151
|
Dothager RS, Flentie K, Moss B, Pan MH, Kesarwala A, Piwnica-Worms D. Advances in bioluminescence imaging of live animal models. Curr Opin Biotechnol 2009; 20:45-53. [PMID: 19233638 DOI: 10.1016/j.copbio.2009.01.007] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2008] [Revised: 01/27/2009] [Accepted: 01/27/2009] [Indexed: 10/21/2022]
Abstract
Many of the obligate steps of physiology and disease are dynamic in time and space, and thus, end-point assays do not always provide a full understanding of these processes. Comprehensive understanding of the functional complexity of protein interactions and cell trafficking requires mapping of cellular and molecular function within complex systems over biologically relevant time scales. New approaches to bioluminescence imaging of cell migration, signaling pathways, drug action, and interacting protein partners in vivo allow the study of biology and disease within the context of living animals.
Collapse
Affiliation(s)
- Robin S Dothager
- Molecular Imaging Center, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | | | | | | | | | |
Collapse
|
152
|
Sensitive in vivo imaging of T cells using a membrane-bound Gaussia princeps luciferase. Nat Med 2009; 15:338-44. [PMID: 19219023 DOI: 10.1038/nm.1930] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Accepted: 08/29/2008] [Indexed: 11/08/2022]
Abstract
We developed a new approach to bioluminescent T cell imaging using a membrane-anchored form of the Gaussia luciferase (GLuc) enzyme, termed extGLuc, which we could stably express in both mouse and human primary T cells. In vitro, extGLuc+ cells emitted significantly higher bioluminescent signal when compared to cells expressing GLuc, Renilla luciferase (RLuc) or membrane-anchored RLuc (extRLuc). In vivo, mouse extGLuc+ T cells showed higher bioluminescent signal when compared to GLuc+ and RLuc+ T cells. Application of this imaging approach to human T cells genetically modified to express tumor-specific chimeric antigen receptors (CARs) enabled us to show in vivo CAR-mediated T cell accumulation in tumor, T cell persistence over time and concomitant imaging of T cells and tumor cells modified to express firefly luciferase. This sensitive imaging technology has application to many in vivo cell-based studies in a wide array of mouse models.
Collapse
|
153
|
Prestwich RJ, Harrington KJ, Pandha HS, Vile RG, Melcher AA, Errington F. Oncolytic viruses: a novel form of immunotherapy. Expert Rev Anticancer Ther 2009; 8:1581-8. [PMID: 18925850 DOI: 10.1586/14737140.8.10.1581] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Oncolytic viruses are novel anticancer agents, currently under investigation in Phase I-III clinical trials. Until recently, most studies have focused on the direct antitumor properties of these viruses, although there is now an increasing body of evidence that the host immune response may be critical to the efficacy of oncolytic virotherapy. This may be mediated via innate immune effectors, adaptive antiviral immune responses eliminating infected cells or adaptive antitumor immune responses. This report summarizes preclinical and clinical evidence for the importance of immune interactions, which may be finely balanced between viral and tumor elimination. On this basis, oncolytic viruses represent a promising novel immunotherapy strategy, which may be optimally combined with existing therapeutic modalities.
Collapse
Affiliation(s)
- Robin J Prestwich
- Cancer Research UK Clinical Centre, Leeds Institute of Molecular Medicine, University of Leeds, Leeds, UK.
| | | | | | | | | | | |
Collapse
|
154
|
Thorne SH, Barak Y, Liang W, Bachmann MH, Rao J, Contag CH, Matin A. CNOB/ChrR6, a new prodrug enzyme cancer chemotherapy. Mol Cancer Ther 2009; 8:333-41. [PMID: 19190118 DOI: 10.1158/1535-7163.mct-08-0707] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We report the discovery of a new prodrug, 6-chloro-9-nitro-5-oxo-5H-benzo(a)phenoxazine (CNOB). This prodrug is efficiently activated by ChrR6, the highly active prodrug activating bacterial enzyme we have previously developed. The CNOB/ChrR6 therapy was effective in killing several cancer cell lines in vitro. It also efficiently treated tumors in mice with up to 40% complete remission. 9-Amino-6-chloro-5H-benzo(a)phenoxazine-5-one (MCHB) was the only product of CNOB reduction by ChrR6. MCHB binds DNA; at nonlethal concentration, it causes cell accumulation in the S phase, and at lethal dose, it induces cell surface Annexin V and caspase-3 and caspase-9 activities. Further, MCHB colocalizes with mitochondria and disrupts their electrochemical potential. Thus, killing by CNOB involves MCHB, which likely induces apoptosis through the mitochondrial pathway. An attractive feature of the CNOB/ChrR6 regimen is that its toxic product, MCHB, is fluorescent. This feature proved helpful in in vitro studies because simple fluorescence measurements provided information on the kinetics of CNOB activation within the cells, MCHB killing mechanism, its generally efficient bystander effect in cells and cell spheroids, and its biodistribution. The emission wavelength of MCHB also permitted its visualization in live animals, allowing noninvasive qualitative imaging of MCHB in mice and the tumor microenvironment. This feature may simplify exploration of barriers to the penetration of MCHB in tumors and their amelioration.
Collapse
Affiliation(s)
- Steve H Thorne
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | | | |
Collapse
|
155
|
Liu P, Chen L, Huang X. The Antitumor Effects of CIK Cells Combined with Docetaxel Against Drug-Resistant Lung Adenocarcinoma Cell Line SPC-A1/DTXin Vitroandin Vivo. Cancer Biother Radiopharm 2009; 24:91-8. [PMID: 19243251 DOI: 10.1089/cbr.2008.0533] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Pengying Liu
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Longbang Chen
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| | - Xiang Huang
- Department of Medical Oncology, Jinling Hospital, Medical School of Nanjing University, Nanjing, People's Republic of China
| |
Collapse
|
156
|
Kirn DH, Thorne SH. Targeted and armed oncolytic poxviruses: a novel multi-mechanistic therapeutic class for cancer. Nat Rev Cancer 2009; 9:64-71. [PMID: 19104515 DOI: 10.1038/nrc2545] [Citation(s) in RCA: 296] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Viruses have been engineered for cancer therapy in a variety of ways. Approaches include non-replicating gene therapy vectors, cancer vaccines and oncolytic viruses, but the clinical efficacy of these approaches has been limited by multiple factors. However, a new therapeutic class of oncolytic poxviruses has recently been developed that combines targeted and armed approaches for treating cancer. Initial preclinical and clinical results show that products from this therapeutic class can systemically target cancers in a highly selective and potent fashion using a multi-pronged mechanism of action.
Collapse
Affiliation(s)
- David H Kirn
- Jennerex Biotherapeutics Inc., San Francisco, California 94105, USA .
| | | |
Collapse
|
157
|
Zhao L, Rooker SM, Morrell N, Leucht P, Simanovskii D, Helms JA. Controlling the in vivo activity of Wnt liposomes. Methods Enzymol 2009; 465:331-47. [PMID: 19913175 DOI: 10.1016/s0076-6879(09)65017-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Liposomes offer a method of delivering small molecules, nucleic acids, and proteins to sites within the body. Typically, bioactive materials are encapsulated within the liposomal aqueous core and liposomal phase transition is elicited by pH or temperature changes. We developed a new class of liposomes for the in vivo delivery of lipid-modified proteins. First, we show that the inclusion of a chromophore into the liposomal or vesosomal membrane renders these lipid vesicles extremely sensitive to very small (muJ) changes in energy. Next, we demonstrate that the lipid-modified Wnt protein is not encapsulated within a liposome but rather is tethered to the exoliposomal surface in an active configuration. When applied to intact skin, chromophore-modified liposomes do not penetrate past the corneal layer of the epidermis, but remain localized to the site of application. Injury to the epidermis allows rapid penetration of liposomes into the dermis, which suggests that mild forms of dermabrasion will greatly enhance transdermal delivery of liposome-packaged molecules. Finally, we demonstrate that topical application of Wnt3a liposomes rapidly stimulates proliferation of cells in the corneal layer, resulting in a thicker, more fibrillous epidermis.
