151
|
Hamanoue M, Ikeda Y, Ogata T, Takamatsu K. Predominant expression of N-acetylglucosaminyltransferase V (GnT-V) in neural stem/progenitor cells. Stem Cell Res 2015; 14:68-78. [DOI: 10.1016/j.scr.2014.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 10/27/2014] [Accepted: 11/24/2014] [Indexed: 10/24/2022] Open
|
152
|
Batista CEM, Mariano ED, Marie SKN, Teixeira MJ, Morgalla M, Tatagiba M, Li J, Lepski G. Stem cells in neurology--current perspectives. ARQUIVOS DE NEURO-PSIQUIATRIA 2014; 72:457-65. [PMID: 24964114 DOI: 10.1590/0004-282x20140045] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 04/17/2014] [Indexed: 02/08/2023]
Abstract
UNLABELLED Central nervous system (CNS) restoration is an important clinical challenge and stem cell transplantation has been considered a promising therapeutic option for many neurological diseases. OBJECTIVE The present review aims to briefly describe stem cell biology, as well as to outline the clinical application of stem cells in the treatment of diseases of the CNS. METHOD Literature review of animal and human clinical experimental trials, using the following key words: "stem cell", "neurogenesis", "Parkinson", "Huntington", "amyotrophic lateral sclerosis", "traumatic brain injury", "spinal cord injury", "ischemic stroke", and "demyelinating diseases". CONCLUSION Major recent advances in stem cell research have brought us several steps closer to their effective clinical application, which aims to develop efficient ways of regenerating the damaged CNS.
Collapse
Affiliation(s)
| | - Eric Domingos Mariano
- Departamento de Neurologia, Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, SP, Brazil
| | | | - Manoel Jacobsen Teixeira
- Departamento de Neurologia, Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, SP, Brazil
| | - Matthias Morgalla
- Department of Neurosurgery, Eberhard-Karls University, Tuebingen, Germany
| | - Marcos Tatagiba
- Department of Neurosurgery, Eberhard-Karls University, Tuebingen, Germany
| | - Jun Li
- Department of Neurosurgery, Eberhard-Karls University, Tuebingen, Germany
| | - Guilherme Lepski
- Departamento de Neurologia, Faculdade de Medicina, Universidade de São Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
153
|
Prabhakaran MP, Vatankhah E, Kai D, Ramakrishna S. Methods for Nano/Micropatterning of Substrates: Toward Stem Cells Differentiation. INT J POLYM MATER PO 2014. [DOI: 10.1080/00914037.2014.945207] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
154
|
Affiliation(s)
- Sandra R. Richardson
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba QLD 4102, Australia;
| | - Santiago Morell
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba QLD 4102, Australia;
| | - Geoffrey J. Faulkner
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba QLD 4102, Australia;
- School of Biomedical Sciences, The University of Queensland, Brisbane QLD 4072, Australia
| |
Collapse
|
155
|
Disruption of polyubiquitin gene Ubb causes dysregulation of neural stem cell differentiation with premature gliogenesis. Sci Rep 2014; 4:7026. [PMID: 25391618 PMCID: PMC4229674 DOI: 10.1038/srep07026] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 10/29/2014] [Indexed: 11/08/2022] Open
Abstract
Disruption of polyubiquitin gene Ubb leads to early-onset reactive gliosis and adult-onset hypothalamic neurodegeneration in mice. However, it remains unknown why reduced levels of ubiquitin (Ub) due to loss of Ubb lead to these neural phenotypes. To determine whether or not the defects in neurons or their progenitors per se, but not in their cellular microenvironment, are the cause of the neural phenotypes observed in Ubb(-/-) mice, we investigated the properties of cultured cells isolated from Ubb(-/-) mouse embryonic brains. Although cells were cultured under conditions promoting neuronal growth, Ubb(-/-) cells underwent apoptosis during culture in vitro, with increased numbers of glial cells and decreased numbers of neurons. Intriguingly, at the beginning of the Ubb(-/-) cell culture, the number of neural stem cells (NSCs) significantly decreased due to their reduced proliferation and their premature differentiation into glial cells. Furthermore, upregulation of Notch target genes due to increased steady-state levels of Notch intracellular domain (NICD) led to the dramatic reduction of proneuronal gene expression in Ubb(-/-) cells, resulting in inhibition of neurogenesis and promotion of gliogenesis. Therefore, our study suggests an unprecedented role for cellular Ub pools in determining the fate and self-renewal of NSCs.
Collapse
|
156
|
Hosseini M, Moghadas M, Edalatmanesh MA, Hashemzadeh MR. Xenotransplantation of human adipose derived mesenchymal stem cells in a rodent model of Huntington’s disease: motor and non-motor outcomes. Neurol Res 2014; 37:309-19. [DOI: 10.1179/1743132814y.0000000456] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
157
|
Gan Q, Lee A, Suzuki R, Yamagami T, Stokes A, Nguyen BC, Pleasure D, Wang J, Chen HW, Zhou CJ. Pax6 mediates ß-catenin signaling for self-renewal and neurogenesis by neocortical radial glial stem cells. Stem Cells 2014; 32:45-58. [PMID: 24115331 DOI: 10.1002/stem.1561] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 08/31/2013] [Indexed: 12/21/2022]
Abstract
The Wnt/ß-catenin pathway is a critical stem cell regulator and plays important roles in neuroepithelial cells during early gestation. However, the role of Wnt/ß-catenin signaling in radial glia, a major neural stem cell population expanded by midgestation, remains poorly understood. This study shows that genetic ablation of ß-catenin with hGFAP-Cre mice inhibits neocortical formation by disrupting radial glial development. Reduced radial glia and intermediate progenitors are found in the ß-catenin-deficient neocortex during late gestation. Increased apoptosis and divergent localization of radial glia in the subventricular zone are also observed in the mutant neocortex. In vivo and in vitro proliferation and neurogenesis as well as oligodendrogenesis by cortical radial glia or by dissociated neural stem cells are significantly defective in the mutants. Neocortical layer patterning is not apparently altered, while astrogliogenesis is ectopically increased in the mutants. At the molecular level, the expression of the transcription factor Pax6 is dramatically diminished in the cortical radial glia and the sphere-forming neural stem cells of ß-catenin-deficient mutants. Chromatin immunoprecipitation and luciferase assays demonstrate that ß-catenin/Tcf complex binds to Pax6 promoter and induces its transcriptional activities. The forced expression of Pax6 through lentiviral transduction partially rescues the defective proliferation and neurogenesis by ß-catenin-deficient neural stem cells. Thus, Pax6 is a novel downstream target of the Wnt/ß-catenin pathway, and ß-catenin/Pax6 signaling plays critical roles in self-renewal and neurogenesis of radial glia/neural stem cells during neocortical development.
Collapse
Affiliation(s)
- Qini Gan
- Institute for Pediatric Regenerative Medicine at Shriners Hospitals for Children-Northern California, Sacramento, California, USA; Department of Cell Biology and Human Anatomy, University of California at Davis, School of Medicine, Sacramento, California, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Guha SK, Tillu R, Sood A, Patgaonkar M, Nanavaty IN, Sengupta A, Sharma S, Vaidya VA, Pathak S. Single episode of mild murine malaria induces neuroinflammation, alters microglial profile, impairs adult neurogenesis, and causes deficits in social and anxiety-like behavior. Brain Behav Immun 2014; 42:123-37. [PMID: 24953429 DOI: 10.1016/j.bbi.2014.06.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 06/09/2014] [Accepted: 06/13/2014] [Indexed: 12/26/2022] Open
Abstract
Cerebral malaria is associated with cerebrovascular damage and neurological sequelae. However, the neurological consequences of uncomplicated malaria, the most prevalent form of the disease, remain uninvestigated. Here, using a mild malaria model, we show that a single Plasmodium chabaudi adami infection in adult mice induces neuroinflammation, neurogenic, and behavioral changes in the absence of a blood-brain barrier breach. Using cytokine arrays we show that the infection induces differential serum and brain cytokine profiles, both at peak parasitemia and 15days post-parasite clearance. At the peak of infection, along with the serum, the brain also exhibited a definitive pro-inflammatory cytokine profile, and gene expression analysis revealed that pro-inflammatory cytokines were also produced locally in the hippocampus, an adult neurogenic niche. Hippocampal microglia numbers were enhanced, and we noted a shift to an activated profile at this time point, accompanied by a striking redistribution of the microglia to the subgranular zone adjacent to hippocampal neuronal progenitors. In the hippocampus, a distinct decline in progenitor turnover and survival was observed at peak parasitemia, accompanied by a shift from neuronal to glial fate specification. Studies in transgenic Nestin-GFP reporter mice demonstrated a decline in the Nestin-GFP(+)/GFAP(+) quiescent neural stem cell pool at peak parasitemia. Although these cellular changes reverted to normal 15days post-parasite clearance, specific brain cytokines continued to exhibit dysregulation. Behavioral analysis revealed selective deficits in social and anxiety-like behaviors, with no change observed in locomotor, cognitive, and depression-like behaviors, with a return to baseline at recovery. Collectively, these findings indicate that even a single episode of mild malaria results in alterations of the brain cytokine profile, causes specific behavioral dysfunction, is accompanied by hippocampal microglial activation and redistribution, and a definitive, but transient, suppression of adult hippocampal neurogenesis.
