151
|
Herbertsson L, Klatt BK, Blasi M, Rundlöf M, Smith HG. Seed-coating of rapeseed (Brassica napus) with the neonicotinoid clothianidin affects behaviour of red mason bees (Osmia bicornis) and pollination of strawberry flowers (Fragaria × ananassa). PLoS One 2022; 17:e0273851. [PMID: 36074788 PMCID: PMC9455870 DOI: 10.1371/journal.pone.0273851] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/16/2022] [Indexed: 12/05/2022] Open
Abstract
Neonicotinoid insecticides applied to flowering crops can have negative impacts on bees, with implications for crop pollination. To assess if exposure to the neonicotinoid clothianidin via a treated crop (rapeseed) affected bee behaviour, pollination performance (to strawberry), and bee reproduction, we provided each of 12 outdoor cages with rapeseed (autumn-sown plants complemented with a few spring-sown plants to extend the flowering period) grown from either clothianidin-treated or untreated (control) seeds, together with strawberry plants and a small population of red mason bees (Osmia bicornis). We expected clothianidin to reduce bee foraging activity, resulting in impaired strawberry pollination and bee reproduction. During the early stage of the experiment, we observed no difference between treatments in the length of entire foraging trips, or the combined number of rapeseed and strawberry flowers that the bees visited during these trips. During the later stage of the experiment, we instead determined the time a female took to visit 10 rapeseed flowers, as a proxy for foraging performance. We found that they were 10% slower in clothianidin cages. Strawberries weighed less in clothianidin cages, suggesting reduced pollination performance, but we were unable to relate this to reduced foraging activity, because the strawberry flowers received equally many visits in the two treatments. Clothianidin-exposed females sealed their nests less often, but offspring number, sex ratio and weight were similar between treatments. Observed effects on bee behaviour appeared by the end of the experiment, possibly because of accumulated effects of exposure, reduced bee longevity, or higher sensitivity of the protocols we used during the later phase of the experiment. Although the lack of a mechanistic explanation calls for interpreting the results with cautiousness, the lower strawberry weight in clothianidin cages highlights the importance of understanding complex effects of plant protection products, which could have wider consequences than those on directly exposed organisms.
Collapse
Affiliation(s)
- Lina Herbertsson
- Centre for Environmental and Climate Research, Lund University, Lund, Sweden
- Department of Biology, Lund University, Lund, Sweden
- * E-mail: (LH); (BKK); (MB)
| | - Björn K. Klatt
- Centre for Environmental and Climate Research, Lund University, Lund, Sweden
- Department of Biology, Lund University, Lund, Sweden
- * E-mail: (LH); (BKK); (MB)
| | - Maria Blasi
- Centre for Environmental and Climate Research, Lund University, Lund, Sweden
- * E-mail: (LH); (BKK); (MB)
| | - Maj Rundlöf
- Department of Biology, Lund University, Lund, Sweden
| | - Henrik G. Smith
- Centre for Environmental and Climate Research, Lund University, Lund, Sweden
- Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
152
|
Becchimanzi A, Nicoletti R. Aspergillus-bees: A dynamic symbiotic association. Front Microbiol 2022; 13:968963. [PMID: 36160228 PMCID: PMC9489833 DOI: 10.3389/fmicb.2022.968963] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/22/2022] [Indexed: 11/24/2022] Open
Abstract
Besides representing one of the most relevant threats of fungal origin to human and animal health, the genus Aspergillus includes opportunistic pathogens which may infect bees (Hymenoptera, Apoidea) in all developmental stages. At least 30 different species of Aspergillus have been isolated from managed and wild bees. Some efficient behavioral responses (e.g., diseased brood removal) exerted by bees negatively affect the chance to diagnose the pathology, and may contribute to the underestimation of aspergillosis importance in beekeeping. On the other hand, bee immune responses may be affected by biotic and abiotic stresses and suffer from the loose co-evolutionary relationships with Aspergillus pathogenic strains. However, if not pathogenic, these hive mycobiota components can prove to be beneficial to bees, by affecting the interaction with other pathogens and parasites and by detoxifying xenobiotics. The pathogenic aptitude of Aspergillus spp. likely derives from the combined action of toxins and hydrolytic enzymes, whose effects on bees have been largely overlooked until recently. Variation in the production of these virulence factors has been observed among strains, even belonging to the same species. Toxigenic and non-toxigenic strains/species may co-exist in a homeostatic equilibrium which is susceptible to be perturbed by several external factors, leading to mutualistic/antagonistic switch in the relationships between Aspergillus and bees.
Collapse
Affiliation(s)
- Andrea Becchimanzi
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Rosario Nicoletti
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
- Council for Agricultural Research and Economics, Research Centre for Olive, Fruit and Citrus Crops, Caserta, Italy
| |
Collapse
|
153
|
Venthur H, Lizana P, Manosalva L, Rojas V, Godoy R, Rocha A, Aguilera I, Palma-Millanao R, Fajardo V, Quiroz A, Mutis A. Analysis of glutathione-S-transferases from larvae of Galleria mellonella (Lepidoptera, Pyralidae) with potential alkaloid detoxification function. Front Physiol 2022; 13:989006. [PMID: 36148307 PMCID: PMC9486002 DOI: 10.3389/fphys.2022.989006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
The greater wax moth, Galleria mellonella, is a global pest for beehives, doing damage in the larval stage. Although a significant number of studies have reported on larvae and adults, to date no effective pest control has been implemented. In this study, we tested larval resistance to alkaloids from Berberis microphylla, and the objective was to identify enzymes that participate in alkaloid detoxification through enzymatic assays, bioinformatics analysis and qRT-PCR. Findings suggest glutathione-S-transferases (GSTs), from an increased metabolic mechanism, are responsible for alkaloid detoxification rather than cytochrome P450 (CYP), carboxylesterases (CarE). A bioinformatics analysis from transcriptome data revealed 22 GSTs present in both G. mellonella larvae and adults. The qRT-PCR experiments corroborated the presence of the 22 GSTs in larvae, where GST8 and GST20 stood out with the highest expression after berberine treatment. Structural information around GST8 and GST20 suggests that GST8 could bind berberine stronger than GST20. These findings represent an important advance in the study of detoxification enzymes in G. mellonella, expanding the role of delta-class GSTs towards alkaloids. Likewise, GST inhibition by alkaloid analogs is proposed in the framework of integrated pest management strategies.
Collapse
Affiliation(s)
- Herbert Venthur
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
- Centro de Investigación Biotecnológica Aplicada al Medio Ambiente, CIBAMA, Universidad de La Frontera, Temuco, Chile
| | - Paula Lizana
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Temuco, Chile
| | - Loreto Manosalva
- Facultad de Ciencias, Universidad de Magallanes, Punta Arenas, Chile
| | - Valentina Rojas
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Temuco, Chile
| | - Ricardo Godoy
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Temuco, Chile
| | - Adonis Rocha
- Carrera de Bioquímica, Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile
| | - Iván Aguilera
- Carrera de Bioquímica, Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile
| | - Rubén Palma-Millanao
- Laboratorio de Ciencias de Insectos, Instituto de Investigaciones Agropecuarias, INIA, Vilcún, Chile
| | - Victor Fajardo
- Facultad de Ciencias, Universidad de Magallanes, Punta Arenas, Chile
| | - Andrés Quiroz
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
- Centro de Investigación Biotecnológica Aplicada al Medio Ambiente, CIBAMA, Universidad de La Frontera, Temuco, Chile
| | - Ana Mutis
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco, Chile
- Centro de Investigación Biotecnológica Aplicada al Medio Ambiente, CIBAMA, Universidad de La Frontera, Temuco, Chile
- *Correspondence: Ana Mutis,
| |
Collapse
|
154
|
Steele TN, Schürch R, Ohlinger BD, Couvillon MJ. Apple orchards feed honey bees during, but even more so after, bloom. Ecosphere 2022. [DOI: 10.1002/ecs2.4228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
| | - Roger Schürch
- Department of Entomology Virginia Tech Blacksburg Virginia USA
| | | | | |
Collapse
|
155
|
Gómez‐Martínez C, González‐Estévez MA, Cursach J, Lázaro A. Pollinator richness, pollination networks, and diet adjustment along local and landscape gradients of resource diversity. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2634. [PMID: 35403772 PMCID: PMC9539497 DOI: 10.1002/eap.2634] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/06/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
Loss of habitats and native species, introduction of invasive species, and changing climate regimes lead to the homogenization of landscapes and communities, affecting the availability of habitats and resources for economically important guilds, such as pollinators. Understanding how pollinators and their interactions vary along resource diversity gradients at different scales may help to determine their adaptability to the current diversity loss related to global change. We used data on 20 plant-pollinator communities along gradients of flower richness (local diversity) and landscape heterogeneity (landscape diversity) to understand how the diversity of resources at local and landscape scales affected (1) wild pollinator abundance and richness (accounting also for honey bee abundance), (2) the structure of plant-pollinator networks, (3) the proportion of actively selected interactions (those not occurring by neutral processes), and (4) pollinator diet breadth and species' specialization in networks. Wild pollinator abundance was higher overall in flower-rich and heterogeneous habitats, while wild pollinator richness increased with flower richness (more strongly for beetles and wild bees) and decreased with honeybee abundance. Network specialization (H2 '), modularity, and functional complementarity were all positively related to floral richness and landscape heterogeneity, indicating niche segregation as the diversity of resources increases at both scales. Flower richness also increased the proportion of actively selected interactions (especially for wild bees and flies), whereas landscape heterogeneity had a weak negative effect on this variable. Overall, network-level metrics responded to larger landscape scales than pollinator-level metrics did. Higher floral richness resulted in a wider taxonomic and functional diet for all the study guilds, while functional diet increased mainly for beetles. Despite this, specialization in networks (d') increased with flower richness for all the study guilds, because pollinator species fed on a narrower subset of plants as communities became richer in species. Our study indicates that pollinators are able to adapt their diet to resource changes at local and landscape scales. However, resource homogenization might lead to poor and generalist pollinator communities, where functionally specialized interactions are lost. This study highlights the importance of including different scales to understand the effects of global change on pollination service through changes in resource diversity.
