151
|
Christensen AB, Taylor G, Lamare M, Byrne M. The added costs of winter ocean warming for metabolism, arm regeneration and survival in the brittle star Ophionereis schayeri. J Exp Biol 2023; 226:287003. [PMID: 36651231 DOI: 10.1242/jeb.244613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 01/12/2023] [Indexed: 01/19/2023]
Abstract
As the climate continues to change, it is not just the magnitude of these changes that is important - equally critical is the timing of these events. Conditions that may be well tolerated at one time can become detrimental if experienced at another, as a result of seasonal acclimation. Temperature is the most critical variable as it affects most aspects of an organism's physiology. To address this, we quantified arm regeneration and respiration in the Australian brittle star Ophionereis schayeri for 10 weeks in response to a +3°C warming (18.5°C, simulating a winter heatwave) compared with ambient winter temperature (15.5°C). The metabolic scaling rate (b=0.635 at 15.5°C and 0.746 at 18.5°C) with respect to size was similar to that of other echinoderms and was not affected by temperature. Elevated temperature resulted in up to a 3-fold increase in respiration and a doubling of regeneration growth; however, mortality was greater (up to 44.2% at 18.5°C), especially in the regenerating brittle stars. Metabolic rate of the brittle stars held at 18.5°C was much higher than expected (Q10≈23) and similar to that of O. schayeri tested in summer, which was near their estimated thermotolerance limits. The additional costs associated with the elevated metabolism and regeneration rates incurred by the unseasonably warm winter temperatures may lead to increased mortality and predation risk.
Collapse
Affiliation(s)
| | - Georgie Taylor
- Department of Marine Science, University of Otago, Dunedin 9054, New Zealand
| | - Miles Lamare
- Department of Marine Science, University of Otago, Dunedin 9054, New Zealand
| | - Maria Byrne
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
152
|
Green L, Faust E, Hinchcliffe J, Brijs J, Holmes A, Englund Örn F, Svensson O, Roques JAC, Leder EH, Sandblom E, Kvarnemo C. Invader at the edge - Genomic origins and physiological differences of round gobies across a steep urban salinity gradient. Evol Appl 2023; 16:321-337. [PMID: 36793700 PMCID: PMC9923490 DOI: 10.1111/eva.13437] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 11/28/2022] Open
Abstract
Species invasions are a global problem of increasing concern, especially in highly connected aquatic environments. Despite this, salinity conditions can pose physiological barriers to their spread, and understanding them is important for management. In Scandinavia's largest cargo port, the invasive round goby (Neogobius melanostomus) is established across a steep salinity gradient. We used 12,937 SNPs to identify the genetic origin and diversity of three sites along the salinity gradient and round goby from western, central and northern Baltic Sea, as well as north European rivers. Fish from two sites from the extreme ends of the gradient were also acclimated to freshwater and seawater, and tested for respiratory and osmoregulatory physiology. Fish from the high-salinity environment in the outer port showed higher genetic diversity, and closer relatedness to the other regions, compared to fish from lower salinity upstream the river. Fish from the high-salinity site also had higher maximum metabolic rate, fewer blood cells and lower blood Ca2+. Despite these genotypic and phenotypic differences, salinity acclimation affected fish from both sites in the same way: seawater increased the blood osmolality and Na+ levels, and freshwater increased the levels of the stress hormone cortisol. Our results show genotypic and phenotypic differences over short spatial scales across this steep salinity gradient. These patterns of the physiologically robust round goby are likely driven by multiple introductions into the high-salinity site, and a process of sorting, likely based on behaviour or selection, along the gradient. This euryhaline fish risks spreading from this area, and seascape genomics and phenotypic characterization can inform management strategies even within an area as small as a coastal harbour inlet.
Collapse
Affiliation(s)
- Leon Green
- Department of Biological and Environmental SciencesUniversity of GothenburgGothenburgSweden
- Linnaeus Centre for Marine Evolutionary BiologyUniversity of GothenburgStrömstadSweden
- Gothenburg Global Biodiversity CentreUniversity of GothenburgGothenburgSweden
| | - Ellika Faust
- Linnaeus Centre for Marine Evolutionary BiologyUniversity of GothenburgStrömstadSweden
- Gothenburg Global Biodiversity CentreUniversity of GothenburgGothenburgSweden
- Tjärnö Marine Laboratory, Department of Marine SciencesUniversity of GothenburgStrömstadSweden
| | - James Hinchcliffe
- Department of Biological and Environmental SciencesUniversity of GothenburgGothenburgSweden
| | - Jeroen Brijs
- Department of Biological and Environmental SciencesUniversity of GothenburgGothenburgSweden
- Institute of Marine BiologyUniversity of Hawai'iKaneoheHawai'iUSA
| | - Andrew Holmes
- Department of Biological and Environmental SciencesUniversity of GothenburgGothenburgSweden
- Linnaeus Centre for Marine Evolutionary BiologyUniversity of GothenburgStrömstadSweden
| | - Felix Englund Örn
- Department of Biological and Environmental SciencesUniversity of GothenburgGothenburgSweden
- Linnaeus Centre for Marine Evolutionary BiologyUniversity of GothenburgStrömstadSweden
| | - Ola Svensson
- Linnaeus Centre for Marine Evolutionary BiologyUniversity of GothenburgStrömstadSweden
- Department of Educational WorkUniversity of BoråsBoråsSweden
| | - Jonathan A. C. Roques
- Department of Biological and Environmental SciencesUniversity of GothenburgGothenburgSweden
| | - Erica H. Leder
- Linnaeus Centre for Marine Evolutionary BiologyUniversity of GothenburgStrömstadSweden
- Tjärnö Marine Laboratory, Department of Marine SciencesUniversity of GothenburgStrömstadSweden
- Natural History MuseumUniversity of OsloOsloNorway
| | - Erik Sandblom
- Department of Biological and Environmental SciencesUniversity of GothenburgGothenburgSweden
| | - Charlotta Kvarnemo
- Department of Biological and Environmental SciencesUniversity of GothenburgGothenburgSweden
- Linnaeus Centre for Marine Evolutionary BiologyUniversity of GothenburgStrömstadSweden
| |
Collapse
|
153
|
Baag S, Mandal S. Do global environmental drivers' ocean acidification and warming exacerbate the effects of oil pollution on the physiological energetics of Scylla serrata? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:23213-23224. [PMID: 36318414 DOI: 10.1007/s11356-022-23849-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Global climate change-induced ocean warming and acidification have complex reverberations on the physiological functioning of marine ectotherms. The Sundarbans estuarine system has been under threat for the past few decades due to natural and anthropogenic disturbances. In recent years, petroleum products' transportation and their usage have increased manifold, which causes accidental oil spills. The mud crab (Scylla serrata) is one of the most commercially exploited species in the Sundarbans. The key objective of this study was to delineate whether rearing under global environmental drivers (ocean acidification and warming) exacerbates the effect of a local driver (oil pollution) on the physiological energetics of mud crab (Scylla serrata) from the Sundarbans estuarine system. Animals were reared separately for 30 days under (a) the current climatic scenario (pH 8.1, 28°C) and (b) the predicted climate change scenario (pH 7.7, 34°C). After rearing for 30 days, 50% of the animals from each treatment were exposed to 5 mg L-1 of marine diesel oil for the next 24 h. Physiological energetics (ingestion rate, absorption rate, respiration rate, excretion rate, and scope for growth), thermal performance, thermal critical maxima (CTmax), acclimation response ratio (ARR), Arrhenius activation energy (AAE), temperature coefficient (Q10), warming tolerance (WT), and thermal safety margin (TSM) were evaluated. Ingestion and absorption rates were significantly reduced, whereas respiration and ammonia excretion rates significantly increased in stressful treatments, resulting in a significantly lower scope for growth. A profound impact on thermal performance was also noticed, leading to a downward shift in CTmax value for stress-acclimated treatment. The present results clearly highlighted the detrimental combined effect of global climatic stressors and pollution on the physiological energetics of crabs that might potentially reduce their population and affect coastal aquaculture in forthcoming years.
Collapse
Affiliation(s)
- Sritama Baag
- Marine Ecology Laboratory, Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata, 700073, India
| | - Sumit Mandal
- Marine Ecology Laboratory, Department of Life Sciences, Presidency University, 86/1, College Street, Kolkata, 700073, India.
| |
Collapse
|
154
|
Laloë JO, Hays GC. Can a present-day thermal niche be preserved in a warming climate by a shift in phenology? A case study with sea turtles. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221002. [PMID: 36778962 PMCID: PMC9905989 DOI: 10.1098/rsos.221002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
How species respond to climate change may impact their extinction probability. Here we link climatology and ecology to tackle a globally important conservation question. For sea turtles, there are concerns that climate warming will cause both the feminization of populations as well as reduced hatchling survival. For 58 nesting sites across the world spanning all seven sea turtle species, we investigated whether warming might be avoided by shifts in nesting phenology to a cooler part of the year. We show that even with the most extreme phenological shift that has been reported to date-an 18-day advance in nesting per °C increase in sea surface temperature (SST)-temperatures will continue to increase at nesting sites with climate warming. We estimate that SST at nesting sites will rise by an average of 0.6°C (standard deviation = 0.9°C, n = 58) when we model a 1.5°C rise in SST combined with a best-case-scenario shift in nesting. Since sea turtles exhibit temperature-dependent sex determination, these temperature rises could lead to increasingly female-biased sex ratios as well as reduced hatchling production at sites across the world. These findings underscore concerns for the long-term survival of this iconic group.
Collapse
|
155
|
McPhee D, Watson JR, Harding DJ, Prior A, Fawcett JH, Franklin CE, Cramp RL. Body size dictates physiological and behavioural responses to hypoxia and elevated water temperatures in Murray cod ( Maccullochella peelii). CONSERVATION PHYSIOLOGY 2023; 11:coac087. [PMID: 36726863 PMCID: PMC9885741 DOI: 10.1093/conphys/coac087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 12/02/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
Abstract
Increasing drought frequency and duration pose a significant threat to fish species in dryland river systems. As ectotherms, fish thermal and hypoxia tolerances directly determine the capacity of species to persist in these environments during low flow periods when water temperatures are high and waterbodies become highly stratified. Chronic thermal stress can compound the impacts of acute hypoxic events on fish resulting in significant fish mortality; however, it is not known if all size classes are equally susceptible, or if the allometric scaling of physiological processes means some size classes are disproportionately affected. We investigated the physiological responses of Murray cod (Maccullochella peelii) over a four-fold body size range (0.2-3000 g) to acute changes in water temperature and oxygen concentration following 4 weeks of acclimation to representative spring (20°C) and summer (28°C) water temperatures. We recorded maximum thermal tolerance (CT max), oxygen limited thermal tolerance (PCTmax ), lowest tolerable oxygen level (as the oxygen level at which lose equilibrium; O2,LOE), gill ventilation rates and aerial surface respiration threshold, blood oxygen transport capacity and lactate accumulation. Acclimation to elevated water temperatures improved thermal and hypoxia tolerance metrics across all size classes. However, body size significantly affected thermal and hypoxia responses. Small M. peelii were significantly less hypoxia tolerant than larger individuals, while larger fish were significantly less thermal tolerant than smaller fish. Hypoxia constrained thermal tolerance in M. peelii, with both small and large fish disproportionally compromised relative to mid-sized fish. Our findings indicate that both very small/young (larvae, fry, fingerlings) and very large/older M. peelii in dryland rivers are at significant risk from the combined impacts of a warming and drying climate and water extraction. These data will inform policy decisions that serve to balance competing demands on precious freshwater resources.
Collapse
Affiliation(s)
- Darren McPhee
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Jabin R Watson
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Doug J Harding
- Queensland Department of Regional Development, Manufacturing and Water, 203 Tor St., Toowoomba, Queensland, 4350, Australia
| | - Andrea Prior
- Queensland Department of Regional Development, Manufacturing and Water, 203 Tor St., Toowoomba, Queensland, 4350, Australia
| | - James H Fawcett
- Queensland Department of Regional Development, Manufacturing and Water, 203 Tor St., Toowoomba, Queensland, 4350, Australia
| | - Craig E Franklin
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Rebecca L Cramp
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
156
|
Lattuca ME, Vanella FA, Malanga G, Rubel MD, Manríquez PH, Torres R, Alter K, Marras S, Peck MA, Domenici P, Fernández DA. Ocean acidification and seasonal temperature extremes combine to impair the thermal physiology of a sub-Antarctic fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159284. [PMID: 36209875 DOI: 10.1016/j.scitotenv.2022.159284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/26/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
To predict the potential impacts of climate change on marine organisms, it is critical to understand how multiple stressors constrain the physiology and distribution of species. We evaluated the effects of seasonal changes in seawater temperature and near-future ocean acidification (OA) on organismal and sub-organismal traits associated with the thermal performance of Eleginops maclovinus, a sub-Antarctic notothenioid species with economic importance to sport and artisanal fisheries in southern South America. Juveniles were exposed to mean winter and summer sea surface temperatures (4 and 10 °C) at present-day and near-future pCO2 levels (~500 and 1800 μatm). After a month, the Critical Thermal maximum and minimum (CTmax, CTmin) of fish were measured using the Critical Thermal Methodology and the aerobic scope of fish was measured based on the difference between their maximal and standard rates determined from intermittent flow respirometry. Lipid peroxidation and the antioxidant capacity were also quantified to estimate the oxidative damage potentially caused to gill and liver tissue. Although CTmax and CTmin were higher in individuals acclimated to summer versus winter temperatures, the increase in CTmax was minimal in juveniles exposed to the near-future compared to present-day pCO2 levels (there was a significant interaction between temperature and pCO2 on CTmax). The reduction in the thermal tolerance range under summer temperatures and near-future OA conditions was associated with a reduction in the aerobic scope observed at the elevated pCO2 level. Moreover, an oxidative stress condition was detected in the gill and liver tissues. Thus, chronic exposure to OA and the current summer temperatures pose limits to the thermal performance of juvenile E. maclovinus at the organismal and sub-organismal levels, making this species vulnerable to projected climate-driven warming.
