151
|
Ding W, Zhang G, Yi X, Kang J, Zhang J, Li G, Zhang J, Chang N, Li H. Improving potential of reactive nitrogen and carbon footprint of intensified greenhouse cucumber-tomato production with optimized drip irrigation with nitrogen reduction strategies. JOURNAL OF CLEANER PRODUCTION 2023; 424:138898. [DOI: 10.1016/j.jclepro.2023.138898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
|
152
|
Cui R, Feng Y, Yao J, Shi L, Wang S, Xu F. The transcription factor BnaA9.WRKY47 coordinates leaf senescence and nitrogen remobilization in Brassica napus. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5606-5619. [PMID: 37474125 DOI: 10.1093/jxb/erad282] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/19/2023] [Indexed: 07/22/2023]
Abstract
Nitrogen (N) is an essential macronutrient for plants, and its remobilization is key for adaptation to deficiency stress. However, there is limited understanding of the regulatory mechanisms of N remobilization in the important crop species Brassica napus (oilseed rape). Here, we report the identification of a transcription factor, BnaA9.WRKY47, that is induced by N starvation in a canola variety. At the seedling stage, BnaA9.WRKY47-overexpressing (OE) lines displayed earlier senescence of older leaves and preferential growth of juvenile leaves compared to the wild type under N starvation. At the field scale, the seed yield was significantly increased in the BnaA9.WRKY47-OE lines compared with the wild type when grown under N deficiency conditions and, conversely, it was reduced in BnaA9.WRKY47-knockout mutants. Biochemical analyses demonstrated that BnaA9.WRKY47 directly activates BnaC7.SGR1 to accelerate senescence of older leaves. In line with leaf senescence, the concentration of amino acids in the older leaves of the OE lines was elevated, and the proportion of plant N that they contained was reduced. This was associated with BnaA9.WRKY47 activating the amino acid permease BnaA9.AAP1 and the nitrate transporter BnaA2.NRT1.7. Thus, the expression of BnaA9.WRKY47 efficiently facilitated N remobilization from older to younger leaves or to seeds. Taken together, our results demonstrate that BnaA9.WRKY47 up-regulates the expression of BnaC7.SGR1, BnaA2.NRT1.7, and BnaA9AAP1, thus promoting the remobilization of N in B. napus under starvation conditions.
Collapse
Affiliation(s)
- Rui Cui
- National Key Laboratory of Crop Genetic Improvement, Wuhan 430070, China
- Microelement Research Centre, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yingna Feng
- National Key Laboratory of Crop Genetic Improvement, Wuhan 430070, China
- Microelement Research Centre, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinliang Yao
- Microelement Research Centre, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Lei Shi
- National Key Laboratory of Crop Genetic Improvement, Wuhan 430070, China
- Microelement Research Centre, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Sheliang Wang
- Microelement Research Centre, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Fangsen Xu
- National Key Laboratory of Crop Genetic Improvement, Wuhan 430070, China
- Microelement Research Centre, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
153
|
Li X, Fang J, Shagahaleh H, Wang J, Hamad AAA, Alhaj Hamoud Y. Impacts of Partial Substitution of Chemical Fertilizer with Organic Fertilizer on Soil Organic Carbon Composition, Enzyme Activity, and Grain Yield in Wheat-Maize Rotation. Life (Basel) 2023; 13:1929. [PMID: 37763332 PMCID: PMC10532975 DOI: 10.3390/life13091929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
This study explored the effect of the long-term partial replacement of chemical fertilizer with organic fertilizer on soil organic carbon composition, enzyme activity, and crop yields in the wheat-maize rotation area of northern Anhui, China. This study also specified the proper amount of organic fertilizer replacement that should be used for chemical fertilizer. Different fertilization modes were used (no fertilization, CK; chemical fertilizer, CF; chemical fertilizer and straw returning, CF + S; chemical fertilizer, straw returning, and straw decomposition agent, CF + S + DA; 70% chemical fertilizer and 50% organic fertilizer, 70% CF + 50% OF; 70% chemical fertilizer, 50% organic fertilizer and straw returning, 70% CF + 50% OF + S; 50% chemical fertilizer and 100% organic fertilizer, 50% CF + 100% OF; and 50% chemical fertilizer, 100% organic fertilizer, and straw returning, 50% CF + 100% OF + S). Variations in the organic carbon composition, enzyme activity, soil pH, and crop yields in the wheat-maize rotation under different fertilization treatments were analyzed. The results showed that the replacement of chemical fertilizer with organic fertilizer results in improved crop yields in wheat-maize rotation. The long-term partial replacement of chemical fertilizer with organic fertilizer can increase the quality of soil humus, alleviate soil acidification, and improve soil enzyme activity. Straw returning and organic fertilizer application can considerably raise the activities of urease, acid phosphatase, and nitrate reductase in soil. The soil pH of the CF treatment was reduced compared to the CK treatment, while organic fertilizer application alleviated soil acidification when compared to CF treatment. Organic fertilization increases the total organic carbon content of the soil, which was 19.6~85.5% higher than in the CK treatment. Applying straw and organic fertilizer significantly increased the ratio of the humic/fulvic acid in the soil. The soil active carbon forms of the soil with the application of organic fertilizer and straw returning were significantly higher than those of the CK and CF treatments. This study suggests that the optimal fertilizer management option in northern Anhui's wheat-maize rotation area is to replace 50% of the chemical fertilizer with organic fertilizer, and to fully return straw to the field. This would include 150 kg N h·m-2, 60 kg P2O5 h·m-2, 50 kg K2O h·m-2, 6000 kg organic fertilizer h·m-2, and full straw return to the field.
Collapse
Affiliation(s)
- Xiaoliang Li
- School of Resources and Environment, Anhui University of Science and Technology, Fengyang 233100, China
- Key Laboratory of Bioorganic Fertilizer Creation, Ministry of Agriculture, Bengbu 233400, China
| | - Junchao Fang
- School of Resources and Environment, Anhui University of Science and Technology, Fengyang 233100, China
| | - Hiba Shagahaleh
- College of Environmental, Hohai University, Nanjing 210098, China
| | - Jianfei Wang
- School of Resources and Environment, Anhui University of Science and Technology, Fengyang 233100, China
- Key Laboratory of Bioorganic Fertilizer Creation, Ministry of Agriculture, Bengbu 233400, China
| | | | - Yousef Alhaj Hamoud
- College of Hydrology and Water Resources, Hohai University, Nanjing 210098, China
| |
Collapse
|
154
|
Huang K, Li M, Li R, Rasul F, Shahzad S, Wu C, Shao J, Huang G, Li R, Almari S, Hashem M, Aamer M. Soil acidification and salinity: the importance of biochar application to agricultural soils. FRONTIERS IN PLANT SCIENCE 2023; 14:1206820. [PMID: 37780526 PMCID: PMC10537949 DOI: 10.3389/fpls.2023.1206820] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/18/2023] [Indexed: 10/03/2023]
Abstract
Soil acidity is a serious problem in agricultural lands as it directly affects the soil, crop production, and human health. Soil acidification in agricultural lands occurs due to the release of protons (H+) from the transforming reactions of various carbon, nitrogen, and sulfur-containing compounds. The use of biochar (BC) has emerged as an excellent tool to manage soil acidity owing to its alkaline nature and its appreciable ability to improve the soil's physical, chemical, and biological properties. The application of BC to acidic soils improves soil pH, soil organic matter (SOM), cation exchange capacity (CEC), nutrient uptake, microbial activity and diversity, and enzyme activities which mitigate the adverse impacts of acidity on plants. Further, BC application also reduce the concentration of H+ and Al3+ ions and other toxic metals which mitigate the soil acidity and supports plant growth. Similarly, soil salinity (SS) is also a serious concern across the globe and it has a direct impact on global production and food security. Due to its appreciable liming potential BC is also an important amendment to mitigate the adverse impacts of SS. The addition of BC to saline soils improves nutrient homeostasis, nutrient uptake, SOM, CEC, soil microbial activity, enzymatic activity, and water uptake and reduces the accumulation of toxic ions sodium (Na+ and chloride (Cl-). All these BC-mediated changes support plant growth by improving antioxidant activity, photosynthesis efficiency, stomata working, and decrease oxidative damage in plants. Thus, in the present review, we discussed the various mechanisms through which BC improves the soil properties and microbial and enzymatic activities to counter acidity and salinity problems. The present review will increase the existing knowledge about the role of BC to mitigate soil acidity and salinity problems. This will also provide new suggestions to readers on how this knowledge can be used to ameliorate acidic and saline soils.
Collapse
Affiliation(s)
- Kai Huang
- China Guangxi Key Laboratory of Water Engineering Materials and Structures, Guangxi Hydraulic Research Institute, Nanning, China
| | - Mingquan Li
- China Guangxi Key Laboratory of Water Engineering Materials and Structures, Guangxi Hydraulic Research Institute, Nanning, China
| | - Rongpeng Li
- China Guangxi Key Laboratory of Water Engineering Materials and Structures, Guangxi Hydraulic Research Institute, Nanning, China
| | - Fahd Rasul
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Sobia Shahzad
- Islamia University of Bahawalpur, Bahawalnagar, Pakistan
| | - Changhong Wu
- China Guangxi Key Laboratory of Water Engineering Materials and Structures, Guangxi Hydraulic Research Institute, Nanning, China
| | - Jinhua Shao
- China Guangxi Key Laboratory of Water Engineering Materials and Structures, Guangxi Hydraulic Research Institute, Nanning, China
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang, China
| | - Guoqin Huang
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Ronghui Li
- College of Civil Engineering and Architecture, Guangxi University, Nanning, China
| | - Saad Almari
- King Khalid University, College of Science, Department of Biology, Abha, Saudi Arabia
| | - Mohamed Hashem
- King Khalid University, College of Science, Department of Biology, Abha, Saudi Arabia
| | - Muhammad Aamer
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
155
|
Uwiringiyimana E, Gao J, Zhang D, Biswash MR, Shi YXX. Bioaccumulation and translocation of Hg and Cr by tobacco in Sichuan Province, China: understanding the influence of soil pH. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1193. [PMID: 37698692 DOI: 10.1007/s10661-023-11806-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/30/2023] [Indexed: 09/13/2023]
Abstract
The present study investigated the bioaccumulation and translocation of mercury (Hg) and chromium (Cr) in Yunyan 87 flue-cured tobacco (Nicotiana tabacum) and assessed the influence of soil pH on the metal uptake by plant organs at the field scale. The study was conducted in 4 different regions selected from Sichuan Province, China: Guangyuan, Luzhou, Panzhihua, and Yibin. The results revealed that Hg highly contaminated Yibin soils at 0.29 mg kg-1 and by Cr at 147 mg kg-1, which is above the permissible limit. The levels of Hg in tobacco plant organs were predominantly in the order of leaves > root > stem. The overall trend for Cr contents in tobacco organs was in the order of root > leaves > stem. The results of an index of bioaccumulation (IBA) and translocation factor (TF) showed that the values observed in Panzhihua and Guangyuan tobacco leaves were generally higher, despite the low levels of soil contamination. The linear mixed model (LMM) demonstrated that the log of Hg IBA in tobacco organs was likely to decrease with soil pH increase, whereas the log of Cr IBA only decreased in the root but gradually increased in the aerial parts with soil pH increase. The total random variation in the log of metals' IBA due to regions indicated that for Hg, 33.42% of the variation was explained by regional differences, while for Cr, only 13% was accounted. The results suggested that Yibin and Luzhou need to correct the soil acidity if they are set to reduce Hg contamination in tobacco-growing soils. Guangyuan and Panzhihua need efforts to keep the soil pH on track to avoid high contamination levels, and effective measures of soil nutrients supply are required to produce high tobacco leaf quality free from heavy metal content. The findings of this study may be used to ascertain regional differences in heavy metals, particularly Hg and Cr uptake by tobacco plant organs, and to prevent the cultivation areas contamination through soil pH monitoring.
Collapse
Affiliation(s)
- Ernest Uwiringiyimana
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P. O. Box 821, Nanjing, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jianing Gao
- College of Tourism and Geographical Science, Leshan Normal University, Leshan, China
| | - Dan Zhang
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, China
| | - Md Romel Biswash
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P. O. Box 821, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang-Xiao-Xiao Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P. O. Box 821, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
156
|
Adalibieke W, Cui X, Cai H, You L, Zhou F. Global crop-specific nitrogen fertilization dataset in 1961-2020. Sci Data 2023; 10:617. [PMID: 37696817 PMCID: PMC10495426 DOI: 10.1038/s41597-023-02526-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 08/31/2023] [Indexed: 09/13/2023] Open
Abstract
Nitrogen (N) is an important nutrient for crop growth. However, the overuse of N fertilizers has led to a series of devastating global environmental issues. Recent studies show that multiple datasets have been created for agricultural N fertilizer application with varied temporal or spatial resolutions, nevertheless, how to synchronize and use these datasets becomes problematic due to the inconsistent temporal coverages, spatial resolutions, and crop-specific allocations. Here we reconstructed a comprehensive dataset for crop-specific N fertilization at 5-arc-min resolution (~10 km by 10 km) during 1961-2020, including N application rate, types, and placements. The N fertilization data was segmented by 21 crop groups, 13 fertilizer types, and 2 fertilization placements. Comparison analysis showed that our dataset is aligned with previous estimates. Our spatiotemporal N fertilization dataset could be used for the land surface models to quantify the effects of agricultural N fertilization practices on food security, climate change, and environmental sustainability.
Collapse
Affiliation(s)
- Wulahati Adalibieke
- Institute of Carbon Neutrality, Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Xiaoqing Cui
- Institute of Carbon Neutrality, Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Hongwei Cai
- Institute of Carbon Neutrality, Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Liangzhi You
- International Food Policy Research Institute (IFPRI), Washington, DC20005, USA
| | - Feng Zhou
- Institute of Carbon Neutrality, Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
157
|
Li B, Yan L, Zhang W. Study on N application and N reduction potential of farmland in China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1156. [PMID: 37673802 DOI: 10.1007/s10661-023-11780-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/24/2023] [Indexed: 09/08/2023]
Abstract
The frequent occurrence of extreme weather in recent years poses a significant threat to food production. Ensuring food production and rationalizing the use of agricultural resources require addressing the problem of the improper application of chemical fertilizers. Several effective measures have been implemented in China to reduce agricultural non-point source pollution. Among them, the reduction of excessive nitrogen fertilizer application proves to be the most effective approach in controlling surface pollution from cultivation. Currently, it is crucial to clarify and quantify crop nutrient fertilizer requirements while evaluating the potential for reducing nitrogen fertilizer usage in China. Nitrogen requirements for major crops grown in China were assessed based on the theory of crop nutrient balance, assuming constant grain production as a guarantee. In this paper, we analyze the potential for nitrogen reduction through short-term, medium-term, and long-term scenario predictions. The results show that in the next 3 years, China has a reduction potential of 34.98%, but this potential is not sustainable. Over the next 10 years, there is a reduction potential of 15.04%, with most provinces experiencing a balanced state of soil nitrogen cycling. Hainan, Beijing, Shaanxi, and Fujian have higher reduction potential, with possible reductions of 69.95%, 64.14%, 60.72%, and 54.10%, respectively. However, there are still provinces in China where nitrogen fertilizer is insufficient, leading to soil nitrogen consumption. Specifically, Heilongjiang, Jiangxi, and Shandong Provinces need to increase their nitrogen fertilizer applications by 87.00%, 35.97%, and 8.31%, respectively. The long-term scenario analysis over the next 30 years shows a reduction potential of 40.96%. Among the regions analyzed, Hainan, Beijing, Shaanxi, Fujian, and Ningxia have higher nitrogen fertilizer reduction potentials, with values of 78.97%, 78.48%, 74.25%, 67.87%, and 67.72%, respectively. However, Heilongjiang Province still needs to increase nitrogen fertilizer application by 44.20% to address soil nitrogen depletion. Conversely, Tibet and Qinghai, with high organic fertilizer yields, lower chemical fertilizer usage, and low nitrogen loss coefficients, are well-suited for organic agriculture development. For areas with high organic fertilizers usage and a risk of fertilizer loss, we recommend implementing the organic-inorganic mixed fertilization planting mode.
