151
|
Wang Y, Ma K, Bai J, Xu T, Han W, Wang C, Chen Z, Kirlikovali KO, Li P, Xiao J, Farha OK. Chemically Engineered Porous Molecular Coatings as Reactive Oxygen Species Generators and Reservoirs for Long‐Lasting Self‐Cleaning Textiles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yao Wang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Kaikai Ma
- Department of Chemistry and International Institute of Nanotechnology Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Jiaquan Bai
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Tao Xu
- Department of Infectious Diseases Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response National Medical Center for Infectious Diseases Huashan Hospital Fudan University Shanghai China
| | - Wendong Han
- Biosafety Level 3 Laboratory School of Basic Medical Sciences Fudan University Shanghai 200032 China
| | - Chen Wang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Zhenxia Chen
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Kent O. Kirlikovali
- Department of Chemistry and International Institute of Nanotechnology Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Peng Li
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Department of Chemistry Fudan University 2005 Songhu Road Shanghai 200438 China
| | - Jisheng Xiao
- Translational Medicine Research Center Zhujiang Hospital Southern Medical University/The Second School of Clinical Medicine Southern Medical University Guangzhou Guangdong 510515 China
| | - Omar K. Farha
- Department of Chemistry and International Institute of Nanotechnology Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
- Department of Chemical & Biological Engineering Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| |
Collapse
|
152
|
Nguyen LM, Nguyen NTT, Nguyen TTT, Nguyen TT, Nguyen DTC, Tran TV. Occurrence, toxicity and adsorptive removal of the chloramphenicol antibiotic in water: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2022; 20:1929-1963. [PMID: 35369683 PMCID: PMC8956153 DOI: 10.1007/s10311-022-01416-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/11/2022] [Indexed: 05/08/2023]
Abstract
Chloramphenicol is a broad-spectrum bacterial antibiotic used against conjunctivitis, meningitis, plague, cholera, and typhoid fever. As a consequence, chloramphenicol ends up polluting the aquatic environment, wastewater treatment plants, and hospital wastewaters, thus disrupting ecosystems and inducing microbial resistance. Here, we review the occurrence, toxicity, and removal of chloramphenicol with emphasis on adsorption techniques. We present the adsorption performance of adsorbents such as biochar, activated carbon, porous carbon, metal-organic framework, composites, zeolites, minerals, molecularly imprinted polymers, and multi-walled carbon nanotubes. The effect of dose, pH, temperature, initial concentration, and contact time is discussed. Adsorption is controlled by π-π interactions, donor-acceptor interactions, hydrogen bonding, and electrostatic interactions. We also discuss isotherms, kinetics, thermodynamic data, selection of eluents, desorption efficiency, and regeneration of adsorbents. Porous carbon-based adsorbents exhibit excellent adsorption capacities of 500-1240 mg g-1. Most adsorbents can be reused over at least four cycles.
Collapse
Affiliation(s)
- Luan Minh Nguyen
- Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414 Vietnam
- Department of Chemical Engineering and Processing, Nong Lam University, Thu Duc District, Ho Chi Minh City, 700000 Vietnam
| | - Ngoan Thi Thao Nguyen
- Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414 Vietnam
- Department of Chemical Engineering and Processing, Nong Lam University, Thu Duc District, Ho Chi Minh City, 700000 Vietnam
| | - Thuy Thi Thanh Nguyen
- Department of Chemical Engineering and Processing, Nong Lam University, Thu Duc District, Ho Chi Minh City, 700000 Vietnam
- Faculty of Science, Nong Lam University, Thu Duc District, Ho Chi Minh City, 700000 Vietnam
| | - Thuong Thi Nguyen
- Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414 Vietnam
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414 Vietnam
| | - Duyen Thi Cam Nguyen
- Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414 Vietnam
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414 Vietnam
| | - Thuan Van Tran
- Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414 Vietnam
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414 Vietnam
| |
Collapse
|
153
|
Lin YX, Wang JX, Liang CC, Jiang C, Li B, Qian G. Functionalization of a stable AIE-based hydrogen-bonded organic framework for white light-emitting diodes. RSC Adv 2022; 12:23411-23415. [PMID: 36090424 PMCID: PMC9382543 DOI: 10.1039/d2ra04342d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/10/2022] [Indexed: 11/21/2022] Open
Abstract
Hydrogen-bonded organic frameworks (HOFs) have received tremendous attention in recent years due to the good designability. However, the pure organic nature of HOFs sometimes limits the application development and performance improvement. Functionalizing is an effective strategy to control and modulate material properties, which can achieve properties that cannot be achieved by a pristine material. Herein, a series of HOF-76⊃DSMI were synthesized through functionalizing the stable AIE-based HOF-76 by incorporating a red dye which complements the deficiency of the red component of HOF-76. Then, a single matrix white light-emitting diode (WLED) was fabricated by coating the HOF-76⊃DSMI material on a 460 nm blue LED with CIE chromaticity coordinates of (0.333, 0.329), a correlated colour temperature (CCT) of 5490 K and a colour rendering index (CRI) of 80. We successfully fabricated a white light-emitting diode by coating functionalized AIE-based HOF-76 material on a 460 nm blue LED chip.![]()
Collapse
Affiliation(s)
- Yu-Xin Lin
- State Key Laboratory of Silicon Materials, School of Materials Science & Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jia-Xin Wang
- State Key Laboratory of Silicon Materials, School of Materials Science & Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Cong-Cong Liang
- State Key Laboratory of Silicon Materials, School of Materials Science & Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Chenghao Jiang
- State Key Laboratory of Silicon Materials, School of Materials Science & Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Bin Li
- State Key Laboratory of Silicon Materials, School of Materials Science & Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Guodong Qian
- State Key Laboratory of Silicon Materials, School of Materials Science & Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
154
|
Li WL, Li TR, Du X, Zhao JP, liu F. Hexahydric Components Metal Organic Frameworks Constructed by Multiple Ligands and Mixed-Valence Ions. Inorg Chem Front 2022. [DOI: 10.1039/d2qi00291d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, we report two multi-component MOFs [CH3NH2CH3]2[FeIII2MII10(tz)11(HCO2)12(btc)5/3] (MII10 = FeII10 for 1 and MII10 = FeII2CoII8 for 2) obtained by solvothermal assembling formate, benzene-1,3,5-tricarboxylate (btc) and 1,2,4 triazole...
Collapse
|
155
|
Mixed component metal-organic frameworks: Heterogeneity and complexity at the service of application performances. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214273] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
156
|
Lee KT, Pien CY. Preparation of monosodium 2-sulfoterephthalate to make a MIL-101(Cr)–SO 3H catalyst. NEW J CHEM 2022. [DOI: 10.1039/d1nj05135k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
MIL-101(Cr)-SO3H has excellent thermal and chemical stabilities, making it an ideal porous acid catalyst for many organic reactions and petrochemical industries. It's starting ligand can be lab-prepared.
Collapse
Affiliation(s)
- Kuo-Tong Lee
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei 24301, Taiwan
| | - Chien-Yi Pien
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei 24301, Taiwan
| |
Collapse
|
157
|
Liu M, Liang J, Tian Y, Liu Z. Post-synthetic modification within MOFs: a valuable strategy for modulating their ferroelectric performance. CrystEngComm 2022. [DOI: 10.1039/d1ce01567b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
It is a great route designing new MOF ferroelectrics to enrich the scope of ferroelectrics or improving the ferroelectric performance to enhance the opportunity of applications through the strategy of post-synthetic modification (PSM).
Collapse
Affiliation(s)
- Meiying Liu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P.R. China
| | - Jingjing Liang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P.R. China
| | - Yadong Tian
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P.R. China
| | - Zhiliang Liu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, P.R. China
| |
Collapse
|
158
|
Rodrigo G, Ballesteros-Garrido R. Metal-organic frameworks in pursuit of size: the development of macroscopic single crystals REMINDER: Personal invitation to contribute to Dalton Transactions - CoordNetworks. Dalton Trans 2022; 51:7775-7782. [DOI: 10.1039/d2dt00560c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal-organic frameworks are versatile structures with many different applications, from the industry to the clinic. Despite multiple synthesis approaches are possible to coordinate metals and organic ligands, some common strategies...
Collapse
|
159
|
Markwell-Heys AW, Roemelt M, Slattery AD, Linder-Patton OM, Bloch WM. Linking metal-organic cages pairwise as a design approach for assembling multivariate crystalline materials. Chem Sci 2021; 13:68-73. [PMID: 35059152 PMCID: PMC8694310 DOI: 10.1039/d1sc05663h] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/29/2021] [Indexed: 02/06/2023] Open
Abstract
Using metal-organic cages (MOCs) as preformed supermolecular building-blocks (SBBs) is a powerful strategy to design functional metal-organic frameworks (MOFs) with control over the pore architecture and connectivity. However, introducing chemical complexity into the network via this route is limited as most methodologies focus on only one type of MOC as the building-block. Herein we present the pairwise linking of MOCs as a design approach to introduce defined chemical complexity into porous materials. Our methodology exploits preferential Rh-aniline coordination and stoichiometric control to rationally link Cu4L4 and Rh4L4 MOCs into chemically complex, yet extremely well-defined crystalline solids. This strategy is expected to open up significant new possibilities to design bespoke multi-functional materials with atomistic control over the location and ordering of chemical functionalities.