Collapse
Affiliation(s)
- Suman K Guha
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Rucha Tillu
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Ankit Sood
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Mandar Patgaonkar
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Ishira N Nanavaty
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Arjun Sengupta
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Shobhona Sharma
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Vidita A Vaidya
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India.
| | - Sulabha Pathak
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India.
| |
Collapse
|
159
|
Change of fate commitment in adult neural progenitor cells subjected to chronic inflammation. J Neurosci 2014; 34:11571-82. [PMID: 25164655 DOI: 10.1523/jneurosci.0231-14.2014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neural progenitor cells (NPCs) have regenerative capabilities that are activated during inflammation. We aimed at elucidating how NPCs, with special focus on the spinal cord-derived NPCs (SC-NPCs), are affected by chronic inflammation modeled by experimental autoimmune encephalomyelitis (EAE). NPCs derived from the subventricular zone (SVZ-NPCs) were also included in the study as a reference from a distant inflammatory site. We also investigated the transcriptional and functional difference between the SC-NPCs and SVZ-NPCs during homeostatic conditions. NPCs were isolated and propagated from the SVZ and cervical, thoracic, and caudal regions of the SC from naive rats and rats subjected to EAE. Using Affymetrix microarray analyses, the global transcriptome was measured in the different NPC populations. These analyses were paralleled by NPC differentiation studies. Assessment of basal transcriptional and functional differences between NPC populations in naive rat revealed a higher neurogenic potential in SVZ-NPCs compared with SC-NPCs. Conversely, during EAE, the neurogenicity of the SC-NPCs was increased while their gliogenicity was decreased. We detected an overall increase of inflammation and neurodegeneration-related genes while the developmentally related profile was decreased. Among the decreased functions, we isolated a gliogenic signature that was confirmed by differentiation assays where the SC-NPCs from EAE generated fewer oligodendrocytes and astrocytes but more neurons than control cultures. In summary, NPCs displayed differences in fate-regulating genes and differentiation potential depending on their rostrocaudal origin. Inflammatory conditions downregulated gliogenicity in SC-NPCs, promoting neurogenicity. These findings give important insight into neuroinflammatory diseases and the mechanisms influencing NPC plasticity during these conditions.
Collapse
|
160
|
Huang HI, Lin JY, Chen HH, Yeh SB, Kuo RL, Weng KF, Shih SR. Enterovirus 71 infects brain-derived neural progenitor cells. Virology 2014; 468-470:592-600. [PMID: 25299565 DOI: 10.1016/j.virol.2014.09.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 07/17/2014] [Accepted: 09/17/2014] [Indexed: 01/15/2023]
Abstract
Neural progenitor cells (NPCs) are stem cells that can differentiate into various neural lineage cells. The damage and loss of NPCs are associated with neurological conditions such as cognitive deficits and memory impairment. In a long-term study of patients with EV71, cognitive disorders were observed. Therefore, we hypothesized that NPCs may be permissive to EV71 infection. We demonstrated that NPCs are prone to EV71 infection and that these stem cells can support the active replication of this virus. Furthermore, EV71 infection triggers apoptosis, resulting in significant cell death in infected NPCs. However, EV71 did not replicate in the differentiated cell types that were tested. Our findings suggest that EV71 can infect NPCs and cause the depletion of these cells.
Collapse
Affiliation(s)
- Hsing-I Huang
- Department of Medical Biotechnology and Laboratory Science, Research Center for Emerging Viral Infections, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan, Taiwan, ROC; Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan, ROC.
| | - Jhao-Yin Lin
- Department of Medical Biotechnology and Laboratory Science, Research Center for Emerging Viral Infections, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan, Taiwan, ROC; Graduate institute of Biomedical Sciences, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan, ROC
| | - Hsin-Hsu Chen
- Department of Medical Biotechnology and Laboratory Science, Research Center for Emerging Viral Infections, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan, Taiwan, ROC; Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan, ROC
| | - Shiou-Bang Yeh
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan, ROC
| | - Rei-Lin Kuo
- Department of Medical Biotechnology and Laboratory Science, Research Center for Emerging Viral Infections, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan, Taiwan, ROC; Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan, ROC
| | - Kuo-Feng Weng
- Department of Medical Biotechnology and Laboratory Science, Research Center for Emerging Viral Infections, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan, Taiwan, ROC
| | - Shin-Ru Shih
- Department of Medical Biotechnology and Laboratory Science, Research Center for Emerging Viral Infections, Chang Gung University, 259 Wen-Hwa 1st Road, Kwei-Shan, Tao-Yuan, Taiwan, ROC; Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan, ROC; Clinical Virology Lab, Department of Clinical Pathology, Chang Gung Memorial Hospital, Kwei-Shan, Tao-Yuan, Taiwan, ROC
| |
Collapse
|
161
|
Kumar SKS, Perumal S, Rajagopalan V. Therapeutic effect of bone marrow mesenchymal stem cells on cold stress induced changes in the hippocampus of rats. Neural Regen Res 2014; 9:1740-4. [PMID: 25422634 PMCID: PMC4238161 DOI: 10.4103/1673-5374.143416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2014] [Indexed: 01/22/2023] Open
Abstract
The present study aims to evaluate the effect of bone marrow mesenchymal stem cells on cold stress induced neuronal changes in hippocampal CA1 region of Wistar rats. Bone marrow mesenchymal stem cells were isolated from a 6-week-old Wistar rat. Bone marrow from adult femora and tibia was collected and mesenchymal stem cells were cultured in minimal essential medium containing 10% heat-inactivated fetal bovine serum and were sub-cultured. Passage 3 cells were analyzed by flow cytometry for positive expression of CD44 and CD90 and negative expression of CD45. Once CD44 and CD90 positive expression was achieved, the cells were cultured again to 90% confluence for later experiments. Twenty-four rats aged 8 weeks old were randomly and evenly divided into normal control, cold water swim stress (cold stress), cold stress + PBS (intravenous infusion), and cold stress + bone marrow mesenchymal stem cells (1 × 10(6); intravenous infusion) groups. The total period of study was 60 days which included 1 month stress period followed by 1 month treatment. Behavioral functional test was performed during the entire study period. After treatment, rats were sacrificed for histological studies. Treatment with bone marrow mesenchymal stem cells significantly increased the number of neuronal cells in hippocampal CA1 region. Adult bone marrow mesenchymal stem cells injected by intravenous administration show potential therapeutic effects in cognitive decline associated with stress-related lesions.
Collapse
|
162
|
Hwang DW, Jin Y, Lee DH, Kim HY, Cho HN, Chung HJ, Park Y, Youn H, Lee SJ, Lee HJ, Kim SU, Wang KC, Lee DS. In vivo bioluminescence imaging for prolonged survival of transplanted human neural stem cells using 3D biocompatible scaffold in corticectomized rat model. PLoS One 2014; 9:e105129. [PMID: 25198726 PMCID: PMC4157740 DOI: 10.1371/journal.pone.0105129] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2014] [Accepted: 07/21/2014] [Indexed: 11/27/2022] Open
Abstract
Stem cell-based treatment of traumatic brain injury has been limited in its capacity to bring about complete functional recovery, because of the poor survival rate of the implanted stem cells. It is known that biocompatible biomaterials play a critical role in enhancing survival and proliferation of transplanted stem cells via provision of mechanical support. In this study, we noninvasively monitored in vivo behavior of implanted neural stem cells embedded within poly-l-lactic acid (PLLA) scaffold, and showed that they survived over prolonged periods in corticectomized rat model. Corticectomized rat models were established by motor-cortex ablation of the rat. F3 cells expressing enhanced firefly luciferase (F3-effLuc) were established through retroviral infection. The F3-effLuc within PLLA was monitored using IVIS-100 imaging system 7 days after corticectomized surgery. F3-effLuc within PLLA robustly adhered, and gradually increased luciferase signals of F3-effLuc within PLLA were detected in a day dependent manner. The implantation of F3-effLuc cells/PLLA complex into corticectomized rats showed longer-lasting luciferase activity than F3-effLuc cells alone. The bioluminescence signals from the PLLA-encapsulated cells were maintained for 14 days, compared with 8 days for the non-encapsulated cells. Immunostaining results revealed expression of the early neuronal marker, Tuj-1, in PLLA-F3-effLuc cells in the motor-cortex-ablated area. We observed noninvasively that the mechanical support by PLLA scaffold increased the survival of implanted neural stem cells in the corticectomized rat. The image-guided approach easily proved that scaffolds could provide supportive effect to implanted cells, increasing their viability in terms of enhancing therapeutic efficacy of stem-cell therapy.
Collapse
Affiliation(s)
- Do Won Hwang
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Molecular Medicine and Biopharmaceutical Science, WCU Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| | - Yeona Jin
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Do Hun Lee
- University of Miami School of Medicine, Miami Project to Cure Paralysis, Department of Neurological Surgery, Miami, Florida, United States of America
| | - Han Young Kim
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Molecular Medicine and Biopharmaceutical Science, WCU Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| | - Han Na Cho
- College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Hye Jin Chung
- College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Yunwoong Park
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Hyewon Youn
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea
- Cancer Imaging Center, Seoul National University Cancer Hospital, Seoul, Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Seung Jin Lee
- College of Pharmacy, Ewha Womans University, Seoul, Korea
| | - Hong J. Lee
- Medical Research Institute, Chung-Ang University College of Medicine, Seoul, Korea
| | - Seung U. Kim
- Medical Research Institute, Chung-Ang University College of Medicine, Seoul, Korea
| | - Kyu-Chang Wang
- Division of Pediatric Neurosurgery, Seoul National University Children's Hospital, Seoul, Korea
- * E-mail: (DSL); (K-CW)
| | - Dong Soo Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea
- Department of Molecular Medicine and Biopharmaceutical Science, WCU Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
- * E-mail: (DSL); (K-CW)
| |
Collapse
|
163
|
Song K, Ge D, Guan S, Sun C, Ma X, Liu T. Mass transfer analysis of growth and substance metabolism of NSCs cultured in collagen-based scaffold in vitro. Appl Biochem Biotechnol 2014; 174:2114-30. [PMID: 25163884 DOI: 10.1007/s12010-014-1165-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 08/15/2014] [Indexed: 01/28/2023]
Abstract
The aim of this study is to analyze the growth and substance metabolism of neural stem cells (NSCs) cultured in biological collagen-based scaffolds. Mass transfer and metabolism model of glucose, lactic acid, and dissolved oxygen (DO) were established and solved on MATLAB platform to obtain the concentration distributions of DO, glucose, and lactic acid in culture system, respectively. Calculation results showed that the DO influenced their normal growth and metabolism of NSCs mostly in the in vitro culture within collagen-based scaffolds. This study also confirmed that 2-mm thickness of collagen scaffold was capable of in vitro cultivation and growth of NSCs with an inoculating density of 1 × 10(6) cells/mL.