Collapse
Affiliation(s)
- L Zhao
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | | | | | | | | | | |
Collapse
|
158
|
Liu TC, Hwang TH, Bell JC, Kirn DH. Development of targeted oncolytic virotherapeutics through translational research. Expert Opin Biol Ther 2008; 8:1381-91. [PMID: 18694356 DOI: 10.1517/14712598.8.9.1381] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Oncolytic virotherapeutics is a promising platform for cancer treatment but the product class has yet been successful. The key to success is integration of bidirectional translational research to rapidly address issues encountered in the laboratory and the clinics. OBJECTIVE We highlight the hurdles identified for the targeted oncolytic virotherapy approach, specifically those identified in clinical trials with wild-type viruses and first-generation targeted agents. We also analyze the translational research and development that has been applied to overcome these hurdles, including virus engineering and design improvements for next-generation virotherapeutics. RESULTS/CONCLUSION The iterative loop between the clinic and the lab can function as a major driving force to optimize products from this platform.
Collapse
Affiliation(s)
- Ta-Chiang Liu
- Jennerex Biotherapeutics, One Market Street, Spear Tower, Suite 2260, San Francisco, CA 94105, USA
| | | | | | | |
Collapse
|
159
|
Kim JB, Leucht P, Morrell NT, Schwettman HA, HELMS JA. Visualizingin vivoliposomal drug delivery in real-time. J Drug Target 2008; 15:632-9. [DOI: 10.1080/10611860701538651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
160
|
Use of biological therapy to enhance both virotherapy and adoptive T-cell therapy for cancer. Mol Ther 2008; 16:1910-8. [PMID: 18827807 DOI: 10.1038/mt.2008.212] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
To protect viral particles from neutralization, sequestration, nonspecific adhesion, and mislocalization following systemic delivery, we have previously exploited the natural tumor-homing properties of antigen-specific CD8+ T cells. Thus, OT-I T cells, preloaded in vitro with the oncolytic vesicular stomatitis virus (VSV), can deliver virus to established B16ova tumors to generate significantly better therapy than that achievable with OT-I T cells, or systemically delivered VSV, alone. Here, we demonstrate that preconditioning immune-competent mice with Treg depletion and interleukin-2 (IL-2), before adoptive T-cell therapy with OT-I T cells loaded with VSV, leads to further highly significant increases in antitumor therapy. Therapy was associated with antitumor immune memory, but with no detectable toxicities associated with IL-2, Treg depletion, or systemic dissemination of the oncolytic virus. Efficacy was contributed by multiple factors, including improved persistence of T cells; enhanced delivery of VSV to tumors; increased persistence of OT-I cells in vivo resulting from tumor oncolysis; and activation of NK cells, which acquire potent antitumor and proviral activities. By controlling the levels of virus loaded onto the OT-I cells, adoptive therapy was still effective in mice preimmune to the virus, indicating that therapy with virus-loaded T cells may be useful even in virus-immune patients. Taken together, our data show that it is possible to combine adoptive T-cell therapy, with biological therapy (Treg depletion+IL-2), and VSV virotherapy, to treat established tumors under conditions where none of the individual modalities alone is successful.
Collapse
|
161
|
Visualizing fewer than 10 mouse T cells with an enhanced firefly luciferase in immunocompetent mouse models of cancer. Proc Natl Acad Sci U S A 2008; 105:14342-6. [PMID: 18794521 DOI: 10.1073/pnas.0804105105] [Citation(s) in RCA: 166] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Antigen specific T cell migration to sites of infection or cancer is critical for an effective immune response. In mouse models of cancer, the number of lymphocytes reaching the tumor is typically only a few hundred, yet technology capable of imaging these cells using bioluminescence has yet to be achieved. A combination of codon optimization, removal of cryptic splice sites and retroviral modification was used to engineer an enhanced firefly luciferase (ffLuc) vector. Compared with ffLuc, T cells expressing our construct generated >100 times more light, permitting detection of as few as three cells implanted s.c. while maintaining long term coexpression of a reporter gene (Thy1.1). Expression of enhanced ffLuc in mouse T cells permitted the tracking of <3 x 10(4) adoptively transferred T cells infiltrating sites of vaccination and preestablished tumors. Penetration of light through deep tissues, including the liver and spleen, was also observed. Finally, we were able to enumerate infiltrating mouse lymphocytes constituting <0.3% of total tumor cellularity, representing a significant improvement over standard methods of quantitation including flow cytometry.
Collapse
|
162
|
Nishimura R, Baker J, Beilhack A, Zeiser R, Olson JA, Sega EI, Karimi M, Negrin RS. In vivo trafficking and survival of cytokine-induced killer cells resulting in minimal GVHD with retention of antitumor activity. Blood 2008; 112:2563-74. [PMID: 18565854 PMCID: PMC2532819 DOI: 10.1182/blood-2007-06-092817] [Citation(s) in RCA: 152] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Accepted: 05/13/2008] [Indexed: 12/21/2022] Open
Abstract
Cytokine-induced killer (CIK) cells are ex vivo-expanded T lymphocytes expressing both natural killer (NK)- and T-cell markers. CIK cells are cytotoxic against autologous and allogeneic tumors. We previously showed that adoptive transfer of allogeneic CIK cells in a murine model caused minimal graft-versus-host disease (GVHD). However, the precise mechanism of reduced GVHD is not fully understood. Therefore, we evaluated the trafficking and survival of luciferase-expressing CIK cells in an allogeneic bone marrow transplant model. The initial trafficking patterns of CIK cells were similar to conventional T cells that induced GVHD; however, CIK cells infiltrated GVHD target tissues much less and transiently. CIK cells accumulated and persisted in tumor sites, resulting in tumor eradication. We evaluated different properties of CIK cells compared with conventional T cells, demonstrating a slower division rate of CIK cells, higher susceptibility to apoptosis, persistent increased expression of interferon gamma (IFN-gamma), and reduced acquisition of homing molecules required for entry of cells into inflamed GVHD target organs that lack expression of NKG2D ligands recognized by CIK cells. Due to these properties, allogeneic CIK cells had reduced expansion and caused less tissue damage. We conclude that CIK cells have the potential to separate graft-versus-tumor effects from GVHD.
Collapse
Affiliation(s)
- Ryosei Nishimura
- Department of Medicine, Division of Blood and Marrow Transplantation, Stanford University, CA 94305, USA
| | | | | | | | | | | | | | | |
Collapse
|
163
|
Brown CW, Bell JC. Oncolytic Viruses: A New Weapon to Fight Cancer. J Med Imaging Radiat Sci 2008; 39:115-127. [PMID: 31051886 DOI: 10.1016/j.jmir.2008.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Remission from cancer after viral infection was first noted in the beginning of the 20th century, and with advances in virotherapy and genetic engineering, the advent of an approved viral therapeutic in North America is fast approaching. Mechanisms of tumour selectivity and killing, along with information obtained from clinical trials are reviewed here. Although oncolytic viruses are generally safe and well tolerated, their overall anti-tumour efficacy has varied. This article outlines strategies to improve the efficacy of the oncolytic platform without compromising its impressive safety profile. It will highlight new methods being developed to quantify the activity of oncolytic viruses in real time. Harnessing the factors that control the tumour microenvironment and the immune system are the key to enhancing the oncolytic activity. The purpose of this article is to introduce and provide an overview of the current state of cancer killing of oncolytic viruses. The reader will acquire knowledge of the basic principles of oncolytic viruses and their use in the clinical setting. This review summarizes articles retrieved from Medline using key words such as "virus," "oncolytic virus," "virotherapy," "cancer," and "clinical trials." Review articles published in the English language from 2005 onward were read and corroborating data and conclusions were summarized. When appropriate, cited references were also reviewed and incorporated. The reader is directed to references we found most concise.
