151
|
D'Amico AG, Scuderi S, Maugeri G, Cavallaro S, Drago F, D'Agata V. NAP reduces murine microvascular endothelial cells proliferation induced by hyperglycemia. J Mol Neurosci 2014; 54:405-13. [PMID: 24874579 DOI: 10.1007/s12031-014-0335-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 05/15/2014] [Indexed: 11/26/2022]
Abstract
Hyperglycemia has been identified as a risk factor responsible for micro- and macrovascular complications in diabetes. NAP (Davunetide) is a peptide whose neuroprotective actions are widely demonstrated, although its biological role on endothelial dysfunctions induced by hyperglycemia remains uninvestigated. In the present study we hypothesized that NAP could play a protective role on hyperglycemia-induced endothelial cell proliferation. To this end we investigated the effects of NAP on an in vitro model of murine microvascular endothelial cells grown in high glucose for 7 days. The MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay and cyclin D1 protein expression analysis revealed that NAP treatment significantly reduces viability and proliferation of the cells. Hyperglycemia induced the activation of mitogen-activated protein kinase/extracellular signal-regulated protein kinase and/or phosphatidylinositol-3 kinase/Akt pathways in a time-dependent manner. NAP treatment reduced the phosphorylation levels of ERK and AKT in cells grown in high glucose. These evidences suggest that NAP might be effective in the regulation of endothelial dysfunction induced by hyperglycemia.
Collapse
Affiliation(s)
- Agata Grazia D'Amico
- Department of Bio-Medical Sciences, Section of Anatomy and Histology, University of Catania, Via S. Sofia, 87, 95123, Catania, Italy
| | | | | | | | | | | |
Collapse
|
152
|
Haeusgen W, Tueffers L, Herdegen T, Waetzig V. Map2k4δ — Identification and functional characterization of a novel Map2k4 splice variant. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:875-84. [DOI: 10.1016/j.bbamcr.2014.01.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 01/22/2014] [Accepted: 01/24/2014] [Indexed: 01/20/2023]
|
153
|
Jour G, Scarborough JD, Jones RL, Loggers E, Pollack SM, Pritchard CC, Hoch BL. Molecular profiling of soft tissue sarcomas using next-generation sequencing: a pilot study toward precision therapeutics. Hum Pathol 2014; 45:1563-71. [PMID: 24908143 DOI: 10.1016/j.humpath.2014.04.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 04/04/2014] [Accepted: 04/09/2014] [Indexed: 12/18/2022]
Abstract
Next-generation sequencing (NGS) can provide in-depth detection of numerous gene alterations. To date, there are very few reports describing the use of this technique in soft tissue sarcomas. Herein, we aim to test the utility of NGS in identifying targetable mutations in these tumors. NGS was performed using a clinically validated multiplexed gene sequencing panel interrogating the full coding sequence of 194 cancer-related genes. A custom bioinformatics pipeline was developed to detect all classes of mutations directly from the NGS data, including single-nucleotide variants, small insertions and deletions, copy number variation, and complex structural variations. Twenty-five soft tissue sarcomas were analyzed; 18 of these patients had metastatic disease and 7 primary locally advanced tumors. Targetable mutations for which clinical trials are available were identified in 60% of the cases. MAP2K4, AURKA, AURKB, and c-MYC amplification were recurrent events in leiomyosarcomas. Frequent non-targetable variants included copy losses of the TP53 (24%), PTEN (16%), and CDKN2A (20%). Additional frameshift mutations, deletion mutations, and single-nucleotide variants involving numerous genes, including RB1, NOTCH1, PIK3CA, PDGFRB, EPHA5, KDM6A, NF1, and FLT4 genes, were also identified. NGS is useful in identifying targetable mutations in soft tissue sarcomas that can serve as a rationale for inclusion of patients with advanced disease in ongoing clinical trials and allow for better risk stratification.
Collapse
Affiliation(s)
- George Jour
- University of Washington Medical Center, Department of Anatomic Pathology, Seattle, WA, 98195, USA.
| | - John D Scarborough
- University of Washington Medical Center, Department of Laboratory Medicine Seattle, WA, 98195, USA
| | - Robin L Jones
- University of Washington Medical Center, Fred Hutchinson Cancer Research Center, Seattle, WA, 98195, USA; University of Washington Medical Center Division of Medical Oncology, Seattle, WA, 98195, USA
| | - Elizabeth Loggers
- University of Washington Medical Center, Fred Hutchinson Cancer Research Center, Seattle, WA, 98195, USA; University of Washington Medical Center Division of Medical Oncology, Seattle, WA, 98195, USA
| | - Seth M Pollack
- University of Washington Medical Center, Fred Hutchinson Cancer Research Center, Seattle, WA, 98195, USA; University of Washington Medical Center Division of Medical Oncology, Seattle, WA, 98195, USA
| | - Colin C Pritchard
- University of Washington Medical Center, Department of Laboratory Medicine Seattle, WA, 98195, USA; University of Washington, Department of Genome Sciences, University of Washington, Seattle, WA, 98195,USA
| | - Benjamin L Hoch
- University of Washington Medical Center, Department of Anatomic Pathology, Seattle, WA, 98195, USA
| |
Collapse
|
154
|
Chen D, Wang W, Qin JJ, Wang MH, Murugesan S, Nadkarni DH, Velu SE, Wang H, Zhang R. Identification of the ZAK-MKK4-JNK-TGFβ signaling pathway as a molecular target for novel synthetic iminoquinone anticancer compound BA-TPQ. Curr Cancer Drug Targets 2014; 13:651-60. [PMID: 23607596 DOI: 10.2174/15680096113139990040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 07/15/2012] [Accepted: 07/24/2012] [Indexed: 12/12/2022]
Abstract
Identification and validation of molecular targets are considered as key elements in new drug discovery and development. We have recently demonstrated that a novel synthetic iminoquinone analog, termed [7-(benzylamino)- 1,3,4,8-tetrahydropyrrolo [4,3, 2-de]quinolin-8(1H)-one] (BA-TPQ), has significant anti-breast cancer activity both in vitro and in vivo, but the underlying molecular mechanisms are not fully understood. Herein, we report the molecular studies for BA-TPQ's effects on JNK and its upstream and downstream signaling pathways. The compound up-regulates the JNK protein levels by increasing its phosphorylation and decreasing its polyubiquitination-mediated degradation. It activates ZAK at the MAPKKK level and MKK4 at the MAPKK level. It also up-regulates the TGFβ2 mRNA level, which can be abolished by the JNK-specific inhibitor SP600125, but not TGFβ pathway-specific inhibitor SD-208, indicating that both JNK and TGFβ signaling pathways are activated by BA-TPQ and that the JNK pathway activation precedes TGFβ activation. The pro-apoptotic and anti-growth effects of BA-TPQ are significantly blocked by both the JNK and TGFβ pathway inhibitors. In addition, BA-TPQ activates the ZAK-MKK4-JNK pathway in MCF7 cells, but not normal MCF10A cells, demonstrating its cancer-specific activities. In conclusion, our results demonstrate that BA-TPQ activates the ZAK-MKK4-JNK-TGFβ signaling cascade as a molecular target for its anticancer activity.
Collapse
Affiliation(s)
- Deng Chen
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, 1300 Coulter Drive, Amarillo, TX 79106, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
155
|
Castorina A, Scuderi S, D'Amico AG, Drago F, D'Agata V. PACAP and VIP increase the expression of myelin-related proteins in rat schwannoma cells: involvement of PAC1/VPAC2 receptor-mediated activation of PI3K/Akt signaling pathways. Exp Cell Res 2013; 322:108-21. [PMID: 24246222 DOI: 10.1016/j.yexcr.2013.11.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/04/2013] [Accepted: 11/08/2013] [Indexed: 10/26/2022]
Abstract
PACAP and its cognate peptide VIP participate in various biological functions, including myelin maturation and synthesis. However, defining whether these peptides affect peripheral expression of myelin proteins still remains unanswered. To address this issue, we assessed whether PACAP or VIP contribute to regulate the expression of three myelin proteins (MAG, MBP and MPZ, respectively) using the rat schwannoma cell line (RT4-P6D2T), a well-established model to study myelin gene expression. In addition, we endeavored to partly unravel the underlying molecular mechanisms involved. Expression of myelin-specific proteins was assessed in cells grown either in normal serum (10% FBS) or serum starved and treated with or without 100 nM PACAP or VIP. Furthermore, through pharmacological approach using the PACAP/VIP receptor antagonist (PACAP6-38) or specific pathway (MAPK or PI3K) inhibitors we defined the relative contribution of receptors and/or signaling pathways on the expression of myelin proteins. Our data show that serum starvation (24h) significantly increased both MAG, MBP and MPZ expression. Concurrently, we observed increased expression of endogenous PACAP and related receptors. Treatment with PACAP or VIP further exacerbated starvation-induced expression of myelin markers, suggesting that serum withdrawal might sensitize cells to peptide activity. Stimulation with either peptides increased phosphorylation of Akt at Ser473 residue but had no effect on phosphorylated Erk-1/2. PACAP6-38 (10 μM) impeded starvation- or peptide-induced expression of myelin markers. Similar effects were obtained after pretreatment with the PI3K inhibitor (wortmannin, 10 μM) but not the MAPKK inhibitor (PD98059, 50 μM). Together, the present finding corroborate the hypothesis that PACAP and VIP might contribute to the myelinating process preferentially via the canonical PI3K/Akt signaling pathway, providing the basis for future studies on the role of these peptides in demyelinating diseases.
