151
|
Affiliation(s)
- J E Ferrell
- Department of Molecular Pharmacology, Stanford University School of Medicine, California 94305-5332, USA
| |
Collapse
|
152
|
Bourguignon LY, Zhu H, Shao L, Chen YW. CD44 interaction with c-Src kinase promotes cortactin-mediated cytoskeleton function and hyaluronic acid-dependent ovarian tumor cell migration. J Biol Chem 2001; 276:7327-36. [PMID: 11084024 DOI: 10.1074/jbc.m006498200] [Citation(s) in RCA: 204] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study we have demonstrated that both CD44 (the hyaluronan (HA) receptor) and c-Src kinase are expressed in human ovarian tumor cells (SK-OV-3.ipl cell line), and that these two proteins are physically associated as a complex in vivo. Using a recombinant cytoplasmic domain of CD44 and an in vitro binding assay, we have detected a specific interaction between CD44 and c-Src kinase. Furthermore, the binding of HA to SK-OV-3.ipl cells promotes c-Src kinase recruitment to CD44 and stimulates c-Src kinase activity, which, in turn, increases tyrosine phosphorylation of the cytoskeletal protein, cortactin. Subsequently, tyrosine phosphorylation of cortactin attenuates its ability to cross-link filamentous actin in vitro. In addition, transfection of SK-OV-3.ipl cells with a dominant active form of c-Src (Y527F)cDNA promotes CD44 and c-Src association with cortactin in membrane projections, and stimulates HA-dependent/CD44-specific ovarian tumor cell migration. Finally, overexpression of a dominant-negative mutant of c-Src kinase (K295R) in SK-OV-3.ipl cells impairs the tumor cell-specific phenotype. Taken together, these findings strongly suggest that CD44 interaction with c-Src kinase plays a pivotal role in initiating cortactin-regulated cytoskeleton function and HA-dependent tumor cell migration, which may be required for human ovarian cancer progression.
Collapse
Affiliation(s)
- L Y Bourguignon
- Department of Cell Biology and Anatomy, School of Medicine, University of Miami, Florida 33101, USA.
| | | | | | | |
Collapse
|
153
|
Scorilas A, Kyriakopoulou L, Yousef GM, Ashworth LK, Kwamie A, Diamandis EP. Molecular cloning, physical mapping, and expression analysis of a novel gene, BCL2L12, encoding a proline-rich protein with a highly conserved BH2 domain of the Bcl-2 family. Genomics 2001; 72:217-21. [PMID: 11401436 DOI: 10.1006/geno.2000.6455] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Members of the Bcl-2 family of apoptosis-regulating proteins contain at least one of the four evolutionarily conserved domains, termed BH1, BH2, BH3, or BH4. Here, we report the identification, cloning, physical mapping, and expression pattern of BCL2L12, a novel gene that encodes a BCL2-like proline-rich protein. Proline-rich sites have been shown to interact with Src homology region 3 (SH3) domains of several tyrosine kinases, mediating their oncogenic potential. This new gene maps to chromosome 19q13.3 and is located between the IRF3 and the PRMT1/HRMT1L2 genes, close to the RRAS gene. BCL2L12 is composed of seven coding exons and six intervening introns, spanning a genomic area of 8.8 kb. All of the exon-intron splice sites conform to the consensus sequence for eukaryotic splice sites. The BCL2L12 protein is composed of 334 amino acids, with a calculated molecular mass of 36.8 kDa and an isoelectric point of 9.45. The BCL2L12 protein contains one BH2 homology domain, one proline-rich region similar to the TC21 protein and, five consensus PXXP tetrapeptide sequences. BCL2L12 is expressed mainly in breast, thymus, prostate, fetal liver, colon, placenta, pancreas, small intestine, spinal cord, kidney, and bone marrow and to a lesser extent in many other tissues. We also identified one splice variant of BCL2L12 that is primarily expressed in skeletal muscle.
Collapse
Affiliation(s)
- A Scorilas
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
| | | | | | | | | | | |
Collapse
|
154
|
Barel M, Le Romancer M, Frade R. Activation of the EBV/C3d receptor (CR2, CD21) on human B lymphocyte surface triggers tyrosine phosphorylation of the 95-kDa nucleolin and its interaction with phosphatidylinositol 3 kinase. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:3167-73. [PMID: 11207269 DOI: 10.4049/jimmunol.166.5.3167] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We previously demonstrated that CR2 activation on human B lymphocyte surface triggered tyrosine phosphorylation of a p95 component and its interaction with p85 subunit of phosphatidylinositol 3' (PI 3) kinase. Despite identical molecular mass of 95 kDa, this tyrosine phosphorylated p95 molecule was not CD19, the proto-oncogene Vav, or the adaptator Gab1. To identify this tyrosine phosphorylated p95 component, we first purified it by affinity chromatography on anti-phosphotyrosine mAb covalently linked to Sepharose 4B, followed by polyacrylamide gel electrophoresis. Then, the isolated 95-kDa tyrosine phosphorylated band was submitted to amino acid analysis by mass spectrometry; the two different isolated peptides were characterized by amino acid sequences 100% identical with two different domains of nucleolin, localized between aa 411--420 and 611--624. Anti-nucleolin mAb was used to confirm the antigenic properties of this p95 component. Functional studies demonstrated that CR2 activation induced, within a brief span of 2 min, tyrosine phosphorylation of nucleolin and its interaction with Src homology 2 domains of the p85 subunit of PI 3 kinase and of 3BP2 and Grb2, but not with Src homology 2 domains of Fyn and Gap. These properties of nucleolin were identical with those of the p95 previously described and induced by CR2 activation. Furthermore, tyrosine phosphorylation of nucleolin was also induced in normal B lymphocytes by CR2 activation but neither by CD19 nor BCR activation. These data support that tyrosine phosphorylation of nucleolin and its interaction with PI 3 kinase p85 subunit constitute one of the earlier steps in the specific intracellular signaling pathway of CR2.
Collapse
MESH Headings
- Antigens, CD19/metabolism
- B-Lymphocytes/enzymology
- B-Lymphocytes/metabolism
- B-Lymphocytes/virology
- Herpesvirus 4, Human/immunology
- Humans
- K562 Cells
- Lymphoma, B-Cell/enzymology
- Lymphoma, B-Cell/immunology
- Lymphoma, B-Cell/metabolism
- Lymphoma, B-Cell/virology
- Membrane Proteins/metabolism
- Membrane Proteins/physiology
- Peptide Fragments/metabolism
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphoproteins/metabolism
- Phosphorylation
- Phosphotyrosine/metabolism
- Protein Binding/immunology
- Proto-Oncogene Mas
- RNA-Binding Proteins/metabolism
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Complement 3d/metabolism
- Receptors, Complement 3d/physiology
- Tumor Cells, Cultured
- Nucleolin
Collapse
Affiliation(s)
- M Barel
- Immunochimie des Régulations Cellulaires et des Interactions Virales, Centre Institut National de la Santé et de la Recherche Médicale, Paris, France
| | | | | |
Collapse
|
155
|
Hsueh RC, Scheuermann RH. Tyrosine kinase activation in the decision between growth, differentiation, and death responses initiated from the B cell antigen receptor. Adv Immunol 2001; 75:283-316. [PMID: 10879287 DOI: 10.1016/s0065-2776(00)75007-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Immunoglobulin-containing receptors expressed on B lineage lymphocytes play critical roles in the development and function of the humoral arm of the immune system. The preB cell antigen receptor (preBCR) contains the immunoglobulin mu heavy chain (Ig mu) and signals to the preB cell that heavy chain rearrangement has been successful, a process termed heavy chain selection. The B cell antigen receptor (BCR) contains both Ig heavy and light chains and is expressed on immature and mature B cells before and after antigen encounter. Both receptor types from a complex with the Ig alpha and Ig beta proteins that link the predominantly extracellular Ig with intracellular signal transduction pathways. Signaling through the BCR induces different cellular responses depending on the nature of the signaling agent and the development stage of the target cell. These responses include clonal anergy and apoptotic deletion in immature B cells and survival, proliferation, and differentiation in mature B and preB cells. Several protein tyrosine kinases are activated rapidly following engagement of the BCR/preBCR complexes, including members of the Src family (Lyn and Blk), the Syk/ZAP70 family (Syk), and the Tec family (Btk). In this review, we discuss possible mechanisms by which engagement of these similar receptor complexes can give rise to different cellular responses and the role that these kinases play in this process.