Collapse
Affiliation(s)
| | - Michael Roemelt
- Institut für Chemie, Humboldt-Universität zu Berlin Brook-Taylor Str. 2 12489 Berlin Germany
| | - Ashley D Slattery
- Adelaide Microscopy, The University of Adelaide Adelaide 5005 Australia
| | | | - Witold M Bloch
- Department of Chemistry, The University of Adelaide Adelaide Australia +61 8 8313 5039
| |
Collapse
|
160
|
Farha OK, Li P, Wang Y, Ma K, Bai J, Xu T, Han W, Wang C, Chen Z, Kirlikovali K, Xiao J. Chemically-Engineered Porous Molecular Coatings as Reactive Oxygen Species Generators and Reservoirs for Long-Lasting Self-Cleaning Textiles. Angew Chem Int Ed Engl 2021; 61:e202115956. [PMID: 34931436 DOI: 10.1002/anie.202115956] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Indexed: 11/07/2022]
Abstract
Wearable personal protective equipment that is decorated with photoactive self-cleaning materials capable of actively neutralizing biological pathogens is in high demand. Here, we developed a series of solution-processable, crystalline porous materials capable of addressing this challenge. Textiles coated with these materials exhibit a broad range of functionalities, including spontaneous ROS generation upon absorption of daylight, and long-term ROS storage in dark conditions. The ROS generation and storage abilities of these materials can be further improved through chemical engineering of the precursors without altering the three-dimensional assembled superstructures. In comparison with traditional TiO 2 or C 3 N 4 self-cleaning materials, the fluorinated molecular coating material HOF-101-F shows a 10- to 60-fold enhancement of ROS generation and 10- to 20- fold greater ROS storage ability. Our results pave the way for further developing self-cleaning textile coatings for the rapid deactivation of highly infectious pathogenic bacteria under both daylight and light-free conditions.
Collapse
Affiliation(s)
- Omar K Farha
- Northwestern University, Chemistry, 2145 sheridan rd, 60208, Evanston, UNITED STATES
| | - Peng Li
- Fudan University, Department of Chemistry, CHINA
| | - Yao Wang
- Fudan University, Department of Chemistry, CHINA
| | - Kaikai Ma
- Northwestern University, Department of Chemistry, UNITED STATES
| | - Jiaquan Bai
- Fudan University, Department of Chemistry, CHINA
| | - Tao Xu
- Huashan Hospital Fudan University, Department of Infectious Diseases, CHINA
| | - Wendong Han
- Fudan University School of Basic Medical Sciences, Biosafety level 3 lab, CHINA
| | - Chen Wang
- Fudan University, Department of Chemistry, CHINA
| | - Zhenxia Chen
- Fudan University, Department of Chemistry, CHINA
| | | | - Jisheng Xiao
- Zhujiang Hospital, Translational Medicine Research Center, CHINA
| |
Collapse
|
161
|
Zhang S, Wang J, Zhang Y, Ma J, Huang L, Yu S, Chen L, Song G, Qiu M, Wang X. Applications of water-stable metal-organic frameworks in the removal of water pollutants: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118076. [PMID: 34534824 DOI: 10.1016/j.envpol.2021.118076] [Citation(s) in RCA: 167] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/23/2021] [Accepted: 08/29/2021] [Indexed: 05/18/2023]
Abstract
Because the pollutants produced by human activities have destroyed the ecological balance of natural water environment, and caused severe impact on human life safety and environmental security. Hence the task of water environment restoration is imminent. Metal-organic frameworks (MOFs), structured from organic ligands and inorganic metal ions, are notable for their outstanding crystallinity, diverse structures, large surface areas, adsorption performance, and excellent component tunability. The water stability of MOFs is a key requisite for their possible actual applications in separation, catalysis, adsorption, and other water environment remediation areas because it is necessary to safeguard the integrity of the material structure during utilization. In this article, we comprehensively review state-of-the-art research progress on the promising potential of MOFs as excellent nanomaterials to remove contaminants from the water environment. Firstly, the fundamental characteristics and preparation methods of several typical water-stable MOFs include UiO, MIL, and ZIF are introduced. Then, the removal property and mechanism of heavy metal ions, radionuclide contaminants, drugs, and organic dyes by different MOFs were compared. Finally, the application prospect of MOFs in pollutant remediation prospected. In this review, the synthesis methods and application in water pollutant removal are explored, which provide ways toward the effective use of water-stable MOFs in materials design and environmental remediation.
Collapse
Affiliation(s)
- Shu Zhang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, PR China
| | - Jiaqi Wang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, PR China
| | - Yue Zhang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, PR China
| | - Junzhou Ma
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, PR China
| | - Lintianyang Huang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, PR China
| | - Shujun Yu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Lan Chen
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, PR China
| | - Gang Song
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Muqing Qiu
- School of Life Science, Shaoxing University, Shaoxing, 312000, PR China
| | - Xiangxue Wang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, PR China; Fundamental Science on Nuclear Wastes and Environmental Safety Laboratory, Southwest University of Science and Technology, Mianyang, 621010, China.
| |
Collapse
|
162
|
Qiao Y, Wang C, Bai FY, Sun LX, Xing YH. Two transition complexes based on 1H-benzimidazole-5,6-dicarboxylic acid: Synthesis, structure and photocatalytic degradation of dyes. MAIN GROUP CHEMISTRY 2021. [DOI: 10.3233/mgc-210139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Metal-organic frameworks [Co(Hbidc)(H2O)2] (1) and [Mn(Hbidc)(H2O)] (2), with multidentate 1H-benzimidazole-5,6-dicarboxylic acid (H3bidc) ligand, have been synthesized under hydro/solvothermal conditions and structurally characterized by elemental analysis, IR spectrum, and single-crystal X-ray diffraction. Single-crystal X-ray diffraction analysis revealed that the center Co atom of complex 1 is six-coordinated with three-dimensional supramolecular structure and center Mn of complex 2 is five-coordinated with exhibiting a 2D layered network. The photodegradation of Crystal violet dye and Methylene blue dye were studied firstly by complexes 1 and 2 as photocatalysts. Research result indicates that the degradation rate for complex 1 can reach 89.85% , 90.6% and that for complex 2 can reach 88.28% , 79.48% . At the same time, corresponding to photocatalytic kinetics was performed.
Collapse
Affiliation(s)
- Yu Qiao
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, P.R. China
| | - Chen Wang
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, P.R. China
| | - Feng Ying Bai
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, P.R. China
| | - Li Xian Sun
- Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin, P.R. China
| | - Yong Heng Xing
- College of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, P.R. China
| |
Collapse
|
163
|
Fiankor C, Nyakuchena J, Khoo RSH, Zhang X, Hu Y, Yang S, Huang J, Zhang J. Symmetry-Guided Synthesis of N,N'-Bicarbazole and Porphyrin-Based Mixed-Ligand Metal-Organic Frameworks: Light Harvesting and Energy Transfer. J Am Chem Soc 2021; 143:20411-20418. [PMID: 34797665 DOI: 10.1021/jacs.1c10291] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the past decades, many attempts have been made to mimic the energy transfer (EnT) in photosynthesis, a key process occurring in nature that is of fundamental significance in solar fuels and sustainable energy. Metal-organic frameworks (MOFs), an emerging class of porous crystalline materials self-assembled from organic linkers and metal or metal cluster nodes, offer an ideal platform for the exploration of directional EnT phenomena. However, placing energy donor and acceptor moieties within the same framework with an atomistic precision appears to be a major synthesis challenge. In this work, we report the design and synthesis of a highly porous and photoactive N,N'-bicarbazole- and porphyrin-based mixed-ligand MOF, namely, NPF-500-H2TCPP (NPF = Nebraska porous framework; H2TCPP = meso-tetrakis(4-carboxyphenyl)porphyrin), where the secondary ligand H2TCPP is incorporated precisely through the open metal sites of the equatorial plane of the octahedron cage resulting from the underlying (4,8) connected network of NPF-500. The efficient EnT process from N,N'-bicarbazole to porphyrin in NPF-500-H2TCPP was captured by time-resolved spectroscopy and exemplified by photocatalytic oxidation of thioanisole. These results demonstrate not only the capability of NPF-500 as the scaffold to precisely arrange the donor-acceptor assembly for the EnT process but also the potential to directly utilize the EnT process for photocatalytic applications.
Collapse
Affiliation(s)
- Christian Fiankor
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - James Nyakuchena
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201, United States
| | - Rebecca Shu Hui Khoo
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Xu Zhang
- Jiangsu Engineering Laboratory for Environmental Functional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu 223300, China
| | - Yuchen Hu
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Sizhuo Yang
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201, United States
| | - Jier Huang
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201, United States
| | - Jian Zhang
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States.,The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
164
|
Chen CA, Pan R, Li XY, Qin D, Yang GY. Four Inorganic-Organic Hybrid Borates: From 2D Layers to 3D Oxoboron Cluster Organic Frameworks. Inorg Chem 2021; 60:18283-18290. [PMID: 34797632 DOI: 10.1021/acs.inorgchem.1c02904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Four inorganic-organic hybrid borates, K[B6O9(OH)(en)]·H2O (1, en = ethylenediamine), K[B6O9(OH)(1,3-dap)]·H2O (2, 1,3-dap = 1,3-diaminopropane), K[B6O9(OH)(1,6-dah)0.5]·H2O (3, 1,6-dah = 1,6-diaminlhexane) and [(1,3-dap)Cd@B5O8(OH)]·0.5H2O (4), were made under solvothermal conditions. 1 and 2 are isostructural and feature a 2D layer built by B6O9(OH) clusters and modified by en and 1,3-dap via B-N-C linkages. By replacing en and 1,3-dap with longer and more flexible 1,6-dah, a new type of oxoboron cluster organic framework 3 was obtained, which was composed of the same B6O9(OH) cluster layers as in 1 and 2 and 1,6-dah linkers. By replacing alkali metal K with transition metal Cd under similar synthetic conditions, another type of oxoboron cluster organic framework 4 was made in which the Cd-centered wheel cluster layers and 1,3-dap linkers were connected via Cd-N-C linkages.