Collapse
Affiliation(s)
- Alessandro Castorina
- Department of Bio-Medical Sciences, Section of Anatomy and Histology, University of Catania, Via S. Sofia, 87, 95123 Catania, Italy.
| | - Soraya Scuderi
- Department of Bio-Medical Sciences, Section of Anatomy and Histology, University of Catania, Via S. Sofia, 87, 95123 Catania, Italy
| | - Agata Grazia D'Amico
- Department of Bio-Medical Sciences, Section of Anatomy and Histology, University of Catania, Via S. Sofia, 87, 95123 Catania, Italy
| | - Filippo Drago
- Department of Clinical and Molecular Biomedicine, Section of Pharmacology and Biochemistry, University of Catania, Via A. Doria, 6, QJ;95123 Catania, Italy
| | - Velia D'Agata
- Department of Bio-Medical Sciences, Section of Anatomy and Histology, University of Catania, Via S. Sofia, 87, 95123 Catania, Italy
| |
Collapse
|
156
|
Batool S, Nawaz MS, Greig NH, Rehan M, Kamal MA. Molecular interaction study of N1-p-fluorobenzyl-cymserine with TNF-α , p38 kinase and JNK kinase. Antiinflamm Antiallergy Agents Med Chem 2013; 12:129-35. [PMID: 23360257 DOI: 10.2174/1871523011312020004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 11/10/2012] [Accepted: 12/25/2012] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disease distinguished by progressive memory loss and cognitive decline. It is accompanied by classical neuropathological changes, including cerebral deposits of amyloid- beta peptide (Aβ) containing senile plaques, neurofibrillary tangles (NFTs) of phosphorylated tau (p-tau), and clusters of activated glial cells. Postmortem studies strongly support a critical role for neuroinflammation in the pathogenesis of AD, with activated microglia and reactive astrocytes surrounding senile plaques and NFTs. These are accompanied by an elevated expression of inflammatory mediators that further drives Aβ and p-tau generation. Although epidemiological and experimental studies suggested that long-term use of non-steroidal anti-inflammatory drugs (NSAIDs) may lessen AD risk by mitigating inflammatory responses, primary NSAID treatment trials of AD have not proved successful. Elevated systemic butyrylcholinesterase (BuChE) levels have been considered a marker of low-grade systemic inflammation, and BuChE levels are reported elevated in AD brain. Recent research indicates that selective brain inhibition of BuChE elevates acetylcholine (ACh) and augments cognition in rodents free of the characteristic undesirable actions of acetylcholinesterase- inhibitors (AChE-Is). Hence, centrally active BuChE-selective-inhibitors, cymserine analogs, have been developed to test the hypothesis that BuChE-Is would be efficacious and better tolerated than AChE-Is in AD. The focus of the current study was to undertake an in-silico evaluation of an agent to assess its potential to halt the self-propagating interaction between inflammation,Aβ and p-tau generation. Molecular docking studies were performed between the novel BuChE-I, N1-p-fluorobenzyl-cymserine (FBC) and inflammatory targets to evaluate the potential of FBC as an inhibitor of p38, JNK kinases and TNF-α with respect to putative binding free energy and IC50 values. Our in-silico studies support the ability of FBC to bind these targets in a manner supportive of anti-inflammatory action that is subject to molecular dynamics and physiochemical studies for auxiliary confirmation.
Collapse
Affiliation(s)
- Sidra Batool
- Functional Informatics Lab. National Center of Bioinformatics, Quaid-I-Azam University, Islamabad, Pakistan
| | | | | | | | | |
Collapse
|
157
|
Song IS, Jeong YJ, Jeong SH, Heo HJ, Kim HK, Lee SR, Ko TH, Youm JB, Kim N, Ko KS, Rhee BD, Han J. Combination treatment with 2-methoxyestradiol overcomes bortezomib resistance of multiple myeloma cells. Exp Mol Med 2013; 45:e50. [PMID: 24158003 PMCID: PMC3809360 DOI: 10.1038/emm.2013.104] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 07/23/2013] [Accepted: 08/01/2013] [Indexed: 12/27/2022] Open
Abstract
Bortezomib is a proteasome inhibitor used for the treatment of relapsed/refractory multiple myeloma (MM). However, intrinsic and acquired resistance to bortezomib has already been observed in MM patients. In a previous report, we demonstrated that changes in the expression of mitochondrial genes lead to changes in mitochondrial activity and bortezomib susceptibility or resistance, and their combined effects contribute to the differential sensitivity or resistance of MM cells to bortezomib. Here we report that the combination treatment of bortezomib and 2-methoxyestradiol (2ME), a natural estrogen metabolite, induces mitochondria-mediated apoptotic cell death of bortezomib-resistant MM KMS20 cells via mitochondrial reactive oxygen species (ROS) overproduction. Bortezomib plus 2ME treatment induces a higher level of cell death compared with treatment with bortezomib alone and increases mitochondrial ROS and Ca(2+) levels in KMS20 cells. Pretreatment with the antioxidant N-acetyl-L-cysteine scavenges mitochondrial ROS and decreases cell death after treatment with bortezomib plus 2ME in KMS20 cells. Moreover, we observed that treatment with bortezomib plus 2ME maintains the activation of c-Jun N-terminal kinase (JNK) and mitogen-activated protein kinase kinase kinase 4/7 (MKK4/7). Collectively, combination treatment with bortezomib and 2ME induces cell death via JNK-MKK4/7 activation by overproduction of mitochondrial ROS. Therefore, combination therapy with specific mitochondrial-targeting drugs may prove useful to the development of novel strategies for the treatment of bortezomib-resistant MM patients.
Collapse
Affiliation(s)
- In-Sung Song
- National Research Laboratory for Mitochondrial Signaling, Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Inje University, Busan, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Crowe J, Aubareda A, McNamee K, Przybycien PM, Lu X, Williams RO, Bou-Gharios G, Saklatvala J, Dean JLE. Heat shock protein B1-deficient mice display impaired wound healing. PLoS One 2013; 8:e77383. [PMID: 24143227 PMCID: PMC3797036 DOI: 10.1371/journal.pone.0077383] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 09/05/2013] [Indexed: 01/27/2023] Open
Abstract
There is large literature describing in vitro experiments on heat shock protein (hsp)B1 but understanding of its function in vivo is limited to studies in mice overexpressing human hspB1 protein. Experiments in cells have shown that hspB1 has chaperone activity, a cytoprotective role, regulates inflammatory gene expression, and drives cell proliferation. To investigate the function of the protein in vivo we generated hspB1-deficient mice. HspB1-deficient fibroblasts display increased expression of the pro-inflammatory cytokine, interleukin-6, compared to wild-type cells, but reduced proliferation. HspB1-deficient fibroblasts exhibit reduced entry into S phase and increased expression of cyclin-dependent kinase inhibitors p27(kip1) and p21(waf1). The expression of hspB1 protein and mRNA is also controlled by the cell cycle. To investigate the physiological function of hspB1 in regulating inflammation and cell proliferation we used an excisional cutaneous wound healing model. There was a significant impairment in the rate of healing of wounds in hspB1-deficient mice, characterised by reduced re-epithelialisation and collagen deposition but also increased inflammation. HspB1 deficiency augments neutrophil infiltration in wounds, driven by increased chemokine (C-X-C motif) ligand 1 expression. This appears to be a general mechanism as similar results were obtained in the air-pouch and peritonitis models of acute inflammation.
Collapse
Affiliation(s)
- Jonathan Crowe
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Anna Aubareda
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Kay McNamee
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Paulina M. Przybycien
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Xin Lu
- The Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Richard O. Williams
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - George Bou-Gharios
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Jeremy Saklatvala
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Jonathan L. E. Dean
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
159
|
β-Amyloid-evoked apoptotic cell death is mediated through MKK6-p66shc pathway. Neuromolecular Med 2013; 16:137-49. [PMID: 24085465 DOI: 10.1007/s12017-013-8268-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 09/23/2013] [Indexed: 10/26/2022]
Abstract
We have previously shown the involvement of p66shc in mediating apoptosis. Here, we demonstrate the novel mechanism of β-Amyloid-induced toxicity in the mammalian cells. β-Amyloid leads to the phosphorylation of p66shc at the serine 36 residue and activates MKK6, by mediating the phosphorylation at serine 207 residue. Treatment of cells with antioxidants blocks β-Amyloid-induced serine phosphorylation of MKK6, reactive oxygen species (ROS) generation, and hence protected cells against β-Amyloid-induced cell death. Our results indicate that serine phosphorylation of p66shc is carried out by active MKK6. MKK6 knock-down resulted in decreased serine 36 phosphorylation of p66shc. Co-immunoprecipitation results demonstrate a direct physical association between p66shc and WT MKK6, but not with its mutants. Increase in β-Amyloid-induced ROS production was observed in the presence of MKK6 and p66shc, when compared to triple mutant of MKK6 (inactive) and S36 mutant of p66shc. ROS scavengers and knock-down against p66shc, and MKK6 significantly decreased the endogenous level of active p66shc, ROS production, and cell death. Finally, we show that the MKK6-p66shc complex mediates β-Amyloid-evoked apoptotic cell death.
Collapse
|
160
|
Protective effect of rutin against ultraviolet b-induced cyclooxygenase-2 expression in mouse epidermal cells. Food Sci Biotechnol 2013. [DOI: 10.1007/s10068-013-0233-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
161
|
Francis DM, Kumar GS, Koveal D, Tortajada A, Page R, Peti W. The differential regulation of p38α by the neuronal kinase interaction motif protein tyrosine phosphatases, a detailed molecular study. Structure 2013; 21:1612-23. [PMID: 23932588 PMCID: PMC3769431 DOI: 10.1016/j.str.2013.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 06/24/2013] [Accepted: 07/02/2013] [Indexed: 10/26/2022]
Abstract
The MAP kinase p38α is essential for neuronal signaling. To better understand the molecular regulation of p38α we used atomistic and molecular techniques to determine the structural basis of p38α regulation by the two neuronal tyrosine phosphatases, PTPSL/PTPBR7 (PTPRR) and STEP (PTPN5). We show that, despite the fact that PTPSL and STEP belong to the same family of regulatory proteins, they interact with p38α differently and their distinct molecular interactions explain their different catalytic activities. Although the interaction of PTPSL with p38α is similar to that of the previously described p38α:HePTP (PTPN7) complex, STEP binds and regulates p38α in an unexpected manner. Using NMR and small-angle X-ray scattering data, we generated a model of the p38α:STEP complex and define molecular differences between its resting and active states. Together, these results provide insights into molecular regulation of p38α by key regulatory proteins.
Collapse
Affiliation(s)
- Dana May Francis
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence RI, 02912, USA
| | - Ganesan Senthil Kumar
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence RI, 02912, USA
| | - Dorothy Koveal
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence RI, 02912, USA
| | - Antoni Tortajada
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence RI, 02912, USA
| | - Rebecca Page
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence RI, 02912, USA
| | - Wolfgang Peti
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence RI, 02912, USA
- Department of Chemistry, Brown University, Providence RI, 02912, USA
| |
Collapse
|
162
|
Lu Q, Harris VA, Sun X, Hou Y, Black SM. Ca²⁺/calmodulin-dependent protein kinase II contributes to hypoxic ischemic cell death in neonatal hippocampal slice cultures. PLoS One 2013; 8:e70750. [PMID: 23976956 PMCID: PMC3747161 DOI: 10.1371/journal.pone.0070750] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 06/27/2013] [Indexed: 01/23/2023] Open
Abstract
We have recently shown that p38MAP kinase (p38MAPK) stimulates ROS generation via the activation of NADPH oxidase during neonatal hypoxia-ischemia (HI) brain injury. However, how p38MAPK is activated during HI remains unresolved and was the focus of this study. Ca²⁺/calmodulin-dependent protein kinase II (CaMKII) plays a key role in brain synapse development, neural transduction and synaptic plasticity. Here we show that CaMKII activity is stimulated in rat hippocampal slice culture exposed to oxygen glucose deprivation (OGD) to mimic the condition of HI. Further, the elevation of CaMKII activity, correlated with enhanced p38MAPK activity, increased superoxide generation from NADPH oxidase as well as necrotic and apoptotic cell death. All of these events were prevented when CaMKII activity was inhibited with KN93. In a neonatal rat model of HI, KN93 also reduced brain injury. Our results suggest that CaMKII activation contributes to the oxidative stress associated with neural cell death after HI.