Collapse
MESH Headings
- Agammaglobulinaemia Tyrosine Kinase
- Antibody Formation
- Antigens, CD/genetics
- Antigens, CD/immunology
- Apoptosis/physiology
- B-Lymphocyte Subsets/cytology
- B-Lymphocyte Subsets/enzymology
- B-Lymphocyte Subsets/immunology
- CD79 Antigens
- Cell Differentiation/physiology
- Cell Division/physiology
- Enzyme Activation
- Enzyme Precursors/physiology
- Genes, Immunoglobulin
- Hematopoietic Stem Cells/cytology
- Hematopoietic Stem Cells/immunology
- Humans
- Immune Tolerance
- Immunoglobulin Heavy Chains/genetics
- Immunologic Deficiency Syndromes/enzymology
- Immunologic Deficiency Syndromes/genetics
- Immunologic Deficiency Syndromes/immunology
- Intracellular Signaling Peptides and Proteins
- Lymphocyte Activation
- Phosphorylation
- Plasma Cells/cytology
- Plasma Cells/immunology
- Protein Processing, Post-Translational
- Protein-Tyrosine Kinases/physiology
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, B-Cell/physiology
- Recombinant Fusion Proteins/immunology
- Signal Transduction
- Syk Kinase
- ZAP-70 Protein-Tyrosine Kinase
- src Homology Domains
- src-Family Kinases/deficiency
- src-Family Kinases/genetics
- src-Family Kinases/physiology
Collapse
Affiliation(s)
- R C Hsueh
- Laboratory of Molecular Pathology, University of Texas Southwestern Medical Center, Dallas 75235, USA
| | | |
Collapse
|
156
|
Xing L, Venegas AM, Chen A, Garrett-Beal L, Boyce BF, Varmus HE, Schwartzberg PL. Genetic evidence for a role for Src family kinases in TNF family receptor signaling and cell survival. Genes Dev 2001; 15:241-53. [PMID: 11157779 PMCID: PMC312612 DOI: 10.1101/gad.840301] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mutant src(-/-) mice have osteopetrosis resulting from defective osteoclasts, the cells that resorb bone. However, signaling pathways involving Src family members in osteoclasts remain unclear. We demonstrate that expression of a truncated Src molecule, Src251, lacking the kinase domain, induces osteopetrosis in wild-type and src(+/-) mice and worsens osteopetrosis in src(-/-) mice by a novel mechanism, increased osteoclast apoptosis. Induction of apoptosis by Src251 requires a functional SH2, but not an SH3, domain and is associated with reduced AKT kinase activity. Expression of Src251 dramatically reduces osteoclast survival in response to RANKL/TRANCE/OPGL, providing evidence that Src family kinases are required in vivo for survival signaling pathways downstream from TNF family receptors.
Collapse
Affiliation(s)
- L Xing
- Department of Pathology, University of Rochester, Rochester, New York 14627, USA
| | | | | | | | | | | | | |
Collapse
|
157
|
Esen M, Grassmé H, Riethmüller J, Riehle A, Fassbender K, Gulbins E. Invasion of human epithelial cells by Pseudomonas aeruginosa involves src-like tyrosine kinases p60Src and p59Fyn. Infect Immun 2001; 69:281-7. [PMID: 11119516 PMCID: PMC97882 DOI: 10.1128/iai.69.1.281-287.2001] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa plays a major role in respiratory tract infections or sepsis in patients with cystic fibrosis or upon suppression of the immune system. Several P. aeruginosa strains have been shown to be internalized by human epithelial cells; however, the molecular mechanisms of the invasion process are poorly characterized. Here, we show that the internalization of P. aeruginosa into human epithelial cells results in and requires activation of the Src-like tyrosine kinases p59Fyn and p60Src and the consequent tyrosine phosphorylation of several eukaryotic proteins. The significance of Src-like tyrosine kinase activation is shown by an almost complete blockade of P. aeruginosa internalization, but not adhesion, upon inhibition of Src-like tyrosine kinases. Likewise, inhibition of P. aeruginosa binding to CFTR, which has been shown to block P. aeruginosa internalization, prevents Src and Fyn activation, supporting a pivotal role of Src-like tyrosine kinases for invasion by P. aeruginosa.
Collapse
Affiliation(s)
- M Esen
- Department of Physiology, University of Tuebingen, 72076 Tuebingen, Germany
| | | | | | | | | | | |
Collapse
|
158
|
Ye K, Hurt KJ, Wu FY, Fang M, Luo HR, Hong JJ, Blackshaw S, Ferris CD, Snyder SH. Pike. A nuclear gtpase that enhances PI3kinase activity and is regulated by protein 4.1N. Cell 2000; 103:919-30. [PMID: 11136977 DOI: 10.1016/s0092-8674(00)00195-1] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
While cytoplasmic PI3Kinase (PI3K) is well characterized, regulation of nuclear PI3K has been obscure. A novel protein, PIKE (PI3Kinase Enhancer), interacts with nuclear PI3K to stimulate its lipid kinase activity. PIKE encodes a 753 amino acid nuclear GTPase. Dominant-negative PIKE prevents the NGF enhancement of PI3K and upregulation of cyclin D1. NGF treatment also leads to PIKE interactions with 4.1N, which has translocated to the nucleus, fitting with the initial identification of PIKE based on its binding 4.1N in a yeast two-hybrid screen. Overexpression of 4.1N abolishes PIKE effects on PI3K. Activation of nuclear PI3K by PIKE is inhibited by the NGF-stimulated 4.1N translocation to the nucleus. Thus, PIKE physiologically modulates the activation by NGF of nuclear PI3K.
Collapse
Affiliation(s)
- K Ye
- Johns Hopkins University School of Medicine, Department of Neuroscience, North Wolfe Street 21205, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Abstract
The Btk family kinases represent new members of non-receptor tyrosine kinases, which include Btk/Atk, Itk/Emt/Tsk, Bmx/Etk, and Tec. They are characterized by having four structural modules: PH (pleckstrin homology) domain, SH3 (Src homology 3) domain, SH2 (Src homology 2) domain and kinase (Src homology 1) domain. Increasing evidence suggests that, like Src-family kinases, Btk family kinases play central but diverse modulatory roles in various cellular processes. They participate in signal transduction in response to virtually all types of extracellular stimuli which are transmitted by growth factor receptors, cytokine receptors, G-protein coupled receptors, antigen-receptors and integrins. They are regulated by many non-receptor tyrosine kinases such as Src, Jak, Syk and FAK family kinases. In turn, they regulate many of major signaling pathways including those of PI3K, PLCgamma and PKC. Both genetic and biochemical approaches have been used to dissect the signaling pathways and elucidate their roles in growth, differentiation and apoptosis. An emerging new role of this family of kinases is cytoskeletal reorganization and cell motility. The physiological importance of these kinases was amply demonstrated by their link to the development of immunodeficiency diseases, due to germ-line mutations. The present article attempts to review the structure and functions of Btk family kinases by summarizing our current knowledge on the interacting partners associated with the different modules of the kinases and the diverse signaling pathways in which they are involved.
Collapse
Affiliation(s)
- Y Qiu
- Department of Laboratory Medicine and Pathology and Cancer Center, 420 Delaware Street SE, University of Minnesota, Minneapolis, MN 55455, USA
| | | |
Collapse
|
160
|
Ueki K, Algenstaedt P, Mauvais-Jarvis F, Kahn CR. Positive and negative regulation of phosphoinositide 3-kinase-dependent signaling pathways by three different gene products of the p85alpha regulatory subunit. Mol Cell Biol 2000; 20:8035-46. [PMID: 11027274 PMCID: PMC86414 DOI: 10.1128/mcb.20.21.8035-8046.2000] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phosphoinositide (PI) 3-kinase is a key mediator of insulin-dependent metabolic actions, including stimulation of glucose transport and glycogen synthesis. The gene for the p85alpha regulatory subunit yields three splicing variants, p85alpha, AS53/p55alpha, and p50alpha. All three have (i) a C-terminal structure consisting of two Src homology 2 domains flanking the p110 catalytic subunit-binding domain and (ii) a unique N-terminal region of 304, 34, and 6 amino acids, respectively. To determine if these regulatory subunits differ in their effects on enzyme activity and signal transduction from insulin receptor substrate (IRS) proteins under physiological conditions, we expressed each regulatory subunit in fully differentiated L6 myotubes using adenovirus-mediated gene transfer with or without coexpression of the p110alpha catalytic subunit. PI 3-kinase activity associated with p50alpha was greater than that associated with p85alpha or AS53. Increasing the level of p85alpha or AS53, but not p50alpha, inhibited both phosphotyrosine-associated and p110-associated PI 3-kinase activities. Expression of a p85alpha mutant lacking the p110-binding site (Deltap85) also inhibited phosphotyrosine-associated PI 3-kinase activity but not p110-associated activity. Insulin stimulation of two kinases downstream from PI-3 kinase, Akt and p70 S6 kinase (p70(S6K)), was decreased in cells expressing p85alpha or AS53 but not in cells expressing p50alpha. Similar inhibition of PI 3-kinase, Akt, and p70(S6K) was observed, even when p110alpha was coexpressed with p85alpha or AS53. Expression of p110alpha alone dramatically increased glucose transport but decreased glycogen synthase activity. This effect was reduced when p110alpha was coexpressed with any of the three regulatory subunits. Thus, the three different isoforms of regulatory subunit can relay the signal from IRS proteins to the p110 catalytic subunit with different efficiencies. They also negatively modulate the PI 3-kinase catalytic activity but to different extents, dependent on the unique N-terminal structure of each isoform. These data also suggest the existence of a mechanism by which regulatory subunits modulate the PI 3-kinase-mediated signals, independent of the kinase activity, possibly through subcellular localization of the catalytic subunit or interaction with additional signaling molecules.