Collapse
Affiliation(s)
- Kedong Song
- State Key Laboratory of Fine Chemicals, Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, 116024, China,
| | | | | | | | | | | |
Collapse
|
164
|
Wang Y, Huang Y, Zhao L, Li Y, Zheng J. Glutaminase 1 is essential for the differentiation, proliferation, and survival of human neural progenitor cells. Stem Cells Dev 2014; 23:2782-90. [PMID: 24923593 DOI: 10.1089/scd.2014.0022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Glutaminase is the enzyme that converts glutamine into glutamate, which serves as a key excitatory neurotransmitter and one of the energy providers for cellular metabolism. Previous studies have revealed that mice lacking glutaminase 1 (GLS1), the dominant isoform in the brain and kidney, died shortly after birth due to disrupted glutamatergic transmission, suggesting the critical role of GLS1 in the physiological functions of synaptic network. However, whether GLS1 regulates neurogenesis, a process by which neurons are generated from neural progenitor cells (NPCs), is unknown. Using a human NPC model, we found that both GLS1 isotypes, kidney-type glutaminase and glutaminase C, were upregulated during neuronal differentiation, which were correlated with the expression of neuronal marker microtubule-associated protein 2 (MAP-2). To study the functional impact of GLS1 on neurogenesis, we used small interference RNA targeting GLS1 and determined the expressions of neuronal genes by western blot, real-time polymerase chain reaction, and immunocytochemistry. siRNA silencing of GLS1 significantly reduced the expression of MAP-2, indicating that GLS1 is essential for neurogenesis. To unravel the specific process(es) of neurogenesis being affected, we further studied the proliferation and survival of NPCs in vitro. siRNA silencing of GLS1 significantly reduced the Ki67(+) and increased the TUNEL(+) cells, suggesting critical roles of GLS1 for the proliferation and survival of NPCs. Together, these data suggest that GLS1 is critical for proper functions of NPCs, including neuronal differentiation, proliferation, and survival.
Collapse
Affiliation(s)
- Yi Wang
- 1 Laboratory of Neuroimmunology and Regenerative Therapy, Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center , Omaha, Nebraska
| | | | | | | | | |
Collapse
|
165
|
Islam MM, Zhang CL. TLX: A master regulator for neural stem cell maintenance and neurogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:210-6. [PMID: 24930777 DOI: 10.1016/j.bbagrm.2014.06.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 04/22/2014] [Accepted: 06/05/2014] [Indexed: 10/25/2022]
Abstract
The orphan nuclear receptor TLX, also known as NR2E1, is an essential regulator of neural stem cell (NSC) self-renewal, maintenance, and neurogenesis. In vertebrates, TLX is specifically localized to the neurogenic regions of the forebrain and retina throughout development and adulthood. TLX regulates the expression of genes involved in multiple pathways, such as the cell cycle, DNA replication, and cell adhesion. These roles are primarily performed through the transcriptional repression or activation of downstream target genes. Emerging evidence suggests that the misregulation of TLX might play a role in the onset and progression of human neurological disorders making this factor an ideal therapeutic target. Here, we review the current understanding of TLX function, expression, regulation, and activity significant to NSC maintenance, adult neurogenesis, and brain plasticity. This article is part of a Special Issue entitled: Nuclear receptors in animal development.
Collapse
Affiliation(s)
- Mohammed M Islam
- Department of Molecular Biology, 6000 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Chun-Li Zhang
- Department of Molecular Biology, 6000 Harry Hines Blvd., Dallas, TX 75390, USA.
| |
Collapse
|
166
|
Ma J, Liu N, Yi B, Zhang X, Gao BB, Zhang Y, Xu R, Li X, Dai Y. Transplanted hUCB-MSCs migrated to the damaged area by SDF-1/CXCR4 signaling to promote functional recovery after traumatic brain injury in rats. Neurol Res 2014; 37:50-6. [PMID: 24919714 DOI: 10.1179/1743132814y.0000000399] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Transplanted human umbilical cord mesenchymal stem cells (hUC-MSCs) have exhibited considerable therapeutic potential for traumatic brain injury (TBI). However, how hUC-MSCs migrating to the injury region and the mechanism of hUC-MSCs promoting functional recovery after TBI are still unclear. In this study, we investigated whether stromal cell-derived factor-1 (SDF-1) was involved in the hUC-MSCs migration and the possible mechanisms that might be involved in the beneficial effect on functional recovery. In vitro experiments demonstrated that SDF-1 induces a concentration-dependent migration of hUC-MSCs. Furthermore, pre-treatment with the CXCR4-specific antagonist AMD3100 significantly prevented the migration of hUC-MSCs in vitro. We found that the expression of SDF-1 increased significantly around the damaged area. Transplanted hUC-MSCs were localized to regions where SDF-1 was highly expressed. Additionally, our results showed that hUC-MSCs-treated animals showed significantly improved functional recovery compared with controls. In hUC-MSCs-transplanted group, terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL)-positive cells were decreased and BrdU-positive cells were significantly increased compared with control group, more of BrdU-positive cells co-localized with GFAP. These suggest that SDF-1 plays an important role in the migration of hUC-MSCs to the damaged area and hUC-MSCs are beneficial for functional recovery after TBI.
Collapse
|
167
|
Tsupykov O, Kyryk V, Smozhanik E, Rybachuk O, Butenko G, Pivneva T, Skibo G. Long-term fate of grafted hippocampal neural progenitor cells following ischemic injury. J Neurosci Res 2014; 92:964-74. [DOI: 10.1002/jnr.23386] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 01/30/2014] [Accepted: 02/24/2014] [Indexed: 01/19/2023]
Affiliation(s)
- Oleg Tsupykov
- Bogomoletz Institute of Physiology; Kyiv Ukraine
- State Key Laboratory of Molecular and Cellular Biology; Kyiv Ukraine
- State Institute of Genetic and Regenerative Medicine; Kyiv Ukraine
| | - Vitaliy Kyryk
- State Institute of Genetic and Regenerative Medicine; Kyiv Ukraine
| | - Ekaterina Smozhanik
- Bogomoletz Institute of Physiology; Kyiv Ukraine
- State Key Laboratory of Molecular and Cellular Biology; Kyiv Ukraine
| | - Oksana Rybachuk
- Bogomoletz Institute of Physiology; Kyiv Ukraine
- State Key Laboratory of Molecular and Cellular Biology; Kyiv Ukraine
- State Institute of Genetic and Regenerative Medicine; Kyiv Ukraine
| | - Gennadii Butenko
- State Institute of Genetic and Regenerative Medicine; Kyiv Ukraine
| | - Tatyana Pivneva
- Bogomoletz Institute of Physiology; Kyiv Ukraine
- State Key Laboratory of Molecular and Cellular Biology; Kyiv Ukraine
- State Institute of Genetic and Regenerative Medicine; Kyiv Ukraine
| | - Galina Skibo
- Bogomoletz Institute of Physiology; Kyiv Ukraine
- State Key Laboratory of Molecular and Cellular Biology; Kyiv Ukraine
- State Institute of Genetic and Regenerative Medicine; Kyiv Ukraine
| |
Collapse
|
168
|
TIMP-1 modulates chemotaxis of human neural stem cells through CD63 and integrin signalling. Biochem J 2014; 459:565-76. [DOI: 10.1042/bj20131119] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Human neural stem cells possess an inherent brain tumour tropism. We identified brain tumour-derived TIMP-1 as a novel chemoattractant for human neural stem cells. TIMP-1 binding to CD63 at the plasma membrane activated β1 integrin-mediated signalling, inducing cell adhesion and migration.
Collapse
|
169
|
Si YC, Li Q, Xie CE, Niu X, Xia XH, Yu CY. Chinese herbs and their active ingredients for activating xue (blood) promote the proliferation and differentiation of neural stem cells and mesenchymal stem cells. Chin Med 2014; 9:13. [PMID: 24716802 PMCID: PMC3991899 DOI: 10.1186/1749-8546-9-13] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 04/03/2014] [Indexed: 01/18/2023] Open
Abstract
Some Chinese herbs are anti-thrombolysis, and anti-inflammatory, improves brain RNA content, promotes brain protein synthesis, enhances dopamine function, regulates brain hormones, and improves microcirculation in central nervous system that might improve, repair and rehabilitation from the stroke and brain injury. Specific Chinese herbs and their components, such as Acanthopanax, Angelica, could maintain the survival of neural stem cells, and Rhodiola, Ganoderma spore Polygala, Tetramethylpyrazine, Gardenia, Astragaloside and Ginsenoside Rg1 promoted proliferation of neural stem cells, and Rhodiola, Astragaloside promoted differentiation of neural stem cell into neuron and glia in vivo. Astragalus, Safflower, Musk, Baicalin, Geniposide, Ginkgolide B, Cili polysaccharide, Salidroside, Astragaloside, Antler polypeptides, Ginsenoside Rg1, Panax notoginseng saponins promoted proliferation and differentiation of neural stem cells in vitro. Salvia, Astragalus, Ginsenoside Rg1, P. notoginseng saponins, Musk polypeptide, Muscone and Ginkgolide B promoted neural-directed differentiation of MSCs into nerve cells. These findings are encouraging further research into the Chinese herbs for developing drugs in treating patients of stroke and brain injury.