Collapse
Affiliation(s)
- María E Lattuca
- Laboratorio de Ecología, Fisiología y Evolución de Organismos Acuáticos, Centro Austral de Investigaciones Científicas (CADIC-CONICET), Bernardo Houssay 200, V9410BFD Ushuaia, Argentina.
| | - Fabián A Vanella
- Laboratorio de Ecología, Fisiología y Evolución de Organismos Acuáticos, Centro Austral de Investigaciones Científicas (CADIC-CONICET), Bernardo Houssay 200, V9410BFD Ushuaia, Argentina
| | - Gabriela Malanga
- Fisicoquímica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires (FFyB - UBA), Junín 956, C1113AAD CABA, Argentina; Instituto de Bioquímica y Medicina Molecular (IBIMOL - CONICET), Junín 956, C1113AAD CABA, Argentina
| | - Maximiliano D Rubel
- Laboratorio de Ecología, Fisiología y Evolución de Organismos Acuáticos, Centro Austral de Investigaciones Científicas (CADIC-CONICET), Bernardo Houssay 200, V9410BFD Ushuaia, Argentina
| | - Patricio H Manríquez
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Av. Bernardo Ossandón 877, 1781681 Coquimbo, Chile; Laboratorio de Ecología y Conducta de la Ontogenia Temprana (LECOT), Larrondo 1281, 1781421 Coquimbo, Chile
| | - Rodrigo Torres
- Centro de Investigación en Ecosistemas de la Patagonia (CIEP), José de Moraleda 16, 5951369 Coyhaique, Chile; Centro de Investigación Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Av. El Bosque 01789, 6200000 Punta Arenas, Chile
| | - Katharina Alter
- Royal Netherlands Institute for Sea Research (NIOZ), Department of Coastal Systems (COS), P.O. Box 59, 1790 AB Den Burg, Texel, the Netherlands
| | - Stefano Marras
- Consiglio Nazionale delle Ricerche, Istituto per l'Ambiente Marino Costiero (CNR-IAMC), Località Sa Mardini, 09070 Torregrande, Oristano, Italy
| | - Myron A Peck
- Royal Netherlands Institute for Sea Research (NIOZ), Department of Coastal Systems (COS), P.O. Box 59, 1790 AB Den Burg, Texel, the Netherlands
| | - Paolo Domenici
- Consiglio Nazionale delle Ricerche, Istituto per l'Ambiente Marino Costiero (CNR-IAMC), Località Sa Mardini, 09070 Torregrande, Oristano, Italy; Consiglio Nazionale delle Ricerche, Istituto di Biofisica (CNR-IBF), Area di Ricerca San Cataldo, Via G. Moruzzi N°1, 56124 Pisa, Italy
| | - Daniel A Fernández
- Laboratorio de Ecología, Fisiología y Evolución de Organismos Acuáticos, Centro Austral de Investigaciones Científicas (CADIC-CONICET), Bernardo Houssay 200, V9410BFD Ushuaia, Argentina; Universidad Nacional de Tierra del Fuego, Instituto de Ciencias Polares, Ambiente y Recursos Naturales (UNTDF - ICPA), Fuegia Basket 251, V9410BXE Ushuaia, Argentina
| |
Collapse
|
157
|
Theys C, Verheyen J, Delnat V, Janssens L, Tüzün N, Stoks R. Thermal and latitudinal patterns in pace-of-life traits are partly mediated by the gut microbiome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158829. [PMID: 36116637 DOI: 10.1016/j.scitotenv.2022.158829] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/16/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
The integration of life-history, physiological and behavioural traits into the pace-of-life generates a powerful framework to understand trait variation in nature both along environmental gradients and in response to environmental stressors. While the gut microbiome has been hypothesized as a candidate mechanism to underlie differentiation in the pace-of-life, this has been rarely studied. We investigated the role of the gut microbiome in contributing to the differentiation in pace-of-life and in thermal adaptation between populations of Ischnura elegans damselfly larvae inhabiting warmer low latitudes and colder high latitudes. We carried out a common-garden experiment, whereby we manipulated the exposure of the damselfly larvae to two key global warming factors: 4 °C warming and a 30 °C heat wave. Comparing the bacterial composition of the food source and the bacterioplankton indicated that damselfly larvae differentially take up bacteria from the surrounding environment and have a resident and functionally relevant microbiome. The gut microbiome differed between larvae of both latitudes, and this was associated with the host's latitudinal differentiation in activity, a key pace-of-life trait. Under heat wave exposure, the gut microbial community composition of high-latitude larvae converged towards that of the low-latitude larvae, with an increase in bacteria that likely are important in providing energy to cope with the heat wave. This suggests an adaptive latitude-specific shift in the gut microbiota matching the better ability of low-latitude hosts to deal with heat extremes. In general, our study provides evidence for the gut microbiome contributing to latitudinal differentiation in both the pace-of-life and in heat adaptation in natural populations.
Collapse
Affiliation(s)
- Charlotte Theys
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, B-3000 Leuven, Belgium.
| | - Julie Verheyen
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, B-3000 Leuven, Belgium
| | - Vienna Delnat
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, B-3000 Leuven, Belgium
| | - Lizanne Janssens
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, B-3000 Leuven, Belgium
| | - Nedim Tüzün
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, B-3000 Leuven, Belgium; Department of Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301, 12587 Berlin, Germany
| | - Robby Stoks
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, B-3000 Leuven, Belgium
| |
Collapse
|
158
|
Pei Y, Jin J, Wu Q, Liang X, Lv C, Guo J. Cold Acclimation and Supercooling Capacity of Agasicles hygrophila Adults. INSECTS 2023; 14:58. [PMID: 36661986 PMCID: PMC9867054 DOI: 10.3390/insects14010058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/20/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Agasicles hygrophila Selman and Vogt is used in the biological control of the invasive weed Alternanthera philoxeroides (Mart.) Griseb. However, with the northward establishment of A. philoxeroides in China, the weak adaptivity of A. hygrophila to cold weather has resulted in the ineffective control of A. philoxeroides in northern China. Cold acclimation can significantly enhance insect cold tolerance, enabling them to cope with more frequent climate fluctuations. To improve the biological control efficacy of A. hygrophila in cold climates, we compared the effects of rapid cold hardening and acclimation on A. hygrophila under laboratory conditions. On initially transferring adults from 26 to -10 °C for 2 h, mortality reached 80%. However, when pre-exposed to 0 °C for 2 h and then transferred to -10 °C for 2 h, adult mortality was reduced to 36.67%. These findings indicate that cold acclimation can enhance the cold tolerance of A. hygrophila under laboratory conditions. However, the beneficial cold acclimation effects waned after more than 15 min of recovery at 26 °C. Exposure to 15 °C for 24 h or gradual cooling from 0 to -10 °C at 1 °C·min-1 also induced cold acclimation, indicating that long-term cold and fluctuating cold acclimation are also potentially effective strategies for enhancing low-temperature tolerance.
Collapse
Affiliation(s)
- Yiming Pei
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jisu Jin
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qiang Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518100, China
| | - Xiaocui Liang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Chen Lv
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jianying Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
159
|
Garcia-Rueda AL, Mascaro M, Rodriguez-Fuentes G, Caamal-Monsreal CP, Diaz F, Paschke K, Rosas C. Moderate hypoxia mitigates the physiological effects of high temperature on the tropical blue crab Callinectes sapidus. Front Physiol 2023; 13:1089164. [PMID: 36685188 PMCID: PMC9849389 DOI: 10.3389/fphys.2022.1089164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/15/2022] [Indexed: 01/07/2023] Open
Abstract
Dissolved oxygen (DO) and water temperature vary in coastal environments. In tropical regions, the ability of aquatic ectotherms to cope with hypoxia and high-temperature interactive effects is fundamental for their survival. The mechanisms underlying both hypoxia and thermal tolerance are known to be interconnected, therefore, the idea of cross-tolerance between both environmental stressors has been put forward. We investigated the combined role of hypoxia and temperature changes on the physiological responses of blue crab Callinectes sapidus living in the southern Gulf of Mexico. We measured oxygen consumption, plasmatic biochemical indicators, total hemocyte count (THC), and antioxidant activity biomarkers in muscle and gill tissues of blue crab acclimated to moderate hypoxia or normoxia and exposed to a thermal fluctuation or a constant temperature, the former including a temperature beyond the optimum range. Animals recovered their routine metabolic rate (RMR) after experiencing thermal stress in normoxia, reflecting physiological plasticity to temperature changes. In hypoxia, the effect of increasing temperature was modulated as reflected in the RMR and plasmatic biochemical indicators concentration, and the THC did not suggest significant alterations in the health status. In both DO, the antioxidant defense system was active against oxidative (OX) damage to lipids and proteins. However, hypoxia was associated with an increase in the amelioration of OX damage. These results show that C. sapidus can modulate its thermal response in a stringent dependency with DO, supporting the idea of local acclimatization to tropical conditions, and providing insights into its potential as invasive species.
Collapse
Affiliation(s)
- Adriana L. Garcia-Rueda
- Posgrado en Ciencias del Mar y Limnologia, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Maite Mascaro
- Unidad Multidisciplinaria de Docencia e Investigacion Sisal (UMDI-Sisal), Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, Sisal, Mexico
| | - Gabriela Rodriguez-Fuentes
- Unidad de Quimica Sisal, Facultad de Quimica, Universidad Nacional Autonoma de Mexico, Sisal, Mexico,Laboratorio Nacional de Resiliencia Costera (LANRESC), Laboratorios Nacionales, CONACYT, Mexico City, Mexico
| | - Claudia P. Caamal-Monsreal
- Unidad Multidisciplinaria de Docencia e Investigacion Sisal (UMDI-Sisal), Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, Sisal, Mexico
| | - Fernando Diaz
- Laboratorio de Ecofisiologia de Organismos Acuaticos, Departamento de Biotecnologia Marina, Centro de Investigacion Cientifica y de Educacion Superior de Ensenada (CICESE), Ensenada, Mexico
| | - Kurt Paschke
- Instituto de Acuicultura, Universidad Austral de Chile, Puerto Montt, Chile,Centro de Investigación de Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Valdivia, Chile,Instituto Milenio Biodiversidad de Ecosistemas Antárticos y Subantárticos (BASE), Valdivia, Chile
| | - Carlos Rosas
- Unidad Multidisciplinaria de Docencia e Investigacion Sisal (UMDI-Sisal), Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, Sisal, Mexico,Laboratorio Nacional de Resiliencia Costera (LANRESC), Laboratorios Nacionales, CONACYT, Mexico City, Mexico,*Correspondence: Carlos Rosas,
| |
Collapse
|
160
|
Low vulnerability of the Mediterranean antipatharian Antipathella subpinnata (Ellis & Solander, 1786) to ocean warming. Ecol Modell 2023. [DOI: 10.1016/j.ecolmodel.2022.110209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
161
|
Kuhn J, Azari S, Volkoff H. Effects of temperature on food intake and the expression of appetite regulators in three Characidae fish: The black-skirted tetra (Gymnocorymbus ternetzi), neon tetra (Paracheirodon innesi) and Mexican cavefish (Astyanax mexicanus). Comp Biochem Physiol A Mol Integr Physiol 2023; 275:111333. [PMID: 36244591 DOI: 10.1016/j.cbpa.2022.111333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/06/2022] [Accepted: 10/09/2022] [Indexed: 11/07/2022]
Abstract
The Characidae family of fish is composed of commercially important species for which little is known about the regulation of feeding. Fish are ectotherms so that their body temperature fluctuates with the temperature of the surrounding water. Changes in water temperature can thus have major effects on the physiology of fish, in particular their feeding. The mechanisms by which appetite is influenced by changes in temperatures in fish remain unclear. In this study, we examined the effects of temperature on feeding behavior, food intake and the expression of appetite regulators in three characid fish (black tetra, neon tetra and cavefish) by submitting them to four different temperatures for 2 weeks (20°C, 24°C, 28°C, 32°C). In all species, food intake increased with increasing temperature. In neon and black tetras, increasing temperatures decreased expressions of orexin and leptin and increased that of cocaine and amphetamine regulated transcript (CART). In cavefish, temperature had no effect on brain orexin, leptin or CART. In all three species, higher temperatures induced increases in intestine expression of cholecystokinin (CCK), but no effects were seen for intestine ghrelin and peptide YY expressions. Our results show that temperature affects feeding in Characidae fish and induces species-specific changes in the expression of appetite regulators.
Collapse
Affiliation(s)
- Jannik Kuhn
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada; Hochschule Mannheim University, Mannheim 68163, Germany
| | - Sepideh Azari
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada
| | - Helene Volkoff
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| |
Collapse
|
162
|
Pilakouta N, Killen SS, Kristjánsson BK, Skúlason S, Lindström J, Metcalfe NB, Parsons KJ. Geothermal stickleback populations prefer cool water despite multigenerational exposure to a warm environment. Ecol Evol 2023; 13:e9654. [PMID: 36644700 PMCID: PMC9831902 DOI: 10.1002/ece3.9654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 01/12/2023] Open
Abstract
Given the threat of climate change to biodiversity, a growing number of studies are investigating the potential for organisms to adapt to rising temperatures. Earlier work has predicted that physiological adaptation to climate change will be accompanied by a shift in temperature preferences, but empirical evidence for this is lacking. Here, we test whether exposure to different thermal environments has led to changes in preferred temperatures in the wild. Our study takes advantage of a "natural experiment" in Iceland, where freshwater populations of threespine sticklebacks (Gasterosteus aculeatus) are found in waters warmed by geothermal activity year-round (warm habitats), adjacent to populations in ambient-temperature lakes (cold habitats). We used a shuttle-box approach to measure temperature preferences of wild-caught sticklebacks from three warm-cold population pairs. Our prediction was that fish from warm habitats would prefer higher water temperatures than those from cold habitats. We found no support for this, as fish from both warm and cold habitats had an average preferred temperature of 13°C. Thus, our results challenge the assumption that there will be a shift in ectotherm temperature preferences in response to climate change. In addition, since warm-habitat fish can persist at relatively high temperatures despite a lower-temperature preference, we suggest that preferred temperature alone may be a poor indicator of a population's adaptive potential to a novel thermal environment.
