151
|
Pandey SC, Roy A, Xu T, Mittal N. Effects of protracted nicotine exposure and withdrawal on the expression and phosphorylation of the CREB gene transcription factor in rat brain. J Neurochem 2001; 77:943-52. [PMID: 11331423 DOI: 10.1046/j.1471-4159.2001.00309.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Addiction to nicotine may result in molecular adaptations in the neurocircuitry of specific brain structures via changes in the cyclic AMP-responsive element binding protein (CREB)-dependent gene transcription program. We therefore investigated the effects of chronic nicotine exposure and its withdrawal on CREB and phosphorylated CREB (p-CREB) protein levels in the rat brain. We report here that chronic nicotine exposure (1-h withdrawal) had no effect on the expression of CREB and p-CREB in the rat cortex and amygdala. On the other hand, decreases in the expression of CREB protein and phosphorylation of CREB occur in the cingulate gyrus, and in the parietal and the piriform but not in the frontal cortex during nicotine withdrawal (18 h) after nicotine exposure. It was also observed that CREB and p-CREB protein levels were significantly decreased in the medial and basolateral, but not in the central amygdala during nicotine withdrawal (18 h) after chronic nicotine exposure. Furthermore, it was found that nicotine withdrawal (18 h) after chronic nicotine exposure leads to decreased CRE-DNA binding without modulating cAMP-dependent protein kinase A activity in the cortex and the amygdala of rats. In addition, chronic nicotine treatment produced anxiolytic effects whereas nicotine withdrawal (18 h) produced anxiety in rats as measured by the elevated plus-maze test. These results provide the first evidence that decreased CREB activity and/or expression in specific cortical and amygdaloid brain structures may be involved in the underlying molecular mechanisms of nicotine dependence.
Collapse
Affiliation(s)
- S C Pandey
- The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, 60612, USA.
| | | | | | | |
Collapse
|
152
|
Le Guen S, Gestreau C, Besson JM. Sensitivity to naloxone of the behavioral signs of morphine withdrawal and c-Fos expression in the rat CNS: a quantitative dose-response analysis. J Comp Neurol 2001; 433:272-96. [PMID: 11283964 DOI: 10.1002/cne.1140] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Several studies have used c-Fos expression to delineate the neural substrate underlying naloxone-precipitated morphine withdrawal (MW). However, because behavioral manifestations of MW depend on both the degree of dependence and the doses of naloxone (NAL), a comprehensive study would require examining c-Fos expression in relation with the degree of MW. Here, changes in behavior and in c-Fos-like immunoreactivity (FLI) were studied in the same rats after injection of three doses of NAL to precipitate various degrees of MW. Fifteen established signs of MW were examined for 1 hour after NAL injection, and FLI was quantified in 52 regions of the brain and in the lumbosacral spinal cord. Linear regression analyses were used to examine changes in numbers of signs and FLI neurons with the doses of NAL, and data were considered dose-related for a statistical level of significance of P < 0.05. In summary, autonomic signs of MW increased in a dose-related manner, whereas somatomotor signs did not. After MW, 33 central nervous system regions exhibited significant increases in FLI and were, thus, considered as important neural correlates of MW. Twenty of them displayed dose-related increases in c-Fos expression and correspond to regions related to autonomic functions. Low c-Fos expression was detected in some regions involved in motor control or in reward, suggesting either their minor role in MW or a limitation of the technique. This dose-response analysis suggests that the increase in the severity of autonomic manifestations of MW is associated with a gradual activation of major structures of the autonomic nervous system.
Collapse
Affiliation(s)
- S Le Guen
- INSERM U161 and EPHE, 75014 Paris, France.
| | | | | |
Collapse
|
153
|
Valjent E, Caboche J, Vanhoutte P. Mitogen-activated protein kinase/extracellular signal-regulated kinase induced gene regulation in brain: a molecular substrate for learning and memory? Mol Neurobiol 2001; 23:83-99. [PMID: 11817219 DOI: 10.1385/mn:23:2-3:083] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) pathway is an evolutionarily conserved signaling cascade involved in a plethora of physiological responses, including cell proliferation, survival, differentiation, and, in neuronal cells, synaptic plasticity. Increasing evidence now implicates this pathway in cognitive functions, such as learning and memory formation, and also in behavioral responses to addictive drugs. Although multiple intracellular substrates can be activated by ERKs, nuclear targeting of transcription factors, and thereby control of gene expression, seems to be a major event in ERK-induced neuronal adaptation. By controlling a prime burst of gene expression, ERK signaling could be critically involved in molecular adaptations that are necessary for long-term behavioral changes. Reviewed here are data providing evidence for a role of ERKs in long-term behavioral alterations, and the authors discuss molecular mechanisms that could underlie this role.
Collapse
Affiliation(s)
- E Valjent
- Laboratoire de Signalisation Neuronale et Régulations Géniques, CNRS-Université Pierre et Marie Curie, Paris, France
| | | | | |
Collapse
|
154
|
Mamiya T, Noda Y, Ren X, Hamdy M, Furukawa S, Kameyama T, Yamada K, Nabeshima T. Involvement of cyclic AMP systems in morphine physical dependence in mice: prevention of development of morphine dependence by rolipram, a phosphodiesterase 4 inhibitor. Br J Pharmacol 2001; 132:1111-7. [PMID: 11226142 PMCID: PMC1572651 DOI: 10.1038/sj.bjp.0703912] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
In this study, we examined whether morphine dependence was inhibited by rolipram, a cyclic AMP selective phosphodiesterase inhibitor in mice, since a role for the cyclic AMP systems in the development of morphine dependence has been reported. Mice, which received morphine (10 mg kg(-1) s.c.) twice a day for 5 days showed withdrawal syndromes such as jumping, rearing and forepaw tremor following naloxone challenge (5 mg kg(-1) i.p.) on the 6th day. Such mice exhibited a significant elevation of cyclic AMP levels in the thalamus compared to control mice. However, co-administration of rolipram (1 mg kg(-1) i.p.) with morphine for 5 days significantly attenuated the severity of the withdrawal syndrome and the increase in the cyclic AMP levels after the administration of naloxone. In naïve mice, acute morphine treatment (10 mg kg(-1) s.c.) decreased cyclic AMP levels in the thalamus and cerebral cortex 10 min later. The decrease of cyclic AMP levels induced by acute morphine treatment was blocked by co-administration of rolipram (1 mg kg(-1) i.p.). However, acute rolipram did not affect the naloxone-precipitated morphine withdrawal syndrome. These results suggest that the elevation of the cyclic AMP levels is involved in the development of morphine withdrawal syndrome and that blockade of the morphine-induced reduction of cyclic AMP levels by chronic rolipram inhibits the development of dependence and the behavioural and biochemical changes induced by naloxone. Furthermore, rolipram may be a useful drug for attenuating the development of morphine dependence.
Collapse
Affiliation(s)
- Takayoshi Mamiya
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Japan
| | - Yukihiro Noda
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Japan
| | - Xiuhai Ren
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Japan
| | - Moustafa Hamdy
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Japan
| | - Shoei Furukawa
- Department of Molecular Biology, Gifu Pharmaceutical University, Japan
| | | | - Kiyofumi Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Japan
| | - Toshitaka Nabeshima
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, Japan
- Author for correspondence:
| |
Collapse
|
155
|
Ma W, Zheng WH, Kar S, Quirion R. Morphine treatment induced calcitonin gene-related peptide and substance P increases in cultured dorsal root ganglion neurons. Neuroscience 2001; 99:529-39. [PMID: 11029544 DOI: 10.1016/s0306-4522(00)00226-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The mechanism of spinal tolerance to the analgesic effects of opiates is unclear at present. We have reported previously that calcitonin gene-related peptide-like immunoreactivity was significantly increased in primary afferents of the spinal dorsal horn during the development of morphine tolerance, suggesting that changes in the level of pain-related neuropeptides in dorsal root ganglion neurons may be involved [Menard D. P. et al. (1996) J. Neurosci. 16, 2342-2351]. In this study, we investigated if in vitro treatment with morphine can mimic the in vivo findings and induce increases in calcitonin gene-related peptide-like immunostaining in cultured dorsal root ganglion neurons from young (three-month-old) and middle-aged (10-month-old) adult rats. Following a repetitive exposure to morphine sulfate (1, 5, 10 microM) for six days, the number of calcitonin gene-related peptide- and substance P-immunoreactive neurons in cultured dorsal root ganglia from three- and 10-month-old rats was significantly increased. A lower concentration (0.5 microM) of morphine induced these increases only in dorsal root ganglion neurons from middle-aged rats. Morphine treatment was also found to increase the number of calcitonin gene-related peptide-immunoreactive neurons possessing multiple, long branches (i.e. with at least one branch >0.5mm). This apparent increase in the number of calcitonin gene-related peptide- and substance P-immunoreactive neurons observed following morphine treatment was blocked by naloxone, an opiate antagonist, indicating the involvement of genuine opioid receptors. No significant change in the number of neuropeptide Y- or galanin-immunoreactive neurons in cultured dorsal root ganglia was detected following any of these treatments. These data suggest that repeated exposure to morphine rather selectively increases calcitonin gene-related peptide- and substance P-like immunoreactivity in cultured dorsal root ganglion neurons. Moreover, the sensitivity to morphine-induced changes is greater in cultured dorsal root ganglion neurons from 10- compared to three-month-old rats. Hence, cultured dorsal root ganglion neurons can provide a model to investigate the cellular and molecular mechanisms underlying alterations in neuropeptide levels following repeated exposure to opiates and their relevance to the development of opioid tolerance.