Collapse
Affiliation(s)
- Chong-An Chen
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Rui Pan
- Beijing Aerospace Long March Aircraft Research Institute, Beijing 100076, China
| | - Xu-Yan Li
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Dan Qin
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Guo-Yu Yang
- MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| |
Collapse
|
165
|
Han L, Zhang X, Li D, Li M, Qin P, Tian S, Wang Y, Lu M, Cai Z. Fabrication of stable multivariate metal-organic frameworks with excellent adsorption performance toward bisphenols from environmental samples. Talanta 2021; 235:122818. [PMID: 34517674 DOI: 10.1016/j.talanta.2021.122818] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/20/2022]
Abstract
As a type of environmental endocrine disrupting chemicals, bisphenols (BPs) have a certain embryonic toxicity and teratogenicity, which can significantly increase the risks of breast cancer, prostate cancer, leukemia and other cancers. In this work, stable multivariate metal-organic frameworks (UiO-66-NH2/TCPPx) were synthesized via in situ one-pot method and used as miniaturized dispersive solid-phase extraction (dμSPE) sorbents for extraction of trace BPs from environmental samples. The phase purity, crystal morphology and physical properties of UiO-66-NH2/TCPPx samples were varied by adjusting the mass ratio of TCPP. The extraction performance of UiO-66-NH2/TCPPx samples were investigated and UiO-66-NH2/TCPP1.0 exhibited the highest adsorption efficiency. Besides, UiO-66-NH2/TCPP1.0 possessed excellent recycling stability for the adsorption and desorption of BPs more than 20 cycles. The experimental parameters including amount of adsorbent, adsorption time, sample solution pH, temperature, desorption time and desorption solvents which affecting the efficiency of dμSPE were studied, respectively. Good linearity (R2 > 0.9992) in range of 0.1-200 ng mL-1 was obtained. The detection limits (S/N = 3) and quantification limits (S/N = 10) were achieved at 0.03-0.08 ng mL-1 and 0.1-0.5 ng mL-1, respectively. The relative standard deviations (RSDs) of intra-day and inter-day ranged from 2.5 to 5.5% and 1.1-6.8%. Enrichment factors were calculated in the range of 303-338. The obtained recoveries of bisphenol F (BPF), bisphenol A (BPA), bisphenol B (BPB) and bisphenol AF (BPAF) were 81.26-91.03% (RSDs = 0.96-6.47%), 82.2-97.27% (RSDs = 0.45-6.15%), 87.56-97.26% (RSDs = 1.1-6.22%) and 82.2-100.8% (RSDs = 0.46-4.07%). The UiO-66-NH2/TCPP1.0 can be employed as potential dμSPE sorbents for the enrichment of trace BPs in the environmental samples.
Collapse
Affiliation(s)
- Lizhen Han
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, China
| | - Xiaowan Zhang
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, China
| | - Dan Li
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, China
| | - Mengyuan Li
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, China
| | - Peige Qin
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, China
| | - Shufang Tian
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, China.
| | - Youmei Wang
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, China
| | - Minghua Lu
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, Henan, China.
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
166
|
Yin M, Wu J, Deng M, Wang P, Ji G, Wang M, Zhou C, Blum NT, Zhang W, Shi H, Jia N, Wang X, Huang P. Multifunctional Magnesium Organic Framework-Based Microneedle Patch for Accelerating Diabetic Wound Healing. ACS NANO 2021; 15:17842-17853. [PMID: 34761898 DOI: 10.1021/acsnano.1c06036] [Citation(s) in RCA: 132] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Diabetic wound healing is one of the major challenges in the biomedical fields. The conventional single drug treatments have unsatisfactory efficacy, and the drug delivery effectiveness is restricted by the penetration depth. Herein, we develop a magnesium organic framework-based microneedle patch (denoted as MN-MOF-GO-Ag) that can realize transdermal delivery and combination therapy for diabetic wound healing. Multifunctional magnesium organic frameworks (Mg-MOFs) are mixed with poly(γ-glutamic acid) (γ-PGA) hydrogel and loaded into the tips of MN-MOF-GO-Ag, which slowly releases Mg2+ and gallic acid in the deep layer of the dermis. The released Mg2+ induces cell migration and endothelial tubulogenesis, while gallic acid, a reactive oxygen species-scavenger, promotes antioxidation. Besides, the backing layer of MN-MOF-GO-Ag is made of γ-PGA hydrogel and graphene oxide-silver nanocomposites (GO-Ag) which further enables excellent antibacterial effects for accelerating wound healing. The therapeutic effects of MN-MOF-GO-Ag on wound healing are demonstrated with the full-thickness cutaneous wounds of a diabetic mouse model. The significant improvement of wound healing is achieved for mice treated with MN-MOF-GO-Ag.
Collapse
Affiliation(s)
- Mengting Yin
- Department of Thoracic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Jiayingzi Wu
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Mingwu Deng
- Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Pei Wang
- Department of Thoracic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Guangyu Ji
- Department of Thoracic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Mingsong Wang
- Department of Thoracic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Chaohui Zhou
- The Education Ministry Key Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Nicholas Thomas Blum
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Wenjie Zhang
- Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Huali Shi
- The Education Ministry Key Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Nengqin Jia
- The Education Ministry Key Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China
| | - Xiansong Wang
- Department of Thoracic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
167
|
He B, Macreadie LK, Gardiner J, Telfer SG, Hill MR. In Situ Investigation of Multicomponent MOF Crystallization during Rapid Continuous Flow Synthesis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:54284-54293. [PMID: 34739210 PMCID: PMC8822483 DOI: 10.1021/acsami.1c04920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/25/2021] [Indexed: 06/09/2023]
Abstract
Access to the potential applications of metal-organic frameworks (MOFs) depends on rapid fabrication. While there have been advances in the large-scale production of single-component MOFs, rapid synthesis of multicomponent MOFs presents greater challenges. Multicomponent systems subjected to rapid synthesis conditions have the opportunity to form separate kinetic phases that are each built up using just one linker. We sought to investigate whether continuous flow chemistry could be adapted to the rapid formation of multicomponent MOFs, exploring the UMCM-1 and MUF-77 series. Surprisingly, phase pure, highly crystalline multicomponent materials emerge under these conditions. To explore this, in situ WAXS was undertaken to gain an understanding of the formation mechanisms at play during flow synthesis. Key differences were found between the ternary UMCM-1 and the quaternary MUF-7, and key details about how the MOFs form were then uncovered. Counterintuitively, despite consisting of just two ligands UMCM-1 proceeds via MOF-5, whereas MUF-7 consists of three ligands but is generated directly from the reaction mixture. By taking advantage of the scalable high-quality materials produced, C6 separations were achieved in breakthrough settings.
Collapse
Affiliation(s)
- Brandon He
- Department
of Chemical Engineering, Monash University, Clayton, VIC 3800, Australia
- CSIRO
Private Bag 10, Clayton
South, VIC 3169, Australia
| | - Lauren K. Macreadie
- School
of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
- MacDiarmid
Institute for Advanced Materials and Nanotechnology Institute of Fundamental
Sciences, Massey University, Palmerston North 4442, New Zealand
| | - James Gardiner
- CSIRO
Private Bag 10, Clayton
South, VIC 3169, Australia
| | - Shane G. Telfer
- MacDiarmid
Institute for Advanced Materials and Nanotechnology Institute of Fundamental
Sciences, Massey University, Palmerston North 4442, New Zealand
| | - Matthew R. Hill
- Department
of Chemical Engineering, Monash University, Clayton, VIC 3800, Australia
- CSIRO
Private Bag 10, Clayton
South, VIC 3169, Australia
| |
Collapse
|
168
|
Takahashi M. Oriented Films of Metal-Organic Frameworks on Metal Hydroxides via Heteroepitaxial Growth. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210274] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Masahide Takahashi
- Department of Materials Science, Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
169
|
Gangu KK, Tharividi SG, Kerru N, Jonnalagadda SB. Excellent Catalytic Activity of Two Cd(II) Metal‐Organic Frameworks in The Synthesis of Benzothiazolo‐Pyrimidines. ChemistrySelect 2021. [DOI: 10.1002/slct.202103536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kranthi Kumar Gangu
- Vignan's Institute of Information Technology, Duvvada Visakhapatnam 530049 India
- School of Chemistry & Physics University of KwaZulu-Natal Westville Campus, Private Bag X54001 Durban 4000 South Africa
| | - Satya Guru Tharividi
- Vignan's Institute of Information Technology, Duvvada Visakhapatnam 530049 India
| | - Nagaraju Kerru
- Department of Chemistry GITAM University Bengaluru Karnataka 561203 India
- School of Chemistry & Physics University of KwaZulu-Natal Westville Campus, Private Bag X54001 Durban 4000 South Africa
| | - Sreekantha B. Jonnalagadda
- School of Chemistry & Physics University of KwaZulu-Natal Westville Campus, Private Bag X54001 Durban 4000 South Africa
| |
Collapse
|
170
|
Usman M, Iqbal N, Noor T, Zaman N, Asghar A, Abdelnaby MM, Galadima A, Helal A. Advanced strategies in Metal-Organic Frameworks for CO 2 Capture and Separation. CHEM REC 2021; 22:e202100230. [PMID: 34757694 DOI: 10.1002/tcr.202100230] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/17/2021] [Accepted: 10/25/2021] [Indexed: 12/20/2022]
Abstract
The continuous carbon dioxide (CO2 ) gas emissions associated with fossil fuel production, valorization, and utilization are serious challenges to the global environment. Therefore, several developments of CO2 capture, separation, transportation, storage, and valorization have been explored. Consequently, we documented a comprehensive review of the most advanced strategies adopted in metal-organic frameworks (MOFs) for CO2 capture and separation. The enhancements in CO2 capture and separation are generally achieved due to the chemistry of MOFs by controlling pore window, pore size, open-metal sites, acidity, chemical doping, post or pre-synthetic modifications. The chemistry of defects engineering, breathing in MOFs, functionalization in MOFs, hydrophobicity, and topology are the salient advanced strategies, recently reported in MOFs for CO2 capture and separation. Therefore, this review summarizes MOF materials' advancement explaining different strategies and their role in the CO2 mitigations. The study also provided useful insights into key areas for further investigations.