Collapse
Affiliation(s)
- Natalie Pilakouta
- Institute of Biodiversity, One Health, and Veterinary MedicineUniversity of GlasgowGlasgowUK
- School of Biological SciencesUniversity of AberdeenAberdeenUK
| | - Shaun S. Killen
- Institute of Biodiversity, One Health, and Veterinary MedicineUniversity of GlasgowGlasgowUK
| | | | - Skúli Skúlason
- Department of Aquaculture and Fish BiologyHólar UniversitySauðárkrókurIceland
- Icelandic Museum of Natural HistoryReykjavíkIceland
| | - Jan Lindström
- Institute of Biodiversity, One Health, and Veterinary MedicineUniversity of GlasgowGlasgowUK
| | - Neil B. Metcalfe
- Institute of Biodiversity, One Health, and Veterinary MedicineUniversity of GlasgowGlasgowUK
| | - Kevin J. Parsons
- Institute of Biodiversity, One Health, and Veterinary MedicineUniversity of GlasgowGlasgowUK
| |
Collapse
|
163
|
Alves-Ferreira G, Katzenberger M, Fava FG, Costa RN, Carilo Filho LM, Solé M. Roundup Original DI® and thermal stress affect survival, morphology and thermal tolerance in tadpoles of Boana faber (Hylidae, Anura). ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:93-101. [PMID: 36653510 DOI: 10.1007/s10646-023-02622-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
In amphibians, stressful environments can lead to accelerated metamorphosis at the expense of total length, resulting in the occurrence of morphological abnormalities. Many studies have linked the occurrence of these phenomena to the pollution of habitats by pesticides and thermal stress. Here, we assessed how exposure to Roundup Original DI® and higher constant temperatures affect the survival of Boana faber tadpoles and estimate the CL5096hs for the population. In addition, we evaluated how exposure to Roundup affects larval growth, morphology and thermal tolerance. Our findings suggest that even at sublethal doses, Roundup Original DI® may affect the survival of Boana faber larvae. There also appears to be an additive effect between Roundup and temperature increase on larval survival, however, we need to further explore this point to determine a pattern, proving to be a promising issue to be investigated in the future. We observed effects of chronic exposure to the herbicide formulation on the morphology and growth of the tadpoles, resulting in a reduction in total length and differences in the shape of the larvae. Although we did not recover any direct effects of herbicide exposure on CTMax, we did observe an upward trend in CTMax for tadpoles exposed to Roundup. Understanding how anthropogenic changes affect anuran persistence is fundamental for the management and conservation of the species and can be considered an initial step toward the formulation of legislations that regulate the use of herbicides.
Collapse
Affiliation(s)
- Gabriela Alves-Ferreira
- Tropical Herpetology Lab, Programa de Pós-Graduação em Ecologia e Conservação da Biodiversidade, Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, km 16, 45662-900, Ilhéus, Bahia, Brasil.
- Kunhã Asé Network of Women in Science, Salvador, Bahia, Brasil.
| | - Marco Katzenberger
- Laboratório de Bioinformática e Biologia Evolutiva, Department of Genetics, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, 1235 - Cidade Universitária, CEP 50670-901, Recife, Pernambuco, Brasil
| | - Fernanda Guimarães Fava
- Tropical Herpetology Lab, Programa de Pós-Graduação em Ecologia e Conservação da Biodiversidade, Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, km 16, 45662-900, Ilhéus, Bahia, Brasil
| | - Renan Nunes Costa
- Departamento de Ciências Biológicas, Universidade do Estado de Minas Gerais, Praça dos Estudantes 23, Santa Emília, CEP 36800-000, Carangola, Minas Gerais, Brasil
| | - Leildo Machado Carilo Filho
- Tropical Herpetology Lab, Programa de Pós-Graduação em Zoologia, Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, km 16, 45662-900, Ilhéus, Bahia, Brasil
| | - Mirco Solé
- Tropical Herpetology Lab, Programa de Pós-Graduação em Ecologia e Conservação da Biodiversidade, Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, km 16, 45662-900, Ilhéus, Bahia, Brasil
- Tropical Herpetology Lab, Programa de Pós-Graduação em Zoologia, Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, km 16, 45662-900, Ilhéus, Bahia, Brasil
- Herpetology Section, Zoologisches Forschungsmuseum Alexander Koenig, Adenauerallee 160, 53113, Bonn, North Rhine-Westphalia, Germany
| |
Collapse
|
164
|
Wheeler CR, Lang BJ, Mandelman JW, Rummer JL. The upper thermal limit of epaulette sharks ( Hemiscyllium ocellatum) is conserved across three life history stages, sex and body size. CONSERVATION PHYSIOLOGY 2022; 10:coac074. [PMID: 36583221 PMCID: PMC9795165 DOI: 10.1093/conphys/coac074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/17/2022] [Accepted: 11/13/2022] [Indexed: 06/17/2023]
Abstract
Owing to climate change, most notably the increasing frequency of marine heatwaves and long-term ocean warming, better elucidating the upper thermal limits of marine fishes is important for predicting the future of species and populations. The critical thermal maximum (CTmax), or the highest temperature a species can tolerate, is a physiological metric that is used to establish upper thermal limits. Among marine organisms, this metric is commonly assessed in bony fishes but less so in other taxonomic groups, such as elasmobranchs (subclass of sharks, rays and skates), where only thermal acclimation effects on CTmax have been assessed. Herein, we tested whether three life history stages, sex and body size affected CTmax in a tropical elasmobranch, the epaulette shark (Hemiscyllium ocellatum), collected from the reef flats surrounding Heron Island, Australia. Overall, we found no difference in CTmax between life history stages, sexes or across a range of body sizes. Findings from this research suggest that the energetically costly processes (i.e. growth, maturation and reproduction) associated with the life history stages occupying these tropical reef flats do not change overall acute thermal tolerance. However, it is important to note that neither embryos developing in ovo, neonates, nor females actively encapsulating egg cases were observed in or collected from the reef flats. Overall, our findings provide the first evidence in an elasmobranch that upper thermal tolerance is not impacted by life history stage or size. This information will help to improve our understanding of how anthropogenic climate change may (or may not) disproportionally affect particular life stages and, as such, where additional conservation and management actions may be required.
Collapse
Affiliation(s)
- Carolyn R Wheeler
- Corresponding author: 1 James Cook Drive, Douglas, Queensland 4814, Australia. Tel: + 61 0480 129 737.
| | - Bethan J Lang
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4814, Australia
| | - John W Mandelman
- School for the Environment, The University of Massachusetts Boston, Boston, MA 02125, USA
- Anderson Cabot Center for Ocean Life, New England Aquarium, Boston, MA 02110, USA
| | - Jodie L Rummer
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4814, Australia
- College of Science and Engineering, James Cook University, Townsville, Queensland 4814, Australia
| |
Collapse
|
165
|
Enders EC, Durhack TC. Metabolic rate and critical thermal maximum CTmax estimates for westslope cutthroat trout, Oncorhynchus clarkii lewisi. CONSERVATION PHYSIOLOGY 2022; 10:coac071. [PMID: 36570737 PMCID: PMC9773365 DOI: 10.1093/conphys/coac071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/23/2022] [Accepted: 10/26/2022] [Indexed: 06/17/2023]
Abstract
Global warming is changing the thermal habitat of cold-water freshwater fishes, which can lead to decreased fitness and survival and cause shifts in species distributions. The Alberta population of westslope cutthroat trout (Oncorhynchus clarkii lewisi) is listed as 'Threatened' under the Canadian Species at Risk Act. The major threats to the species are the alteration in habitat and water flow, competition and hybridization with non-native trout species and climate change. Here, we conducted (i) intermittent-flow respirometry experiments with adult native westslope cutthroat trout and non-native rainbow trout (Oncorhynchus mykiss) and (ii) critical thermal maximum experiments (CTmax ) with adult westslope cutthroat trout to obtain valuable input data for species distribution models. For both species, standard metabolic rate (SMR) was lower at 10°C compared to 15°C and westslope cutthroat trout had higher SMR than rainbow trout. Although there were inter-specific differences in SMR, forced aerobic scope (using a standardized chase protocol) was different at 10°C, but no significant differences were observed at 15°C because of relative smaller differences in maximum metabolic rate between the species. CTmax of westslope cutthroat trout acclimated to 10°C was 27.0 ± 0.8°C and agitation temperature was 25.2 ± 1.0°C. The results from this study will inform and parametrize cumulative effects assessments and bioenergetics habitat modelling for the recovery planning of the species.
Collapse
Affiliation(s)
- Eva C Enders
- Corresponding author: Institute National de la Recherche Scientifique, Centre Eau Terre Environnement, Québec, Québec, G1K 9A9, Canada.
| | - Travis C Durhack
- Fisheries and Oceans Canada, Freshwater Institute, Winnipeg Manitoba, R3T 2N6, Canada
| |
Collapse
|
166
|
Cardona E, Milhade L, Pourtau A, Panserat S, Terrier F, Lanuque A, Roy J, Marandel L, Bobe J, Skiba-Cassy S. Tissue origin of circulating microRNAs and their response to nutritional and environmental stress in rainbow trout (Oncorhynchus mykiss). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158584. [PMID: 36087674 DOI: 10.1016/j.scitotenv.2022.158584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 05/19/2023]
Abstract
Stresses associated with changes in diet or environmental disturbances are common situations that fish encounter during their lifetime. The stability and ease of measuring microRNAs (miRNAs) present in biological fluids make these molecules particularly interesting biomarkers for non-lethal assessment of stress in animals. Rainbow trout were exposed for four weeks to abiotic stress (moderate hypoxia) and/or nutritional stress (a high-carbohydrate/low-protein diet). Blood plasma and epidermal mucus were sampled at the end of the experiment, and miRNAs were assessed using small RNA sequencing. We identified four miRNAs (miR-122-5p, miR-184-3p, miR-192-5p and miR-194a-5p) and three miRNAs (miR-210-3p, miR-153a-3p and miR-218c-5p) that accumulated in response to stress in blood plasma and epidermal mucus, respectively. In particular, the abundance of miR-210-3p, a hypoxamiR in mammals, increased strongly in the epidermal mucus of rainbow trout subjected to moderate hypoxia, and can thus be considered a relevant biomarker of hypoxic stress in trout. We explored the contribution of 22 tissues/organs to the abundance of circulating miRNAs (c-miRNAs) in blood plasma and epidermal mucus influenced by the treatments. Some miRNAs were tissue-specific, while others were distributed among several tissues. Some c-miRNAs (e.g., miR-210-3p, miR184-3p) showed similar variations in both tissues and fluids, while others showed an inverse trend (e.g., miR-122-5p) or no apparent relationship (e.g. miR-192-5p, miR-194a-5p. Overall, these results demonstrate that c-miRNAs can be used as non-lethal biomarkers to study stress in fish. In particular, the upregulation of miR-210-3p in epidermal mucus induced by hypoxia demonstrates the potential of using epidermal mucus as a matrix for identifying non-invasive biomarkers of stress. This study provides information about the tissue sources of c-miRNAs and highlights the potential difficulty in relating variations in miRNA abundance in biological fluids to that in tissues.
Collapse
Affiliation(s)
- Emilie Cardona
- INRAE, E2S UPPA, Nutrition Metabolism, Aquaculture, Univ. Pau & Pays Adour, 64310 Saint Pée-sur-Nivelle, France; INRAE, UR1037 Fish Physiology and Genomic Laboratory, F-35000 Rennes, France.
| | - Léo Milhade
- IRISA, INRIA, CNRS, University of Rennes 1, UMR 6074, F-35000, Rennes, France
| | - Angéline Pourtau
- INRAE, E2S UPPA, Nutrition Metabolism, Aquaculture, Univ. Pau & Pays Adour, 64310 Saint Pée-sur-Nivelle, France; INRAE, Gip Geves St Martin 0652, F-40390 Saint-Martin-de-Hinx, France
| | - Stéphane Panserat
- INRAE, E2S UPPA, Nutrition Metabolism, Aquaculture, Univ. Pau & Pays Adour, 64310 Saint Pée-sur-Nivelle, France
| | - Fréderic Terrier
- INRAE, E2S UPPA, Nutrition Metabolism, Aquaculture, Univ. Pau & Pays Adour, 64310 Saint Pée-sur-Nivelle, France
| | - Anthony Lanuque
- INRAE, E2S UPPA, Nutrition Metabolism, Aquaculture, Univ. Pau & Pays Adour, 64310 Saint Pée-sur-Nivelle, France
| | - Jérôme Roy
- INRAE, E2S UPPA, Nutrition Metabolism, Aquaculture, Univ. Pau & Pays Adour, 64310 Saint Pée-sur-Nivelle, France
| | - Lucie Marandel
- INRAE, E2S UPPA, Nutrition Metabolism, Aquaculture, Univ. Pau & Pays Adour, 64310 Saint Pée-sur-Nivelle, France
| | - Julien Bobe
- INRAE, UR1037 Fish Physiology and Genomic Laboratory, F-35000 Rennes, France
| | - Sandrine Skiba-Cassy
- INRAE, E2S UPPA, Nutrition Metabolism, Aquaculture, Univ. Pau & Pays Adour, 64310 Saint Pée-sur-Nivelle, France
| |
Collapse
|
167
|
Thermal physiology integrated species distribution model predicts profound habitat fragmentation for estuarine fish with ocean warming. Sci Rep 2022; 12:21781. [PMID: 36526639 PMCID: PMC9758224 DOI: 10.1038/s41598-022-25419-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Species distribution models predict a poleward migration for marine ectotherms with ocean warming. However, a key limitation in current species distribution models (SDM) is that they do not account for population-specific heterogeneity in physiological responses to temperature change resulting from local adaptations and acclimatization. To address this gap, we developed a novel, Physiology Integrated BioClimate Model (PIBCM) that combines habitat-specific metabolic thermal physiological tolerance of a species into a bioclimate envelope model. Using a downscaling approach, we also established a fine-resolution coastal sea-surface temperature data set for 2050-2080, that showed a high degree of location-specific variability in future thermal regimes. Combining predicted temperature data with the PIBCM model, we estimated habitat distribution for a highly eurythermal intertidal minnow, the Atlantic killifish (Fundulus heteroclitus), a species that likely presents a best-case-scenario for coastal vertebrates. We show that the killifish northern boundary shifts southwards, while distinct habitat fragmentation occurs in the southern sub-population (due to migration of adjacent fish populations to the nearest metabolically optimal thermal habitat). When compared to current SDMs (e.g., AquaMaps), our results emphasize the need for thermal physiology integrated range shift models and indicate that habitat fragmentation for coastal fishes may reshape nursery habitats for many commercially and ecologically important species.