Collapse
Affiliation(s)
- Christopher W Brown
- Department of Microbiology & Immunology and the Ottawa Health Research Institute, University of Ottawa, Ottawa Regional Cancer Center, Ottawa, Ontario; Division of Orthopaedic Surgery, University of Ottawa, Ottawa Hospital General Campus, Ottawa, Ontario
| | - John C Bell
- Department of Microbiology & Immunology and the Ottawa Health Research Institute, University of Ottawa, Ottawa Regional Cancer Center, Ottawa, Ontario.
| |
Collapse
|
164
|
Magnetic cells for cancer therapy: adopting magnets for cell-based cancer therapies. Gene Ther 2008; 15:1511-2. [PMID: 18719530 DOI: 10.1038/gt.2008.139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
165
|
Errington F, Steele L, Prestwich R, Harrington KJ, Pandha HS, Vidal L, de Bono J, Selby P, Coffey M, Vile R, Melcher A. Reovirus activates human dendritic cells to promote innate antitumor immunity. THE JOURNAL OF IMMUNOLOGY 2008; 180:6018-26. [PMID: 18424722 DOI: 10.4049/jimmunol.180.9.6018] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Oncolytic viruses can exert their antitumor activity via direct oncolysis or activation of antitumor immunity. Although reovirus is currently under clinical investigation for the treatment of localized or disseminated cancer, any potential immune contribution to its efficacy has not been addressed. This is the first study to investigate the ability of reovirus to activate human dendritic cells (DC), key regulators of both innate and adaptive immune responses. Reovirus induced DC maturation and stimulated the production of the proinflammatory cytokines IFN-alpha, TNF-alpha, IL-12p70, and IL-6. Activation of DC by reovirus was not dependent on viral replication, while cytokine production (but not phenotypic maturation) was inhibited by blockade of PKR and NF-kappaB signaling. Upon coculture with autologous NK cells, reovirus-activated DC up-regulated IFN-gamma production and increased NK cytolytic activity. Moreover, short-term coculture of reovirus-activated DC with autologous T cells also enhanced T cell cytokine secretion (IL-2 and IFN-gamma) and induced non-Ag restricted tumor cell killing. These data demonstrate for the first time that reovirus directly activates human DC and that reovirus-activated DC stimulate innate killing by not only NK cells, but also T cells, suggesting a novel potential role for T cells in oncolytic virus-induced local tumor cell death. Hence reovirus recognition by DC may trigger innate effector mechanisms to complement the virus's direct cytotoxicity, potentially enhancing the efficacy of reovirus as a therapeutic agent.
Collapse
Affiliation(s)
- Fiona Errington
- Cancer Research U.K., St. James's University Hospital, Beckett Street, Leeds
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Chisholm E, Bapat U, Chisholm C, Alusi G, Vassaux G. Gene therapy in head and neck cancer: a review. Postgrad Med J 2008; 83:731-7. [PMID: 18057169 DOI: 10.1136/pgmj.2007.061994] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Gene therapy for cancer is a rapidly evolving field with head and neck squamous cell cancer being one of the more frequently targeted cancer types. The number of clinical trials in the UK is growing and there is already a commercially available agent in China. Various gene therapy strategies along with delivery mechanisms for targeting head and neck cancer are reviewed.
Collapse
Affiliation(s)
- E Chisholm
- Molecular Oncology, Cancer Research UK, Barts and The London NHS Trust, London, UK.
| | | | | | | | | |
Collapse
|
167
|
Kirn DH, Wang Y, Liang W, Contag CH, Thorne SH. Enhancing poxvirus oncolytic effects through increased spread and immune evasion. Cancer Res 2008; 68:2071-5. [PMID: 18381410 DOI: 10.1158/0008-5472.can-07-6515] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The antitumoral effects of oncolytic viruses have generally been limited by inefficient spread of the viruses within infected tumors and by inefficient systemic delivery, particularly in preimmunized hosts. Tumor-selective poxviruses have biological characteristics that may overcome these limitations. Nevertheless, physical barriers within the tumor microenvironment, including the extracellular matrix, can still limit intratumoral spread, and neutralizing antibodies can impede systemic delivery. To counter these limitations, we sought to take advantage of a naturally occurring poxvirus form known as extracellular enveloped virus (EEV). The EEV is shrouded by a host cell-derived lipid bilayer containing anticomplement proteins and is typically released from infected cells early during the infection cycle. Therefore, the EEV form evolved for rapid systemic spread within the host and for evasion of immune-mediated clearance. We compared the oncolytic potential of low versus high EEV-producing strains of vaccinia. EEV-enhanced vaccinia strains displayed improved spread within tumors after systemic delivery, resulting in significantly improved antitumor effects. The EEV-enhanced strains also displayed a greater ability to spread between injected and noninjected distant tumors through the blood and, importantly, displayed reduced clearance by neutralizing antibody. Safety was unaffected. The incorporation of EEV-enhancing mutations into next generation oncolytic vaccinia strains may improve the potency of these viruses without sacrificing safety.
Collapse
Affiliation(s)
- David H Kirn
- Jennerex Biotherapeutics, Ltd., San Francisco, California, USA
| | | | | | | | | |
Collapse
|
168
|
Kottke T, Galivo F, Wongthida P, Diaz RM, Thompson J, Jevremovic D, Barber GN, Hall G, Chester J, Selby P, Harrington K, Melcher A, Vile RG. Treg depletion-enhanced IL-2 treatment facilitates therapy of established tumors using systemically delivered oncolytic virus. Mol Ther 2008; 16:1217-1226. [PMID: 18431359 DOI: 10.1038/mt.2008.83] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Accepted: 03/28/2008] [Indexed: 12/11/2022] Open
Abstract
There are several roadblocks that hinder systemic delivery of oncolytic viruses to the sites of metastatic disease. These include the tumor vasculature, which provides a physical barrier to tumor-specific virus extravasation. Although interleukin-2 (IL-2) has been used in antitumor therapy, it is associated with endothelial cell injury, leading to vascular leak syndrome (VLS). Here, we demonstrate that IL-2-mediated VLS, accentuated by depletion of regulatory T cells (Treg), facilitates localization of intravenously (i.v.) delivered oncolytic virus into established tumors in immune-competent mice. IL-2, in association with Treg depletion, generates "hyperactivated" natural killer (NK) cells, possessing antitumor activity and secreting factors that facilitate virus spread/replication throughout the tumor by disrupting the tumor architecture. As a result, the combination of Treg depletion/IL-2 and systemic oncolytic virotherapy was found to be significantly more therapeutic against established disease than either treatment alone. These data demonstrate that it is possible to combine biological therapy with oncolytic virotherapy to generate systemic therapy against established tumors.
Collapse
Affiliation(s)
- Timothy Kottke
- Department of Molecular Medicine, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
169
|
Abstract
The past 2 years have seen several major advances in oncolytic virotherapy. Studies on the interaction between viruses, immune responses and tumor microenvironment have provided important insight, while clinical trials have shown promise. This review summarizes key findings in this field over the past 2 years, and provides directions for future success.
Collapse
|
170
|
Liu TC, Castelo-Branco P, Rabkin SD, Martuza RL. Trichostatin A and oncolytic HSV combination therapy shows enhanced antitumoral and antiangiogenic effects. Mol Ther 2008; 16:1041-7. [PMID: 18388912 DOI: 10.1038/mt.2008.58] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Oncolytic herpes simplex viruses (HSVs) possess direct oncolytic and antiangiogenic activities and are promising anticancer agents, but their efficacy, when used as single agents, leaves room for improvement. We investigated whether combination therapy of HSV with histone deacetylase inhibitor trichostatin A (TSA), an agent that also targets cancer cells and tumor vasculature, would result in enhanced efficacy. In vitro, TSA and G47Delta showed strong synergy of action against proliferating endothelial cells, varying degrees of synergistic action against most cancer cell lines, but no effect in quiescent, normal endothelial and prostate epithelial cells. Synergy is dependent on viral replication; however, it is not dependent on the dosing sequence of TSA and G47Delta, viral genetic alterations, infectivity, or replication kinetics of G47Delta. Using an isogenic cell system, we found that a high level of cellular cyclin D1 is also critically important for the interaction. Normal cells with low cyclin D1 levels were not subjected to toxicity by either agent. In tumor cells and proliferating endothelial cells, the combination treatment enhanced the inhibition of cyclin D1 and vascular endothelial growth factor (VEGF). Concurrent systemic TSA and intratumoral G47Delta administration resulted in enhanced antiangiogenesis and enhanced antitumoral efficacy in animal models. Therefore, combination treatment with TSA and oncolytic HSV provides a novel approach to cancer therapy.