Collapse
Affiliation(s)
- Muhammad Usman
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals (KFUPM), KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - Naseem Iqbal
- U. S. Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Tayyaba Noor
- School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Neelam Zaman
- U. S. Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Aisha Asghar
- U. S. Pakistan Center for Advanced Studies in Energy (USPCAS-E), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Mahmoud M Abdelnaby
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals (KFUPM), KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - Ahmad Galadima
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals (KFUPM), KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - Aasif Helal
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals (KFUPM), KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
171
|
Williams BP, Lo WS, Morabito JV, Young AP, Tsung F, Kuo CH, Palomba JM, Rayder TM, Chou LY, Sneed BT, Liu XY, Lamontagne LK, Petroff CA, Brodsky CN, Yang J, Andoni I, Li Y, Zhang F, Li Z, Chen SY, Gallacher C, Li B, Tsung SY, Pu MH, Tsung CK. Tailoring Heterogeneous Catalysts at the Atomic Level: In Memoriam, Prof. Chia-Kuang (Frank) Tsung. ACS APPLIED MATERIALS & INTERFACES 2021; 13:51809-51828. [PMID: 34310110 DOI: 10.1021/acsami.1c08916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Professor Chia-Kuang (Frank) Tsung made his scientific impact primarily through the atomic-level design of nanoscale materials for application in heterogeneous catalysis. He approached this challenge from two directions: above and below the material surface. Below the surface, Prof. Tsung synthesized finely controlled nanoparticles, primarily of noble metals and metal oxides, tailoring their composition and surface structure for efficient catalysis. Above the surface, he was among the first to leverage the tunability and stability of metal-organic frameworks (MOFs) to improve heterogeneous, molecular, and biocatalysts. This article, written by his former students, seeks first to commemorate Prof. Tsung's scientific accomplishments in three parts: (1) rationally designing nanocrystal surfaces to promote catalytic activity; (2) encapsulating nanocrystals in MOFs to improve catalyst selectivity; and (3) tuning the host-guest interaction between MOFs and guest molecules to inhibit catalyst degradation. The subsequent discussion focuses on building on the foundation laid by Prof. Tsung and on his considerable influence on his former group members and collaborators, both inside and outside of the lab.
Collapse
Affiliation(s)
- Benjamin P Williams
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| | - Wei-Shang Lo
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| | - Joseph V Morabito
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| | - Allison P Young
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| | - Frances Tsung
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| | - Chun-Hong Kuo
- Institute of Chemistry, Academia Sinica, No. 128, Section 2, Academia Rd, Nangang District, Taipei City, Taiwan 115
| | - Joseph M Palomba
- U.S. Army DEVCOM Soldier Center, 10 General Greene Avenue, Natick, Massachusetts 01760, United States
| | - Thomas M Rayder
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Lien-Yang Chou
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Brian T Sneed
- CMC Materials, 870 North Commons Drive, Aurora, Illinois 60504, United States
| | - Xiao-Yuan Liu
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Nanshan District, Shenzhen 518055, P. R. China
| | - Leo K Lamontagne
- SecureSeniorConnections, 7114 East Stetson Drive, Scottsdale, Arizona 85251, United States
| | - Christopher A Petroff
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Casey N Brodsky
- University of Michigan Medical School, 7300 Medical Sciences Building I-A Wing, 1301 Catherine Street, Ann Arbor, Michigan 48109, United States
| | - Jane Yang
- Department of Chemistry and Biochemistry, University of California Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Ilektra Andoni
- Department of Chemistry, University of California Irvine, 1102 Natural Sciences 2, Irvine, California 92697-2025, United States
| | - Yang Li
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| | - Furui Zhang
- Department of Chemistry and the Institute for Catalysis in Energy Processes, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Zhehui Li
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| | - Sheng-Yu Chen
- Institute of Chemistry, Academia Sinica, No. 128, Section 2, Academia Rd, Nangang District, Taipei City, Taiwan 115
| | - Connor Gallacher
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| | - Banruo Li
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| | - Sheng-Yuan Tsung
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| | - Ming-Hwa Pu
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| | - Chia-Kuang Tsung
- Department of Chemistry, Merkert Chemistry Center, Boston College, 2609 Beacon Street, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
172
|
Hu X, Li H, Wang H, Hu J. Synchronous Construction of the Hierarchical Pores and High Hydrophobicity of Stable Metal-Organic Frameworks through a Dual Coordination-Competitive Strategy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:13116-13124. [PMID: 34704440 DOI: 10.1021/acs.langmuir.1c02287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hierarchical-pore construction and functionalities are critical to further extend the applications of some stable MOFs, such as water remediation, fuel purification, oil/water separation, and self-cleaning, which are rarely achieved simultaneously. Herein, we demonstrate a method of synchronously constructing high-hydrophobicity Zr-based metal-organic frameworks with hierarchical pores (HP-UiO-66) through a dual coordination-competitive strategy. The addition of alkanoic acids and Zn2+ ions as coordination-competitors could reduce the coordinative degree between the ligand and Zr4+ ions to effectively induce defect formation. The resulting unsaturated Zr4+ ions could fully combine with the existing alkanoic acid with a long chain to afford HP-UiO-66 with high-hydrophobicity characteristics. In addition, the particle size of pristine UiO-66 could be adjusted effectively from around 280 to 120 nm using different alkanoic acids when Zn2+ ions are not added. This study provided a simple way for effectively controlling the morphology and structure of UiO-66 at the same time. Moreover, this kind of high-hydrophobicity HP-UiO-66 showed potential applications in oil/water separation and selective adsorption of organic mixtures.
Collapse
Affiliation(s)
- Xingyu Hu
- College of Advanced Materials Engineering, Jiaxing Nanhu University, Jiaxing 314001, China
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Huibo Li
- China Institute of Atomic Energy, Beijing 102413, China
| | - Huajin Wang
- College of Advanced Materials Engineering, Jiaxing Nanhu University, Jiaxing 314001, China
| | - Jing Hu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| |
Collapse
|
173
|
Gao Z, Yang S, Xu B, Zhang T, Chen S, Zhang W, Sun X, Wang Z, Wang X, Meng X, Zhao YS. Laterally Engineering Lanthanide-MOFs Epitaxial Heterostructures for Spatially Resolved Planar 2D Photonic Barcoding. Angew Chem Int Ed Engl 2021; 60:24519-24525. [PMID: 34339093 DOI: 10.1002/anie.202109336] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Indexed: 11/06/2022]
Abstract
Metal-organic frameworks (MOFs) heterostructures with domain-controlled emissive colors have shown great potential for achieving high-throughput sensing, anti-counterfeit and information security. Here, a strategy based on steric-hindrance effect is proposed to construct lateral lanthanide-MOFs (Ln-MOFs) epitaxial heterostructures, where the channel-directed guest molecules are introduced to rebalance in-plane and out-of-plane growth rates of the Ln-MOFs microrods and eventually generate lateral MOF epitaxial heterostructures with controllable aspect ratios. A library of lateral Ln-MOFs heterostructures are acquired through a stepwise epitaxial growth procedure, from which rational modulation of each domain with specific lanthanide doping species allows for definition of photonic barcodes in a two-dimensional (2D) domain with remarkably enlarged encoding capacity. The results provide molecular-level insight into the use of modulators in governing crystallite morphology for spatially assembling multifunctional heterostructures.
Collapse
Affiliation(s)
- Zhenhua Gao
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong Province, China
| | - Shuo Yang
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong Province, China
| | - Baoyuan Xu
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong Province, China
| | - Tongjin Zhang
- Key Laboratory of photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shunwei Chen
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong Province, China
| | - Weiguang Zhang
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong Province, China
| | - Xun Sun
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong Province, China
| | - Zifei Wang
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong Province, China
| | - Xue Wang
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong Province, China
| | - Xiangeng Meng
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, Shandong Province, China
| | - Yong Sheng Zhao
- Key Laboratory of photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
174
|
Lu Z, Du L, Guo R, Zhang G, Duan J, Zhang J, Han L, Bai J, Hupp JT. Double-Walled Zn 36@Zn 104 Multicomponent Senary Metal-Organic Polyhedral Framework and Its Isoreticular Evolution. J Am Chem Soc 2021; 143:17942-17946. [PMID: 34665599 DOI: 10.1021/jacs.1c08286] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Metal-organic polyhedral frameworks are attractive in gas storage and separation due to large voids with windows that can serve as traps for guest molecules. Introducing multivariant/multicomponent functionalities in them are ways of improving performances for certain targets. The high compatibility of organic linkers can generate multivariant MOFs, but by far, the diversity of secondary building units (SBUs) in a single metal-organic framework is still limited (no more than two in most cases). Here we report a new double-walled Zn36@Zn104 metal-organic polyhedral framework (HHU-8) with five types of topologically distinct SBUs and its isoreticular evolution to the Zn36@Zn136 counterpart (HHU-8s). Both MOFs are the first to be constructed with such high numbers of topologically distinct SBUs as well as topologically distinct nodes, and their formation and evolution provide new insight into SBU's controllability.