Collapse
Affiliation(s)
- K Ueki
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | |
Collapse
|
161
|
Page K, Li J, Wang Y, Kartha S, Pestell RG, Hershenson MB. Regulation of cyclin D(1) expression and DNA synthesis by phosphatidylinositol 3-kinase in airway smooth muscle cells. Am J Respir Cell Mol Biol 2000; 23:436-43. [PMID: 11017907 DOI: 10.1165/ajrcmb.23.4.3953] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
We have shown in bovine tracheal myocytes that extracellular signal-regulated kinase (ERK) and Rac1 function as upstream activators of transcription from the cyclin D(1) promoter. We now examine the role of phosphatidylinositol (PI) 3-kinase in this process. PI 3-kinase activity was increased by platelet-derived growth factor (PDGF) and attenuated by the PI 3-kinase inhibitors wortmannin and LY294002. These inhibitors also decreased cyclin D(1) promoter activity, protein abundance, and DNA synthesis. Overexpression of the active catalytic subunit of PI 3-kinase (p110(PI) (3-K)CAAX) was sufficient to activate the cyclin D(1) promoter. Wortmannin and LY294002 failed to attenuate PDGF-induced ERK activation, and overexpression of p110(PI) (3-K)CAAX was insufficient to activate ERK. p110(PI) (3-K)CAAX-induced cyclin D(1) promoter activity was not blocked by PD98059, an inhibitor of mitogen-activated protein kinase/ERK kinase. We next examined whether PI 3-kinase and the 21-kD guanidine triphosphatase Rac1 regulate cyclin D(1) promoter activity by similar mechanisms. p110(PI) (3-K)CAAX-induced cyclin D(1) promoter activity was decreased by two inhibitors of Rac1-mediated signaling, catalase and diphenylene iodonium. Further, PDGF, PI 3-kinase, and Rac1 each activated the cyclin D(1) promoter at the cyclic adenosine monophosphate response element binding protein (CREB)/activating transcription factor (ATF)-2 binding site, as evidenced by expression of a CREB/ATF-2 reporter plasmid. Finally, PI 3-kinase and Rac1-induced CREB/ATF-2 transactivation were each inhibited by catalase. Together, these data suggest that in airway smooth muscle (ASM) cells, PI 3-kinase regulates transcription from the cyclin D(1) promoter and DNA synthesis in an ERK-independent manner. Further, PI 3-kinase and Rac1 regulate ASM cell cycle traversal via a common cis-regulatory element in the cyclin D(1) promoter.
Collapse
Affiliation(s)
- K Page
- Department of Pediatrics, University of Chicago, Chicago, Illinois, USA
| | | | | | | | | | | |
Collapse
|
162
|
Lee AW, States DJ. Both src-dependent and -independent mechanisms mediate phosphatidylinositol 3-kinase regulation of colony-stimulating factor 1-activated mitogen-activated protein kinases in myeloid progenitors. Mol Cell Biol 2000; 20:6779-98. [PMID: 10958675 PMCID: PMC86204 DOI: 10.1128/mcb.20.18.6779-6798.2000] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/1999] [Accepted: 06/13/2000] [Indexed: 11/20/2022] Open
Abstract
Colony-stimulating factor 1 (CSF-1) supports the proliferation, survival, and differentiation of bone marrow-derived cells of the monocytic lineage. In the myeloid progenitor 32D cell line expressing CSF-1 receptor (CSF-1R), CSF-1 activation of the extracellular signal-regulated kinase (ERK) pathway is both Ras and phosphatidylinositol 3-kinase (PI3-kinase) dependent. PI3-kinase inhibition did not influence events leading to Ras activation. Using the activity of the PI3-kinase effector, Akt, as readout, studies with dominant-negative and oncogenic Ras failed to place PI3-kinase downstream of Ras. Thus, PI3-kinase appears to act in parallel to Ras. PI3-kinase inhibitors enhanced CSF-1-stimulated A-Raf and c-Raf-1 activities, and dominant-negative A-Raf but not dominant-negative c-Raf-1 reduced CSF-1-provoked ERK activation, suggesting that A-Raf mediates a part of the stimulatory signal from Ras to MEK/ERK, acting in parallel to PI3-kinase. Unexpectedly, a CSF-1R lacking the PI3-kinase binding site (DeltaKI) remained capable of activating MEK/ERK in a PI3-kinase-dependent manner. To determine if Src family kinases (SFKs) are involved, we demonstrated that CSF-1 activated Fyn and Lyn in cells expressing wild-type (WT) or DeltaKI receptors. Moreover, CSF-1-induced Akt activity in cells expressing DeltaKI is SFK dependent since Akt activation was prevented by pharmacological or genetic inhibition of SFK activity. The docking protein Gab2 may link SFK to PI3-kinase. CSF-1 induced Gab2 tyrosyl phosphorylation and association with PI3-kinase in cells expressing WT or DeltaKI receptors. However, only in DeltaKI cells are these events prevented by PP1. Thus in myeloid progenitors, CSF-1 can activate the PI3-kinase/Akt pathway by at least two mechanisms, one involving direct receptor binding and one involving SFKs.
Collapse
Affiliation(s)
- A W Lee
- Departments of Biochemistry and Molecular Biophysics, Washington University Medical School, St. Louis, Missouri 63110, USA.
| | | |
Collapse
|
163
|
Shih WL, Kuo ML, Chuang SE, Cheng AL, Doong SL. Hepatitis B virus X protein inhibits transforming growth factor-beta -induced apoptosis through the activation of phosphatidylinositol 3-kinase pathway. J Biol Chem 2000; 275:25858-64. [PMID: 10835427 DOI: 10.1074/jbc.m003578200] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Transforming growth factor-beta (TGF-beta) is a potent inducer of apoptosis in Hep 3B cells. This work investigated how hepatitis B virus X protein (HBx) affects TGF-beta-induced apoptosis. Trypan blue exclusion and colony formation assays revealed that HBx increased the ID(50) toward TGF-beta. In the presence of HBx, TGF-beta-induced DNA laddering was decreased, indicating that HBx had the ability to block TGF-beta-induced apoptosis. Furthermore, HBx did not alter the expression levels of type I and type II TGF-beta receptors. HBx did not affect TGF-beta-induced activation of promoter activities of the plasminogen activator inhibitor-1 (PAI-1) gene. These results indicate that HBx interferes with only a subset of TGF-beta activity. In the presence of phosphatidylinositol (PI) 3-kinase inhibitors, wortmannin or LY294002, the HBx-mediated inhibitory effect on TGF-beta-induced apoptosis was alleviated. In addition, the tyrosine phosphorylation levels of the regulatory subunit p85 of phosphatidylinositol 3-kinase (PI 3-kinase) and PI 3-kinase activity were elevated in stable clones with HBx expression. Transactivation-deficient mutants of HBx lost their ability to inhibit TGF-beta-induced apoptosis. Phosphorylation of the p85 subunit of PI 3-kinase and Akt, a downstream target of PI 3-kinase, was not observed in stable clones with transactivation-deficient HBx mutant's expression. Thus, the anti-apoptotic effect of HBx against TGF-beta can be mediated through the activation of the PI 3-kinase signaling pathway, and the transactivation function of HBx is required for its anti-apoptosis activity.
Collapse
Affiliation(s)
- W L Shih
- Graduate Institute of Microbiology, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
164
|
Gout I, Middleton G, Adu J, Ninkina NN, Drobot LB, Filonenko V, Matsuka G, Davies AM, Waterfield M, Buchman VL. Negative regulation of PI 3-kinase by Ruk, a novel adaptor protein. EMBO J 2000; 19:4015-25. [PMID: 10921882 PMCID: PMC306608 DOI: 10.1093/emboj/19.15.4015] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2000] [Revised: 06/15/2000] [Accepted: 06/15/2000] [Indexed: 11/14/2022] Open
Abstract
Class I(A) phosphatidylinositol 3-kinase (PI 3-kinase) is a key component of important intracellular signalling cascades. We have identified an adaptor protein, Ruk(l), which forms complexes with the PI 3-kinase holoenzyme in vitro and in vivo. This interaction involves the proline-rich region of Ruk and the SH3 domain of the p85 alpha regulatory subunit of the class I(A) PI 3-kinase. In contrast to many other adaptor proteins that activate PI 3-kinase, interaction with Ruk(l) substantially inhibits the lipid kinase activity of the enzyme. Overexpression of Ruk(l) in cultured primary neurons induces apoptosis, an effect that could be reversed by co-expression of constitutively activated forms of the p110 alpha catalytic subunit of PI 3-kinase or its downstream effector PKB/Akt. Our data provide evidence for the existence of a negative regulator of the PI 3-kinase signalling pathway that is essential for maintaining cellular homeostasis. Structural similarities between Ruk, CIN85 and CD2AP/CMS suggest that these proteins form a novel family of adaptor molecules that are involved in various intracellular signalling pathways.