Collapse
Affiliation(s)
- Carmelo Gómez‐Martínez
- Global Change Research GroupMediterranean Institute for Advanced Studies (UIB‐CSIC)EsporlesSpain
| | | | - Joana Cursach
- Department of Biology, Laboratory of Botany, Research Group on Plant Biology under Mediterranean ConditionsUniversity of the Balearic IslandsPalmaSpain
| | - Amparo Lázaro
- Global Change Research GroupMediterranean Institute for Advanced Studies (UIB‐CSIC)EsporlesSpain
- Department of Biology, Ecology AreaUniversity of the Balearic IslandsPalmaSpain
| |
Collapse
|
156
|
Zhang K, Li Y, Sun K, Bao J, He C, Hou X. Supplementary honey bee (Apis mellifera L.) pollination enhances fruit growth rate and fruit yield in Paeonia ostii (family: Paeoniaceae). PLoS One 2022; 17:e0272921. [PMID: 36006925 PMCID: PMC9409588 DOI: 10.1371/journal.pone.0272921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/28/2022] [Indexed: 11/18/2022] Open
Abstract
Insufficient pollination leads to low and unstable production of oil tree peony. Supplementary managed honeybees (Apis mellifera L.) in agricultural ecosystems is a common practice for addressing the problem. At this study site (N 34°38′30″ and E 112°39′43″, with an altitude of 125.5 m), we set up four pollination areas (low-density bee pollination group (LDBP), high-density bee pollination group (HDBP), blank control group (CK1) and field control group (CK2)) to examine the pollination effectiveness of different densities of honeybee supplementation on oil tree peony (Paeonia ostii). Our work demonstrated that bee-pollination increased fruit size and growth rate. On average, bee-pollinated (LDBP) plants produced 63.16% more number of seeds per plant, showed also 53.47% more weight of seeds per plant than those in CK2. Also, seeds of LDBP contained, on average, 26.15% more oil content than CK2. Kernel percent and seed oil fatty acid content, however, were unaffected (F = 1.759, p = 0.074). Compared with LDBP, weight of seeds per plant and oil content with HDBP decreased by 21.89% and 2.63%, respectively. Following the same trend, compared with LDBP, HDBP slowed fruit growth and reduced fruit size. Our results showed that insufficient pollination limits fruit set in oil tree peony, while supplementary reasonable bee density in the field for pollination is an important strategy to maximize fruit yield.
Collapse
Affiliation(s)
- Kaiyue Zhang
- College of Agriculture / Tree Peony, Henan University of Science & Technology, Luoyang, China
| | - Yuying Li
- College of Agriculture / Tree Peony, Henan University of Science & Technology, Luoyang, China
| | - Kaili Sun
- College of Horticulture and Plant Protection, Henan University of Science & Technology, Luoyang, China
| | - Junyi Bao
- College of Agriculture / Tree Peony, Henan University of Science & Technology, Luoyang, China
| | - Chunling He
- College of Horticulture and Plant Protection, Henan University of Science & Technology, Luoyang, China
- * E-mail: (XH); (CH)
| | - Xiaogai Hou
- College of Agriculture / Tree Peony, Henan University of Science & Technology, Luoyang, China
- * E-mail: (XH); (CH)
| |
Collapse
|
157
|
Olhnuud A, Liu Y, Makowski D, Tscharntke T, Westphal C, Wu P, Wang M, van der Werf W. Pollination deficits and contributions of pollinators in apple production: a global meta‐analysis. J Appl Ecol 2022. [DOI: 10.1111/1365-2664.14279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Aruhan Olhnuud
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences China Agricultural University 100193 Beijing China
| | - Yunhui Liu
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences China Agricultural University 100193 Beijing China
| | - David Makowski
- UMR MIA 518, INRAE AgroParisTech University Paris‐Saclay 91120 Palaiseau France
| | - Teja Tscharntke
- Agroecology, Department of Crop Sciences University of Göttingen 37077 Göttingen Germany
| | - Catrin Westphal
- Functional Agrobiodiversity, Department of Crop Sciences University of Göttingen 37077 Göttingen Germany
| | - Panlong Wu
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences China Agricultural University 100193 Beijing China
| | - Meina Wang
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences China Agricultural University 100193 Beijing China
| | - Wopke van der Werf
- Centre for Crop Systems Analysis Wageningen University P.O. Box 430, 6700 AK Wageningen the Netherlands
| |
Collapse
|
158
|
Sciligo AR, M'Gonigle LK, Kremen C. Local diversification enhances pollinator visitation to strawberry and may improve pollination and marketability. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.941840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Numerous studies show that semi-natural habitats within agricultural landscapes benefit native pollinating insects and increase resultant crop pollination services. More recently, evidence is emerging that agricultural diversification techniques on farms, as well as increased compositional and configurational heterogeneity within the cropped portion of landscapes, enhance pollinator communities. However, to date, only a few studies have investigated how diversifying the crops within the farm field itself (i.e., polyculture) influences wild pollinator communities and crop pollination services. In the Central Coast of California, we investigate how local crop diversification within fields, crossed with the proportion of natural habitat in the surrounding landscape, jointly affect pollinator communities and services to strawberry. On 16 organic farms varying in farm type (monoculture vs. polyculture) and proportion of natural land cover, we find that both factors enhance pollinator abundance and richness, although neither affect honey bee abundance. Further, natural cover has a stronger effect on pollinator richness on monoculture (vs. polyculture) farms. Although strawberry can self-pollinate, we document experimentally that pollinator exclusion doubles the probability of berry malformation, while excluding both pollinators and wind triples malformation, with corresponding effects on berry marketability. Finally, in post-hoc tests, we find that berry malformation is significantly higher with greater visitation by honey bees, and observed a trend that this reduction was mitigated by increased native bee richness. These results suggest that both polyculture and semi-natural habitat cover support more abundant and diverse pollinator communities, and that ambient levels of pollinator visitation to strawberry provide an important crop pollination service by improving berry marketability (i.e., by reducing berry malformation). Although further confirmation would be needed, our work suggests that honey bees alone do not provide sufficient pollination services. Prior work has shown that honey bees tend to visit only the top of the strawberry flower receptacle, while other native bees often crawl around the flower base, leading to more complete pollination of the achenes and, consequently, better formed berries. If honey bee visits reduced native bee visitation in our system, this could explain the unexpected correlation between increased honey bee visits and malformation.
Collapse
|
159
|
Jaboor SK, da Silva CRB, Kellermann V. The effect of environmental temperature on bee activity at strawberry farms. AUSTRAL ECOL 2022. [DOI: 10.1111/aec.13228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
| | - Carmen Rose Buke da Silva
- School of Biological Sciences Monash University Clayton Victoria 3800 Australia
- Department of Biology Case Western Reserve University Cleveland Ohio USA
| | - Vanessa Kellermann
- School of Biological Sciences Monash University Clayton Victoria 3800 Australia
| |
Collapse
|
160
|
Walters J, Zavalnitskaya J, Isaacs R, Szendrei Z. Heat of the moment: extreme heat poses a risk to bee-plant interactions and crop yields. CURRENT OPINION IN INSECT SCIENCE 2022; 52:100927. [PMID: 35500861 DOI: 10.1016/j.cois.2022.100927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/18/2022] [Accepted: 04/24/2022] [Indexed: 06/14/2023]
Abstract
Extreme heat events threaten the development, functioning, and success of bee pollinators and crops that rely on pollinators for high yields. While direct effects of extreme heat and climate warming have gained more attention, the indirect effects on bees and crops remain largely unexplored. Extreme heat can directly alter the nutritional value of floral rewards, which indirectly contributes to lower bee survival, development, and reproduction with implications for pollination. Phenological mismatches between bee activity and crop flowering are also expected. Heat-stressed crop plants with reduced floral rewards may reduce bee foraging and nesting, limiting pollination services. Understanding how extreme heat affects bee-crop interactions will be essential for resilient production of pollinator-dependent crops in this era of climate change.
Collapse
Affiliation(s)
- Jenna Walters
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA.
| | | | - Rufus Isaacs
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA
| | - Zsofia Szendrei
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
161
|
Turley NE, Biddinger DJ, Joshi NK, López‐Uribe MM. Six years of wild bee monitoring shows changes in biodiversity within and across years and declines in abundance. Ecol Evol 2022; 12:e9190. [PMID: 35983174 PMCID: PMC9374588 DOI: 10.1002/ece3.9190] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 11/26/2022] Open
Abstract
Wild bees form diverse communities that pollinate plants in both native and agricultural ecosystems making them both ecologically and economically important. The growing evidence of bee declines has sparked increased interest in monitoring bee community and population dynamics using standardized methods. Here, we studied the dynamics of bee biodiversity within and across years by monitoring wild bees adjacent to four apple orchard locations in Southern Pennsylvania, USA. We collected bees using passive Blue Vane traps continuously from April to October for 6 years (2014-2019) amassing over 26,000 bees representing 144 species. We quantified total abundance, richness, diversity, composition, and phylogenetic structure. There were large seasonal changes in all measures of biodiversity with month explaining an average of 72% of the variation in our models. Changes over time were less dramatic with years explaining an average of 44% of the variation in biodiversity metrics. We found declines in all measures of biodiversity especially in the last 3 years, though additional years of sampling are needed to say if changes over time are part of a larger trend. Analyses of population dynamics over time for the 40 most abundant species indicate that about one third of species showed at least some evidence for declines in abundance. Bee family explained variation in species-level seasonal patterns but we found no consistent family-level patterns in declines, though bumble bees and sweat bees were groups that declined the most. Overall, our results show that season-wide standardized sampling across multiple years can reveal nuanced patterns in bee biodiversity, phenological patterns of bees, and population trends over time of many co-occurring species. These datasets could be used to quantify the relative effects that different aspects of environmental change have on bee communities and to help identify species of conservation concern.