Collapse
Affiliation(s)
- Qing Lu
- Vascular Biology Center, Georgia Regents University, Augusta, Georgia, United States of America
| | - Valerie A. Harris
- Vascular Biology Center, Georgia Regents University, Augusta, Georgia, United States of America
| | - Xutong Sun
- Vascular Biology Center, Georgia Regents University, Augusta, Georgia, United States of America
| | - Yali Hou
- Vascular Biology Center, Georgia Regents University, Augusta, Georgia, United States of America
| | - Stephen M. Black
- Vascular Biology Center, Georgia Regents University, Augusta, Georgia, United States of America
| |
Collapse
|
163
|
Signalling mechanisms involved in renal pathological changes during cisplatin-induced nephropathy. Eur J Clin Pharmacol 2013; 69:1863-74. [PMID: 23929259 DOI: 10.1007/s00228-013-1568-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/24/2013] [Indexed: 12/20/2022]
Abstract
CONTEXT Cisplatin, a coordination platinum complex, is used as a potential anti-neoplastic agent, having well recognized DNA-damaging property that triggers cell-cycle arrest and cell death in cancer therapy. Beneficial chemotherapeutic actions of cisplatin can be detrimental for kidneys. BACKGROUND Unbound cisplatin gets accumulated in renal tubular cells, leading to cell injury and death. This liable action of cisplatin on kidneys is mediated by altered intracellular signalling pathways such as mitogen-activated protein kinase (MAPK), extracellular regulated kinase (ERK), or C- Jun N terminal kinase/stress-activated protein kinase (JNK/SAPK). Further, these signalling alterations are responsible for release and activation of tumour necrosis factor (TNF-α), mitochondrial dysfunction, and apoptosis, which ultimately cause the renal pathogenic process. Cisplatin itself enhances the generation of reactive oxygen species (ROS) and activation of nuclear factor-κB (NF-κB), inflammation, and mitochondrial dysfunction, which further leads to renal apoptosis. Cisplatin-induced nephropathy is also mediated through the p53 and protein kinase-Cδ (PKCδ) signalling pathways. OBJECTIVE This review explores these signalling alterations and their possible role in the pathogenesis of cisplatin-induced renal injury.
Collapse
|
164
|
Zhang G, He LS, Wong YH, Qian PY. MKK3 was involved in larval settlement of the barnacle Amphibalanus amphitrite through activating the kinase activity of p38MAPK. PLoS One 2013; 8:e69510. [PMID: 23922727 PMCID: PMC3726695 DOI: 10.1371/journal.pone.0069510] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 06/10/2013] [Indexed: 01/05/2023] Open
Abstract
The p38 mitogen-activated protein kinase (p38MAPK) plays a key role in larval settlement of the barnacle Amphibalanus amphitrite. To study the signaling pathway associated with p38MAPK during larval settlement, we sought to identify the upstream kinase of p38MAPK. Three MKKs (MKK3, MKK4 and MKK7) and three MAPKs (p38MAPK, ERK and JNK) in A. amphitrite were cloned and recombinantly expressed in E. coli. Through kinase assays, we found that MKK3, but not MKK4 or MKK7, phosphorylated p38MAPK. Furthermore, MKK3 activity was specific to p38MAPK, as it did not phosphorylate ERK or JNK. To further investigate the functional relationship between MKK3 and p38MAPK in vivo, we studied the localization of phospho-MKK3 (pMKK3) and MKK3 by immunostaining. Consistent with the patterns of p38MAPK and phospho-p38MAPK (pp38MAPK), pMKK3 and MKK3 mainly localized to the antennules of the cyprids. Western blot analysis revealed that pMKK3 levels, like pp38MAPK levels, were elevated at cyprid stage, compared to nauplii and juvenile stages. Moreover, pMKK3 levels increased after treatment with adult barnacle crude extracts, suggesting that MKK3 might mediate the stimulatory effects of adult barnacle extracts on the p38MAPK pathway.
Collapse
Affiliation(s)
- Gen Zhang
- KAUST Global Collaborative Research Program, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Li-Sheng He
- KAUST Global Collaborative Research Program, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Yue Him Wong
- KAUST Global Collaborative Research Program, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Pei-Yuan Qian
- KAUST Global Collaborative Research Program, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| |
Collapse
|
165
|
Lu J, Liu Z, Zhao L, Tian H, Liu X, Yuan C. In vivo and in vitro inhibition of human liver cancer progress by downregulation of the μ-opioid receptor and relevant mechanisms. Oncol Rep 2013; 30:1731-8. [PMID: 23900681 DOI: 10.3892/or.2013.2640] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 07/12/2013] [Indexed: 11/05/2022] Open
Abstract
Opiates have long been used as analgesics to relieve pain associated with various medical conditions. μ-opioid receptor (MOR) is the main member of the opioid receptor super-family and the excitation or overexpression of MOR promotes the proliferation of many kinds of tumor cells. It was found in our previous studies that MOR was highly expressed in the tissue and cells of human liver cancer. However, the impact of MOR on the progress of human liver cancer remains unknown. The purpose of this study is to investigate the impact of MOR downregulation on the progress of human liver cancer and the mechanisms involved. RNA interfering or specific inhibitor was administered to downregulate the MOR in human hepato-cellular carcinoma cells and it was found that the proliferation of hepatocellular carcinoma cells was significantly inhibited with the increase of the apoptotic rate, while the cell cycle was blocked in G0/G1 phase and the tumor growth in the mice was retarded. In addition, downregulation of MOR resulted in the increase of phosphorylation of the MKK7 expression and JNK activation. On the contrary, blockade of MKK7 pathway can reverse the antitumor role of MOR. In summary, downregulation of MOR is able to inhibit both in vivo and in vitro human liver cancer progress and it shows potential to be used in cancer therapy.
Collapse
Affiliation(s)
- Jin Lu
- Department of Hematology and Oncology, First Hospital, Jilin University, Changchun 130021, P.R. China
| | | | | | | | | | | |
Collapse
|
166
|
Bian L, Traurig M, Hanson RL, Marinelarena A, Kobes S, Muller YL, Malhotra A, Huang K, Perez J, Gale A, Knowler WC, Bogardus C, Baier LJ. MAP2K3 is associated with body mass index in American Indians and Caucasians and may mediate hypothalamic inflammation. Hum Mol Genet 2013; 22:4438-49. [PMID: 23825110 PMCID: PMC3792696 DOI: 10.1093/hmg/ddt291] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
To identify genes that affect body mass index (BMI) in American Indians who are predominately of Pima Indian heritage, we previously completed a genome-wide association study in 1120 American Indians. That study also included follow-up genotyping for 9 SNPs in 2133 additional subjects. A comprehensive follow-up study has subsequently been completed where 292 SNPs were genotyped in 3562 subjects, of which 128 SNPs were assessed for replication in 3238 additional subjects. In the combined subjects (n = 6800), BMI associations for two SNPs, rs12882548 and rs11652094, approached genome-wide significance (P = 6.7 × 10−7 and 8.1 × 10−7, respectively). Rs12882548 is located in a gene desert on chromosome 14 and rs11652094 maps near MAP2K3. Several SNPs in the MAP2K3 region including rs11652094 were also associated with BMI in Caucasians from the GIANT consortium (P = 10−2–10−5), and the combined P-values across both American Indians and Caucasian were P = 10−4–10−9. Follow-up sequencing across MAP2K3 identified several paralogous sequence variants indicating that the region may have been duplicated. MAP2K3 expression levels in adipose tissue biopsies were positively correlated with BMI, although it is unclear if this correlation is a cause or effect. In vitro studies with cloned MAP2K3 promoters suggest that MAP2K3 expression may be up-regulated during adipogenesis. Microarray analyses of mouse hypothalamus cells expressing constitutively active MAP2K3 identified several up-regulated genes involved in immune/inflammatory pathways and a gene, Hap1, thought to play a role in appetite regulation. We conclude that MAP2K3 is a reproducible obesity locus that may affect body weight via complex mechanisms involving appetite regulation and hypothalamic inflammation.
Collapse
Affiliation(s)
- Li Bian
- Diabetes Molecular Genetics Section and Diabetes Epidemiology and Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Health, Phoenix, AZ 85004, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Ebadi A, Razzaghi-Asl N, Khoshneviszadeh M, Miri R. Comparative amino acid decomposition analysis of potent type I p38α inhibitors. ACTA ACUST UNITED AC 2013; 21:41. [PMID: 23714278 PMCID: PMC3680208 DOI: 10.1186/2008-2231-21-41] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Accepted: 05/25/2013] [Indexed: 12/21/2022]
Abstract
Background and purpose of the study p38α is a member of mitogen-activated protein kinases (MAPK) considered as a prominent target in development of anti-inflammatory agents. Any abnormality in the phosphorylation process leads to the different human diseases such as cancer, diabetes and inflammatory diseases. Several small molecule p38α inhibitors have been developed up to now. In this regard, structural elucidation of p38 inhibitors needs to be done enabling us in rational lead development strategies. Methods Various interactions of three potent inhibitors with p38α active site have been evaluated in terms of binding energies and bond lengths via density function theory and MD simulations. Results Our comparative study showed that both ab initio and MD simulation led to the relatively similar results in pharmacophore discrimination of p38α inhibitors. Conclusion The results of the present study may find their usefulness in pharmacophore based modification of p38α inhibitors.
Collapse
Affiliation(s)
- Ahmad Ebadi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, PO Box 3288-71345, Shiraz, Iran.
| | | | | | | |
Collapse
|
168
|
Varjosalo M, Keskitalo S, Van Drogen A, Nurkkala H, Vichalkovski A, Aebersold R, Gstaiger M. The protein interaction landscape of the human CMGC kinase group. Cell Rep 2013; 3:1306-20. [PMID: 23602568 DOI: 10.1016/j.celrep.2013.03.027] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 03/01/2013] [Accepted: 03/18/2013] [Indexed: 12/24/2022] Open
Abstract
Cellular information processing via reversible protein phosphorylation requires tight control of the localization, activity, and substrate specificity of protein kinases, which to a large extent is accomplished by complex formation with other proteins. Despite their critical role in cellular regulation and pathogenesis, protein interaction information is available for only a subset of the 518 human protein kinases. Here we present a global proteomic analysis of complexes of the human CMGC kinase group. In addition to subgroup-specific functional enrichment and modularity, the identified 652 high-confidence kinase-protein interactions provide a specific biochemical context for many poorly studied CMGC kinases. Furthermore, the analysis revealed a kinase-kinase subnetwork and candidate substrates for CMGC kinases. Finally, the presented interaction proteome uncovered a large set of interactions with proteins genetically linked to a range of human diseases, including cancer, suggesting additional routes for analyzing the role of CMGC kinases in controlling human disease pathways.