Collapse
Affiliation(s)
- I Gout
- Ludwig Institute for Cancer Research, Courtauld Building, 91 Riding House Street, London W1P 8BT, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Williams L, Lali F, Clarke C, Brennan F, Foxwell B. Interleukin 10 modulation of tumour necrosis factor receptors requires tyrosine kinases but not the PI 3-kinase/p70 S6 kinase pathway. Cytokine 2000; 12:934-43. [PMID: 10880238 DOI: 10.1006/cyto.1999.0673] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have previously shown that interleukin (IL-)10-induced proliferation of the murine mast cell line D36, was dependent upon the activation of PI 3-kinase and p70 S6 kinase. Conversely, we were able to show that this pathway was not involved in the signal transduction pathway mediating IL-10 inhibition of pro-inflammatory cytokine release from monocytes. We have extended these studies to investigate the induction of p75 tumour necrosis factor receptor (TNF-R) shedding, another anti-inflammatory property of IL-10. Using the inhibitors of PI 3-kinase (LY294002 and wortmannin) and an inhibitor of p70 S6 kinase activation (rapamycin), we were able to show that this anti-inflammatory effect of IL-10 was not mediated by the PI 3-kinase/p70 S6 kinase pathway, indicating that another signalling cascade(s) was involved. Further studies also investigated the role of tyrosine kinases in the response to IL-10. Two distinct tyrosine kinase inhibitors, herbimycin and genistein affected the expression of TNF-R in response to IL-10 but, surprisingly, with opposite effects. However, both compounds inhibited the activation of both PI 3-kinase and p70 S6 kinase, with a concomitant inhibition of IL-10-induced proliferation. We observed that whilst tyrosine kinase activity was involved in the regulation of TNF-R expression, IL-10-induced activation of JAK kinases was not sensitive to inhibition by the tyrosine kinase inhibitors. These data suggest that multiple unknown tyrosine kinases are mediating the IL-10-induced signal transduction pathways leading to the regulation of TNF-R expression and IL-10-induced proliferation.
Collapse
Affiliation(s)
- L Williams
- Kennedy Institute of Rheumatology, London, W6 8LH, UK
| | | | | | | | | |
Collapse
|
166
|
Hakak Y, Hsu YS, Martin GS. Shp-2 mediates v-Src-induced morphological changes and activation of the anti-apoptotic protein kinase Akt. Oncogene 2000; 19:3164-71. [PMID: 10918571 DOI: 10.1038/sj.onc.1203655] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The protein-tyrosine phosphatase Shp-2 is a positive modulator of the Ras/mitogen-activated protein kinase pathway and a putative substrate of the transforming non-receptor tyrosine kinase v-Src. To characterize the role of Shp-2 in cellular transformation and signaling by v-Src, we expressed v-Src in normal and Shp-2-deficient mouse embryo fibroblasts. Expression of Shp-2 was found to be necessary for morphological transformation by v-Src: Shp-2+/+ cells became rounded or spindly upon v-Src expression, whereas Shp-2-deficient cells remained relatively flat. v-Src-induced reorganization of the actin cytoskeleton and the formation of podosomes were compromised in Shp-2-deficient cells. Shp-2 deficiency also reduced v-Src-induced activation of the anti-apoptotic protein kinase Akt. The reduced activation of Akt in Shp-2-deficient cells correlated with a reduction in the association of the p85 regulatory subunit of PI3-kinase with the adapter protein Cbl. Activation of PI3-kinase by v-Src may be mediated by the association of the adapter protein Cbl with the p85 subunit. Since activation of Akt is dependent on PI3-kinase, this suggests that the effect of Shp-2 on Akt activation may be mediated, at least in part, by its effects on the interaction between PI3-kinase and Cbl. The defect in activation of the Akt survival pathway also correlated with enhanced sensitivity of Shp-2-deficient cells to an apoptosis-inducing agent. These results implicate Shp-2 in v-Src-induced cytoskeletal reorganization and activation of the Akt cell survival pathway.
Collapse
Affiliation(s)
- Y Hakak
- Department of Molecular and Cell Biology, University of California, Berkeley 94720-3204, USA
| | | | | |
Collapse
|
167
|
Abstract
The ligand binding preferences, structural features, and biological function of SH3 (Src homology 3) domains are discussed. SH3 domains bind "core" Pro-rich peptide ligands (7-9 amino acids in length) in a polyproline II helical conformation in a highly conserved aromatic rich patch on the protein surface (approximately 390 A2). The ligands can interact with the protein in one of two orientations, depending on the position (N- vs C-terminal) of ligand residues binding to the SH3 selectivity pocket. Core SH3 ligands are characterized by relatively weak interactions (KD = 5-100 microM) that show little binding selectivity within SH3 families. Higher affinity, more selective contiguous ligands require additional flanking residues that bind to less conserved portions of the SH3 surface, with corresponding increase in ligand size and complexity. In contrast to peptide ligands, protein ligands of SH3 domains can exploit multiple discontiguous interactions to enhance affinity and selectivity. A protein-SH3 interaction that utilizes unique interactions may permit the design of small high affinity SH3 ligands. At present, the extended nature of the binding site and homologous nature of the core binding region among SH3 domains present key challenges for structure-based drug design.
Collapse
Affiliation(s)
- D C Dalgarno
- ARIAD Pharmaceuticals, Inc., Cambridge, MA 02139, USA.
| | | | | |
Collapse
|
168
|
Longnecker R, Merchant M, Brown ME, Fruehling S, Bickford JO, Ikeda M, Harty RN. WW- and SH3-domain interactions with Epstein-Barr virus LMP2A. Exp Cell Res 2000; 257:332-40. [PMID: 10837147 DOI: 10.1006/excr.2000.4900] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Epstein-Barr virus (EBV) is a human herpesvirus which establishes a lifelong latent infection in B lymphocytes. Latent membrane protein 2A (LMP2A) is expressed in both humans with EBV latent infection and EBV immortalized cell lines grown in culture. Previous studies have shown that the amino terminal domain of LMP2A, which contains eight tyrosines, associates with a variety of cellular proteins via SH2-phosphotyrosine interactions. Also contained within the LMP2A amino terminal domain are five proline-rich regions, three of which possess the PxxP core consensus sequence required for interacting with SH3 domains and two of which possess the PPxY core consensus sequence (PY motif) required for interacting with class I type WW domains. In the current study, the ability of LMP2A to interact with either modular SH3 or WW domains was investigated. The results of these studies indicate that the two LMP2A PY motifs interact strongly with representative class I WW domains, but not with representative class II WW domains. In contrast, no interactions were detected between LMP2A and any of the five different SH3 domains tested. These data demonstrate that a subset of the conserved proline-rich motifs within the amino terminus of LMP2A can potentially mediate interactions with cellular proteins and may play a role in EBV-mediated latency and/or transformation.
Collapse
Affiliation(s)
- R Longnecker
- Department of Microbiology-Immunology, Northwestern University Medical School, Chicago, Illinois, 60611, USA.
| | | | | | | | | | | | | |
Collapse
|
169
|
Althaus HH, Richter-Landsberg C. Glial cells as targets and producers of neurotrophins. INTERNATIONAL REVIEW OF CYTOLOGY 2000; 197:203-77. [PMID: 10761118 DOI: 10.1016/s0074-7696(00)97005-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Glial cells fulfill important tasks within the neural network of the central and peripheral nervous systems. The synthesis and secretion of various polypeptidic factors (cytokines) and a number of receptors, with which glial cells are equipped, allow them to communicate with their environment. Evidence has accumulated during recent years that neurotrophins play an important role not only for neurons but also for glial cells. This brief update of some morphological, immunocytochemical, and biochemical characteristics of glial cell lineages conveys our present knowledge about glial cells as targets and producers of neurotrophins under normal and pathological conditions. The chapter discusses the presence of neurotrophin receptors on glial cells, glial cells as producers of neurotrophins, signaling pathways downstream Trk and p75NTR, and the significance of neurotrophins and their receptors for glial cells during development, in cell death and survival, and in neurological disorders.