Collapse
Affiliation(s)
- Bolin Li
- College of Resource and Environmental Science, Jilin Agricultural University, Changchun, 130118, China
| | - Li Yan
- College of Resource and Environmental Science, Jilin Agricultural University, Changchun, 130118, China.
| | - Wenjing Zhang
- Chinese Academy for Environmental Planning, Beijing, 100000, China
| |
Collapse
|
158
|
Lu Z, Zhou Y, Li Y, Li C, Lu M, Sun X, Luo Z, Zhao J, Fan M. Effects of partial substitution of chemical fertilizer with organic manure on the activity of enzyme and soil bacterial communities in the mountain red soil. Front Microbiol 2023; 14:1234904. [PMID: 37736094 PMCID: PMC10509364 DOI: 10.3389/fmicb.2023.1234904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/24/2023] [Indexed: 09/23/2023] Open
Abstract
Introduction The partial substitution of chemical fertilizer with organic manure takes on a critical significance to enhancing soil quality and boosting sustainable agricultural development. However, rare research has studied the effects of partial substitution of chemical fertilizer with organic manure on soil bacterial community diversity and enzyme activity in maize field in the mountain red soil region of Yunnan. Methods In this study, four treatments were set up in which chemical fertilizer (the application rates of N, P2O5 and K2O were 240, 75 and 75 kg·ha-1, respectively) was substituted by 10% (M10), 20% (M20), 30% (M30) and 40% (M40) of organic manure with equal nitrogen, as well as two control treatments of single application of chemical fertilizer (M0) and no fertilization (CK). The maize (Zea mays L.) crop was sown as a test crop in May 2018. The effects of partial substitution of chemical fertilizer with organic manure on soil physicochemical properties, soil bacterial community diversity and enzyme activity were studied. Results The activities of Cellulase (CBH), Invertase (INV) and β-glucosidase (BG) increased with the increase of organic manure substitution ratio. The activities of β-1,4-N-acetylglucosaminidase (NAG), Urease (URE), and leucine aminopeptidase (LAP) also had the same trend, but the highest activities were 159.92 mg·g-1·h-1, 66.82 mg·g-1·h-1 and 143.90 mg·g-1·h-1 at 30% substitution ratio. Compared with CK and M0 treatments, Shannon index increased notably by 82.91%-116.74% and 92.42%-128.01%, respectively, at the organic manure substitution ratio ranging from 10% to 40%. Chao1 and ACE index increased significantly at the organic manure substitution ratio ranging from 10% to 30%. Proteobacteria was the dominant phylum in all treatments, the relative abundance of Proteobacteria decreased as the organic manure substitution ratio increased. Redundancy analysis showed that microbial biomass C was the main factor affecting the bacterial community composition under partial replacement of chemical fertilizer treatment, while Actinobacteria was the main factor affecting the enzyme activity. In addition, the maize yield of M30 and M40 treatments was significantly higher than that of CK and M0-M20 treatments, and the yield of M30 treatment was the highest, reaching 7652.89 kg·ha-1. Conclusion Therefore, the partial substitution of chemical fertilizer with organic manure can improve soil biological characteristics, while increasing bacterial community diversity and soil enzyme activity. Therefore, a thirty percent organic manure substitution was determined as the optimal substitution ratio for maize farmland in the mountain red soil area of Yunnan, China.
Collapse
Affiliation(s)
- Zerang Lu
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
| | - Yun Zhou
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
- College of Ecology and Environment, Yunnan University, Kunming, China
| | - Yongmei Li
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
| | - Chunpei Li
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
| | - Mei Lu
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
| | - Xuemei Sun
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
| | - Zhizhang Luo
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
| | - Jixia Zhao
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
| | - Maopan Fan
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
159
|
Masood JAIS, Chakravarthy NSK, Abd-Elkader OH, Ahamed A, Mohaideen AMK, Sugumaran V. A microbiological identification and recovery actions of critical symptoms of anammox image bacteria. Prev Med 2023; 174:107620. [PMID: 37451554 DOI: 10.1016/j.ypmed.2023.107620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/01/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Currently, the risks posed by bacteria are becoming increasingly important. It now appears that the cell wall of Anammox image bacteria is very different from what has been generally considered for many years. Not every textbook contains the peptidoglycan on the cell wall of Anammox image bacteria - the sugar-protein chain that strengthens the cells of most bacteria. Most researchers in this Anammox image bacteria diseased identification wanted to find out what gave the Anammox image cell its stability. It used powerful cryo-electron microscopes to examine the bacterial cell wall and find the exact structure of the peptidoglycan. A new algorithm is proposed to discover that Anammox image bacteria contain peptidoglycan, which completes a theory in microbiology. The identification of different diseases is listed, and the proposed model compares the exact results while comparing the parameters like accuracy, precision, recall, and F1-Score. Keywords: Anammox image bacteria, cell wall, cell stability, cryo-electron, microscope images, accuracy, precision, recall, F1-score.
Collapse
Affiliation(s)
- Jafar Ali Ibrahim Syed Masood
- Department of Internet of Things, School of Computer Science and Engineering, Vellore Institute of Technology, Vellore 632 014, Tamilnadu, India.
| | - N S Kalyan Chakravarthy
- Center for Data Science, School of Computer Science and Engineering, QIS College of Engineering and Technology, Ongole 523272, Andhra Pradesh, India.
| | - Omar H Abd-Elkader
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Anis Ahamed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | | | - Vijayan Sugumaran
- Department of Decision and Information Sciences, School of Business Administration, Oakland University, Rochester, MI 48309, USA..
| |
Collapse
|
160
|
Chen P, Feng L, Yang F, Raza MA. Editorial: Ecological, efficient and low-carbon cereal-legume intercropping systems. FRONTIERS IN PLANT SCIENCE 2023; 14:1273675. [PMID: 37692440 PMCID: PMC10484646 DOI: 10.3389/fpls.2023.1273675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 08/14/2023] [Indexed: 09/12/2023]
Affiliation(s)
- Ping Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Lingyang Feng
- Institute of Advanced Agricultural Sciences, Peking University, Weifang, Shandong, China
| | - Feng Yang
- College of Agronomy, Sichuan Agricultural University/Sichuan Engineering Research Center for Crop Strip Intercropping System/Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture and Rural Affair, Chengdu, Sichuan, China
| | - Muhammad Ali Raza
- National Research Center of Intercropping, Islamia University of Bahawalpur, Bahawalpur, Pakistan
- Gansu Academy of Agricultural Sciences, Lanzhou, Gansu, China
| |
Collapse
|
161
|
Li X, Chen D, Carrión VJ, Revillini D, Yin S, Dong Y, Zhang T, Wang X, Delgado-Baquerizo M. Acidification suppresses the natural capacity of soil microbiome to fight pathogenic Fusarium infections. Nat Commun 2023; 14:5090. [PMID: 37607924 PMCID: PMC10444831 DOI: 10.1038/s41467-023-40810-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/11/2023] [Indexed: 08/24/2023] Open
Abstract
Soil-borne pathogens pose a major threat to food production worldwide, particularly under global change and with growing populations. Yet, we still know very little about how the soil microbiome regulates the abundance of soil pathogens and their impact on plant health. Here we combined field surveys with experiments to investigate the relationships of soil properties and the structure and function of the soil microbiome with contrasting plant health outcomes. We find that soil acidification largely impacts bacterial communities and reduces the capacity of soils to combat fungal pathogens. In vitro assays with microbiomes from acidified soils further highlight a declined ability to suppress Fusarium, a globally important plant pathogen. Similarly, when we inoculate healthy plants with an acidified soil microbiome, we show a greatly reduced capacity to prevent pathogen invasion. Finally, metagenome sequencing of the soil microbiome and untargeted metabolomics reveals a down regulation of genes associated with the synthesis of sulfur compounds and reduction of key traits related to sulfur metabolism in acidic soils. Our findings suggest that changes in the soil microbiome and disruption of specific microbial processes induced by soil acidification can play a critical role for plant health.
Collapse
Affiliation(s)
- Xiaogang Li
- State Key Laboratory of Tree Genetics and Breeding, College of Ecology and Environment, Nanjing Forestry University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Dele Chen
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Shanghai, China
| | - Víctor J Carrión
- Microbial Biotechnology, Institute of Biology, Leiden University, Leiden, the Netherlands
- Departamento de Microbiología, Facultad de Ciencias, Campus Universitario de Teatinos s/n, Universidad de Málaga, Málaga, Spain
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Instituto de Hortofruticultura Subtropical y Mediterránea La Mayora (IHSM) UMA-CSIC, 29010, Málaga, Spain
| | - Daniel Revillini
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Sevilla, Spain
| | - Shan Yin
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Shanghai, China
| | - Yuanhua Dong
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Taolin Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Xingxiang Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China.
- Ecological Experimental Station of Red Soil, Chinese Academy of Sciences, Yingtan, China.
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Sevilla, Spain.
| |
Collapse
|
162
|
Ullah S, Raza MM, Abbas T, Guan X, Zhou W, He P. Responses of soil microbial communities and enzyme activities under nitrogen addition in fluvo-aquic and black soil of North China. Front Microbiol 2023; 14:1249471. [PMID: 37664123 PMCID: PMC10469899 DOI: 10.3389/fmicb.2023.1249471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 07/28/2023] [Indexed: 09/05/2023] Open
Abstract
This research investigates the impact of long-term nitrogen (N) addition on fluvo-aquic and black soils in north China, with a focus on soil microbial communities and enzyme activities. In each site, there were three N fertilization treatments, i.e., control, moderate-N, and high-N. Phospholipid Fatty Acid Analysis was employed to analyze the microbial community composition, and enzyme activities related to N, carbon (C), and phosphorus (P) cycling were assessed. The results showed that increasing N fertilization levels led to higher soil organic carbon (SOC) and total N (TN) concentrations, indicating enhanced nutrient availability. N fertilization reduced soil pH across both soils, with a more pronounced acidification effect observed in the black soil. Across both soils, N addition increased maize yield, but the higher crop yield was attained in moderate-N rate compared with high-N rate. Microbial community composition analysis revealed that N fertilization induced shifts in the relative abundances of specific microbial groups. The black soil exhibited pronounced shifts in the microbial groups compared to the fluvo-aquic soil, i.e., decreased fungal abundance and fungi: bacteria ratio in response to N input. In addition, the application of N fertilizer led to an elevated ratio of gram-positive to gram-negative (GP:GN) bacteria, but this effect was observed only in black soil. N fertilization had an impact on the enzyme activities related to C, N, and P cycling in both soil types, but black soil showed more pronounced changes in enzyme activities. Permutational multivariate analysis of variance indicated that soil types rather than N fertilization mediated the response of the soil microbial community and enzyme activities. Partial least square path modeling demonstrated that soil pH was the only key driver impacting soil microbial groups and enzyme activities in both soils. In conclusion, our findings highlighted that N fertilization exerted more pronounced impacts on soil biochemical properties, microbial community composition, and enzyme activities in black soil furthermore, moderate N rate resulted in higher crop productivity over high N rate.
Collapse
Affiliation(s)
- Sami Ullah
- Ministry of Agriculture Key Laboratory of Plant Nutrition and Fertilizer, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Science, Beijing, China
- ORIC, University of Baltistan, Skardu, Pakistan
| | - Muhammad Mohsin Raza
- Soil Environment and Chemistry Program, Land Resources Research Institute National Agriculture Research Center, Pakistan Agricultural Research Council, Islamabad, Pakistan
| | - Tanveer Abbas
- Ministry of Agriculture Key Laboratory of Plant Nutrition and Fertilizer, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Science, Beijing, China
| | - Xian Guan
- Mosaic Fertilizers (Beijing) Co., Ltd, Beijing, China
| | - Wei Zhou
- Ministry of Agriculture Key Laboratory of Plant Nutrition and Fertilizer, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Science, Beijing, China
| | - Ping He
- Ministry of Agriculture Key Laboratory of Plant Nutrition and Fertilizer, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Science, Beijing, China
| |
Collapse
|
163
|
Yang Y, Yang L, Liu B, Wang Z, Yu Y, Bo L, Li B. Accumulation, migration and health risk of trace metals in a soil-strawberry-human system of the Yangtze River Delta region, China. ENVIRONMENTAL RESEARCH 2023; 231:116310. [PMID: 37270079 DOI: 10.1016/j.envres.2023.116310] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/11/2023] [Accepted: 05/31/2023] [Indexed: 06/05/2023]
Abstract
Growing concern has been paid to metals in soil-strawberry system. In contrast, few attempts have been made to investigate bioaccessible metals in strawberries and further assess health risk based on bioaccessible metals. Moreover, the connections between soil parameters (e.g. soil pH, organic matter (OM), total and bioavailable metals) and metal transfer in soil-strawberry-human system still need to be systematically investigated as well. Considering that strawberries are extensively grown under plastic-shed conditions in China, a total of 18 paired plastic-shed soil (PSS) and strawberry samples were taken from the strawberry bases located in the Yangtze River Delta of China as a case study to assess accumulation status, migration and health risk of Cd, Cr, Cu, Ni, Pb, and Zn in the PSS-strawberry-human system. Overall, heavy application of organic fertilizers induced accumulation and contamination of Cd and Zn in PSS. In particular, 55.6% and 44.4% of PSS samples had considerable and moderate ecological risk caused by Cd, respectively. Despite no metal pollution in strawberry, PSS acidification mainly caused by high nitrogen input promoted Cd and Zn uptake by strawberry and enhanced bioaccessible concentrations of Cd, Cu, and Ni. In contrast, the increased soil OM caused by organic fertilizer application decreased Zn migration in PSS-strawberry-human system. Additionally, bioaccessible metals in strawberries induced limited non-cancer and cancer risk. To mitigate accumulation of Cd and Zn in PSS and metal transfer in the food chain, feasible fertilization strategies should be developed and carried out.