Collapse
Affiliation(s)
- Markku Varjosalo
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
169
|
Akinleye A, Furqan M, Mukhi N, Ravella P, Liu D. MEK and the inhibitors: from bench to bedside. J Hematol Oncol 2013; 6:27. [PMID: 23587417 PMCID: PMC3626705 DOI: 10.1186/1756-8722-6-27] [Citation(s) in RCA: 202] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 04/05/2013] [Indexed: 01/16/2023] Open
Abstract
Four distinct MAP kinase signaling pathways involving 7 MEK enzymes have been identified. MEK1 and MEK2 are the prototype members of MEK family proteins. Several MEK inhibitors are in clinical trials. Trametinib is being evaluated by FDA for the treatment of metastatic melanoma with BRAF V600 mutation. Selumetinib has been studied in combination with docetaxel in phase II randomized trial in previously treated patients with advanced lung cancer. Selumetinib group had better response rate and progression-free survival. This review also summarized new MEK inhibitors in clinical development, including pimasertib, refametinib, PD-0325901, TAK733, MEK162 (ARRY 438162), RO5126766, WX-554, RO4987655 (CH4987655), GDC-0973 (XL518), and AZD8330.
Collapse
Affiliation(s)
- Akintunde Akinleye
- Department of Medicine, Westchester Medical Center and New York Medical College, Valhalla, NY, 10595, USA
| | - Muhammad Furqan
- Department of Medicine, Westchester Medical Center and New York Medical College, Valhalla, NY, 10595, USA
| | - Nikhil Mukhi
- Department of Medicine, Westchester Medical Center and New York Medical College, Valhalla, NY, 10595, USA
| | - Pavan Ravella
- Department of Medicine, Westchester Medical Center and New York Medical College, Valhalla, NY, 10595, USA
| | - Delong Liu
- Department of Medicine, Westchester Medical Center and New York Medical College, Valhalla, NY, 10595, USA
- Division of Hematology and Oncology, New York Medical College and Westchester Medical Center, Valhalla, NY, USA
| |
Collapse
|
170
|
Oliver JL, Alexander MP, Norrod AG, Mullins IM, Mullins DW. Differential expression and tumor necrosis factor-mediated regulation of TNFRSF11b/osteoprotegerin production by human melanomas. Pigment Cell Melanoma Res 2013; 26:571-9. [PMID: 23490134 DOI: 10.1111/pcmr.12091] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 03/04/2013] [Indexed: 01/08/2023]
Abstract
Tumors escape host immune responses, in part, through the release of immunomodulatory factors and decoy receptors into their microenvironment. Several cancers express surface-bound and soluble members of the tumor necrosis factor (TNF) receptor superfamily, including TNFRSF11b/osteoprotegerin (OPG). In its physiologic role, OPG regulates bone remodeling through competition for osteoclast-activating cytokines and protects newly forming bone from T cell-mediated apoptosis. In multiple tumor types, OPG production is associated with an aggressive phenotype and increased metastasis to bone, but no study has examined OPG production in human metastatic melanoma. We demonstrate that a significant proportion of human metastatic melanomas constitutively produces OPG through a mechanism governed by membrane-bound TNF-α signaling through TNF receptor 1 (TNFR1). These observations both define a specific mechanism that regulates melanoma production of OPG and establish a new molecular target for the therapeutic regulation of OPG.
Collapse
Affiliation(s)
- Janine L Oliver
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | | | | | | | | |
Collapse
|
171
|
Rogers JL, Serafin DS, Timoshchenko RG, Tarrant TK. Cellular targeting in autoimmunity. Curr Allergy Asthma Rep 2013; 12:495-510. [PMID: 23054625 DOI: 10.1007/s11882-012-0307-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Many biologic agents that were first approved for the treatment of malignancies are now being actively investigated and used in a variety of autoimmune diseases such as rheumatoid arthritis (RA), antineutrophil cytoplasmic antibody (ANCA)-associated vasculitis, systemic lupus erythematosus (SLE), and Sjogren's syndrome. The relatively recent advance of selective immune targeting has significantly changed the management of autoimmune disorders and in part can be attributed to the progress made in understanding effector cell function and their signaling pathways. In this review, we will discuss the recent FDA-approved biologic therapies that directly target immune cells as well as the most promising investigational drugs affecting immune cell function and signaling for the treatment of autoimmune disease.
Collapse
Affiliation(s)
- Jennifer L Rogers
- Division of Rheumatology, Allergy, and Immunology and the Thurston Arthritis Research Center, University of North Carolina School of Medicine, Chapel Hill, NC 27517, USA
| | | | | | | |
Collapse
|
172
|
Görögh T, Bèress L, Quabius ES, Ambrosch P, Hoffmann M. Head and neck cancer cells and xenografts are very sensitive to palytoxin: decrease of c-jun n-terminale kinase-3 expression enhances palytoxin toxicity. Mol Cancer 2013; 12:12. [PMID: 23409748 PMCID: PMC3585753 DOI: 10.1186/1476-4598-12-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 02/06/2013] [Indexed: 02/01/2023] Open
Abstract
Objectives Palytoxin (PTX), a marine toxin isolated from the Cnidaria (zooanthid) Palythoa caribaeorum is one of the most potent non-protein substances known. It is a very complex molecule that presents both lipophilic and hydrophilic areas. The effect of PTX was investigated in a series of experiments conducted in head and neck squamous cell carcinoma (HNSCC) cell lines and xenografts. Materials and methods Cell viability, and gene expression of the sodium/potassium-transporting ATPase subumit alpha1 (ATP1AL1) and GAPDH were analyzed in HNSCC cells and normal epithelial cells after treatment with PTX using cytotoxicity-, clonogenic-, and enzyme inhibitor assays as well as RT-PCR and Northern Blotting. For xenograft experiments severe combined immunodeficient (SCID) mice were used to analyze tumor regression. The data were statistically analyzed using One-Way Annova (SPSS vs20). Results Significant toxic effects were observed in tumor cells treated with PTX (LD50 of 1.5 to 3.5 ng/ml) in contrast to normal cells. In tumor cells PTX affected both the release of LDH and the expression of the sodium/potassium-transporting ATPase subunit alpha1 gene suggesting loss of cellular integrity, primarily of the plasma membrane. Furthermore, strong repression of the c-Jun N-terminal kinase 3 (JNK3) mRNA expression was found in carcinoma cells which correlated with enhanced toxicity of PTX suggesting an essential role of the mitogen activated protein kinase (MAPK)/JNK signalling cascades pathway in the mechanisms of HNSCC cell resistance to PTX. In mice inoculated with carcinoma cells, injections of PTX into the xenografted tumors resulted within 24 days in extensive tumor destruction in 75% of the treated animals (LD50 of 68 ng/kg to 83 ng/kg) while no tumor regression occurred in control animals. Conclusions These results clearly provide evidence that PTX possesses preferential toxicity for head and neck carcinoma cells and therefore it is worth further studying its impact which may extend our knowledge of the biology of head and neck cancer.
Collapse
Affiliation(s)
- Tibor Görögh
- Department of Otorhinolaryngology- Head and Neck Surgery, Section of Experimental Oncology, University of Kiel Schleswig-Holstein, Kiel, 24105, Germany.
| | | | | | | | | |
Collapse
|
173
|
Mannam P, Zhang X, Shan P, Zhang Y, Shinn AS, Zhang Y, Lee PJ. Endothelial MKK3 is a critical mediator of lethal murine endotoxemia and acute lung injury. THE JOURNAL OF IMMUNOLOGY 2012; 190:1264-75. [PMID: 23275604 DOI: 10.4049/jimmunol.1202012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Sepsis is a leading cause of intensive care unit admissions, with high mortality and morbidity. Although outcomes have improved with better supportive care, specific therapies are limited. Endothelial activation and oxidant injury are key events in the pathogenesis of sepsis-induced lung injury. The signaling pathways leading to these events remain poorly defined. We sought to determine the role of MAPK kinase 3 (MKK3), a kinase of the p38 group, in the pathogenesis of sepsis. We used a murine i.p. LPS model of systemic inflammation to mimic sepsis. Lung injury parameters were assessed in lung tissue and bronchoalveolar lavage specimens. Primary lung endothelial cells were cultured and assessed for mediators of inflammation and injury, such as ICAM-1, AP-1, NF-κB, and mitochondrial reactive oxygen species. Our studies demonstrate that MKK3 deficiency confers virtually complete protection against organ injury after i.p. LPS. Specifically, MKK3(-/-) mice were protected against acute lung injury, as assessed by reduced inflammation, mitochondrial reactive oxygen species generation, endothelial injury, and ICAM-1 expression after LPS administration. Our results show that endothelial MKK3 is required for inflammatory cell recruitment to the lungs, mitochondrial oxidant-mediated AP-1, NF-κB activation, and ICAM-1 expression during LPS challenge. Collectively, these studies identify a novel role for MKK3 in lethal LPS responses and provide new therapeutic targets against sepsis and acute lung injury.
Collapse
Affiliation(s)
- Praveen Mannam
- Department of Internal Medicine, Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, CT 06520-8057, USA
| | | | | | | | | | | | | |
Collapse
|
174
|
Quantitative profiling of DNA damage and apoptotic pathways in UV damaged cells using PTMScan Direct. Int J Mol Sci 2012; 14:286-307. [PMID: 23344034 PMCID: PMC3565264 DOI: 10.3390/ijms14010286] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 12/04/2012] [Accepted: 12/10/2012] [Indexed: 02/07/2023] Open
Abstract
Traditional methods for analysis of peptides using liquid chromatography and tandem mass spectrometry (LC-MS/MS) lack the specificity to comprehensively monitor specific biological processes due to the inherent duty cycle limitations of the MS instrument and the stochastic nature of the analytical platform. PTMScan Direct is a novel, antibody-based method that allows quantitative LC-MS/MS profiling of specific peptides from proteins that reside in the same signaling pathway. New PTMScan Direct reagents have been produced that target peptides from proteins involved in DNA Damage/Cell Cycle and Apoptosis/Autophagy pathways. Together, the reagents provide access to 438 sites on 237 proteins in these signaling cascades. These reagents have been used to profile the response to UV damage of DNA in human cell lines. UV damage was shown to activate canonical DNA damage response pathways through ATM/ATR-dependent signaling, stress response pathways and induce the initiation of apoptosis, as assessed by an increase in the abundance of peptides corresponding to cleaved, activated caspases. These data demonstrate the utility of PTMScan Direct as a multiplexed assay for profiling specific cellular responses to various stimuli, such as UV damage of DNA.