Collapse
Affiliation(s)
- H H Althaus
- AG Neural Regeneration, Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | | |
Collapse
|
170
|
Wellbrock C, Schartl M. Activation of phosphatidylinositol 3-kinase by a complex of p59fyn and the receptor tyrosine kinase Xmrk is involved in malignant transformation of pigment cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:3513-22. [PMID: 10848967 DOI: 10.1046/j.1432-1327.2000.01378.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Malignant melanoma in the fish Xiphophorus is induced by overexpression of the Xmrk-oncogene, encoding a subclass I receptor tyrosine kinase. The mutationally activated Xmrk protein triggers constitutive mitogenic signalling in fish melanoma cells. In recent studies we showed that in melanoma cells phosphatidylinositol (PtdIns) 3-kinase, as well as p59fyn, has elevated levels of kinase activity. Both bind directly to different phosphotyrosine residues in the Xmrk receptor C-terminus through their SH2 domains. To analyse the mechanism of regulation of these Xmrk-associated kinases in melanoma we characterized the protein-protein interactions between PtdIns 3-kinase, p59fyn and the Xmrk receptor in detail. A ternary complex in which the p85 subunit of PtdIns 3-kinase is associated with p59fyn as well as with Xmrk was identified. Contrary to complexes described for other receptors, the adaptor protein p120Cbl was not involved in these interactions. Thus, we describe here a new mechanism of activation of PtdIns 3-kinase by a receptor of the epidermal growth factor receptor family in which p59fyn acts as an adaptor as well as an activator of PtdIns 3-kinase. Activation of PtdIns 3-kinase activity by fyn was also found in vivo. The fact that this was only detectable in highly transformed Xmrk overexpressing melanomas but not in benign lesions points to the essential role of the Xmrk receptor in this mechanism of regulation.
Collapse
Affiliation(s)
- C Wellbrock
- Department of Physiological Chemistry I, Biocenter (Theodor-Boveri Institut), University of Würzburg, Germany.
| | | |
Collapse
|
171
|
Grey A, Chen Y, Paliwal I, Carlberg K, Insogna K. Evidence for a functional association between phosphatidylinositol 3-kinase and c-src in the spreading response of osteoclasts to colony-stimulating factor-1. Endocrinology 2000; 141:2129-38. [PMID: 10830300 DOI: 10.1210/endo.141.6.7480] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Osteoclasts are bone-resorbing cells whose normal function depends in part upon their ability to migrate over the bone surface to initiate new sites of bone resorption. The growth factor/cytokine, colony-stimulating factor-1 (CSF-1), potently stimulates osteoclast motility, in a c-src-dependent fashion. The intracellular signaling molecules that participate with c-src in CSF-1-induced remodeling of the osteoclast cytoskeleton have not been identified. Here we demonstrate, using the inhibitors wortmannin and LY294002, that activation of phosphatidylinositol 3-kinase (PI3-K) is required for CSF-1-induced spreading in osteoclasts. After CSF-1 treatment of osteoclast-like cells, PI3-K activity associated with the CSF-1 receptor c-fms, is increased, and the 85-kDa regulatory subunit of PI3-K and c-src coimmunoprecipitate. CSF-1 induces redistribution of PI3-K to the periphery of the cell. The association between p85 and c-src is due in part to a direct interaction between the proline-rich sequences of p85 and the SH3 domain of c-src. In vitro, the c-src SH3 domain stimulates PI3-K activity. Taken together, the current data suggest that c-src, via its SH3 domain, may participate in CSF-1-induced activation of PI3-K and that PI3-K and c-src are in the signaling pathway that subserves CSF-1-induced cytoskeletal changes in osteoclasts.
Collapse
Affiliation(s)
- A Grey
- Section of Endocrinology, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | | | |
Collapse
|
172
|
Madge LA, Pober JS. A phosphatidylinositol 3-kinase/Akt pathway, activated by tumor necrosis factor or interleukin-1, inhibits apoptosis but does not activate NFkappaB in human endothelial cells. J Biol Chem 2000; 275:15458-65. [PMID: 10748004 DOI: 10.1074/jbc.m001237200] [Citation(s) in RCA: 170] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Tumor necrosis factor (TNF) and interleukin-1 (IL-1) activate the transcription of both anti-apoptotic and pro-inflammatory gene products in human endothelial cells (EC) via NFkappaB. Here we report that both TNF and IL-1 activate the anti-apoptotic protein kinase Akt in growth factor and serum-deprived EC, assessed by Western blotting for phospho-Akt. Phosphorylation of Akt is blocked by LY294002 or wortmannin, inhibitors of phosphatidylinositol 3-kinase (PI 3-kinase). Consistent with these biochemical observations, TNF and IL-1 reduce apoptosis caused by growth factor and serum deprivation, and this action is also blocked by LY294002. Although Akt has been reported to activate NFkappaB, LY294002 does not prevent TNF- or IL-1-induced degradation of IkappaBalpha, beta, or epsilon, transcription of NFkappaB-dependent E-selectin or ICAM-1 promoter-reporter genes, or surface expression of E-selectin or ICAM-1 in human EC. LY294002 potentiates the activation of mitogen-activated protein kinases and stress-activated protein kinases by TNF and IL-1, suggesting Akt inhibits these responses. We conclude that TNF and IL-1 activate a PI 3-kinase/Akt anti-apoptotic pathway and that the anti-apoptotic effects of Akt are independent of NFkappaB. Moreover, the PI 3-kinase/Akt pathway does not play a major role in the pro-inflammatory responses of EC to TNF or IL-1.
Collapse
Affiliation(s)
- L A Madge
- Interdepartmental Program in Vascular Biology and Transplantation, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | | |
Collapse
|
173
|
Axelsson L, Hellberg C, Melander F, Smith D, Zheng L, Andersson T. Clustering of beta(2)-integrins on human neutrophils activates dual signaling pathways to PtdIns 3-kinase. Exp Cell Res 2000; 256:257-63. [PMID: 10739672 DOI: 10.1006/excr.2000.4816] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The beta(2)-integrins on leukocytes can serve as a signaling unit during cell adhesion and locomotion, and to further clarify this important property we investigated the possible mechanisms of beta(2)-integrin-induced activation of PtdIns 3-kinase. It has previously been demonstrated that clustering of beta(2)-integrins activates p21(ras) by a tyrosine kinase-dependent pathway, and here we show that active p21(ras) interacts with its downstream target, PtdIns 3-kinase. Engagement of beta(2)-integrins also activates the tyrosine kinases p58(c-fgr) and p59/61(hck) and causes them to associate with the p85 subunit of PtdIns 3-kinase. These findings suggest a mechanism whereby p58(c-fgr) and p59/61(hck) are directly involved in the activation of PtdIns 3-kinase. No coupling between p58(c-fgr) and p59/61(hck) could be detected; hence these kinases probably trigger independent but parallel signals to PtdIns 3-kinase. The effect of beta(2)-integrin clustering on PtdIns 3-kinase activity was monitored as the activation of protein kinase B (PKB). Stimulation of PKB by beta(2)-integrins was abolished by genistein and wortmannin but not by using methyl transferase inhibitors to abrogate the influence of p21(ras)-related proteins. Thus, even if PtdIns 3-kinase is not activated by p21(ras), it can maintain full enzyme activity due to the mentioned interaction with p58(c-fgr) or p59/61(hck). These tyrosine kinases apparently activate similar pathways that operate in parallel and therefore have the potential to substitute for each other in mediating adhesion and regulating cell locomotion.
Collapse
Affiliation(s)
- L Axelsson
- Division of Experimental Pathology, Lund University, Malmö, Sweden
| | | | | | | | | | | |
Collapse
|
174
|
Thodeti CK, Adolfsson J, Juhas M, Sjölander A. Leukotriene D(4) triggers an association between gbetagamma subunits and phospholipase C-gamma1 in intestinal epithelial cells. J Biol Chem 2000; 275:9849-53. [PMID: 10734140 DOI: 10.1074/jbc.275.13.9849] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The proinflammatory mediator leukotriene D(4) (LTD(4)) binds to the seven-transmembrane receptor CYSLT(1). Although this leukotriene plays an important biological role, its intracellular signaling pathways are only partly known. In previous experiments, we found that LTD(4) induced tyrosine phosphorylation and translocation of phospholipase (PLC)-gamma1 to a plasma membrane fraction in a human epithelial cell line (Int 407). In the present study, we further examined these signaling events and found that LTD(4) induced a rapid interaction between Gbetagamma subunits and PLC-gamma1; results obtained with GST fusion proteins of PLC-gamma1 suggest that this interaction is mediated via the pleckstrin homology domain of PLC-gamma1. Moreover, LTD(4) induced an increased association of c-Src with PLC-gamma1, and the selective Src family tyrosine kinase inhibitor PP1 blocked both LTD(4)-induced tyrosine phosphorylation of PLC-gamma1 and the association of PLC-gamma1 with Gbetagamma subunits. The relevance of these observations in intracellular calcium signaling was investigated by microinjecting cells with anti-Gbeta, anti-PLC-gamma1, or anti-c-Src antibodies and by pretreatment with PP1. LTD(4)-induced calcium mobilization was blocked by each of the indicated antibodies (but not isotype-matched control antibodies) and by PP1. Our data suggest that Gbetagamma subunits can, directly or indirectly, serve as membrane-bound partners for PLC-gamma1 and c-Src and that each of these proteins is essential for LTD(4)-induced downstream PLC-gamma1 signaling.