Collapse
Affiliation(s)
- Yin-Chu Si
- Department of Anatomy, Beijing University of Chinese Medicine, Chaoyang District, Beijing 100029, China.
| | | | | | | | | | | |
Collapse
|
170
|
Agarwal P, Kumar M, Kumar K, Singh R, Mahapatra PS, Kumar A, Bhure SK, Malakar D, Sarkar M, Bag S. Isolation and propagation of neural stem cells in caprine (Capra hircus). Cell Biol Int 2014; 38:953-61. [DOI: 10.1002/cbin.10282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 03/20/2014] [Indexed: 12/17/2022]
Affiliation(s)
- Pranjali Agarwal
- Reproductive Physiology Lab; Division of Physiology & Climatology, Indian Veterinary Research Institute; Izatnagar Bareilly, Uttar Pradesh 243122 India
| | - Manish Kumar
- Reproductive Physiology Lab; Division of Physiology & Climatology, Indian Veterinary Research Institute; Izatnagar Bareilly, Uttar Pradesh 243122 India
| | - Kuldeep Kumar
- Reproductive Physiology Lab; Division of Physiology & Climatology, Indian Veterinary Research Institute; Izatnagar Bareilly, Uttar Pradesh 243122 India
| | - Renu Singh
- Reproductive Physiology Lab; Division of Physiology & Climatology, Indian Veterinary Research Institute; Izatnagar Bareilly, Uttar Pradesh 243122 India
| | - Puspendra Saswat Mahapatra
- Reproductive Physiology Lab; Division of Physiology & Climatology, Indian Veterinary Research Institute; Izatnagar Bareilly, Uttar Pradesh 243122 India
| | - Ajay Kumar
- Division of Biotechnology; Indian veterinary Research Institute; Izatnagar Bareilly, Uttar Pradesh 243122 India
| | - Sanjeev Kumar Bhure
- Division of Biochemistry; Indian veterinary Research Institute; Izatnagar Bareilly, Uttar Pradesh 243122 India
| | - Dhruba Malakar
- Division of Biotechnology; National Dairy Research Institute; Karnal Haryana India
| | - Mihir Sarkar
- Nuclear Research Laboratory; Division of Physiology & Climatology, Indian Veterinary Research Institute; Izatnagar Bareilly, Uttar Pradesh 243122 India
| | - Sadhan Bag
- Reproductive Physiology Lab; Division of Physiology & Climatology, Indian Veterinary Research Institute; Izatnagar Bareilly, Uttar Pradesh 243122 India
| |
Collapse
|
171
|
Liu Q, Chen P, Wang J. Molecular mechanisms and potentials for differentiating inner ear stem cells into sensory hair cells. Dev Biol 2014; 390:93-101. [PMID: 24680894 DOI: 10.1016/j.ydbio.2014.03.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/15/2014] [Accepted: 03/18/2014] [Indexed: 12/31/2022]
Abstract
In mammals, hair cells may be damaged or lost due to genetic mutation, infectious disease, chemical ototoxicity, noise and other factors, causing permanent sensorineural deafness. Regeneration of hair cells is a basic pre-requisite for recovery of hearing in deaf animals. The inner ear stem cells in the organ of Corti and vestibular utricle are the most ideal precursors for regeneration of inner ear hair cells. This review highlights some recent findings concerning the proliferation and differentiation of inner ear stem cells. The differentiation of inner ear stem cells into hair cells involves a series of signaling pathways and regulatory factors. This paper offers a comprehensive analysis of the related studies.
Collapse
Affiliation(s)
- Quanwen Liu
- Institute of Cell and Development, College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Ping Chen
- Institute of Cell and Development, College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China; Department of Cell Biology and Otolaryngology, Emory University School of Medicine, Atlanta, Georgia 30322, United States
| | - Jinfu Wang
- Institute of Cell and Development, College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
172
|
Cheng L, Hu W, Qiu B, Zhao J, Yu Y, Guan W, Wang M, Yang W, Pei G. Generation of neural progenitor cells by chemical cocktails and hypoxia. Cell Res 2014; 24:665-79. [PMID: 24638034 PMCID: PMC4042166 DOI: 10.1038/cr.2014.32] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 02/25/2014] [Accepted: 02/27/2014] [Indexed: 02/07/2023] Open
Abstract
Neural progenitor cells (NPCs) can be induced from somatic cells by defined factors. Here we report that NPCs can be generated from mouse embryonic fibroblasts by a chemical cocktail, namely VCR (V, VPA, an inhibitor of HDACs; C, CHIR99021, an inhibitor of GSK-3 kinases and R, Repsox, an inhibitor of TGF-β pathways), under a physiological hypoxic condition. These chemical-induced NPCs (ciNPCs) resemble mouse brain-derived NPCs regarding their proliferative and self-renewing abilities, gene expression profiles, and multipotency for different neuroectodermal lineages in vitro and in vivo. Further experiments reveal that alternative cocktails with inhibitors of histone deacetylation, glycogen synthase kinase, and TGF-β pathways show similar efficacies for ciNPC induction. Moreover, ciNPCs can also be induced from mouse tail-tip fibroblasts and human urinary cells with the same chemical cocktail VCR. Thus our study demonstrates that lineage-specific conversion of somatic cells to NPCs could be achieved by chemical cocktails without introducing exogenous factors.
Collapse
Affiliation(s)
- Lin Cheng
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Wenxiang Hu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Binlong Qiu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Jian Zhao
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Yongchun Yu
- Institute of Neurobiology, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | - Wuqiang Guan
- Institute of Neurobiology, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | - Min Wang
- Institute of Neurobiology, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | - Wuzhou Yang
- Institute of Neurobiology, Institutes of Brain Science and State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | - Gang Pei
- 1] State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China [2] School of Life Science and Technology, Tongji University, Shanghai 200092, China
| |
Collapse
|
173
|
Hazell AS, Wang D, Oanea R, Sun S, Aghourian M, Yong JJ. Pyrithiamine-induced thiamine deficiency alters proliferation and neurogenesis in both neurogenic and vulnerable areas of the rat brain. Metab Brain Dis 2014; 29:145-52. [PMID: 24078061 DOI: 10.1007/s11011-013-9436-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 08/27/2013] [Indexed: 11/25/2022]
Abstract
Thiamine deficiency (TD) leads to Wernicke's encephalopathy (WE), in which focal histological lesions occur in periventricular areas of the brain. Recently, impaired neurogenesis has been reported in the hippocampus during the dietary form of TD, and in pyrithiamine-induced TD (PTD), a well-characterized model of WE. To further characterize the consequences of PTD on neural stem/progenitor cell (NSPC) activity, we have examined the effect of this treatment in the rat on both the subventricular zone (SVZ) of the rostral lateral ventricle and subgranular layer (SGL) of the hippocampus, and in the thalamus and inferior colliculus, two vulnerable brain regions in this disorder. In both the SVZ and SGL, PTD led to a decrease in the numbers of bromodeoxyuridine-stained cells, indicating that proliferation of NSPCs destined for neurogenesis in these areas was reduced. Doublecortin (DCX) immunostaining in the SGL was decreased, indicating a reduction in neuroblast formation, consistent with impaired NSPC activity. DCX labeling was not apparent in focal areas of vulnerability. In the thalamus, proliferation of cells was absent while in the inferior colliculus, numerous actively dividing cells were apparent, indicative of a differential response between these two brain regions. Exposure of cultured neurospheres to PTD resulted in decreased proliferation of NSPCs, consistent with our in vivo findings. Together, these results indicate that PTD considerably affects cell proliferation and neurogenesis activity in both neurogenic areas and parts of the brain known to display structural and functional vulnerability, confirming and extending recent findings on the effects of TD on neurogenesis. Future use of NSPCs in vitro may allow a closer and more detailed examination of the mechanism(s) underlying inhibition of these cells during TD.
Collapse
|
174
|
Use of autologous mesenchymal stem cells derived from bone marrow for the treatment of naturally injured spinal cord in dogs. Stem Cells Int 2014; 2014:437521. [PMID: 24723956 PMCID: PMC3956412 DOI: 10.1155/2014/437521] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 01/16/2014] [Indexed: 02/04/2023] Open
Abstract
The use of stem cells in injury repair has been extensively investigated. Here, we examined the therapeutic effects of autologous bone marrow mesenchymal stem cells (MSC) transplantation in four dogs with natural traumatic spinal cord injuries. MSC were cultured in vitro, and proliferation rate and cell viability were evaluated. Cell suspensions were prepared and surgically administered into the spinal cord. The animals were clinically evaluated and examined by nuclear magnetic resonance. Ten days after the surgical procedure and MSC transplantation, we observed a progressive recovery of the panniculus reflex and diminished superficial and deep pain response, although there were still low proprioceptive reflexes in addition to a hyperreflex in the ataxic hind limb movement responses. Each dog demonstrated an improvement in these gains over time. Conscious reflex recovery occurred simultaneously with moderate improvement in intestine and urinary bladder functions in two of the four dogs. By the 18th month of clinical monitoring, we observed a remarkable clinical amelioration accompanied by improved movement, in three of the four dogs. However, no clinical gain was associated with alterations in magnetic resonance imaging. Our results indicate that MSC are potential candidates for the stem cell therapy following spinal cord injury.