Collapse
Affiliation(s)
- W Ma
- Douglas Hospital Research Center, McGill University, 6875 Boul. LaSalle, Verdun, Quebec, H4H 1R3, Montreal, Canada
| | | | | | | |
Collapse
|
156
|
Abstract
A central feature of drugs of abuse is to induce gene expression in discrete brain structures that are critically involved in behavioral responses related to addictive processes. Although extracellular signal-regulated kinase (ERK) has been implicated in several neurobiological processes, including neuronal plasticity, its role in drug addiction remains poorly understood. This study was designed to analyze the activation of ERK by cocaine, its involvement in cocaine-induced early and long-term behavioral effects, as well as in gene expression. We show, by immunocytochemistry, that acute cocaine administration activates ERK throughout the striatum, rapidly but transiently. This activation was blocked when SCH 23390 [a specific dopamine (DA)-D1 antagonist] but not raclopride (a DA-D2 antagonist) was injected before cocaine. Glutamate receptors of NMDA subtypes also participated in ERK activation, as shown after injection of the NMDA receptor antagonist MK 801. The systemic injection of SL327, a selective inhibitor of the ERK kinase MEK, before cocaine, abolished the cocaine-induced ERK activation and decreased cocaine-induced hyperlocomotion, indicating a role of this pathway in events underlying early behavioral responses. Moreover, the rewarding effects of cocaine were abolished by SL327 in the place-conditioning paradigm. Because SL327 antagonized cocaine-induced c-fos expression and Elk-1 hyperphosphorylation, we suggest that the ERK intracellular signaling cascade is also involved in the prime burst of gene expression underlying long-term behavioral changes induced by cocaine. Altogether, these results reveal a new mechanism to explain behavioral responses of cocaine related to its addictive properties.
Collapse
|
157
|
Abstract
Studies of human addicts and behavioural studies in rodent models of addiction indicate that key behavioural abnormalities associated with addiction are extremely long lived. So, chronic drug exposure causes stable changes in the brain at the molecular and cellular levels that underlie these behavioural abnormalities. There has been considerable progress in identifying the mechanisms that contribute to long-lived neural and behavioural plasticity related to addiction, including drug-induced changes in gene transcription, in RNA and protein processing, and in synaptic structure. Although the specific changes identified so far are not sufficiently long lasting to account for the nearly permanent changes in behaviour associated with addiction, recent work has pointed to the types of mechanism that could be involved.
Collapse
Affiliation(s)
- E J Nestler
- Department of Psychiatry and Center for Basic Neuroscience, University of Texas Southwestern Medical Center, 5,323 Harry Hines Boulevard, Dallas, Texas 75390-9070, USA.
| |
Collapse
|
158
|
Hutcheson DM, Matthes HWD, Valjent E, Sanchez-Blazquez P, Rodriguez-Diaz M, Garzon J, Kieffer BL, Maldonado R. Lack of dependence and rewarding effects of deltorphin II in mu-opioid receptor-deficient mice. Eur J Neurosci 2001. [DOI: 10.1046/j.1460-9568.2001.01363.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
159
|
Hutcheson DM, Matthes HWD, Valjent E, Sánchez-Blázquez P, Rodríguez-Díaz M, Garzón J, Kieffer BL, Maldonado R. Lack of dependence and rewarding effects of deltorphin II in mu-opioid receptor-deficient mice. Eur J Neurosci 2001. [DOI: 10.1111/j.1460-9568.2001.01363.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
160
|
Abstract
The risk of initiating and maintaining the use of opiates up to the point of abuse and dependence is to a large degree genetically transmitted and is separate from genetic risk factors for addiction to other drugs of abuse. Pharmacogenetic studies have so far focused on obvious candidate genes that are expected to be involved either in the pharmacokinetics or in the pharmacodynamics of opioids in the mesolimbic reward system of the brain. The few findings of a positive allelic association rarely withstand replication in independent case-control or less stratification-prone family-based association samples. A pharmacogenomic approach in the best sense of the word, however, involves an unbiased, genome-wide, parallel search for risk genes and gene expression patterns. So far, only quantitative trait loci mapping studies of inbred rodent strains and differential expression studies using high-density DNA microarrays fulfill these requirements. The present state of pharmacogenomic and pharmacogenetic studies in animals and humans with respect to opiate addiction is reviewed in this paper.
Collapse
Affiliation(s)
- D Lichtermann
- Department of Psychiatry, University of Bonn, Sigmund-Freud-Str. 25, D-53105, Bonn, Germany.
| | | | | | | |
Collapse
|
161
|
|
162
|
Yoshimura M, Wu PH, Hoffman PL, Tabakoff B. Overexpression of type 7 adenylyl cyclase in the mouse brain enhances acute and chronic actions of morphine. Mol Pharmacol 2000; 58:1011-6. [PMID: 11040048 DOI: 10.1124/mol.58.5.1011] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mechanisms by which morphine-induced analgesia and tolerance and physical dependence on morphine arise have been the subject of intense study, and much work has pointed to the involvement of cAMP-mediated events in the neuroadaptive phenomena leading to morphine tolerance and/or dependence. We overexpressed an opioid receptor-stimulatable form of adenylyl cyclase (type 7) in the central nervous system of mice and demonstrated significant effects of this manipulation on the animals' acute response to morphine, the development of morphine tolerance, and development of sensitization to morphine. Measurements of the acute analgesic response to morphine demonstrated that the ED(50) values for the transgenic mice were significantly lower than the ED(50) values determined for the "wild-type" animals. During chronic treatment with morphine, the transgenic mice developed tolerance more rapidly than the wild-type mice, and transgenic animals of the C57BL/6xSJL background showed a larger sensitization to morphine's effects on locomotor activity than did wild-type mice of the same background. These results indicated that cAMP-generating systems may simultaneously modulate the development of tolerance and sensitization. Interestingly, the signs of physical dependence on morphine in the transgenic mice did not differ from those in their wild-type litter mates, indicating that separate mechanisms may modulate opiate tolerance and opiate dependence.
Collapse
Affiliation(s)
- M Yoshimura
- Department of Pharmacology, University of Colorado Health Sciences Center, Denver, Colorado, USA
| | | | | | | |
Collapse
|
163
|
Abstract
Drug addiction, like all psychiatric disorders, is defined solely in behavioural terms. For example, addiction can be considered a loss of control over drug-taking, or compulsive drug-seeking and -taking despite horrendous consequences. Abnormal behaviours are a consequence of aberrant brain function, which means that it is a tangible goal to identify the biological underpinnings of addiction. The genetic basis of addiction encompasses two broad areas of enquiry. One of these is the identification of genetic variation in humans that partly determines susceptibility to addiction. The other is the use of animal models to investigate the role of specific genes in mediating the development of addiction. Whereas recent advances in this latter effort are heartening, a major challenge remains: to understand how the many genes implicated in rodent models interact to yield as complex a phenotype as addiction.
Collapse
Affiliation(s)
- E J Nestler
- Department of Psychiatry and Center for Neuroscience, The University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| |
Collapse
|
164
|
Itoh A, Shiotani T, Nakayama S, Mamiya T, Hasegawa T, Noda Y, Nabeshima T. Attenuation of the development of morphine dependence/tolerance by nefiracetam: involvement of adenosine 3':5'-cyclic monophosphate system. Behav Brain Res 2000; 115:65-74. [PMID: 10996409 DOI: 10.1016/s0166-4328(00)00237-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Biochemical changes such as intracellular cAMP and Ca(2+) underlying morphine dependence and tolerance have been suggested. Therefore, we investigated the effects of nefiracetam (N-(2, 6-dimethyl-phenyl)-2(2-oxo-1-pyrrolidinyl) acetamide), which increases intracellular cAMP and Ca(2+) levels, on the development of morphine dependence and tolerance. Mice administered morphine (6 or 20 mg kg(-1)) twice daily for 5 days, showed withdrawal symptoms (jumping, diarrhea and body weight loss) after naloxone challenge (5 mg kg(-1)), indicating morphine dependence. Furthermore, tolerance to the analgesic effect of morphine was observed in these mice. Co-administration of nefiracetam (5 or 10 mg kg(-1)) with morphine during the pretreatment period, significantly reduced the signs of withdrawal symptoms, moreover, the tolerance was significantly attenuated. Elevation of cAMP levels in the cortex was observed in morphine-dependent mice, but not in mice co-administered nefiracetam. Acute administration of nefiracetam shows no effect on the withdrawal symptoms and the analgesic effect in morphine-naive mice. Theophylline (3 or 10 mg kg(-1)) tended to attenuate and enprofylline (10 or 30 mg kg(-1)) significantly attenuated the development of morphine dependence and tolerance. These findings suggest that co-administration of nefiracetam or compounds, which increase the cAMP level, may be a useful strategy for attenuating the development of morphine dependence and tolerance in the clinic.