Collapse
Affiliation(s)
- C K Thodeti
- Division of Experimental Pathology, Lund University, Malmö University Hospital, SE-205 02 Malmö, Sweden
| | | | | | | |
Collapse
|
175
|
Funaki M, Katagiri H, Inukai K, Kikuchi M, Asano T. Structure and function of phosphatidylinositol-3,4 kinase. Cell Signal 2000; 12:135-42. [PMID: 10704820 DOI: 10.1016/s0898-6568(99)00086-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Activation of phosphatidylinositol (PI)-kinase is involved in the regulation of a wide array of cellular activities. The enzyme exists as a dimer, consisting of a catalytic and a regulatory subunit. Five isoforms of the regulatory subunit have been identified and classified into three groups comprising respectively 85-kDa, 55-kDa, and 50-kDa proteins. Structural differences in the N-terminal regions of the different group members contribute to defining their binding specificity, their subcellular distributions, and their capacity to activate the 110-kDa catalytic subunit. Two widely distributed isoforms of the catalytic subunit have been identified-p110alpha and p110beta. Despite the fact that they bind to the p85alpha regulatory subunit similarly, p110alpha and p110beta appear to have separate functions within cells and to be activated by different stimuli. Moreover, although p85/p110 PI-kinase almost exclusively phosphorylates the D-3 position of the inositol ring in phosphoinositides when purified PI is used as a substrate in vitro, it appears to phosphorylate the D-4 position with similar or higher efficiency in vivo. Thus, it is highly probable that p85/p110 PI-kinase transmits signals to downstream targets via both D-3- and D-4-phosphorylated phosphoinositides.
Collapse
Affiliation(s)
- M Funaki
- The Institute for Adult Disease, Asahi Life Foundation 1-9-14, Nishi-Shinjuku, Shinjuku-Ward, Japan
| | | | | | | | | |
Collapse
|
176
|
Honda ZI, Suzuki T, Kono H, Okada M, Yamamoto T, Ra C, Morita Y, Yamamoto K. Sequential requirements of the N-terminal palmitoylation site and SH2 domain of Src family kinases in the initiation and progression of FcepsilonRI signaling. Mol Cell Biol 2000; 20:1759-71. [PMID: 10669752 PMCID: PMC85358 DOI: 10.1128/mcb.20.5.1759-1771.2000] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/1999] [Accepted: 11/10/1999] [Indexed: 11/20/2022] Open
Abstract
Initial biochemical signaling originating from high-affinity immunoglobulin E receptor (FcepsilonRI) has been ascribed to Src family kinases. To understand the mechanisms by which individual kinases drive the signaling, we conducted reconstitution experiments: FcepsilonRI signaling in RBL2H3 cells was first suppressed by a membrane-anchored, gain-of-function C-terminal Src kinase and then reconstructed with Src family kinases whose C-terminal negative regulatory sequence was replaced with a c-myc epitope. Those constructs derived from Lyn and Fyn, which are associated with detergent-resistant membranes (DRMs), physically interacted with resting FcepsilonRI and reconstructed clustering-induced signaling that leads to calcium mobilization and ERK1 and -2 activation. c-Src-derived construct, which was excluded from DRMs, failed to interact with FcepsilonRI and to restore the signaling, whereas creation of palmitoylatable Cys3 enabled it to interact with DRMs and with FcepsilonRI and to restore the signaling. Deletion of Src homology 3 (SH3) domain from the Lyn-derived construct did not alter its ability to transduce the series of signaling. Deletion of SH2 domain did not affect its association with DRMs and with FcepsilonRI nor clustering-induced tyrosine phosphorylation of FcepsilonRI beta and gamma subunits, but it almost abrogated the next step of tyrosine phosphorylation of Syk and its recruitment to FcepsilonRI. These findings suggest that Lyn and Fyn could, but c-Src could not, drive FcepsilonRI signaling and that N-terminal palmitoylation and SH2 domain are required in sequence for the initial interaction with FcepsilonRI and for the signal progression to the molecular assembly.
Collapse
Affiliation(s)
- Z i Honda
- Department of Allergy and Rheumatology, Faculty of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
177
|
Activation of Akt kinase by granulocyte colony-stimulating factor (G-CSF): evidence for the role of a tyrosine kinase activity distinct from the janus kinases. Blood 2000. [DOI: 10.1182/blood.v95.5.1656.005k29_1656_1662] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Activation of the serine/threonine kinase Akt has been shown to be a critical component for growth factor and cytokine stimulation of cell survival. Although some of the immediate upstream activators of Akt have been defined, the roles of tyrosine kinases in the activation of Akt are not well delineated. Granulocyte colony-stimulating factor (G-CSF) regulates the proliferation, differentiation, and survival of neutrophilic granulocytes. G-CSF exerts its actions by stimulating several signaling cascades after binding its cell surface receptor. Both Jak (Janus) and Src families of tyrosine kinases are stimulated by incubation of cells with G-CSF. In this report, we show that G-CSF stimulation of cells leads to activation of Akt. The membrane-proximal 55 amino acids of the G-CSF receptor cytoplasmic domain are sufficient for mediating Akt activation. However, activation of Akt appears to be downregulated by the receptor's carboxy-terminal region of 98 amino acids, a region that has been shown to be truncated in some patients with acute myeloid leukemia associated with severe congenital neutropenia. Furthermore, we demonstrate that G-CSF–induced activation of Akt requires the activities of Src family kinases but can be clearly dissociated from G-CSF–stimulated activation of Stats (signal transducers and activators of transcripton) by the Jak kinases. Thus, cytokine activation of the Jak/Stat and other signaling cascades can be functionally separated.
Collapse
|
178
|
Suprynowicz FA, Sparkowski J, Baege A, Schlegel R. E5 oncoprotein mutants activate phosphoinositide 3-kinase independently of platelet-derived growth factor receptor activation. J Biol Chem 2000; 275:5111-9. [PMID: 10671555 DOI: 10.1074/jbc.275.7.5111] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The E5 oncoprotein of bovine papillomavirus type 1 is a Golgi-resident, 44-amino acid polypeptide that can transform fibroblast cell lines by activating endogenous platelet-derived growth factor receptor beta (PDGF-R). However, the recent discovery of E5 mutants that exhibit strong transforming activity but minimal PDGF-R tyrosine phosphorylation indicates that E5 can potentially use additional signal transduction pathway(s) to transform cells. We now show that two classes of E5 mutants, despite poorly activating the PDGF-R, induce tyrosine phosphorylation and activation of phosphoinositide 3-kinase (PI 3-K) and that this activation is resistant to a selective inhibitor of PDGF-R kinase activity, tyrphostin AG1296. Consistent with this independence from PDGF-R signaling, the E5 mutants fail to induce significant cell proliferation in the absence of PDGF, unlike wild-type E5 or the sis oncoprotein. Despite differences in growth factor requirements, however, both wild-type E5 and mutant E5 cell lines form colonies in agarose. Interestingly, activation of PI 3-K occurs without concomitant activation of the ras-dependent mitogen-activated protein kinase pathway. The known ability of constitutively activated PI 3-K to induce anchorage-independent cell proliferation suggests a mechanism by which the mutant E5 proteins transform cells.
Collapse
Affiliation(s)
- F A Suprynowicz
- Department of Pathology, Georgetown University Medical Center, Washington, D.C. 20007, USA
| | | | | | | |
Collapse
|
179
|
Hooshmand-Rad R, Hájková L, Klint P, Karlsson R, Vanhaesebroeck B, Claesson-Welsh L, Heldin CH. The PI 3-kinase isoforms p110(alpha) and p110(beta) have differential roles in PDGF- and insulin-mediated signaling. J Cell Sci 2000; 113 Pt 2:207-14. [PMID: 10633072 DOI: 10.1242/jcs.113.2.207] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phosphoinositide 3′-kinases constitute a family of lipid kinases implicated in signal transduction through tyrosine kinase receptors and heterotrimeric G protein-linked receptors. Phosphoinositide 3′-kinases that bind to the platelet-derived growth factor receptor are composed of two subunits: the p85 subunit acts as an adapter and couples the catalytic p110 subunit to the activated receptor. There are different isoforms of p85 as well as of p110, the individual roles of which have been elusive. Using microinjection of inhibitory antibodies specific for either p110(alpha) or p110(beta) we have investigated the involvement of the two p110 isoforms in platelet-derived growth factor- and insulin-induced actin reorganization in porcine aortic endothelial cells. We have found that antibodies against p110(alpha), but not antibodies against p110(beta), inhibit platelet-derived growth factor-stimulated actin reorganization, whereas the reverse is true for inhibition of insulin-induced actin reorganization. These data indicate that the two phosphoinositide 3′-kinase isoforms have distinct roles in signal transduction pathways induced by platelet-derived growth factor and insulin.