Collapse
Affiliation(s)
- Nash E. Turley
- Department of Entomology, Center for Pollinator ResearchThe Pennsylvania State UniversityPennsylvaniaUSA
- Intercollege Graduate Degree Program in EcologyThe Pennsylvania State UniversityPennsylvaniaUSA
| | - David J. Biddinger
- Intercollege Graduate Degree Program in EcologyThe Pennsylvania State UniversityPennsylvaniaUSA
| | - Neelendra K. Joshi
- Department of Entomology and Plant PathologyUniversity of ArkansasFayettevilleArkansasUSA
| | - Margarita M. López‐Uribe
- Department of Entomology, Center for Pollinator ResearchThe Pennsylvania State UniversityPennsylvaniaUSA
- Intercollege Graduate Degree Program in EcologyThe Pennsylvania State UniversityPennsylvaniaUSA
| |
Collapse
|
162
|
Diller C, Castañeda‐Zárate M, Johnson SD. Why honeybees are poor pollinators of a mass-flowering plant: Experimental support for the low pollen quality hypothesis. AMERICAN JOURNAL OF BOTANY 2022; 109:1305-1312. [PMID: 35844034 PMCID: PMC9545086 DOI: 10.1002/ajb2.16036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
PREMISE Honeybees dominate the flower-visitor assemblages of many plant species, yet their efficiency in terms of the quality of pollen delivered to stigmas is largely unknown. We investigated why honeybees are poor pollinators of Aloe ferox, a self-incompatible succulent treelet with large numbers of flowers. Honeybees are very frequent visitors to flowers of this species, yet contribute very little to seed production. METHODS We assessed pollen loads on honeybees, studied their visitation behavior, selectively excluded birds from plants to determine direct effects of bees on pollen deposition, seed set, and ovule abortion, and used a novel "split-pollinator" method to test whether honeybees deposit mainly low-quality self pollen. For the latter, we captured honeybees, and with their existing pollen loads, used them to either pollinate virgin flowers on the plant on which they were caught or to pollinate virgin flowers on different plants. RESULTS Honeybees cumulatively deposit as much pollen on stigmas as do birds, but our experiments showed that the pollen deposited by honeybees is mostly low-quality self pollen that leads to substantial ovule discounting and depressed seed set. CONCLUSIONS Lack of movement among A. ferox plants during individual honeybee foraging bouts is the most likely explanation for their deposition of low-quality self pollen on stigmas. The "split-pollinator" method is a simple and cost-effective technique to test the quality of pollination.
Collapse
Affiliation(s)
- Carolina Diller
- Centre for Functional Biodiversity, School of Life SciencesUniversity of KwaZulu‐NatalP. Bag X01ScottsvillePietermaritzburg3209South Africa
| | - Miguel Castañeda‐Zárate
- Centre for Functional Biodiversity, School of Life SciencesUniversity of KwaZulu‐NatalP. Bag X01ScottsvillePietermaritzburg3209South Africa
| | - Steven D. Johnson
- Centre for Functional Biodiversity, School of Life SciencesUniversity of KwaZulu‐NatalP. Bag X01ScottsvillePietermaritzburg3209South Africa
| |
Collapse
|
163
|
Gilpin A, Brettell LE, Cook JM, Power SA. The use of trap‐nests to support crop pollinators in agricultural areas. Ecol Res 2022. [DOI: 10.1111/1440-1703.12348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Amy‐Marie Gilpin
- Hawkesbury Institute for the Environment Western Sydney University Penrith New South Wales Australia
| | - Laura E. Brettell
- Hawkesbury Institute for the Environment Western Sydney University Penrith New South Wales Australia
- Department of Vector Biology Liverpool School of Tropical Medicine Liverpool UK
| | - James M. Cook
- Hawkesbury Institute for the Environment Western Sydney University Penrith New South Wales Australia
| | - Sally A. Power
- Hawkesbury Institute for the Environment Western Sydney University Penrith New South Wales Australia
| |
Collapse
|
164
|
Iwasaki JM, Hogendoorn K. Mounting evidence that managed and introduced bees have negative impacts on wild bees: an updated review. CURRENT RESEARCH IN INSECT SCIENCE 2022; 2:100043. [PMID: 36003276 PMCID: PMC9387436 DOI: 10.1016/j.cris.2022.100043] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Worldwide, the use of managed bees for crop pollination and honey production has increased dramatically. Concerns about the pressures of these increases on native ecosystems has resulted in a recent expansion in the literature on this subject. To collate and update current knowledge, we performed a systematic review of the literature on the effects of managed and introduced bees on native ecosystems, focusing on the effects on wild bees. To enable comparison over time, we used the same search terms and focused on the same impacts as earlier reviews. This review covers: (a) interference and resource competition between introduced or managed bees and native bees; (b) effects of introduced or managed bees on pollination of native plants and weeds; and (c) transmission and infectivity of pathogens; and classifies effects into positive, negative, or neutral. Compared to a 2017 review, we found that the number of papers on this issue has increased by 47%. The highest increase was seen in papers on pathogen spill-over, but in the last five years considerable additional information about competition between managed and wild bees has also become available. Records of negative effects have increased from 53% of papers reporting negative effects in 2017 to 66% at present. The majority of these studies investigated effects on visitation and foraging behaviour. While only a few studies experimentally assessed impacts on wild bee reproductive output, 78% of these demonstrated negative effects. Plant composition and pollination was negatively affected in 7% of studies, and 79% of studies on pathogens reported potential negative effects of managed or introduced bees on wild bees. Taken together, the evidence increasingly suggests that managed and introduced bees negatively affect wild bees, and this knowledge should inform actions to prevent further harm to native ecosystems.
Collapse
Affiliation(s)
- Jay M. Iwasaki
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide SA 5064, Australia
| | - Katja Hogendoorn
- School of Agriculture, Food and Wine, The University of Adelaide, Adelaide SA 5064, Australia
| |
Collapse
|
165
|
Native pollinators increase fruit set while honeybees decrease the quality of mandarins in family farms. Basic Appl Ecol 2022. [DOI: 10.1016/j.baae.2022.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
166
|
Shuai J, Wang X, Li G, Kong Y, Li W, Li Z, Cheng J. Study on the mode of action between Apis mellifera (α8)2(β1)3 nAChR and typical neonicotinoids versus flupyradifurone with different bee-toxic levels. J Mol Graph Model 2022; 114:108177. [DOI: 10.1016/j.jmgm.2022.108177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/26/2021] [Accepted: 03/17/2022] [Indexed: 10/18/2022]
|
167
|
High Pollination Deficit and Strong Dependence on Honeybees in Pollination of Korla Fragrant Pear, Pyrus sinkiangensis. PLANTS 2022; 11:plants11131734. [PMID: 35807686 PMCID: PMC9268985 DOI: 10.3390/plants11131734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/13/2022] [Accepted: 06/22/2022] [Indexed: 11/17/2022]
Abstract
Pollination deficits can compromise fruit yield and quality and have been reported in several fruit crops. It is unknown whether there is a pollination deficit in the production of Korla fragrant pear, Pyrus sinkiangensis, in China, and if so, whether this deficit can be mitigated by the use of managed honeybees (Apis mellifera). We assessed insect communities, flower visitation, pollination deficit and honeybee contribution to pear pollination in Korla fragrant pear orchards in Xinjiang, China. Insect communities were monitored using colored pan traps, and pollination deficit was assessed by comparing fruit set with open pollination to that with hand pollination in orchards without beehives from 2018 to 2021. The contribution of honeybees to pollination was assessed by comparing flower visitation, fruit set and fruit quality in pear orchards with and without beehives in 2020 and 2021. In orchards without beehives, wild bees (72%) were the dominant pollinator group in pan traps, followed by honeybees (15%), moths, hoverflies, butterflies and wasps (Vespidae). Fruit set in these orchards was much lower with open pollination (8 ± 2%) than with hand pollination (74 ± 4%). When comparing pollination in orchards with and without beehives in 2020 and 2021, we found that honeybees were responsible for most of the flower visits in orchards with (96%) and without beehives (66%). Wild bees were responsible for 1% and 6% of flower visits in orchards with and without beehives, respectively. Fruit set was significantly higher in orchards with beehives (38 ± 9%) than in orchards without beehives (12 ± 3%), while fruit set and sugar content were positively associated with pollinator visitation rate. The findings reveal a large pollination deficit in Korla fragrant pear orchards, and show that this deficit can be mitigated using managed honeybees.
Collapse
|
168
|
Stevenson PC, Koch H, Nicolson SW, Brown MJF. Natural processes influencing pollinator health. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210154. [PMID: 35491596 PMCID: PMC9062705 DOI: 10.1098/rstb.2021.0154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Evidence from the last few decades indicates that pollinator abundance and diversity are at risk, with many species in decline. Anthropogenic impacts have been the focus of much recent work on the causes of these declines. However, natural processes, from plant chemistry, nutrition and microbial associations to landscape and habitat change, can also profoundly influence pollinator health. Here, we argue that these natural processes require greater attention and may even provide solutions to the deteriorating outlook for pollinators. Existing studies also focus on the decline of individuals and colonies and only occasionally at population levels. In the light of this we redefine pollinator health and argue that a top-down approach is required focusing at the ecological level of communities. We use examples from the primary research, opinion and review articles published in this special issue to illustrate how natural processes influence pollinator health, from community to individuals, and highlight where some of these processes could mitigate the challenges of anthropogenic and natural drivers of change. This article is part of the theme issue 'Natural processes influencing pollinator health: from chemistry to landscapes'.
Collapse
Affiliation(s)
- Philip C Stevenson
- Royal Botanic Gardens, Kew, Kew Green, Richmond, Surrey TW9 3AE, UK.,Natural Resources Institute, University of Greenwich, Kent ME4 4TB, UK
| | - Hauke Koch
- Royal Botanic Gardens, Kew, Kew Green, Richmond, Surrey TW9 3AE, UK
| | - Susan W Nicolson
- Department of Zoology & Entomology, University of Pretoria, Pretoria 0002, South Africa
| | - Mark J F Brown
- Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| |
Collapse
|
169
|
Jones J, Rader R. Pollinator nutrition and its role in merging the dual objectives of pollinator health and optimal crop production. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210170. [PMID: 35491607 PMCID: PMC9058521 DOI: 10.1098/rstb.2021.0170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Bee and non-bee insect pollinators play an integral role in the quantity and quality of production for many food crops, yet there is growing evidence that nutritional challenges to pollinators in agricultural landscapes are an important factor in the reduction of pollinator populations worldwide. Schemes to enhance crop pollinator health have historically focused on floral resource plantings aimed at increasing pollinator abundance and diversity by providing more foraging opportunities for bees. These efforts have demonstrated that improvements in bee diversity and abundance are achievable; however, goals of increasing crop pollination outcomes via these interventions are not consistently met. To support pollinator health and crop pollination outcomes in tandem, habitat enhancements must be tailored to meet the life-history needs of specific crop pollinators, including non-bees. This will require greater understanding of the nutritional demands of these taxa together with the supply of floral and non-floral food resources and how these interact in cropping environments. Understanding the mechanisms underlying crop pollination and pollinator health in unison across a range of taxa is clearly a win–win for industry and conservation, yet achievement of these goals will require new knowledge and novel, targeted methods. This article is part of the theme issue ‘Natural processes influencing pollinator health: from chemistry to landscapes’.