Collapse
Affiliation(s)
- Ta-Chiang Liu
- Molecular Neurosurgery Laboratory, Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA.
| | | | | | | |
Collapse
|
171
|
Power AT, Bell JC. Taming the Trojan horse: optimizing dynamic carrier cell/oncolytic virus systems for cancer biotherapy. Gene Ther 2008; 15:772-9. [PMID: 18369325 DOI: 10.1038/gt.2008.40] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Live cells offer unique advantages as vehicles for systemic oncolytic virus (OV) delivery. Recent studies from our laboratory and others have shown that virus-infected cells can serve as Trojan horse vehicles to evade antiviral mechanisms encountered in the bloodstream, prevent uptake by off-target tissues and act as microscale factories to produce OV upon arrival in tumor beds. However to be employed effectively, OV-infected cells are best viewed as dynamic biological systems rather than static therapeutic agents. The time-dependent processes of infection and in vivo cell trafficking will inevitably vary depending on which particular OV is being delivered, as well as the type of carrier cells (CC) employed. Understanding these parameters with respect to each unique CC/OV combination will therefore be required in order to effectively evaluate and harness their potential in preclinical study. In the following review, we discuss how early studies of OV delivery led us to investigate the use of cell carriers in our laboratory, and the approaches we are currently undertaking to compare the dynamics of different CC/OV systems. On the basis of these studies and others it is apparent that the success of any cell-based system for OV delivery rests upon the coordinated timing of three sequential phases--(1) ex vivo loading, (2) stealth delivery and (3) virus production at the tumor site. While at the current time, the timing of these processes are coupled to the natural cycle of infection and in vivo trafficking properties innate to each cell virus system, a quantitative delineation of their dynamics will lay the foundation for engineering CC/OV biotherapeutic systems that can be clinically deployed in a highly directed and controlled manner.
Collapse
Affiliation(s)
- A T Power
- Centre for Cancer Therapeutics, Ottawa Health Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | | |
Collapse
|
172
|
Abstract
Use of cells as therapeutic carriers has increased in the past few years and has developed as a distinct concept and delivery method. Cell-based vehicles are particularly attractive for delivery of biotherapeutic agents that are difficult to synthesize, have reduced half-lives, limited tissue penetrance or are rapidly inactivated upon direct in vivo introduction. Initial studies using cell-based approaches served to identify some of the key factors for the success of this type of therapeutic delivery. These factors include the efficiency of cell loading with a therapeutic payload, the means of cell loading and the nature of therapeutics that cells can carry. However, one important aspect of cell-based delivery yet to be fully investigated is the process of actual delivery of the cell payload in vivo. In this regard, the potential ability of cell carriers to provide site-specific or targeted delivery of therapeutics deserves special attention. The present review focuses on a variety of targeting approaches that may be utilized to improve cell-based therapeutic delivery strategies. The different aspects of targeting that can be applied to cell vehicles will be discussed, including physical methods for directing cell distribution, intrinsic cell-mediated homing mechanisms and the feasibility of engineering cells with novel targeting mechanisms. Development of cell targeting strategies will further advance cell vehicle applications, broaden the applicability of this delivery approach and potentiate therapeutic outcomes.
Collapse
Affiliation(s)
- J C Roth
- Department of Medicine, Division of Human Gene Therapy, The Gene Therapy Center, University of Alabama at Birmingham, Birmingham, AL 35294-2172, USA.
| | | | | |
Collapse
|
173
|
Integrating the biological characteristics of oncolytic viruses and immune cells can optimize therapeutic benefits of cell-based delivery. Gene Ther 2008; 15:753-8. [PMID: 18356814 DOI: 10.1038/gt.2008.42] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Despite significant advances in the development of tumor-selective agents, strategies for effective delivery of these agents across biological barriers to cells within the tumor microenvironment has been limiting. One tactical approach to overcoming biological barriers is to use cells as delivery vehicles, and a variety of different cell types have been investigated with a range of agents. In addition to transporting agents with targeted delivery, cells can also produce their own tumoricidal effect, conceal a payload from an immune response, amplify a selective agent at the target site and facilitate an antitumor immune response. We have reported a therapeutic combination consisting of cytokine induced killer cells and an oncolytic vaccinia virus with many of these features that led to therapeutic synergy in animal models of human cancer. The synergy was due to the interaction of the two agents to enhance the antitumor benefits of each individual component. As both of these agents display broad tumor-targeting potential and possess unique tumor killing mechanisms, together they were able to recognize and destroy a far greater number of malignant cells within the heterogeneous tumor than either agent alone. Effective cancer therapy will require recognition and elimination of the root of the disease, the cancer stem cell, and the combination of CIK cells and oncolytic vaccinia viruses has this potential. To create effective tumor-selective agents the viruses are modified to take advantage of the unique biology of the cancer cell. Similarly, if we are to develop targeted therapies that are sufficiently multifaceted to eliminate cancer cells at all stages of disease, we should integrate the virus into the unique biology of the cell delivery vehicle.
Collapse
|
174
|
Raykov Z, Rommelaere J. Potential of tumour cells for delivering oncolytic viruses. Gene Ther 2008; 15:704-10. [DOI: 10.1038/gt.2008.34] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
175
|
Abstract
Multiple myeloma (MM) is a disseminated malignancy of antibody secreting plasma cells that localize primarily to the bone marrow. Several studies have illustrated the potential of utilizing oncolytic viruses (measles, vaccinia, Vesicular Stomatitis Virus and coxsackievirus A21) for the treatment of MM, but there are significant barriers that prevent the viruses from reaching sites of myeloma tumor growth after intravenous delivery. The most important barriers are failure to extravasate from tumor blood vessels, mislocalization of the viruses in liver and spleen and neutralization by antiviral antibodies. In this review, we discuss the use of various cell types as carriers to overcome these barriers, emphasizing their relative susceptibilities to virus infection and their variable trafficking properties. Mesenchymal progenitor cells, monocytes and T cells have all shown promise as virus-delivery vehicles capable of accessing sites of myeloma growth. However, a previously unexplored alternative would be to use primary myeloma cells, or even myeloma cell lines, as delivery vehicles. Advantages of this approach are the natural ability of myeloma cells to home to sites of myeloma tumor growth and their compatibility with tumor-specific viruses that cannot propagate in other carrier cell lineages. A potential difficulty associated with the use of myeloma cells for virus delivery is that they must be exposed to supralethal doses of ionizing radiation before they can be safely administered to patients. Preliminary studies are presented in which we demonstrate the feasibility of using irradiated myeloma cells as carriers to deliver oncolytic viruses to sites of myeloma tumor growth in an orthotopic human myeloma model.
Collapse
|
176
|
Minimally invasive treatment combined with cytokine-induced killer cells therapy lower the short-term recurrence rates of hepatocellular carcinomas. J Immunother 2008; 31:63-71. [PMID: 18157013 DOI: 10.1097/cji.0b013e31815a121b] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The recurrence of hepatocellular carcinoma (HCC) after minimally invasive therapy is frequent. Adoptive immunotherapy is thought to be an effective method to lower recurrence and metastasis rates of malignant tumors. Therefore, 85 HCC patients after transcatheter arterial chemoembolization and radiofrequency ablation therapy were randomized to immunotherapy group and no adjuvant therapy group. Autologous cytokine-induced killer (CIK) cells were transfused via hepatic artery to the patients. The alteration of levels of lymphocyte subsets in peripheral blood of patients was examined by flow cytometry. All patients were screened by computed tomography every 2 months to observe the tumor recurrent conditions. After CIK cell infusions, the percentages of CD3+, CD4+, CD56+, CD3+CD56+ cells, and CD4+/CD8+ ratio increased from 68.6+/-11.0%, 31.1+/-9.0%, 15.6+/-7.9%, 5.2+/-3.1%, and 1.1+/-0.5 to 70.7+/-10.1%, 33.5+/-8.0%, 18.4+/-9.4%, 5.9+/-2.8%, and 1.3+/-0.7, respectively (P<0.05); whereas the percentage of CD8 cells decreased from 31.1+/-7.8% to 28.6+/-8.3% (P<0.05). The 1-year and 18-month recurrence rates of the study group were 8.9% and 15.6%, compared with 30.0% and 40.0% of the control group (both P value<0.05). The data suggest that CIK cell transfusion is an effective treatment. It can boost the immunologic function in HCC patients and plays an important role in reducing the recurrence rate of HCC.