Collapse
Affiliation(s)
- A Itoh
- Department of Neuropsychopharmacology and Hospital Pharmacy, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, 466-8560, Nagoya, Japan
| | | | | | | | | | | | | |
Collapse
|
165
|
Defer N, Best-Belpomme M, Hanoune J. Tissue specificity and physiological relevance of various isoforms of adenylyl cyclase. Am J Physiol Renal Physiol 2000; 279:F400-16. [PMID: 10966920 DOI: 10.1152/ajprenal.2000.279.3.f400] [Citation(s) in RCA: 273] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present review focuses on the potential physiological regulations involving different isoforms of adenylyl cyclase (AC), the enzymatic activity responsible for the synthesis of cAMP from ATP. Depending on the properties and the relative level of the isoforms expressed in a tissue or a cell type at a specific time, extracellular signals received by the G protein-coupled receptors can be differently integrated. We report here on various aspects of such regulations, emphasizing the role of Ca(2+)/calmodulin in activating AC1 and AC8 in the central nervous system, the potential inhibitory effect of Ca(2+) on AC5 and AC6, and the changes in the expression pattern of the isoforms during development. A particular emphasis is given to the role of cAMP during drug dependence. Present experimental limitations are also underlined (pitfalls in the interpretation of cellular transfection, scarcity of the invalidation models, and so on).
Collapse
Affiliation(s)
- N Defer
- Institut National de la Santé et de la Recherche Médicale U-99 Hôpital Henri Mondor, F-94010 Créteil, France
| | | | | |
Collapse
|
166
|
Abstract
Cloning of multiple opioid receptors has presented opportunities to investigate the mechanisms of multiple opioid receptor signaling and the regulation of these signals. The subsequent identification of receptor gene structures has also provided opportunities to study the regulation of receptor gene expression and to manipulate the concentration of the gene products in vivo. Thus, in the current review, we examine recent advances in the delineation basis for the multiple opioid receptor signaling, and their regulation at multiple levels. We discuss the use of receptor knockout animals to investigate the function and the pharmacology of these multiple opioid receptors. The reasons and basis for the multiple opioid receptor are addressed.
Collapse
Affiliation(s)
- P Y Law
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis 55455, USA.
| | | | | |
Collapse
|
167
|
Garcia-Gimeno MA, Struhl K. Aca1 and Aca2, ATF/CREB activators in Saccharomyces cerevisiae, are important for carbon source utilization but not the response to stress. Mol Cell Biol 2000; 20:4340-9. [PMID: 10825197 PMCID: PMC85801 DOI: 10.1128/mcb.20.12.4340-4349.2000] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Saccharomyces cerevisiae, the family of ATF/CREB transcriptional regulators consists of a repressor, Acr1 (Sko1), and two activators, Aca1 and Aca2. The AP-1 factor Gen4 does not activate transcription through ATF/CREB sites in vivo even though it binds these sites in vitro. Unlike ATF/CREB activators in other species, Aca1- and Aca2-dependent transcription is not affected by protein kinase A or by stress, and Aca1 and Aca2 are not required for Hog1-dependent salt induction of transcription through an optimal ATF/CREB site. Aca2 is important for a variety of biological functions including growth on nonoptimal carbon sources, and Aca2-dependent activation is modestly regulated by carbon source. Strains lacking Aca1 are phenotypically normal, but overexpression of Aca1 suppresses some defects associated with the loss of Aca2, indicating a functional overlap between Aca1 and Aca2. Acr1 represses transcription both by recruiting the Cyc8-Tup1 corepressor and by directly competing with Aca1 and Aca2 for target sites. Acr1 does not fully account for osmotic regulation through ATF/CREB sites, and a novel Hog1-dependent activator(s) that is not a bZIP protein is required for ATF/CREB site activation in response to high salt. In addition, Acr1 does not affect a number of phenotypes that arise from loss of Aca2. Thus, members of the S. cerevisiae ATF/CREB family have overlapping, but distinct, biological functions and target genes.
Collapse
Affiliation(s)
- M A Garcia-Gimeno
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
168
|
Hurlé MA, Goirigolzarri I, Valdizán EM. Involvement of the cyclic AMP system in the switch from tolerance into supersensitivity to the antinociceptive effect of the opioid sufentanil. Br J Pharmacol 2000; 130:174-80. [PMID: 10781014 PMCID: PMC1572051 DOI: 10.1038/sj.bjp.0703304] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/1999] [Revised: 02/10/2000] [Accepted: 02/17/2000] [Indexed: 11/09/2022] Open
Abstract
1. We have previously demonstrated that chronic and simultaneous treatment of rats with the mu-opioid receptor agonist sufentanil and the Ca(2+) channel blocker nimodipine, not only prevented tolerance development, but the animals became supersensitive to the antinociceptive effect of the opioid. The focus of the present work was to determine the possible involvement of cross interactions between the adenylyl cyclase pathway and L-type voltage-sensitive Ca(2+)-channels, in modulating the switch from opioid tolerance into supersensitivity. 2. The modulatory effect of sufentanil on adenylyl cyclase activity was determined by measuring cyclic AMP production in slices from the cortex of rats rendered tolerant or supersensitive to the antinociceptive effect of the opioid. Tolerance was induced by chronic infusion of sufentanil, at a rate of 2 microg h(-1), for 7 days. Supersensitivity was induced by concurrent infusion of sufentanil (2 microg h(-1)) and nimodipine (1 microg h(-1)) for 7 days. Antinociception was evaluated by the tail-flick test. 3. Tolerance to the analgesic effect of sufentanil was associated with a significant reduction in the response of adenylyl cyclase to forskolin. Furthermore, the effect of the opioid on forskolin-induced cyclic AMP accumulation was abolished. On the other hand, supersensitivity to the analgesic effect of the opioid was associated with an increase in both, the adenylyl cyclase response to forskolin, and the opioid inhibition of cyclic AMP production. 4. We suggest that sustained L-type Ca(2+) channel blockade may result in changes in the adenylyl cyclase effector system triggered by mu-opioid receptor activation, leading to the switch from opioid tolerance into supersensitivity.
Collapse
Affiliation(s)
- M A Hurlé
- Department of Physiology and Pharmacology, School of Medicine, University of Cantabria. E-39011 Santander, Spain.
| | | | | |
Collapse
|
169
|
Abstract
Genetic studies of substance abuse indicate that variation in the risk for the disorder in the population is contributed by differences in both individual genotypes and environment. Recent developments in genetics raise the possibility of disentangling the complex system of genotype-environment interaction that determines the development of the individual behavioral phenotype. This paper reviews the concepts, methods and results pertaining to genetic investigation of substance abuse.
Collapse
Affiliation(s)
- M M Vanyukov
- Center for Education and Drug Abuse Research, University of Pittsburgh, 3811 O'Hara Street, PA 15213, USA.
| | | |
Collapse
|
170
|
Abstract
The pathophysiology of substance withdrawal is elucidated by a review of classic and cutting-edge research. The manifestation and evaluation of the associated withdrawal syndromes from ethanol, sedative-hypnotics, opioids, and baclofen, are compared. The general management of and pharmacotherapy for these patients are discussed.
Collapse
Affiliation(s)
- R Olmedo
- New York City Poison Control Center, New York, USA
| | | |
Collapse
|
171
|
Tso PH, Yung LY, Wong YH. Regulation of adenylyl cyclase, ERK1/2, and CREB by Gz following acute and chronic activation of the delta-opioid receptor. J Neurochem 2000; 74:1685-93. [PMID: 10737627 DOI: 10.1046/j.1471-4159.2000.0741685.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Opioid tolerance and physical dependence in mammals can be rapidly induced by chronic exposure to opioid agonists. Recently, opioid receptors have been shown to interact with the pertussis toxin (PTX)-insensitive Gz (a member of the Gi subfamily), which inhibits adenylyl cyclase and stimulates mitogen-activated protein kinases (MAPKs). Here, we established stable human embryonic kidney 293 cell lines expressing delta-opioid receptors with or without Gz to examine the role of Gz in opioid receptor-regulated signaling systems. Each cell line was acutely or chronically treated with [D-Pen2,D-Pen5]enkephalin (DPDPE), a delta-selective agonist, in the absence or presence of PTX. Subsequently, the activities of adenylyl cyclase, cyclic AMP (cAMP)-dependent response element-binding proteins (CREBs), and MAPKs were measured by determining cAMP accumulation and phosphorylation of CREBs and the extracellular signal-regulated protein kinases (ERKs) 1 and 2. In cells coexpressing Gz, DPDPE inhibited forskolin-stimulated cAMP accumulation in a PTX-insensitive manner, but Gz could not replace Gi to mediate adenylyl cyclase supersensitization upon chronic opioid treatment. DPDPE-induced adenylyl cyclase supersensitization was not associated with an increase in the phosphorylation of CREBs. Both Gi and Gz mediated DPDPE-induced activation of ERK1/2, but these responses were abolished by chronic opioid treatment. Collectively, our results show that although Gz mediated opioid-induced inhibition of adenylyl cyclase and activation of ERK1/2, Gz alone was insufficient to mediate opioid-induced adenylyl cyclase supersensitization.