Collapse
|
175
|
Propofol attenuates lipopolysaccharide-induced monocyte chemoattractant protein-1 production through p38 MAPK and SAPK/JNK in alveolar epithelial cells. J Anesth 2012; 27:366-73. [DOI: 10.1007/s00540-012-1539-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Accepted: 11/29/2012] [Indexed: 12/21/2022]
|
176
|
Mavropoulos A, Orfanidou T, Liaskos C, Smyk DS, Billinis C, Blank M, Rigopoulou EI, Bogdanos DP. p38 mitogen-activated protein kinase (p38 MAPK)-mediated autoimmunity: lessons to learn from ANCA vasculitis and pemphigus vulgaris. Autoimmun Rev 2012. [PMID: 23207287 DOI: 10.1016/j.autrev.2012.10.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Evidence is beginning to accumulate that p38 mitogen activated protein kinase (p38 MAPK) signaling pathway plays an important role in the regulation of cellular and humoral autoimmune responses. The exact mechanisms and the degree by which the p38 MAPK pathway participates in the immune-mediated induction of diseases have started to emerge. This review discusses the recent advances in the molecular dissection of the p38 MAPK pathway and the findings generated by reports investigating its role in the pathogenesis of autoimmune diseases such as rheumatoid arthritis, systemic lupus erythematosus, and autoimmune hepatitis. Application of newly-developed protocols based on sensitive flow cytometric detection has proven to be a useful tool in the investigation of the phosphorylation of p38 MAPK within different peripheral blood mononuclear cell populations and may help us to better understand the enigmatic role of this signaling cascade in the induction of autoimmunity as well as its role in immunosuppressive-induced remission. Special attention is paid to reported data proposing a specific role for autoantibody-induced activation of p38 MAPK-mediated immunopathology in the pathogenesis of autoimmune blistering diseases and anti-neutrophilic antibody-mediated vasculitides.
Collapse
Affiliation(s)
- Athanasios Mavropoulos
- Institute of Liver Studies, King's College London School of Medicine at King's College Hospital, Denmark Hill Campus, London SE5 9RS, UK
| | | | | | | | | | | | | | | |
Collapse
|
177
|
Song IS, Jun SY, Na HJ, Kim HT, Jung SY, Ha GH, Park YH, Long LZ, Yu DY, Kim JM, Kim JH, Ko JH, Kim CH, Kim NS. Inhibition of MKK7-JNK by the TOR signaling pathway regulator-like protein contributes to resistance of HCC cells to TRAIL-induced apoptosis. Gastroenterology 2012; 143:1341-1351. [PMID: 22841785 DOI: 10.1053/j.gastro.2012.07.103] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 06/06/2012] [Accepted: 07/19/2012] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS The TOR signaling pathway regulator-like (TIPRL) protein, the mammalian ortholog of yeast TIP41, was identified in an expression profiling screen for factors that regulate human liver carcinogenesis. We investigated the role of human TIPRL protein in hepatocellular carcinoma (HCC). METHODS We measured the level of TIPRL in HCC and adjacent nontumor tissues from patients. We used small interfering RNAs and zebrafish to study the function of TIPRL. We used annexin V propidium iodide staining and immunoblot analyses to measure apoptosis and activation of apoptotic signaling pathways. We used confocal microscopy, coimmunoprecipitation, and glutathione-S transferase pull-down analyses to determine interactions among mitogen-activated protein kinase kinase 7 (MKK7 or MAP2K7), TIPRL, and the protein phosphatase type 2A (PP2Ac). We studied the effects of TIPRL in tumor xenografts in mice. RESULTS Levels of TIPRL were higher in HCC tissues and cell lines than nontumor tissues and primary hepatocytes. Knockdown of tiprl expression in zebrafish led to large amounts of apoptosis throughout the embryos. Incubation of HCC cells, but not primary human hepatocytes, with small interfering RNA against TIPRL (siTIPRL) and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) caused prolonged activation (phosphorylation) of MKK7 and c-Jun N-terminal kinase (JNK) and led to apoptosis, indicated by cleavage of procaspase-8,-3 and of poly-(adenosine diphosphate-ribose) polymerase. TIPRL bound to MKK7 and PP2Ac and promoted the interaction between MKK7 and PP2Ac. In mice, injection of HCC xenograft tumors with siTIPRL and TRAIL led to tumor apoptosis and regression. CONCLUSIONS TIPRL is highly up-regulated in human HCC samples and cell lines, compared with noncancerous liver tissues. TIPRL prevents prolonged activation of MKK7 and JNK and TRAIL-induced apoptosis by mediating the interaction between MKK7 and PP2Ac.
Collapse
Affiliation(s)
- In Sung Song
- Medical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea; Cardiovascular and Metabolic Disease Center, Inje University, Busan, South Korea
| | - Soo Young Jun
- Medical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea; Department of Functional Genomics, University of Science and Technology, Daejeon, South Korea
| | - Hee-Jun Na
- Department of Functional Genomics, University of Science and Technology, Daejeon, South Korea; Renal Division, Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Hyun-Taek Kim
- Department of Biology, Chungnam National University, Daejeon, South Korea
| | - So Young Jung
- Medical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Ga Hee Ha
- Medical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Young-Ho Park
- Department of Functional Genomics, University of Science and Technology, Daejeon, South Korea; Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Liang Zhe Long
- Department of Pathology, School of Medicine, Chungnam National University, Daejeon, South Korea
| | - Dae-Yeul Yu
- Department of Functional Genomics, University of Science and Technology, Daejeon, South Korea; Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Jin-Man Kim
- Department of Pathology, School of Medicine, Chungnam National University, Daejeon, South Korea
| | - Joo Heon Kim
- Department of Pathology, Eulji University School of Medicine, Daejeon, South Korea
| | - Jeong-Heon Ko
- Daejeon-KRIBB-FHCRC Research Cooperation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon, South Korea.
| | - Nam-Soon Kim
- Medical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea; Department of Functional Genomics, University of Science and Technology, Daejeon, South Korea.
| |
Collapse
|
178
|
Abstract
In vivo gene knockout studies in mice have revealed essential roles of the mitogen-activated protein kinases (MAPKs) in embryogenesis, but due to early lethality of the knockout embryos, the underlying mechanisms and specific developmental programs regulated by the MAPK pathways have remained largely unknown. In vitro differentiation of mouse embryonic stem cells (ESCs) have opened new possibilities for understanding lineage segregation and gene function in the developmental stages that are not normally accessible in vivo. Building on this technology, in combination with gene knockout cells, we investigated the roles of MKK4 and MKK7, two upstream kinases of the MAPKs, in early lineage specification. Our results show that MKK4 and MKK7 differentially regulate the JNK and p38 MAPKs and make distinct contributions to differentiation programs. In vitro ESC differentiation is a valuable system to investigate the molecular and signaling mechanisms of early embryogenesis.
Collapse
Affiliation(s)
- Jingcai Wang
- Department of Environmental Health; College of Medicine; University of Cincinnati; Cincinnati, OH USA
| | | |
Collapse
|
179
|
Garai Á, Zeke A, Gógl G, Törő I, Fördős F, Blankenburg H, Bárkai T, Varga J, Alexa A, Emig D, Albrecht M, Reményi A. Specificity of linear motifs that bind to a common mitogen-activated protein kinase docking groove. Sci Signal 2012; 5:ra74. [PMID: 23047924 DOI: 10.1126/scisignal.2003004] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mitogen-activated protein kinases (MAPKs) have a docking groove that interacts with linear "docking" motifs in binding partners. To determine the structural basis of binding specificity between MAPKs and docking motifs, we quantitatively analyzed the ability of 15 docking motifs from diverse MAPK partners to bind to c-Jun amino-terminal kinase 1 (JNK1), p38α, and extracellular signal-regulated kinase 2 (ERK2). Classical docking motifs mediated highly specific binding only to JNK1, and only those motifs with a sequence pattern distinct from the classical MAPK binding docking motif consensus differentiated between the topographically similar docking grooves of ERK and p38α. Crystal structures of four complexes of MAPKs with docking peptides, representing JNK-specific, ERK-specific, or ERK- and p38-selective binding modes, revealed that the regions located between consensus positions in the docking motifs showed conformational diversity. Although the consensus positions in the docking motifs served as anchor points that bound to common MAPK surface features and mostly contributed to docking in a nondiscriminatory fashion, the conformation of the intervening region between the anchor points mostly determined specificity. We designed peptides with tailored MAPK binding profiles by rationally changing the length and amino acid composition of intervening regions located between anchor points. These results suggest a coherent structural model for MAPK docking specificity that reveals how short linear motifs binding to a common kinase docking groove can mediate diverse interaction patterns and contribute to correct MAPK partner selection in signaling networks.
Collapse
Affiliation(s)
- Ágnes Garai
- Department of Biochemistry, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117 Budapest, Hungary
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
180
|
Lu Q, Wainwright MS, Harris VA, Aggarwal S, Hou Y, Rau T, Poulsen DJ, Black SM. Increased NADPH oxidase-derived superoxide is involved in the neuronal cell death induced by hypoxia-ischemia in neonatal hippocampal slice cultures. Free Radic Biol Med 2012; 53:1139-51. [PMID: 22728269 PMCID: PMC3527086 DOI: 10.1016/j.freeradbiomed.2012.06.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 06/07/2012] [Accepted: 06/08/2012] [Indexed: 11/25/2022]
Abstract
Neonatal brain hypoxia-ischemia (HI) results in neuronal cell death. Previous studies indicate that reactive oxygen species, such as superoxide, play a key role in this process. However, the cellular sources have not been established. In this study we examine the role of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex in neonatal HI brain injury and elucidate its mechanism of activation. Rat hippocampal slices were exposed to oxygen glucose deprivation (OGD) to mimic the conditions seen in HI. Initial studies confirmed an important role for NADPH oxidase-derived superoxide in the oxidative stress associated with OGD. Further, the OGD-mediated increase in apoptotic cell death was inhibited by the NADPH oxidase inhibitor apocynin. The activation of NADPH oxidase was found to be dependent on the p38 mitogen-activated protein kinase-mediated phosphorylation and activation of the p47(phox) subunit. Using an adeno-associated virus antisense construct to selectively decrease p47(phox) expression in neurons showed that this led to inhibition of both the increase in superoxide and the neuronal cell death associated with OGD. We also found that NADPH oxidase inhibition in a neonatal rat model of HI or scavenging hydrogen peroxide reduced brain injury. Thus, we conclude that activation of the NADPH oxidase complex contributes to the oxidative stress during HI and that therapies targeted against this complex could provide neuroprotection against the brain injury associated with neonatal HI.