Collapse
|
177
|
Loading of oncolytic vesicular stomatitis virus onto antigen-specific T cells enhances the efficacy of adoptive T-cell therapy of tumors. Gene Ther 2008; 15:604-16. [PMID: 18305577 DOI: 10.1038/sj.gt.3303098] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Although adoptive T-cell therapy has shown clinical success, efficacy is limited by low levels of T-cell trafficking to, and survival in, the immunosuppressive environment of an established tumor. Oncolytic virotherapy has recently emerged as a promising approach to induce both direct tumor cell killing and local proinflammatory environments within tumors. However, inefficient systemic delivery of oncolytic viruses remains a barrier to use of these agents against metastatic disease that is not directly accessible to the end of a needle. Here we show that the ability of antigen-specific T cells to circulate freely, and to localize to tumors, can be exploited to achieve the systemic delivery of replication-competent, oncolytic vesicular stomatitis virus (VSV). Thus, VSV loaded onto OT-I T cells, specific for the SIINFEKL epitope of the ovalbumin antigen, was efficiently delivered to established B16ova tumors in the lungs of fully immune-competent C57Bl/6 mice leading to significant increases in therapy compared to the use of virus, or T cells, alone. Although OT-I T-cell-mediated delivery of VSV led to viral replication within tumors and direct viral oncolysis, therapy was also dependent upon an intact host immune system. Moreover, VSV loading onto the T cells increased both T-cell activation in vitro and T-cell trafficking in vivo. The combination of adoptive T-cell transfer of antigen-specific T cells, along with oncolytic virotherapy, can, therefore, increase the therapeutic utility of both approaches through multiple mechanisms and should be of direct translational value.
Collapse
|
178
|
Lang SI, Kottke T, Thompson J, Vile RG. Unbiased selection of bone marrow derived cells as carriers for cancer gene therapy. J Gene Med 2008; 9:927-37. [PMID: 17721895 DOI: 10.1002/jgm.1089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND There is currently great interest in development of cell-based carriers for delivery of viral vectors to metastatic tumors. To date, several cell carriers have been tested based largely upon their predicted tumor-localizing properties. However, cell types may exist which can be mobilized from the circulation by a tumor which have not yet been identified. Here we use an unbiased screen of bone marrow (BM) cells to identify cells which localize to tumors and which might serve as effective candidate cell carriers without any prior prediction or selection. METHODS Unsorted BM cells from green fluorescent protein (GFP)-transgenic donor mice were adoptively transferred into C57Bl/6 mice bearing pre-established subcutaneous B16 melanoma tumors. Forty-eight hours and eight days later, tumors, organs and blood were analyzed for GFP-expressing cells by flow cytometry. The phenotype of GFP cells in organs was determined by co-staining with specific cell surface markers. RESULTS CD45(+) hematopoietic cells were readily detected in tumor, spleen, bone marrow, blood and lung at both time points. Within these CD45(+) cell populations, preferential accumulation in the tumor was observed of cells expressing Sca-1, c-kit, NK1.1, Thy1.2, CD14, Mac-3 and/or CD11c. Lymphodepletion increased homing to spleen and bone marrow, but not to tumors. CONCLUSIONS We have used an in vivo screen to identify populations of BM-derived donor cells which accumulate within tumors. These studies will direct rational selection of specific cell types which can be tested in standardized assays of cell carrier efficiency for the treatment of metastatic tumors.
Collapse
Affiliation(s)
- Susanne I Lang
- Molecular Medicine Program, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905, USA
| | | | | | | |
Collapse
|
179
|
Carboxylated superparamagnetic iron oxide particles label cells intracellularly without transfection agents. Mol Imaging Biol 2008; 10:138-46. [PMID: 18297365 DOI: 10.1007/s11307-007-0130-3] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 11/06/2007] [Accepted: 11/09/2007] [Indexed: 01/03/2023]
Abstract
Cell labeling by superparamagnetic iron oxide particles (SPIO) has emerged as a potentially powerful tool to monitor trafficking of transplanted cells by magnetic resonance tomography, e.g., in studies for tissue repair. However, intracellular labeling is mostly achieved by transfection agents not approved for clinical use. In this work, the feasibility and efficiency of labeling human mesenchymal stem cells (MSC) and HeLa cells with two commercially available SPIOs (Resovist and Feridex) without transfection agents was evaluated. In both cell types, Resovist without a transfection agent was more efficiently taken up than Feridex. Increasing the concentration of Resovist can yield similar amounts of iron in cells as SPIOs with transfection agents. This offers the opportunity to omit transfection agents from the labeling protocol when Resovist is used. Intracellular localization of the contrast agents is found by light microscopy and confirmed by electron microscopy. Coagulation of the SPIO nanoparticles, which is problematic for the quantification of the intracellular iron content, was observed and analyzed with a fluorescent activated cell sorter. As Resovist consists of a carboxydextran shell in contrast to Feridex which is composed of a dextran shell, we synthesized fluorescent polymeric nanoparticles as model systems with different amounts of carboxyl groups on the surface by the miniemulsion process. A steady increase in uptake of nanoparticles was detected with a higher density of carboxyl groups showing the relevance of charged groups as in the case of Resovist. Aggregation of these polymeric nanoparticles was not found.
Collapse
|
180
|
Guo ZS, Thorne SH, Bartlett DL. Oncolytic virotherapy: molecular targets in tumor-selective replication and carrier cell-mediated delivery of oncolytic viruses. Biochim Biophys Acta Rev Cancer 2008; 1785:217-31. [PMID: 18328829 DOI: 10.1016/j.bbcan.2008.02.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Revised: 02/01/2008] [Accepted: 02/04/2008] [Indexed: 01/13/2023]
Abstract
Tremendous advances have been made in developing oncolytic viruses (OVs) in the last few years. By taking advantage of current knowledge in cancer biology and virology, specific OVs have been genetically engineered to target specific molecules or signal transduction pathways in cancer cells in order to achieve efficient and selective replication. The viral infection and amplification eventually induce cancer cells into cell death pathways and elicit host antitumor immune responses to further help eliminate cancer cells. Specifically targeted molecules or signaling pathways (such as RB/E2F/p16, p53, IFN, PKR, EGFR, Ras, Wnt, anti-apoptosis or hypoxia) in cancer cells or tumor microenvironment have been studied and dissected with a variety of OVs such as adenovirus, herpes simplex virus, poxvirus, vesicular stomatitis virus, measles virus, Newcastle disease virus, influenza virus and reovirus, setting the molecular basis for further improvements in the near future. Another exciting new area of research has been the harnessing of naturally tumor-homing cells as carrier cells (or cellular vehicles) to deliver OVs to tumors. The trafficking of these tumor-homing cells (stem cells, immune cells and cancer cells), which support proliferation of the viruses, is mediated by specific chemokines and cell adhesion molecules and we are just beginning to understand the roles of these molecules. Finally, we will highlight some avenues deserving further study in order to achieve the ultimate goals of utilizing various OVs for effective cancer treatment.
Collapse
Affiliation(s)
- Z Sheng Guo
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
| | | | | |
Collapse
|
181
|
Prestwich RJ, Errington F, Harrington KJ, Pandha HS, Selby P, Melcher A. Oncolytic viruses: do they have a role in anti-cancer therapy? Clin Med Oncol 2008; 2:83-96. [PMID: 21892269 PMCID: PMC3161683 DOI: 10.4137/cmo.s416] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Oncolytic viruses are replication competent, tumor selective and lyse cancer cells. Their potential for anti-cancer therapy is based upon the concept that selective intratumoral replication will produce a potent anti-tumor effect and possibly bystander or remote cell killing, whilst minimizing normal tissue toxicity. Viruses may be naturally oncolytic or be engineered for oncolytic activity, and possess a host of different mechanisms to provide tumor selectivity. Clinical use of live replicating viruses is associated with a unique set of safety issues. Clinical experience has so far provided evidence of limited efficacy and a favourable toxicity profile. The interaction with the host immune system is complex. An anti-viral immune response may limit efficacy by rapidly clearing the virus. However, virally-induced cell lysis releases tumor associated antigens in a 'dangerous' context, and limited evidence suggests that this can lead to the generation of a specific anti-tumor immune response. Combination therapy with chemotherapy or radiotherapy represents a promising avenue for ongoing translation of oncolytic viruses into clinical practice. Obstacles to therapy include highly effective non-specific host mechanisms to clear virus following systemic delivery, immune-mediated clearance, and intratumoral barriers limiting virus spread. A number of novel strategies are now under investigation to overcome these barriers. This review provides an overview of the potential role of oncolytic viruses, highlighting recent progress towards developing effective therapy and asks if they are a realistic therapeutic option at this stage.