Collapse
Affiliation(s)
- Jeremy Jones
- School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| | - Romina Rader
- School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| |
Collapse
|
170
|
Stout JC, Dicks LV. From science to society: implementing effective strategies to improve wild pollinator health. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210165. [PMID: 35491595 PMCID: PMC9058532 DOI: 10.1098/rstb.2021.0165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Despite a substantial increase in scientific, public and political interest in pollinator health and many practical conservation efforts, incorporating initiatives across a range of scales and sectors, pollinator health continues to decline. We review existing pollinator conservation initiatives and define their common structural elements. We argue that implementing effective action for pollinators requires further scientific understanding in six key areas: (i) status and trends of pollinator populations; (ii) direct and indirect drivers of decline, including their interactions; (iii) risks and co-benefits of pollinator conservation actions for ecosystems; (iv) benefits of pollinator conservation for society; (v) the effectiveness of context-specific, tailored, actionable solutions; and (vi) integrated frameworks that explicitly link benefits and values with actions to reverse declines. We propose use of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) conceptual framework to link issues and identify critical gaps in both understanding and action for pollinators. This approach reveals the centrality of addressing the recognized indirect drivers of decline, such as patterns of global trade and demography, which are frequently overlooked in current pollinator conservation efforts. Finally, we discuss how existing and new approaches in research can support efforts to move beyond these shortcomings in pollinator conservation initiatives. This article is part of the theme issue 'Natural processes influencing pollinator health: from chemistry to landscapes'.
Collapse
Affiliation(s)
- Jane C Stout
- School of Natural Sciences, Trinity College Dublin, College Green, Dublin 2, Ireland
| | - Lynn V Dicks
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| |
Collapse
|
171
|
Broussard MA, Howlett BG, Evans LJ, McBrydie H, Cutting BT, Read SF, Pattemore DE. Pollinator identity and behavior affect pollination in kiwifruit ( Actinidia chinensis Planch.). PeerJ 2022; 10:e12963. [PMID: 35702253 PMCID: PMC9188772 DOI: 10.7717/peerj.12963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 01/28/2022] [Indexed: 01/11/2023] Open
Abstract
Many crop plants rely on insect pollination, particularly insect-pollinated crops which are functionally dioecious. These crops require insects to move pollen between separate plants which are functionally male or female. While honey bees are typically considered the most important crop pollinator species, many other insects are known to visit crops but the pollination contribution of the full diversity of these flower visitors is poorly understood. In this study, we examine the role of diverse insect pollinators for two kiwifruit cultivars as model systems for dioecious crops: Actinidia chinensis var. deliciosa 'Hayward' (a green-fleshed variety) and A. chinensis var. chinensis 'Zesy002' (a gold-fleshed variety). In our round-the-clock insect surveys, we identified that psychodid flies and mosquitoes were the second and third most frequent floral visitors after honey bees (Apis mellifera L), but further work is required to investigate their pollination efficiency. Measures of single-visit pollen deposition identified that several insects, including the bees Leioproctus spp. and Bombus spp. and the flies Helophilus hochstetteri and Eristalis tenax, deposited a similar amount of pollen on flowers as honey bees (Apis mellifera). Due to their long foraging period and high pollen deposition, we recommend the development of strategies to boost populations of Bombus spp., Eristalis tenax and other hover flies, and unmanaged bees for use as synergistic pollinators alongside honey bees.
Collapse
Affiliation(s)
- Melissa A. Broussard
- The New Zealand Institute for Plant and Food Research Ltd, Hamilton, New Zealand
| | - Brad G. Howlett
- The New Zealand Institute for Plant and Food Research Ltd, Lincoln, New Zealand
| | - Lisa J. Evans
- Plant and Food Research Australia Ltd, Brisbane, Australia
| | - Heather McBrydie
- The New Zealand Institute for Plant and Food Research Ltd, Hamilton, New Zealand
| | | | - Samantha F.J. Read
- The New Zealand Institute for Plant and Food Research Ltd, Lincoln, New Zealand
| | - David E. Pattemore
- The New Zealand Institute for Plant and Food Research Ltd, Hamilton, New Zealand,University of Auckland, Auckland, New Zealand
| |
Collapse
|
172
|
Montero‐Castaño A, Koch JBU, Lindsay TT, Love B, Mola JM, Newman K, Sharkey JK. Pursuing best practices for minimizing wild bee captures to support biological research. CONSERVATION SCIENCE AND PRACTICE 2022. [DOI: 10.1111/csp2.12734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
| | - Jonathan Berenguer Uhuad Koch
- U.S. Department of Agriculture‐Agricultural Research Service Pollinating Insect‐Biology, Management, and Systematics Research Unit Logan Utah USA
| | - Thuy‐Tien Thai Lindsay
- U.S. Department of Agriculture‐Agricultural Research Service Pollinating Insect‐Biology, Management, and Systematics Research Unit Logan Utah USA
| | - Byron Love
- U.S. Department of Agriculture‐Agricultural Research Service Pollinating Insect‐Biology, Management, and Systematics Research Unit Logan Utah USA
| | - John M. Mola
- U.S. Geological Survey Fort Collins Science Center Fort Collins Colorado USA
| | - Kiera Newman
- School of Environmental Sciences University of Guelph Guelph Ontario Canada
| | - Janean K. Sharkey
- School of Environmental Sciences University of Guelph Guelph Ontario Canada
| |
Collapse
|
173
|
Lindström SA, Rundlöf M, Herbertsson L. Simple and farmer-friendly bumblebee conservation: straw bales as nest sites in agricultural landscapes. Basic Appl Ecol 2022. [DOI: 10.1016/j.baae.2022.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
174
|
Hall MA, Stavert JR, Saunders ME, Barr S, Haberle SG, Rader R. Pollen-insect interaction meta-networks identify key relationships for conservation in mosaic agricultural landscapes. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2537. [PMID: 35038208 PMCID: PMC9285751 DOI: 10.1002/eap.2537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/15/2021] [Indexed: 06/14/2023]
Abstract
Flower visitors use different parts of the landscape through the plants they visit, however these connections vary within and among land uses. Identifying which flower-visiting insects are carrying pollen, and from where in the landscape, can elucidate key pollen-insect interactions and identify the most important sites for maintaining community-level interactions across land uses. We developed a bipartite meta-network, linking pollen-insect interactions with the sites they occur in. We used this to identify which land-use types at the site- and landscape-scale (within 500 m of a site) are most important for conserving pollen-insect interactions. We compared pollen-insect interactions across four different land uses (remnant native forest, avocado orchard, dairy farm, rotational potato crop) within a mosaic agricultural landscape. We sampled insects using flight intercept traps, identified pollen carried on their bodies and quantified distinct pollen-insect interactions that were highly specialized to both natural and modified land uses. We found that sites in crops and dairy farms had higher richness of pollen-insect interactions and higher interaction strength than small forest patches and orchards. Further, many interactions involved pollinator groups such as flies, wasps, and beetles that are often under-represented in pollen-insect network studies, but were often connector species in our networks. These insect groups require greater attention to enable wholistic pollinator community conservation. Pollen samples were dominated by grass (Poaceae) pollen, indicating anemophilous plant species may provide important food resources for pollinators, particularly in modified land uses. Field-scale land use (within 100 m of a site) better predicted pollen-insect interaction richness, uniqueness, and strength than landscape-scale. Thus, management focused at smaller scales may provide more tractable outcomes for conserving or restoring pollen-insect interactions in modified landscapes. For instance, actions aimed at linking high-richness sites with those containing unique (i.e., rare) interactions by enhancing floral corridors along field boundaries and between different land uses may best aid interaction diversity and connectance. The ability to map interactions across sites using a meta-network approach is practical and can inform land-use planning, whereby conservation efforts can be targeted toward areas that host key interactions between plant and pollinator species.