Collapse
|
175
|
Taha MF, Javeri A, Kheirkhah O, Majidizadeh T, Khalatbary AR. Neural differentiation of mouse embryonic and mesenchymal stem cells in a simple medium containing synthetic serum replacement. J Biotechnol 2014; 172:1-10. [DOI: 10.1016/j.jbiotec.2013.11.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 11/17/2013] [Accepted: 11/29/2013] [Indexed: 01/23/2023]
|
176
|
Lee SR, Lee HJ, Cha SH, Jeong KJ, Lee Y, Jeon CY, Yi KS, Lim I, Cho ZH, Chang KT, Kim SU. Long-term survival and differentiation of human neural stem cells in nonhuman primate brain with no immunosuppression. Cell Transplant 2014; 24:191-201. [PMID: 24480401 DOI: 10.3727/096368914x678526] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Cellular fate of human neural stem cells (hNSCs) transplanted in the brain of nonhuman primates (NHPs) with no immunosuppression was determined at 22 and 24 months posttransplantation (PTx) regarding survival, differentiation, and tumorigenesis. Survival of hNSCs labeled with magnetic nanoparticles was successfully detected around injection sites in the brain at 22 months PTx by MRI. Histological examination of brain sections with H&E and Prussian blue staining at 24 months revealed that most of the grafted hNSCs were found located along the injection tract. Grafted hNSCs were found to differentiate into neurons at 24 months PTx. In addition, none of the grafted hNSCs were bromodeoxyuridine positive in the monkey brain, indicating that hNSCs did not replicate in the NHP brain and did not cause tumor formation. This study serves as a proof of principle and provides evidence that hNSCs transplanted in NHP brain could survive and differentiate into neurons in the absence of immunosuppression. It also serves as a preliminary study in our scheduled preclinical studies of hNSC transplantation in NHP stroke models.
Collapse
Affiliation(s)
- Sang-Rae Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
177
|
Wang Z, Liu D, Zhang Q, Wang J, Zhan J, Xian X, Du Z, Wang X, Hao A. Palmitic acid affects proliferation and differentiation of neural stem cells in vitro. J Neurosci Res 2014; 92:574-86. [PMID: 24446229 DOI: 10.1002/jnr.23342] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 10/28/2013] [Accepted: 11/12/2013] [Indexed: 11/08/2022]
Abstract
High-lipid diet composed of saturated fatty acids (SFAs) has significant detrimental effects on brain homeostasis, and deleterious effects of SFAs on various cells have been well documented. However, the effects of SFAs on neural stem Cells (NSCs) function have not been fully explored. The aim of this study was to determine whether palmitic acid (PA) affected the proliferation and differentiation of murine-derived NSCs. The results showed that PA dose dependently suppressed viability of NSCs and was cytotoxic at high concentrations. The toxic levels of PA inhibited the proliferation of NSCs as shown by reduced bromodeoxyuridine labeling of NSCs, which is correlated with reactive oxygen species generation. Pretreatment of the cells with the antioxidant N-acetyl-L-cysteine inhibitor significantly attenuated the effects of PA on the proliferation of NSCs. Furthermore, nontoxic levels of PA promoted astrocytogenesis in the differentiated NSCs, associated with Stat3 activation and altered expression of serial of basic helix-loop-helix transcription factor genes. Altogether, our data have demonstrated that PA has a significant impact on proliferation and differentiation of NSCs in vitro and may be useful for elucidating the role of SFAs in regulating NSCs fate in physiological and pathological settings.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Physiology, Shandong University School of Medicine, Shandong, People's Republic of China; Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Histology and Embryology, Shandong University School of Medicine, Jinan, Shandong, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
178
|
Abstract
The central nervous system (CNS) can be damaged by a wide range of conditions resulting in loss of specific populations of neurons and/or glial cells and in the development of defined psychiatric or neurological symptoms of varying severity. As the CNS has limited inherent capacity to regenerate lost tissue and self-repair, the development of therapeutic strategies for the treatment of CNS insults remains a serious scientific challenge with potential important clinical applications. In this context, strategies involving transplantation of specific cell populations, such as stem cells and neural stem cells (NSCs), to replace damaged cells offers an opportunity for the development of cell-based therapies. Along these lines, in this review we describe a protocol which involves transplantation of NPCs, genetically engineered to overexpress the neurogenic molecule Cend1 and have thus the potency to differentiate with higher frequency towards the neuronal lineage in a rodent model of stab wound cortical injury.
Collapse
Affiliation(s)
- Dimitra Thomaidou
- Laboratory of Cellular and Molecular Neurobiology & Imaging Unit, Hellenic Pasteur Institute, 127 Vassilissis Sophias Avenue, Athens, 11521, Greece,
| |
Collapse
|
179
|
Li YC, Tsai LK, Wang JH, Young TH. A neural stem/precursor cell monolayer for neural tissue engineering. Biomaterials 2014; 35:1192-204. [DOI: 10.1016/j.biomaterials.2013.10.066] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 10/20/2013] [Indexed: 11/30/2022]
|
180
|
Pan Y, Zhang Y, Gao X, Jia J, Gao J, Ma Z. Scientific progress regarding neural regeneration in the Web of Science: A 10-year bibliometric analysis. Neural Regen Res 2013; 8:3449-54. [PMID: 25206668 PMCID: PMC4146001 DOI: 10.3969/j.issn.1673-5374.2013.36.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 10/11/2013] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND: Neural regeneration following nerve injury is an emerging field that attracts extending interests all over the world. OBJECTIVE: To use bibliometric indexes to track studies focusing on neural regeneration, and to investigate the relationships among geographic origin, countries and institutes, keywords in the published articles, and especially focus on the region distribution, institution distribution, as well as collaborations in Chinese papers indexed in the Web of Science. METHODS: A list of neural regeneration studies was generated by searching the database of the Web of Science-Expanded using the term “Neural Regenera*”. Inclusive criteria: (1) articles in the field of neural regeneration; (2) fundamental research on animals, clinical trials and case reports; (3) article types: article, review, proceedings paper, note, letter, editorial material, discussion, book chapter; (4) year of publication: 2003–2012; and (5) citation database: Science Citation Index-Expanded. Exclusive criteria: (1) articles requiring manual searching or with access only by telephone; (2) unpublished articles; and (3) corrections. RESULTS: A total of 4 893 papers were retrieved from the Web of Science published between 2003 and 2012. The papers covered 65 countries or regions, of which the United States ranked first with 1 691 papers. The most relevant papers were in the neurosciences and cell biology, and the keyword “stem cell” was the most frequent. In recent years, China showed a great increase in the number of papers. Over the entire 10 years, there were 922 Chinese papers, with Jilin University ranking first with 58 articles. Chinese papers were published in connection with many countries, including the United States, Japan, and the United Kingdom. Among the connections, the papers published by the Chinese and the American are 107, with the highest rate. With regard to funding, 689 articles were funded from various projects, occupying 74.72% of the total amount. In these projects, National Foundation and Science and Technology programs were the majority. CONCLUSION: Our bibliometric analysis provides a historical perspective on the progress of neural regeneration research. At present, the number of articles addressing neural regeneration is increasing rapidly; however, through analysis of citations it is clear that there is a long way to go to improve the academic quality.
Collapse
Affiliation(s)
- Yuntao Pan
- Institute of Scientific and Technical Information of China (ISTIC), Beijing 100038, China
| | - Yuhua Zhang
- Institute of Scientific and Technical Information of China (ISTIC), Beijing 100038, China
| | - Xiaopei Gao
- Institute of Scientific and Technical Information of China (ISTIC), Beijing 100038, China
| | - Jia Jia
- Institute of Scientific and Technical Information of China (ISTIC), Beijing 100038, China
| | - Jiping Gao
- Institute of Scientific and Technical Information of China (ISTIC), Beijing 100038, China
| | - Zheng Ma
- Institute of Scientific and Technical Information of China (ISTIC), Beijing 100038, China
| |
Collapse
|
181
|
Liu Y, Yi XC, Guo G, Long QF, Wang XA, Zhong J, Liu WP, Fei Z, Wang DM, Liu J. Basic fibroblast growth factor increases the transplantation‑mediated therapeutic effect of bone mesenchymal stem cells following traumatic brain injury. Mol Med Rep 2013; 9:333-9. [PMID: 24248266 DOI: 10.3892/mmr.2013.1803] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Accepted: 10/15/2013] [Indexed: 11/05/2022] Open
Abstract
Basic fibroblast growth factor (bFGF) has proven useful for neural stem and progenitor cells during the transplantation‑mediated therapeutic effect of bone mesenchymal stem cells (BMSCs). Endogenous bFGF expression levels increase during brain development and gradually diminish with aging. To date, few studies have been conducted on exogenous bFGF promoting BMSC transplantation‑mediated functional recovery in adult rats following traumatic brain injury (TBI). The results of the present study showed that BMSCs in the TBI cortex and dentate gyrus showed differentiation along the glial and neuronal lines, which are possibly enhanced by bFGF. The neuronal differentiation rate was not consistent with neurological functional recovery rate over time. bFGF may promote the transplantation‑mediated therapeutic effect of BMSCs more significantly and rapidly in rats following TBI, with a small proportion of differentiated neurons. In conclusion, exogenous bFGF functions as a booster of the transplantation‑mediated therapeutic effect of BMSCs following TBI.