Collapse
|
168
|
Guo X, Huang M, Luo X, You W, Ke C. Effects of one-year exposure to ocean acidification on two species of abalone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 852:158144. [PMID: 35988613 DOI: 10.1016/j.scitotenv.2022.158144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Ocean acidification (OA) resulting from the absorption of excess atmospheric CO2 by the ocean threatens the survival of marine calcareous organisms, including mollusks. This study investigated the effects of OA on adults of two abalone species (Haliotis diversicolor, a subtropical species, and Haliotis discus hannai, a temperate species). Abalone were exposed to three pCO2 conditions for 1 year (ambient, ~ 880, and ~ 1600 μatm), and parameters, including mortality, physiology, immune system, biochemistry, and carry-over effects, were measured. Survival decreased significantly at ~ 800 μatm pCO2 for H. diversicolor, while H. discus hannai survival was negatively affected only at a higher OA level (~ 1600 μatm pCO2). H. diversicolor exhibited depressed metabolic and excretion rates and a higher O:N ratio under OA, indicating a shift to lipids as a metabolism substrate, while these physiological parameters in H. discus hannai were robust to OA. Both abalone failed to compensate for the pH decrease of their internal fluids because of the lowered hemolymph pH under OA. However, the reduced hemolymph pH did not affect total hemocyte counts or tested biomarkers. Additionally, H. discus hannai increased its hemolymph protein content under OA, which could indicate enhanced immunity. Larvae produced by adults exposed to the three pCO2 levels were cultured in the same pCO2 conditions and larval deformation and shell length were measured to observe carry-over effects. Enhanced OA tolerance was observed for H. discus hannai exposed under both of the OA treatments, while that was only observed following parental pCO2 ~ 880 μatm exposure for H. diversicolor. Following pCO2 ~ 1600 μatm parental exposure, H. diversicolor offspring exhibited higher deformation and lower shell growth in all pCO2 treatments. In general, H. diversicolor were more susceptible to OA compared with H. discus hannai, suggesting that H. diversicolor could be unable to adapt to acidified oceans in the future.
Collapse
Affiliation(s)
- Xiaoyu Guo
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou 362000, PR China; XMU-MRB Abalone Research Center, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, PR China; Fujian Province Key Laboratory for the Development of Bioactive Material from Marine Algae, Quanzhou Normal University, Quanzhou 362000, PR China
| | - Miaoqin Huang
- XMU-MRB Abalone Research Center, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, PR China
| | - Xuan Luo
- XMU-MRB Abalone Research Center, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, PR China
| | - Weiwei You
- XMU-MRB Abalone Research Center, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, PR China
| | - Caihuan Ke
- XMU-MRB Abalone Research Center, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, PR China.
| |
Collapse
|
169
|
Philippe C, Thoré ESJ, Verbesselt S, Grégoir AF, Brendonck L, Pinceel T. Combined effects of global warming and chlorpyrifos exposure on the annual fish Nothobranchius furzeri. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 248:114290. [PMID: 36403300 DOI: 10.1016/j.ecoenv.2022.114290] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Global warming and environmental pollution threaten aquatic ecosystems. While interactive effects between both stressors can have more than additive consequences, these remain poorly studied for most taxa. Especially chronic exposure trials with vertebrates are scarce due to the high time- and monetary costs of such studies. We use the recently-established fish model Nothobranchius furzeri to assess the separate and combined effects of exposure to the pesticide chlorpyrifos (at 2 µg/L and 4 µg/L) and a 2 °C temperature increase. We performed a full life-cycle assessment to evaluate fitness-related endpoints including survival, total body length, maturation time, fecundity, critical thermal maximum (CTmax) and locomotor activity. Exposure to 4 µg/L chlorpyrifos slowed down male maturation, reduced fecundity and impaired growth of the fish. While the temperature increase did not affect any of the measured endpoints on its own, the combination of exposure to 2 µg/L CPF with an increase of 2 °C reduced growth and severely reduced fecundity, with almost no offspring production. Together, these findings suggest that climate change may exacerbate the impact of environmental pollution, and that interactive effects of chronic exposure to multiple stressors should be considered to predict how populations will be affected by ongoing global change.
Collapse
Affiliation(s)
- Charlotte Philippe
- Animal Ecology, Global Change and Sustainable Development, University of Leuven, Ch. Deberiotstraat 32, B-3000 Leuven, Belgium.
| | - Eli S J Thoré
- Animal Ecology, Global Change and Sustainable Development, University of Leuven, Ch. Deberiotstraat 32, B-3000 Leuven, Belgium
| | - Sebastiaan Verbesselt
- Flanders Research Institute for Agriculture, Fisheries and Food, Burgemeester Van Gansberghelaan 92 box 1 9820 Merelbeke, Belgium
| | - Arnout F Grégoir
- Animal Ecology, Global Change and Sustainable Development, University of Leuven, Ch. Deberiotstraat 32, B-3000 Leuven, Belgium
| | - Luc Brendonck
- Animal Ecology, Global Change and Sustainable Development, University of Leuven, Ch. Deberiotstraat 32, B-3000 Leuven, Belgium; Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Tom Pinceel
- Animal Ecology, Global Change and Sustainable Development, University of Leuven, Ch. Deberiotstraat 32, B-3000 Leuven, Belgium; Centre for Environmental Management, University of the Free State, P.O. Box 339, Bloemfontein 9300, South Africa; PMC Coasts Rivers and Cities, Witteveen + Bos, Posthoflei 5, B-2600 Berchem, Belgium
| |
Collapse
|
170
|
da Silva I, Wikuats CFH, Hashimoto EM, Martins LD. Effects of Environmental and Socioeconomic Inequalities on Health Outcomes: A Multi-Region Time-Series Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16521. [PMID: 36554402 PMCID: PMC9778807 DOI: 10.3390/ijerph192416521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
The gradual increase in temperatures and changes in relative humidity, added to the aging and socioeconomic conditions of the population, may represent problems for public health, given that future projections predict even more noticeable changes in the climate and the age pyramid, which require analyses at an appropriate spatial scale. To our knowledge, an analysis of the synergic effects of several climatic and socioeconomic conditions on hospital admissions and deaths by cardiorespiratory and mental disorders has not yet been performed in Brazil. Statistical analyses were performed using public time series (1996-2015) of daily health and meteorological data from 16 metropolitan regions (in a subtropical climate zone in South America). Health data were stratified into six groups according to gender and age ranges (40-59; 60-79; and ≥80 years old) for each region. For the regression analysis, two distributions (Poisson and binomial negative) were tested with and without zero adjustments for the complete series and percentiles. Finally, the relative risks were calculated, and the effects based on exposure-response curves were evaluated and compared among regions. The negative binomial distribution fit the data best. High temperatures and low relative humidity were the most relevant risk factors for hospitalizations for cardiovascular diseases (lag = 0), while minimum temperatures were important for respiratory diseases (lag = 2 or 3 days). Temperature extremes, both high and low, were the most important risk factors for mental illnesses at lag 0. Groups with people over 60 years old presented higher risks for cardiovascular and respiratory diseases, while this was observed for the adult group (40-59 years old) in relation to mental disorders. In general, no major differences were found in the results between men and women. However, regions with higher urbanization levels presented risks, mainly for respiratory diseases, while the same was observed for cardiovascular diseases for regions with lower levels of urbanization. The Municipal Human Development Index is an important factor for the occurrence of diseases and deaths for all regions, depending on the evaluated group, representing high risks for health outcomes (the value for hospitalization for cardiovascular diseases was 1.6713 for the female adult group in the metropolitan region Palmas, and the value for hospitalization for respiratory diseases was 1.7274 for the female adult group in the metropolitan region Campo Mourão). In general, less developed regions have less access to adequate health care and better living conditions.
Collapse
Affiliation(s)
- Iara da Silva
- Graduate Program in Environmental Engineering, Campus Londrina, Federal University of Technology—Paraná, Av. Dos Pioneiros, 3131, Londrina 86036-370, Paraná, Brazil
- Department of Atmospheric Sciences, Institute of Astronomy, Geophysics and Atmospheric Sciences, University of São Paulo, Rua do Matão, 1226, São Paulo 05508-090, São Paulo, Brazil
| | - Caroline Fernanda Hei Wikuats
- Graduate Program in Environmental Engineering, Campus Londrina, Federal University of Technology—Paraná, Av. Dos Pioneiros, 3131, Londrina 86036-370, Paraná, Brazil
- Department of Atmospheric Sciences, Institute of Astronomy, Geophysics and Atmospheric Sciences, University of São Paulo, Rua do Matão, 1226, São Paulo 05508-090, São Paulo, Brazil
| | - Elizabeth Mie Hashimoto
- Graduate Program in Environmental Engineering, Campus Londrina, Federal University of Technology—Paraná, Av. Dos Pioneiros, 3131, Londrina 86036-370, Paraná, Brazil
| | - Leila Droprinchinski Martins
- Graduate Program in Environmental Engineering, Campus Londrina, Federal University of Technology—Paraná, Av. Dos Pioneiros, 3131, Londrina 86036-370, Paraná, Brazil
| |
Collapse
|
171
|
Kefford BJ, Ghalambor CK, Dewenter B, Poff NL, Hughes J, Reich J, Thompson R. Acute, diel, and annual temperature variability and the thermal biology of ectotherms. GLOBAL CHANGE BIOLOGY 2022; 28:6872-6888. [PMID: 36177681 PMCID: PMC9828456 DOI: 10.1111/gcb.16453] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Global warming is increasing mean temperatures and altering temperature variability at multiple temporal scales. To better understand the consequences of changes in thermal variability for ectotherms it is necessary to consider thermal variation at different time scales (i.e., acute, diel, and annual) and the responses of organisms within and across generations. Thermodynamics constrain acute responses to temperature, but within these constraints and over longer time periods, organisms have the scope to adaptively acclimate or evolve. Yet, hypotheses and predictions about responses to future warming tend not to explicitly consider the temporal scale at which temperature varies. Here, focusing on multicellular ectothermic animals, we argue that consideration of multiple processes and constraints associated with various timescales is necessary to better understand how altered thermal variability because of climate change will affect ectotherms.
Collapse
Affiliation(s)
- Ben J. Kefford
- Centre for Applied Water Science, Institute for Applied EcologyUniversity of CanberraCanberraAustralian Capital TerritoryAustralia
| | - Cameron K. Ghalambor
- Department of Biology and Graduate Degree Program in EcologyColorado State UniversityFort CollinsColoradoUSA
- Department of Biology, Centre for Biodiversity Dynamics (CBD)Norwegian University of Science and Technology (NTNU)TrondheimNorway
| | - Beatrice Dewenter
- Centre for Applied Water Science, Institute for Applied EcologyUniversity of CanberraCanberraAustralian Capital TerritoryAustralia
| | - N. LeRoy Poff
- Centre for Applied Water Science, Institute for Applied EcologyUniversity of CanberraCanberraAustralian Capital TerritoryAustralia
- Department of Biology and Graduate Degree Program in EcologyColorado State UniversityFort CollinsColoradoUSA
| | - Jane Hughes
- Australian Rivers InstituteGriffith UniversityNathanQueenslandAustralia
| | - Jollene Reich
- Centre for Applied Water Science, Institute for Applied EcologyUniversity of CanberraCanberraAustralian Capital TerritoryAustralia
| | - Ross Thompson
- Centre for Applied Water Science, Institute for Applied EcologyUniversity of CanberraCanberraAustralian Capital TerritoryAustralia
| |
Collapse
|
172
|
Minet A, Metian M, Taylor A, Gentès S, Azemard S, Oberhänsli F, Swarzenski P, Bustamante P, Lacoue-Labarthe T. Bioaccumulation of inorganic and organic mercury in the cuttlefish Sepia officinalis: Influence of ocean acidification and food type. ENVIRONMENTAL RESEARCH 2022; 215:114201. [PMID: 36057331 DOI: 10.1016/j.envres.2022.114201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/01/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
The bioaccumulation of mercury (Hg) in marine organisms through various pathways has not yet been fully explored, particularly in cephalopods. This study utilises radiotracer techniques using the isotope 203Hg to investigate the toxicokinetics and the organotropism of waterborne inorganic Hg (iHg) and dietary inorganic and organic Hg (methylHg, MeHg) in juvenile common cuttlefish Sepia officinalis. The effect of two contrasting CO2 partial pressures in seawater (400 and 1600 μatm, equivalent to pH 8.08 and 7.54, respectively) and two types of prey (fish and shrimp) were tested as potential driving factors of Hg bioaccumulation. After 14 days of waterborne exposure, juvenile cuttlefish showed a stable concentration factor of 709 ± 54 and 893 ± 117 at pH 8.08 and 7.54, respectively. The accumulated dissolved i203Hg was depurated relatively rapidly with a radiotracer biological half-life (Tb1/2) of 44 ± 12 and 55 ± 16 days at pH 8.08 and 7.54, respectively. During the whole exposure period, approximately half of the i203Hg was found in the gills, but i203Hg also increased in the digestive gland. When fed with 203Hg-radiolabelled prey, cuttlefish assimilated almost all the Hg provided (>95%) independently of the prey type. Nevertheless, the prey type played a major role on the depuration kinetics with Hg Tb1/2 approaching infinity in fish fed cuttlefish vs. 25 days in shrimp fed cuttlefish. Such a difference is explained by the different proportion of Hg species in the prey, with fish prey containing more than 80% of MeHg vs. only 30% in shrimp. Four days after ingestion of radiolabelled food, iHg was primarily found in the digestive organs while MeHg was transferred towards the muscular tissues. No significant effect of pH/pCO2 variation was observed during both the waterborne and dietary exposures on the bioaccumulation kinetics and tissue distribution of i203Hg and Me203Hg. Dietary exposure is the predominant pathway of Hg bioaccumulation in juvenile cuttlefish.