Collapse
Affiliation(s)
- Qing Lu
- Vascular Biology Center, Georgia Health Sciences University, Augusta, GA 30912, USA
| | | | | | | | | | | | | | | |
Collapse
|
181
|
Protein kinases of the Hippo pathway: regulation and substrates. Semin Cell Dev Biol 2012; 23:770-84. [PMID: 22898666 DOI: 10.1016/j.semcdb.2012.07.002] [Citation(s) in RCA: 186] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 07/31/2012] [Indexed: 01/30/2023]
Abstract
The "Hippo" signaling pathway has emerged as a major regulator of cell proliferation and survival in metazoans. The pathway, as delineated by genetic and biochemical studies in Drosophila, consists of a kinase cascade regulated by cell-cell contact and cell polarity that inhibits the transcriptional coactivator Yorkie and its proliferative, anti-differentiation, antiapoptotic transcriptional program. The core pathway components are the GC kinase Hippo, which phosphorylates the noncatalytic polypeptide Mats/Mob1 and, with the assistance of the scaffold protein Salvador, phosphorylates the ndr-family kinase Lats. In turn phospho-Lats, after binding to phospho-Mats, autoactivates and phosphorylates Yorkie, resulting in its nuclear exit. Hippo also uses the scaffold protein Furry and a different Mob protein to control another ndr-like kinase, the morphogenetic regulator Tricornered. Architecturally homologous kinase cascades consisting of a GC kinase, a Mob protein, a scaffolding polypeptide and an ndr-like kinase are well described in yeast; in Saccharomyces cerevisiae, e.g., the MEN pathway promotes mitotic exit whereas the RAM network, using a different GC kinase, Mob protein, scaffold and ndr-like kinase, regulates cell polarity and morphogenesis. In mammals, the Hippo orthologs Mst1 and Mst2 utilize the Salvador ortholog WW45/Sav1 and other scaffolds to regulate the kinases Lats1/Lats2 and ndr1/ndr2. As in Drosophila, murine Mst1/Mst2, in a redundant manner, negatively regulate the Yorkie ortholog YAP in the epithelial cells of the liver and gut; loss of both Mst1 and Mst2 results in hyperproliferation and tumorigenesis that can be largely negated by reduction or elimination of YAP. Despite this conservation, considerable diversification in pathway composition and regulation is already evident; in skin, e.g., YAP phosphorylation is independent of Mst1Mst2 and Lats1Lats2. Moreover, in lymphoid cells, Mst1/Mst2, under the control of the Rap1 GTPase and independent of YAP, promotes integrin clustering, actin remodeling and motility while restraining the proliferation of naïve T cells. This review will summarize current knowledge of the structure and regulation of the kinases Hippo/Mst1&2, their noncatalytic binding partners, Salvador and the Rassf polypeptides, and their major substrates Warts/Lats1&2, Trc/ndr1&2, Mats/Mob1 and FOXO.
Collapse
|
182
|
Matsumoto T, Kinoshita T, Kirii Y, Tada T, Yamano A. Crystal and solution structures disclose a putative transient state of mitogen-activated protein kinase kinase 4. Biochem Biophys Res Commun 2012; 425:195-200. [PMID: 22828509 DOI: 10.1016/j.bbrc.2012.07.066] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 07/16/2012] [Indexed: 10/28/2022]
Abstract
Mitogen-activated protein kinase kinase 4 (MAP2K4) plays a crucial role in the stress-activated signal cascade and is enzymatically regulated by ligand or substrate binding, and/or post-translational modification. Crystal structures combined with small-angle X-ray scattering experiments revealed that the apo form of non-phosphorylated MAP2K4 (npMAP2K4) exists in a transient state which has a longer conformation compared with the typical kinase folding. Upon ATP-binding, the transient conformation adopted the configuration of typical kinase folding. In the absence of ATP-binding, the transient state of apo npMAP2K4 may shift to a state of aggregation via non-particular hydrophobic interactions as a result of the exposed hydrophobic residues.
Collapse
|
183
|
Kyriakis JM, Avruch J. Mammalian MAPK signal transduction pathways activated by stress and inflammation: a 10-year update. Physiol Rev 2012; 92:689-737. [PMID: 22535895 DOI: 10.1152/physrev.00028.2011] [Citation(s) in RCA: 1021] [Impact Index Per Article: 85.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The mammalian stress-activated families of mitogen-activated protein kinases (MAPKs) were first elucidated in 1994, and by 2001, substantial progress had been made in identifying the architecture of the pathways upstream of these kinases as well as in cataloguing candidate substrates. This information remains largely sound. Nevertheless, an informed understanding of the physiological and pathophysiological roles of these kinases remained to be accomplished. In the past decade, there has been an explosion of new work using RNAi in cells, as well as transgenic, knockout and conditional knockout technology in mice that has provided valuable insight into the functions of stress-activated MAPK pathways. These findings have important implications in our understanding of organ development, innate and acquired immunity, and diseases such as atherosclerosis, tumorigenesis, and type 2 diabetes. These new developments bring us within striking distance of the development and validation of novel treatment strategies. Herein we first summarize the molecular components of the mammalian stress-regulated MAPK pathways and their regulation as described thus far. We then review some of the in vivo functions of these pathways.
Collapse
Affiliation(s)
- John M Kyriakis
- Molecular Cardiology Research Institute, Tufts Medical Center, 800 Washington St., Box 8486, Boston, MA 02111, USA.
| | | |
Collapse
|
184
|
Abstract
MAPK (mitogen-activated protein kinase) pathways are among the most frequently deregulated signalling events in cancer. Among the critical targets of MAPK activities are members of the AP-1 (activator protein 1) transcription factor, a dimeric complex consisting of Jun, Fos, Maf and ATF (activating transcription factor) family DNA-binding proteins. Depending on the cellular context, the composition of the dimeric complexes determines the regulation of growth, survival or apoptosis. JNK (c-Jun N-terminal kinase), p38 and a number of Jun and Fos family proteins have been analysed for their involvement in oncogenic transformation and tumour formation. These data are also emerging for the ATF components of the AP-1 factor. The aim of the present review is to provide an overview of the functions of two ATF family proteins, ATF2 and ATF7, in mammalian development and their potential functions in tumour formation.
Collapse
|
185
|
Hawley K, Navasa N, Olson CM, Bates TC, Garg R, Hedrick MN, Conze D, Rincón M, Anguita J. Macrophage p38 mitogen-activated protein kinase activity regulates invariant natural killer T-cell responses during Borrelia burgdorferi infection. J Infect Dis 2012; 206:283-91. [PMID: 22551807 DOI: 10.1093/infdis/jis332] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The interaction of macrophages with infectious agents leads to the activation of several signaling cascades, including mitogen-activated protein (MAP) kinases, such as p38. We now demonstrate that p38 MAP kinase-mediated responses are critical components to the immune response to Borrelia burgdorferi. The pharmacological and genetic inhibition of p38 MAP kinase activity during infection with the spirochete results in increased carditis. In transgenic mice that express a dominant negative form of p38 MAP kinase specifically in macrophages, production of the invariant natural killer T (iNKT) cell-attracting chemokine MCP-1 and of the antigen-presenting molecule CD1d are significantly reduced. The expression of the transgene therefore results in the deficient infiltration of iNKT cells, their decreased activation, and a diminished production of interferon γ (IFN-γ), leading to increased bacterial burdens and inflammation. These results show that p38 MAP kinase provides critical checkpoints for the protective immune response to the spirochete during infection of the heart.
Collapse
Affiliation(s)
- Kelly Hawley
- Department of Veterinary and Animal Sciences, University of Massachusetts-Amherst, MA 01003, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
186
|
Wang J, Stern PH. Sex-specific effects of estrogen and androgen on gene expression in human monocyte-derived osteoclasts. J Cell Biochem 2012; 112:3714-21. [PMID: 21815190 DOI: 10.1002/jcb.23297] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Estrogen and androgen are both critical for the maintenance of bone, but the target cells, mechanisms, and responses could be sex-specific. To compare sex-specific actions of estrogen and androgen on osteoclasts, human peripheral blood mononuclear precursor cells from adult Caucasian males (n = 3) and females (n = 3) were differentiated into osteoclasts and then treated for 24 h with 17β-estradiol (10 nM) or testosterone (10 nM). Gene expression was studied with a custom designed qPCR-based array containing 94 target genes related to bone and hormone action. In untreated osteoclasts, 4 genes showed significant gender differences. 17β-estradiol significantly affected 12 genes in osteoclasts from females and 6 genes in osteoclasts from males. Fifteen of the 18 17β-estradiol-responsive genes were different in the cells from the two sexes; 2 genes affected by 17β-estradiol in both sexes were regulated oppositely in the two sexes. Testosterone significantly affected 6 genes in osteoclasts from females and 2 genes in osteoclasts from males; all except one were different in the two sexes. 17β-estradiol and testosterone largely affected different genes, suggesting that conversion of testosterone to 17β-estradiol had a limited role in the responses. The findings indicate that although osteoclasts from both sexes respond to 17β-estradiol and testosterone, the effects of both 17β-estradiol and testosterone differ in the two sexes, highlighting the importance of considering gender in the design of therapy.
Collapse
Affiliation(s)
- Jun Wang
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | | |
Collapse
|
187
|
The role of MAPK in drug-induced kidney injury. JOURNAL OF SIGNAL TRANSDUCTION 2012; 2012:463617. [PMID: 22523682 PMCID: PMC3317229 DOI: 10.1155/2012/463617] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 11/02/2011] [Accepted: 11/04/2011] [Indexed: 12/23/2022]
Abstract
This paper focuses on the role that mitogen-activated protein kinases (MAPKs) play in drug-induced kidney injury. The MAPKs, of which there are four major classes (ERK, p38, JNK, and ERK5/BMK), are signalling cascades which have been found to be broadly conserved across a wide variety of organisms. MAPKs allow effective transmission of information from the cell surface to the cytosolic or nuclear compartments. Cross talk between the MAPKs themselves and with other signalling pathways allows the cell to modulate responses to a wide variety of external stimuli. The MAPKs have been shown to play key roles in both mediating and ameliorating cellular responses to stress including xenobiotic-induced toxicity. Therefore, this paper will discuss the specific role of the MAPKs in the kidney in response to injury by a variety of xenobiotics and the potential for therapeutic intervention at the level of MAPK signalling across different types of kidney disease.
Collapse
|
188
|
Van de Wouwer M, Couzinié C, Serrano-Palero M, González-Fernández O, Galmés-Varela C, Menéndez-Antolí P, Grau L, Villalobo A. Activation of the BRCA1/Chk1/p53/p21(Cip1/Waf1) pathway by nitric oxide and cell cycle arrest in human neuroblastoma NB69 cells. Nitric Oxide 2012; 26:182-91. [PMID: 22401965 DOI: 10.1016/j.niox.2012.02.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 02/10/2012] [Accepted: 02/21/2012] [Indexed: 12/31/2022]
Abstract
Nitric oxide (NO) works as a bi-modal effector of cell proliferation, inducing either the increase or decrease of cell growth when cells are exposed, respectively, to low or high NO concentrations. To get further insight into the action of NO, we tested the effect of short- and long-lived NO donors on the control of the cell cycle in human neuroblastoma NB69 cells. We demonstrated that long-time exposure of cells to NO not only decreased the expression and/or the phosphorylation of elements involved in the control of the G(1)/S transition, such as the transcriptional repressor pRb and cyclin D1, but also down-regulated systems controlling the S and G(2)/M phases, such as the phosphorylation of Cdk1(cdc2) and the expression of cyclins A and B1. Increasing concentrations of NO also induced a biphasic effect on the expression of cyclins D1, A and B1, while this effect was less pronounced for cyclin E expression, but the levels of mRNAs of those cyclins changed in a distinct and complex manner. NO also changed the phosphorylation pattern of cyclin E and decreased the levels of phospho-cyclins D1 and B1. Moreover, NO decreased the expression of the Cdk inhibitors p16(Ink4a) and p19(Ink4d), without affecting p27(Kip1). In contrast, NO induced a biphasic effect on p21(Cip1/Waf1) expression. The BRCA1/Chk1/p53 pathway mediated the upregulation of p21(Cip1/Waf1). We also demonstrated that the NO-mediated up-regulation of p21(Cip1/Waf1) was inversely correlated with the activation status of the p38MAPK pathway.