Collapse
Affiliation(s)
- Zhiyong Lu
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China.,State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China
| | - Liting Du
- Advanced Analysis and Testing Center, Nanjing Forestry University, Nanjing 210037, China
| | - Ruyong Guo
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Guangbao Zhang
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Jingui Duan
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Jianfeng Zhang
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Lin Han
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Junfeng Bai
- State Key Laboratory of Materials-Oriented Chemical Engineering and College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 210009, China.,State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China
| | - Joseph T Hupp
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
175
|
Freund R, Zaremba O, Arnauts G, Ameloot R, Skorupskii G, Dincă M, Bavykina A, Gascon J, Ejsmont A, Goscianska J, Kalmutzki M, Lächelt U, Ploetz E, Diercks CS, Wuttke S. Der derzeitige Stand von MOF‐ und COF‐Anwendungen. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106259] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ralph Freund
- Institut für Physik Universität Augsburg Deutschland
| | - Orysia Zaremba
- BCMaterials, Basque Center for Materials, UPV/EHU Science Park Leioa 48940 Spanien
- Department of Chemistry University of California-Berkeley USA
| | - Giel Arnauts
- Center for Membrane Separations, Adsorption, Catalysis, and Spectroscopy (cMACS) KU Leuven Belgien
| | - Rob Ameloot
- Center for Membrane Separations, Adsorption, Catalysis, and Spectroscopy (cMACS) KU Leuven Belgien
| | | | - Mircea Dincă
- Department of Chemistry Massachusetts Institute of Technology Cambridge USA
| | - Anastasiya Bavykina
- King Abdullah University of Science and Technology KAUST Catalysis Center (KCC) Advanced Catalytic Materials Saudi Arabien
| | - Jorge Gascon
- King Abdullah University of Science and Technology KAUST Catalysis Center (KCC) Advanced Catalytic Materials Saudi Arabien
| | | | | | | | - Ulrich Lächelt
- Department für Pharmazie und Center for NanoScience (CeNS) LMU München Deutschland
| | - Evelyn Ploetz
- Department Chemie und Center for NanoScience (CeNS) LMU München Deutschland
| | - Christian S. Diercks
- Materials Sciences Division Lawrence Berkeley National Laboratory Kavli Energy NanoSciences Institute Berkeley CA 94720 USA
| | - Stefan Wuttke
- BCMaterials, Basque Center for Materials, UPV/EHU Science Park Leioa 48940 Spanien
- IKERBASQUE, Basque Foundation for Science Bilbao Spanien
| |
Collapse
|
176
|
Shen Y, Pan T, Wang L, Ren Z, Zhang W, Huo F. Programmable Logic in Metal-Organic Frameworks for Catalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007442. [PMID: 34050572 DOI: 10.1002/adma.202007442] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/31/2020] [Indexed: 06/12/2023]
Abstract
Metal-organic frameworks (MOFs) have emerged as one of the most widely investigated materials in catalysis mainly due to their excellent component tunability, high surface area, adjustable pore size, and uniform active sites. However, the overwhelming number of MOF materials and complex structures has brought difficulties for researchers to select and construct suitable MOF-based catalysts. Herein, a programmable design strategy is presented based on metal ions/clusters, organic ligands, modifiers, functional materials, and post-treatment modules, which can be used to design the components, structures, and morphologies of MOF catalysts for different reactions. By establishing the corresponding relationship between these modules and functions, researchers can accurately and efficiently construct heterometallic MOFs, chiral MOFs, conductive MOFs, hierarchically porous MOFs, defective MOFs, MOF composites, and MOF-derivative catalysts. Further, this programmable design approach can also be used to regulate the physical/chemical microenvironments of pristine MOFs, MOF composites, and MOF-derivative materials for heterogeneous catalysis, electrocatalysis, and photocatalysis. Finally, the challenging issues and opportunities for the future research of MOF-based catalysts are discussed. Overall, the modular design concept of this review can be applied as a potent tool for exploring the structure-activity relationships and accelerating the on-demand design of multicomponent catalysts.
Collapse
Affiliation(s)
- Yu Shen
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Ting Pan
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Liu Wang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Zhen Ren
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Weina Zhang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Fengwei Huo
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| |
Collapse
|
177
|
Hao L, Xia Q, Zhang Q, Masa J, Sun Z. Improving the performance of metal-organic frameworks for thermo-catalytic CO2 conversion: Strategies and perspectives. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(21)63841-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
178
|
Ashtiani S, Sofer Z, Průša F, Friess K. Molecular-level fabrication of highly selective composite ZIF-8-CNT-PDMS membranes for effective CO2/N2, CO2/H2 and olefin/paraffin separations. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
179
|
Sha L, Zhu M, Lin F, Yu X, Dong L, Wu L, Ding R, Wu S, Xu J. Stable DNA Aptamer-Metal-Organic Framework as Horseradish Peroxidase Mimic for Ultra-Sensitive Detection of Carcinoembryonic Antigen in Serum. Gels 2021; 7:181. [PMID: 34842664 PMCID: PMC8628696 DOI: 10.3390/gels7040181] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/09/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Carcinoembryonic antigen (CEA) is an important broad-spectrum tumor marker. For CEA detection, a novel type of metal-organic framework (MOF) was prepared by grafting CEA aptamer-incorporated DNA tetrahedral (TDN) nanostructures into PCN-222 (Fe)-based MOF (referred as CEAapt-TDN-MOF colloid nanorods). The synthesized CEAapt-TDN-MOF is a very stable detection system due to the vertex phosphorylated TDN structure at the interface, possessing a one-year shelf-life. Moreover, it exhibits a significant horseradish peroxidase mimicking activity due to the iron porphyrin ring, which leads to a colorimetric reaction upon binding toward antibody-captured CEA. Using this method, we successfully achieved the highly specific and ultra-sensitive detection of CEA with a limit of detection as low as 3.3 pg/mL. In addition, this method can detect and analyze the target proteins in clinical serum samples, effectively identify the difference between normal individuals and patients with colon cancer, and provide a new method for the clinical diagnosis of tumors, demonstrating a great application potential.
Collapse
Affiliation(s)
- Lingjun Sha
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China; (L.S.); (X.Y.); (L.D.)
| | - Mingcong Zhu
- Sino-European School of Technology of Shanghai University, Shanghai University, Shanghai 200444, China; (M.Z.); (L.W.); (R.D.)
| | - Fuqing Lin
- School of Basic Medical Sciences, Fudan University, Shanghai 200433, China;
| | - Xiaomeng Yu
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China; (L.S.); (X.Y.); (L.D.)
| | - Langjian Dong
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China; (L.S.); (X.Y.); (L.D.)
| | - Licheng Wu
- Sino-European School of Technology of Shanghai University, Shanghai University, Shanghai 200444, China; (M.Z.); (L.W.); (R.D.)
| | - Rong Ding
- Sino-European School of Technology of Shanghai University, Shanghai University, Shanghai 200444, China; (M.Z.); (L.W.); (R.D.)
| | - Shuai Wu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Jingjing Xu
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China; (L.S.); (X.Y.); (L.D.)
- Sino-European School of Technology of Shanghai University, Shanghai University, Shanghai 200444, China; (M.Z.); (L.W.); (R.D.)
| |
Collapse
|
180
|
Hanikel N, Pei X, Chheda S, Lyu H, Jeong W, Sauer J, Gagliardi L, Yaghi OM. Evolution of water structures in metal-organic frameworks for improved atmospheric water harvesting. Science 2021; 374:454-459. [PMID: 34672755 DOI: 10.1126/science.abj0890] [Citation(s) in RCA: 180] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Nikita Hanikel
- Department of Chemistry and Kavli Energy Nanoscience Institute, University of California, Berkeley, CA 94720, USA
| | - Xiaokun Pei
- Department of Chemistry and Kavli Energy Nanoscience Institute, University of California, Berkeley, CA 94720, USA
| | - Saumil Chheda
- Department of Chemical Engineering and Materials Science, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Hao Lyu
- Department of Chemistry and Kavli Energy Nanoscience Institute, University of California, Berkeley, CA 94720, USA
| | - WooSeok Jeong
- Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Joachim Sauer
- Institut für Chemie, Humboldt-Universität zu Berlin, 10099 Berlin, Germany
| | - Laura Gagliardi
- Department of Chemistry, Pritzker School of Molecular Engineering, James Franck Institute, and Chicago Center for Theoretical Chemistry, University of Chicago, Chicago, IL 60637, USA
| | - Omar M Yaghi
- Department of Chemistry and Kavli Energy Nanoscience Institute, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
181
|
Template assisted synthesis of porous termite nest-like manganese cobalt phosphide as binder-free electrode for supercapacitors. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
182
|
Sohrabi H, Javanbakht S, Oroojalian F, Rouhani F, Shaabani A, Majidi MR, Hashemzaei M, Hanifehpour Y, Mokhtarzadeh A, Morsali A. Nanoscale Metal-Organic Frameworks: Recent developments in synthesis, modifications and bioimaging applications. CHEMOSPHERE 2021; 281:130717. [PMID: 34020194 DOI: 10.1016/j.chemosphere.2021.130717] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
Porous Metal-Organic Frameworks (MOFs) have emerged as eye-catching materials in recent years. They are widely used in numerous fields of chemistry thanks to their desirable properties. MOFs have a key role in the development of bioimaging platforms that are hopefully expected to effectually pave the way for accurate and selective detection and diagnosis of abnormalities. Recently, many types of MOFs have been employed for detection of RNA, DNA, enzyme activity and small-biomolecules, as well as for magnetic resonance imaging (MRI) and computed tomography (CT), which are valuable methods for clinical analysis. The optimal performance of the MOF in the bio-imaging field depends on the core structure, synthesis method and modifications processes. In this review, we have attempted to present crucial parameters for designing and achieving an efficient MOF as bioimaging platforms, and provide a roadmap for researchers in this field. Moreover, the influence of modifications/fractionalizations on MOFs performance has been thoroughly discussed and challenging problems have been extensively addressed. Consideration is mainly focused on the principal concepts and applications that have been achieved to modify and synthesize advanced MOFs for future applications.