Collapse
Affiliation(s)
- Robin J Prestwich
- Cancer Research UK, St James's University Hospital, Beckett Street, Leeds, LS9 7TF, UK
| | | | | | | | | | | |
Collapse
|
182
|
Haploidentical haematopoietic stem cell transplantation for acute leukaemia in adults: experience in Europe and the United States. Bone Marrow Transplant 2008; 41:473-81. [PMID: 18176612 DOI: 10.1038/sj.bmt.1705966] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Work on one haplotype-mismatched transplants has been proceeding for over 20 years all over the world and novel transplant techniques have been developed. Some centres have focused on the conditioning regimens and post transplant immune suppression; others have concentrated on manipulating the graft. Haploidentical transplant modalities are based mainly on high-intensity conditioning regimen, but reduced intensity regimens have recently been introduced. The graft may be a megadose of extensively T cell-depleted or unmanipulated progenitor cells. Excellent engraftment rates are associated with a very low incidence of GVHD- and regimen-related mortality even in patients who are over 50 years old. Overall, event-free survival and transplant-related mortality compare favourably with reports on transplants from sources of stem cells other than the matched sibling. Improvements will come with successful implementation of strategies to accelerate and strengthen post transplant immune reconstitution as well as transplantation of patients in early stage disease.
Collapse
|
183
|
Louis DN. Molecular pathology of malignant gliomas. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2007; 2:277-305. [PMID: 18039109 DOI: 10.1146/annurev.pathol.2.010506.091930] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Malignant gliomas, the most common type of primary brain tumor, are a spectrum of tumors of varying differentiation and malignancy grades. These tumors may arise from neural stem cells and appear to contain tumor stem cells. Early genetic events differ between astrocytic and oligodendroglial tumors, but all tumors have an initially invasive phenotype, which complicates therapy. Progression-associated genetic alterations are common to different tumor types, targeting growth-promoting and cell cycle control pathways and resulting in focal hypoxia, necrosis, and angiogenesis. Knowledge of malignant glioma genetics has already impacted clinical management of these tumors, and researchers hope that further knowledge of the molecular pathology of malignant gliomas will result in novel therapies.
Collapse
Affiliation(s)
- David N Louis
- Molecular Pathology Unit, Department of Pathology and Cancer Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA.
| |
Collapse
|
184
|
Antitumor activity of cytokine-induced killer cells against human lung cancer. Int Immunopharmacol 2007; 7:1802-7. [DOI: 10.1016/j.intimp.2007.08.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2007] [Revised: 08/16/2007] [Accepted: 08/16/2007] [Indexed: 11/22/2022]
|
185
|
Inhibition of human ovarian tumor growth by cytokine-induced killer cells. Arch Pharm Res 2007; 30:1464-70. [DOI: 10.1007/bf02977372] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
186
|
Henriquez NV, van Overveld PGM, Que I, Buijs JT, Bachelier R, Kaijzel EL, Löwik CWGM, Clezardin P, van der Pluijm G. Advances in optical imaging and novel model systems for cancer metastasis research. Clin Exp Metastasis 2007; 24:699-705. [PMID: 17972147 DOI: 10.1007/s10585-007-9115-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Accepted: 10/10/2007] [Indexed: 10/22/2022]
Abstract
Research into the genetic and physiological interactions of tumours with their host environment requires in vivo assays to address molecular expression patterns and function. In recent years much of this work has been performed using bioluminescent and fluorescent imaging techniques that allow real-time and non-invasive imaging of gene expression and (tumour) tissue development. Luminescence imaging has until now been more or less the only tool that allows the imaging of intra-osseous breast cancer cells and indeed this technique has been pioneered in our laboratory. Here we summarise some recent innovations and developments using cancer cells and some of the first imaging models of multimodal dual luminescence and luminescence combined with fluorescence of intra-osseous tumours. We further engineered our models to incorporate a specific insertion site in the genome and will discuss some of the possible applications. These include the insertion of signalling pathway-specific reporters and studying the fate of multiple injected populations in a single mouse. We conclude that recent improvements in luminescence- and fluorescence-detection platforms now clearly allow multimodal imaging which will greatly enhance our ability to assess gene function and for the first time to visualise multiple gene- and cellular interactions in real time and in vivo.
Collapse
Affiliation(s)
- Nico V Henriquez
- Department of Endocrinology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
187
|
Kaijzel EL, van der Pluijm G, Löwik CWGM. Whole-body optical imaging in animal models to assess cancer development and progression. Clin Cancer Res 2007; 13:3490-7. [PMID: 17575211 DOI: 10.1158/1078-0432.ccr-07-0402] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Different optical-based imaging models were used to investigate tumor progression and metastasis with particular emphasis on metastasis to bone and bone marrow. We describe how optical imaging can be used to follow important processes in tumor development and treatment response, including angiogenesis, apoptosis, and proteolysis. Finally, we discuss the translation of one optical imaging modality, near-IR fluorescence, from animal validation studies to applications in the clinic related to cancer management.
Collapse
Affiliation(s)
- Eric L Kaijzel
- Departments of Endocrinology and Metabolic Diseases and Urology, Leiden University Medical Center, Leiden, the Netherlands
| | | | | |
Collapse
|
188
|
Wei J, Wahl J, Nakamura T, Stiller D, Mertens T, Debatin KM, Beltinger C. Targeted release of oncolytic measles virus by blood outgrowth endothelial cells in situ inhibits orthotopic gliomas. Gene Ther 2007; 14:1573-86. [PMID: 17898797 DOI: 10.1038/sj.gt.3303027] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Malignant gliomas remain largely incurable despite intensive efforts to develop novel therapies. Replicating oncolytic viruses have shown great promise, among them attenuated measles viruses of the Edmonston B strain (MV-Edm). However, host immune response and the infiltrative nature of gliomas limit their efficacy. We show that human blood outgrowth endothelial cells (BOECs), readily expandable from peripheral blood, are easily infected by MV-Edm and allow replication of MV-Edm while surviving long enough after infection to serve as vehicles for MV-Edm (BOEC/MV-Edm). After intravenous and peritumoral injection, BOEC/MV-Edm deliver the viruses selectively to irradiated orthotopic U87 gliomas in mice. At the tumor, MV-Edm produced by the BOECs infect glioma cells. Subsequent spread from tumor cell to tumor cell leads to focal infection and cytopathic effects that decrease tumor size and, in the case of peritumoral injection, prolong survival of mice. Since MV-Edm within BOECs are not readily neutralized and because BOEC/MV-Edm search and destroy glioma cells, BOEC/MV-Edm constitute a promising novel approach for glioma therapy.
Collapse
Affiliation(s)
- J Wei
- University Children's Hospital, Ulm, Germany
| | | | | | | | | | | | | |
Collapse
|
189
|
Anti-tumor activity of ex vivo expanded cytokine-induced killer cells against human hepatocellular carcinoma. Int Immunopharmacol 2007; 7:1793-801. [PMID: 17996690 DOI: 10.1016/j.intimp.2007.08.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 07/13/2007] [Accepted: 08/09/2007] [Indexed: 11/22/2022]
Abstract
Cytokine-induced killer (CIK) cells are ex vivo expanded T cells with natural killer cell phenotypes and functions. In this study, the anti-tumor activity of CIK cells against hepatocellular carcinoma was evaluated in vitro and in vivo. In the presence of anti-CD3 antibody and IL-2 for 14 days, human peripheral blood mononuclear cell population changed to heterogeneous CIK cell population, which comprised 96% CD3(+), 3% CD3( inverted exclamation mark(c))CD56(+), 32% CD3(+)CD56(+), 11% CD4(+), 75% CD8(+), and 30% CD8(+)CD56(+). CIK cells produced significant amounts of IFN-gamma and TNF-alpha; however, produced only slight amounts of IL-2, IL-4, and IL-5. At an effector-target cell ratio of 30:1, CIK cells destroyed 33% of SNU-354 human hepatocellular carcinoma cells, which was determined by the (51)Cr-release assay. In addition, a dose of 1x10(6) CIK cells per mouse inhibited 60% of SNU-354 tumor growth in irradiated nude mice. This study suggests that CIK cells may be used as an adoptive immunotherapy for patients with hepatocellular carcinoma.