Collapse
Affiliation(s)
- Mark A. Hall
- School of Environmental and Rural ScienceUniversity of New EnglandArmidaleNew South WalesAustralia
- Hawksbury Institute for the EnvironmentWestern Sydney UniversityPenrithNew South WalesAustralia
| | - Jamie R. Stavert
- School of Environmental and Rural ScienceUniversity of New EnglandArmidaleNew South WalesAustralia
- Department of Conservation – Te Papa AtawhaiAucklandNew Zealand
| | - Manu E. Saunders
- School of Environmental and Rural ScienceUniversity of New EnglandArmidaleNew South WalesAustralia
| | - Shannon Barr
- School of Environmental and Rural ScienceUniversity of New EnglandArmidaleNew South WalesAustralia
| | - Simon G. Haberle
- School of Culture, History and Language, ANU College of Asia and the PacificAustralian National UniversityCanberraAustralian Capital TerritoryAustralia
- ARC Centre of Excellence for Australian Biodiversity and Heritage, ANU College of Asia and the PacificAustralian National UniversityCanberraAustralian Capital TerritoryAustralia
| | - Romina Rader
- School of Environmental and Rural ScienceUniversity of New EnglandArmidaleNew South WalesAustralia
| |
Collapse
|
175
|
Gaiarsa MP, Rehan S, Barbour MA, McFrederick QS. Individual dietary specialization in a generalist bee varies across populations but has no effect on the richness of associated microbial communities. Am Nat 2022; 200:730-737. [DOI: 10.1086/721023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
176
|
Bernardes RC, Botina LL, Araújo RDS, Guedes RNC, Martins GF, Lima MAP. Artificial Intelligence-Aided Meta-Analysis of Toxicological Assessment of Agrochemicals in Bees. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.845608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The lack of consensus regarding pollinator decline in various parts of the planet has generated intense debates in different spheres. Consequently, much research has attempted to identify the leading causes of this decline, and a multifactorial synergism (i.e., different stressors acting together and mutually potentiating the harmful effects) seems to be the emerging consensus explaining this phenomenon. The emphasis on some stressor groups such as agrochemicals, and pollinators such as the honey bee Apis mellifera, can hide the real risk of anthropogenic stressors on pollinating insects. In the present study, we conducted a systematic review of the literature to identify general and temporal trends in publications, considering the different groups of pollinators and their exposure to agrochemicals over the last 76 years. Through an artificial intelligence (AI)-aided meta-analysis, we quantitatively assessed trends in publications on bee groups and agrochemicals. Using AI tools through machine learning enabled efficient evaluation of a large volume of published articles. Toxicological assessment of the impact of agrochemicals on insect pollinators is dominated by the order Hymenoptera, which includes honey bees. Although honey bees are well-explored, there is a lack of published articles exploring the toxicological assessment of agrochemicals for bumble bees, solitary bees, and stingless bees. The data gathered provide insights into the current scenario of the risk of pollinator decline imposed by agrochemicals and serve to guide further research in this area.Systematic Review Registrationhttps://asreview.nl/.
Collapse
|
177
|
Peters B, Keller A, Leonhardt SD. Diets maintained in a changing world: Does land‐use intensification alter wild bee communities by selecting for flexible generalists? Ecol Evol 2022; 12:e8919. [PMID: 35600696 PMCID: PMC9108308 DOI: 10.1002/ece3.8919] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 04/07/2022] [Accepted: 04/19/2022] [Indexed: 11/08/2022] Open
Affiliation(s)
- Birte Peters
- Department for Animal Ecology and Tropical Biology University of Würzburg Biocenter Würzburg Germany
- Department of Bioinformatics University of Würzburg Biocenter Würzburg Germany
- Center for Computational and Theoretical Biology University of Würzburg Würzburg Germany
| | - Alexander Keller
- Cellular and Organismic Networks Faculty of Biology Ludwig‐Maximilians‐Universität Munich Planegg‐Martinsried Germany
| | - Sara Diana Leonhardt
- Department for Animal Ecology and Tropical Biology University of Würzburg Biocenter Würzburg Germany
- Department of Life Science Systems Technical University of Munich Freising Germany
| |
Collapse
|
178
|
Ory F, Duchemin V, Kilchenmann V, Charrière JD, Dainat B, Dietemann V. Lack of evidence for trans-generational immune priming against the honey bee pathogen Melissococcus plutonius. PLoS One 2022; 17:e0268142. [PMID: 35533189 PMCID: PMC9084521 DOI: 10.1371/journal.pone.0268142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 04/22/2022] [Indexed: 11/18/2022] Open
Abstract
Trans-generational immune priming involves the transfer of immunological experience, acquired by the parents after exposure to pathogens, to protect their progeny against infections by these pathogens. Such natural mechanisms could be exploited to prevent disease expression in economically important insects, such as the honey bee. This mechanism occurs when honey bee queens are exposed to the pathogenic bacterium Paenibacillus larvae. Here, we tested whether natural or experimental exposure to Melissococcus plutonius-another bacterium triggering a disease in honey bee larvae-reduced the susceptibility of the queen's progeny to infection by this pathogen. Because the immunological response upon pathogen exposure can lead to fitness costs, we also determined whether experimental exposure of the queens affected them or their colony negatively. Neither natural nor experimental exposure induced protection in the honey bee larvae against the deleterious effects of M. plutonius. Our results provided no evidence for the occurrence of trans-generational immune priming upon exposure of the queen to M. plutonius. Whether this lack was due to confounding genetic resistance, to unsuitable exposure procedure or to the absence of trans-generational immune priming against this pathogen in honey bees remains to be determined.
Collapse
Affiliation(s)
- Florine Ory
- Swiss Bee Research Centre, Agroscope, Bern, Switzerland
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Vincent Duchemin
- Swiss Bee Research Centre, Agroscope, Bern, Switzerland
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | | | | | | | - Vincent Dietemann
- Swiss Bee Research Centre, Agroscope, Bern, Switzerland
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
179
|
Brown AF, Rodriguez V, Brzoska C, Pfister J, Neumann P, Retschnig G. Dream Team for Honey Bee Health: Pollen and Unmanipulated Gut Microbiota Promote Worker Longevity and Body Weight. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.864741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Gut microbiota are known to foster pollen digestion in honey bee workers, Apis mellifera, thereby enhancing longevity and body weight gain. However, it is currently not known how longevity and body weight gain are effected when gut microbiota are reduced in bees with or without access to pollen. Here, using a hoarding cage set-up with freshly emerged summer workers, we manipulated the gut microbiota of half the bees with the antibiotic tetracycline (ABX), and left the other half untreated on a sucrose solution diet. Afterwards, all bees were assigned to either sucrose diets or sucrose plus ad libitum access to pollen (N = 4 treatments, N = 26 bees/treatment, N = 10 replicates/treatment, N = 1,040 total workers). The data confirm that pollen has a positive effect on longevity and body weight in workers with an unmanipulated gut microbiota. Surprisingly, the antibiotics alone also improved the longevity and body weight of the workers fed a strictly sucrose diet, potentially explained by the reduction of harmful bacteria. However, this positive effect was reversed from an observed antagonistic interaction between pollen and antibiotics, underscoring the innate value of natural microbiota on pollen digestion. In conclusion, a combination of adequate pollen supply and an unmanipulated gut microbiota appears crucial to honey bee worker health, calling for respective efforts to ensure both in managed colonies.
Collapse
|
180
|
Gilpin AM, O'Brien C, Kobel C, Brettell LE, Cook JM, Power SA. Co-flowering plants support diverse pollinator populations and facilitate pollinator visitation to sweet cherry crops. Basic Appl Ecol 2022. [DOI: 10.1016/j.baae.2022.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
181
|
Maru B, Maryo M, Kassa G. Socioeconomic determinants of crop diversity in Bule Hora Woreda, Southern Ethiopia. Heliyon 2022; 8:e09489. [PMID: 35647335 PMCID: PMC9136266 DOI: 10.1016/j.heliyon.2022.e09489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/27/2022] [Accepted: 05/14/2022] [Indexed: 10/28/2022] Open
Abstract
Crop diversification on the farm is a useful approach, especially in developing countries, where agriculture is the primary source of income. Crop diversity management on the farm is critical for reducing poverty, increasing farm revenue, creating jobs, and ensuring long-term agricultural sustainability by maintaining biodiversity, soil, and water resources. Despite their relevance, several variables are currently affecting farmers' crop production decisions. The purpose of this research was to see how socioeconomic factors influence crop diversification. We chose randomly 84 sample household heads from four kebeles to collect socioeconomic and on-farm data. The Shannon-Wiener index (SWI) and crop species richness were used to assess crop diversity. A multiple stepwise linear regression model was used to evaluate the data. Crop diversity was positively and significantly related to household farm size, animal size and composition, annual income, and the location's altitudinal gradient. A lack of road infrastructure and market connections constrained farmers' crop diversification options. It's vital to connect distant areas with road networks and market ties to promote farm-level crop diversification.
Collapse
Affiliation(s)
| | - Melesse Maryo
- Ethiopian Biodiversity Institute, Addis Ababa, Ethiopia
| | - Getahun Kassa
- Wondo Genet College of Forestry and Natural Resources, Hawassa University, P.O. Box 128, Shashemene, Ethiopia
| |
Collapse
|
182
|
Eckerter PW, Albrecht M, Bertrand C, Gobet E, Herzog F, Pfister SC, Tinner W, Entling MH. Effects of temporal floral resource availability and non-crop habitats on broad bean pollination. LANDSCAPE ECOLOGY 2022; 37:1573-1586. [PMID: 35611158 PMCID: PMC9122849 DOI: 10.1007/s10980-022-01448-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 04/05/2022] [Indexed: 06/15/2023]
Abstract
CONTEXT Flowering plants can enhance wild insect populations and their pollination services to crops in agricultural landscapes, especially when they flower before the focal crop. However, characterizing the temporal availability of specific floral resources is a challenge. OBJECTIVES Developing an index for the availability of floral resources at the landscape scale according to the specific use by a pollinator. Investigating whether detailed and temporally-resolved floral resource maps predict pollination success of broad bean better than land cover maps. METHODS We mapped plant species used as pollen source by bumblebees in 24 agricultural landscapes and developed an index of floral resource availability for different times of the flowering season. To measure pollination success, patches of broad bean (Vicia faba), a plant typically pollinated by bumblebees, were exposed in the center of selected landscapes. RESULTS Higher floral resource availability before bean flowering led to enhanced seed set. Floral resource availability synchronous to broad bean flowering had no effect. Seed set was somewhat better explained by land cover maps than by floral resource availability, increasing with urban area and declining with the cover of arable land. CONCLUSIONS The timing of alternative floral resource availability is important for crop pollination. The higher explanation of pollination success by land cover maps than by floral resource availability indicates that additional factors such as habitat disturbance and nesting sites play a role in pollination. Enhancing non-crop woody plants in agricultural landscapes as pollen sources may ensure higher levels of crop pollination by wild pollinators such as bumblebees. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10980-022-01448-2.