Collapse
Affiliation(s)
- P H Tso
- Department of Biology and Biotechnology Research Institute, Hong Kong University of Science and Technology, China
| | | | | |
Collapse
|
172
|
Wang D, Tolbert LM, Carlson KW, Sadée W. Nuclear Ca2+/calmodulin translocation activated by mu-opioid (OP3) receptor. J Neurochem 2000; 74:1418-25. [PMID: 10737597 DOI: 10.1046/j.1471-4159.2000.0741418.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previous evidence has suggested a role for calmodulin (CaM) in opioid receptor signaling. We demonstrate here that morphine stimulation of the mu-opioid (OP3) receptor causes rapid CaM translocation to the nucleus in OP3-transfected human embryonic kidney (HEK)-293 cells and in SH-SY5Y human neuroblastoma cells. Ca2+ influx into the cells resulting from OP3 receptor activation was required for nuclear CaM translocation. Moreover, in HEK-OP3 and SH-SY5Y cells, increased nuclear CaM content was associated with enhanced phosphorylation of the nuclear transcription factor cyclic AMP-responsive element-binding protein. This appeared to be mediated by Ca2+/CaM kinases and also by a pathway involving protein kinase C. CaM was previously shown to bind directly to the OP3 receptor and to be released from the plasma membrane on agonist stimulation. To test whether OP3-mediated CaM release contributes to nuclear CaM signaling, we used a mutant OP3 receptor (K273A) with reduced affinity for CaM that fails to release CaM from the plasma membrane. K273A-OP3 activated Ca2+ influx to a similar extent as wild-type OP3; however, CaM translocation to the nucleus was attenuated. These results indicate that OP3-stimulated Ca2+ influx results in nuclear CaM translocation, which appears to be enhanced by simultaneous CaM release by OP3 wild-type receptor from plasma membranes. These results suggest a novel Ca2+/CaM signaling pathway of opioid receptors in the regulation of transcriptional activity.
Collapse
Affiliation(s)
- D Wang
- Department of Biopharmaceutical Sciences and Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, 94143-0446, USA
| | | | | | | |
Collapse
|
173
|
Jolas T, Nestler EJ, Aghajanian GK. Chronic morphine increases GABA tone on serotonergic neurons of the dorsal raphe nucleus: association with an up-regulation of the cyclic AMP pathway. Neuroscience 2000; 95:433-43. [PMID: 10658623 DOI: 10.1016/s0306-4522(99)00436-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Major adaptations after chronic exposure to morphine include an up-regulation of the adenosine 3',5'-monophosphate pathway. Acute opioids, via mu-opioid receptors, disinhibit midbrain serotonergic neurons by suppressing inhibitory GABAergic transmission in the dorsal raphe nucleus and adjacent periaqueductal gray. This study examined whether chronic morphine induces a compensatory increase in GABA inputs to 5-hydroxytryptamine neurons and whether this was associated with an up-regulation of the adenosine 3',5'-monophosphate pathway. The firing rate of serotonergic neurons was reduced in brain slices from morphine-dependent rats, an effect reversed by the GABA(A) antagonist bicuculline. The reduction in firing rate was accompanied by an increased frequency of spontaneous GABAergic inhibitory postsynaptic currents, indicating increased GABA tone in the slice. The increase in GABA tone in brain slices from dependent rats was associated with increased induction of inhibitory postsynaptic currents by the adenylyl cyclase activator forskolin, suggesting an up-regulation of the adenosine 3',5'-monophosphate pathway. Indeed, chronic morphine increased levels of adenylyl cyclase VIII (but not of adenylyl cyclase I, III or V) immunoreactivity in the dorsal raphe nucleus area. Two adenosine 3',5'-monophosphate-mediated mechanisms for the increase in GABA tone were discerned. The first, which predominated when impulse-flow was blocked by tetrodotoxin, involves protein kinase A since it was sensitive to protein kinase A inhibitors. The second, seen when impulse-flow was intact (i.e. absence of tetrodotoxin), was insensitive to protein kinase A inhibitors but was suppressed by ZD7288, a blocker of hyperpolarizing-activated Ih channels which are directly activated by adenosine 3',5'-monophosphate. We conclude that chronic morphine induces an up-regulation of the adenosine 3',5'-monophosphate pathway in GABAergic inputs to serotonergic cells, resulting in an increase in spontaneous and impulse-flow dependent GABA release. These changes would lead to an increase in GABA tone and subsequently to the reported decrease in serotonergic activity during opiate withdrawal.
Collapse
Affiliation(s)
- T Jolas
- Department of Psychiatry and Pharmacology, Yale University School of Medicine and the Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven 06508, USA
| | | | | |
Collapse
|
174
|
Fukunaga Y, Kishioka S. Enkephalinergic neurons in the periaqueductal gray and morphine withdrawal. JAPANESE JOURNAL OF PHARMACOLOGY 2000; 82:175-80. [PMID: 10887947 DOI: 10.1254/jjp.82.175] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The effects of opioid (e.g., morphine) withdrawal on levels of endogenous opioid peptides and their mRNA in the various brain regions have been studied. However, the role of this opioidergic mechanism in the mediation of opioid withdrawal is not fully understood. Preproenkephalin (PPE) mRNA in the caudal periaqueductal gray (cPAG), an important brain region in opioid withdrawal, is increased by both opioid antagonist (naloxone)-precipitated and spontaneous morphine withdrawal, but not by various other stresses in rats, indicating a role of endogenous enkephalins in the cPAG in morphine withdrawal. In addition, PPE mRNA levels in the cPAG increase in the course of the dissipation of morphine withdrawal, and they are returned to the control levels after disappearance of morphine withdrawal signs. Local administration of an enkephalin analog or peptidase inhibitors into the cPAG suppresses morphine withdrawal signs. These facts suggest that enkephalinergic neurons in the PAG may have a critical role in the recovery phase of morphine withdrawal. Recently, an involvement of transcription factors in morphine withdrawal has been suggested. Thus, the possible role of transcription factors in the regulation of PPE gene expression in the cPAG during morphine withdrawal is also discussed.
Collapse
Affiliation(s)
- Y Fukunaga
- Department of Pharmacology, Wakayama Medical College, Wakayama-City, Japan
| | | |
Collapse
|
175
|
Glezer I, Marcourakis T, Avellar MCW, Gorenstein C, Scavone C. O fator de transcrição NF-kapaB nos mecanismos moleculares de ação de psicofármacos. BRAZILIAN JOURNAL OF PSYCHIATRY 2000. [DOI: 10.1590/s1516-44462000000100008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nos últimos anos muitos esforços têm sido empregados para elucidar os mecanismos envolvidos na regulação da transcrição gênica. Moléculas que participam desses processos regulatórios, como os fatores de transcrição, têm recebido atenção especial. A participação desses fatores em diversas funções neurais enfatiza sua importância para a compreensão de distúrbios relacionados ao sistema nervoso central (SNC) e para delinear novos caminhos de acesso terapêutico. O fator de transcrição NF-kapaB destaca-se pela sua vasta gama de ações e pelo fato de diversas proteínas estarem integradas na dinâmica de sua ativação. Evidências recentes apontam o envolvimento desse fator na plasticidade, desenvolvimento e neurodegeneração, com funções essenciais e específicas em neurônios e células da glia. Nesse sentido, o glutamato desponta como um ativador específico (tanto via receptores NMDA e AMPA/KA), juntamente com as neurotrofinas. Este artigo aborda a complexa regulação bioquímica do NF-kapaB e destaca as prováveis contribuições provenientes dos novos conhecimentos junto ao campo da psicofarmacologia. Portanto, alterações da atividade do NF-kapaB poderão trazer novas perspectivas no desenvolvimento de novos psicofármacos.
Collapse
Affiliation(s)
| | - Tania Marcourakis
- Universidade de São Paulo; Centro de Investigações Médicas em Neurologia
| | | | - Clarice Gorenstein
- Universidade de São Paulo; Centro de Investigações Médicas em Neurologia
| | | |
Collapse
|
176
|
Pomonis JD, Jewett DC, Kotz CM, Briggs JE, Billington CJ, Levine AS. Sucrose consumption increases naloxone-induced c-Fos immunoreactivity in limbic forebrain. Am J Physiol Regul Integr Comp Physiol 2000; 278:R712-9. [PMID: 10712293 DOI: 10.1152/ajpregu.2000.278.3.r712] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Opioids have long been known to have an important role in feeding behavior, particularly related to the rewarding aspects of food. Considerable behavioral evidence suggests that sucrose consumption induces endogenous opioid release, affecting feeding behavior as well as other opioid-mediated behaviors, such as analgesia, dependence, and withdrawal. In the present study, rats were given access to a 10% sucrose solution or water for 3 wk, then they were injected with 10 mg/kg naloxone or saline. Brains were subsequently analyzed for c-Fos immunoreactivity (c-Fos-IR) in limbic and autonomic regions in the forebrain and hindbrain. Main effects of sucrose consumption or naloxone injection were seen in several areas, but a significant interaction was seen only in the central nucleus of the amygdala and in the lateral division of the periaqueductal gray. In the central nucleus of the amygdala, naloxone administration to those rats drinking water significantly increased c-Fos-IR, an effect that was significantly enhanced by sucrose consumption, suggesting an upregulation of endogenous opioid tone in this area. The data from this study indicate that the central nucleus of the amygdala has a key role in the integration of gustatory, hedonic, and autonomic signals as they relate to sucrose consumption, if not to food intake regulation in general. Furthermore, the data from this study lend further support to the hypothesis that sucrose consumption induces the release of endogenous opioids.