Collapse
Affiliation(s)
- Hessamaddin Sohrabi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Siamak Javanbakht
- Faculty of Chemistry, Shahid Beheshti University, G.C., P.O. Box 19396-4716, Tehran, Iran
| | - Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Farzaneh Rouhani
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| | - Ahmad Shaabani
- Faculty of Chemistry, Shahid Beheshti University, G.C., P.O. Box 19396-4716, Tehran, Iran
| | - Mir Reza Majidi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Mahmoud Hashemzaei
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Zabol University of Medical Sciences, Zabol. Iran
| | - Younes Hanifehpour
- Department of Chemistry, Sayyed Jamaleddin Asadabadi University, Asadabad, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ali Morsali
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran.
| |
Collapse
|
183
|
Dutta A, Pan Y, Liu JQ, Kumar A. Multicomponent isoreticular metal-organic frameworks: Principles, current status and challenges. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214074] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
184
|
Bazargan M, Ghaemi F, Amiri A, Mirzaei M. Metal–organic framework-based sorbents in analytical sample preparation. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214107] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
185
|
Li YM, Yuan J, Ren H, Ji CY, Tao Y, Wu Y, Chou LY, Zhang YB, Cheng L. Fine-Tuning the Micro-Environment to Optimize the Catalytic Activity of Enzymes Immobilized in Multivariate Metal-Organic Frameworks. J Am Chem Soc 2021; 143:15378-15390. [PMID: 34478271 DOI: 10.1021/jacs.1c07107] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The artificial engineering of an enzyme's structural conformation to enhance its activity is highly desired and challenging. Anisotropic reticular chemistry, best illustrated in the case of multivariate metal-organic frameworks (MTV-MOFs), provides a platform to modify a MOF's pore and inner-surface with functionality variations on frameworks to optimize the interior environment and to enhance the specifically targeted property. In this study, we altered the functionality and ratio of linkers in zeolitic imidazolate frameworks (ZIFs), a subclass of MOFs, with the MTV approach to demonstrate a strategy that allows us to optimize the activity of the encapsulated enzyme by continuously tuning the framework-enzyme interaction through the hydrophilicity change in the pores' microenvironment. To systematically study this interaction, we developed the component-adjustment-ternary plot (CAT) method to approach the optimal activity of the encapsulated enzyme BCL and revealed a nonlinear correlation, first incremental and then decremental, between the BCL activity and the hydrophilic linker' ratios in MTV-ZIF-8. These findings indicated there is a spatial arrangement of functional groups along the three-dimensional space across the ZIF-8 crystal with a unique sequence that could change the enzyme structure between closed-lid and open-lid conformations. These conformation changes were confirmed by FTIR spectra and fluorescence studies. The optimized BCL@ZIF-8 is not only thermally and chemically more stable than free BCL in solution, but also doubles the catalytic reactivity in the kinetic resolution reaction with 99% ee of the products.
Collapse
Affiliation(s)
- Yi-Ming Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Jian Yuan
- Avogadral Solutions, 3130 Grants Lake Boulevard #18641, Sugar Land, Texas 77496, United States
| | - Hao Ren
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Chun-Yan Ji
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Yu Tao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Yahui Wu
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Lien-Yang Chou
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Yue-Biao Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China
| | - Lin Cheng
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| |
Collapse
|
186
|
Qiao GY, Guan D, Yuan S, Rao H, Chen X, Wang JA, Qin JS, Xu JJ, Yu J. Perovskite Quantum Dots Encapsulated in a Mesoporous Metal-Organic Framework as Synergistic Photocathode Materials. J Am Chem Soc 2021; 143:14253-14260. [PMID: 34459185 DOI: 10.1021/jacs.1c05907] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Metal halide perovskite quantum dots, with high light-absorption coefficients and tunable electronic properties, have been widely studied as optoelectronic materials, but their applications in photocatalysis are hindered by their insufficient stability because of the oxidation and agglomeration under light, heat, and atmospheric conditions. To address this challenge, herein, we encapsulated CsPbBr3 nanocrystals into a stable iron-based metal-organic framework (MOF) with mesoporous cages (∼5.5 and 4.2 nm) via a sequential deposition route to obtain a perovskite-MOF composite material, CsPbBr3@PCN-333(Fe), in which CsPbBr3 nanocrystals were stabilized from aggregation or leaching by the confinement effect of MOF cages. The monodispersed CsPbBr3 nanocrystals (4-5 nm) within the MOF lattice were directly observed by transmission electron microscopy and corresponding mapping analysis and further confirmed by powder X-ray diffraction, infrared spectroscopy, and N2 adsorption characterizations. Density functional theory calculations further suggested a significant interfacial charge transfer from CsPbBr3 quantum dots to PCN-333(Fe), which is ideal for photocatalysis. The CsPbBr3@PCN-333(Fe) composite exhibited excellent and stable oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) catalytic activities in aprotic systems. Furthermore, CsPbBr3@PCN-333(Fe) composite worked as the synergistic photocathode in the photoassisted Li-O2 battery, where CsPbBr3 and PCN-333(Fe) acted as optical antennas and ORR/OER catalytic sites, respectively. The CsPbBr3@PCN-333(Fe) photocathode showed lower overpotential and better cycling stability compared to CsPbBr3 nanocrystals or PCN-333(Fe), highlighting the synergy between CsPbBr3 and PCN-333(Fe) in the composite.
Collapse
Affiliation(s)
- Guan-Yu Qiao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Dehui Guan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| | - Shuai Yuan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, P.R. China
| | - Heng Rao
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P.R. China.,International Center of Future Science, Jilin University, Changchun 130012, P.R. China
| | - Xiao Chen
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P.R. China
| | - Jia-Ao Wang
- Department of Chemistry and the Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, Texas 78712-0165, United States
| | - Jun-Sheng Qin
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P.R. China.,International Center of Future Science, Jilin University, Changchun 130012, P.R. China
| | - Ji-Jing Xu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P.R. China.,International Center of Future Science, Jilin University, Changchun 130012, P.R. China
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P.R. China.,International Center of Future Science, Jilin University, Changchun 130012, P.R. China
| |
Collapse
|
187
|
Lin RB, Zhang Z, Chen B. Achieving High Performance Metal-Organic Framework Materials through Pore Engineering. Acc Chem Res 2021; 54:3362-3376. [PMID: 34399577 DOI: 10.1021/acs.accounts.1c00328] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Achieving high performance functional materials has been a long-term goal for scientists and engineers that can significantly promote science and technology development and thus benefit our society and human beings. As well-known porous materials, metal-organic frameworks (MOFs) are crystalline open frameworks made up of molecular building blocks linked by strong coordination bonds, affording pore space for storing and trapping guest molecules. In terms of porosity, MOFs outperform traditional porous materials including zeolites and activated carbon, showing exceptional porosity with internal surface area up to thousands of square meters per gram of sample and with periodic pore sizes ranging from sub-nanometer to nanometers. Numerous MOFs have been synthesized with potential applications ranging from storing gaseous fuels to separating intractable industrial gas mixtures, sensing physical and chemical stimulus, and transmitting protons for conduction. Compared to traditional porous materials, MOFs are distinguished for their exceptional capability for pore adjustment and interior modification through pore engineering, which have made them a preeminent platform for exploring functional materials with high performance.Rational combinations of rigid building units of different geometry and multibranched organic linkers have provided MOFs with diverse pore structures, ranging from spherical to cylindrical, slit, and tubular ones isolating or interconnecting in different directions, which can be optimized for high-capacity gas storage. Based on the isoreticular principle and building blocks approach in MOF chemistry, the pore adjustment of porous materials can be performed with exquisite precision, making them suitable to address industrially important gas separation. The large pore cavities in MOFs are readily available for encapsulation of different functional guest species, resulting in novel MOF composite materials with various functions.In this Account, we summarize our recent research progress on pore engineering to achieve high-performance MOF materials. We have been able to tune and optimize pore structures, immobilize specific functional sites, and incorporate guest species into target MOF materials for hydrogen storage, methane storage, light-hydrocarbon purification, and proton conduction, especially for various industrially important gas separations including acetylene removal and ethylene and propylene purification. By engineering the porosity and pore chemistry that endows MOFs with multiple functionalities, our research endeavors have brought about the customization of high-performance MOF materials for corresponding application scenarios.
Collapse
Affiliation(s)
- Rui-Biao Lin
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Zhangjing Zhang
- College of Chemistry and Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, China
| | - Banglin Chen
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas 78249-0698, United States
| |
Collapse
|
188
|
Du Y, Jiang ZQ, Chang H, Li FR, Li YF, Zhang DX, Wen T. Co-Heteroatom-Based MOFs for Bifunctional Electrocatalysts for Oxygen and Hydrogen Evolution Reactions. Inorg Chem 2021; 60:13434-13439. [PMID: 34423965 DOI: 10.1021/acs.inorgchem.1c01781] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, a Co(II) heteroatom metal-organic framework was successfully post-modified via unsaturated coordinated S precisely capturing Ni2+ on the surface of the porous structure. The newly pristine bimetallic MOFs have increasing active edge sites (Ni(II) and S), boosting electrocatalytic activity toward oxygen evolution reaction and hydrogen evolution reaction.