Collapse
Affiliation(s)
- R Hooshmand-Rad
- Ludwig Institute for Cancer Research, BMC, Box 595, S-751 24 Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
180
|
Carman CV, Parent JL, Day PW, Pronin AN, Sternweis PM, Wedegaertner PB, Gilman AG, Benovic JL, Kozasa T. Selective regulation of Galpha(q/11) by an RGS domain in the G protein-coupled receptor kinase, GRK2. J Biol Chem 1999; 274:34483-92. [PMID: 10567430 DOI: 10.1074/jbc.274.48.34483] [Citation(s) in RCA: 262] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
G protein-coupled receptor kinases (GRKs) are well characterized regulators of G protein-coupled receptors, whereas regulators of G protein signaling (RGS) proteins directly control the activity of G protein alpha subunits. Interestingly, a recent report (Siderovski, D. P., Hessel, A., Chung, S., Mak, T. W., and Tyers, M. (1996) Curr. Biol. 6, 211-212) identified a region within the N terminus of GRKs that contained homology to RGS domains. Given that RGS domains demonstrate AlF(4)(-)-dependent binding to G protein alpha subunits, we tested the ability of G proteins from a crude bovine brain extract to bind to GRK affinity columns in the absence or presence of AlF(4)(-). This revealed the specific ability of bovine brain Galpha(q/11) to bind to both GRK2 and GRK3 in an AlF(4)(-)-dependent manner. In contrast, Galpha(s), Galpha(i), and Galpha(12/13) did not bind to GRK2 or GRK3 despite their presence in the extract. Additional studies revealed that bovine brain Galpha(q/11) could also bind to an N-terminal construct of GRK2, while no binding of Galpha(q/11), Galpha(s), Galpha(i), or Galpha(12/13) to comparable constructs of GRK5 or GRK6 was observed. Experiments using purified Galpha(q) revealed significant binding of both Galpha(q) GDP/AlF(4)(-) and Galpha(q)(GTPgammaS), but not Galpha(q)(GDP), to GRK2. Activation-dependent binding was also observed in both COS-1 and HEK293 cells as GRK2 significantly co-immunoprecipitated constitutively active Galpha(q)(R183C) but not wild type Galpha(q). In vitro analysis revealed that GRK2 possesses weak GAP activity toward Galpha(q) that is dependent on the presence of a G protein-coupled receptor. However, GRK2 effectively inhibited Galpha(q)-mediated activation of phospholipase C-beta both in vitro and in cells, possibly through sequestration of activated Galpha(q). These data suggest that a subfamily of the GRKs may be bifunctional regulators of G protein-coupled receptor signaling operating directly on both receptors and G proteins.
Collapse
Affiliation(s)
- C V Carman
- Department of Biochemistry, Kimmel Cancer Institute, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
181
|
Beitz LO, Fruman DA, Kurosaki T, Cantley LC, Scharenberg AM. SYK is upstream of phosphoinositide 3-kinase in B cell receptor signaling. J Biol Chem 1999; 274:32662-6. [PMID: 10551821 DOI: 10.1074/jbc.274.46.32662] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have recently demonstrated that the D3-phosphoinositide phosphatidylinositol 3,4,5-trisphosphate (PtdIns-3,4,5-P(3)) is critical for producing sustained calcium signals through its role in promoting the function of TEC family tyrosine kinases such as Bruton's tyrosine kinase. Although PtdIns-3,4,5-P(3) can potentially be synthesized by any of several types of phosphoinositide 3-kinases (PI3Ks), B cell receptor (BCR)-induced PtdIns-3,4,5-P(3) production is thought to occur primarily through the activation of the class Ia (p85/p110) PI3Ks. This process has been proposed to be mediated by an interaction between the Src family kinase LYN and the p85 subunit of PI3K and/or through p85 membrane recruitment mediated by CBL and/or CD19. However, calcium signaling and other PI3K-dependent signals are relatively preserved in a LYN kinase-deficient B lymphocyte cell line, suggesting that an alternative pathway for PI3K activation exists. As SYK/ZAP70 kinases are upstream from many BCR-initiated signaling events, we directly analyzed SYK-dependent accumulation of both PtdIns-3,4,5-P(3) and PtdIns-3,4-P(2) in B cell receptor signaling using both dominant negative and genetic knockout approaches. Both methods indicate that SYK is upstream of, and necessary for, a significant portion of BCR-induced PtdIns-3,4, 5-P(3) production. Whereas CD19 does not appear to be involved in this SYK-dependent pathway, the SYK substrate CBL is likely involved as the dominant negative SYK markedly attenuates CBL tyrosine phosphorylation and completely blocks the BCR-dependent association of CBL with p85 PI3K.
Collapse
Affiliation(s)
- L O Beitz
- Laboratory of Allergy, Beth Israel Deaconness Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | | | | | |
Collapse
|
182
|
Hisatsune C, Umemori H, Mishina M, Yamamoto T. Phosphorylation-dependent interaction of the N-methyl-D-aspartate receptor epsilon 2 subunit with phosphatidylinositol 3-kinase. Genes Cells 1999; 4:657-66. [PMID: 10620012 DOI: 10.1046/j.1365-2443.1999.00287.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The NMDA receptors (NMDARs) are ion channels through which Ca2+ influx triggers various intracellular responses. Tyrosine phosphorylation of NMDARs regulates NMDA channel activities, which may be important in neuronal plasticity. The biological significance of the tyrosine phosphorylation events, however, differs among NMDAR subunits: tyrosine phosphorylation of NMDARepsilon1 increases NMDA channel activities, but that of NMDARepsilon2 does not. Since signal transductions from various cell surface receptors are mediated by protein-protein interaction through phosphotyrosine and the Src homology 2 (SH2) domain, we examined the possibility that phosphotyrosines in NMDARepsilon2 contribute to the intracellular signalling events. RESULTS We first show that Fyn is deeply involved in the phosphorylation of NMDARepsilon2 and second that a phosphotyrosine in NMDARepsilon2 interacts with the p85 regulatory subunit of phosphatidylinositol 3-kinase (PI3-kinase). Both the level of tyrosine phosphorylation on NMDARepsilon2 and the amounts of the p85 subunit (p85) bound to NMDARepsilon2 are decreased in Fyn-deficient mice. Moreover, we show that ischaemia stimulates the binding of p85 to phosphorylated NMDARepsilon2, suggesting a physiological role of the phosphotyrosine/SH2-based interaction between NMDARepsilon2 and p85 in the brain. CONCLUSIONS The tyrosine phosphorylation event on NMDARs is important in not only the regulation of its channel activity but also intracellular signalling mediated through the interaction of the NMDAR with SH2 domain-containing molecules.
Collapse
Affiliation(s)
- C Hisatsune
- Department of Oncology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | |
Collapse
|
183
|
Wienands J. The B-cell antigen receptor: formation of signaling complexes and the function of adaptor proteins. Curr Top Microbiol Immunol 1999; 245:53-76. [PMID: 10533310 DOI: 10.1007/978-3-642-57066-7_2] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- J Wienands
- Department for Molecular Immunology, Biology III, University of Freiburg, Germany.
| |
Collapse
|
184
|
Gold MR. Intermediary signaling effectors coupling the B-cell receptor to the nucleus. Curr Top Microbiol Immunol 1999; 245:77-134. [PMID: 10533311 DOI: 10.1007/978-3-642-57066-7_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- M R Gold
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
185
|
Craxton A, Jiang A, Kurosaki T, Clark EA. Syk and Bruton's tyrosine kinase are required for B cell antigen receptor-mediated activation of the kinase Akt. J Biol Chem 1999; 274:30644-50. [PMID: 10521450 DOI: 10.1074/jbc.274.43.30644] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of Akt by multiple stimuli including B cell antigen receptor (BCR) engagement requires phosphatidylinositol 3-kinase and regulates processes including cell survival, proliferation, and metabolism. BCR cross-linking activates three families of non-receptor protein tyrosine kinases (PTKs) and these are transducers of signaling events including phospholipase C and mitogen-activated protein kinase activation; however, the relative roles of PTKs in BCR-mediated Akt activation are unknown. We examined Akt activation in Lyn-, Syk- and Btk-deficient DT40 cells and B cells from Lyn(-/-) mice. BCR-mediated Akt activation required Syk and was partially dependent upon Btk. Increased BCR-induced Akt phosphorylation was observed in Lyn-deficient DT40 cells and Lyn(-/-) mice compared with wild-type cells suggesting that Lyn may negatively regulate Akt function. BCR-induced tyrosine phosphorylation of the phosphatidylinositol 3-kinase catalytic subunit was abolished in Syk-deficient cells consistent with a receptor-proximal role for Syk in BCR-mediated phosphatidylinositol 3-kinase activation; in contrast, it was maintained in Btk-deficient cells, suggesting Btk functions downstream of phosphatidylinositol 3-kinase. Calcium depletion did not influence BCR-induced Akt phosphorylation/activation, showing that neither Syk nor Btk mediates its effects via changes in calcium levels. Thus, BCR-mediated Akt stimulation is regulated by multiple non-receptor PTK families which regulate Akt both proximal and distal to phosphatidylinositol 3-kinase activation.