Collapse
Affiliation(s)
- Yunxi Yang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Lanqin Yang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China.
| | - Benle Liu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China
| | - Zehao Wang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Yuechen Yu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Luji Bo
- Key Laboratory of Agro-Environment of Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Shandong Academy of Agricultural Sciences, Ji'nan, 250100, People's Republic of China
| | - Bing Li
- No.801 Hydrogeology and Engineering Geology Brigade, Shandong Exploration Bureau of Geology and Mineral Resources, Ji'nan, 250014, People's Republic of China
| |
Collapse
|
164
|
Liu X, Liu H, Zhang Y, Liu C, Liu Y, Li Z, Zhang M. Organic amendments alter microbiota assembly to stimulate soil metabolism for improving soil quality in wheat-maize rotation system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 339:117927. [PMID: 37075633 DOI: 10.1016/j.jenvman.2023.117927] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 03/20/2023] [Accepted: 04/10/2023] [Indexed: 05/03/2023]
Abstract
Straw retention (SR) and organic fertilizer (OF) application contribute to improve soil quality, but it is unclear how the soil microbial assemblage under organic amendments mediate soil biochemical metabolism pathways to perform it. This study collected soil samples from wheat field under different application of fertilizer (chemical fertilizer, as control; SR, and OF) in North China Plain, and systematically investigated the interlinkages among microbe assemblages, metabolites, and physicochemical properties. Results showed that the soil organic carbon (SOC) and permanganate oxidizable organic carbon (LOC) in soil samples followed the trend as OF > SR > control, and the activity of C-acquiring enzymes presented significantly positive correlation with SOC and LOC. In organic amendments, bacteria and fungi community were respectively dominated by deterministic and stochastic processes, while OF exerted more selective pressure on soil microbe. Compared with SR, OF had greater potential to boost the microbial community robustness through increasing the natural connectivity and stimulating fungal taxa activities in inter-kingdom microbial networks. Altogether 67 soil metabolites were significantly affected by organic amendments, most of them belonged to benzenoids (Ben), lipids and lipid-like molecules (LL), and organic acids and derivatives (OA). These metabolites were mainly derived from lipid and amino acid metabolism pathways. A list of keystone genera such as stachybotrys and phytohabitans were identified as important to soil metabolites, SOC, and C-acquiring enzyme activity. Structural equation modeling showed that soil quality properties were closely associated with LL, OA, and PP drove by microbial community assembly and keystone genera. Overall, these findings suggested that straw and organic fertilizer might drive keystone genera dominated by determinism to mediate soil lipid and amino acid metabolism for improving soil quality, which provided new insights into understanding the microbial-mediated biological process in amending soil quality.
Collapse
Affiliation(s)
- Xueqing Liu
- State Key Laboratory of Plant Environmental Resilience, Ministry of Education, Key Laboratory of Farming System, Ministry of Agriculture of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Hongrun Liu
- State Key Laboratory of Plant Environmental Resilience, Ministry of Education, Key Laboratory of Farming System, Ministry of Agriculture of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yushi Zhang
- State Key Laboratory of Plant Environmental Resilience, Ministry of Education, Key Laboratory of Farming System, Ministry of Agriculture of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
| | - Churong Liu
- State Key Laboratory of Plant Environmental Resilience, Ministry of Education, Key Laboratory of Farming System, Ministry of Agriculture of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yanan Liu
- State Key Laboratory of Plant Environmental Resilience, Ministry of Education, Key Laboratory of Farming System, Ministry of Agriculture of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Zhaohu Li
- State Key Laboratory of Plant Environmental Resilience, Ministry of Education, Key Laboratory of Farming System, Ministry of Agriculture of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Mingcai Zhang
- State Key Laboratory of Plant Environmental Resilience, Ministry of Education, Key Laboratory of Farming System, Ministry of Agriculture of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
165
|
Lin BJ, Li RC, Liu KC, Pelumi Oladele O, Xu ZY, Lal R, Zhao X, Zhang HL. Management-induced changes in soil organic carbon and related crop yield dynamics in China's cropland. GLOBAL CHANGE BIOLOGY 2023; 29:3575-3590. [PMID: 37021594 DOI: 10.1111/gcb.16703] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/27/2023] [Indexed: 06/06/2023]
Abstract
Enhancing soil organic carbon (SOC) sequestration and food supply are vital for human survival when facing climate change. Site-specific best management practices (BMPs) are being promoted for adoption globally as solutions. However, how SOC and crop yield are related to each other in responding to BMPs remains unknown. Here, path analysis based on meta-analysis and machine learning was conducted to identify the effects and potential mechanisms of how the relationship between SOC and crop yield responds to site-specific BMPs in China. The results showed that BMPs could significantly enhance SOC and maintain or increase crop yield. The maximum benefits in SOC (30.6%) and crop yield (79.8%) occurred in mineral fertilizer combined with organic inputs (MOF). Specifically, the optimal SOC and crop yield would be achieved when the areas were arid, soil pH was ≥7.3, initial SOC content was ≤10 g kg-1 , duration was >10 years, and the nitrogen (N) input level was 100-200 kg ha-1 . Further analysis revealed that the original SOC level and crop yield change showed an inverted V-shaped structure. The association between the changes in SOC and crop yield might be linked to the positive role of the nutrient-mediated effect. The results generally suggested that improving the SOC can strongly support better crop performance. Limitations in increasing crop yield still exist due to low original SOC level, and in regions where the excessive N inputs, inappropriate tillage or organic input is inadequate and could be diminished by optimizing BMPs in harmony with site-specific conditions.
Collapse
Affiliation(s)
- Bai-Jian Lin
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- Key Laboratory of Farming System, Ministry of Agriculture and Rural Affairs of China, Beijing, China
| | - Ruo-Chen Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- Key Laboratory of Farming System, Ministry of Agriculture and Rural Affairs of China, Beijing, China
| | - Ke-Chun Liu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- Key Laboratory of Farming System, Ministry of Agriculture and Rural Affairs of China, Beijing, China
| | - Olatunde Pelumi Oladele
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- Key Laboratory of Farming System, Ministry of Agriculture and Rural Affairs of China, Beijing, China
| | - Zhi-Yu Xu
- Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Rattan Lal
- CFAES Rattan Lal Center for Carbon Management and Sequestration, School of Environment and Natural Resources, The Ohio State University, Columbus, Ohio, USA
| | - Xin Zhao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- Key Laboratory of Farming System, Ministry of Agriculture and Rural Affairs of China, Beijing, China
| | - Hai-Lin Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- Key Laboratory of Farming System, Ministry of Agriculture and Rural Affairs of China, Beijing, China
| |
Collapse
|
166
|
Du Y, Liu X, Zhang L, Zhou W. Drip irrigation in agricultural saline-alkali land controls soil salinity and improves crop yield: Evidence from a global meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163226. [PMID: 37019232 DOI: 10.1016/j.scitotenv.2023.163226] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 05/27/2023]
Abstract
Saline-alkali land, a precious candidate arable land resources, plays a critical role in achieving agricultural sustainability. Drip irrigation (DI) is an effective method for rationalizing of saline-alkali land. Nevertheless, the inapposite application of DI increases the risk of secondary salinization, significantly leading to severe soil degradation and yield decline. In this study, we conducted a meta-analysis to quantify the impacts of DI on soil salinity and crop yield to determine the appropriate DI management strategies for an irrigated agricultural system in saline-alkali land. The results showed that DI generally decreased soil salinity in the root zone by 37.7 % and increased crop yield by 37.4 % relative to flooding irrigation (FI). Drip emitters with a flow rate of 2-4 L h-1 were recommended to obtain positive effects on soil salinity control and agricultural production when an irrigation quota was below 50 % crop evapotranspiration (ETc), and the salinity of irrigation water was between 0.7 and 2 dS m-1. Further, we also found that drip-irrigated cotton had a higher yield on fine-textured saline soils. Our study provides scientific recommendations for applying DI technology worldwide in the saline-alkali land.
Collapse
Affiliation(s)
- Yaqing Du
- College of Water Resources and Architecture Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Xufei Liu
- College of Water Resources and Architecture Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Lin Zhang
- Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, PR China.
| | - Wei Zhou
- College of Water Resources and Architecture Engineering, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| |
Collapse
|
167
|
Gu L, Mu X, Qi J, Tang B, Zhen W, Xia L. Nitrogen reduction combined with ET c irrigation maintained summer maize yield and increased water and nitrogen use efficiency. FRONTIERS IN PLANT SCIENCE 2023; 14:1180734. [PMID: 37426974 PMCID: PMC10324978 DOI: 10.3389/fpls.2023.1180734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/06/2023] [Indexed: 07/11/2023]
Abstract
Introduction High rainfall and excessive urea application are counterproductive to summer maize growth requirements and lower grain yield and water/nitrogen (N) use efficiency. The objective of this study was to determine whether ETc irrigation based on summer maize demand and reduced nitrogen rate in the Huang Huai Hai Plain increased water and nitrogen use efficiency without sacrificing yield. Methods To achieve this, we conducted an experiment with four irrigation levels [ambient rainfall (I0) and 50% (I1), 75% (I2), and 100% (I3) of actual crop evapotranspiration (ETc)] and four nitrogen rates [no nitrogen fertilizer (N0), recommended nitrogen rate of urea (NU), recommended nitrogen rate of blending controlled-release urea with conventional urea fertilizer (BCRF) (NC), and reduced nitrogen rate of BCRF (NR)] in 2016-2018. Results The results show that reduced irrigation and nitrogen rate reduced Fv/Fm, 13C-photosynthate, and nitrogen accumulation both in the kernel and plant. I3NC and I3NU accumulated higher 13C-photosynthate, nitrogen, and dry matter. However, 13C-photosynthate and nitrogen distribution to the kernel was decreased from I2 to I3 and was higher in BCRF than in urea. I2NC and I2NR promoted their distribution to the kernel, resulting in a higher harvest index. Compared with I3NU, I2NR increased root length density by 32.8% on average, maintaining considerable leaf Fv/Fm and obtaining similar kernel number and kernel weight. The higher root length density of I2NR of 40-60 cm promoted 13C-photosynthate and nitrogen distribution to the kernel and increased the harvest index. As a result, the water use efficiency (WUE) and nitrogen agronomic use efficiency (NAUE) in I2NR increased by 20.5%-31.9% and 11.0%-38.0% than that in I3NU, respectively. Discussion Therefore, 75%ETc deficit irrigation and BCRF fertilizer with 80% nitrogen rate improved root length density, maintained leaf Fv/Fm in the milking stage, promoted 13C-photosynthate, and distributed nitrogen to the kernel, ultimately providing a higher WUE and NAUE without significantly reducing grain yield.
Collapse
Affiliation(s)
- Limin Gu
- Cereal Institute, Henan Academy of Agricultural Sciences, Zhengzhou, China
- State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Xinyuan Mu
- Cereal Institute, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Jianshuang Qi
- Cereal Institute, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Baojun Tang
- Cereal Institute, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Wenchao Zhen
- State Key Laboratory of North China Crop Improvement and Regulation/Key Laboratory of Crop Growth Regulation of Hebei Province, College of Agronomy, Hebei Agricultural University, Baoding, China
- Key Laboratory of North China Water-saving Agriculture, Ministry of Agriculture and Rural Affairs, Baoding, Hebei, China
| | - Laikun Xia
- Cereal Institute, Henan Academy of Agricultural Sciences, Zhengzhou, China
| |
Collapse
|
168
|
Zhou L, Wu F, Meng Y, Byrne P, Ghomshei M, Abbaspour KC. Modeling transport and fate of heavy metals at the watershed scale: State-of-the-art and future directions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163087. [PMID: 36996980 DOI: 10.1016/j.scitotenv.2023.163087] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 05/13/2023]
Abstract
A predictive understanding of the source-specific (e.g., point and diffuse sources) land-to-river heavy metal (HM) loads and HM dynamics in rivers is essential for mitigating river pollution and developing effective river basin management strategies. Developing such strategies requires adequate monitoring and comprehensive models based on a solid scientific understanding of the watershed system. However, a comprehensive review of existing studies on the watershed-scale HM fate and transport modeling is lacking. In this review, we synthesize the recent developments in the current generation of watershed-scale HM models, which cover a wide range of functionalities, capabilities, and spatial and temporal scales (resolutions). Existing models, constructed at various levels of complexity, have their strengths and weaknesses in supporting diverse intended uses. Additionally, current challenges in the application of watershed HM modeling are covered, including the representation of in-stream processes, organic matter/carbon dynamics and mitigation practices, the issues of model calibration and uncertainty analysis, and the balance between model complexity and available data. Finally, we outline future research requirements regarding modeling, strategic monitoring, and their combined use to enhance model capabilities. In particular, we envisage a flexible framework for future watershed-scale HM models with varying degrees of complexity to accommodate the available data and specific applications.
Collapse
Affiliation(s)
- Lingfeng Zhou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Yaobin Meng
- School of National Safety and Emergency Management, Beijing Normal University, Beijing 100875, China
| | - Patrick Byrne
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Mory Ghomshei
- Department of Mining and Mineral Resources Engineering, British Columbia Institute of Technology, Canada
| | | |
Collapse
|
169
|
Xia H, Riaz M, Tang X, Yan L, El-Desouki Z, Li Y, Wang X, Cuncang J. Insight into mechanisms of biochar-fertilizer induced of microbial community and microbiology of nitrogen cycle in acidic soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 336:117602. [PMID: 36967687 DOI: 10.1016/j.jenvman.2023.117602] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 02/18/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Biochar has been shown to affect the nitrogen (N) cycle in soil, however, it is unknown how this occurs. Therefore, we used metabolomics, high-throughput sequencing, and quantitative PCR to explore biochar and nitrogen fertilizer effects on the mitigation mechanisms of adverse environments in acidic soil. In the current research, we used acidic soil and maize straw biochar (pyrolyzed at 400 °C with limited oxygen). Three maize straw biochar levels (B1; 0t ha-1, B2; 45 t ha-1, and B3; 90 t ha-1) along with three N fertilizer (urea) levels (N1; 0 kg ha-1, N2; 225 kg ha-1 mg kg-1, and N3; 450 kg ha-1 mg kg-1) were employed in a sixty-day pot experiment. We found that the formation of NH+ 4-N was faster at 0-10 days, while the formation of NO- 3-N occurred at 20-35 days. Furthermore, the combined application of biochar and N fertilizer most effectively boosted soil inorganic N contents compared to biochar and N fertilizer treatments alone. The B3 treatment increased the total N and total inorganic N by 0.2-24.2% and 55.2-91.7%, respectively. Soil microorganism, N fixation, and nitrification capabilities increased with biochar and N fertilizer addition in terms of N-cycling-functional genes. Biochar-N fertilizer had a greater impact on the soil bacterial community and their diversity and richness. Metabolomics revealed 756 distinct metabolites, including 8 substantially upregulated metabolites and 21 significantly downregulated metabolites. A significant amount of lipids and organic acids were formed by biochar-N fertilizer treatments. Thus, biochar and N fertilizer triggered soil metabolism by affecting bacterial community structure, and N-cycling of the soil micro-ecological environment.