Collapse
Affiliation(s)
- J D Pomonis
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | |
Collapse
|
177
|
Bilecki W, Höllt V, Przewłocki R. Acute delta-opioid receptor activation induces CREB phosphorylation in NG108-15 cells. Eur J Pharmacol 2000; 390:1-6. [PMID: 10708700 DOI: 10.1016/s0014-2999(00)00018-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A growing body of evidence supports an important role of the transcription factor cAMP responsive element binding protein (CREB) in mediating opioid-induced changes in the cAMP pathway. Regulation of CREB and subsequent changes in gene expression may underlie some long-term cellular adaptations associated with the administration of opioid drugs. The effect of morphine on the level of the transcription factor CREB, as well as CREB phosphorylation, was investigated in NG108-15 cells. Morphine and the delta-opioid receptor agonist [D-Pen(2,5)]enkephalin (DPDPE) produced a dose-dependent increase in CREB phosphorylation. The effect was reversed by naloxone and naltrindole, respectively. The calmodulin antagonist N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide hydrochloride (W-7), the protein kinase inhibitor staurosporine, as well as 1-(5-isoquinolinesulfonyl)-2-methylpiperazine dihydrochloride (H-7), an inhibitor of protein kinase C and cAMP-dependent protein kinase, but not N-[2-(methylamino)ethyl]-5-isoquinolinesulfonamide dihydrochloride (H-8), an inhibitor of cAMP- and cGMP-dependent protein kinase, blocked the opioid-induced CREB phosphorylation. The obtained results suggest that in the cells studied opioids affect, via the delta-opioid receptor, stimulatory intracellular mediator systems involving Ca(2+)/calmodulin and the protein kinase C pathway.
Collapse
Affiliation(s)
- W Bilecki
- Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343, Kraków, Poland
| | | | | |
Collapse
|
178
|
Li X, David Clark J. Chronic morphine exposure and the expression of heme oxygenase type 2. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 75:179-84. [PMID: 10686338 DOI: 10.1016/s0169-328x(99)00254-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Heme oxygenase (HO) catalyzes the formation of carbon monoxide (CO) and other products from heme. The CO formed has been shown to function as a neurotransmitter, and may be involved in nociceptive signaling. Heme oxygenase type 2 (HO-2) is the predominant form of HO in the CNS. The expression of nitric oxide synthase (NOS) which catalyzes the formation of a similar neurotransmitter nitric oxide (NO) from arginine is increased in the spinal cords of animals chronically exposed to morphine and other opioids. In these studies, we examined changes in expression of HO-2 which occur in spinal cord tissue of morphine tolerant mice. After 5 days of exposure to morphine, mice were observed to be profoundly tolerant to the analgesic effects of morphine. In experiments using Northern blotting we observed a 2.7-fold increase in HO-2 mRNA in homogenized spinal cord tissue. Additional experiments revealed a 3.1-fold increase in HO-2 protein which seemed to result from the increased expression of HO-2 in neurons in the dorsal horn region of the spinal cord. To complement our expression studies measured HO enzymatic activity in spinal cord homogenates and found a 2.1-fold increase in the tolerant animals. The functional significance of this increased expression and activity is as yet unclear, but may be involved in the acquisition of analgesic tolerance to opioids, dependence on opioids, or perhaps the hyperalgesia reported after chronic exposure to opioids.
Collapse
Affiliation(s)
- X Li
- Veterans Administration Palo Alto Health Care System and Stanford University, Department of Anesthesiology, 112A, 3801 Miranda Ave., Palo Alto, CA, USA
| | | |
Collapse
|
179
|
Affiliation(s)
- R Spanagel
- Department of Psychopharmacology, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
180
|
Maldonado R, Smadja C, Mazzucchelli C, Sassone-Corsi P, Mazucchelli C. Altered emotional and locomotor responses in mice deficient in the transcription factor CREM. Proc Natl Acad Sci U S A 1999; 96:14094-9. [PMID: 10570204 PMCID: PMC24196 DOI: 10.1073/pnas.96.24.14094] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/1999] [Indexed: 11/18/2022] Open
Abstract
Various transcription factors act as nuclear effectors of the cAMP-dependent signaling pathway. These are the products of three genes in the mouse, CREB, CRE modulator (CREM), and ATF-1. CREM proteins are thought to play important roles within the hypothalamic-pituitary axis and in the control of rhythmic functions in the pineal gland. We have generated CREM-mutant mice and investigated their response in a variety of behavioral tests. CREM-null mice show a drastic increase in locomotion. In contrast to normal mice, the CREM-deficient mice show equal locomotor activity during the circadian cycle. The anatomy of the hypothalamic suprachiasmatic nuclei, the center of the endogenous pacemaker, is normal in mutant mice. Remarkably, CREM mutant mice also elicit a different emotional state, revealed by a lower anxiety in two different behavioral models, but they preserve the conditioned reactiveness to stress. These results demonstrate the high degree of functional specificity of each cAMP-responsive transcription factor in behavioral control.
Collapse
Affiliation(s)
- R Maldonado
- Département de Pharmacologie Moléculaire et Structurale, Institut National de la Santé et de la Recherche Médicale U266, France.
| | | | | | | | | |
Collapse
|
181
|
Ramge P, Kreuter J, Lemmer B. Circadian phase-dependent antinociceptive reaction in mice determined by the hot-plate test and the tail-flick test after intravenous injection of dalargin-loaded nanoparticles. Chronobiol Int 1999; 16:767-77. [PMID: 10584177 DOI: 10.3109/07420529909016944] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Peptides normally do not cross the blood-brain barrier (BBB). Previously, it has been shown that the hexapeptide enkephalin analogue dalargin with polysorbate-80-coated nanoparticles (DAL/NP) can be transported across the BBB and is able to exhibit an antinociceptive effect in mice. In the present study, the circadian time and dose dependencies of the antinociceptive effect of different dalargin preparations were investigated. The active preparation (DAL/NP, 5 mg/kg, 10 mg/kg), as well as a dalargin solution in phosphate buffered saline (DAL/SOL, 10 mg/kg) were injected intravenously to groups of 10-12 inbred DBA/2 mice at 12 different circadian times; mice were synchronized to a light-dark (LD) 12:12 regimen. The antinociceptive effect was determined 15 minutes postinjection by the hot-plate test. Experiments with DAL/NP were repeated using the tail-flick test system at two selected times (08:00 and 20:00) to test for dose dependency (2.5, 5, 7.5, 10 mg/kg). Hot-plate latencies were rhythmic under baseline and after DAL/SOL, with acrophases in the dark phase; DAL/SOL did not influence latency time. In contrast, DAL/NP significantly increased reaction time dose dependently; the maximal possible effect was rhythmic with the 10 mg/kg preparation, with a peak effect in the early light phase. Results were confirmed by the tail-flick test. The experiments demonstrate that an enkephalin analogue coated with nanoparticles can easily cross the BBB and is able to display a dose- and time-dependent antinociceptive effect.
Collapse
Affiliation(s)
- P Ramge
- Institut für Pharmazeutische Technologie, Johann-Wolfgang-Goethe Universität, Frankfurt/M., Germany
| | | | | |
Collapse
|
182
|
Abstract
Addictive drugs like cocaine, ethanol, and morphine activate signal transduction pathways that regulate brain gene expression. Such regulation is modulated by the presence of certain transcription factor proteins present in a given neuron. This article summarizes the effects of several addictive drugs on transcriptional processes contributing to the development of a drug-dependent state. The characterization of drug-induced changes in gene expression shows promise for improving our understanding of drug-addiction phenomena and cellular modes of cocaine, ethanol, and morphine action.
Collapse
Affiliation(s)
- G Torres
- Behavioral Neuroscience Program, Department of Psychology, State University of New York at Buffalo, 14260, USA.
| | | |
Collapse
|
183
|
Fan GH, Wang LZ, Qiu HC, Ma L, Pei G. Inhibition of calcium/calmodulin-dependent protein kinase II in rat hippocampus attenuates morphine tolerance and dependence. Mol Pharmacol 1999; 56:39-45. [PMID: 10385682 DOI: 10.1124/mol.56.1.39] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Learning and memory have been suggested to be important in the development of opiate addiction. Based on the recent findings that calcium/calmodulin-dependent protein kinase II (CaMKII) is essential in learning and memory processes, and morphine treatment increases CaMKII activity in hippocampus, the present study was undertaken to examine whether inhibition of hippocampal CaMKII prevents morphine tolerance and dependence. Here, we report that inhibition of CaMKII by intrahippocampal dentate gyrus administration of the specific inhibitors KN-62 and KN-93 to rats significantly attenuated the tolerance to the analgesic effect of morphine and the abstinence syndrome precipitated by opiate antagonist naloxone. In contrast, both KN-04 and KN-92, the inactive structural analogs of KN-62 and KN-93, failed to attenuate morphine tolerance and dependence, indicating that the observed effects of KN-62 and KN-93 are mediated through inhibition of CaMKII. Furthermore, administration of CaMKII antisense oligonucleotide into rat hippocampal dentate gyrus, which decreased the expression of CaMKII specifically, also attenuated morphine tolerance and dependence, while the corresponding sense oligonucleotide of CaMKII did not exhibit such inhibitory effect. Moreover, the KN-62 treatment abolished the rewarding properties of morphine as measured by the conditioned place preference. These results suggest that hippocampal CaMKII is critically involved in the development of morphine tolerance and dependence, and inhibition of this kinase may have some therapeutic benefit in the treatment of opiate tolerance and dependence.
