31. [PMID: 26116633 DOI: 10.1093/cvr/cvv187] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 06/23/2015] [Indexed: 01/29/2023] Open
Abstract
AIMS Cardiovascular disease (CVD) is the leading cause of death in patients with chronic kidney disease (CKD), a disease state that is strongly associated with loss of renal and systemic (alpha-)Klotho. Reversely, murine Klotho deficiency causes marked medial calcification. It is therefore thought that Klotho conveys a vasculoprotective effect. Klotho expression in the vessel wall, however, is disputed. METHODS AND RESULTS We assessed Klotho expression in healthy human renal donor arteries (n = 9), CKD (renal graft recipient) arteries (n = 10), carotid endarterectomy specimens (n = 8), other elastic arteries (three groups of n = 3), and cultured human aortic smooth muscle cells (HASMCs) (three primary cell lines), using immunohistochemistry (IHC), immunofluorescence, quantitative reverse transcriptase-polymerase chain reaction, and western blotting (WB). We have extensively validated anti-Klotho antibody KM2076 by comparing staining patterns with other anti-Klotho antibodies (SC-22220, SC-22218, and AF1819), competition assays with recombinant Klotho, IHC on Klotho-deficient kl/kl mouse kidney, and WB with recombinant Klotho. Using KM2076, we could not detect full-length Klotho in vascular tissues or HASMCs. On the mRNA level, using primers against all four exon junctions, klotho expression could not be detected either. Fibroblast growth factor 23 (FGF23) injections in mice induced FGF23 signalling in kidneys but not in the aorta, indicating the absence of Klotho-dependent FGF23 signalling in the aorta. CONCLUSION Using several independent and validated methods, we conclude that full-length, membrane-bound Klotho is not expressed in healthy or uraemic human vascular tissue.
Collapse
Affiliation(s)
- Rik Mencke
- Department of Pathology and Medical Biology (Division of Pathology), University of Groningen, University Medical Center Groningen, HPC EA10, PO Box 30.001, Groningen 9700 RB, The Netherlands
| | - Geert Harms
- Department of Pathology and Medical Biology (Division of Pathology), University of Groningen, University Medical Center Groningen, HPC EA10, PO Box 30.001, Groningen 9700 RB, The Netherlands
| | - Katarina Mirković
- Department of Internal Medicine (Division of Nephrology), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Joyce Struik
- Department of Physiology, VU University Medical Center, Amsterdam, The Netherlands
| | - Joris Van Ark
- Department of Pathology and Medical Biology (Division of Pathology), University of Groningen, University Medical Center Groningen, HPC EA10, PO Box 30.001, Groningen 9700 RB, The Netherlands
| | - Ellen Van Loon
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Melissa Verkaik
- Department of Physiology, VU University Medical Center, Amsterdam, The Netherlands
| | - Martin H De Borst
- Department of Internal Medicine (Division of Nephrology), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Clark J Zeebregts
- Department of Surgery (Division of Vascular Surgery), University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Joost G Hoenderop
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Marc G Vervloet
- Department of Nephrology, VU University Medical Center, Amsterdam, The Netherlands
| | - Jan-Luuk Hillebrands
- Department of Pathology and Medical Biology (Division of Pathology), University of Groningen, University Medical Center Groningen, HPC EA10, PO Box 30.001, Groningen 9700 RB, The Netherlands
| | | |
Collapse
|
200
|
Ligumsky H, Rubinek T, Merenbakh-Lamin K, Yeheskel A, Sertchook R, Shahmoon S, Aviel-Ronen S, Wolf I. Tumor Suppressor Activity of Klotho in Breast Cancer Is Revealed by Structure–Function Analysis. Mol Cancer Res 2015; 13:1398-407. [DOI: 10.1158/1541-7786.mcr-15-0141] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/10/2015] [Indexed: 11/16/2022]
|