Collapse
Affiliation(s)
- Hao Xia
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China.
| | - Muhammad Riaz
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, PR China.
| | - Xiufeng Tang
- Key Laboratory of Geographic Information Science (Ministry of Education), School of Geographic Sciences, East China Normal University, Shanghai, 200241, PR China.
| | - Lei Yan
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China.
| | - Zeinab El-Desouki
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; Department of Soil Sciences, Faculty of Agriculture, Ain Shams University, Cairo, 11241, Egypt.
| | - Yuxuan Li
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China.
| | - Xiangling Wang
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; The Key Laboratory of Oasis Ecoagriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang, 832000, PR China.
| | - Jiang Cuncang
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China; The Key Laboratory of Oasis Ecoagriculture, Xinjiang Production and Construction Corps, Shihezi University, Shihezi, Xinjiang, 832000, PR China.
| |
Collapse
|
170
|
Yu W, Ren T, Duan Y, Huai S, Zhang Q, Cai Z, Lu C. Mechanism of Al toxicity alleviation in acidic red soil by rice-straw hydrochar application and comparison with pyrochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162849. [PMID: 36931515 DOI: 10.1016/j.scitotenv.2023.162849] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 05/06/2023]
Abstract
In the past decade, biochar has been widely regarded as a new type of soil conditioner that can effectively control soil acidification and alleviate Al toxicity. Hydrochar is identified as a more economical carbon material than pyrochar, but its effect on Al toxicity and the associated mechanism have not been studied. Thus, a two-stage indoor incubation experiment was conducted to investigate the effect of rice-straw hydrochar (HC, application rate: 1/2/3 %) on maize seedling root growth, soil solution Al activity, soil exchangeable Al and pH buffering ability in acidic red soils from two sites. We also used pyrochar (PC, application rate: 3 %) produced from the same rice straw for comparison. Except for HC-1 %, both hydrochar and pyrochar addition significantly stimulated relative root elongation (136.36 % ~ 284.09 %), diminished the cell death ratio (27.96 % ~ 85.56 %) and Al content in root tips (18.80 % ~ 80.11 %) by decreasing the total Al content (44.78 % ~ 76.10 %) and the proportion of Al3+ species (27 % ~ 32 %) in soil solution. Hydrochar did not significantly promote the soil pH buffer capacity (pH-BC) or effective cation exchange capacity (ECEC), while PC-3 % did. The DOC (dissolved organic carbon) content of soil solution was dramatically elevated by 203.9 % ~ 783.2 % after hydrochar addition. Hydrochar mitigates Al activity in soil solution mainly through Al-DOC complexation and adsorption, thus suppressing the Al toxicity of maize roots. Hydrochar may be an economical soil amendment for ameliorating Al toxicity despite its overall alleviation effect on Al toxicity being lower than pyrochar.
Collapse
Affiliation(s)
- Weijia Yu
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China; College of Land Science and Technology, China Agricultural University, Beijing, China
| | - Tusheng Ren
- College of Land Science and Technology, China Agricultural University, Beijing, China
| | - Yinghua Duan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shengchang Huai
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingyue Zhang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zejiang Cai
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Changai Lu
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
171
|
Qin X, Li X, Xiao J, Wu Q, Li Y, Li C, Jiang D, Tang T, Nan W, Liang Y, Zhang H. Transcriptomic and Physiological Analyses of Two Rice Restorer Lines under Different Nitrogen Supplies Provide Novel Insights into Hybrid Rice Breeding. PLANTS (BASEL, SWITZERLAND) 2023; 12:2276. [PMID: 37375901 DOI: 10.3390/plants12122276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023]
Abstract
Improving plant nitrogen-use efficiency (NUE) has great significance for various crops, particularly in hybrid breeding. Reducing nitrogen inputs is key to achieving sustainable rice production and mitigating environmental problems. In this study, we analyzed the transcriptomic and physiological changes in two indica restorer lines (Nanhui511 [NH511] and Minghui23 [MH23]) under high nitrogen (HN) and low nitrogen (LN) conditions. Compared to MH23, NH511 was more sensitive to different nitrogen supplies and exhibited higher nitrogen uptake and NUE under HN conditions by increasing lateral root and tiller numbers in the seedling and maturation stages, respectively. NH511 also exhibited a lower survival rate than MH23 when planted in a chlorate-containing hydroponic solution, indicating its HN uptake ability under different nitrogen-supply conditions. Transcriptomic analysis showed that NH511 has 2456 differentially expressed genes, whereas MH23 had only 266. Furthermore, these genes related to nitrogen utilization showed differential expression in NH511 under HN conditions, while the opposite was observed in MH23. Our findings revealed that NH511 could be regarded as elite rice and used for breeding high-NUE restorer lines by regulating and integrating nitrogen-utilization genes, which provides novel insights for the cultivation of high-NUE hybrid rice.
Collapse
Affiliation(s)
- Xiaojian Qin
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
- Key Laboratory of Molecular Biology of Plants Environmental Adaptations, Chongqing Normal University, Chongqing 401331, China
| | - Xiaowei Li
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Juan Xiao
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Qian Wu
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Yuntong Li
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Cuiping Li
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Dan Jiang
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Tingting Tang
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Wenbin Nan
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
- Key Laboratory of Molecular Biology of Plants Environmental Adaptations, Chongqing Normal University, Chongqing 401331, China
| | - Yongshu Liang
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
- Key Laboratory of Molecular Biology of Plants Environmental Adaptations, Chongqing Normal University, Chongqing 401331, China
| | - Hanma Zhang
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
- Key Laboratory of Molecular Biology of Plants Environmental Adaptations, Chongqing Normal University, Chongqing 401331, China
| |
Collapse
|
172
|
Bhuiyan MSI, Rahman A, Loladze I, Das S, Kim PJ. Subsurface fertilization boosts crop yields and lowers greenhouse gas emissions: A global meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162712. [PMID: 36921862 DOI: 10.1016/j.scitotenv.2023.162712] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/27/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
The subsurface application (SA) of nitrogenous fertilizers is a potential solution to mitigate climate change and improve food security. However, the impacts of SA technology on greenhouse gas (GHG) emissions and agronomic yield are usually evaluated separately and their results are inconsistent. To address this gap, we conducted a meta-analysis synthesizing 40 peer-reviewed studies on the effects of SA technology on GHG and ammonia (NH3) emissions, nitrogen uptake (NU), crop yield, and soil residual NO3-N in rice paddies and upland cropping system. Compared to the surface application of N, SA technology significantly increased rice yields by 32 % and crop yield in upland systems by 62 %. The largest SA-induced increases in crop yield were found at low N input rates (<100 kg Nha-1) in rice paddies and medium N input rates (100-200 kg Nha-1) in upland systems, suggesting that soil moisture is a key factor determining the efficiency of SA technology. SA treatments increased yields by more at reduced fertilizer rates (~30 % less N), a shallow depth (<10 cm), and with urea in both cropping systems than at the full (recommended) N rate, a deeper depth (10-20 cm), and with ammonical fertilizer. SA treatments significantly increased NU in rice paddies (34 %) and upland systems (18 %), and NO3-N (40 %) in paddyland; however, NO3-N decreased (28 %) in upland conditions. Ammonia mitigation was greater in paddyland than in upland conditions. SA technology decreased the carbon footprint (CF) in paddyland by 29 % and upland systems by 36 %, and overall by 33 %. Compared with broadcasting, SA significantly reduced CH4 emissions by 16 %, N2O emissions by 30 %, and global warming potential (GWP) by 10 % in paddy cultivation. Given SA increased grain yield and NU while reducing NH3, CF, and GWP, this practice provides dual benefits - mitigating climate change and ensuring food security.
Collapse
Affiliation(s)
- Mohammad Saiful Islam Bhuiyan
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 660-701, South Korea; Department of Soil Science, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Azizur Rahman
- School of Computing, Mathematics and Engineering, Charles Sturt University, Wagg Wagga, NSW 2678, Australia
| | - Irakli Loladze
- Bryan College of Health Science, Lincoln, NE 68506, United States; School of Mathematical and Statistical Sciences, Arizona State University, United States
| | - Suvendu Das
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 660-701, South Korea
| | - Pil Joo Kim
- Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju 660-701, South Korea; Division of Applied Life Science, Gyeongsang National University, Jinju 660-701, South Korea.
| |
Collapse
|
173
|
Chen C, Xiao W, Chen HYH. Mapping global soil acidification under N deposition. GLOBAL CHANGE BIOLOGY 2023. [PMID: 37296534 DOI: 10.1111/gcb.16813] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023]
Abstract
Soil pH is critically important in regulating soil nutrients and thus influencing the biodiversity and ecosystem functions of terrestrial ecosystems. Despite the ongoing threat of nitrogen (N) pollution especially in the fast-developing regions, it remains unclear how increasing N deposition affects soil pH across global terrestrial ecosystems. By conducting a global meta-analysis with paired observations of soil pH under N addition and control from 634 studies spanning major types of terrestrial ecosystems, we show that soil acidification increases rapidly with N addition amount and is most severe in neutral-pH soils. Grassland soil pH decreases most strongly under high N addition while wetlands are the least acidified. By extrapolating these relationships to global mapping, we reveal that atmospheric N deposition leads to a global average soil pH decline of -0.16 in the past 40 years and regions encompassing Eastern United States, Southern Brazil, Europe, and South and East Asia are the hotspots of soil acidification under N deposition. Our results highlight that anthropogenically amplified atmospheric N deposition has profoundly altered global soil pH and chemistry. They suggest that atmospheric N deposition is a major threat to global terrestrial biodiversity and ecosystem functions.
Collapse
Affiliation(s)
- Chen Chen
- Faculty of Natural Resources Management, Lakehead University, Ontario, Thunder Bay, Canada
| | - Wenya Xiao
- School of the Environment and Safety Engineering, Jiangsu University, Jiangsu, Zhenjiang, China
| | - Han Y H Chen
- Faculty of Natural Resources Management, Lakehead University, Ontario, Thunder Bay, Canada
| |
Collapse
|
174
|
Qin X, Li X, Li C, Li Y, Wu Q, Wen H, Jiang D, Tang T, Nan W, Liang Y, Zhang H. Genome-wide identification of nitrate-responsive microRNAs by small RNA sequencing in the rice restorer cultivar Nanhui 511. FRONTIERS IN PLANT SCIENCE 2023; 14:1198809. [PMID: 37332718 PMCID: PMC10272429 DOI: 10.3389/fpls.2023.1198809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 05/18/2023] [Indexed: 06/20/2023]
Abstract
Rice productivity relies heavily on nitrogen fertilization, and improving nitrogen use efficiency (NUE) is important for hybrid rice breeding. Reducing nitrogen inputs is the key to achieving sustainable rice production and reducing environmental problems. Here, we analyzed the genome-wide transcriptomic changes in microRNAs (miRNAs) in the indica rice restorer cultivar Nanhui 511 (NH511) under high (HN) and low nitrogen (LN) conditions. The results showed that NH511 is sensitive to nitrogen supplies and HN conditions promoted the growth its lateral roots at the seedling stage. Furthermore, we identified 483 known miRNAs and 128 novel miRNAs by small RNA sequencing in response to nitrogen in NH511. We also detected 100 differentially expressed genes (DEGs), including 75 upregulated and 25 downregulated DEGs, under HN conditions. Among these DEGs, 43 miRNAs that exhibited a 2-fold change in their expression were identified in response to HN conditions, including 28 upregulated and 15 downregulated genes. Additionally, some differentially expressed miRNAs were further validated by qPCR analysis, which showed that miR443, miR1861b, and miR166k-3p were upregulated, whereas miR395v and miR444b.1 were downregulated under HN conditions. Moreover, the degradomes of possible target genes for miR166k-3p and miR444b.1 and expression variations were analyzed by qPCR at different time points under HN conditions. Our findings revealed comprehensive expression profiles of miRNAs responsive to HN treatments in an indica rice restorer cultivar, which advances our understanding of the regulation of nitrogen signaling mediated by miRNAs and provides novel data for high-NUE hybrid rice cultivation.
Collapse
Affiliation(s)
- Xiaojian Qin
- College of Life Sciences, Chongqing Normal University, Chongqing, China
- Key Laboratory of Molecular Biology of Plants Environmental Adaptations, Chongqing Normal University, Chongqing, China
| | - Xiaowei Li
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Cuiping Li
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Yuntong Li
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Qian Wu
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Huan Wen
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Dan Jiang
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Tingting Tang
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Wenbin Nan
- College of Life Sciences, Chongqing Normal University, Chongqing, China
- Key Laboratory of Molecular Biology of Plants Environmental Adaptations, Chongqing Normal University, Chongqing, China
| | - Yongshu Liang
- College of Life Sciences, Chongqing Normal University, Chongqing, China
- Key Laboratory of Molecular Biology of Plants Environmental Adaptations, Chongqing Normal University, Chongqing, China
| | - Hanma Zhang
- College of Life Sciences, Chongqing Normal University, Chongqing, China
- Key Laboratory of Molecular Biology of Plants Environmental Adaptations, Chongqing Normal University, Chongqing, China
| |
Collapse
|
175
|
Wang S, Zhen L, Hu Y. Crop Production and Security in Ningjin County of the North China Plain. Foods 2023; 12:foods12112196. [PMID: 37297440 PMCID: PMC10252609 DOI: 10.3390/foods12112196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/14/2023] [Accepted: 05/21/2023] [Indexed: 06/12/2023] Open
Abstract
Stable growth in grain production is a critical challenge to ensure food security in North China Plain (NCP), an area dominated by smallholder farming. Food production and security of NCP largely depend on how smallholders farm their land. This study took Ningjin County of the NCP as an example to describe the characteristics of crop planting structure and the changes in crop production based on household surveys, statistics, various documents, and literature by descriptive statistics, calculation of crop self-sufficiency, and curve fitting, and aimed to reveal crop security and the influencing factors of crop production at the household level. The results were as follows: (1) Wheat and maize sown area accounted for 61.69% and 47.96% of the total sown area of crops during 2000-2020, increasing at a rate of 3.42% and 5.93%, respectively. Their planted areas increased from 27.52% and 15.54% in 2000 to 47.82% and 44.75% in 2020, respectively. (2) The self-sufficiency rate of maize showed a significant upward trend and reached its peak in 2019. the self-sufficiency rate of wheat also showed an increasing trend, from 192.87% to 617.37%, which indicates that wheat and maize can meet food self-sufficiency and the per capita grain yield is in a safe state. (3) The trends on wheat yield and fertilizer initially grew, then decreased, closely resembling an inverted "U", while the maize yield showed a pattern of increasing first and then basically remaining stable, similar to an "S" shape. A turning point for fertilizer use (550 kg/ha) was identified, indicating the limits of fertilizer use to increase yield. The national agricultural production and environmental protection policies, continuous improvement of crop varieties, as well as the farmers' traditional practices have significant impacts on crop production. This study will enhance management practices for improved yield, which can support the integrated management of agricultural production in intensive agricultural areas.