Collapse
Affiliation(s)
- Yang Liu
- Department of Neurosurgery, The Third Hospital of Mianyang, Mianyang, Sichuan 621000, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
182
|
Liu D, Wang Z, Zhan J, Zhang Q, Wang J, Zhang Q, Xian X, Luan Q, Hao A. Hydrogen sulfide promotes proliferation and neuronal differentiation of neural stem cells and protects hypoxia-induced decrease in hippocampal neurogenesis. Pharmacol Biochem Behav 2013; 116:55-63. [PMID: 24246910 DOI: 10.1016/j.pbb.2013.11.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 10/24/2013] [Accepted: 11/07/2013] [Indexed: 12/27/2022]
Abstract
Accumulating evidence has suggested that hydrogen sulfide (H2S) acts as a novel neuro-modulator and neuroprotective agent; however, it remains to be investigated whether H2S has a direct effect on neural stem cells (NSCs). In the present study, we examined the effects of H2S donor, sodium hydrosulfide (NaHS) on mouse NSCs and hippocampal neurogenesis. We report here that NaHS promoted proliferation and neuronal differentiation of NSCs. Further analysis revealed that NaHS-induced proliferation was associated with phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 and neuronal differentiation was linked to altered expression of differentiation-related genes. In addition, C57BL/6 mice (1 day old) subjected to hypoxia were treated with NaHS to explore whether H2S would influence the neurogenesis of hippocampus. BrdU incorporation assay results showed that administration of NaHS could increase the number of proliferating cells in the dentate gyrus of hippocampus in the mice after hypoxia. Moreover, Morris water maze test showed that treatment with NaHS improved cognitive impairment after hypoxia in mice. These findings suggest that H2S may afford a novel therapeutic strategy to intervene in the progression of brain diseases.
Collapse
Affiliation(s)
- Dexiang Liu
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Histology and Embryology, Shandong University School of Medicine, 44#, Wenhua Xi Road, Jinan, Shandong 250012, PR China; Institute of Medical Psychology, Shandong University School of Medicine, 44#, Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Zhen Wang
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Histology and Embryology, Shandong University School of Medicine, 44#, Wenhua Xi Road, Jinan, Shandong 250012, PR China; Institute of Physiology, Shandong University School of Medicine, 44#, Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Jingmin Zhan
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Histology and Embryology, Shandong University School of Medicine, 44#, Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Qun Zhang
- Institute of Physiology, Shandong University School of Medicine, 44#, Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Jianmei Wang
- Institute of Physiology, Shandong University School of Medicine, 44#, Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Qingrui Zhang
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Histology and Embryology, Shandong University School of Medicine, 44#, Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Xiuying Xian
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Histology and Embryology, Shandong University School of Medicine, 44#, Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Qinsong Luan
- Institute of Physiology, Shandong University School of Medicine, 44#, Wenhua Xi Road, Jinan, Shandong 250012, PR China
| | - Aijun Hao
- Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong Provincial Key Laboratory of Mental Disorders, Department of Histology and Embryology, Shandong University School of Medicine, 44#, Wenhua Xi Road, Jinan, Shandong 250012, PR China.
| |
Collapse
|
183
|
Xiong Z, Zhao S, Mao X, Lu X, He G, Yang G, Chen M, Ishaq M, Ostrikov K. Selective neuronal differentiation of neural stem cells induced by nanosecond microplasma agitation. Stem Cell Res 2013; 12:387-99. [PMID: 24374291 DOI: 10.1016/j.scr.2013.11.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 11/02/2013] [Accepted: 11/05/2013] [Indexed: 01/21/2023] Open
Abstract
An essential step for therapeutic and research applications of stem cells is their ability to differentiate into specific cell types. Neuronal cells are of great interest for medical treatment of neurodegenerative diseases and traumatic injuries of central nervous system (CNS), but efforts to produce these cells have been met with only modest success. In an attempt of finding new approaches, atmospheric-pressure room-temperature microplasma jets (MPJs) are shown to effectively direct in vitro differentiation of neural stem cells (NSCs) predominantly into neuronal lineage. Murine neural stem cells (C17.2-NSCs) treated with MPJs exhibit rapid proliferation and differentiation with longer neurites and cell bodies eventually forming neuronal networks. MPJs regulate ~75% of NSCs to differentiate into neurons, which is a higher efficiency compared to common protein- and growth factors-based differentiation. NSCs exposure to quantized and transient (~150 ns) micro-plasma bullets up-regulates expression of different cell lineage markers as β-Tubulin III (for neurons) and O4 (for oligodendrocytes), while the expression of GFAP (for astrocytes) remains unchanged, as evidenced by quantitative PCR, immunofluorescence microscopy and Western Blot assay. It is shown that the plasma-increased nitric oxide (NO) production is a factor in the fate choice and differentiation of NSCs followed by axonal growth. The differentiated NSC cells matured and produced mostly cholinergic and motor neuronal progeny. It is also demonstrated that exposure of primary rat NSCs to the microplasma leads to quite similar differentiation effects. This suggests that the observed effect may potentially be generic and applicable to other types of neural progenitor cells. The application of this new in vitro strategy to selectively differentiate NSCs into neurons represents a step towards reproducible and efficient production of the desired NSC derivatives.
Collapse
Affiliation(s)
- Z Xiong
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China; Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, USA
| | - S Zhao
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Chinese National Center of Plant Gene Research (Wuhan) HUST Part, College of Life Science and Technology, Huazhong University of Science & Technology (HUST), Wuhan 430074, PR China
| | - X Mao
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Chinese National Center of Plant Gene Research (Wuhan) HUST Part, College of Life Science and Technology, Huazhong University of Science & Technology (HUST), Wuhan 430074, PR China
| | - X Lu
- State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430030, PR China.
| | - G He
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Chinese National Center of Plant Gene Research (Wuhan) HUST Part, College of Life Science and Technology, Huazhong University of Science & Technology (HUST), Wuhan 430074, PR China.
| | - G Yang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Chinese National Center of Plant Gene Research (Wuhan) HUST Part, College of Life Science and Technology, Huazhong University of Science & Technology (HUST), Wuhan 430074, PR China
| | - M Chen
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, Chinese National Center of Plant Gene Research (Wuhan) HUST Part, College of Life Science and Technology, Huazhong University of Science & Technology (HUST), Wuhan 430074, PR China
| | - M Ishaq
- Transformational Biology TCP and Plasma Nanoscience Laboratories, CSIRO Materials Science and Engineering, P. O. Box 218, Lindfield, NSW 2070, Australia
| | - K Ostrikov
- Transformational Biology TCP and Plasma Nanoscience Laboratories, CSIRO Materials Science and Engineering, P. O. Box 218, Lindfield, NSW 2070, Australia; Brain Dynamics Group, Complex Systems, School of Physics, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
184
|
Galea LAM, Wainwright SR, Roes MM, Duarte-Guterman P, Chow C, Hamson DK. Sex, hormones and neurogenesis in the hippocampus: hormonal modulation of neurogenesis and potential functional implications. J Neuroendocrinol 2013; 25:1039-61. [PMID: 23822747 DOI: 10.1111/jne.12070] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 06/23/2013] [Accepted: 06/29/2013] [Indexed: 12/12/2022]
Abstract
The hippocampus is an area of the brain that undergoes dramatic plasticity in response to experience and hormone exposure. The hippocampus retains the ability to produce new neurones in most mammalian species and is a structure that is targeted in a number of neurodegenerative and neuropsychiatric diseases, many of which are influenced by both sex and sex hormone exposure. Intriguingly, gonadal and adrenal hormones affect the structure and function of the hippocampus differently in males and females. Adult neurogenesis in the hippocampus is regulated by both gonadal and adrenal hormones in a sex- and experience-dependent way. Sex differences in the effects of steroid hormones to modulate hippocampal plasticity should not be completely unexpected because the physiology of males and females is different, with the most notable difference being that females gestate and nurse the offspring. Furthermore, reproductive experience (i.e. pregnancy and mothering) results in permanent changes to the maternal brain, including the hippocampus. This review outlines the ability of gonadal and stress hormones to modulate multiple aspects of neurogenesis (cell proliferation and cell survival) in both male and female rodents. The function of adult neurogenesis in the hippocampus is linked to spatial memory and depression, and the present review provides early evidence of the functional links between the hormonal modulation of neurogenesis that may contribute to the regulation of cognition and stress.
Collapse
Affiliation(s)
- L A M Galea
- Department of Psychology, University of British Columbia, Vancouver, Canada
| | | | | | | | | | | |
Collapse
|
185
|
Karnavas T, Mandalos N, Malas S, Remboutsika E. SoxB, cell cycle and neurogenesis. Front Physiol 2013; 4:298. [PMID: 24146653 PMCID: PMC3797971 DOI: 10.3389/fphys.2013.00298] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 09/29/2013] [Indexed: 11/13/2022] Open
Affiliation(s)
- Theodoros Karnavas
- Stem Cell Biology Laboratory, Biomedical Sciences Research Centre "Alexander Fleming" Vari-Attica, Greece
| | | | | | | |
Collapse
|
186
|
Stem cells expanded from the human embryonic hindbrain stably retain regional specification and high neurogenic potency. J Neurosci 2013; 33:12407-22. [PMID: 23884946 DOI: 10.1523/jneurosci.0130-13.2013] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Stem cell lines that faithfully maintain the regional identity and developmental potency of progenitors in the human brain would create new opportunities in developmental neurobiology and provide a resource for generating specialized human neurons. However, to date, neural progenitor cultures derived from the human brain have either been short-lived or exhibit restricted, predominantly glial, differentiation capacity. Pluripotent stem cells are an alternative source, but to ascertain definitively the identity and fidelity of cell types generated solely in vitro is problematic. Here, we show that hindbrain neuroepithelial stem (hbNES) cells can be derived and massively expanded from early human embryos (week 5-7, Carnegie stage 15-17). These cell lines are propagated in adherent culture in the presence of EGF and FGF2 and retain progenitor characteristics, including SOX1 expression, formation of rosette-like structures, and high neurogenic capacity. They generate GABAergic, glutamatergic and, at lower frequency, serotonergic neurons. Importantly, hbNES cells stably maintain hindbrain specification and generate upper rhombic lip derivatives on exposure to bone morphogenetic protein (BMP). When grafted into neonatal rat brain, they show potential for integration into cerebellar development and produce cerebellar granule-like cells, albeit at low frequency. hbNES cells offer a new system to study human cerebellar specification and development and to model diseases of the hindbrain. They also provide a benchmark for the production of similar long-term neuroepithelial-like stem cells (lt-NES) from pluripotent cell lines. To our knowledge, hbNES cells are the first demonstration of highly expandable neuroepithelial stem cells derived from the human embryo without genetic immortalization.