Collapse
Affiliation(s)
- Marlies Van de Wouwer
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
189
|
Takahashi T, Steinberg GK, Zhao H. Phosphorylated mitogen-activated protein kinase/extracellular signal-regulated kinase 1/2 may not always represent its kinase activity in a rat model of focal cerebral ischemia with or without ischemic preconditioning. Neuroscience 2012; 209:155-60. [PMID: 22366512 DOI: 10.1016/j.neuroscience.2012.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 01/31/2012] [Accepted: 02/04/2012] [Indexed: 11/15/2022]
Abstract
The extracellular signal-regulated kinase (ERK) 1/2 protein requires a dual phosphorylation at conserved threonine and tyrosine residues to be fully activated under normal physiological conditions. Thus, ERK1/2 kinase activity is often defined by the quantity of phosphorylated kinase. However, this may not accurately represent its true activity under certain pathological conditions. We investigated whether ERK1/2 kinase activity is proportional to its phosphorylation state in a rat focal ischemia model with and without rapid ischemic preconditioning. We showed that phosphorylated-ERK1/2 protein levels were increased 2.6±0.07-fold, and ERK1/2 kinase activity was increased 10.6±1.9-fold in animals receiving ischemic preconditioning alone without test ischemia compared with sham group (P<0.05, n=6/group), suggesting that phosphorylated-ERK1/2 protein levels represent its kinase activity under these conditions. However, preconditioning plus test ischemia robustly blocked ERK1/2 kinase activity, whereas it increased phosphorylated-ERK1/2 protein levels beyond those receiving test ischemia alone, suggesting that phosphorylated-ERK1/2 protein levels were not representative of actual kinase activity in this pathological condition. In conclusion, protein phosphorylation levels of ERK1/2 do not always correspond to kinase activity, thus, measuring the true kinase activity is essential.
Collapse
Affiliation(s)
- T Takahashi
- Department of Neurosurgery and Stanford Stroke Center, Stanford University, Stanford, CA, USA
| | | | | |
Collapse
|
190
|
Guo X, Zhang X, Li Y, Guo Y, Wang J, Li Y, Shen B, Sun D, Zhang J. Nocodazole increases the ERK activity to enhance MKP-1 expression which inhibits p38 activation induced by TNF-α. Mol Cell Biochem 2012; 364:373-80. [DOI: 10.1007/s11010-012-1239-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 01/14/2012] [Indexed: 11/27/2022]
|
191
|
Speicher T, Köhler UA, Choukèr A, Werner S, Weiland T, Wendel A. Fructose protects murine hepatocytes from tumor necrosis factor-induced apoptosis by modulating JNK signaling. J Biol Chem 2012; 287:1837-46. [PMID: 22086922 PMCID: PMC3265865 DOI: 10.1074/jbc.m111.266742] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 10/26/2011] [Indexed: 01/19/2023] Open
Abstract
Fructose-induced hepatic ATP depletion prevents TNF-induced apoptosis, whereas it contrarily enhances CD95-induced hepatocyte apoptosis in vitro and in vivo. By contrast, transformed liver cells are not protected against TNF due to metabolic alterations, allowing selective tumor targeting. We analyzed the molecular mechanisms by which fructose modulates cytokine-induced apoptosis. A release of adenosine after fructose-induced ATP depletion, followed by a cAMP response, was demonstrated. Likewise, cAMP and adenosine mimicked per se the modulation by fructose of CD95- and TNF-induced apoptosis. The effects of fructose on cytokine-induced apoptosis were sensitive to inhibition of protein kinase A. Fructose prevented the pro-apoptotic, sustained phase of TNF-induced JNK signaling and thereby blocked bid-mediated activation of the intrinsic mitochondrial apoptosis pathway in a PKA-dependent manner. We explain the dichotomal effects of fructose on CD95- and TNF-induced cell death by the selective requirement of JNK signaling for the latter. These findings provide a mechanistic rationale for the protection of hepatocytes from TNF-induced cell death by pharmacological doses of fructose.
Collapse
Affiliation(s)
- Tobias Speicher
- From the Chair of Biochemical Pharmacology, Faculty of Biology, University of Konstanz, Konstanz D-78457, Germany
- the Insitute of Cell Biology, Swiss Federal Institute of Technology, Zurich CH-8093, Switzerland
| | - Ulrike A. Köhler
- From the Chair of Biochemical Pharmacology, Faculty of Biology, University of Konstanz, Konstanz D-78457, Germany
| | - Alexander Choukèr
- the Department of Anesthesiology, Klinikum Grosshadern, Munich D-81377, Germany, and
| | - Sabine Werner
- the Insitute of Cell Biology, Swiss Federal Institute of Technology, Zurich CH-8093, Switzerland
| | - Timo Weiland
- From the Chair of Biochemical Pharmacology, Faculty of Biology, University of Konstanz, Konstanz D-78457, Germany
| | - Albrecht Wendel
- From the Chair of Biochemical Pharmacology, Faculty of Biology, University of Konstanz, Konstanz D-78457, Germany
| |
Collapse
|
192
|
Kumphune S, Chattipakorn S, Chattipakorn N. Role of p38 inhibition in cardiac ischemia/reperfusion injury. Eur J Clin Pharmacol 2011; 68:513-24. [PMID: 22205273 DOI: 10.1007/s00228-011-1193-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 11/29/2011] [Indexed: 10/14/2022]
Abstract
The p38 mitogen-activated protein kinases (p38s) are Ser/Thr kinases that are activated as a result of cellular stresses and various pathological conditions, including myocardial ischemia/reperfusion. p38 activation has been shown to accentuate myocardial injury and impair cardiac function. Inhibition of p38 activation and its activity has been proposed to be cardioprotective by slowing the rate of myocardial damage and improving cardiac function. The growing body of evidence on the use of p38 inhibitors as therapeutic means for responding to heart problems is controversial, since both beneficial as well as a lack of protective effects on the heart have been reported. In this review, the outcomes from studies investigating the effect of p38 inhibitors on the heart in a wide range of study models, including in vitro, ex vivo, and in vivo models, are discussed. The correlations of experimental models with practical clinical usefulness, as well as the need for future studies regarding the use of p38 inhibitors, are also addressed.
Collapse
Affiliation(s)
- Sarawut Kumphune
- Department of Medical Technology, Faculty of Allied Health Sciences, Naresuan University, Phitsanulok 65000, Thailand
| | | | | |
Collapse
|
193
|
Stress-activated kinase pathway alteration is a frequent event in bladder cancer. Urol Oncol 2011; 30:415-20. [PMID: 22154358 DOI: 10.1016/j.urolonc.2010.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 03/04/2010] [Accepted: 03/09/2010] [Indexed: 11/24/2022]
Abstract
OBJECTIVES The stress-activated MAP kinases (SAPK) signaling pathways play a critical role in the cellular response to toxins and physical stress, mediate inflammation, and modulate carcinogenesis and tumor metastasis. The stress-activated MAP kinases (MAPK) c-Jun N-terminal kinase (JNK) and p38 are activated upon phosphorylation by a widely expressed and conserved family of upstream MAP kinase kinases (MAP2K). Signaling mediated by p38 and JNK has well-established importance in cancer, yet the contribution of this pathway in urothelial bladder cancer is not understood. This study evaluated stress-activated MAP kinase pathway expression in cell lines derived from human urothelial carcinomas. MATERIALS AND METHODS Total protein lysates from a panel of human urothelial bladder cancer cell lines (RT4, T24, UMUC-3, J82, 5637, 253J, and 253J-BV) were analyzed by immunoblotting for the JNK and p38 MAPKs, as well as MKK3, MKK4, MKK6, and MKK7. Quantitative real time PCR was utilized to determine mRNA expression levels of the MAP2Ks. Stress stimuli (sorbitol, hydrogen peroxide, and UV irradiation) were used to active p38, which was measured by phospho-antibody. RESULTS Although protein levels were variable, all cell lines expressed p38 and JNK. On the other hand, with the exception of the well-differentiated cell line RT4, each cell line had a reduction or absence of expression of one or more MAP2K. 253J and 253J-BV exhibited no expression of MKK6, even when an excess of protein was queried. mRNA levels indicated that both transcriptional and post-transcriptional mechanisms are involved in the regulation of MAP2Ks. Decreased MAP2K expression correlated with decreased ability to activate p38 in response to stress stimuli. CONCLUSIONS Aberrant MAP2K protein expression indicates that altered cellular signal transduction mediated via JNK and p38 may be common in bladder cancer. Down-regulation of MAP2Ks likely occurs at both the transcriptional and post-transcriptional levels. Consistent with the known function of p38 and JNK in apoptosis, defects in normal pathway function caused by decreased expression of upstream MAP2Ks may provide a survival advantage to bladder cancer cells. Further investigations should focus on identifying a functional role for these pathways in bladder cancer development.
Collapse
|
194
|
Tang B, Du J, Wang J, Tan G, Gao Z, Wang Z, Wang L. Alpinetin suppresses proliferation of human hepatoma cells by the activation of MKK7 and elevates sensitization to cis-diammined dichloridoplatium. Oncol Rep 2011; 27:1090-6. [PMID: 22159816 PMCID: PMC3583584 DOI: 10.3892/or.2011.1580] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 11/17/2011] [Indexed: 02/06/2023] Open
Abstract
Alpinetin is a type of novel plant flavonoid derived from Alpinia katsumadai Hayata, found to possess strong anti-hepatoma effects. However, the detailed antitumor mechanism of Alpinetin remains unclear. Mitogen-activated protein kinase kinase-7 (MKK7) can regulate cellular growth, differentiation and apoptosis. The aim of this study was to investigate the role of MKK7 in the anti-hepatoma effect mediated by Alpinetin. HepG2 cells were treated with Alpinetin at various doses and for different times, and the levels of phosphorylated MKK7 (p-MKK7) and total MKK7 were tested by RT-PCR and Western blotting. Following transient transfection with RNA interference, cell viability and cell cycle stage were determined using methyl thiazolyl tetrazolium assay and flow cytometry, in order to assess the antitumor action of Alpinetin. In addition, chemosensitization to cis-diammined dichloridoplatium (CDDP) by Alpinetin was assessed by cell counting array and the cell growth inhibitory rate was calculated. The results showed that Alpinetin suppressed HepG2 cell proliferation and arrested cells in the G0/G1 phase by up-regulating the expression levels of p-MKK7. On the contrary, inhibiting the expression of MKK7 reversed the antitumor effect of Alpinetin. Moreover, Alpinetin enhanced the sensitivity of HepG2 hepatoma cells to the chemotherapeutic agent CDDP. Taken together, our studies indicate that activation of MKK7 mediates the anti-hepatoma effect of Alpinetin. MKK7 may be a putative target for molecular therapy against hepatoma and Alpinetin could serve as a potential agent for the development of hepatoma therapy.