Collapse
Affiliation(s)
- Antoine Minet
- Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 Rue Olympe de Gouges, 17000 La Rochelle, France.
| | - Marc Metian
- International Atomic Energy Agency (IAEA), Marine Environment Laboratories, 4 Quai Antoine Ier, 98000, Principality of Monaco, France
| | - Angus Taylor
- International Atomic Energy Agency (IAEA), Marine Environment Laboratories, 4 Quai Antoine Ier, 98000, Principality of Monaco, France
| | - Sophie Gentès
- Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 Rue Olympe de Gouges, 17000 La Rochelle, France
| | - Sabine Azemard
- International Atomic Energy Agency (IAEA), Marine Environment Laboratories, 4 Quai Antoine Ier, 98000, Principality of Monaco, France
| | - François Oberhänsli
- International Atomic Energy Agency (IAEA), Marine Environment Laboratories, 4 Quai Antoine Ier, 98000, Principality of Monaco, France
| | - Peter Swarzenski
- International Atomic Energy Agency (IAEA), Marine Environment Laboratories, 4 Quai Antoine Ier, 98000, Principality of Monaco, France
| | - Paco Bustamante
- Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 Rue Olympe de Gouges, 17000 La Rochelle, France; Institut Universitaire de France (IUF), 1 Rue Descartes 75005, Paris, France
| | - Thomas Lacoue-Labarthe
- Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 Rue Olympe de Gouges, 17000 La Rochelle, France
| |
Collapse
|
173
|
Ogilvie JE, CaraDonna PJ. The shifting importance of abiotic and biotic factors across the life cycles of wild pollinators. J Anim Ecol 2022; 91:2412-2423. [PMID: 36268682 DOI: 10.1111/1365-2656.13825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/19/2022] [Indexed: 12/14/2022]
Abstract
Organisms living in seasonal environments are exposed to different environmental conditions as they transition from one life stage to the next across their life cycle. How different life stages respond to these varying conditions, and the extent to which different life stages are linked, are fundamental components of the ecology of an organism. Nevertheless, the influence of abiotic and biotic factors on different parts of an organism's life cycle is often not accounted for, which limits our understanding of the ecological consequences of environmental change. We investigated the relative importance of climate conditions, food availability, and previous life-stage abundance in an assemblage of seven wild bumble bee species, asking: how do these three factors directly influence bee abundance at each life stage? To do so, we used a 7-year dataset where we monitored climate conditions, floral resources, and abundances of bees in each life stage across the active colony life cycle in a highly seasonal subalpine ecosystem in the Colorado Rocky Mountains, USA. Bee abundance at different life stages responded to abiotic and biotic conditions in a broadly consistent manner across the seven species: the survival and recruitment stage of the life cycle (overwintered queens) responded negatively to longer winters; the growth stage (workers) responded positively to floral resource availability; and the reproductive stage (males) was positively related to the abundance of the previous life stage (workers). Most species also exhibited some idiosyncratic responses. Our long-term examination of annual bumble bees reveals a general set of responses in the abundance of each life stage to climate conditions, floral resource availability, and previous life stage. Across species, these three factors each directly influenced a distinct life stage, illustrating how their relative importance can shift throughout the life cycle. The life-cycle approach that we have taken highlights that important details about demography can be overlooked without considering life-stage-specific responses. Ultimately, it is these life-stage-specific responses that shape population outcomes, not only for animal pollinators but also for many organisms living in seasonal environments.
Collapse
Affiliation(s)
- Jane E Ogilvie
- Rocky Mountain Biological Laboratory, Crested Butte, Colorado, USA.,Chicago Botanic Garden, Glencoe, Illinois, USA
| | - Paul J CaraDonna
- Rocky Mountain Biological Laboratory, Crested Butte, Colorado, USA.,Chicago Botanic Garden, Glencoe, Illinois, USA.,Plant Biology and Conservation, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
174
|
Blanco S, Morán P, Diz AP, Olabarria C, Vázquez E. Effects of short-term hyposalinity stress on four commercially important bivalves: A proteomic perspective. ENVIRONMENTAL RESEARCH 2022; 215:114371. [PMID: 36162473 DOI: 10.1016/j.envres.2022.114371] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/29/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Increased heavy rainfall can reduce salinity to values close to 0 in estuaries. Lethal and sublethal physiological and behavioural effects of decreases in salinity below ten have already been found to occur in the commercially important clam species Venerupis corrugata, Ruditapes decussatus and R. philippinarum and the cockle Cerastoderma edule, which generate an income of ∼74 million euros annually in Galicia (NW Spain). However, studies of the molecular response to hyposaline stress in bivalves are scarce. This 'shotgun' proteomics study evaluates changes in mantle-edge proteins subjected to short-term hyposaline episodes in two different months (March and May) during the gametogenic cycle. We found evidence that the mantle-edge proteome was more responsive to sampling time than to hyposalinity, strongly suggesting that reproductive stages condition the stress response. However, hyposalinity modulated proteome profiles in V. corrugata and C. edule in both months and R. philippinarum in May, involving proteins implicated in protein folding, redox homeostasis, detoxification, cytoskeleton modulation and the regulation of apoptotic, autophagic and lipid degradation pathways. However, proteins that are essential for an optimal osmotic stress response but which are highly energy demanding, such as chaperones, osmoprotectants and DNA repair factors, were found in small relative abundances. In both months in R. decussatus and in March in R. philippinarum, almost no differences between treatments were detected. Concordant trends in the relative abundance of stress response candidate proteins were also obtained in V. corrugata and C. edule in the different months, but not in Ruditapes spp., strongly suggesting that the osmotic stress response in bivalves is complex and possibly influenced by a combination of controlled (sampling time) and uncontrolled variables. In this paper, we report potential molecular targets for studying the response to osmotic stress, especially in the most osmosensitive native species C. edule and V. corrugata, and suggest factors to consider when searching for biomarkers of hyposaline stress in bivalves.
Collapse
Affiliation(s)
- S Blanco
- CIM - Centro de Investigación Mariña and Departamento de Bioquímica, Xenética e Inmunoloxía, Facultade de Bioloxía, Universidade de Vigo, 36310, Vigo, Spain.
| | - P Morán
- CIM - Centro de Investigación Mariña and Departamento de Bioquímica, Xenética e Inmunoloxía, Facultade de Bioloxía, Universidade de Vigo, 36310, Vigo, Spain
| | - A P Diz
- CIM - Centro de Investigación Mariña and Departamento de Bioquímica, Xenética e Inmunoloxía, Facultade de Bioloxía, Universidade de Vigo, 36310, Vigo, Spain
| | - C Olabarria
- CIM - Centro de Investigación Mariña and Departamento de Ecoloxía e Bioloxía Animal, Facultade de Ciencias do Mar, Universidade de Vigo, 36310, Vigo, Spain
| | - E Vázquez
- CIM - Centro de Investigación Mariña and Departamento de Ecoloxía e Bioloxía Animal, Facultade de Ciencias do Mar, Universidade de Vigo, 36310, Vigo, Spain
| |
Collapse
|
175
|
Ripley DM, Quinn FA, Dickson J, Arthur J, Shiels HA. Thermal preference does not align with optimal temperature for aerobic scope in zebrafish (Danio rerio). J Exp Biol 2022; 225:278603. [PMID: 36305307 PMCID: PMC9845742 DOI: 10.1242/jeb.243774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 10/24/2022] [Indexed: 01/29/2023]
Abstract
Warming is predicted to have negative consequences for fishes by causing a mismatch between oxygen demand and supply, and a consequent reduction in aerobic scope (AS) and performance. This oxygen and capacity limited thermal tolerance (OCLTT) hypothesis features prominently in the literature but remains controversial. Within the OCLTT framework, we hypothesised that fish would select temperatures that maximise their AS, and thus their performance. We tested this hypothesis using intermittent flow respirometry to measure AS at, above (+2.5°C) and below (-2.5°C) the self-selected, preferred temperature (Tpref) of individual zebrafish (Danio rerio). AS was greatest 2.5°C above Tpref, which was driven by an increase in maximal metabolic rate. This mismatch between Tpref and the optimal temperature for AS suggests that factor(s) aside from AS maximisation influence the thermal preference of zebrafish.
Collapse
Affiliation(s)
- Daniel M. Ripley
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK,Authors for correspondence (; )
| | - Florence A. Quinn
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK
| | - Jessica Dickson
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK,School of Veterinary Medicine and Science, The University of Nottingham, Loughborough LE12 5RD, UK
| | - Jack Arthur
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK
| | - Holly A. Shiels
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PL, UK,Authors for correspondence (; )
| |
Collapse
|
176
|
Feng J, Jia T, Wang Z, Zhu W. Differences of energy adaptation strategies in Tupaia belangeri between Pianma and Tengchong region by metabolomics of liver: Role of warmer temperature. Front Physiol 2022; 13:1068636. [PMID: 36467696 PMCID: PMC9713704 DOI: 10.3389/fphys.2022.1068636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 10/31/2022] [Indexed: 09/10/2024] Open
Abstract
Global warming is becoming the future climate trend and will have a significant impact on small mammals, and they will also adapt at the physiological levels in response to climate change, among which the adaptation of energetics is the key to their survival. In order to investigate the physiological adaptation strategies in Tupaia belangeri affected by the climate change and to predict their possible fate under future global warming, we designed a metabonomic study in T. belangeri between two different places, including Pianma (PM, annual average temperature 15.01°C) and Tengchong (TC, annual average temperature 20.32°C), to analyze the differences of liver metabolite. Moreover, the changes of resting metabolic rate, body temperature, uncoupling protein 1content (UCP1) and other energy indicators in T. belangeri between the two places were also measured. The results showed that T. belangeri in warm areas (TC) reduced the concentrations of energy metabolites in the liver, such as pyruvic acid, fructose 6-phosphate, citric acid, malic acid, fumaric acid etc., so their energy metabolism intensity was also reduced, indicating that important energy metabolism pathway of glycolysis and tricarboxylic acid cycle (TCA) pathway reduced in T. belangeri from warmer habitat. Furthermore, brown adipose tissue (BAT) mass, UCP1 content and RMR in TC also decreased significantly, but their body temperature increased. All of the results suggested that T. belangeri adapt to the impact of warm temperature by reducing energy expenditure and increasing body temperature. In conclusion, our research had broadened our understanding of the physiological adaptation strategies to cope with climate change, and also provided a preliminary insight into the fate of T. belangeri for the future global warming climate.
Collapse
Affiliation(s)
- Jiahong Feng
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-Plants in Southwest Mountain Ecosystem of Yunnan Province Higher Institutes College, School of Life Sciences, Yunnan Normal University, Kunming, China
| | - Ting Jia
- Yunnan College of Business Management, Kunming, China
| | - Zhengkun Wang
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-Plants in Southwest Mountain Ecosystem of Yunnan Province Higher Institutes College, School of Life Sciences, Yunnan Normal University, Kunming, China
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy Ministry of Education, Yunnan Normal University, Kunming, China
- Key Laboratory of Yunnan Province for Biomass Energy and Environment Biotechnology, Kunming, China
| | - Wanlong Zhu
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-Plants in Southwest Mountain Ecosystem of Yunnan Province Higher Institutes College, School of Life Sciences, Yunnan Normal University, Kunming, China
- Engineering Research Center of Sustainable Development and Utilization of Biomass Energy Ministry of Education, Yunnan Normal University, Kunming, China
- Key Laboratory of Yunnan Province for Biomass Energy and Environment Biotechnology, Kunming, China
| |
Collapse
|
177
|
Impacts of Seawater pH Buffering on the Larval Microbiome and Carry-Over Effects on Later-Life Disease Susceptibility in Pacific Oysters. Appl Environ Microbiol 2022; 88:e0165422. [DOI: 10.1128/aem.01654-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Shellfish industries are threatened worldwide by recurrent summer mortality events. Such incidences are often associated with
Vibrio
disease outbreaks, and thus, it is critical that animals are able to mount sufficient immune responses.
Collapse
|
178
|
Wells K, Flynn R. Managing host-parasite interactions in humans and wildlife in times of global change. Parasitol Res 2022; 121:3063-3071. [PMID: 36066742 PMCID: PMC9446624 DOI: 10.1007/s00436-022-07649-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/30/2022] [Indexed: 11/24/2022]
Abstract
Global change in the Anthropocene has modified the environment of almost any species on earth, be it through climate change, habitat modifications, pollution, human intervention in the form of mass drug administration (MDA), or vaccination. This can have far-reaching consequences on all organisational levels of life, including eco-physiological stress at the cell and organism level, individual fitness and behaviour, population viability, species interactions and biodiversity. Host-parasite interactions often require highly adapted strategies by the parasite to survive and reproduce within the host environment and ensure efficient transmission among hosts. Yet, our understanding of the system-level outcomes of the intricate interplay of within host survival and among host parasite spread is in its infancy. We shed light on how global change affects host-parasite interactions at different organisational levels and address challenges and opportunities to work towards better-informed management of parasite control. We argue that global change affects host-parasite interactions in wildlife inhabiting natural environments rather differently than in humans and invasive species that benefit from anthropogenic environments as habitat and more deliberate rather than erratic exposure to therapeutic drugs and other control efforts.