Collapse
|
187
|
Cho T, Ryu JK, Taghibiglou C, Ge Y, Chan AW, Liu L, Lu J, McLarnon JG, Wang YT. Long-term potentiation promotes proliferation/survival and neuronal differentiation of neural stem/progenitor cells. PLoS One 2013; 8:e76860. [PMID: 24146937 PMCID: PMC3798289 DOI: 10.1371/journal.pone.0076860] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 08/28/2013] [Indexed: 11/19/2022] Open
Abstract
Neural stem cell (NSC) replacement therapy is considered a promising cell replacement therapy for various neurodegenerative diseases. However, the low rate of NSC survival and neurogenesis currently limits its clinical potential. Here, we examined if hippocampal long-term potentiation (LTP), one of the most well characterized forms of synaptic plasticity, promotes neurogenesis by facilitating proliferation/survival and neuronal differentiation of NSCs. We found that the induction of hippocampal LTP significantly facilitates proliferation/survival and neuronal differentiation of both endogenous neural progenitor cells (NPCs) and exogenously transplanted NSCs in the hippocampus in rats. These effects were eliminated by preventing LTP induction by pharmacological blockade of the N-methyl-D-aspartate glutamate receptor (NMDAR) via systemic application of the receptor antagonist, 3-[(R)-2-carboxypiperazin-4-yl]-propyl-1-phosphonic acid (CPP). Moreover, using a NPC-neuron co-culture system, we were able to demonstrate that the LTP-promoted NPC neurogenesis is at least in part mediated by a LTP-increased neuronal release of brain-derived neurotrophic factor (BDNF) and its consequent activation of tropomysosin receptor kinase B (TrkB) receptors on NSCs. Our results indicate that LTP promotes the neurogenesis of both endogenous and exogenously transplanted NSCs in the brain. The study suggests that pre-conditioning of the host brain receiving area with a LTP-inducing deep brain stimulation protocol prior to NSC transplantation may increase the likelihood of success of using NSC transplantation as an effective cell therapy for various neurodegenerative diseases.
Collapse
Affiliation(s)
- Taesup Cho
- Brain Research Centre and Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Jae K. Ryu
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Changiz Taghibiglou
- Brain Research Centre and Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Yuan Ge
- Brain Research Centre and Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Allen W. Chan
- Brain Research Centre and Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Lidong Liu
- Brain Research Centre and Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Jie Lu
- Brain Research Centre and Department of Medicine, University of British Columbia, Vancouver, Canada
| | - James G. McLarnon
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Yu Tian Wang
- Brain Research Centre and Department of Medicine, University of British Columbia, Vancouver, Canada
- Translational Medicine Research Center, China Medical University Hospital and Graduate Institute of Immunology, China Medical University, Taichung, Taiwan, Republic of China
- * E-mail:
| |
Collapse
|
188
|
Youm I, Youan BBC. Uptake mechanism of Furosemide-loaded pegylated nanoparticles by cochlear cell lines. Hear Res 2013; 304:7-19. [DOI: 10.1016/j.heares.2013.05.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 05/02/2013] [Accepted: 05/15/2013] [Indexed: 12/20/2022]
|
189
|
Basic Fibroblast Growth Factor (bFGF) Facilitates Differentiation of Adult Dorsal Root Ganglia-Derived Neural Stem Cells Toward Schwann Cells by Binding to FGFR-1 Through MAPK/ERK Activation. J Mol Neurosci 2013; 52:538-51. [DOI: 10.1007/s12031-013-0109-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 08/27/2013] [Indexed: 01/06/2023]
|
190
|
Tsukamoto A, Uchida N, Capela A, Gorba T, Huhn S. Clinical translation of human neural stem cells. Stem Cell Res Ther 2013; 4:102. [PMID: 23987648 PMCID: PMC3854682 DOI: 10.1186/scrt313] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Human neural stem cell transplants have potential as therapeutic candidates to treat a vast number of disorders of the central nervous system (CNS). StemCells, Inc. has purified human neural stem cells and developed culture conditions for expansion and banking that preserve their unique biological properties. The biological activity of these human central nervous system stem cells (HuCNS-SC®) has been analyzed extensively in vitro and in vivo. When formulated for transplantation, the expanded and cryopreserved banked cells maintain their stem cell phenotype, self-renew and generate mature oligodendrocytes, neurons and astrocytes, cells normally found in the CNS. In this overview, the rationale and supporting data for pursuing neuroprotective strategies and clinical translation in the three components of the CNS (brain, spinal cord and eye) are described. A phase I trial for a rare myelin disorder and phase I/II trial for spinal cord injury are providing intriguing data relevant to the biological properties of neural stem cells, and the early clinical outcomes compel further development.
Collapse
|
191
|
Transient, afferent input-dependent, postnatal niche for neural progenitor cells in the cochlear nucleus. Proc Natl Acad Sci U S A 2013; 110:14456-61. [PMID: 23940359 DOI: 10.1073/pnas.1307376110] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the cochlear nucleus (CN), the first central relay of the auditory pathway, the survival of neurons during the first weeks after birth depends on afferent innervation from the cochlea. Although input-dependent neuron survival has been extensively studied in the CN, neurogenesis has not been evaluated as a possible mechanism of postnatal plasticity. Here we show that new neurons are born in the CN during the critical period of postnatal plasticity. Coincidently, we found a population of neural progenitor cells that are controlled by a complex interplay of Wnt, Notch, and TGFβ/BMP signaling, in which low levels of TGFβ/BMP signaling are permissive for progenitor proliferation that is promoted by Wnt and Notch activation. We further show that cells with activated Wnt signaling reside in the CN and that these cells have high propensity for neurosphere formation. Cochlear ablation resulted in diminishment of progenitors and Wnt/β-catenin-active cells, suggesting that the neonatal CN maintains an afferent innervation-dependent population of progenitor cells that display active canonical Wnt signaling.
Collapse
|
192
|
Review of transplantation of neural stem/progenitor cells for spinal cord injury. Int J Dev Neurosci 2013; 31:701-13. [DOI: 10.1016/j.ijdevneu.2013.07.004] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 07/02/2013] [Accepted: 07/26/2013] [Indexed: 11/17/2022] Open
|
193
|
Itoh T, Satou T, Ishida H, Nishida S, Tsubaki M, Hashimoto S, Ito H. The relationship between SDF-1α/CXCR4 and neural stem cells appearing in damaged area after traumatic brain injury in rats. Neurol Res 2013; 31:90-102. [DOI: 10.1179/174313208x332995] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
194
|
In vivo bioluminescence reporter gene imaging for the activation of neuronal differentiation induced by the neuronal activator neurogenin 1 (Ngn1) in neuronal precursor cells. Eur J Nucl Med Mol Imaging 2013; 40:1607-17. [PMID: 23754760 DOI: 10.1007/s00259-013-2457-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 05/03/2013] [Indexed: 10/26/2022]
Abstract
PURPOSE Facilitation of the ability of neuronal lineages derived from transplanted stem cells to differentiate is essential to improve the low efficacy of neuronal differentiation in stem cell therapy in vivo. Neurogenin 1 (Ngn1), a basic helix-loop-helix factor, has been used as an activator of neuronal differentiation. In this study, we monitored the in vivo activation of neuronal differentiation by Ngn1 in neuronal precursor cells using neuron-specific promoter-based optical reporters. METHODS The NeuroD promoter coupled with the firefly luciferase reporter system (pNeuroD-Fluc) was used to monitor differentiation in F11 neuronal precursor cells. In vitro luciferase activity was measured and normalized by protein content. The in vivo-jetPEI(TM) system was used for in vivo transgene delivery. The IVIS 100 imaging system was used to monitor in vivo luciferase activity. RESULTS The Ngn1-induced neuronal differentiation of F11 cells generated neurite outgrowth within 2 days of Ngn1 induction. Immunofluorescence staining demonstrated that early and late neuronal marker expression (βIII-tubulin, NeuroD, MAP2, NF-M, and NeuN) was significantly increased at 3 days after treatment with Ngn1. When Ngn1 and the pNeuroD-Fluc vector were cotransfected into F11 cells, we observed an approximately 11-fold increase in the luciferase signal. An in vivo study showed that bioluminescence signals were gradually increased in Ngn1-treated F11 cells for up to 3 days. CONCLUSION In this study, we examined the in vivo tracking of neuronal differentiation induced by Ngn1 using an optical reporter system. This reporter system could be used effectively to monitor the activation efficiency of neuronal differentiation in grafted stem cells treated with Ngn1 for stem cell therapy.