Collapse
|
190
|
Hiraoka K, Kimura T, Logg CR, Tai CK, Haga K, Lawson GW, Kasahara N. Therapeutic efficacy of replication-competent retrovirus vector-mediated suicide gene therapy in a multifocal colorectal cancer metastasis model. Cancer Res 2007; 67:5345-53. [PMID: 17545615 PMCID: PMC8207455 DOI: 10.1158/0008-5472.can-06-4673] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Replication-competent retrovirus (RCR) vectors are intrinsically incapable of infecting quiescent cells and have been shown to achieve highly efficient and tumor-restricted replicative spread and gene transfer in vivo after direct intratumoral injection in a variety of primary cancer models. However, i.v. delivery of RCR vectors expressing therapeutic genes has never previously been tested, particularly in an immunocompetent tumor model. Therefore, in the present study, we sought to test the therapeutic effect of an RCR vector (ACE-CD) carrying the yeast cytosine deaminase (CD) gene, which converts the nontoxic prodrug 5-fluorocytosine (5FC) into the chemotoxin 5-fluorouracil, after delivery by infusion into the locoregional circulation in a multifocal hepatic metastasis model of colon cancer. After confirmation of suicide gene cytotoxicity in vitro, multifocal hepatic tumors were established in syngeneic mice with murine CT26 colorectal cancer cells expressing firefly luciferase (CT26-Luc), and the ACE-CD vector was infused via intrasplenic injection into the portal circulation. Fourteen days after locoregional infusion, systemic administration of 5FC resulted in significant inhibition of bioluminescent signals in mice whose tumors had been infected with RCR but not in control mice. Notably, there was no detectable RCR vector spread to normal liver or bone marrow by quantitative PCR analysis. Our results thus show that locoregional delivery of a suicide gene by RCR vectors infused into the portal circulation results in progressive transduction of multiple tumor foci in the liver, without evidence of spread to adjacent normal parenchyma or extrahepatic tissues, and can achieve significant tumor growth inhibition.
Collapse
Affiliation(s)
- Kei Hiraoka
- Department of Medicine, University of California Los Angeles, Los Angeles, California 90095, USA
| | | | | | | | | | | | | |
Collapse
|
191
|
Xie X, Xia W, Li Z, Kuo HP, Liu Y, Li Z, Ding Q, Zhang S, Spohn B, Yang Y, Wei Y, Lang JY, Evans DB, Chiao PJ, Abbruzzese JL, Hung MC. Targeted expression of BikDD eradicates pancreatic tumors in noninvasive imaging models. Cancer Cell 2007; 12:52-65. [PMID: 17613436 DOI: 10.1016/j.ccr.2007.05.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Revised: 03/09/2007] [Accepted: 05/11/2007] [Indexed: 12/21/2022]
Abstract
Pancreatic cancer is an aggressive malignancy with morbidity rates almost equal to mortality rates because of the current lack of effective treatment options. Here, we describe a targeted approach to treating pancreatic cancer with effective therapeutic efficacy and safety in noninvasive imaging models. We developed a versatile expression vector "VISA" (VP16-GAL4-WPRE integrated systemic amplifier) and a CCKAR (cholecystokinin type A receptor) gene-based, pancreatic-cancer-specific promoter VISA (CCKAR-VISA) composite to target transgene expression in pancreatic tumors in vivo. Targeted expression of BikDD, a potent proapoptotic gene driven by CCKAR-VISA, exhibited significant antitumor effects on pancreatic cancer and prolonged survival in multiple xenograft and syngeneic orthotopic mouse models of pancreatic tumors with virtually no toxicity.
Collapse
Affiliation(s)
- Xiaoming Xie
- Department of Molecular and Cellular Oncology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
192
|
Abstract
The advent of gene therapy in the early 1990's raised expectations for brain tumor therapies; however, whereas clinical trials in patients with malignant gliomas provided evidence of safety, therapeutic benefit was not convincing. These early forays resembled the historical introductions of other therapies that seemed promising, only to fail in human trials. Nevertheless, re-study in the laboratory and retesting in iterative laboratory-clinic processes enabled therapies with strong biological rationales to ultimately show evidence of success in humans and become accepted. Examples, such as organ transplantation, monoclonal antibody therapy and antiangiogenic therapy, provide solace that a strategy's initial lack of success in humans provides an opportunity for its further refinement in the laboratory and development of solutions that will translate into patient success stories. The authors herein summarize results from clinical trials of gene therapy for malignant gliomas, and discuss the influence of these results on present thought in preclinical research.
Collapse
Affiliation(s)
- Giulia Fulci
- Brain Tumor Research Center, Simches Research Building CRPZN-3800, Neurosurgery Service, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA.
| | | |
Collapse
|
193
|
Pittet MJ, Swirski FK, Reynolds F, Josephson L, Weissleder R. Labeling of immune cells for in vivo imaging using magnetofluorescent nanoparticles. Nat Protoc 2007; 1:73-9. [PMID: 17406214 DOI: 10.1038/nprot.2006.11] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Observation of immune and stem cells in their native microenvironments requires the development of imaging agents to allow their in vivo tracking. We describe here the synthesis of magnetofluorescent nanoparticles for cell labeling in vitro and for multimodality imaging of administered cells in vivo. MION-47, a prototype monocrystalline iron oxide nanoparticle, was first converted to an intermediate bearing a fluorochrome and amine groups, then reacted with either HIV-Tat peptide or protamine to yield a nanoparticle with membrane-translocating properties. We describe how to assess optimal cell labeling with tests of cell phenotype and function. Synthesis of magnetofluorescent nanoparticles and cell-labeling optimization can be realized in 48 h, whereas nanoparticle uptakes and retention studies may generally take up to 120 h. Labeled cells can be detected by magnetic resonance imaging, fluorescence reflectance imaging, fluorescence-mediated tomography, confocal microscopy and flow cytometry, and can be purified based on their fluorescent or magnetic properties. The present protocol focuses on T-cell labeling but can be used for labeling a variety of circulating cells.
Collapse
Affiliation(s)
- Mikael J Pittet
- Center for Molecular Imaging Research, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA.
| | | | | | | | | |
Collapse
|
194
|
Abstract
Drugs, surgery, and radiation are the traditional modalities of therapy in medicine. To these are being added new therapies based on cells and viruses or their derivatives. In these novel therapies, a cell or viral vector acts as a drug in its own right, altering the host or a disease process to bring about healing. Most of these advances originate from the significant recent advances in molecular medicine, but some have been around for some time. Blood transfusions and cowpox vaccinations are part of the history of medicine...but nevertheless are examples of cell- and viral-based therapies. This article focuses on the modern molecular incarnations of these therapies, and specifically on how imaging is used to track and guide these novel agents. We survey the literature dealing with imaging these new cell and viral particle therapies and provide a framework for understanding publications in this area. Leading technology of gene modifications are the fundamental modifications applied to make these new therapies amenable to imaging.
Collapse
Affiliation(s)
- Dawid Schellingerhout
- Neuroradiology Section, Department of Radiology and Experimental Diagnostic Imaging, Division of Diagnostic Imaging, M D Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| |
Collapse
|
195
|
Contag CH. Molecular imaging using visible light to reveal biological changes in the brain. Neuroimaging Clin N Am 2007; 16:633-54, ix. [PMID: 17148024 DOI: 10.1016/j.nic.2006.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Advances in imaging have enabled the study of cellular and molecular processes in the context of the living body that include cell migration patterns, location and extent of gene expression, degree of protein-protein interaction, and levels of enzyme activity. These tools, which operate over a range of scales, resolutions, and sensitivities, have opened up broad new areas of investigation where the influence of organ systems and functional circulation is intact. There are a myriad of imaging modalities available, each with its own advantages and disadvantages, depending on the specific application. Among these modalities, optical imaging techniques, including in vivo bioluminescence imaging and fluorescence imaging, use visible light to interrogate biology in the living body. Optimal imaging with these modalities require that the appropriate marker be used to tag the process of interest to make it uniquely visible using a particular imaging technology. For each optical modality, there are various labels to choose from that range from dyes that permit tissue contrast and dyes that can be activated by enzymatic activity, to gene-encoding proteins with optical signatures that can be engineered into specific biological processes. This article provides and overview of optical imaging technologies and commonly used labels, focusing on bioluminescence and fluorescence, and describes several examples of how these tools are applied to biological questions relating to the central nervous system.