Collapse
Affiliation(s)
- Philipp W. Eckerter
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany
| | - Matthias Albrecht
- Agricultural Landscapes and Biodiversity, Agroscope, Zurich, Switzerland
| | - Colette Bertrand
- Agricultural Landscapes and Biodiversity, Agroscope, Zurich, Switzerland
- Université Paris-Saclay, INRAE, UMR ECOSYS, AgroParisTech, Versailles, France
| | - Erika Gobet
- Institute of Plant Sciences and Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
| | - Felix Herzog
- Agricultural Landscapes and Biodiversity, Agroscope, Zurich, Switzerland
| | - Sonja C. Pfister
- Institute for Agroecology and Biodiversity (IFAB), Mannheim, Germany
| | - Willy Tinner
- Institute of Plant Sciences and Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland
| | - Martin H. Entling
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany
| |
Collapse
|
183
|
Su T, He B, Zhao F, Jiang K, Lin G, Huang Z. Population genomics and phylogeography of
Colletes gigas
, a wild bee specialized on winter flowering plants. Ecol Evol 2022; 12:e8863. [PMID: 35494503 PMCID: PMC9035574 DOI: 10.1002/ece3.8863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 11/09/2022] Open
Abstract
Diet specialization may affect the population genetic structure of pollinators by reducing gene flow and driving genetic differentiation, especially in pollen‐specialist bees. Colletes gigas is a pollen‐specialist pollinator of Camellia oleifera, one of the most important staple oil crops in China. Ca. oleifera blooms in cold climates and contains special compounds that make it an unusable pollen source to other pollinators. Thus, C. gigas undoubtedly plays a key role as the main pollinator of Ca. oleifera, with biological and economic significance. Here, we use a population genomic approach to analyze the roles of geography and climate on the genetic structure, genetic diversity, and demographic history of C. gigas. A total of 1,035,407 SNPs were identified from a 582.77 Gb dataset. Clustering and phylogenetic analyses revealed a marked genetic structure, with individuals grouped into nine local clusters. A significant isolation by distance was detected by both the Mantel test (R = .866, p = .008) and linear regression (R2 = .616, p < .001). Precipitation and sunshine duration were positively and significantly (R ≥ .765, p ≤ .016) correlated with observed heterozygosity (Ho) and expected heterozygosity (He). These results showed that C. gigas populations had a distinct phylogeographic pattern determined by geographical distance and environmental factors (precipitation and sunshine duration). In addition, an analysis of paleogeographic dynamics indicated that C. gigas populations exhibited patterns of glacial expansion and interglacial contraction, likely resulting from post‐glacial habitat contraction and fragmentation. Our results indicated that the peculiar phylogeographic patterns in C. gigas populations may be related to their specialization under long‐term adaptation to host plants. This work improves our understanding of the population genetics in pollen‐specialist bees. The distinct genetic clusters identified in this study should be taken into consideration for the protection and utilization of this specialized crop pollinator.
Collapse
Affiliation(s)
- Tianjuan Su
- School of Life Sciences Jinggangshan University Ji'an China
| | - Bo He
- School of Life Sciences Jinggangshan University Ji'an China
- College of Life Sciences Anhui Normal University Wuhu China
| | - Fang Zhao
- School of Life Sciences Jinggangshan University Ji'an China
| | - Kai Jiang
- School of Life Sciences Jinggangshan University Ji'an China
| | - Gonghua Lin
- School of Life Sciences Jinggangshan University Ji'an China
| | - Zuhao Huang
- School of Life Sciences Jinggangshan University Ji'an China
| |
Collapse
|
184
|
Temporal Variation in Pollinators’ Visitation of Lantana camara in a Tropical Urban Landscape: Does Butterfly Abundance and Richness Drive the Fruit Set? EKOLÓGIA (BRATISLAVA) 2022. [DOI: 10.2478/eko-2022-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Pollinator richness, abundance and visitation frequency may be affected by the abundance of floral resources and abiotic factors, influencing plant reproductive success. We analysed whether the diversity, abundance and frequency of butterfly visitation on Lantana camara vary across the year in a tropical urban landscape and whether this variation in butterfly community influences plant’s reproductive success. A two-period survey, referred to here as rainier and drier seasons, was carried out in 12 spatially independent plants. Five pollination treatments were applied: single visit, hand cross-pollination, hand self-pollination, spontaneous self-pollination and open pollination (control). A total of 15,749 flowers were used for fruit production analysis. Butterfly richness, abundance and the reproductive success of L. camara increased in the drier season. Open pollination was ninefold more reproductively successful during the drier season. Fruit production of hand cross-pollinated plants was threefold higher than open-pollinated plants during the rainier season. No significant difference was found between these treatments in the drier season, attesting the highest abundance of pollination during this period. We provide evidence that changes in the pollinator community affect fruit production. The increase in pollinator diversity allows different visitors to pollinate the plant, increasing fruit set through functional complementarity. This effort establishes baseline data of plant–pollinator interactions for further long-term investigations across different weather seasons. The understanding of L. camara and butterflies’ synergism will support conservation measures of pollinator populations.
Collapse
|
185
|
Siviter H, Matthews AJ, Brown MJF. A Combined LD50 for Agrochemicals and Pathogens in Bumblebees (Bombus terrestris [Hymenoptera: Apidae]). ENVIRONMENTAL ENTOMOLOGY 2022; 51:378-384. [PMID: 35021185 PMCID: PMC9032631 DOI: 10.1093/ee/nvab139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Indexed: 06/04/2023]
Abstract
Neonicotinoid insecticides are the most commonly used insecticide in the world and can have significant sub-lethal impacts on beneficial insects, including bumblebees, which are important pollinators of agricultural crops and wild-flowers. This has led to bans on neonicotinoid use in the EU and has resulted in repeated calls for the agrochemical regulatory process to be modified. For example, there is increasing concern about 1) the underrepresentation of wild bees, such as bumblebees, in the regulatory process, and 2) the failure to determine how agrochemicals, such as neonicotinoids, interact with other commonly occurring environmental stressors, such as parasites. Here, we modify an OECD approved lethal dose (LD50) experimental design and coexpose bumblebees (Bombus terrestris) to the neonicotinoid thiamethoxam and the highly prevalent trypanosome parasite Crithidia bombi, in a fully crossed design. We found no difference in the LD50 of thiamethoxam on bumblebees that had or had not been inoculated with the parasite (Crithidia bombi). Furthermore, thiamethoxam dosage did not appear to influence the parasite intensity of surviving bumblebees, and there was no effect of either parasite or insecticide on sucrose consumption. The methodology used demonstrates how existing ring-tested experimental designs can be effectively modified to include other environmental stressors such as parasites. Moving forward, the regulatory process should implement methodologies that assess the interactions between agrochemicals and parasites on non-Apis bees and, in cases when this is not practical, should implement post-regulatory monitoring to better understand the real-world consequences of agrochemical use.
Collapse
Affiliation(s)
- Harry Siviter
- Department of Biological Sciences, Centre for Ecology, Evolution, and Behaviour, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, Surrey, TW20 0EX, United Kingdom
- Department of Integrative Biology, University of Texas at Austin
, 2415 Speedway, Austin, TX 78712, USA
| | - Alexander J Matthews
- Department of Biological Sciences, Centre for Ecology, Evolution, and Behaviour, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, Surrey, TW20 0EX, United Kingdom
- Fargro Limited, Vinery Fields, Arundel, BN18 9PY, United Kingdom
| | - Mark J F Brown
- Department of Biological Sciences, Centre for Ecology, Evolution, and Behaviour, School of Life Sciences and the Environment, Royal Holloway University of London, Egham, Surrey, TW20 0EX, United Kingdom
| |
Collapse
|
186
|
Simpson DT, Weinman LR, Genung MA, Roswell M, MacLeod M, Winfree R. Many bee species, including rare species, are important for function of entire plant-pollinator networks. Proc Biol Sci 2022; 289:20212689. [PMID: 35414236 PMCID: PMC9006027 DOI: 10.1098/rspb.2021.2689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
It is important to understand how biodiversity, including that of rare species, affects ecosystem function. Here, we consider this question with regard to pollination. Studies of pollination function have typically focused on pollination of single plant species, or average pollination across plants, and typically find that pollination depends on a few common species. Here, we used data from 11 plant-bee visitation networks in New Jersey, USA, to ask whether the number of functionally important bee species changes as we consider function separately for each plant species in increasingly diverse plant communities. Using rarefaction analysis, we found the number of important bee species increased with the number of plant species. Overall, 2.5 to 7.6 times more bee species were important at the community scale, relative to the average plant species in the same community. This effect did not asymptote in any of our datasets, suggesting that even greater bee biodiversity is needed in real-world systems. Lastly, on average across plant communities, 25% of bee species that were important at the community scale were also numerically rare within their network, making this study one of the strongest empirical demonstrations to date of the functional importance of rare species.
Collapse
Affiliation(s)
| | | | - Mark A Genung
- Department of Ecology, Evolution and Natural Resources, Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901, USA.,Department of Biology, University of Louisiana, Lafayette, LA 70503, USA
| | - Michael Roswell
- Graduate Program in Ecology and Evolution, and.,Department of Entomology, University of Maryland, College Park, MD 20742, USA
| | - Molly MacLeod
- Graduate Program in Ecology and Evolution, and.,Science Communications and Engagement, BioMarin Pharmaceutical Inc., Science Communications and Engagement, San Rafael, CA 94901, USA
| | - Rachael Winfree
- Department of Ecology, Evolution and Natural Resources, Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901, USA
| |
Collapse
|
187
|
Aguirre LA, Adler LS. Interacting Antagonisms: Parasite Infection Alters Bombus impatiens (Hymenoptera: Apidae) Responses to Herbivory on Tomato Plants. JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:688-692. [PMID: 35244163 DOI: 10.1093/jee/toac023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Indexed: 06/14/2023]
Abstract
Little is known about how simultaneous antagonistic interactions on plants and pollinators affect pollination services, even though herbivory can alter floral traits and parasites can change pollinator learning, perception, or behavior. We investigated how a common herbivore and bumble bee (Bombus spp.) parasite impact pollination in tomatoes (Solanum lycopersicum L.) (Solanales: Solanaceae). We exposed half the plants to low-intensity herbivory by the specialist Manduca sexta L. (Lepidoptera: Sphigidae), and observed bumble bee visits and time spent on flowers of damaged and control plants. Following observations, we caught the foraging bees and assessed infection by the common gut parasite, Crithidia bombi Lipa & Triggiani (Trypanosomatida: Trypanosomatidae). Interestingly, we found an interactive effect between herbivory and Crithidia infection; bees with higher parasite loads spent less time foraging on damaged plants compared to control plants. However, bees did not visit higher proportions of flowers on damaged or control plants, regardless of infection status. Our study demonstrates that multiple antagonists can have synergistic negative effects on the duration of pollinator visits, such that the consequences of herbivory may depend on the infection status of pollinators. If pollinator parasites indeed exacerbate the negative effects of herbivory on pollination services, this suggests the importance of incorporating bee health management practices to maximize crop production.