Collapse
Affiliation(s)
- G H Fan
- Shanghai Institute of Cell Biology, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | | | | | | | | |
Collapse
|
184
|
Abstract
As traditional behavioral genetics analysis merges with neurogenetics, the field of neurobehavioral genetics, focusing on single-gene effects, comes into being. New biotechnology has greatly accelerated gene discovery and the study of gene function in relation to brain and behavior. More than 7,000 genes in mice and 10,000 in humans have now been documented, and extensive information about the genetics of several species is readily available on the World Wide Web. Based on knowledge of the DNA sequence of a gene, a targeted mutation with the capacity to disable it can be created. These knockouts--also called null mutants--are employed in the study of a wide range of phenotypes, including learning and memory, appetite and obesity, and circadian rhythms. The era of examining single-gene effects from a reductionistic perspective is waning, and research with interacting arrays of genes in various environmental contexts is demonstrating a need for systems-oriented theory.
Collapse
Affiliation(s)
- D Wahlsten
- Department of Psychology, University of Alberta, Edmonton, Canada.
| |
Collapse
|
185
|
Kuo CH, Nishikawa E, Ichikawa H, Sadakata T, Niu SY, Miki N. Calmodulin functions as an activator of Pur alpha binding to single-stranded purine-rich DNA elements (PUR elements). Biochem Biophys Res Commun 1999; 255:406-11. [PMID: 10049721 DOI: 10.1006/bbrc.1999.0218] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pur alpha is a single stranded DNA-binding protein and binds to a consensus sequence (GGN)n. We have reported that the DNA-binding activity of a single stranded cyclic AMP response element-binding protein (ssCRE-BP) is suppressed in cerebellum treated chronically with morphine, ssCRE-BP is identical to Pur alpha and the DNA binding activity of Pur alpha is markedly enhanced by a heat stable activator in the nuclear extract. In this report, we purified this activator. The amino acid composition and partial amino acid sequence were determined to be identical to those of calmodulin (CaM), which enhanced the binding of GST-Pur alpha to various PUR elements in the 5' non-coding regions of the neuropeptide Y, myelin basic protein and nicotinic Ach receptor beta 4 subunit genes. The data suggest a novel gene expression pathway mediated by Ca/CaM-Pur alpha which may regulate a variety of genes in addition to those regulated through the CREB pathway.
Collapse
Affiliation(s)
- C H Kuo
- Department of Pharmacology, Medical School, Osaka University, Japan.
| | | | | | | | | | | |
Collapse
|
186
|
Ledent C, Valverde O, Cossu G, Petitet F, Aubert JF, Beslot F, Böhme GA, Imperato A, Pedrazzini T, Roques BP, Vassart G, Fratta W, Parmentier M. Unresponsiveness to cannabinoids and reduced addictive effects of opiates in CB1 receptor knockout mice. Science 1999; 283:401-4. [PMID: 9888857 DOI: 10.1126/science.283.5400.401] [Citation(s) in RCA: 1064] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The function of the central cannabinoid receptor (CB1) was investigated by invalidating its gene. Mutant mice did not respond to cannabinoid drugs, demonstrating the exclusive role of the CB1 receptor in mediating analgesia, reinforcement, hypothermia, hypolocomotion, and hypotension. The acute effects of opiates were unaffected, but the reinforcing properties of morphine and the severity of the withdrawal syndrome were strongly reduced. These observations suggest that the CB1 receptor is involved in the motivational properties of opiates and in the development of physical dependence and extend the concept of an interconnected role of CB1 and opiate receptors in the brain areas mediating addictive behavior.
Collapse
MESH Headings
- Analgesics, Opioid/pharmacology
- Animals
- Behavior, Animal/drug effects
- Blood Pressure/drug effects
- Body Temperature/drug effects
- Cannabinoids/metabolism
- Cannabinoids/pharmacology
- Dronabinol/pharmacology
- Heart Rate/drug effects
- Mice
- Mice, Knockout
- Morphine/pharmacology
- Motor Activity/drug effects
- Narcotics/pharmacology
- Opioid-Related Disorders/physiopathology
- Pain Threshold/drug effects
- Receptors, Cannabinoid
- Receptors, Drug/genetics
- Receptors, Drug/physiology
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/physiology
- Reinforcement, Psychology
- Substance Withdrawal Syndrome/physiopathology
Collapse
Affiliation(s)
- C Ledent
- IRIBHN, Université libre de Bruxelles, B-1070 Brussels, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
187
|
Hata R, Gass P, Mies G, Wiessner C, Hossmann KA. Attenuated c-fos mRNA induction after middle cerebral artery occlusion in CREB knockout mice does not modulate focal ischemic injury. J Cereb Blood Flow Metab 1998; 18:1325-35. [PMID: 9850145 DOI: 10.1097/00004647-199812000-00007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
To elucidate the mechanism of ischemia-induced signal transduction in vivo, we investigated the effect of the targeted disruption of the alpha and delta isoforms of the cAMP-responsive element-binding protein (CREB) on c-fos and heatshock protein (hsp) 72 gene induction. Permanent focal ischemia was induced by occlusion of the middle cerebral artery of the CREB mutant mice (CREB(-/-), n = 5) and the wild-type mice (n = 6). Three hours after onset of ischemia, the neurologic score was assessed and pictorial measurements of ATP and cerebral protein synthesis (CPS) were carried out to differentiate between the ischemic core (where ATP is depleted), the ischemic penumbra (where ATP is preserved but CPS is inhibited), and the intact tissue (where both ATP and CPS are preserved). There were no significant differences in neurologic score or in ATP, pH, and CPS between the two groups, suggesting that the sensitivity of both strains to ischemia is the same. Targeted disruption of the CREB gene significantly attenuated c-fos gene induction in the periischemic ipsilateral hemisphere but had no effect on either c-fos or hsp72 mRNA expression in the penumbra. The observations demonstrate that CREB expression, despite its differential effect on c-fos, does not modulate acute focal ischemic injury.
Collapse
Affiliation(s)
- R Hata
- Max-Planck-Institute for Neurological Research, Department of Experimental Neurology, Cologne, Germany
| | | | | | | | | |
Collapse
|
188
|
Hutcheson DM, Tzavara ET, Smadja C, Valjent E, Roques BP, Hanoune J, Maldonado R. Behavioural and biochemical evidence for signs of abstinence in mice chronically treated with delta-9-tetrahydrocannabinol. Br J Pharmacol 1998; 125:1567-77. [PMID: 9884086 PMCID: PMC1565737 DOI: 10.1038/sj.bjp.0702228] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Tolerance and dependence induced by chronic delta-9-tetrahydrocannabinol (THC) administration were investigated in mice. The effects on body weight, analgesia and hypothermia were measured during 6 days of treatment (10 or 20 mg kg(-1) THC twice daily). A rapid tolerance to the acute effects was observed from the second THC administration. The selective CB-1 receptor antagonist SR 141716A (10 mg kg(-1)) was administered at the end of the treatment, and somatic and vegetative manifestations of abstinence were evaluated. SR 141716A administration precipitated several somatic signs that included wet dog shakes, frontpaw tremor, ataxia, hunched posture, tremor, ptosis, piloerection, decreased locomotor activity and mastication, which can be interpreted as being part of a withdrawal syndrome. Brains were removed immediately after the behavioural measures and assayed for adenylyl cyclase activity. An increase in basal, forskolin and calcium/calmodulin stimulated adenylyl cyclase activities was specifically observed in the cerebellum of these mice. The motivational effects of THC administration and withdrawal were evaluated by using the place conditioning paradigm. No conditioned change in preference to withdrawal associated environment was observed. In contrast, a conditioned place aversion was produced by the repeated pairing of THC (20 mg kg(-1)), without observing place preference at any of the doses used. This study constitutes a clear behavioural and biochemical model of physical THC withdrawal with no motivational aversive consequences. This model permits an easy quantification of THC abstinence in mice and can be useful for the elucidation of the molecular mechanisms involved in cannabinoid dependence.