Collapse
Affiliation(s)
- Christopher H Contag
- Departments of Pediatrics, Microbiology & Immunology and Radiology, E150 Clark Center, MC 5427, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
196
|
Yang S, Guo ZS, O'Malley ME, Yin X, Zeh HJ, Bartlett DL. A new recombinant vaccinia with targeted deletion of three viral genes: its safety and efficacy as an oncolytic virus. Gene Ther 2007; 14:638-47. [PMID: 17268533 DOI: 10.1038/sj.gt.3302914] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To enhance further the safety and efficacy of oncolytic vaccinia virus, we have developed a new virus with targeted deletions of three viral genes encoding thymidine kinase and antiapoptotic/host range proteins SPI-1 and SPI-2 (vSPT). Infection of human and murine tumor cell lines yielded nearly equivalent or a log lower virus recovery in comparison to parental viruses. Viral infection activated multiple caspases in cancer cells but not in normal cells, suggesting infected cells may die via different pathways. In tumor-bearing mice, vSPT recovery from MC38 tumor was slightly reduced in comparison to two parental viruses. However, no virus was recovered from the brains and livers of mice injected with vSPT in contrast to control viruses. vSPT demonstrated significantly lower pathogenicity in nude mice. Systemic delivery of vSPT showed significant tumor inhibition in subcutaneous MC38 tumor, human ovarian A2780 and murine ovarian MOSEC carcinomatosis models; however, the tumor inhibition by vSPT was reduced compared with parental viruses. These results demonstrated that although deletion of these three viral genes further enhanced tumor selectivity, it also weakened the oncolytic potency. This study illustrates the complexity of creating a tumor-selective oncolytic virus by deleting multiple viral genes involved in multiple cellular pathways.
Collapse
Affiliation(s)
- S Yang
- University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | | | | | | | | |
Collapse
|
197
|
Power AT, Bell JC. Cell-based delivery of oncolytic viruses: a new strategic alliance for a biological strike against cancer. Mol Ther 2007; 15:660-5. [PMID: 17264852 DOI: 10.1038/sj.mt.6300098] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Recent years have seen tremendous advances in the development of exquisitely targeted replicating virotherapeutics that can safely destroy malignant cells. Despite this promise, clinical advancement of this powerful and unique approach has been hindered by vulnerability to host defenses and inefficient systemic delivery. However, it now appears that delivery of oncolytic viruses within carrier cells may offer one solution to this critical problem. In this review, we compare the advantages and limitations of the numerous cell lineages that have been investigated as delivery platforms for viral therapeutics, and discuss examples showing how combined cell-virus biotherapeutics can be used to achieve synergistic gains in antitumor activity. Finally, we highlight avenues for future preclinical research that might be taken in order to refine cell-virus biotherapeutics in preparation for human trials.
Collapse
Affiliation(s)
- Anthony T Power
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Centre for Cancer Therapeutics, Ottawa Health Research Institute, Ottawa Hospital, Ottawa, Ontario, Canada
| | | |
Collapse
|
198
|
Thorne SH. Strategies to achieve systemic delivery of therapeutic cells and microbes to tumors. Expert Opin Biol Ther 2007; 7:41-51. [PMID: 17150018 DOI: 10.1517/14712598.7.1.41] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In order to more effectively treat cancer, targeted delivery of therapeutic agents will be needed. The creation of delivery vehicles capable of locating and entering tumors before delivering a therapeutic payload will, therefore, enable the design of more beneficial and less toxic treatment platforms. Although nanoparticles, microbubbles and liposomes may also partially address these issues, the use of biological agents as delivery vehicles presently holds much promise. Through the hijacking of natural pathogen or cell trafficking pathways it is possible to actively target such agents to the tumor; they are then capable of selective replication (multiplying their therapeutic potential) and may be directly cytolytic themselves and/or may be utilized to deliver therapeutic genes. These agents, such as oncolytic viruses, attenuated bacteria and eukaryotic cells (cellular immunotherapeutics and progenitor and stem cells) will be discussed along with the mechanisms employed to deliver them systemically to tumors, including disseminated disease and micrometsastases.
Collapse
Affiliation(s)
- Steve H Thorne
- Stanford University, Bio-X Programme and Department of Pediatrics, Clark Center, California 94305, USA.
| |
Collapse
|
199
|
Power AT, Wang J, Falls TJ, Paterson JM, Parato KA, Lichty BD, Stojdl DF, Forsyth PAJ, Atkins H, Bell JC. Carrier Cell-based Delivery of an Oncolytic Virus Circumvents Antiviral Immunity. Mol Ther 2007; 15:123-30. [PMID: 17164783 DOI: 10.1038/sj.mt.6300039] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Oncolytic viruses capable of tumor-selective replication and cytolysis have shown early promise as cancer therapeutics. However, the host immune system remains a significant obstacle to effective systemic administration of virus in a clinical setting. Here, we demonstrate the severe negative impact of the adaptive immune response on the systemic delivery of oncolytic vesicular stomatitis virus (VSV) in an immune-competent murine tumor model, an effect mediated primarily by the neutralization of injected virions by circulating antibodies. We show that this obstacle can be overcome by administering virus within carrier cells that conceal viral antigen during delivery. Infected cells were delivered to tumor beds and released virus to infect malignant cells while sparing normal tissues. Repeated administration of VSV in carrier cells to animals bearing metastatic tumors greatly improved therapeutic efficacy when compared with naked virion injection. Whole-body molecular imaging revealed that carrier cells derived from solid tumors accumulate primarily in the lungs following intravenous injection, whereas leukemic carriers disseminate extensively throughout the body. Furthermore, xenogeneic cells were equally effective at delivering virus as syngeneic cells. These findings emphasize the importance of establishing cell-based delivery platforms in order to maximize the efficacy of oncolytic therapeutics.
Collapse
Affiliation(s)
- Anthony T Power
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa Health Research Institute, Centre for Cancer Therapeutics, Ottawa, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
200
|
Ong HT, Hasegawa K, Dietz AB, Russell SJ, Peng KW. Evaluation of T cells as carriers for systemic measles virotherapy in the presence of antiviral antibodies. Gene Ther 2006; 14:324-33. [PMID: 17051248 DOI: 10.1038/sj.gt.3302880] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Neutralizing antiviral antibodies (Abs) can hinder systemic virotherapy. Here, we used activated T cells as carriers to deliver oncolytic measles viruses (MV) to multiple myeloma xenografts in the presence of anti-MV antibodies (Abs). Virus-infected T cells expressing measles H/F fusogenic envelope glycoproteins could efficiently transfer MV infection by heterofusion, even after exposure to virus-inactivating anti-MV antisera. Severe-combined immunodeficiency (SCID) mice bearing subcutaneous or disseminated human myeloma xenografts were given MV-luciferase (MV-Luc) or MV-Luc-infected T cells intravenously. Indium111 labeling indicated that 1-2% of the virus-infected T cells trafficked to tumors. Preinfected T cells fused with tumor cells in vivo and transferred MV-Luc to tumor xenografts where intratumoral viral spread was monitored non-invasively using bioluminescent imaging. In mice passively immunized with high titers of measles immune serum, intravenous virus and cell delivery were both inhibited. Decreasing the amount of measles immune serum given to mice permitted tumor infection by virus-infected T cells and cell-free virus. In conclusion, virus-loaded T cells may facilitate systemic measles virotherapy in the presence of antiviral Abs and they warrant further investigation as potential MV cell carriers.
Collapse
Affiliation(s)
- H T Ong
- Molecular Medicine Program, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | | | | | | | | |
Collapse
|