Collapse
Affiliation(s)
- Shang Wang
- Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101408, China
- State Key Laboratory of Resources and Environmental Information System, Beijing 100101, China
| | - Lin Zhen
- Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101408, China
- Key Laboratory of Carrying Capacity Assessment for Resource and Environment, Ministry of Natural Resources, Beijing 100101, China
| | - Yunfeng Hu
- Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101408, China
- State Key Laboratory of Resources and Environmental Information System, Beijing 100101, China
| |
Collapse
|
176
|
Xu H, Liu M, Tang Y, Zhao F, Cao W, He M, Peng D, Dai X. Optimized management strategy increased grain yield, promoted nitrogen balance, and improved water productivity in winter wheat. FRONTIERS IN PLANT SCIENCE 2023; 14:1182568. [PMID: 37324712 PMCID: PMC10267738 DOI: 10.3389/fpls.2023.1182568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/28/2023] [Indexed: 06/17/2023]
Abstract
The increasing costs of agricultural production and environmental concerns reinforce the need to reduce resource inputs. Improvements in nitrogen (N) use efficiency (NUE) and water productivity (WP) are critical for sustainable agriculture. We aimed to optimize management strategy to increase wheat grain yield, promote N balance, and improve NUE and WP. A 3-year experiment was conducted with four integrated treatments: conventional practice treatment (CP); improvement of conventional practice treatment (ICP); high-yield management treatment (HY), which aimed for maximizing grain yield regardless of resource inputs cost; and integrated soil and crop system management treatment (ISM), which aimed for testing an optimal combination of sowing date, seeding rate, and fertilization and irrigation management. The average grain yield for ISM was 95.86% of that for HY and was 5.99% and 21.72% higher than that for ICP and CP, respectively. ISM promoted N balance as relatively higher aboveground N uptake, lower inorganic N residue, and lowest inorganic N loss. The average NUE for ISM was 4.15% lower than that for ICP and was remarkably higher than that for HY and CP by 26.36% and 52.37%, respectively. The increased soil water consumption under ISM was mainly due to its increased root length density. Along with a high level of grain yield, ISM obtained a relatively adequate water supply due to the effective use of soil water storage, thereby increasing the average WP by 3.63%-38.10% in comparison with other integrated management treatments. These results demonstrated that optimized management strategy (appropriately delaying sowing date, increasing seeding rate, and optimizing fertilization and irrigation management) used under ISM could promote N balance and improve WP while increasing grain yield and NUE in winter wheat. Therefore, ISM can be considered a recommendable management strategy in the target region.
Collapse
Affiliation(s)
- Haicheng Xu
- Shandong Facility Horticulture Bioengineering Research Center, Weifang University of Science and Technology, Weifang, China
| | - Mei Liu
- Shandong Facility Horticulture Bioengineering Research Center, Weifang University of Science and Technology, Weifang, China
| | - Yuhai Tang
- Shandong Facility Horticulture Bioengineering Research Center, Weifang University of Science and Technology, Weifang, China
| | - Fei Zhao
- Shandong Facility Horticulture Bioengineering Research Center, Weifang University of Science and Technology, Weifang, China
| | - Wenchao Cao
- Shandong Facility Horticulture Bioengineering Research Center, Weifang University of Science and Technology, Weifang, China
| | - Mingrong He
- State Key Laboratory of Crop Biology, Agronomy College of Shandong Agricultural University, Tai’an, China
| | - Dianliang Peng
- Shandong Facility Horticulture Bioengineering Research Center, Weifang University of Science and Technology, Weifang, China
| | - Xinglong Dai
- State Key Laboratory of Crop Biology, Agronomy College of Shandong Agricultural University, Tai’an, China
| |
Collapse
|
177
|
Wang H, Hu K, Yao L, Zhang Q, Lin C, Liu H, Luo F, Chen H. Effects of the Combining Straw Return with Urease Inhibitor on Ammonia Volatilization, Nitrogen Use Efficiency, and Rice Yield in Purple Soil Areas. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112071. [PMID: 37299050 DOI: 10.3390/plants12112071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/12/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023]
Abstract
Straw return in rice (Oryza sativa L.) paddy has been heavily criticized for its potential to influence ammonia (NH3) volatilization loss due to irrational fertilizer N application. Therefore, improving the N fertilization strategies within residue straw systems is necessary to reduce N loss from NH3 volatilization. This study investigated how the incorporation of oilseed rape straw and the urease inhibitor affected NH3 volatilization, fertilizer N use efficiency (FNUE), and rice yields over two growing seasons (2018-2019) in the purple soil region. This study arranged eight treatments combined straw (2, 5, 8 ton ha-1, named 2S, 5S, 8S, respectively), with urea or urease inhibitor (UI, 1% NBPT) with three replicates, which included control (CK), UR (Urea, 150 kg N ha-1), UR + 2S, UR + 5S, UR + 8S, UR + 2S + UI, UR + 5S + UI, UR + 8S + UI, based on the randomized complete block method. Our results indicated that incorporating oilseed rape straw increased NH3 losses by 3.2-30.4% in 2018 and 4.3-17.6% in 2019 than the UR treatment, attributing to the higher NH4+-N content and pH value within floodwater. However, the UR + 2S + UI, UR + 5S + UI and UR + 8S + UI treatments reduced NH3 losses by 3.8%, 30.3%, and 8.1% in 2018 and 19.9%, 39.5%, and 35.8% in 2019, separately compared to their corresponding UR plus straw treatments. According to the findings, adding 1% NBPT significantly decreased NH3 losses while incorporating 5 ton ha-1 oilseed rape straw. Furthermore, adding straw, either alone or in conjunction with 1% NBPT, increased rice yield and FNUE by 0.6-18.8% and 0.6-18.8%, respectively. Otherwise, NH3 losses scaled by yield in the UR + 5S + UI treatment decreased significantly between all treatments in 2018 and 2019. These results suggest that optimizing the oilseed rape straw rate combined with 1% NBPT applied with urea efficiently increased rice yield and reduced NH3 emissions in the purple soil region of Sichuan Province, China.
Collapse
Affiliation(s)
- Hong Wang
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Kelin Hu
- College of Land Science and Technology, China Agricultural University, Beijing 100193, China
| | - Li Yao
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Qi Zhang
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Chaowen Lin
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Haitao Liu
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Fuxiang Luo
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Honglin Chen
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| |
Collapse
|
178
|
Shi RY, Ni N, Wang RH, Nkoh JN, Pan XY, Dong G, Xu RK, Cui XM, Li JY. Dissolved biochar fractions and solid biochar particles inhibit soil acidification induced by nitrification through different mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162464. [PMID: 36858227 DOI: 10.1016/j.scitotenv.2023.162464] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/27/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Biochar can inhibit soil acidification by decreasing the H+ input from nitrification and improving soil pH buffering capacity (pHBC). However, biochar is a complex material and the roles of its different components in inhibiting soil acidification induced by nitrification remain unclear. To address this knowledge gap, dissolved biochar fractions (DBC) and solid biochar particles (SBC) were separated and mixed thoroughly with an amended Ultisol. Following a urea addition, the soils were subjected to an incubation study. The results showed that both the DBC and SBC inhibited soil acidification by nitrification. The DBC inhibited soil acidification by decreasing the H+ input from nitrification, while SBC enhanced the soil pHBC. The DBC from peanut straw biochar (PBC) and rice straw biochar (RBC) decreased the H+ release by 16 % and 18 % at the end of incubation. The decrease in H+ release was attributed to the inhibition of soil nitrification and net mineralization caused by the toxicity of the phenols in DBC to soil bacteria. The abundance of ammonia-oxidizing bacteria (AOB) and total bacteria decreased by >60 % in the treatments with DBC. The opposite effects were observed in the treatments with SBC. Soil pHBC increased by 7 % and 19 % after the application of solid RBC and PBC particles, respectively. The abundance of carboxyl on the surface of SBC was mainly responsible for the increase in soil pHBC. Generally, the mixed application of DBC and SBC was more effective at inhibiting soil acidification than their individual applications. The negative impacts of dissolved biochar components on soil microorganisms need to be closely monitored.
Collapse
Affiliation(s)
- Ren-Yong Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P.O. Box 821, Nanjing 210008, PR China
| | - Ni Ni
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing 210042, PR China
| | - Ru-Hai Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P.O. Box 821, Nanjing 210008, PR China
| | - Jackson Nkoh Nkoh
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P.O. Box 821, Nanjing 210008, PR China
| | - Xiao-Ying Pan
- Engineering and Technology Research Center for Agricultural Land Pollution Integrated Prevention and Control of Guangdong Higher Education Institutes, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, PR China
| | - Ge Dong
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P.O. Box 821, Nanjing 210008, PR China
| | - Ren-Kou Xu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P.O. Box 821, Nanjing 210008, PR China
| | - Xiu-Min Cui
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Tai'an 271018, PR China
| | - Jiu-Yu Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, P.O. Box 821, Nanjing 210008, PR China.
| |
Collapse
|
179
|
Zhang LZ, He W, Huang FY, He W, Zhou P, Chen C, Rensing C, Brandt KK, He J, Liu F, Zhao Y, Guo H. Response of microbial taxonomic and nitrogen functional attributes to elevated nitrate in suburban groundwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162524. [PMID: 36868285 DOI: 10.1016/j.scitotenv.2023.162524] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/05/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Anthropogenic nitrogen (N) input has led to elevated levels of nitrate nitrogen (NO3--N) in the groundwater. However, insights into the responses of the microbial community and its N metabolic functionality to elevated NO3--N in suburban groundwater are still limited. Here, we explored the microbial taxonomy, N metabolic attributes, and their responses to NO3--N pollution in groundwaters from Chaobai River catchment (CR) and Huai River catchment (HR) in Beijing, China. Results showed that average NO3--N and NH4+-N concentrations in CR groundwater were 1.7 and 3.0 folds of those in HR. NO3--N was the dominant nitrogen specie both in HR and CR groundwater (over 80 %). Significantly different structures and compositions of the microbial communities and N cycling gene profiles were found between CR groundwater and HR groundwater (p < 0.05), with CR groundwater harboring significantly lower microbial richness and abundance of N metabolic genes. However, denitrification was the dominant microbial N cycling process in both CR and HR groundwater. Strong associations among NO3--N, NH4+-N, microbial taxonomic, and N functional attributes were found (p < 0.05), suggesting denitrifiers and Candidatus_Brocadia might serve as potential featured biomarkers for the elevated NO3--N and NH4+-N concentration in groundwater. Path analysis further revealed the significant effect of NO3--N on the overall microbial N functionality and microbial denitrification (p < 0.05). Collectively, our results provide field evidence that elevated levels of NO3--N and NH4+-N under different hydrogeologic conditions had a significant effect on the microbial taxonomic and N functional attributes in groundwater, with potential implications for improving sustainable N management and risk assessment of groundwater.
Collapse
Affiliation(s)
- Ling-Zhi Zhang
- School of Water Resources and Environment & Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences (Beijing), Beijing 100083, China
| | - Wei He
- Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing 100037, China
| | - Fu-Yi Huang
- Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Wei He
- School of Water Resources and Environment & Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences (Beijing), Beijing 100083, China
| | - Pengpeng Zhou
- School of Water Resources and Environment & Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences (Beijing), Beijing 100083, China
| | - Cuibai Chen
- School of Water Resources and Environment & Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences (Beijing), Beijing 100083, China
| | - Christopher Rensing
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Kristian Koefoed Brandt
- Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, Frederiksberg 1871, Denmark; Sino-Danish Center for Education and Research, Beijing, China
| | - Jiangtao He
- School of Water Resources and Environment & Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences (Beijing), Beijing 100083, China
| | - Fei Liu
- School of Water Resources and Environment & Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences (Beijing), Beijing 100083, China
| | - Yi Zhao
- School of Water Resources and Environment & Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences (Beijing), Beijing 100083, China.
| | - Huaming Guo
- School of Water Resources and Environment & Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences (Beijing), Beijing 100083, China.
| |
Collapse
|
180
|
Yang WT, Li GD, Li JN, Yang CF, Zhang XM, Zhang AL. Comparative Analysis of Rhizosphere and Endophytic Microbial Communities Between Root Rot and Healthy Root of Psammosilene tunicoides. Curr Microbiol 2023; 80:215. [PMID: 37198328 DOI: 10.1007/s00284-023-03290-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 03/28/2023] [Indexed: 05/19/2023]
Abstract
The wild resources of Psammosilene tunicoides have decreased sharply because of the long-term mining and excavation, which has led to the increased demand for its artificial cultivation. However, root rot represents a significant obstacle leading to a poor quality and product of P. tunicoides. Previous reports have not focused on root rot in P. tunicoides. Therefore, this study explores the rhizospheric and root endophytic microbial community structure and composition of healthy and root rot P. tunicoides to understand the mechanism underlying root rot. The properties of the rhizosphere soil were assessed using physiochemical methods, and the bacterial and fungal populations were studied through amplicon sequencing of the 16S rRNA genes and ITS regions in the root and soil. Compared to healthy samples, the pH, hydrolysis N, available P, and available K were significantly decreased in the diseased samples while the organic matter and total organic carbon were significantly increased in the diseased samples. Redundancy analysis (RDA) showed that soil environmental factors are related to changes in the root and rhizosphere soil microbial community of P. tunicoides indicating that the physiochemical properties of soil affect plant health. Alpha diversity analysis showed that the microbial communities of healthy and diseased samples were similar. Some bacterial and fungal genera were significantly increased or decreased (P < 0.05) in diseased P. tunicoides, and certain microbial factors that antagonized root rot were further explored. This study provides an abundant microbial resource for future studies and contributes to improving soil quality and P. tunicoides agricultural production.