Collapse
|
195
|
Chen Y, Zhao L, Tian X, Liu T, Zhong J, Sun L, Liu J. Autophagy Induced by the Withdrawal of Mitogens Promotes Neurite Extension in Rat Neural Stem Cells. J Biochem Mol Toxicol 2013; 27:351-6. [DOI: 10.1002/jbt.21496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Revised: 04/19/2013] [Accepted: 04/28/2013] [Indexed: 01/06/2023]
Affiliation(s)
| | - Lu Zhao
- Norman Bethune Medical College; Jilin University; Changchun; Jilin; People's Republic of China
| | - Xiaowei Tian
- Department of Mammary Surgery; Changchun Municipal Gerontology Hospital; Changchun; Jilin; People's Republic of China
| | - Tingting Liu
- Department of Pathology and Pathobiology; Norman Bethune Medical College, Jilin University; Changchun; Jilin; People's Republic of China
| | - Jiateng Zhong
- Department of Pathology and Pathobiology; Norman Bethune Medical College, Jilin University; Changchun; Jilin; People's Republic of China
| | - Liankun Sun
- Department of Pathology and Pathobiology; Norman Bethune Medical College, Jilin University; Changchun; Jilin; People's Republic of China
| | - Jiamei Liu
- Department of Pathology and Pathobiology; Norman Bethune Medical College, Jilin University; Changchun; Jilin; People's Republic of China
| |
Collapse
|
196
|
Kothapalli CR, Kamm RD. 3D matrix microenvironment for targeted differentiation of embryonic stem cells into neural and glial lineages. Biomaterials 2013; 34:5995-6007. [PMID: 23694902 DOI: 10.1016/j.biomaterials.2013.04.042] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 04/23/2013] [Indexed: 12/13/2022]
Abstract
The onset of neurodegenerative disorders is characterized by the progressive dysfunction and loss of subpopulations of specialized cells within specific regions of the central nervous system (CNS). Since CNS has a limited ability for self-repair and regeneration under such conditions, clinical transplantation of stem cells has been explored as an alternative. Although embryonic stem cells (ESCs) offer a promising therapeutic platform to treat a variety of neurodegenerative disorders, the niche microenvironment, which could regulate their differentiation into specialized lineages on demand, needs to be optimized for successful clinical transplantation. Here, we evaluated the synergistic role of matrix microenvironment (type, architecture, composition, stiffness) and signaling molecules (type, dosage) on murine ESC differentiation into specific neural and glial lineages. ESCs were cultured as embryoid bodies on either 2D substrates or within 3D scaffolds, in the presence or absence of retinoic acid (RA) and sonic hedgehog (Shh). Results showed that ESCs maintained their stemness even after 4 days in the absence of exogenous signaling molecules, as evidenced by Oct-4 staining. RA at 1 μM dosage was deemed optimal for neural differentiation and neurite outgrowth on collagen-1 coated substrates. Significant neural differentiation with robust neurite outgrowth and branching was evident only on collagen-1 coated 2D substrates and within 3D matrigel scaffolds, in the presence of 1 μM RA. Blocking α6 or β1 integrin subunits on differentiating cells inhibited matrigel-induced effects on neural differentiation and neurite outgrowth. Hydrogel concentration strongly regulated formation of neural and astrocyte lineages in 1 μM RA additive cultures. When RA and Shh were provided, either alone or together, 3D collagen-1 scaffolds enhanced significant motor neuron formation, while 3D matrigel stimulated dopaminergic neuron differentiation. These results suggest a synergistic role of microenvironmental cues for ESC differentiation and maturation, with potential applications in cell transplantation therapy.
Collapse
Affiliation(s)
- Chandrasekhar R Kothapalli
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, OH 44115, USA.
| | | |
Collapse
|
197
|
Li HL, Zhang H, Huang H, Liu ZQ, Li YB, Yu H, An YH. The effect of amino density on the attachment, migration, and differentiation of rat neural stem cells in vitro. Mol Cells 2013; 35:436-43. [PMID: 23639969 PMCID: PMC3887867 DOI: 10.1007/s10059-013-0046-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 03/18/2013] [Accepted: 03/20/2013] [Indexed: 11/29/2022] Open
Abstract
Artificial extracellular matrices play important roles in the regulation of stem cell behavior. To generate materials for tissue engineering, active functional groups, such as amino, carboxyl, and hydroxyl, are often introduced to change the properties of the biomaterial surface. In this study, we chemically modified coverslips to create surfaces with different amino densities and investigated the adhesion, migration, and differentiation of neural stem cells (NSCs) under serum-free culture conditions. We observed that a higher amino density significantly promoted NSCs attachment, enhanced neuronal differentiation and promoted excitatory synapse formation in vitro. These results indicate that the amino density significantly affected the biological behavior of NSCs. Thus, the density and impact of functional groups in extracellular matrices should be considered in the research and development of materials for tissue engineering.
Collapse
Affiliation(s)
- Hai-Long Li
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050,
China
| | - Han Zhang
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050,
China
| | - Hua Huang
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050,
China
| | - Zhen-Qiang Liu
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050,
China
| | - Yan-Bing Li
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050,
China
| | - Hao Yu
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050,
China
| | - Yi-Hua An
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050,
China
| |
Collapse
|
198
|
Etanercept attenuates traumatic brain injury in rats by reducing brain TNF- α contents and by stimulating newly formed neurogenesis. Mediators Inflamm 2013; 2013:620837. [PMID: 23710117 PMCID: PMC3654326 DOI: 10.1155/2013/620837] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 03/25/2013] [Accepted: 03/25/2013] [Indexed: 11/24/2022] Open
Abstract
It remains unclear whether etanercept penetrates directly into the contused brain and improves the outcomes of TBI by attenuating brain contents of TNF-α and/or stimulating newly formed neurogenesis. Rats that sustained TBI are immediately treated with etanercept. Acute neurological and motor injury is assessed in all rats the day prior to and 7 days after surgery. The numbers of the colocalizations of 5-bromodeoxyuridine and doublecortin specific markers in the contused brain injury that occurred during TBI were counted by immunofluorescence staining. Enzyme immunoassay for quantitative determination of TNF-α or etanercept in brain tissues is also performed. Seven days after systemic administration of etanercept, levels of etanercept can be detected in the contused brain tissues. In addition, neurological and motor deficits, cerebral contusion, and increased brain TNF-α contents caused by TBI can be attenuated by etanercept therapy. Furthermore, the increased numbers of the colocalizations of 5-bromodeoxyuridine and doublecortin specific markers in the contused brain tissues caused by TBI can be potentiated by etanercept therapy. These findings indicate that systemically administered etanercept may penetrate directly into the contused brain tissues and may improve outcomes of TBI by reducing brain contents of TNF-α and by stimulating newly formed neurogenesis.
Collapse
|
199
|
Ito M, Masuda N, Shinomiya K, Endo K, Ito K. Systematic analysis of neural projections reveals clonal composition of the Drosophila brain. Curr Biol 2013; 23:644-55. [PMID: 23541729 DOI: 10.1016/j.cub.2013.03.015] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 01/30/2013] [Accepted: 03/04/2013] [Indexed: 01/04/2023]
Abstract
BACKGROUND During development neurons are generated by sequential divisions of neural stem cells, or neuroblasts. In the insect brain progeny of certain stem cells form lineage-specific sets of projections that arborize in distinct brain regions, called clonal units. Though this raises the possibility that the entire neural network in the brain might be organized in a clone-dependent fashion, only a small portion of clones has been identified. RESULTS Using Drosophila melanogaster, we randomly labeled one of about 100 stem cells at the beginning of the larval stage, analyzed the projection patterns of their progeny in the adult, and identified 96 clonal units in the central part of the fly brain, the cerebrum. Neurons of all the clones arborize in distinct regions of the brain, though many clones feature heterogeneous groups of neurons in terms of their projection patterns and neurotransmitters. Arborizations of clones overlap preferentially to form several groups of closely associated clones. Fascicles and commissures were all made by unique sets of clones. Whereas well-investigated brain regions such as the mushroom body and central complex consist of relatively small numbers of clones and are specifically connected with a limited number of neuropils, seemingly disorganized neuropils surrounding them are composed by a much larger number of clones and have extensive specific connections with many other neuropils. CONCLUSIONS Our study showed that the insect brain is formed by a composition of cell-lineage-dependent modules. Clonal analysis reveals organized architecture even in those neuropils without obvious structural landmarks.
Collapse
Affiliation(s)
- Masayoshi Ito
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | | | | | |
Collapse
|
200
|
Hourai A, Miyata S. Neurogenesis in the circumventricular organs of adult mouse brains. J Neurosci Res 2013; 91:757-70. [PMID: 23526379 DOI: 10.1002/jnr.23206] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 12/10/2012] [Accepted: 12/21/2012] [Indexed: 12/20/2022]
Abstract
The circumventricular organs (CVOs), including the organum vasculosum of the lamina terminalis (OVLT), subfornical organ (SFO), median eminence (ME), and area postrema (AP), allow parenchyma cells to sense a variety of blood-derived substances and/or secreted peptides into blood circulation. In the present study, we examined continuous neurogenesis in the CVOs of adult mice. The immunohistochemistry of neural progenitor cell (NPC) marker proteins revealed that Math1- and Mash1-positive cells were observed in the discrete regions of CVOs, including the capillary plexus in the OVLT, the internal zone of the ME, and the lateral zone in the AP. A few Mash1- and Math1-positive cells were seen throughout the SFO, and many Math1- but not Mash1-positive cells were observed at the arcuate nucleus. Math-positive cells were often seen to localize in close proximity to the vasculature. Bromodeoxyuridine (BrdU) immunohistochemistry revealed the incorporation of BrdU in a subpopulation of Mash1-, Math1-, HuC/D-, and microtubule-associated protein 2 (MAP2)-positive cells. Mash1- and Math1-positive cells expressed exclusively high level of plasminogen, whereas a subpopulation of HuC/D- and MAP2-positive neurons expressed low or undetectable level of plasminogen. Thus, the present study demonstrates that newborn cells express NPC marker proteins and plasminogen to localize closely at vascular matrix and moreover differentiate into neurons expressing mature neuron marker proteins, indicating that new neurons are possibly generated to integrate into new neural circuits.
Collapse
Affiliation(s)
- Atsushi Hourai
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto, Japan
| | | |
Collapse
|