Collapse
Affiliation(s)
- Konstans Wells
- Department of Biosciences, Swansea University, Swansea, SA28PP, UK.
| | - Robin Flynn
- Graduate Studies Office, South East Technological University, Cork Road Campus, Waterford, X91 K0EK, Ireland
| |
Collapse
|
179
|
McInturf AG, Zillig KW, Cook K, Fukumoto J, Jones A, Patterson E, Cocherell DE, Michel CJ, Caillaud D, Fangue NA. In hot water? Assessing the link between fundamental thermal physiology and predation of juvenile Chinook salmon. Ecosphere 2022. [DOI: 10.1002/ecs2.4264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Alexandra G. McInturf
- Department of Wildlife, Fish and Conservation Biology University of California Davis California USA
- Animal Behavior Graduate Group University of California Davis California USA
- Coastal Oregon Marine Experiment Station Oregon State University Newport Oregon USA
| | - Ken W. Zillig
- Department of Wildlife, Fish and Conservation Biology University of California Davis California USA
- Graduate Group in Ecology University of California Davis California USA
| | - Katherine Cook
- Department of Wildlife, Fish and Conservation Biology University of California Davis California USA
| | - Jacqueline Fukumoto
- Department of Wildlife, Fish and Conservation Biology University of California Davis California USA
| | - Anna Jones
- Department of Wildlife, Fish and Conservation Biology University of California Davis California USA
| | - Emily Patterson
- Department of Wildlife, Fish and Conservation Biology University of California Davis California USA
| | - Dennis E. Cocherell
- Department of Wildlife, Fish and Conservation Biology University of California Davis California USA
| | - Cyril J. Michel
- NOAA Southwest Fisheries Science Center, Fisheries Ecology Division Santa Cruz California USA
| | - Damien Caillaud
- Department of Anthropology University of California Davis California USA
| | - Nann A. Fangue
- Department of Wildlife, Fish and Conservation Biology University of California Davis California USA
| |
Collapse
|
180
|
Brusch GA, Le Galliard J, Viton R, Gavira RSB, Clobert J, Lourdais O. Reproducing in a changing world: combined effects of thermal conditions by day and night and of water constraints during pregnancy in a cold‐adapted ectotherm. OIKOS 2022. [DOI: 10.1111/oik.09536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- George A. Brusch
- Biological Sciences, California State Univ. San Marcos San Marcos CA USA
| | - Jean‐François Le Galliard
- Sorbonne Univ., CNRS, IRD, INRAe, Inst. d'Écologie et des Sciences de l'Environnement (IEES) Paris Cedex 5 France
- Ecole Normale Supérieure, PSL Univ., Dépt de Biologie, CNRS, UMS 3194, Centre de Recherche en Écologie Expérimentale et Prédictive (CEREEP‐Ecotron IleDeFrance) Saint‐Pierre‐lès‐Nemours France
| | - Robin Viton
- Centre d'Etudes Biologiques de Chizé, CNRS Villiers en Bois France
| | | | - Jean Clobert
- Station d'Ecologie Théorique et Expérimentale de Moulis, CNRS, UMR 5321 Saint Girons France
| | - Olivier Lourdais
- Centre d'Etudes Biologiques de Chizé, CNRS Villiers en Bois France
- School of Life Sciences, Arizona State Univ. Tempe AZ USA
| |
Collapse
|
181
|
Extreme escalation of heat failure rates in ectotherms with global warming. Nature 2022; 611:93-98. [DOI: 10.1038/s41586-022-05334-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 09/09/2022] [Indexed: 11/08/2022]
|
182
|
Pélissié M, Johansson F, Hyseni C. Pushed Northward by Climate Change: Range Shifts With a Chance of Co-occurrence Reshuffling in the Forecast for Northern European Odonates. ENVIRONMENTAL ENTOMOLOGY 2022; 51:910-921. [PMID: 36017921 PMCID: PMC9585372 DOI: 10.1093/ee/nvac056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Indexed: 05/12/2023]
Abstract
Biodiversity is heavily influenced by ongoing climate change, which often results in species undergoing range shifts, either poleward or uphill. Range shifts can occur provided suitable habitats exist within reach. However, poleward latitudinal shifts might be limited by additional abiotic or biotic constraints, such as increased seasonality, photoperiod patterns, and species interactions. To gain insight into the dynamics of insect range shifts at high latitudes, we constructed ecological niche models (ENMs) for 57 Odonata species occurring in northern Europe. We used citizen science data from Sweden and present-day climatic variables covering a latitudinal range of 1,575 km. Then, to measure changes in range and interactions among Odonata species, we projected the ENMs up to the year 2080. We also estimated potential changes in species interactions using niche overlap and co-occurrence patterns. We found that most Odonata species are predicted to expand their range northward. The average latitudinal shift is expected to reach 1.83 and 3.25 km y-1 under RCP4.5 and RCP8.5 scenarios, respectively, by 2061-2080. While the most warm-dwelling species may increase their range, our results indicate that cold-dwelling species will experience range contractions. The present-day niche overlap patterns among species will remain largely the same in the future. However, our results predict changes in co-occurrence patterns, with many species pairs showing increased co-occurrence, while others will no longer co-occur because of the range contractions. In sum, our ENM results suggest that species assemblages of Odonata-and perhaps insects in general-in northern latitudes will experience great compositional changes.
Collapse
Affiliation(s)
| | | | - Chaz Hyseni
- Department of Ecology and Genetics, Animal Ecology, Uppsala University, 75236 Uppsala, Sweden
- USDA Forest Service, Southern Research Station, Center for Bottomland Hardwoods Research, Oxford, MS 38655, USA
| |
Collapse
|
183
|
Kuan PL, You JY, Wu GC, Tseng YC. Temperature increases induce metabolic adjustments in the early developmental stages of bigfin reef squid (Sepioteuthis lessoniana). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:156962. [PMID: 35779738 DOI: 10.1016/j.scitotenv.2022.156962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Climate changes, such as extreme temperature shifts, can have a direct and significant impact on animals living in the ocean system. Ectothermic animals may undergo concerted metabolic shifts in response to ambient temperature changes. The physiological and molecular adaptations in cephalopods during their early life stages are largely unknown due to the challenge of rearing them outside of a natural marine environment. To overcome this obstacle, we established a pelagic bigfin reef squid (Sepioteuthis lessoniana) culture facility, which allowed us to monitor the effects of ambient thermal elevation and fluctuation on cephalopod embryos/larvae. By carefully observing embryonic development in the breeding facility, we defined 23 stages of bigfin reef squid embryonic development, beginning at stage 12 (blastocyst; 72 h post-egg laying) and continuing through hatching (~1 month post-egg laying). Since temperature recordings from the bigfin reef squid natural habitats have shown a steady rise over the past decade, we examined energy substrate utilization and cellular/metabolic responses in developing animals under different temperature conditions. As the ambient temperature increased by 7 °C, hatching larvae favored aerobic metabolism by about 2.3-fold. Short-term environmental warming stress inhibited oxygen consumption but did not affect ammonium excretion in stage (St.) 25 larvae. Meanwhile, an aerobic metabolism-related marker (CoxI) and a cellular stress-responsive marker (HSP70) were rapidly up-regulated upon acute warming treatments. In addition, our simulations of temperature oscillations mimicking natural daily rhythms did not result in significant changes in metabolic processes in St. 25 animals. As the ambient temperature increased by 7 °C, referred to as heatwave conditions, CoxI, HSP70, and antioxidant molecule (SOD) were stimulated, indicating the importance of cellular and metabolic adjustments. As with other aquatic species with high metabolic rates, squid larvae in the tropical/sub-tropical climate zone undergo adaptive metabolic shifts to maintain physiological functions and prevent excessive oxidative stress under environmental warming.
Collapse
Affiliation(s)
- Pou-Long Kuan
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Taiwan
| | - Jhih-Yao You
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Taiwan; Institute of Oceanography, National Taiwan University, Taiwan
| | - Guan-Chung Wu
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Yung-Che Tseng
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Taiwan.
| |
Collapse
|
184
|
Dahlke F, Puvanendran V, Mortensen A, Pörtner HO, Storch D. Broodstock exposure to warming and elevated pCO 2 impairs gamete quality and narrows the temperature window of fertilisation in Atlantic cod. JOURNAL OF FISH BIOLOGY 2022; 101:822-833. [PMID: 35737847 DOI: 10.1111/jfb.15140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 04/09/2022] [Indexed: 06/15/2023]
Abstract
Impacts of global warming and CO2 -related ocean acidification (OA) on fish reproduction may include chronic effects on gametogenesis and gamete quality, as well as acute effects on external fertilisation. Here, temperature thresholds and OA-sensitivity of gametogenesis and fertilisation were investigated in Atlantic cod, Gadus morhua. Three broodstock groups of farmed cod (FC 1-3) were exposed for 3 months to three maturation conditions (FC 1: control, 6°C/400 μatm CO2 ; FC 2: warming, 9.5°C/400 μatm; FC 3: warming and OA, 9.5°C/1100 μatm). In addition, a broodstock group of wild cod (WC) was kept at control conditions to compare the acute temperature window of fertilisation with that of farmed cod (FC 1). Fertilisations were conducted in a temperature-gradient table at 10 temperatures (between -1.5 and 12°C) and two CO2 levels (400/1100 μatm). In FC 1 and WC, fertilisation success was relatively high between 0.5°C and 11°C (TRange of c. 10.5°C), indicating similar gamete quality in farmed and wild broodstocks kept at control conditions. Exposure of farmed broodstocks to warming (FC 2) and the combination of warming and OA (FC 3) impaired gamete quality, causing a reduction in fertilisation success of -20% (FC 2) and - 42% (FC 3) compared to FC 1. The acute temperature window of fertilisation narrowed from FC 1 (TRange = 10.4°C) to FC 2 (TRange = 8.8°C) and FC 3 (TRange = 5.9°C). Acute effects of CO2 on fertilisation success were not significant. This study demonstrates potential climate change impacts on gametogenesis and fertilisation in Atlantic cod, suggesting the loss of spawning habitat in the coming decades.
Collapse
Affiliation(s)
- Flemming Dahlke
- Helmholtz Centre for Polar and Marine Research, Alfred Wegener Institute, Bremerhaven, Germany
| | | | | | - Hans-Otto Pörtner
- Helmholtz Centre for Polar and Marine Research, Alfred Wegener Institute, Bremerhaven, Germany
- Department of Biology and Chemistry, University of Bremen, Bremen, Germany
| | - Daniela Storch
- Helmholtz Centre for Polar and Marine Research, Alfred Wegener Institute, Bremerhaven, Germany
| |
Collapse
|
185
|
Pereira DMC, Resende AC, Schleger IC, Neundorf AKA, Romão S, Souza MRDPD, Herrerias T, Donatti L. Integrated biomarker response index as an ally in the observation of metabolic biomarkers in muscle of Astyanax lacustris exposed to thermal variation. Biochimie 2022:S0300-9084(22)00276-0. [DOI: 10.1016/j.biochi.2022.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/03/2022] [Accepted: 10/14/2022] [Indexed: 01/10/2023]
|
186
|
Ørsted M, Jørgensen LB, Overgaard J. Finding the right thermal limit: a framework to reconcile ecological, physiological and methodological aspects of CTmax in ectotherms. J Exp Biol 2022; 225:277015. [DOI: 10.1242/jeb.244514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
ABSTRACT
Upper thermal limits (CTmax) are frequently used to parameterize the fundamental niche of ectothermic animals and to infer biogeographical distribution limits under current and future climate scenarios. However, there is considerable debate associated with the methodological, ecological and physiological definitions of CTmax. The recent (re)introduction of the thermal death time (TDT) model has reconciled some of these issues and now offers a solid mathematical foundation to model CTmax by considering both intensity and duration of thermal stress. Nevertheless, the physiological origin and boundaries of this temperature–duration model remain unexplored. Supported by empirical data, we here outline a reconciling framework that integrates the TDT model, which operates at stressful temperatures, with the classic thermal performance curve (TPC) that typically describes biological functions at permissive temperatures. Further, we discuss how the TDT model is founded on a balance between disruptive and regenerative biological processes that ultimately defines a critical boundary temperature (Tc) separating the TDT and TPC models. Collectively, this framework allows inclusion of both repair and accumulation of heat stress, and therefore also offers a consistent conceptual approach to understand the impact of high temperature under fluctuating thermal conditions. Further, this reconciling framework allows improved experimental designs to understand the physiological underpinnings and ecological consequences of ectotherm heat tolerance.
Collapse
Affiliation(s)
- Michael Ørsted
- Aarhus University Section for Zoophysiology, Department of Biology , , 8000 Aarhus C , Denmark
| | | | - Johannes Overgaard
- Aarhus University Section for Zoophysiology, Department of Biology , , 8000 Aarhus C , Denmark
| |
Collapse
|
187
|
Oomen RA, Knutsen H, Olsen EM, Jentoft S, Stenseth NC, Hutchings JA. Warming Accelerates the Onset of the Molecular Stress Response and Increases Mortality of Larval Atlantic Cod. Integr Comp Biol 2022; 62:1784-1801. [PMID: 36130874 PMCID: PMC9801969 DOI: 10.1093/icb/icac145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/24/2022] [Accepted: 08/27/2022] [Indexed: 01/05/2023] Open
Abstract
Temperature profoundly affects ectotherm physiology. Although differential thermal responses influence fitness, thus driving population dynamics and species distributions, our understanding of the molecular architecture underlying these responses is limited, especially during the critical larval stage. Here, using RNA-sequencing of laboratory-reared Atlantic cod (Gadus morhua) larvae of wild origin, we find changes in gene expression in thousands of transcripts consistent with a severe cellular stress response at both ambient and projected (+2°C and +4°C) temperatures. In addition, specific responses to stress, heat, and hypoxia were commonly identified in gene ontology enrichment analyses and 33 of the 44 genes comprising the minimum stress proteome of all organisms were upregulated. Earlier onset of the stress response was evident at higher temperatures; concomitant increased growth and mortality suggests a reduction in fitness. Temporal differences in gene expression levels do not correspond to differences in growing degree days, suggesting negative physiological consequences of warming beyond accelerated development. Because gene expression is costly, we infer that the upregulation of thousands of transcripts in response to warming in larval cod might act as an energetic drain. We hypothesize that the energetically costly stress response, coupled with increased growth rate at warmer temperatures, leads to faster depletion of energy reserves and increased risk of mortality in larval cod. As sea surface temperatures continue to rise over the next century, reduced fitness of Atlantic cod larvae might lead to population declines in this ecologically and socioeconomically important species. Further, our findings expand our understanding of transcriptomic responses to temperature by ectothermic vertebrate larvae beyond the critical first-feeding stage, a time when organisms begin balancing the energetic demands of growth, foraging, development, and maintenance. Linking the molecular basis of a thermal response to key fitness-related traits is fundamentally important to predicting how global warming will affect ectotherms.