Collapse
Affiliation(s)
- Wen T Yang
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Chinese Medicine, Yuhua Road, Chenggong District, Kunming, 650500, Yunnan, People's Republic of China
| | - Guo D Li
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Chinese Medicine, Yuhua Road, Chenggong District, Kunming, 650500, Yunnan, People's Republic of China
| | - Jun N Li
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Chinese Medicine, Yuhua Road, Chenggong District, Kunming, 650500, Yunnan, People's Republic of China
| | - Cheng F Yang
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Chinese Medicine, Yuhua Road, Chenggong District, Kunming, 650500, Yunnan, People's Republic of China
| | - Xiao M Zhang
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Chinese Medicine, Yuhua Road, Chenggong District, Kunming, 650500, Yunnan, People's Republic of China
| | - Ai L Zhang
- Yunnan Provincial Key Laboratory of Molecular Biology for Sinomedicine, Yunnan University of Chinese Medicine, Yuhua Road, Chenggong District, Kunming, 650500, Yunnan, People's Republic of China.
| |
Collapse
|
181
|
Wei W, Guan D, Ma M, Jiang X, Fan F, Meng F, Li L, Zhao B, Zhao Y, Cao F, Chen H, Li J. Long-term fertilization coupled with rhizobium inoculation promotes soybean yield and alters soil bacterial community composition. Front Microbiol 2023; 14:1161983. [PMID: 37275141 PMCID: PMC10232743 DOI: 10.3389/fmicb.2023.1161983] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/12/2023] [Indexed: 06/07/2023] Open
Abstract
Microbial diversity is an important indicator of soil fertility and plays an indispensable role in farmland ecosystem sustainability. The short-term effects of fertilization and rhizobium inoculation on soil microbial diversity and community structure have been explored extensively; however, few studies have evaluated their long-term effects. Here, we applied quantitative polymerase chain reaction (qPCR) and amplicon sequencing to characterize the effect of 10-year fertilizer and rhizobium inoculation on bacterial communities in soybean bulk and rhizosphere soils at the flowering-podding and maturity stages. Four treatments were examined: non-fertilization control (CK), phosphorus and potassium fertilization (PK), nitrogen and PK fertilization (PK + N), and PK fertilization and Bradyrhizobium japonicum 5821 (PK + R). Long-term co-application of rhizobium and PK promoted soybean nodule dry weight by 33.94% compared with PK + N, and increased soybean yield by average of 32.25%, 5.90%, and 5.00% compared with CK, PK, and PK + N, respectively. The pH of PK + R was significantly higher than that of PK and PK + N at the flowering-podding stage. The bacterial abundance at the flowering-podding stage was positively correlated with soybean yield, but not at the maturity stage. The significant different class Gemmatimonadetes, and the genera Gemmatimonas, and Ellin6067 in soil at the flowering-podding stage were negatively correlated with soybean yield. However, the bacterial community at class and genus levels at maturity had no significant effect on soybean yield. The key bacterial communities that determine soybean yield were concentrated in the flowering-podding stage, not at maturity stage. Rhizosphere effect, growth period, and treatment synergies resulted in significant differences in soil bacterial community composition. Soil organic matter (OM), total nitrogen (TN), pH, and available phosphorus (AP) were the main variables affecting bacterial community structure. Overall, long-term co-application of rhizobium and fertilizer not only increased soybean yield, but also altered soil bacterial community structure through niche reconstruction and microbial interaction. Rhizobium inoculation plays key role in reducing nitrogen fertilizer application and promoting sustainable agriculture practices.
Collapse
Affiliation(s)
- Wanling Wei
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dawei Guan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mingchao Ma
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality & Safety Risk Assessment for Microbial Products (Beijing), Ministry of Agriculture, Beijing, China
| | - Xin Jiang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality & Safety Risk Assessment for Microbial Products (Beijing), Ministry of Agriculture, Beijing, China
| | - Fenliang Fan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fangang Meng
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Jilin, China
| | - Li Li
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality & Safety Risk Assessment for Microbial Products (Beijing), Ministry of Agriculture, Beijing, China
| | - Baisuo Zhao
- Laboratory of Quality & Safety Risk Assessment for Microbial Products (Beijing), Ministry of Agriculture, Beijing, China
| | - Yubin Zhao
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fengming Cao
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality & Safety Risk Assessment for Microbial Products (Beijing), Ministry of Agriculture, Beijing, China
| | - Huijun Chen
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun Li
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
- Laboratory of Quality & Safety Risk Assessment for Microbial Products (Beijing), Ministry of Agriculture, Beijing, China
| |
Collapse
|
182
|
Zhang Q, Zhu J, Mulder J, Wang Q, Liu C, He N. High environmental costs behind rapid economic development: Evidence from economic loss caused by atmospheric acid deposition. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 334:117511. [PMID: 36801691 DOI: 10.1016/j.jenvman.2023.117511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/05/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
The rapid growth of energy-intensive and high-emission industries has propelled China's economy but has also led to massive levels of air pollutant emissions and ecological problems, such as acid deposition. Despite recent declines, atmospheric acid deposition in China is still severe. Long-term exposure to high levels of acid depositions has a substantial negative impact on the ecosystem. Evaluating these hazards and incorporating this issue into planning and decision-making processes is critical to achieving sustainable development goals in China. However, the long-term economic loss caused by atmospheric acid deposition and its temporal and spatial variation in China is unclear. Hence, the aim of this study was to assess the environmental cost of acid deposition in the agriculture, forestry, construction, and transportation industries from 1980 to 2019, using long-term monitoring, integrated data, and the dose-response method with localization parameters. The results showed that the estimated cumulative environmental cost of acid deposition was USD 230 billion, representing 0.27% of the gross domestic product (GDP) in China. This cost, was particularly high for building materials, followed by crops, forests, and roads. Temporally, the environmental cost and the ratio of environmental cost to GDP decreased from their peaks by 43% and 91%, respectively, because of emission controls targeting acidifying pollutants and promotion of clean energy. Spatially, the largest environmental cost occurred in developing provinces, indicating that more stringent emission reduction measures should be implemented in these regions. These findings highlight the huge environmental costs behind rapid development; however, the implementation of reasonable emission reduction measures can effectively reduce these environmental costs, providing a promising paradigm for other undeveloped and developing countries.
Collapse
Affiliation(s)
- Qiongyu Zhang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China; Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianxing Zhu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jan Mulder
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, 1431, Norway
| | - Qiufeng Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Congqiang Liu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Nianpeng He
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; Earth Critical Zone and Flux Research Station of Xing'an Mountains, Chinese Academy of Sciences, Daxing'anling, 165200, China.
| |
Collapse
|
183
|
Wang H, Liang J, Huo P, Zhang L, Fan X, Sun S. Understanding the cadmium passivation and nitrogen mineralization of aminated lignin in soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162334. [PMID: 36813204 DOI: 10.1016/j.scitotenv.2023.162334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Aminated lignin (AL) was prepared and first applied to remediation of cadmium (Cd) pollution in soil. Meanwhile, the nitrogen mineralization characteristics of AL in soil and its effect on soil physicochemical properties were elucidated by soil incubation experiment. The results showed that the Cd availability was dramatically lowered in soil by adding the AL. The DTPA-extractable Cd content of AL treatments was considerably reduced by 40.7-71.4 %. The soil pH (5.77-7.01) and absolute value of zeta potential (30.7-34.7 mV) enhanced simultaneously as the AL additions increased. The content of soil organic matter (SOM) (99.0-264.0 %) and total nitrogen (95.9-301.3 %) were gradually enhanced due to high C (63.31 %) and N (9.69 %) content in AL. Moreover, AL significantly elevated the content of mineral nitrogen (77.2-142.4 %) and available nitrogen (95.5-301.7 %). The first-order kinetic equation of soil nitrogen mineralization revealed that AL greatly enhanced nitrogen mineralization potential (84.7-143.9 %) and reduced environmental pollution by lowering the loss of soil inorganic nitrogen. AL could effectively reduce the availability of Cd through direct (self-adsorption) and indirect effects (improvement of soil pH, SOM and reduction of soil zeta potential), thereby achieving passivation of Cd in soil. In short, this work will develop a novel approach and technical support for soil heavy metal remediation, which is of great significance for improving the sustainable development of agricultural production.
Collapse
Affiliation(s)
- Haoran Wang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jiamin Liang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Pengju Huo
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Lidan Zhang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Xiaolin Fan
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Shaolong Sun
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| |
Collapse
|
184
|
Ren K, Sun Y, Zou H, Li D, Lu C, Duan Y, Zhang W. Effect of replacing synthetic nitrogen fertilizer with animal manure on grain yield and nitrogen use efficiency in China: a meta-analysis. FRONTIERS IN PLANT SCIENCE 2023; 14:1153235. [PMID: 37251776 PMCID: PMC10213537 DOI: 10.3389/fpls.2023.1153235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/20/2023] [Indexed: 05/31/2023]
Abstract
To reduce reliance on synthetic nitrogen (N) fertilizer and sustain food production, replacing synthetic N fertilizer with animal manure as an effective method is widely used. However, the effects of replacing synthetic N fertilizer with animal manure on crop yield and nitrogen use efficiency (NUE) remain uncertain under varying fertilization management practices, climate conditions, and soil properties. Here, we performed a meta-analysis of wheat (Triticum aestivum L.), maize (Zea mays L.), and rice (Oryza sativa L.) based on 118 published studies conducted in China. Overall, the results indicated that substituting synthetic N fertilizer with manure increased yield by 3.3%-3.9% for the three grain crops and increased NUE by 6.3%-10.0%. Crop yields and NUE did not significantly increase at a low N application rate (≤120 kg ha-1) or high substitution rate (>60%). Yields and NUE values had higher increases for upland crops (wheat and maize) in temperate monsoon climate/temperate continental climate regions with less average annual rainfall (AAR) and lower mean annual temperature (MAT), while rice had higher increases in subtropical monsoon climate regions with more AAR and higher MAT. The effect of manure substitution was better in soil with low organic matter and available phosphorus. Our study shows that the optimal substitution rate was 44% and the total N fertilizer input cannot be less than 161 kg ha-1 when substituting synthetic N fertilizer with manure. Moreover, site-specific conditions should also be considered.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wenju Zhang
- *Correspondence: Yinghua Duan, ; Wenju Zhang,
| |
Collapse
|
185
|
Yang Z, Wang M, Hou J, Xiong J, Chen C, Liu Z, Tan W. Prediction of cadmium bioavailability in the rice-soil system on a county scale based on the multi-surface speciation model. JOURNAL OF HAZARDOUS MATERIALS 2023; 449:130963. [PMID: 36805442 DOI: 10.1016/j.jhazmat.2023.130963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/18/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Relative to total cadmium (Cd) content, bioavailable Cd in paddy soil is regarded as a more reasonable indicator for the risk of Cd bioaccumulation in rice. However, there is still a lack of approach to accurately predict the content of bioavailable Cd in paddy soil due to its heterogeneity and complexity. Here, multi-surface speciation model (MSM) was employed to predict the bioavailable Cd and Cd immobilization effect. Moreover, a precise remediation strategy was designed based on screening and scenario simulation of the sensitive factors with MSM. The results demonstrated that MSM can well predict Cd bioaccumulation risk in rice. The contribution of pH to Cd bioavailability was quantified under three analysis scenarios, accounting for 87.51% of the total variance of bioavailable Cd. In addition, the pH alert value (6.31 ± 0.52) for Cd risk was acquired for each rice field on a county scale. A precise map for the application amount of lime materials was constructed by taking CaCO3 (3.38-15.75 t ha-1) as a recommended economical and green immobilization agent. This study provides a potentially effective approach for risk assessment of Cd contamination in rice and important reference for precise Cd remediation in paddy soil.
Collapse
Affiliation(s)
- Zhenglun Yang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs of the People's Republic of China, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; StateEnvironmental Protection Key Laboratory of Soil Health and GreenRemediation, Wuhan 430070, China
| | - Mingxia Wang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs of the People's Republic of China, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; StateEnvironmental Protection Key Laboratory of Soil Health and GreenRemediation, Wuhan 430070, China.
| | - Jingtao Hou
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs of the People's Republic of China, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; StateEnvironmental Protection Key Laboratory of Soil Health and GreenRemediation, Wuhan 430070, China
| | - Juan Xiong
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs of the People's Republic of China, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; StateEnvironmental Protection Key Laboratory of Soil Health and GreenRemediation, Wuhan 430070, China
| | - Chang Chen
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs of the People's Republic of China, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; StateEnvironmental Protection Key Laboratory of Soil Health and GreenRemediation, Wuhan 430070, China
| | - Zhaoyang Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs of the People's Republic of China, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; StateEnvironmental Protection Key Laboratory of Soil Health and GreenRemediation, Wuhan 430070, China
| | - Wenfeng Tan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs of the People's Republic of China, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; StateEnvironmental Protection Key Laboratory of Soil Health and GreenRemediation, Wuhan 430070, China
| |
Collapse
|
186
|
Li A, Fan J, Jia Y, Tang X, Chen J, Shen C. Phenotype and metabolism alterations in PCB-degrading Rhodococcus biphenylivorans TG9 T under acid stress. J Environ Sci (China) 2023; 127:441-452. [PMID: 36522076 DOI: 10.1016/j.jes.2022.05.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 06/17/2023]
Abstract
Environmental acidification impairs microorganism diversity and their functions on substance transformation. Rhodococcus is a ubiquitously distributed genus for contaminant detoxification in the environment, and it can also adapt a certain range of pH. This work interpreted the acid responses from both phenotype and metabolism in strain Rhodococcus biphenylivorans TG9T (TG9) induced at pH 3. The phenotype alterations were described with the number of culturable and viable cells, intracellular ATP concentrations, cell shape and entocyte, degradation efficiency of polychlorinated biphenyl (PCB) 31 and biphenyl. The number of culturable cells maintained rather stable within the first 10 days, even though the other phenotypes had noticeable alterations, indicating that TG9 possesses certain capacities to survive under acid stress. The metabolism responses were interpreted based on transcription analyses with four treatments including log phase (LP), acid-induced (PER), early recovery after removing acid (RE) and later recovery (REL). With the overview on the expression regulations among the 4 treatments, the RE sample presented more upregulated and less downregulated genes, suggesting that its metabolism was somehow more active after recovering from acid stress. In addition, the response mechanism was interpreted on 10 individual metabolism pathways mainly covering protein modification, antioxidation, antipermeability, H+ consumption, neutralization and extrusion. Furthermore, the transcription variations were verified with RT-qPCR on 8 genes with 24-hr, 48-hr and 72-hr acid treatment. Taken together, TG9 possesses comprehensive metabolism strategies defending against acid stress. Consequently, a model was built to provide an integrate insight to understand the acid resistance/tolerance metabolisms in microorganisms.