Collapse
Affiliation(s)
- D M Hutcheson
- Département de Pharmacologie Moléculaire et Structurale, U266 INSERM, URA D1500 CNRS, Université René Descartes, Paris, France
| | | | | | | | | | | | | |
Collapse
|
189
|
Herdegen T, Leah JD. Inducible and constitutive transcription factors in the mammalian nervous system: control of gene expression by Jun, Fos and Krox, and CREB/ATF proteins. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1998; 28:370-490. [PMID: 9858769 DOI: 10.1016/s0165-0173(98)00018-6] [Citation(s) in RCA: 1056] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This article reviews findings up to the end of 1997 about the inducible transcription factors (ITFs) c-Jun, JunB, JunD, c-Fos, FosB, Fra-1, Fra-2, Krox-20 (Egr-2) and Krox-24 (NGFI-A, Egr-1, Zif268); and the constitutive transcription factors (CTFs) CREB, CREM, ATF-2 and SRF as they pertain to gene expression in the mammalian nervous system. In the first part we consider basic facts about the expression and activity of these transcription factors: the organization of the encoding genes and their promoters, the second messenger cascades converging on their regulatory promoter sites, the control of their transcription, the binding to dimeric partners and to specific DNA sequences, their trans-activation potential, and their posttranslational modifications. In the second part we describe the expression and possible roles of these transcription factors in neural tissue: in the quiescent brain, during pre- and postnatal development, following sensory stimulation, nerve transection (axotomy), neurodegeneration and apoptosis, hypoxia-ischemia, generalized and limbic seizures, long-term potentiation and learning, drug dependence and withdrawal, and following stimulation by neurotransmitters, hormones and neurotrophins. We also describe their expression and possible roles in glial cells. Finally, we discuss the relevance of their expression for nervous system functioning under normal and patho-physiological conditions.
Collapse
Affiliation(s)
- T Herdegen
- Institute of Pharmacology, University of Kiel, Hospitalstrasse 4, 24105, Kiel,
| | | |
Collapse
|
190
|
Picciotto MR, Wickman K. Using knockout and transgenic mice to study neurophysiology and behavior. Physiol Rev 1998; 78:1131-63. [PMID: 9790572 DOI: 10.1152/physrev.1998.78.4.1131] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Reverse genetics, in which detailed knowledge of a gene of interest permits in vivo modification of its expression or function, provides a powerful method for examining the physiological relevance of any protein. Transgenic and knockout mouse models are particularly useful for studies of complex neurobiological problems. The primary aims of this review are to familiarize the nonspecialist with the techniques and limitations of mouse mutagenesis, to describe new technologies that may overcome these limitations, and to illustrate, using representative examples from the literature, some of the ways in which genetically altered mice have been used to analyze central nervous system function. The goal is to provide the information necessary to evaluate critically studies in which mutant mice have been used to study neurobiological problems.
Collapse
Affiliation(s)
- M R Picciotto
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
191
|
Gass P, Wolfer DP, Balschun D, Rudolph D, Frey U, Lipp HP, Schütz G. Deficits in Memory Tasks of Mice with CREB Mutations Depend on Gene Dosage. Learn Mem 1998. [DOI: 10.1101/lm.5.4.274] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Studies in Aplysia, Drosophila, and mice have shown that the transcription factor CREB is involved in formation and retention of long-term memory. To analyze the impact of differential CREB levels on learning and memory, we varied the gene dosage of CREB in two strains of mutant mice: (1) CREBαΔ mice, in which the α and Δ isoforms are disrupted, but a third isoform β is strongly up-regulated; (2) CREBcomp, a compound strain with one αΔ allele and one CREBnull allele in which all CREB isoforms are disrupted. To minimize genetic background effects, CREB mutations were backcrossed into a C57BL/6 and a FVB/N strain, respectively, and studies were performed in F1 hybrids from these lines. CREBcomp but not CREBαΔ F1 hybrids were impaired in water maze learning and fear conditioning, demonstrating a CREB gene dosage effect. However, analysis of the platform searching strategies in the water maze task suggested that CREBcomp mutants are impaired in behavioral flexibility rather than in spatial memory. In contrast to previous experiments using CREBαΔ mice with different genetic background, the F1 hybrid CREBαΔ and CREBcomp mice did not show deficits in a social transmission of food preference task nor in dentate gyrus and CA1 LTP as recorded from slice preparations. These data indicate that the hybrid vigor typical for F1 hybrids may compensate for a reduction in CREB levels in some tests. On the other hand, the persistence of clear behavioral deficits as shown by the F1hybrid CREBcomp mice in water maze and fear conditioning indicates a robust and repeatable phenomenon that will permit further functional analysis of CREB.
Collapse
|
192
|
Affiliation(s)
- G F Koob
- Department of Neuropharmacology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
193
|
Wu X, Spiro C, Owen WG, McMurray CT. cAMP response element-binding protein monomers cooperatively assemble to form dimers on DNA. J Biol Chem 1998; 273:20820-7. [PMID: 9694827 DOI: 10.1074/jbc.273.33.20820] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have analyzed the properties of cAMP response element-binding protein (CREB) in solution with emphasis on dimerization and effects of phosphorylation. Using a purified CREB fusion protein, a novel dye-label technique, and sedimentation equilibrium analysis, we directly and conclusively demonstrate that, unlike Jun and Fos, CREB dimerization is DNA-dependent. CREB exists primarily as a monomer in solution and cooperatively assembles on DNA to form dimers. Sedimentation equilibrium analysis also indicates that dimerization is unaffected by cAMP-dependent protein kinase-phosphorylation or by the symmetry of the cAMP-responsive element binding site. Filter binding assays reveal that CREB binding is unaffected by phosphorylation regardless of the symmetry of the cAMP-responsive element binding site. Our results suggest that structurally similar members of the same bZIP superfamily may differ significantly in their regulation at the level of dimerization.
Collapse
Affiliation(s)
- X Wu
- Department of Pharmacology, Mayo Foundation and Graduate School, Rochester, Minnesota 55905, USA
| | | | | | | |
Collapse
|
194
|
Affiliation(s)
- J C Crabbe
- Department of Behavioral Neuroscience, Portland Alcohol Research Center, Oregon Health Sciences University, VA Medical Center 97201, USA.
| | | |
Collapse
|
195
|
Abstract
A central determinant of addictive disorders in people is increased risk of relapse to drug use even after prolonged periods of abstinence. Recent advances in animal models of relapse indicate that drug-seeking behavior can be triggered by priming injections of the drugs themselves, by drug-associated environmental stimuli, and by footshock stress. The neural mechanisms underlying this relapse can be viewed in general terms as drug-like or proponent processes. Considerable evidence points to the mesolimbic dopamine system, and more specifically to activation of D2-like dopamine receptors in the nucleus accumbens, as a crucial neural substrate utilized by various stimuli that induce relapse. Drug-associated stimuli and stress may activate this system via neural circuits from the prefrontal cortex and amygdala as well as via the hypothalamo-pituitary-adrenal axis. There is also evidence for dopamine-independent mechanisms in relapse as well. A major effort of current research is to identify the long-lasting neuroadaptations within these various brain regions that contribute to relapse in addicted people. One potential neuroadaptation is up-regulation of the cAMP pathway in the nucleus accumbens, which occurs after chronic drug exposure, and represents a drug-opposite or opponent process. Modulation of this system has been related directly to relapse to drug-seeking behavior. Given the long-lasting nature of increased risk of relapse, it is likely that the relevant neuroadaptations are mediated via drug-induced changes in gene expression. A detailed understanding of the neural and molecular basis of relapse will facilitate efforts to develop truly effective treatments and preventive measures.
Collapse
MESH Headings
- Animals
- Appetitive Behavior/physiology
- Behavior, Addictive/metabolism
- Behavior, Addictive/physiopathology
- Behavior, Addictive/psychology
- Brain/drug effects
- Brain/metabolism
- Brain/physiopathology
- Central Nervous System Stimulants/adverse effects
- Cues
- Cyclic AMP/metabolism
- Disease Susceptibility
- Dopamine/physiology
- GTP-Binding Proteins/drug effects
- GTP-Binding Proteins/metabolism
- Humans
- Hypothalamo-Hypophyseal System/drug effects
- Hypothalamo-Hypophyseal System/physiopathology
- Illicit Drugs/adverse effects
- Models, Neurological
- Models, Psychological
- Narcotics/adverse effects
- Neural Pathways/drug effects
- Neural Pathways/physiopathology
- Neurons/drug effects
- Neurons/metabolism
- Nucleus Accumbens/drug effects
- Nucleus Accumbens/metabolism
- Nucleus Accumbens/physiopathology
- Pituitary-Adrenal System/drug effects
- Pituitary-Adrenal System/physiopathology
- Prefrontal Cortex/drug effects
- Prefrontal Cortex/physiopathology
- Protein Kinases/drug effects
- Protein Kinases/metabolism
- Receptors, Neurotransmitter/drug effects
- Receptors, Neurotransmitter/metabolism
- Recurrence
- Self Medication/adverse effects
- Self Medication/psychology
- Stress, Psychological/complications
- Stress, Psychological/physiopathology
- Substance-Related Disorders/etiology
- Substance-Related Disorders/physiopathology
- Substance-Related Disorders/psychology
- Transcription, Genetic/drug effects
- Ventral Tegmental Area/drug effects
- Ventral Tegmental Area/physiopathology
Collapse
Affiliation(s)
- D W Self
- Division of Molecular Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
| | | |
Collapse
|
196
|
Abstract
The use of mice with targeted deletion, or knockout, of specific genes provides a relatively new approach to establish the molecular bases of behavior. As with all ablation studies, the interpretation of behavioral data may be limited by the technique. For example, indirect effects of the missing gene may affect behavior, rather than the missing gene per se. Also, because the missing gene might affect many developmental processes throughout ontogeny and because up-regulation or compensatory mechanisms may be activated in knockouts, behavioral data from mice with targeted gene deletions should be interpreted with caution. The development of conditional knockouts, in which a specific gene can be inactivated any time during ontogeny, should allow investigators to avoid these conceptual shortcomings associated with behavioral data from knockouts in the near future. The behavioral alterations reported in knockout mice are reviewed here. Many dramatic changes in complex motivated behaviors including aggression, sexual, ingestive, and parental behaviors, have been reported for knockouts. There have also been many reports of alterations in sensorimotor abilities and spontaneous activity, as well as impairments in balance, coordination, and gait. Impaired learning and memory have also been reported for mice with targeted disruption of specific genes. Taken together, the use of knockouts will provide an important new tool to understand the mechanisms underlying behavior.