Collapse
Affiliation(s)
- Luis A Aguirre
- Department of Biology, University of Massachusetts, Amherst, MA, USA
- Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, MA, USA
| | - Lynn S Adler
- Department of Biology, University of Massachusetts, Amherst, MA, USA
- Graduate Program in Organismic and Evolutionary Biology, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
188
|
Sáez A, Aguilar R, Ashworth L, Gleiser G, Morales CL, Traveset A, Aizen MA. Managed honeybees decrease pollination limitation in self-compatible but not in self-incompatible crops. Proc Biol Sci 2022; 289:20220086. [PMID: 35382601 PMCID: PMC8984806 DOI: 10.1098/rspb.2022.0086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Modern agriculture is becoming increasingly pollinator-dependent. However, the global stock of domesticated honeybees is growing at a slower rate than its demand, while wild bees are declining worldwide. This uneven scenario of high pollinator demand and low pollinator availability can translate into increasing pollination limitation, reducing the yield of pollinator-dependent crops. However, overall assessments of crop pollination limitation and the factors determining its magnitude are missing. Based on 52 published studies including 30 crops, we conducted a meta-analysis comparing crop yield in pollen-supplemented versus open-pollinated flowers. We assessed the overall magnitude of pollination limitation and whether this magnitude was influenced by (i) the presence/absence of managed honeybees, (ii) crop compatibility system (i.e. self-compatible/self-incompatible) and (iii) the interaction between these two factors. Overall, pollen supplementation increased yield by approximately 34%, indicating sizable pollination limitation. Deployment of managed honeybees and self-compatibility were associated with lower pollination limitation. Particularly, active honeybee management decreased pollination limitation among self-compatible but apparently not among self-incompatible crops. These findings indicate that current pollination regimes are, in general, inadequate to maximize crop yield, even when including managed honeybees, and stress the need of transforming the pollination management paradigm of agricultural landscapes.
Collapse
Affiliation(s)
- Agustín Sáez
- Grupo de Ecología de la Polinización (ECOPOL), Instituto de Investigaciones en Biodiversidad y Medio Ambiente (INIBIOMA), CONICET-Universidad Nacional del Comahue, Quintral 1250, Bariloche 8400, Rio Negro, Argentina
| | - Ramiro Aguilar
- Instituto Multidisciplinario de Biología Vegetal, Universidad Nacional de Córdoba - CONICET, Córdoba, Argentina.,Laboratorio Nacional de Análisis y Síntesis Ecológica (LANASE), Universidad Nacional Autónoma de México, 58190 Morelia, México
| | - Lorena Ashworth
- Instituto Multidisciplinario de Biología Vegetal, Universidad Nacional de Córdoba - CONICET, Córdoba, Argentina.,Laboratorio Nacional de Análisis y Síntesis Ecológica (LANASE), Universidad Nacional Autónoma de México, 58190 Morelia, México
| | - Gabriela Gleiser
- Grupo de Ecología de la Polinización (ECOPOL), Instituto de Investigaciones en Biodiversidad y Medio Ambiente (INIBIOMA), CONICET-Universidad Nacional del Comahue, Quintral 1250, Bariloche 8400, Rio Negro, Argentina
| | - Carolina L Morales
- Grupo de Ecología de la Polinización (ECOPOL), Instituto de Investigaciones en Biodiversidad y Medio Ambiente (INIBIOMA), CONICET-Universidad Nacional del Comahue, Quintral 1250, Bariloche 8400, Rio Negro, Argentina
| | - Anna Traveset
- Global Change Research Group, Mediterranean Institute for Advanced Studies, 07190 Esporles, Mallorca, Balearic Islands, Spain
| | - Marcelo A Aizen
- Grupo de Ecología de la Polinización (ECOPOL), Instituto de Investigaciones en Biodiversidad y Medio Ambiente (INIBIOMA), CONICET-Universidad Nacional del Comahue, Quintral 1250, Bariloche 8400, Rio Negro, Argentina.,Wissenschaftskolleg zu Berlin, Berlin 14193, Germany
| |
Collapse
|
189
|
Cappellari A, Bonaldi G, Mei M, Paniccia D, Cerretti P, Marini L. Functional traits of plants and pollinators explain resource overlap between honeybees and wild pollinators. Oecologia 2022; 198:1019-1029. [PMID: 35380272 PMCID: PMC9056470 DOI: 10.1007/s00442-022-05151-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 03/23/2022] [Indexed: 11/30/2022]
Abstract
Managed and wild pollinators often cohabit in both managed and natural ecosystems. The western honeybee, Apis mellifera, is the most widespread managed pollinator species. Due to its density and behaviour, it can potentially influence the foraging activity of wild pollinators, but the strength and direction of this effect are often context-dependent. Here, we observed plant–pollinator interactions in 51 grasslands, and we measured functional traits of both plants and pollinators. Using a multi-model inference approach, we explored the effects of honeybee abundance, temperature, plant functional diversity, and trait similarity between wild pollinators and the honeybee on the resource overlap between wild pollinators and the honeybee. Resource overlap decreased with increasing honeybee abundance only in plant communities with high functional diversity, suggesting a potential diet shift of wild pollinators in areas with a high variability of flower morphologies. Moreover, resource overlap increased with increasing trait similarity between wild pollinators and the honeybee. In particular, central-place foragers of family Apidae with proboscis length similar to the honeybee exhibited the highest resource overlap. Our results underline the importance of promoting functional diversity of plant communities to support wild pollinators in areas with a high density of honeybee hives. Moreover, greater attention should be paid to areas where pollinators possess functional traits similar to the honeybee, as they are expected to be more prone to potential competition with this species.
Collapse
Affiliation(s)
- Andree Cappellari
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padua, Legnaro, Padua, Italy.
| | - Giovanna Bonaldi
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padua, Legnaro, Padua, Italy
| | - Maurizio Mei
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | | | - Pierfilippo Cerretti
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Lorenzo Marini
- Department of Agronomy, Food, Natural resources, Animals and Environment (DAFNAE), University of Padua, Legnaro, Padua, Italy
| |
Collapse
|
190
|
Assessing Climate Change Impacts on Island Bees: The Aegean Archipelago. BIOLOGY 2022; 11:biology11040552. [PMID: 35453751 PMCID: PMC9030098 DOI: 10.3390/biology11040552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/16/2022] [Accepted: 03/30/2022] [Indexed: 11/17/2022]
Abstract
Pollinators’ climate change impact assessments focus mainly on mainland regions. Thus, we are unaware how island species might fare in a rapidly changing world. This is even more pressing in the Mediterranean Basin, a global biodiversity hotspot. In Greece, a regional pollinator hotspot, climate change research is in its infancy and the insect Wallacean shortfall still remains unaddressed. In a species distribution modelling framework, we used the most comprehensive occurrence database for bees in Greece to locate the bee species richness hotspots in the Aegean, and investigated whether these might shift in the future due to climate change and assessed the Natura 2000 protected areas network effectiveness. Range contractions are anticipated for most taxa, becoming more prominent over time. Species richness hotspots are currently located in the NE Aegean and in highly disturbed sites. They will shift both altitudinally and latitudinally in the future. A small proportion of these hotspots are currently included in the Natura 2000 protected areas network and this proportion is projected to decrease in the coming decades. There is likely an extinction debt present in the Aegean bee communities that could result to pollination network collapse. There is a substantial conservation gap in Greece regarding bees and a critical re-assessment of the established Greek protected areas network is needed, focusing on areas identified as bee diversity hotspots over time.
Collapse
|
191
|
Division of foraging behaviour: Assessments of pollinator traits when visiting a model plant species. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.03.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
192
|
Dharampal PS, Danforth BN, Steffan SA. Exosymbiotic microbes within fermented pollen provisions are as important for the development of solitary bees as the pollen itself. Ecol Evol 2022; 12:e8788. [PMID: 35414891 PMCID: PMC8986510 DOI: 10.1002/ece3.8788] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 11/26/2022] Open
Abstract
Developing bees derive significant benefits from the microbes present within their guts and fermenting pollen provisions. External microbial symbionts (exosymbionts) associated with larval diets may be particularly important for solitary bees that suffer reduced fitness when denied microbe-colonized pollen.To investigate whether this phenomenon is generalizable across foraging strategy, we examined the effects of exosymbiont presence/absence across two solitary bee species, a pollen specialist and generalist. Larvae from each species were reared on either microbe-rich natural or microbe-deficient sterilized pollen provisions allocated by a female forager belonging to their own species (conspecific-sourced pollen) or that of another species (heterospecific-sourced pollen). Our results reveal that the presence of pollen-associated microbes was critical for the survival of both the generalist and specialist larvae, regardless of whether the pollen was sourced from a conspecific or heterospecific forager.Given the positive effects of exosymbiotic microbes for larval fitness, we then examined if the magnitude of this benefit varied based on whether the microbes were provisioned by a conspecific forager (the mother bee) or a heterospecific forager. In this second study, generalist larvae were reared only on microbe-rich pollen provisions, but importantly, the sources (conspecific versus heterospecific) of the microbes and pollen were experimentally manipulated.Bee fitness metrics indicated that microbial and pollen sourcing both had significant impacts on larval performance, and the effect sizes of each were similar. Moreover, the effects of conspecific-sourced microbes and conspecific-sourced pollen were strongly positive, while that of heterospecific-sourced microbes and heterospecific-sourced pollen, strongly negative.Our findings imply that not only is the presence of exosymbionts critical for both specialist and generalist solitary bees, but more notably, that the composition of the specific microbial community within larval pollen provisions may be as critical for bee development as the composition of the pollen itself.