Collapse
Affiliation(s)
- Aili Li
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiahui Fan
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yangyang Jia
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xianjin Tang
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jingwen Chen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chaofeng Shen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
187
|
Schmidt L, Jacobs J, Schmutzer T, Alqudah AM, Sannemann W, Pillen K, Maurer A. Identifying genomic regions determining shoot and root traits related to nitrogen uptake efficiency in a multiparent advanced generation intercross (MAGIC) winter wheat population in a high-throughput phenotyping facility. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 330:111656. [PMID: 36841338 DOI: 10.1016/j.plantsci.2023.111656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 01/17/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
In the context of a continuously increasing human population that needs to be fed, with environmental protection in mind, nitrogen use efficiency (NUE) improvement is becoming very important. To understand the natural variation of traits linked to nitrogen uptake efficiency (UPE), one component of NUE, the multiparent advanced generation intercross (MAGIC) winter wheat population WM-800 was phenotyped under two contrasting nitrogen (N) levels in a high-throughput phenotyping facility for six weeks. Three biomass-related, three root-related, and two reflectance-related traits were measured weekly under each treatment. Subsequently, the population was genetically analysed using a total of 13,060 polymorphic haplotypes and singular SNPs for a genome-wide association study (GWAS). In total, we detected 543 quantitative trait loci (QTL) across all time points and traits, which were pooled into 42 stable QTL (sQTL; present in at least three of the six weeks). Besides Rht-B1 and Rht-D1, candidate genes playing a role in gibberellic acid-regulated growth and nitrate transporter genes from the NPF gene family, like NRT 1.1, were linked to sQTL. Two novel sQTL on chromosomes 5 A and 6D showed pleiotropic effects on several traits. The high number of N-specific sQTL indicates that selection for UPE is useful specifically under N-limited conditions.
Collapse
Affiliation(s)
- Laura Schmidt
- Martin Luther University Halle-Wittenberg, Chair of Plant Breeding, Betty-Heimann-Str. 3, 06120 Halle, Germany
| | - John Jacobs
- BASF BBCC Innovation Center Gent, 9052 Gent, Belgium
| | - Thomas Schmutzer
- Martin Luther University Halle-Wittenberg, Chair of Plant Breeding, Betty-Heimann-Str. 3, 06120 Halle, Germany
| | - Ahmad M Alqudah
- Martin Luther University Halle-Wittenberg, Chair of Plant Breeding, Betty-Heimann-Str. 3, 06120 Halle, Germany; Biological Science Program, Department of Biological and Environmental Sciences, College of Art and Science, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Wiebke Sannemann
- Martin Luther University Halle-Wittenberg, Chair of Plant Breeding, Betty-Heimann-Str. 3, 06120 Halle, Germany
| | - Klaus Pillen
- Martin Luther University Halle-Wittenberg, Chair of Plant Breeding, Betty-Heimann-Str. 3, 06120 Halle, Germany
| | - Andreas Maurer
- Martin Luther University Halle-Wittenberg, Chair of Plant Breeding, Betty-Heimann-Str. 3, 06120 Halle, Germany.
| |
Collapse
|
188
|
Li T, Zhang B, Du A, Yang S, Huang K, Peng F, Xiao Y. Dynamic Monitoring of Nutrition Inputs and Fertility Evaluation during a Decade in the Main Peach-Producing Areas of Shandong Province, China. PLANTS (BASEL, SWITZERLAND) 2023; 12:1725. [PMID: 37111948 PMCID: PMC10145419 DOI: 10.3390/plants12081725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/09/2023] [Accepted: 04/15/2023] [Indexed: 06/19/2023]
Abstract
The main peach-producing area in Shandong is an important peach fruit-producing area in China. Understanding the nutritional properties of the soil in peach orchards helps us to understand the evolution of soil properties and adjust management methods in a timely manner. This study focuses on 52 peach orchards in the main peach-producing area in Shandong as the research object. The spatiotemporal changes in soil traits and their influential factors were studied in depth, and the changes in soil fertility were effectively evaluated. The results showed that the input of nitrogen, phosphorus and potassium from organic fertilizer in 2021 was significantly higher than that in 2011, while the input of fertilizer in 2011 was significantly higher than that in 2021. Compared with traditional parks, both organic fertilizer inputs and chemical fertilizer inputs in demonstration parks showed a significant downwards trend. There was no significant change in pH values between 2011 and 2021. In 2021, the soil organic matter (SOM) contents of the 0-20 cm and 20-40 cm layers were 24.17 g·kg-1 and 23.38 g·kg-1, respectively, an increase of 29.3% and 78.47% over the values measured in 2011. Compared with 2011, the content of soil alkaloid nitrogen (AN) decreased significantly in 2021, and the contents of available phosphorus (AP) and available potassium (AK) in the soil increased significantly. According to the calculation results of the comprehensive fertility index (IFI) value, we found that in 2021, compared with 2011, the quality of soil fertility improved, most of which was at the medium and high levels. The research results show that the fertilizer-saving and synergistic approach in peach orchards in China significantly improved the soil nutrition. In the future, research on suitable comprehensive technologies should be strengthened in the management of peach orchards.
Collapse
Affiliation(s)
| | | | | | | | | | - Futian Peng
- Correspondence: (F.P.); (Y.X.); Tel.: +86-135-6382-1651 (F.P.); +86-151-6387-3786 (Y.X.)
| | - Yuansong Xiao
- Correspondence: (F.P.); (Y.X.); Tel.: +86-135-6382-1651 (F.P.); +86-151-6387-3786 (Y.X.)
| |
Collapse
|
189
|
Meng C, Xing Y, Ding Y, Zhang Q, Di H, Tang C, Xu J, Li Y. Soil acidification induced variation of nitrifiers and denitrifiers modulates N 2O emissions in paddy fields. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163623. [PMID: 37086999 DOI: 10.1016/j.scitotenv.2023.163623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/17/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Soil acidification is a major land degradation process globally, and impacts soil nitrogen (N) transformation. However, it is still not well known how soil acidification affects net N mineralization and nitrification, especially N-cycling microbes and nitrous oxide (N2O) emissions. Hence, three soils characterized by different soil pH values (5.5, 6.3, and 7.7) were collected from the paddy fields, and experiments were conducted to evaluate the effect of soil acidification on net N mineralization and nitrification, and N2O emissions. Compared to those in the soils with pH 7.7 and 6.3, net N mineralization, net nitrification, and N2O emissions were decreased by 75-76 %, 89-91 %, and 19-48 %, respectively, in the soil with pH 5.5, while net N nitrification and N2O emissions decreased by 18 % in the soil with pH 6.3 when compared to those in the soil with pH 7.7. The significantly decreased net nitrification in the soils with pH 6.3 and 5.5 was mainly attributed to the limited N availability and abundance of nitrification-related microbes including ammonia-oxidizing bacteria and complete ammonia-oxidizers. The decrease in N2O emissions of soils with pH 6.3 and 5.5 had mainly resulted from decreasing nitrification and denitrification via suppressing microbes including nirS and fungal nirK and limiting N availability. Hence, this study provides new insights and improves our understanding of how soil acidification regulates N mineralization, nitrification, and N2O emissions in paddy soils, which gives guidance on developing N management strategies for sustainable production and N2O mitigation in acid soils.
Collapse
Affiliation(s)
- Chaobiao Meng
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yating Xing
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yu Ding
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qichun Zhang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hongjie Di
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Caixian Tang
- Department of Animal, Plant & Soil Sciences/La Trobe Institute for Sustainable Agriculture and Food, La Trobe University, Bundoora, VIC 3086, Australia
| | - Jianming Xu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yong Li
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
190
|
Ning X, Wang S, Long S, Dong Y, Li L, Nan Z. Temporal distribution and accumulation pattern of cadmium and arsenic in the actual field calcareous soil-maize system, northwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:162012. [PMID: 36737027 DOI: 10.1016/j.scitotenv.2023.162012] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 01/04/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
The contrasting chemical behaviors of two toxic elements, arsenic (As) and cadmium (Cd) in co-contamination calcareous soil and its absorption by crops have not been thoroughly explored, especially in the implementation of the measure of prohibiting the use of wastewater to irrigate farmland. We propose that the present environmental characteristics of ecologically fragile areas and appropriate restoration measures are critical determinant of soil remediation. In this study, the typical field farmland irrigated by industrial and domestic wastewater in the Chinese Loess Plateau for >50 years was selected. The results showed that after the sewage irrigation was stopped, the mean contents of Cd (7.09 mg/kg) and As (13.47 mg/kg) in the soil were still rising, which might be a potential input source. The average values of soil risk indices such as the potential ecological risk (PERI = 2394), pollution load index (PLI > 4 for 60 % of studied samples), and degree of contamination (Dc = 86.6) showed severe soil pollution in the study area. The decrease of soil pH, the loss of soil texture and calcium carbonate were found to be the reasons for the high chemical activity of Cd. The bioconcentration factors (< 0.2) and translocation factor (> 1.0) of Cd indicate that corn is an excluder plant and an ideal phytoremediation method. Thus, 20 % of studied samples were higher than maximum permitted levels of Cd in grain, indicating potential related health hazards. On the contrary, As was mainly adsorbed in calcareous soil, and its bioavailability was lower compared with Cd. The difference between DTPA extraction and sequential extraction may be due to the transformation of chemical forms, resulting in unstable fractions increased the bioavailability of toxic elements. Overall, the findings provide new insights for solutions to manage and repair farmlands under the post-wastewater irrigation period.
Collapse
Affiliation(s)
- Xiang Ning
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Shengli Wang
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, People's Republic of China.
| | - Song Long
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Yinwen Dong
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Longrui Li
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Zhongren Nan
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, People's Republic of China
| |
Collapse
|
191
|
Fallah N, Tayyab M, Yang Z, Pang Z, Zhang C, Lin Z, Stewart LJ, Ntambo MS, Abubakar AY, Lin W, Zhang H. Free-living bacteria stimulate sugarcane growth traits and edaphic factors along soil depth gradients under contrasting fertilization. Sci Rep 2023; 13:6288. [PMID: 37072423 PMCID: PMC10113235 DOI: 10.1038/s41598-022-25807-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 12/05/2022] [Indexed: 05/03/2023] Open
Abstract
Free-living bacterial community and abundance have been investigated extensively under different soil management practices. However, little is known about their nitrogen (N) fixation abilities, and how their contributions to N budgets impact plant growth, yield, and carbon (C) and N cycling enzymes in a long-term consecutive sugarcane monoculture farming system, under contrasting amendments, along different soil horizons. Here, nifH gene amplicon was used to investigate diazotrophs bacterial community and abundance by leveraging high-throughput sequencing (HTS). Moreover, edaphic factors in three soil depths (0-20, 20-40, and 40-60 cm) under control (CK), organic matter (OM), biochar (BC), and filter mud (FM) amended soils were investigated. Our analysis revealed that β-glucosidase activity, acid phosphatase activity, ammonium (NH4+-N), nitrate (NO3-N), total carbon (TC), total nitrogen (TN), and available potassium (AK) were considerably high in 0-20 cm in all the treatments. We also detected a significantly high proportion of Proteobacteria and Geobacter in the entire sample, including Anabaena and Enterobacter in 0-20 cm soil depth under the BC and FM amended soils, which we believed were worthy of promoting edaphic factors and sugarcane traits. This phenomenon was further reinforced by network analysis, where diazotrophs bacteria belonging to Proteobacteria exhibited strong and positive associations soil electrical conductivity (EC), soil organic matter content (SOM) available phosphorus (AP), TN, followed by NH4+-N and NO3-N, a pattern that was further validated by Mantel test and Pearson's correlation coefficients analyses. Furthermore, some potential N-fixing bacteria, including Burkholderia, Azotobacter, Anabaena, and Enterobacter exhibited a strong and positive association with sugarcane agronomic traits, namely, sugarcane stalk, ratoon weight, and chlorophyll content. Taken together, our findings are likely to broaden our understanding of free-living bacteria N-fixation abilities, and how their contributions to key soil nutrients such as N budgets impact plant growth and yield, including C and N cycling enzymes in a long-term consecutive sugarcane monoculture farming system, under contrasting amendments, along different soil horizons.
Collapse
Affiliation(s)
- Nyumah Fallah
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Provincial Key Laboratory of Agro-Ecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Muhammad Tayyab
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Provincial Key Laboratory of Agro-Ecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ziqi Yang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ziqin Pang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Provincial Key Laboratory of Agro-Ecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Caifang Zhang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhaoli Lin
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lahand James Stewart
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mbuya Sylvain Ntambo
- Département de Phytotechnie, Faculté des Sciences Agronominiques, Université de Kolwezi, Kolwezi, Democratic Republic of Congo
| | - Ahmad Yusuf Abubakar
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wenxiong Lin
- Fujian Provincial Key Laboratory of Agro-Ecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hua Zhang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
192
|
Cui H, Cheng J, Shen L, Zheng X, Zhou J, Zhou J. Activation of endogenous cadmium from biochar under simulated acid rain enhances the accumulation risk of lettuce (Lactuca sativa L.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114820. [PMID: 36958261 DOI: 10.1016/j.ecoenv.2023.114820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/19/2023] [Accepted: 03/19/2023] [Indexed: 06/18/2023]
Abstract
Biochar has been widely applied to remediate heavy metal-contaminated soils, but the environmental risk of the endogenous pollutants in biochar remains unclear. Two biochars with different endogenous cadmium (Cd) concentrations were prepared from background soil (BCB) and contaminated soil (BCC), respectively. We studied the effects of simulated acid rain (SAR) on the activation mechanism of endogenous Cd in biochar and Cd uptake of Cd by lettuce from the biochar-amended soils. SAR aging significantly increased Cd bioavailability by 27.5 % and 53.9 % in BCB and BCC, respectively. The activation of Cd from biochar may be due to the decrease of biochar pH and persistent free radicals (PFRs) and the increase of specific surface area (SSA) and O-contained functional groups in biochars. Two biochars at dosages of 2 % and 5 % rates did not change soil pore water Cd, but BCB and BCC at 10 % increased pore water Cd by 17.3 % and 219 %, respectively after SAR aging. SAR aging significantly increased the bioavailability of Cd in BCB and BCC treated soils than those before SAR aging. BCB application enhanced the biomass of lettuce (Lactuca sativa L.) and decreased the uptake of Cd. However, BCC addition at 10 % decreased the biomass of lettuce and increased the accumulation of Cd. In summary, endogenous Cd in biochar from contaminated soils has a potential environmental risk to plants and human health and the negative effects of endogenous pollutants from the biochars should be further investigated.