Collapse
Affiliation(s)
- Yu Du
- College of Vanadium and Titanium, Panzhihua University, Panzhihua, Sichuan 617000, P. R. China
| | - Zhi-Qiang Jiang
- College of Vanadium and Titanium, Panzhihua University, Panzhihua, Sichuan 617000, P. R. China.,Vanadium and Titanium Resource Comprehensive Utilization Key Laboratory of Sichuan Province, Panzhihua University, Panzhihua, Sichuan 617000, P. R. China
| | - Hui Chang
- Vanadium and Titanium Resource Comprehensive Utilization Key Laboratory of Sichuan Province, Panzhihua University, Panzhihua, Sichuan 617000, P. R. China
| | - Fu-Rong Li
- Vanadium and Titanium Resource Comprehensive Utilization Key Laboratory of Sichuan Province, Panzhihua University, Panzhihua, Sichuan 617000, P. R. China
| | - Yu-Feng Li
- Vanadium and Titanium Resource Comprehensive Utilization Key Laboratory of Sichuan Province, Panzhihua University, Panzhihua, Sichuan 617000, P. R. China
| | - De-Xiang Zhang
- Vanadium and Titanium Resource Comprehensive Utilization Key Laboratory of Sichuan Province, Panzhihua University, Panzhihua, Sichuan 617000, P. R. China
| | - Tian Wen
- Vanadium and Titanium Resource Comprehensive Utilization Key Laboratory of Sichuan Province, Panzhihua University, Panzhihua, Sichuan 617000, P. R. China
| |
Collapse
|
189
|
Chen X, Guo T, Zhang K, Chen J, Wang C, Ren X, Wang Q, Yang Y, Liu C, Tan W, Gui S, Wu L, Zhang J. Simultaneous improvement to solubility and bioavailability of active natural compound isosteviol using cyclodextrin metal-organic frameworks. Acta Pharm Sin B 2021; 11:2914-2923. [PMID: 34589404 PMCID: PMC8463510 DOI: 10.1016/j.apsb.2021.04.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 12/19/2022] Open
Abstract
Cyclodextrin metal-organic framework (CD-MOF) as a highly porous supramolecular carrier could be one of the solutions to the insolubility of isosteviol (STV). The solubility of STV was lower than 20.00 ng/mL at pH 1.0 and pH 4.5, whilst its solubility increased to 20,074.30 ng/mL at pH 6.8 and 129.58 ng/mL in water with a significant pH-dependence. The in vitro release profiles of STV from STV@CD-MOF (0.5:1) were pH-independent in distinct pH media and closed to be thoroughly released but no such release profiles were observed for STV@CD-MOF (1:1) owing to nanoclusters formation. The bioavailability of STV@CD-MOF (1:1) in rats was 8.67-fold higher than that of STV, and was 1.32- and 1.27-fold higher than that of STV@CD and STV@CD-MOF (0.5:1). Our results indicated that the inclusion mechanism played a primary role when STV in CD-MOF was at a low loading ratio, while the increasement in bioavailability at a high loading ratio, which was attributed to the nanocluster mechanism. This was confirmed by molecular simulation. In conclusion, CD-MOF is a promising system for STV loading, overcoming the insolubility and to improve the bioavailability of this natural compound.
Collapse
|
190
|
Jia X, Li S, Sun T, Wang Y, Fan Y, Zhang C, Xu Y, Liang Z, Lei H, Zhang W, Zhou Y, Ma Y, Zheng H, Ma Y, Cao R. Single crystal metal-organic framework constructed by vertically self-pillared nanosheets and its derivative for oriented lithium plating. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63755-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
191
|
Laha S, Haldar R, Dwarkanath N, Bonakala S, Sharma A, Hazra A, Balasubramanian S, Maji TK. A Dynamic Chemical Clip in Supramolecular Framework for Sorting Alkylaromatic Isomers using Thermodynamic and Kinetic Preferences. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Subhajit Laha
- Chemistry and Physics of Materials Unit (CPMU) School of Adv. Mat. (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Bangalore 560064 India
| | - Ritesh Haldar
- New Chemistry Unit (NCU) School of Adv. Mat. (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Bangalore 560064 India
- Present address: Tata Institute of Fundamental Research Hyderabad, Gopanpally 500046 Telangana India
| | - Nimish Dwarkanath
- Chemistry and Physics of Materials Unit (CPMU) School of Adv. Mat. (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Bangalore 560064 India
| | - Satyanarayana Bonakala
- Chemistry and Physics of Materials Unit (CPMU) School of Adv. Mat. (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Bangalore 560064 India
| | - Abhishek Sharma
- Chemistry and Physics of Materials Unit (CPMU) School of Adv. Mat. (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Bangalore 560064 India
| | - Arpan Hazra
- Chemistry and Physics of Materials Unit (CPMU) School of Adv. Mat. (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Bangalore 560064 India
| | - Sundaram Balasubramanian
- Chemistry and Physics of Materials Unit (CPMU) School of Adv. Mat. (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Bangalore 560064 India
| | - Tapas Kumar Maji
- Chemistry and Physics of Materials Unit (CPMU) School of Adv. Mat. (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Bangalore 560064 India
- New Chemistry Unit (NCU) School of Adv. Mat. (SAMat) Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) Bangalore 560064 India
| |
Collapse
|
192
|
Nong W, Wu J, Ghiladi RA, Guan Y. The structural appeal of metal–organic frameworks in antimicrobial applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214007] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
193
|
Laha S, Haldar R, Dwarkanath N, Bonakala S, Sharma A, Hazra A, Balasubramanian S, Maji TK. A Dynamic Chemical Clip in Supramolecular Framework for Sorting Alkylaromatic Isomers using Thermodynamic and Kinetic Preferences. Angew Chem Int Ed Engl 2021; 60:19921-19927. [PMID: 34114296 DOI: 10.1002/anie.202106784] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/04/2021] [Indexed: 11/09/2022]
Abstract
Adsorptive chemical separation is at the forefront of future technologies, for use in chemical and petrochemical industries. In this process, a porous adsorbent selectively allows a single component from a mixture of three or more chemical components to be adsorbed or permeate. To separate the unsorted chemicals, a different adsorbent is needed. A unique adsorbent which can recognize and separate each of the chemicals from a mixture of three or more components is the necessity for the next generation porous materials. In this regard, we demonstrate a "dynamic chemical clip" in a supramolecular framework capable of thermodynamic and kinetics-based chemical separation. The dynamic space, featuring a strong preference for aromatic guests through π-π and C-H⋅⋅⋅π interactions and adaptability, can recognize the individual chemical isomers from mixtures and separate those based on thermodynamic and kinetic factors. The liquid-phase selectivity and separation of the aromatic isomers are possible by the adaptability of the "chemical clip" and here we elucidate the prime factors in a combinatorial approach involving crystallographic evidence and detailed computational studies.
Collapse
Affiliation(s)
- Subhajit Laha
- Chemistry and Physics of Materials Unit (CPMU), School of Adv. Mat. (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, 560064, India
| | - Ritesh Haldar
- New Chemistry Unit (NCU), School of Adv. Mat. (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, 560064, India.,Present address: Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad, 500046, Telangana, India
| | - Nimish Dwarkanath
- Chemistry and Physics of Materials Unit (CPMU), School of Adv. Mat. (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, 560064, India
| | - Satyanarayana Bonakala
- Chemistry and Physics of Materials Unit (CPMU), School of Adv. Mat. (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, 560064, India
| | - Abhishek Sharma
- Chemistry and Physics of Materials Unit (CPMU), School of Adv. Mat. (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, 560064, India
| | - Arpan Hazra
- Chemistry and Physics of Materials Unit (CPMU), School of Adv. Mat. (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, 560064, India
| | - Sundaram Balasubramanian
- Chemistry and Physics of Materials Unit (CPMU), School of Adv. Mat. (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, 560064, India
| | - Tapas Kumar Maji
- Chemistry and Physics of Materials Unit (CPMU), School of Adv. Mat. (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, 560064, India.,New Chemistry Unit (NCU), School of Adv. Mat. (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore, 560064, India
| |
Collapse
|
194
|
Qin Y, Xu L, Liu L, Deng X, Gao Y, Ding Z. Ultrathin porous amine-based solid adsorbent incorporated zeolitic imidazolate framework-8 membrane for gas separation. RSC Adv 2021; 11:28863-28875. [PMID: 35478573 PMCID: PMC9038122 DOI: 10.1039/d1ra04801e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/15/2021] [Indexed: 02/03/2023] Open
Abstract
A novel gas separation approach is proposed in this work by combining an amine-based solid adsorbent with a zeolitic imidazolate framework-8 (ZIF-8) membrane. This was achieved by incorporating the amine-based solid adsorbent during the fabrication of the ZIF-8 membrane on a macroporous substrate. An amine-based solid adsorbent was prepared using porous ZIF-8-3-isocyanatopropyltrimethoxysilane (IPTMS) and N-[(3-trimethoxysilyl)propyl]diethylenetriamine (3N-APS) amine compounds. The as-prepared porous amine-based solid adsorbent (denoted as ZIF-8-IPTMS-3N-APS) possessed excellent adsorptive CO2/N2 and CO2/CH4 separation performances. As the adsorbent needs to be regenerated, this could indicate that the CO2 adsorption separation process cannot be continuously operated. In this work, an amine-based solid adsorbent was applied during the preparation of the ZIF-8 membranes owing to the following reasons: (i) gas separation by the membrane can be operated continuously; (ii) the amino group provides a heterogeneous nucleation site for ZIF-8 to grow; and (iii) the reparation of surface defects on the macroporous substrate can be performed prior to the growth of the ZIF-8 membrane. Herein, the ZIF-8 membrane was successfully fabricated, and it possessed excellent CO2/CH4, CO2/N2, and H2/CH4 separation performances. The 0.6 μm ultrathin ZIF-8 membrane demonstrated a high CO2 permeance of 4.75 × 10-6 mol m-2 s-1 Pa-1 at 35 °C and 0.1 MPa, and ideal CO2/N2 and CO2/CH4 selectivities of 4.67 and 6.02, respectively. Furthermore, at 35 °C and 0.1 MPa, the ideal H2/CH4 selectivity of the ZIF-8 membrane reached 31.2, and a significantly high H2 permeance of 2.45 × 10-5 mol m-2 s-1 Pa-1.