Collapse
Affiliation(s)
| | - Halvor Knutsen
- Center for Coastal Research (CCR), Department of Natural Sciences, University of Agder, 4604 Kristiansand, Norway,Institute of Marine Research, Nye Flødevigveien 20, 4817 His, Norway
| | - Esben M Olsen
- Center for Coastal Research (CCR), Department of Natural Sciences, University of Agder, 4604 Kristiansand, Norway,Institute of Marine Research, Nye Flødevigveien 20, 4817 His, Norway
| | - Sissel Jentoft
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, 0371 Oslo, Norway
| | - Nils Chr Stenseth
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, 0371 Oslo, Norway,Center for Coastal Research (CCR), Department of Natural Sciences, University of Agder, 4604 Kristiansand, Norway
| | - Jeffrey A Hutchings
- Center for Coastal Research (CCR), Department of Natural Sciences, University of Agder, 4604 Kristiansand, Norway,Institute of Marine Research, Nye Flødevigveien 20, 4817 His, Norway,Department of Biology, Dalhousie University, Halifax, NS B3H 4J1, Canada
| |
Collapse
|
188
|
Danylchuk AJ, Griffin LP, Ahrens R, Allen MS, Boucek RE, Brownscombe JW, Casselberry GA, Danylchuk SC, Filous A, Goldberg TL, Perez AU, Rehage JS, Santos RO, Shenker J, Wilson JK, Adams AJ, Cooke SJ. Cascading effects of climate change on recreational marine flats fishes and fisheries. ENVIRONMENTAL BIOLOGY OF FISHES 2022; 106:381-416. [PMID: 36118617 PMCID: PMC9465673 DOI: 10.1007/s10641-022-01333-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
Tropical and subtropical coastal flats are shallow regions of the marine environment at the intersection of land and sea. These regions provide myriad ecological goods and services, including recreational fisheries focused on flats-inhabiting fishes such as bonefish, tarpon, and permit. The cascading effects of climate change have the potential to negatively impact coastal flats around the globe and to reduce their ecological and economic value. In this paper, we consider how the combined effects of climate change, including extremes in temperature and precipitation regimes, sea level rise, and changes in nutrient dynamics, are causing rapid and potentially permanent changes to the structure and function of tropical and subtropical flats ecosystems. We then apply the available science on recreationally targeted fishes to reveal how these changes can cascade through layers of biological organization-from individuals, to populations, to communities-and ultimately impact the coastal systems that depend on them. We identify critical gaps in knowledge related to the extent and severity of these effects, and how such gaps influence the effectiveness of conservation, management, policy, and grassroots stewardship efforts.
Collapse
Affiliation(s)
- Andy J. Danylchuk
- Department of Environmental Conservation, University of Massachusetts Amherst, 160 Holdsworth Way, Amherst, MA 01003 USA
| | - Lucas P. Griffin
- Department of Environmental Conservation, University of Massachusetts Amherst, 160 Holdsworth Way, Amherst, MA 01003 USA
| | - Robert Ahrens
- Fisheries Research and Monitoring Division, NOAA Pacific Islands Fisheries Science Center, 1845 Wasp Blvd., Bldg 176, Honolulu, HI 96818 USA
| | - Micheal S. Allen
- Nature Coast Biological Station, School of Forest, Fisheries and Geomatics Sciences, The University of Florida, 552 First Street, Cedar Key, FL 32625 USA
| | - Ross E. Boucek
- Bonefish & Tarpon Trust, 2937 SW 27th Ave, Suite 203, Miami, FL 33133 USA
- Earth and Environment Department, Florida International University, Miami, FL 33199 USA
| | - Jacob W. Brownscombe
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6 Canada
| | - Grace A. Casselberry
- Department of Environmental Conservation, University of Massachusetts Amherst, 160 Holdsworth Way, Amherst, MA 01003 USA
| | - Sascha Clark Danylchuk
- Department of Environmental Conservation, University of Massachusetts Amherst, 160 Holdsworth Way, Amherst, MA 01003 USA
- Keep Fish Wet, 11 Kingman Road, Amherst, MA 01002 USA
| | - Alex Filous
- Department of Environmental Conservation, University of Massachusetts Amherst, 160 Holdsworth Way, Amherst, MA 01003 USA
| | - Tony L. Goldberg
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, 1656 Linden Drive, Madison, WI 53706 USA
| | - Addiel U. Perez
- Bonefish & Tarpon Trust, 2937 SW 27th Ave, Suite 203, Miami, FL 33133 USA
| | - Jennifer S. Rehage
- Earth and Environment Department, Florida International University, Miami, FL 33199 USA
| | - Rolando O. Santos
- Department of Biological Sciences, Florida International University, Miami, FL 33181 USA
| | - Jonathan Shenker
- Department of Ocean Engineering and Marine Sciences, Florida Institute of Technology, 150 West University Boulevard, Melbourne, FL 32904 USA
| | - JoEllen K. Wilson
- Bonefish & Tarpon Trust, 2937 SW 27th Ave, Suite 203, Miami, FL 33133 USA
| | - Aaron J. Adams
- Bonefish & Tarpon Trust, 2937 SW 27th Ave, Suite 203, Miami, FL 33133 USA
- Florida Atlantic University Harbor Branch Oceanographic Institute, 5600 US 1 North, Fort Pierce, FL 34946 USA
| | - Steven J. Cooke
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON K1S 5B6 Canada
| |
Collapse
|
189
|
Palestrini C, Minozzi G, Mazzola SM, Lopez A, Cannas S. Do intense weather events influence dogs' and cats' behavior? Analysis of owner reported data in Italy. Front Vet Sci 2022; 9:973574. [PMID: 36118344 PMCID: PMC9480616 DOI: 10.3389/fvets.2022.973574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022] Open
Abstract
Climate change is a threat to global health and can affect both veterinary and human health. Intense weather events, including sudden and violent thunderstorms or periods of extreme heat, are predicted to rise in frequency and severity and this could lead owners to significantly change their habits and schedules based on the weather, could modify human management and could aggravate pre-existing behavioral problems in pets. The aims of the present study were to identify and quantify possible weather events impact on management, behavior, and behavioral problems of Italian dogs and cats, based on previous owners' experiences with their animals. Two questionnaires were prepared, one for dogs and one for cats, investigating owners' perceptions of the impact of weather events on their pets' behavior. A number of 392 dogs and 426 cats' owners answered the questionnaire. Our study showed that many behaviors in both species were equally modified by environmental temperature. Play and activity increased with cold weather and decreased with heat, and sleep increased with drops in temperature and with hot weather. In particular, the increase in activity in correspondence with the thermic drop was more significant in males, while the increase in playing behavior was statistically greater in the Sheepdogs and Cattle dogs –group1. Weather events did not affect aggressive and house soiling behaviors in both dogs and cats, but weather events, including wild thunderstorms, torrential rains influenced the pets' behavior. Understanding how pets modify their behaviors based on a different owners' schedule and to weather events can help to refine prevention strategies through societal changes and owner education.
Collapse
|
190
|
Asnicar D, Zanovello L, Badocco D, Munari M, Marin MG. Different ecological histories of sea urchins acclimated to reduced pH influence offspring response to multiple stressors. ENVIRONMENTAL RESEARCH 2022; 212:113131. [PMID: 35337831 DOI: 10.1016/j.envres.2022.113131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 03/07/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
End-of-the-century predictions on carbon dioxide (CO2) driven ocean acidification and the continuous leakage of pesticides from inland to coastal areas are of concern for potential negative effects on marine species' early life stages which are the most vulnerable to environmental changes. Variations in seawater chemistry related to human activities may interfere with the normal development from embryo to juvenile/adult stage. However, transgenerational studies suggest that the parental generation can influence the offspring phenotype, and thus their performances, based on the environment experienced. Here we compared the transgenerational responses to a multiple stressor scenario in sea urchins (Paracentrotus lividus) that experienced different environments since their settlement: i.e., animals from a highly variable environment, such as the Venice lagoon, versus animals from a coastal area with prevailing oligotrophic conditions in the Northern Adriatic Sea. After long-term maintenance (2 and 6 months) of adult sea urchins at natural and -0.4 units reduced pH, the F1 generations were obtained. Embryos were reared under four experimental conditions: natural and -0.4 pH both in the absence and in the presence of an emerging contaminants' mixture (glyphosate and aminomethylphosphonic acid at environmentally relevant concentrations, 100 μg/L). A significant detrimental effect of both the parental and the filial pH was highlighted, affecting embryo development and growth. Nonetheless, sea urchins from both sites were able to cope with ocean acidification. The 6-months F1 response was better than that of the 2-months F1. Conversely, the F1 response of the sea urchins maintained at natural conditions did not change sensibly after more prolonged parental exposure. An additive but mild negative effect of the mixture was observed, mostly in lagoon offspring. Results suggest that long-term exposure to reduced pH leads to transgenerational acclimation but does not affect susceptibility to the tested pollutants.
Collapse
Affiliation(s)
- Davide Asnicar
- Department of Biology, University of Padova, 35121, Padova, Italy
| | - Laura Zanovello
- Department of Biology, University of Padova, 35121, Padova, Italy
| | - Denis Badocco
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Marco Munari
- Department of Integrative Marine Ecology, Ischia Marine Centre, Stazione Zoologica Anton Dohrn, Punta San Pietro, 80077, Ischia, Naples, Italy
| | | |
Collapse
|
191
|
Buckner MA, Danforth BN. Climate-driven range shifts of a rare specialist bee, Macropis nuda (Melittidae), and its host plant, Lysimachia ciliata (Primulaceae). Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
192
|
McArley TJ, Morgenroth D, Zena LA, Ekström AT, Sandblom E. Prevalence and mechanisms of environmental hyperoxia-induced thermal tolerance in fishes. Proc Biol Sci 2022; 289:20220840. [PMID: 35975439 PMCID: PMC9382203 DOI: 10.1098/rspb.2022.0840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Recent evidence has suggested environmental hyperoxia (O2 supersaturation) can boost cardiorespiratory performance in aquatic ectotherms, thereby increasing resilience to extreme heat waves associated with climate change. Here, using rainbow trout (Oncorhynchus mykiss) as a model species, we analysed whether improved cardiorespiratory performance can explain the increased thermal tolerance of fish in hyperoxia (200% air saturation). Moreover, we collated available literature data to assess the prevalence and magnitude of hyperoxia-induced thermal tolerance across fish species. During acute warming, O2 consumption rate was substantially elevated under hyperoxia relative to normoxia beyond 23°C. This was partly driven by higher cardiac output resulting from improved cardiac contractility. Notably, hyperoxia mitigated the rise in plasma lactate at temperatures approaching upper limits and elevated the critical thermal maximum (+0.87°C). Together, these findings show, at least in rainbow trout, that hyperoxia-induced thermal tolerance results from expanded tissue O2 supply capacity driven by enhanced cardiac performance. We show 50% of the fishes so far examined have increased critical thermal limits in hyperoxia (range: 0.4-1.8°C). This finding indicates environmental hyperoxia could improve the ability of a large number of fishes to cope with extreme acute warming, thereby increasing resilience to extreme heat wave events resulting from climate change.
Collapse
Affiliation(s)
- T. J. McArley
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, 405 30 Gothenburg, Sweden
| | - D. Morgenroth
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, 405 30 Gothenburg, Sweden
| | - L. A. Zena
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, 405 30 Gothenburg, Sweden
| | - A. T. Ekström
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, 405 30 Gothenburg, Sweden
| | - E. Sandblom
- Department of Biological and Environmental Sciences, University of Gothenburg, PO Box 463, 405 30 Gothenburg, Sweden
| |
Collapse
|
193
|
Shartau RB, Harter TS, Baker DW, Aboagye DL, Allen PJ, Val AL, Crossley DA, Kohl ZF, Hedrick MS, Damsgaard C, Brauner CJ. Acute CO 2 tolerance in fishes is associated with air breathing but not the Root effect, red cell βNHE, or habitat. Comp Biochem Physiol A Mol Integr Physiol 2022; 274:111304. [PMID: 36049728 DOI: 10.1016/j.cbpa.2022.111304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 08/03/2022] [Accepted: 08/07/2022] [Indexed: 12/01/2022]
Abstract
High CO2 (hypercapnia) can impose significant physiological challenges associated with acid-base regulation in fishes, impairing whole animal performance and survival. Unlike other environmental conditions such as temperature and O2, the acute CO2 tolerance thresholds of fishes are not understood. While some fish species are highly tolerant, the extent of acute CO2 tolerance and the associated physiological and ecological traits remain largely unknown. To investigate this, we used a recently developed ramping assay, termed the Carbon Dioxide maximum (CDmax), that increases CO2 exposure until loss of equilibrium (LOE) is observed. We investigated if there was a relationship between CO2 tolerance and the Root effect, β-adrenergic sodium proton exchanger (βNHE), air-breathing, and fish habitat in 17 species. We hypothesized that CO2 tolerance would be higher in fishes that lack both a Root effect and βNHE, breathe air, and reside in tropical habitats. Our results showed that CDmax ranged from 2.7 to 26.7 kPa, while LOE was never reached in four species at the maximum PCO2 we could measure (26.7 kPa); CO2 tolerance was only associated with air-breathing, but not the presence of a Root effect or a red blood cell (RBC) βNHE, or fish habitat. This study demonstrates that the diverse group of fishes investigated here are incredibly tolerant of CO2 and that although this tolerance is associated with air-breathing, further investigations are required to understand the basis for CO2 tolerance.