Collapse
Affiliation(s)
| | | | - Shawn A. Steffan
- Department of EntomologyUniversity of WisconsinMadisonWisconsinUSA
- USDA‐ARSVegetable Crops Research UnitMadisonWisconsinUSA
| |
Collapse
|
193
|
Baksay S, Andalo C, Galop D, Burrus M, Escaravage N, Pornon A. Using Metabarcoding to Investigate the Strength of Plant-Pollinator Interactions From Surveys of Visits to DNA Sequences. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.735588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The ongoing decline in pollinators and increasing concerns about pollination services require a better understanding of complex pollination networks, particularly their response to global climate change. While metabarcoding is increasingly used for the identification of taxa in DNA mixtures, its reliability in providing quantitative information on plant-pollinator interactions is still the subject of debate. Combining metabarcoding and microscopy, we investigated the relationships between the number and composition of sequences and the abundance and composition of pollen in insect pollen loads (IPL) and how the two are linked to insect visits. Our findings confirm that metabarcoding is more effective than microscopy in identifying plant species in IPL. For a given species, we found a strong positive relationship between the amount of pollen in IPL and the number of sequences. The relationship was stable across species even if the abundance of co-occurring species in IPL (hereafter “co-occurring pollen”) tended to reduce the sequence yield (number of sequences obtained from one pollen grain) of a given species. We also found a positive relationship between the sequence count and the frequency of visits, and between the frequency and the amounts of pollen in IPL. Our results demonstrate the reliability of metabarcoding in assessing the strength of plant-pollinator interactions and in providing a broader perspective for the analyses of plant-pollinator interactions and pollination networks.
Collapse
|
194
|
Dzekashu FF, Yusuf AA, Pirk CWW, Steffan‐Dewenter I, Lattorff HMG, Peters MK. Floral turnover and climate drive seasonal bee diversity along a tropical elevation gradient. Ecosphere 2022. [DOI: 10.1002/ecs2.3964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Fairo F. Dzekashu
- International Centre of Insect Physiology and Ecology (ICIPE) Nairobi Kenya
- Social Insects Research Group, Department of Zoology and Entomology University of Pretoria Pretoria South Africa
| | - Abdullahi A. Yusuf
- Social Insects Research Group, Department of Zoology and Entomology University of Pretoria Pretoria South Africa
| | - Christian W. W. Pirk
- Social Insects Research Group, Department of Zoology and Entomology University of Pretoria Pretoria South Africa
| | - Ingolf Steffan‐Dewenter
- Department of Animal Ecology and Tropical Biology, Biocenter University of Würzburg Würzburg Germany
| | | | - Marcell K. Peters
- Department of Animal Ecology and Tropical Biology, Biocenter University of Würzburg Würzburg Germany
| |
Collapse
|
195
|
Agriculture and Pollinating Insects, No Longer a Choice but a Need: EU Agriculture’s Dependence on Pollinators in the 2007–2019 Period. SUSTAINABILITY 2022. [DOI: 10.3390/su14063644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
One of the new objectives laid out by the European Union’s Common Agriculture Policy is increasing environmental sustainability. In this paper we compare the degree of average dependence index for each member state (ADIMS) in EU28 from 2007 to 2019 in order to verify the following: (1) whether there was a difference in this index when comparing two CAP periods—(a) from 2007 to 2013 and (b) from 2014 to 2019—and (2) which crops had a larger effect on the ADIMS. The study showed no significant variation in the average ADIMS at EU level between the first (2007–2013) and second (2014–2019) CAP periods. The AIDMS index highlighted three types of EU agriculture: (1) agriculture in Eastern Europe, including Bulgaria, Hungary, Romania and Slovakia, characterized by a high level of ADIMS (10.7–22) due to the widespread cultivation of oil crops as rapeseed and sunflower; (2) Mediterranean agriculture including Portugal, Spain, Italy, Croatia, Greece, Malta, Cyprus and France with lower AIDMS levels (5.3–10.3) given their heterogeneous crop portfolios with different degrees of dependence on animal pollination (almond, soy, rapeseed, sunflower and tomatoes) and (3) continental agriculture including Germany, Austria, Slovenia, Poland, the Czech Republic, Baltic countries, Benelux, Finland, Sweden and Ireland, which are characterized by the lowest ADIMS level (0.7–10.6) due to the widespread cultivation of cereals (anemophily and self-pollination) which increase the denominator of the index. The study suggests that a sustainable management of the agroecosystem will be possible in the future only if CAP considers pollinators’ requirements by quantifying the timing and spatial food availability from cultivated and uncultivated areas.
Collapse
|
196
|
Abstract
Two billion people across the planet suffer from nutrient deficiencies. Dietary diversification is key to solving this problem, yet many food and nutrition security policies, especially in low- and middle-income countries, still focus on increasing agricultural production and access to sufficient calories as the main solution. But calories are not all equal. Here, we show how deforestation in Tanzania caused a reduction in fruit and vegetable consumption (of 14 g per person per day) and thus vitamin A adequacy of diets. Using a combination of regression and weighting analyses to generate quasi-experimental quantitative estimates of the impacts of deforestation on people’s food intake, our study establishes a causal link between deforestation and people’s dietary quality. Strategies to improve food and nutrition security continue to promote increasing food via agricultural intensification. Little (if any) consideration is given to the role of natural landscapes such as forests in meeting nutrition goals, despite a growing body of literature that shows that having access to these landscapes can improve people’s diets, particularly in rural areas of low- and middle-income countries. In this study, we tested whether deforestation over a 5-y period (2008–2013) affected people’s dietary quality in rural Tanzania using a modeling approach that combined two-way fixed-effects regression analysis with covariate balancing generalized propensity score (CBGPS) weighting which allowed for causal inferences to be made. We found that, over the 5 y, deforestation caused a reduction in household fruit and vegetable consumption and thus vitamin A adequacy of diets. The average household member experienced a reduction in fruit and vegetable consumption of 14 g⋅d−1, which represented a substantial proportion (11%) of average daily intake. Conversely, we found that forest fragmentation over the survey period led to an increase in consumption of these foods and dietary vitamin A adequacy. This study finds a causal link between deforestation and people’s dietary quality, and the results have important implications for policy makers given that forests are largely overlooked in strategies to improve nutrition, but offer potential “win–wins” in terms of meeting nutrition goals as well as conservation and environmental goals.
Collapse
|
197
|
Oliveira MOD, Cavalcante MC, Bomfim IGA, Contrera FAL. Practical meliponiculture: use of trap boxes to control Tracuá Carpenter ants (Camponotus atriceps Smith, 1858), an important natural enemy. ACTA SCIENTIARUM: ANIMAL SCIENCES 2022. [DOI: 10.4025/actascianimsci.v44i1.54128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study aimed to observe the attractiveness efficiency of trap boxes installed in collective shelters of stingless bee colonies (Melipona flavolineata, Melipona fasciculata and Scaptotrigona aff. depilis), as an alternative method for non-chemical control of tracuá carpenter ants (Camponotus atriceps). The study was conducted at Embrapa Amazônia Oriental, in Belém, Pará, Brazil, from March to August 2015. The results showed that the efficiency of this technique depended on the presence of bee colonies and on the bee species in the collective shelter. Overall, an efficiency of 40.6% was found in the capture of C. atriceps individuals, which rose to 75% considering only collective shelters of M. fasciculata colonies, and to 87.5% for collective shelters of M. flavolineata. Trap boxes installed in collective shelters of S. depilis did not attract any C. atriceps group or individuals. The use of trap boxes in collective shelters of stingless bee colonies of the genus Melipona (M. flavolineata and M. fasciculata) is an efficient alternative method of non-chemical control of tracuá carpenter ants (C. atriceps).
Collapse
|
198
|
Klatt BK, Pudifoot B, Urrutia‐Cordero P, Smith HG, Alsterberg CM. A trophic cascade causes unexpected ecological interactions across the aquatic–terrestrial interface under extreme weather. OIKOS 2022. [DOI: 10.1111/oik.09047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Björn K. Klatt
- Dept of Biology, Lund Univ. Lund Sweden
- The Rural Economic and Agricultural Society Halland, Dept of Nature&Water Conservation Eldsberga Sweden
| | | | | | | | | |
Collapse
|
199
|
Krama T, Krams R, Munkevics M, Willow J, Popovs S, Elferts D, Dobkeviča L, Raibarte P, Rantala M, Contreras-Garduño J, Krams IA. Physiological stress and higher reproductive success in bumblebees are both associated with intensive agriculture. PeerJ 2022; 10:e12953. [PMID: 35256917 PMCID: PMC8898004 DOI: 10.7717/peerj.12953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 01/26/2022] [Indexed: 01/11/2023] Open
Abstract
Free-living organisms face multiple stressors in their habitats, and habitat quality often affects development and life history traits. Increasing pressures of agricultural intensification have been shown to influence diversity and abundance of insect pollinators, and it may affect their elemental composition as well. We compared reproductive success, body concentration of carbon (C) and nitrogen (N), and C/N ratio, each considered as indicators of stress, in the buff-tailed bumblebee (Bombus terrestris). Bumblebee hives were placed in oilseed rape fields and semi-natural old apple orchards. Flowering season in oilseed rape fields was longer than that in apple orchards. Reproductive output was significantly higher in oilseed rape fields than in apple orchards, while the C/N ratio of queens and workers, an indicator of physiological stress, was lower in apple orchards, where bumblebees had significantly higher body N concentration. We concluded that a more productive habitat, oilseed rape fields, offers bumblebees more opportunities to increase their fitness than a more natural habitat, old apple orchards, which was achieved at the expense of physiological stress, evidenced as a significantly higher C/N ratio observed in bumblebees inhabiting oilseed rape fields.
Collapse
Affiliation(s)
| | - Ronalds Krams
- Daugavpils University, Daugavpils, Latvia,Estonian University of Life Sciences, Tartu, Estonia
| | | | | | | | | | | | | | | | | | - Indrikis A. Krams
- Daugavpils University, Daugavpils, Latvia,University of Latvia, Riga, Latvia,University of Tartu, Tartu, Estonia
| |
Collapse
|
200
|
Delphia CM, O'Neill KM, Burkle LA. Proximity to wildflower strips did not boost crop pollination on small, diversified farms harboring diverse wild bees. Basic Appl Ecol 2022. [DOI: 10.1016/j.baae.2022.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|