Collapse
Affiliation(s)
- Yu Qin
- Beijing Key Laboratory of Membrane Science and Technology, College of Chemical Engineering, Beijing University of Chemical Technology Beijing 100029 China +86-10-64436781
| | - Li Xu
- Beijing Key Laboratory of Membrane Science and Technology, College of Chemical Engineering, Beijing University of Chemical Technology Beijing 100029 China +86-10-64436781
| | - Liying Liu
- Beijing Key Laboratory of Membrane Science and Technology, College of Chemical Engineering, Beijing University of Chemical Technology Beijing 100029 China +86-10-64436781
| | - Xiaoyu Deng
- Beijing Key Laboratory of Membrane Science and Technology, College of Chemical Engineering, Beijing University of Chemical Technology Beijing 100029 China +86-10-64436781
| | - Yucheng Gao
- Beijing Key Laboratory of Membrane Science and Technology, College of Chemical Engineering, Beijing University of Chemical Technology Beijing 100029 China +86-10-64436781
| | - Zhongwei Ding
- Beijing Key Laboratory of Membrane Science and Technology, College of Chemical Engineering, Beijing University of Chemical Technology Beijing 100029 China +86-10-64436781
| |
Collapse
|
195
|
Gao Z, Yang S, Xu B, Zhang T, Chen S, Zhang W, Sun X, Wang Z, Wang X, Meng X, Zhao YS. Laterally Engineering Lanthanide‐MOFs Epitaxial Heterostructures for Spatially Resolved Planar 2D Photonic Barcoding. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Zhenhua Gao
- School of Materials Science & Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 Shandong Province China
| | - Shuo Yang
- School of Materials Science & Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 Shandong Province China
| | - Baoyuan Xu
- School of Materials Science & Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 Shandong Province China
| | - Tongjin Zhang
- Key Laboratory of photochemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Shunwei Chen
- School of Materials Science & Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 Shandong Province China
| | - Weiguang Zhang
- School of Materials Science & Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 Shandong Province China
| | - Xun Sun
- School of Materials Science & Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 Shandong Province China
| | - Zifei Wang
- School of Materials Science & Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 Shandong Province China
| | - Xue Wang
- School of Materials Science & Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 Shandong Province China
| | - Xiangeng Meng
- School of Materials Science & Engineering Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 Shandong Province China
| | - Yong Sheng Zhao
- Key Laboratory of photochemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
196
|
Cao Y, Mi X, Li X, Wang B. Defect Engineering in Metal‒Organic Frameworks as Futuristic Options for Purification of Pollutants in an Aqueous Environment. Front Chem 2021; 9:673738. [PMID: 34485241 PMCID: PMC8415362 DOI: 10.3389/fchem.2021.673738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/26/2021] [Indexed: 11/16/2022] Open
Abstract
Clean water scarcity is becoming an increasingly important worldwide issue. The water treatment industry is demanding the development of novel effective materials. Defect engineering in nanoparticles is among the most revolutionary of technologies. Because of their high surface area, structural diversity, and tailorable ability, Metal‒Organic Frameworks (MOFs) can be used for a variety of purposes including separation, storage, sensing, drug delivery, and many other issues. The application in wastewater treatment associated with water stable MOF‒based materials has been an emerging research topic in recent decades. Defect engineering is a sophisticated technique used to manufacture defects and to change the geometric framework of target compounds. Since MOFs have a series of designable structures and active sites, tailoring properties in MOFs by defect engineering is a novel concept. Defect engineering can excavate hidden active sites in MOFs, which can lead to better performance in many fields. Therefore, this technology will open new opportunities in water purification processes. However, there has been little effort to comprehensively discuss this topic. In this review, we provide an overview of the development of defect engineered MOFs for water purification processes. Furthermore, we discuss the potential applications of defect engineered materials.
Collapse
Affiliation(s)
| | | | - Xiang Li
- School of Chemistry, China School of Chemistry, Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, China
| | - Bo Wang
- School of Chemistry, China School of Chemistry, Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
197
|
Chen K, Downes CA, Goodpaster JD, Marinescu SC. Hydrogen Evolving Activity of Dithiolene-Based Metal-Organic Frameworks with Mixed Cobalt and Iron Centers. Inorg Chem 2021; 60:11923-11931. [PMID: 34352176 DOI: 10.1021/acs.inorgchem.1c00900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Electrocatalytic systems based on metal-organic frameworks (MOFs) have attracted great attention due to their potential application in commercially viable renewable energy-converting devices. We have recently shown that the cobalt 2,3,6,7,10,11-triphenylenehexathiolate (CoTHT) framework can catalyze the hydrogen evolution reaction (HER) in fully aqueous media with Tafel slopes as low as 71 mV/dec and near-unity Faradaic efficiency (FE). Taking advantage of the high synthetic tunability of MOFs, here, we synthesize a series of iron and mixed iron/cobalt THT-based MOFs. The incorporation of the iron and cobalt dithiolene moieties is verified by various spectroscopic techniques, and the integrity of the crystalline structure is maintained regardless of the stoichiometries of the two metals. The hydrogen evolving activity of the materials was explored in pH 1.3 aqueous electrolyte solutions. Unlike CoTHT, the FeTHT framework exhibits minimal activity due to a late catalytic onset [-0.440 V versus reversible hydrogen electrode (RHE)] and a large Tafel slope (210 mV/dec). The performance of the mixed-metal MOFs is adversely affected by the incorporation of Fe, where increasing Fe content results in MOFs with lower HER activity and diminished long-term stability and FE for H2 production. It is proposed that the FeTHT domains undergo alternative Faradaic processes under catalytic conditions, which alter its local structure and electrochemical behavior, eventually resulting in a material with diminished HER performance.
Collapse
Affiliation(s)
- Keying Chen
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Courtney A Downes
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Jason D Goodpaster
- Department of Chemistry, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States
| | - Smaranda C Marinescu
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
198
|
Yu Q, Guo L, Lai D, Zhang Z, Yang Q, Yang Y, Ren Q, Bao Z. A pore-engineered metal-organic framework with mixed ligands enabling highly efficient separation of hexane isomers for gasoline upgrading. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118646] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
199
|
Zhao K, He Y, Shan C, Wojtas L, Ren J, Yan Y, Shi H, Wang H, Song Z, Shi X. Construction of Stable Helical Metal-Organic Frameworks with a Conformationally Rigid "Concave Ligand". Chemistry 2021; 27:10833-10838. [PMID: 34033693 DOI: 10.1002/chem.202101173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Indexed: 11/07/2022]
Abstract
A helical metal-organic framework was prepared by using a conformationally rigid tetratopic benzoic acid ligand with binding units pointing toward each other (concave ligand). To avoid the obvious intramolecular interactions between binding units, matching spacing groups were applied to introduce atropic repulsion, thereby allowing the formation of extended frameworks for the first time. With this new ligand design, a helical-shaped MOF with significantly improved air and moisture stability was successfully prepared, thus providing a new strategy for ligand design toward porous material constructions.
Collapse
Affiliation(s)
- Kai Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China
| | - Ying He
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - Chuan Shan
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - Lukasz Wojtas
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - Junyu Ren
- Department of Chemistry, University of North Texas, 1508 W Mulberry St, Denton, TX76201, USA
| | - Yu Yan
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| | - Hanzhong Shi
- Department of Chemistry and Biomedical Engineering, University of South Florida, Tampa, FL 33620, USA
| | - Haonan Wang
- Department of Chemistry and Biomedical Engineering, University of South Florida, Tampa, FL 33620, USA
| | - Zhiguang Song
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China
| | - Xiaodong Shi
- Department of Chemistry, University of South Florida, Tampa, FL 33620, USA
| |
Collapse
|
200
|
Freund R, Zaremba O, Arnauts G, Ameloot R, Skorupskii G, Dincă M, Bavykina A, Gascon J, Ejsmont A, Goscianska J, Kalmutzki M, Lächelt U, Ploetz E, Diercks CS, Wuttke S. The Current Status of MOF and COF Applications. Angew Chem Int Ed Engl 2021; 60:23975-24001. [DOI: 10.1002/anie.202106259] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Ralph Freund
- Solid State Chemistry University of Augsburg Germany
| | - Orysia Zaremba
- BCMaterials, Basque Center for Materials UPV/EHU Science Park Leioa 48940 Spain
- Department of Chemistry University of California-Berkeley USA
| | - Giel Arnauts
- Center for Membrane Separations, Adsorption, Catalysis and Spectroscopy (cMACS) KU Leuven Belgium
| | - Rob Ameloot
- Center for Membrane Separations, Adsorption, Catalysis and Spectroscopy (cMACS) KU Leuven Belgium
| | | | - Mircea Dincă
- Department of Chemistry Massachusetts Institute of Technology Cambridge USA
| | - Anastasiya Bavykina
- King Abdullah University of Science and Technology KAUST Catalysis Center (KCC) Advanced Catalytic Materials Saudi Arabia
| | - Jorge Gascon
- King Abdullah University of Science and Technology KAUST Catalysis Center (KCC) Advanced Catalytic Materials Saudi Arabia
| | | | | | | | - Ulrich Lächelt
- Department of Pharmacy and Center for NanoScience (CeNS) LMU Munich Germany
| | - Evelyn Ploetz
- Department of Chemistry and Center for NanoScience (CeNS) LMU Munich Germany
| | - Christian S. Diercks
- Materials Sciences Division Lawrence Berkeley National Laboratory Kavli Energy NanoSciences Institute Berkeley CA 94720 USA
| | - Stefan Wuttke
- BCMaterials, Basque Center for Materials UPV/EHU Science Park Leioa 48940 Spain
- IKERBASQUE, Basque Foundation for Science Bilbao Spain
| |
Collapse
|