Collapse
Affiliation(s)
- Bo Tang
- Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116027, PR China
| | | | | | | | | | | | | |
Collapse
|
195
|
Chakrabarti A, Chen AW, Varner JD. A review of the mammalian unfolded protein response. Biotechnol Bioeng 2011; 108:2777-93. [PMID: 21809331 PMCID: PMC3193940 DOI: 10.1002/bit.23282] [Citation(s) in RCA: 314] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 06/21/2011] [Accepted: 07/15/2011] [Indexed: 12/14/2022]
Abstract
Proteins requiring post-translational modifications such as N-linked glycosylation are processed in the endoplasmic reticulum (ER). A diverse array of cellular stresses can lead to dysfunction of the ER and ultimately to an imbalance between protein-folding capacity and protein-folding load. Cells monitor protein folding by an inbuilt quality control system involving both the ER and the Golgi apparatus. Unfolded or misfolded proteins are tagged for degradation via ER-associated degradation (ERAD) or sent back through the folding cycle. Continued accumulation of incorrectly folded proteins can also trigger the unfolded protein response (UPR). In mammalian cells, UPR is a complex signaling program mediated by three ER transmembrane receptors: activating transcription factor 6 (ATF6), inositol requiring kinase 1 (IRE1) and double-stranded RNA-activated protein kinase (PKR)-like endoplasmic reticulum kinase (PERK). UPR performs three functions, adaptation, alarm, and apoptosis. During adaptation, the UPR tries to reestablish folding homeostasis by inducing the expression of chaperones that enhance protein folding. Simultaneously, global translation is attenuated to reduce the ER folding load while the degradation rate of unfolded proteins is increased. If these steps fail, the UPR induces a cellular alarm and mitochondrial mediated apoptosis program. UPR malfunctions have been associated with a wide range of disease states including tumor progression, diabetes, as well as immune and inflammatory disorders. This review describes recent advances in understanding the molecular structure of UPR in mammalian cells, its functional role in cellular stress, and its pathophysiology.
Collapse
Affiliation(s)
- Anirikh Chakrabarti
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca NY 14853
| | - Aaron W. Chen
- Polymer Science and Engineering, University of Massachusetts Amherst, Amherst MA 01003
| | - Jeffrey D. Varner
- Corresponding author: Jeffrey D. Varner, Assistant Professor, School of Chemical and Biomolecular Engineering, 244 Olin Hall, Cornell University, Ithaca NY, 14853, , Phone: (607) 255 -4258, Fax: (607) 255 -9166
| |
Collapse
|
196
|
Wang J, Chen L, Ko CI, Zhang L, Puga A, Xia Y. Distinct signaling properties of mitogen-activated protein kinase kinases 4 (MKK4) and 7 (MKK7) in embryonic stem cell (ESC) differentiation. J Biol Chem 2011; 287:2787-97. [PMID: 22130668 DOI: 10.1074/jbc.m111.281915] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Signal transduction pathways are integral components of the developmental regulatory network that guides progressive cell fate determination. MKK4 and MKK7 are upstream kinases of the mitogen-activated protein kinases (MAPKs), responsible for channeling physiological and environmental signals to their cellular responses. Both kinases are essential for survival of mouse embryos, but because of embryonic lethality, their precise developmental roles remain largely unknown. Using gene knock-out mouse ESCs, we studied the roles of MKK4 and MKK7 in differentiation in vitro. While MKK4 and MKK7 were dispensable for ESC self-renewal and pluripotency maintenance, they exhibited unique signaling and functional properties in differentiation. MKK4 and MKK7 complemented each other in activation of the JNK-c-Jun cascades and loss of both led to senescence upon cell differentiation. On the other hand, MKK4 and MKK7 had opposite effects on activation of the p38 cascades during differentiation. Specifically, MKK7 reduced p38 activation, while Mkk7(-/-) ESCs had elevated phosphorylation of MKK4, p38, and ATF2, and increased MEF2C expression. Consequently, Mkk7(-/-) ESCs had higher expression of MHC and MLC and enhanced formation of contractile cardiomyocytes. In contrast, MKK4 was required for p38 activation and Mkk4(-/-) ESCs exhibited diminished p-ATF2 and MEF2C expression, resulting in impaired MHC induction and defective cardiomyocyte differentiation. Exogenous MKK4 expression partially restored the ability of Mkk4(-/-) ESCs to differentiate into cardiomyocytes. Our results uncover complementary and interdependent roles of MKK4 and MKK7 in development, and identify the essential requirement for MKK4 in p38 activation and cardiomyocyte differentiation.
Collapse
Affiliation(s)
- Jingcai Wang
- Department of Environmental Health, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45367-0056, USA
| | | | | | | | | | | |
Collapse
|
197
|
Chang YF, Lee-Chang JS, Harris KY, Sinha-Hikim AP, Rao MK. Role of β-catenin in post-meiotic male germ cell differentiation. PLoS One 2011; 6:e28039. [PMID: 22125654 PMCID: PMC3220672 DOI: 10.1371/journal.pone.0028039] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 10/31/2011] [Indexed: 01/13/2023] Open
Abstract
Though roles of β-catenin signaling during testis development have been well established, relatively little is known about its role in postnatal testicular physiology. Even less is known about its role in post-meiotic germ cell development and differentiation. Here, we report that β-catenin is highly expressed in post-meiotic germ cells and plays an important role during spermiogenesis in mice. Spermatid-specific deletion of β-catenin resulted in significantly reduced sperm count, increased germ cell apoptosis and impaired fertility. In addition, ultrastructural studies show that the loss of β-catenin in post-meiotic germ cells led to acrosomal defects, anomalous release of immature spermatids and disruption of adherens junctions between Sertoli cells and elongating spermatids (apical ectoplasmic specialization; ES). These defects are likely due to altered expression of several genes reportedly involved in Sertoli cell-germ cell adhesion and germ cell differentiation, as revealed by gene expression analysis. Taken together, our results suggest that β-catenin is an important molecular link that integrates Sertoli cell-germ cell adhesion with the signaling events essential for post-meiotic germ cell development and maturation. Since β-catenin is also highly expressed in the Sertoli cells, we propose that binding of germ cell β-catenin complex to β-catenin complex on Sertoli cell at the apical ES surface triggers a signaling cascade that regulates post-meiotic germ cell differentiation.
Collapse
Affiliation(s)
- Yao-Fu Chang
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Jennifer S. Lee-Chang
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Krystle Y. Harris
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Amiya P. Sinha-Hikim
- Division of Endocrinology, Metabolism, and Molecular Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, California, United States of America
| | - Manjeet K. Rao
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- * E-mail:
| |
Collapse
|
198
|
STAGSTED JAN. Journey beyond immunology. Regulation of receptor internalization by major histocompatibility complex class I (MHC-I) and effect of peptides derived from MHC-I. APMIS 2011. [DOI: 10.1111/j.1600-0463.1998.tb05657.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
199
|
López-Santalla M, Salvador-Bernáldez M, González-Alvaro I, Castañeda S, Ortiz AM, García-García MI, Kremer L, Roncal F, Mulero J, Martínez-A C, Salvador JM. Tyr³²³-dependent p38 activation is associated with rheumatoid arthritis and correlates with disease activity. ACTA ACUST UNITED AC 2011; 63:1833-42. [PMID: 21452291 DOI: 10.1002/art.30375] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE The p38 MAPK is important in the pathogenic immune response in rheumatoid arthritis (RA). The p38 molecule can be activated through phosphorylation on Thr¹⁸⁰-Tyr¹⁸² by upstream MAPK kinases and via an alternative pathway through phosphorylation on Tyr³²³. We undertook this study to quantify the phosphorylation of Tyr³²³ p38 and of Thr¹⁸⁰-Tyr¹⁸² p38 on T cells from healthy controls and patients with RA or ankylosing spondylitis (AS) to identify variables associated with p38 phosphorylation and disease activity. METHODS We measured p38 phosphorylation on Tyr³²³ and Thr¹⁸⁰-Tyr¹⁸² by flow cytometry and Western blotting on T cells from 30 control subjects, 33 AS patients, 30 patients with RA in remission, and 79 patients with active RA. We collected the clinical characteristics and analyzed correlations between clinical variables, the Disease Activity Score in 28 joints (DAS28), and p38 phosphorylation levels. Multivariate regression analysis was performed to identify variables associated with p38 phosphorylation on Tyr³²³ and Thr¹⁸⁰-Tyr¹⁸². RESULTS Phosphorylation of p38 on Tyr³²³ was higher in T cells from patients with active RA (P = 0.008 versus healthy controls) than in patients with RA in remission or in patients with AS. Tyr³²³ p38 phosphorylation was associated with disease activity determined by the DAS28 (P = 0.017). Enhanced p38 phosphorylation was linked to Lck-mediated activation of the Tyr³²³-dependent pathway in the absence of upstream MAPKK activation. CONCLUSION Our results indicate that phosphorylation status on Tyr³²³ p38 correlates with RA disease activity and suggest that the Tyr³²³-dependent pathway is an attractive target for down-regulation of p38 activity in RA patients.
Collapse
|
200
|
Bhattacharjee A, Pal S, Feldman GM, Cathcart MK. Hck is a key regulator of gene expression in alternatively activated human monocytes. J Biol Chem 2011; 286:36709-23. [PMID: 21878628 DOI: 10.1074/jbc.m111.291492] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
IL-13 is a Th2 cytokine that promotes alternative activation (M2 polarization) in primary human monocytes. Our studies have characterized the functional IL-13 receptor complex and the downstream signaling events in response to IL-13 stimulation in alternatively activated monocytes/macrophages. In this report, we present evidence that IL-13 induces the activation of a Src family tyrosine kinase, which is required for IL-13 induction of M2 gene expression, including 15-lipoxygenase (15-LO). Our data show that Src kinase activity regulates IL-13-induced p38 MAPK tyrosine phosphorylation via the upstream kinases MKK3 or MKK6. Our findings also reveal that the IL-13 receptor-associated tyrosine kinase Jak2 is required for the activation of both Src kinase as well as p38 MAPK. Further, we found that Src tyrosine kinase-mediated activation of p38 MAPK is required for Stat1 and Stat3 serine 727 phosphorylation in alternatively activated monocytes/macrophages. Additional studies identify Hck as the specific Src family member, stimulated by IL-13 and involved in regulating both p38 MAPK activation and p38 MAPK-mediated 15-LO expression. Finally we show that the Hck regulates the expression of other alternative state (M2)-specific genes (Mannose receptor, MAO-A, and CD36) and therefore conclude that Hck acts as a key regulator controlling gene expression in alternatively activated monocytes/macrophages.
Collapse
Affiliation(s)
- Ashish Bhattacharjee
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic, and Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio 44195, USA.
| | | | | | | |
Collapse
|