Collapse
Affiliation(s)
- R B Shartau
- Department of Biology, The University of Texas at Tyler, Tyler, TX, USA; Department of Zoology, University of British Columbia, Vancouver, BC, Canada.
| | - T S Harter
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada; Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, CA, USA.
| | - D W Baker
- Department of Fisheries and Aquaculture, Vancouver Island University, Nanaimo, BC, Canada.
| | - D L Aboagye
- Department of Wildlife, Fisheries and Aquaculture, Mississippi State University, Starkville, MS, USA
| | - P J Allen
- Department of Wildlife, Fisheries and Aquaculture, Mississippi State University, Starkville, MS, USA.
| | - A L Val
- Laboratory of Ecophysiology and Molecular Evolution, Brazilian National Institute for Research of the Amazon (INPA), Manaus, AM, Brazil
| | - D A Crossley
- Department of Biological Sciences, University of North Texas, Denton, TX, USA.
| | - Z F Kohl
- Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - M S Hedrick
- Department of Biological Sciences, California State University, East Bay, Hayward, CA, USA.
| | - C Damsgaard
- Section for Zoophysiology, Department of Biology, Aarhus University, Aarhus, Denmark.
| | - C J Brauner
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
194
|
Laspoumaderes C, Meunier CL, Magnin A, Berlinghof J, Elser JJ, Balseiro E, Torres G, Modenutti B, Tremblay N, Boersma M. A common temperature dependence of nutritional demands in ectotherms. Ecol Lett 2022; 25:2189-2202. [PMID: 35981221 DOI: 10.1111/ele.14093] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/27/2022]
Abstract
In light of ongoing climate change, it is increasingly important to know how nutritional requirements of ectotherms are affected by changing temperatures. Here, we analyse the wide thermal response of phosphorus (P) requirements via elemental gross growth efficiencies of Carbon (C) and P, and the Threshold Elemental Ratios in different aquatic invertebrate ectotherms: the freshwater model species Daphnia magna, the marine copepod Acartia tonsa, the marine heterotrophic dinoflagellate Oxyrrhis marina, and larvae of two populations of the marine crab Carcinus maenas. We show that they all share a non-linear cubic thermal response of nutrient requirements. Phosphorus requirements decrease from low to intermediate temperatures, increase at higher temperatures and decrease again when temperature is excessive. This common thermal response of nutrient requirements is of great importance if we aim to understand or even predict how ectotherm communities will react to global warming and nutrient-driven eutrophication.
Collapse
Affiliation(s)
- Cecilia Laspoumaderes
- INIBIOMA, CONICET-Universidad Nacional del Comahue, Bariloche, Argentina.,Biologische Anstalt Helgoland, Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI), Germany.,School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Cedric L Meunier
- Biologische Anstalt Helgoland, Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI), Germany
| | - Amaru Magnin
- INIBIOMA, CONICET-Universidad Nacional del Comahue, Bariloche, Argentina.,Biologische Anstalt Helgoland, Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI), Germany
| | - Johanna Berlinghof
- Biologische Anstalt Helgoland, Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI), Germany.,Department of Marine Ecology, University of Bremen, Bremen, Germany
| | - James J Elser
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA.,Flathead Lake Biological Station, University of Montana, Polson, Montana, USA
| | - Esteban Balseiro
- INIBIOMA, CONICET-Universidad Nacional del Comahue, Bariloche, Argentina
| | - Gabriela Torres
- Biologische Anstalt Helgoland, Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI), Germany
| | - Beatriz Modenutti
- INIBIOMA, CONICET-Universidad Nacional del Comahue, Bariloche, Argentina
| | - Nelly Tremblay
- Biologische Anstalt Helgoland, Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI), Germany.,Pêches et Océans Canada, Mont-Joli, Quebec, Canada.,Département de Biologie, de Chimie et de Géographie, Université du Québec à Rimouski, Rimouski, Canada
| | - Maarten Boersma
- Biologische Anstalt Helgoland, Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI), Germany.,FB2, University of Bremen, Bremen, Germany
| |
Collapse
|
195
|
Blasco FR, Taylor EW, Leite CAC, Monteiro DA, Rantin FT, McKenzie DJ. Tolerance of an acute warming challenge declines with body mass in Nile tilapia: evidence of a link to capacity for oxygen uptake. J Exp Biol 2022; 225:276171. [PMID: 35909333 DOI: 10.1242/jeb.244287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/25/2022] [Indexed: 11/20/2022]
Abstract
It has been proposed that larger individuals within fish species may be more sensitive to global warming, due to limitations in their capacity to provide oxygen for aerobic metabolic activities. This could affect size distributions of populations in a warmer world but evidence is lacking. In Nile tilapia Oreochromis niloticus (n=18, mass range 21 - 313g), capacity to provide oxygen for aerobic activities (aerobic scope) was independent of mass at an acclimation temperature of 26 °C. Tolerance of acute warming, however, declined significantly with mass when evaluated as the critical temperature for fatigue from aerobic swimming (CTSmax). The CTSmax protocol challenges a fish to meet the oxygen demands of constant aerobic exercise while their demands for basal metabolism are accelerated by incremental warming, culminating in fatigue. CTSmax elicited pronounced increases in oxygen uptake in the tilapia but the maximum rates achieved prior to fatigue declined very significantly with mass. Mass-related variation in CTSmax and maximum oxygen uptake rates were positively correlated, which may indicate a causal relationship. When fish populations are faced with acute thermal stress, larger individuals may become constrained in their ability to perform aerobic activities at lower temperatures than smaller conspecifics. This could affect survival and fitness of larger fish in a future world with more frequent and extreme heatwaves, with consequences for population productivity.
Collapse
Affiliation(s)
- F R Blasco
- Department of Physiological Sciences, Federal University of São Carlos, 13565-905, São Carlos (SP), Brazil.,Joint Graduate Program in Physiological Sciences, Federal University of São Carlos - UFSCar/São Paulo State University, UNESP Campus Araraquara, 14801-903, Araraquara SP, Brazil
| | - E W Taylor
- Department of Physiological Sciences, Federal University of São Carlos, 13565-905, São Carlos (SP), Brazil.,School of Biosciences, University of Birmingham, B15 2TT, UK
| | - C A C Leite
- Department of Physiological Sciences, Federal University of São Carlos, 13565-905, São Carlos (SP), Brazil
| | - D A Monteiro
- Department of Physiological Sciences, Federal University of São Carlos, 13565-905, São Carlos (SP), Brazil
| | - F T Rantin
- Department of Physiological Sciences, Federal University of São Carlos, 13565-905, São Carlos (SP), Brazil
| | - D J McKenzie
- Department of Physiological Sciences, Federal University of São Carlos, 13565-905, São Carlos (SP), Brazil.,MARBEC, Université Montpellier, CNRS, Ifremer, IRD, 34095 Montpellier, France
| |
Collapse
|
196
|
Last snail standing? superior thermal resilience of an alien tropical intertidal gastropod over natives in an ocean-warming hotspot. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02871-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
197
|
Hubálek M, Kašpar V, Tichopád T, Rodina M, Flajšhans M. How do suboptimal temperatures affect polyploid sterlet Acipenser ruthenus during early development? JOURNAL OF FISH BIOLOGY 2022; 101:77-91. [PMID: 35475498 DOI: 10.1111/jfb.15072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
Sturgeons are ancient fish exhibiting unique genome plasticity and a high tendency to produce spontaneously autopolyploid genome states. The temperature profiles of the rivers in which sturgeon live and reproduce have been severely altered by human intervention, and the effect of global warming is expected to cause further temperature shifts, which may be detrimental for early developmental stages with narrow windows of thermal tolerance. The comparison of the performance of diploid and autopolyploid sturgeon kept at unfavourable temperatures contributes to scientific knowledge of the effects of polyploid genome states on organisms and can shed light on the ability of polyploids to cope with human-induced alterations to natural conditions. Using the sterlet Acipenser ruthenus as a model species, we carried out conventional artificial fertilization, as well as the induction of the second polar body retention (SPBR), of the first mitotic division suppression (FMDS) and of the second polar body retention followed by the first mitotic division suppression (SPBR+FMDS). Two experiments were conducted to evaluate the effect of polyploidy on two basic performance parameters, survival and growth. In Experiment 1, fish belonging to untreated, SPBR-, FMDS- and SPBR+FMDS-induced groups were kept at 10, 16 and 20°C from the neurula stage until the end of endogenous feeding. In Experiment 2, larvae from the untreated and SPBR-induced groups were reared at 10, 16 and 20°C after their endogenous feeding transition for 3 weeks. Based on our findings, we report that the embryos, prelarvae and larvae of triploid A. ruthenus do not differ from diploids in their ability to survive, grow and develop under suboptimal temperature conditions, while the survival of tetraploids was significantly reduced even at the optimal temperature and even more so at temperatures far from the optimum. This was also the case in the 2n/4n mosaics observed in FMDS-induced group. Thus, we assume that in tetraploid and 2n/4n individuals, the limits of thermal tolerance are closer to the optimum than in diploids. We also conclude that the hexaploid genome state is probably lethal in A. ruthenus since none of the hexaploids or 3n/6n mosaics arising from the SPBR+FMDS induction survived the prelarval period.
Collapse
Affiliation(s)
- Martin Hubálek
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Vojtěch Kašpar
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Tomáš Tichopád
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Marek Rodina
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Martin Flajšhans
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Centre of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| |
Collapse
|
198
|
Lahnsteiner F. Seasonal differences in thermal stress susceptibility of diploid and triploid brook trout, Salvelinus fontinalis (Teleostei, Pisces). JOURNAL OF FISH BIOLOGY 2022; 101:276-288. [PMID: 35633147 DOI: 10.1111/jfb.15118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
Many physiological processes of teleost fish show periodicity due to intrinsic rhythms. It may be hypothesized that also susceptibility to thermal stress differs seasonally. To shed more light on this problem the following experiment was conducted. Diploid and triploid Salvelinus fontinalis were kept at an acclimation temperature of 9°C and at a natural photoperiod typical for the Northern Hemisphere during their entire live. During eight different periods of the year, different subgroups were exposed to a 32 day lasting thermal stress of 20°C. Rate of fish maintaining equilibrium, daily growth rate, condition factor, viscerosomatic index and hepato-somatic index were measured. Complementary mRNA expression of genes characterizing growth (GHR1, GHR2), proteolysis (Protreg, Protα5), stress (Hsp47, Hsp90) and respiratory energy metabolism (ATPJ52) was determined. Seasonal differences in thermal stress susceptibility of 2n and 3n S. fontinalis were detected. It was highest from September to December and moderate from January to March. During the remaining period of the year, susceptibility to thermal stress was minimal. Increased thermal stress susceptibility was related to decreased rates of fish maintaining equilibrium, decreased growth rates, reduction of viscera and liver mass and changes in mRNA expression of genes characterizing proteolysis, growth, respiratory energy metabolism and stress. The differences in seasonal stress susceptibility were minor between 2n and 3n S. fontinalis. The data are valuable for ecology and fish culture to identify periods when animals are most susceptible to thermal stress.
Collapse
Affiliation(s)
- Franz Lahnsteiner
- Federal Agency for Water Management, Institute for Water Ecology, Fisheries and Lake Research, Mondsee, Austria
- Fishfarm Kreuzstein, Unterach, Austria
| |
Collapse
|
199
|
Austin MW, Cole PO, Olsen KM, Smith AB. Climate change is associated with increased allocation to potential outcrossing in a common mixed mating species. AMERICAN JOURNAL OF BOTANY 2022; 109:1085-1096. [PMID: 35699252 PMCID: PMC9544429 DOI: 10.1002/ajb2.16021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
PREMISE Although the balance between cross- and self-fertilization is driven by the environment, no long-term study has documented whether anthropogenic climate change is affecting reproductive strategy allocation in species with mixed mating systems. Here, we test whether the common blue violet (Viola sororia; Violaceae) has altered relative allocation to the production of potentially outcrossing flowers as the climate has changed throughout the 20th century. METHODS Using herbarium records spanning from 1875 to 2015 from the central United States, we quantified production of obligately selfing cleistogamous (CL) flowers and potentially outcrossing chasmogamous (CH) flowers by V. sororia, coupled these records with historic temperature and precipitation data, and tested whether changes to the proportion of CL flowers correlate with temporal climate trends. RESULTS We find that V. sororia progressively produced lower proportions of CL flowers across the past century and in environments with lower mean annual temperature and higher total annual precipitation. We also find that both CL and CH flower phenology has advanced across this time period. CONCLUSIONS Our results suggest that V. sororia has responded to lower temperatures and greater water availability by shifting reproductive strategy allocation away from selfing and toward potential outcrossing. This provides the first long-term study of how climate change may affect relative allocation to potential outcrossing in species with mixed mating systems. By revealing that CL flowering is associated with low water availability and high temperature, our results suggest the production of obligately selfing flowers is favored in water limited environments.
Collapse
Affiliation(s)
- Matthew W. Austin
- Living Earth CollaborativeWashington University in St. LouisSt. LouisMOUSA
| | - Piper O. Cole
- Division of Natural SciencesNew College of FloridaSarasotaFLUSA
| | - Kenneth M. Olsen
- Department of BiologyWashington University in St. LouisSt. LouisMOUSA
| | - Adam B. Smith
- Center for Conservation and Sustainable DevelopmentMissouri Botanical GardenSt. LouisMOUSA
| |
Collapse
|
200
|
Can the Life History Trait Divergence of Two Extremes of a Cold-Water Genus Distribution Offer Evidence for Their Vulnerability to Sea Warming? FISHES 2022. [DOI: 10.3390/fishes7040143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Cold- and deep-water species such as Molva species show low resilience to anthropogenic pressures, and they become particularly vulnerable at the warm edges of their distribution. In this study, the poorly documented Mediterranean ling (Molva macrophthalma) population from the northwestern Mediterranean Sea was analysed. This area is considered a cul-de-sac in a sea-warming hotspot, where M. macrophthalma shows a low population health status and is experiencing a climate-related reduction in abundance. Several life-history traits (length at maturity, reproductive cycle, fecundity style, oocyte recruitment pattern, and breeding strategy) are here described for the first time to evaluate the reproductive performance (oocyte diameter and production) in relation to the fish condition status (the HSI and relative condition index). Additionally, the results are compared with those of a population of a similar species, the blue ling (Molva dypterygia), inhabiting the cool edge of its distribution, hypothesised to have a higher condition status. Our results indicate that M. macrophthalma is a capital breeder with restricted secondary growth recruitment and group-synchronous oocyte development. In relative terms, the stressed southern M. macrophthalma exhibited a worse condition, a lower investment in reproduction, a smaller size at maturity, larger but fewer primary growth oocytes, and a smaller size-standardized production of secondary growth oocytes than the northern M. dypterygia. Significant differences in the secondary growth oocyte recruitment were also found. These findings reinforce the environment’s role in shaping the reproductive potential and condition status. Altogether, this study suggests high sensitivity to anthropogenic pressures for both species, and, especially for Mediterranean ling, it shows the importance of introducing monitoring and conservation measures to ensure the sustainability of its populations.
Collapse
|