Collapse
Affiliation(s)
- R J Nelson
- Department of Psychology, Johns Hopkins University, Baltimore, MD 21218-2686, USA.
| | | |
Collapse
|
197
|
Rudolph D, Tafuri A, Gass P, Hämmerling GJ, Arnold B, Schütz G. Impaired fetal T cell development and perinatal lethality in mice lacking the cAMP response element binding protein. Proc Natl Acad Sci U S A 1998; 95:4481-6. [PMID: 9539763 PMCID: PMC22515 DOI: 10.1073/pnas.95.8.4481] [Citation(s) in RCA: 236] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
CREB, the cAMP response element binding protein, is a key transcriptional regulator of a large number of genes containing a CRE consensus sequence in their upstream regulatory regions. Mice with a hypomorphic allele of CREB that leads to a loss of the CREBalpha and delta isoforms and to an overexpression of the CREBbeta isoform are viable. Herein we report the generation of CREB null mice, which have all functional isoforms (CREBalpha, beta, and delta) inactivated. In contrast to the CREBalpha delta mice, CREB null mice are smaller than their littermates and die immediately after birth from respiratory distress. In brain, a strong reduction in the corpus callosum and the anterior commissures is observed. Furthermore, CREB null mice have an impaired fetal T cell development of the alpha beta lineage, which is not affected in CREBalpha delta mice on embryonic day 18.5. Overall thymic cellularity in CREB null mice is severely reduced affecting all developmental stages of the alpha beta T cell lineage. In contrast gamma delta T cell differentiation is normal in CREB mutant mice.
Collapse
MESH Headings
- Animals
- Consensus Sequence
- Cyclic AMP Response Element-Binding Protein/biosynthesis
- Cyclic AMP Response Element-Binding Protein/genetics
- Embryonic and Fetal Development
- Fetal Death
- Gene Expression Regulation
- Humans
- Infant, Newborn
- Lung/pathology
- Mice
- Mice, Knockout
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, gamma-delta/biosynthesis
- Regulatory Sequences, Nucleic Acid
- Respiratory Distress Syndrome, Newborn/genetics
- Respiratory Distress Syndrome, Newborn/pathology
- T-Lymphocytes/immunology
- Thymus Gland/embryology
- Thymus Gland/growth & development
- Thymus Gland/immunology
- Transcription, Genetic
Collapse
Affiliation(s)
- D Rudolph
- Division Molecular Biology of the Cell 1, German Cancer Research Center, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
198
|
Bell JA, Grant SJ. Locus coeruleus neurons from morphine-treated rats do not show opiate-withdrawal hyperactivity in vitro. Brain Res 1998; 788:237-44. [PMID: 9555033 DOI: 10.1016/s0006-8993(98)00003-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In vitro studies have not consistently demonstrated naloxone-precipitated opiate-withdrawal hyperactivity of locus coeruleus neurons. The reason for this inconsistency may be because partial or complete withdrawal occurred during preparation of the locus coeruleus slice. The aim of the present study was to assay opiate withdrawal-related hyperactivity in neurons recorded from locus coeruleus slices while ensuring the maintenance of dependence until naloxone-precipitated withdrawal. Extracellular recordings were obtained from individual locus coeruleus neurons in slices from morphine-treated and drug-naive rats. Morphine 1 microM was present in all solutions during preparation and recording in slices from morphine-treated rats. The average firing rate of the drug-naive controls was 0.93 Hz (+/-0.04 Hz). Bath application of morphine (1 microM) almost completely suppressed firing in drug-naive controls (0.058 Hz, +/-0.04 Hz, n=12), whereas in solutions containing 1 microM morphine, the firing rate of cells from morphine-treated rats averaged 0.71 Hz (+/-0.05 Hz), indicating considerable, but incomplete tolerance. In the same slices, naloxone increased the average spontaneous firing of locus coeruleus cells to 0.96 Hz (+/-0. 04 Hz). Thus, naloxone did not produce withdrawal hyperactivity, but returned the cells from morphine-treated rats to control rates. We conclude that locus coeruleus cells in locus coeruleus slice preparations from morphine-treated rats did not demonstrate withdrawal-related hyperactivity even when dependence was maintained until naloxone-precipitated withdrawal. Thus, our results do not support a role for adaptations intrinsic to locus coeruleus neurons in withdrawal hyperexcitability, but instead imply the necessity of functional afferent activity.
Collapse
Affiliation(s)
- J A Bell
- Brain Imaging Section, Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, 5500 Nathan Shock Drive, Baltimore, MD 21224, USA
| | | |
Collapse
|
199
|
Simonin F, Valverde O, Smadja C, Slowe S, Kitchen I, Dierich A, Le Meur M, Roques BP, Maldonado R, Kieffer BL. Disruption of the kappa-opioid receptor gene in mice enhances sensitivity to chemical visceral pain, impairs pharmacological actions of the selective kappa-agonist U-50,488H and attenuates morphine withdrawal. EMBO J 1998; 17:886-97. [PMID: 9463367 PMCID: PMC1170438 DOI: 10.1093/emboj/17.4.886] [Citation(s) in RCA: 304] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
***micro***-, delta- and kappa-opioid receptors are widely expressed in the central nervous system where they mediate the strong analgesic and mood-altering actions of opioids, and modulate numerous endogenous functions. To investigate the contribution of the kappa-opioid receptor (KOR) to opioid function in vivo, we have generated KOR-deficient mice by gene targeting. We show that absence of KOR does not modify expression of the other components of the opioid system, and behavioural tests indicate that spontaneous activity is not altered in mutant mice. The analysis of responses to various nociceptive stimuli suggests that the KOR gene product is implicated in the perception of visceral chemical pain. We further demonstrate that KOR is critical to mediate the hypolocomotor, analgesic and aversive actions of the prototypic kappa-agonist U-50, 488H. Finally, our results indicate that this receptor does not contribute to morphine analgesia and reward, but participates in the expression of morphine abstinence. Together, our data demonstrate that the KOR-encoded receptor plays a modulatory role in specific aspects of opioid function.
Collapse
MESH Headings
- 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/pharmacology
- Animals
- Behavior, Animal/drug effects
- Enkephalins/biosynthesis
- Enkephalins/genetics
- Female
- Gene Expression Regulation
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Morphine/adverse effects
- Pain/chemically induced
- Pain/metabolism
- Pain/psychology
- Pro-Opiomelanocortin/biosynthesis
- Pro-Opiomelanocortin/genetics
- Protein Precursors/biosynthesis
- Protein Precursors/genetics
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/deficiency
- Receptors, Opioid, kappa/genetics
- Substance Withdrawal Syndrome/genetics
- Substance Withdrawal Syndrome/metabolism
- Substance Withdrawal Syndrome/psychology
- Viscera
Collapse
Affiliation(s)
- F Simonin
- UPR 9050 CNRS, ESBS Université Louis Pasteur, Strasbourg, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
200
|
Turner JZ. I don't want to see the pictures: science writing and the visibility of animal experiments. PUBLIC UNDERSTANDING OF SCIENCE (BRISTOL, ENGLAND) 1998; 7:27-40. [PMID: 11657070 DOI: 10.1177/096366259800700103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The use of animals in research and development is one of the areas of science (human reproductive research and technology is perhaps another) where the fact that current practices are sanctioned in legislation does not prevent them from being controversial. This article examines the visibility of this issue in terms of the way science writers and scientific research papers report research that involves animals. Three journals with a scientific readership ( Nature, Science, and New Scientist) and two journals with a mixed scientist/nonscientist readership ( The Economist and The Times Higher Education Supplement) were examined. I have looked at the frequency of reports, the amount of experimental detail given, and the use of language, illustrations, and humor. Common features of these reports are the paucity of detail about the procedures carried out on the animals, their welfare and living conditions, and the numbers of animals used. However, there are significant differences between the journals with a “scientist” readership and those with a “mixed” readership in their readiness to debate the moral issue involved in human uses of animals. From these data the conclusion can be drawn that public debate might be improved by increasing the visibility of the animals themselves in reports of research involving their use.
Collapse
|