Collapse
Affiliation(s)
- Hongbiao Cui
- Academician Workstation in Anhui Province, Anhui University of Science and Technology, Huainan 232001, China; School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China; Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jieyu Cheng
- Academician Workstation in Anhui Province, Anhui University of Science and Technology, Huainan 232001, China; School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China
| | - LuLu Shen
- Academician Workstation in Anhui Province, Anhui University of Science and Technology, Huainan 232001, China; School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China
| | - Xuebo Zheng
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Jing Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jun Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
193
|
Yin J, Cui W, Xu Y, Ma Y, Chen H, Guo J, Liu R, Chen Q. Understanding the relative contributions of fungi and bacteria led nitrous oxide emissions in an acidic soil amended with industrial waste. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114727. [PMID: 37032574 DOI: 10.1016/j.ecoenv.2023.114727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 06/19/2023]
Abstract
Amendment of fertilized arable soil with alkaline industrial waste has the potential to ameliorate soil acidification whilst also improving crop yield. Another co-benefit is nitrous oxide (N2O) emission abatement but the contribution of fungi and bacteria involved in this process remains unclear. Two incubation experiments were conducted to: 1) examine how amendment of acidic soils with a mixture of phosphorus tailings mixture and insoluble potassium-containing rocks (PT) affect N2O emissions and 2) understand the microbial mechanisms and relative contributions of fungi and bacteria responsible for N2O emissions. In the first incubation experiment, the four treatments consisted of: i) the study control, ii) urea, iii) PT amendment and iv) PT amendment plus urea. Results showed that the PT amendment significantly increased soil pH from 4.8 to above 6.0, and reduced N2O emissions by 65.7%. PT-amended soils had higher N2 emissions and faster O2 consumption. The PT amendment significantly increased extracellular enzyme activities of leucine aminopeptidase and N-Acetyl-β-glucosaminidase, while it significantly decreased activities of β-1, 4-glucosidase and β-cellobiosidase. Two antibiotics (cycloheximide and streptomycin) combined with substrate-induced respiration method were used in the second incubation experiment. Compared to soil with urea, urea with PT amendment raised soil bacteria-related N2O from 9.2% to 18.8% while decreasing fungi-related N2O from 50.5% to 43.2%. These findings suggest that the N2O emissions from acidic soils can be considerably mitigated by the application of alkaline industrial wastes. The contribution of fungi should be considered when designing and applying N2O mitigation strategies in acidic soils. DATA AVAILABILITY: Data will be made available on request.
Collapse
Affiliation(s)
- Junhui Yin
- Beijing Key Laboratory of Farmyard Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Wenjing Cui
- Beijing Key Laboratory of Farmyard Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China; Qingdao Agricultural University, Qingdao 266000, China
| | - Yumeng Xu
- Beijing Key Laboratory of Farmyard Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yan Ma
- Beijing Key Laboratory of Farmyard Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Huaihai Chen
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou 510006, China
| | - Jingheng Guo
- Beijing Key Laboratory of Farmyard Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Rui Liu
- Beijing Key Laboratory of Farmyard Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| | - Qing Chen
- Beijing Key Laboratory of Farmyard Soil Pollution Prevention-control and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
194
|
Jan T, Arif M, Anwar S, Muhammad D. Biochar-microbes-FYM Nexus for Maize Productivity, Macro-nutrients’ Availability and Soil Organic Carbon Under Semi-arid Climate. GESUNDE PFLANZEN 2023. [DOI: 10.1007/s10343-023-00872-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/27/2023] [Indexed: 09/01/2023]
|
195
|
Wu X, Tong L, Kang S, Du T, Ding R, Li S, Chen Y. Combination of suitable planting density and nitrogen rate for high yield maize and their source-sink relationship in Northwest China. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023. [PMID: 37016583 DOI: 10.1002/jsfa.12602] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/26/2023] [Accepted: 04/05/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Increasing crop yield per unit area by increasing planting density is essential to ensure food security. However, the optimal combination of planting density and nitrogen (N) application for high-yielding maize and its source-sink characteristics need to be more clearly understood. RESULTS A 2-year field experiment was conducted combining three planting densities (D1: 70 000 plants ha-1 ; D2: 100 000 plants ha-1 ; D3: 130 000 plants ha-1 ) and three nitrogen rates (N1: 150 kg hm-2 ; N2: 350 kg hm-2 ; N3: 450 kg hm-2 ). The results showed that increasing planting density significantly increased leaf area index and grain yield but negatively affected ear traits. The Richards model was used to fit the dynamic changes of dry matter accumulation of maize under different treatments, and the fitting results were good. Increasing planting density increased population yield while limiting the development of individual plants, bringing the period of rapid dry matter accumulation to an early end and accelerating leaf senescence. An appropriate nitrogen rate could prolong the period of rapid accumulation of dry matter in maize, and increase the 100-kernel weight. Increasing planting density enhanced post-silking dry matter accumulation to a lesser extent, and the source-sink relationship of the maize population gradually developed from sink limitation to source limitation with increasing planting density. CONCLUSION The decrease in yield due to the insufficient source strength to meet the sink demand at too high densities was the reason that limited further improvement of the optimal planting density. An appropriate nitrogen rate facilitated the realization of yield potential at high density. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xuanyi Wu
- Center for Agricultural Water Research in China, College of Water Resources and Civil Engineering, China Agricultural University, Beijing, China
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture in Wuwei of Gansu Province, Wuwei, China
| | - Ling Tong
- Center for Agricultural Water Research in China, College of Water Resources and Civil Engineering, China Agricultural University, Beijing, China
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture in Wuwei of Gansu Province, Wuwei, China
| | - Shaozhong Kang
- Center for Agricultural Water Research in China, College of Water Resources and Civil Engineering, China Agricultural University, Beijing, China
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture in Wuwei of Gansu Province, Wuwei, China
| | - Taisheng Du
- Center for Agricultural Water Research in China, College of Water Resources and Civil Engineering, China Agricultural University, Beijing, China
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture in Wuwei of Gansu Province, Wuwei, China
| | - Risheng Ding
- Center for Agricultural Water Research in China, College of Water Resources and Civil Engineering, China Agricultural University, Beijing, China
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture in Wuwei of Gansu Province, Wuwei, China
| | - Sien Li
- Center for Agricultural Water Research in China, College of Water Resources and Civil Engineering, China Agricultural University, Beijing, China
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture in Wuwei of Gansu Province, Wuwei, China
| | - Yang Chen
- Center for Agricultural Water Research in China, College of Water Resources and Civil Engineering, China Agricultural University, Beijing, China
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture in Wuwei of Gansu Province, Wuwei, China
| |
Collapse
|
196
|
Fan H, Quan S, Ye Q, Zhang L, Liu W, Zhu N, Zhang X, Ruan W, Yi K, Crawford NM, Wang Y. A molecular framework underlying low-nitrogen-induced early leaf senescence in Arabidopsis thaliana. MOLECULAR PLANT 2023; 16:756-774. [PMID: 36906802 DOI: 10.1016/j.molp.2023.03.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 02/09/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Nitrogen (N) deficiency causes early leaf senescence, resulting in accelerated whole-plant maturation and severely reduced crop yield. However, the molecular mechanisms underlying N-deficiency-induced early leaf senescence remain unclear, even in the model species Arabidopsis thaliana. In this study, we identified Growth, Development and Splicing 1 (GDS1), a previously reported transcription factor, as a new regulator of nitrate (NO3-) signaling by a yeast-one-hybrid screen using a NO3- enhancer fragment from the promoter of NRT2.1. We showed that GDS1 promotes NO3- signaling, absorption and assimilation by affecting the expression of multiple NO3- regulatory genes, including Nitrate Regulatory Gene2 (NRG2). Interestingly, we observed that gds1 mutants show early leaf senescence as well as reduced NO3- content and N uptake under N-deficient conditions. Further analyses indicated that GDS1 binds to the promoters of several senescence-related genes, including Phytochrome-Interacting Transcription Factors 4 and 5 (PIF4 and PIF5) and represses their expression. Interestingly, we found that N deficiency decreases GDS1 protein accumulation, and GDS1 could interact with Anaphase Promoting Complex Subunit 10 (APC10). Genetic and biochemical experiments demonstrated that Anaphase Promoting Complex or Cyclosome (APC/C) promotes the ubiquitination and degradation of GDS1 under N deficiency, resulting in loss of PIF4 and PIF5 repression and consequent early leaf senescence. Furthermore, we discovered that overexpression of GDS1 could delay leaf senescence and improve seed yield and N-use efficiency (NUE) in Arabidopsis. In summary, our study uncovers a molecular framework illustrating a new mechanism underlying low-N-induced early leaf senescence and provides potential targets for genetic improvement of crop varieties with increased yield and NUE.
Collapse
Affiliation(s)
- Hongmei Fan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Shuxuan Quan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Qing Ye
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Lei Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Wei Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Ning Zhu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Xiaoqi Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Wenyuan Ruan
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 10081, China
| | - Keke Yi
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 10081, China
| | - Nigel M Crawford
- Section of Cell and Developmental Biology, Division of Biological Science, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | - Yong Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China.
| |
Collapse
|
197
|
Promoting coordinated development of the fertilizer production-crop plantation combined system through an integrated approach. Ecol Modell 2023. [DOI: 10.1016/j.ecolmodel.2023.110280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
198
|
He T, Zhang X, Du J, Gilliam FS, Yang S, Tian M, Zhang C, Zhou Y. Arbuscular Mycorrhizal Fungi Shift Soil Bacterial Community Composition and Reduce Soil Ammonia Volatilization and Nitrous Oxide Emissions. MICROBIAL ECOLOGY 2023; 85:951-964. [PMID: 36662284 DOI: 10.1007/s00248-023-02172-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 01/12/2023] [Indexed: 05/04/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) establish mutualistic relationships with the majority of terrestrial plants, increasing plant uptake of soil nitrogen (N) in exchange for photosynthates. And may influence soil ammonia (NH3) volatilization and nitrous oxide (N2O) emissions directly by improving plant N uptake, and/or indirectly by modifying soil bacterial community composition for the soil C availability increasing. However, the effects of AMF on soil NH3 volatilization and N2O emissions and their underlying mechanisms remain unclear. We carried out two independent experiments using contrasting methods, one with a compartmental box device (in 2016) and the other with growth pot experiment (in 2020) to examine functional relationships between AMF and soil NH3 volatilization and N2O emissions under varying N input. The presence of AMF significantly reduced soil NH3 volatilization and N2O emissions while enhancing plant biomass and plant N acquisition, and reducing soil NH4+ and NO3-, even with high N input. The presence of AMF also significantly reduced the relative abundance within the bacterial orders Sphingomonadales and Rhizobiales. Sphingomonadales correlated significantly and positively with soil NH3 volatilization in 2016 and N2O emissions, whereas Rhizobiales correlated positively with soil N2O emissions. High N input significantly increased soil NH3 volatilization and N2O emissions with increasing relative abundance of Sphingomonadales and Rhizobiales. These findings demonstrate the contribution of AMF in regulating NH3 and N2O emission by improving plant N uptake and altering soil bacterial communities. They also suggest that altering the rhizosphere microbiome might offer additional potential for restoration of N-enriched agroecosystems.
Collapse
Affiliation(s)
- Tangqing He
- College of Agronomy, Co-construction State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops in Henan Province, Henan Agricultural University, Zhengzhou, 450046, China
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuelin Zhang
- College of Agronomy, Co-construction State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops in Henan Province, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Jiaqi Du
- College of Agronomy, Co-construction State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops in Henan Province, Henan Agricultural University, Zhengzhou, 450046, China
| | - Frank S Gilliam
- Department of Biology, University of West Florida, Pensacola, FL, 32514, USA
| | - Shuo Yang
- College of Agronomy, Co-construction State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops in Henan Province, Henan Agricultural University, Zhengzhou, 450046, China
| | - Minghui Tian
- College of Agronomy, Co-construction State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops in Henan Province, Henan Agricultural University, Zhengzhou, 450046, China
| | - Chenxi Zhang
- College of Agronomy, Co-construction State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops in Henan Province, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yanan Zhou
- College of Agronomy, Co-construction State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops in Henan Province, Henan Agricultural University, Zhengzhou, 450046, China
| |
Collapse
|
199
|
Zhou J. The effects of organic fertilizer on loss risk of nitrogen and phosphorus in paddy ponded water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:55529-55540. [PMID: 36897445 DOI: 10.1007/s11356-023-26296-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
There is a great challenge globally for both achieving high crop yields via fertilization and minimizing environmental pollution from nutrient losses. Organic fertilizer (OF) application has been extensively reported to effectively improve arable soil fertility and mitigate nutrient losses. However, few studies are available that accurately quantified the substitution rates of OF for chemical fertilizers (CF) that affect rice yield, the nitrogen/phosphorus in ponded water, and its loss potential in paddy field. Here, an experiment with 5 levels of CF nitrogen substituted by OF nitrogen was performed during the early stage of rice growth in paddy field of Southern China. The results showed that the first 6 days and 3 days following fertilization generally were risky period for N losses and for P losses, respectively, due to corresponding high concentrations in ponded water. Compared to CF treatment, over 30% of OF substitution rates significantly decreased the daily mean TN concentrations by 24.5-32.4%, while TP concentrations unaffected and rice yield maintained comparative levels. OF substitution also improved acidic paddy soils, with the increment of 0.33-0.90 unit for ponded water pH compared to CF treatment. Conclusively, the 30-40% of CF substituted by OF based on N amounts can be considered an ecological fertilization practice for rice production to mitigate environmental pollution due to lower N losses and without significant effect of grain yield. However, the attention also must be paid concerning the rise of environmental pollution risk from NH3 volatilization and P runoff after long-term OF application.
Collapse
Affiliation(s)
- Jiangming Zhou
- The Agricultural Technique Popularization Centre of Jiangshan City, Jiangshan, 324100, Zhejiang, China.
| |
Collapse
|
200
|
Yang S, Yang D, Taylor D, He M, Liu X, Xu J. Tracking cadmium pollution from source to receptor: A health-risk focused transfer continuum approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161574. [PMID: 36640872 DOI: 10.1016/j.scitotenv.2023.161574] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/29/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Cadmium (Cd) exposure poses a substantial risk to human health. Despite this, the multi-stage process through which Cd is released to the environment before being taken up and impacting human receptors has rarely been investigated. Here we utilized an integrated model involving Cd emissions, atmospheric transport, deposition, uptake by rice, receptor ingestion and metabolic processing in quantifying the critical emission sources and human health risks of Cd. Atmospheric Cd emissions in the study area in southeastern China were estimated at 147 kg (2016), with >53 % of emissions from non-ferrous metals (NFM) smelting activities. Atmospheric Cd depositions caused elevated Cd content in soil and rice, accounting for 3-79 % and 50-85 % of, respectively, soil and rice Cd. Cumulative frequency analysis showed that an estimated 1.3 % of predicted urine Cd through the consumption of Cd-contaminated rice and exceeded existing safety standards (1 μg g-1), thus highlighting the risks posed to health from high levels of Cd pollution. Applying stricter industrial emission standards to the NFM sector in particular and effective soil management practices could substantially reduce exposure to Cd pollution. The results contribute to understanding of the Cd transfer process and draw attention to the relative health benefits of interventions aimed at mitigating Cd levels and exposure risks at different stages along the Cd transfer continuum from source to receptor.
Collapse
Affiliation(s)
- Shiyan Yang
- College of Environmental & Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China; Eco-Environmental Protection Institution, Shanghai Academy of Agricultural Sciences, 201403, China
| | - Dong Yang
- College of Environmental & Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - David Taylor
- Department of Geography, National University of Singapore, 117650, Singapore
| | - Mingjiang He
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Xingmei Liu
- College of Environmental & Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China.
| | - Jianming Xu
- College of Environmental & Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|