Collapse
Affiliation(s)
- A Craxton
- Department of Microbiology, University of Washington, Seattle, Washington 98195, USA.
| | | | | | | |
Collapse
|
186
|
Gillham H, Golding MC, Pepperkok R, Gullick WJ. Intracellular movement of green fluorescent protein-tagged phosphatidylinositol 3-kinase in response to growth factor receptor signaling. J Cell Biol 1999; 146:869-80. [PMID: 10459020 PMCID: PMC2156137 DOI: 10.1083/jcb.146.4.869] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Phosphatidylinositol 3-kinase (PI 3-kinase) is a lipid kinase which has been implicated in mitogenesis, protein trafficking, inhibition of apoptosis, and integrin and actin functions. Here we show using a green fluorescent protein-tagged p85 subunit that phosphatidylinositol 3-kinase is distributed throughout the cytoplasm and is localized to focal adhesion complexes in resting NIH-3T3, A431, and MCF-7 cells. Ligand stimulation of an epidermal growth factor receptor/c-erbB-3 chimera expressed in these cells results in a redistribution of p85 to the cell membrane which is independent of the catalytic activity of the enzyme and the integrity of the actin cytoskeleton. The movement is, however, dependent on the phosphorylation status of the erbB-3 chimera. Using rhodamine-labeled epidermal growth factor we show that the phosphatidylinositol 3-kinase and the receptors colocalize in discrete patches on the cell surface. Low concentrations of ligand cause patching only at the periphery of the cells, whereas at high concentrations patches were seen over the whole cell surface. Using green fluorescent protein-tagged fragments of p85 we show that binding to the receptor requires the NH(2)-terminal part of the protein as well as its SH2 domains.
Collapse
Affiliation(s)
- Helen Gillham
- Receptor Biology Laboratory, Imperial Cancer Research Fund Molecular Oncology Unit, Imperial College School of Medicine, Hammersmith Hospital, London W12 ONN, United Kingdom
| | - Matthew C.H.M. Golding
- Receptor Biology Laboratory, Imperial Cancer Research Fund Molecular Oncology Unit, Imperial College School of Medicine, Hammersmith Hospital, London W12 ONN, United Kingdom
| | - Rainer Pepperkok
- Digital Imaging Microscopy Laboratory, Imperial Cancer Research Fund, Lincoln's Inn Fields, London WC2A 3PX, United Kingdom
| | - William J. Gullick
- Receptor Biology Laboratory, Imperial Cancer Research Fund Molecular Oncology Unit, Imperial College School of Medicine, Hammersmith Hospital, London W12 ONN, United Kingdom
| |
Collapse
|
187
|
Gold MR, Scheid MP, Santos L, Dang-Lawson M, Roth RA, Matsuuchi L, Duronio V, Krebs DL. The B Cell Antigen Receptor Activates the Akt (Protein Kinase B)/Glycogen Synthase Kinase-3 Signaling Pathway Via Phosphatidylinositol 3-Kinase. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.4.1894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Abstract
We have previously shown that the B cell Ag receptor (BCR) activates phosphatidylinositol (PI) 3-kinase. We now show that a serine/threonine kinase called Akt or protein kinase B is a downstream target of PI 3-kinase in B cells. Akt has been shown to promote cell survival as well as the transcription and translation of proteins involved in cell cycle progression. Using an Ab that specifically recognizes the activated form of Akt that is phosphorylated on serine 473, we show that BCR engagement activates Akt in a PI 3-kinase-dependent manner. These results were confirmed using in vitro kinase assays. Moreover, BCR ligation also induced phosphorylation of Akt of threonine 308, another modification that is required for activation of Akt. In the DT40 chicken B cell line, phosphorylation of Akt on serine 473 was completely dependent on the Lyn tyrosine kinase, while the Syk tyrosine kinase was required for sustained phosphorylation of Akt. Complementary experiments in BCR-expressing AtT20 endocrine cells confirmed that Src kinases are sufficient for BCR-induced Akt phosphorylation, but that Syk is required for sustained phosphorylation of Akt on both serine 473 and threonine 308. In insulin-responsive cells, Akt phosphorylates and inactivates the serine/threonine kinase glycogen synthase kinase-3 (GSK-3). Inactivation of GSK-3 may promote nuclear accumulation of several transcription factors, including NF-ATc. We found that BCR engagement induced GSK-3 phosphorylation and decreased GSK-3 enzyme activity. Thus, BCR ligation initiates a PI 3-kinase/Akt/GSK-3 signaling pathway.
Collapse
Affiliation(s)
| | | | - Lorna Santos
- ‡Zoology, University of British Columbia, Vancouver, British Columbia, Canada; and
| | | | - Richard A. Roth
- §Department of Molecular Pharmacology, Stanford University School of Medicine, Stanford, CA 94305
| | - Linda Matsuuchi
- ‡Zoology, University of British Columbia, Vancouver, British Columbia, Canada; and
| | | | | |
Collapse
|
188
|
Daulhac L, Kowalski-Chauvel A, Pradayrol L, Vaysse N, Seva C. Src-family tyrosine kinases in activation of ERK-1 and p85/p110-phosphatidylinositol 3-kinase by G/CCKB receptors. J Biol Chem 1999; 274:20657-63. [PMID: 10400698 DOI: 10.1074/jbc.274.29.20657] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We have analyzed in Chinese hamster ovary cells the upstream mediators by which the G protein-coupled receptor, gastrin/CCKB, activates the extracellular-regulated kinases (ERKs) and p85/p110-phosphatidylinositol 3-kinase (PI 3-kinase) pathways. Overexpression of an inhibitory mutant of Shc completely blocked gastrin-stimulated Shc.Grb2 complex formation but partially inhibited ERK-1 activation by this peptide. Expression of Csk, which inactivates Src-family kinases, totally inhibited gastrin-induced Src-like activity detected in anti-Src and anti-Shc precipitates but diminished by 50% Shc phosphorylation and ERK-1 activation. We observed a rapid tyrosine phosphorylation of insulin receptor substrate-1 (IRS-1) and an increase in Src-like kinase activity in anti-IRS-1 immunoprecipitates from gastrin-stimulated cells, suggesting that IRS-1 may be a direct substrate of Src. This hypothesis was supported by the inhibition of gastrin-induced Src. IRS-1 complex formation and IRS-1 phosphorylation in Csk-transfected cells. In addition, the increase in PI 3-kinase activity measured in anti-p85 or anti-IRS-1 precipitates following gastrin stimulation was abolished by Csk. Our results demonstrate the existence of two mechanisms in gastrin-mediated ERKs activation. One requires Shc phosphorylation by Src-family kinases, and the other one is independent of these two proteins. They also indicate that tyrosine phosphorylation of IRS-1 by Src-family kinases could lead to the recruitment and the activation of the p85/p110-PI 3-kinase in response to gastrin.
Collapse
Affiliation(s)
- L Daulhac
- Groupe de Recherche de Biologie et Pathologie Digestives, INSERM U. 151, CHU Rangueil, 1 avenue J. Poulhes, Institut Louis Bugnard, Batiment L3, 31403 Toulouse, France
| | | | | | | | | |
Collapse
|
189
|
Craxton A, Otipoby KL, Jiang A, Clark EA. Signal transduction pathways that regulate the fate of B lymphocytes. Adv Immunol 1999; 73:79-152. [PMID: 10399006 DOI: 10.1016/s0065-2776(08)60786-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- A Craxton
- Department of Microbiology, University of Washington, Seattle 98195, USA
| | | | | | | |
Collapse
|
190
|
Affiliation(s)
- S Bolland
- Rockefeller University, New York, New York 10021, USA
| | | |
Collapse
|
191
|
Abstract
In B lymphocytes, a signaling complex that contributes to cell fate decisions is the B cell antigen receptor (BCR). Data from knockout experiments in cell lines and mice have revealed distinct functions for the intracellular protein tyrosine kinases (Lyn, Syk, Btk) in BCR signaling and B cell development. Combinations of intracellular signaling pathways downstream of these PTKs determine the quality and quantity of BCR signaling. For example, concerted actions of the PLC-gamma 2 and PI3-K pathways are required for proper calcium responses. Similarly, the regulation of ERK and JNK responses involves both PLC-gamma 2 and GTPases pathways. Since the immune response in vivo is regulated by alteration of these signaling outcomes, achieving a precise understanding of intracellular molecular events leading to B lymphocyte proliferation, deletion, anergy, receptor editing, and survival still remains a challenge for the future.
Collapse
Affiliation(s)
- T Kurosaki
- Department of Molecular Genetics, Kansai Medical University, Moriguchi, Japan.
| |
Collapse
|
192
|
Abstract
The high affinity receptor for immunoglobulin E (designated Fc epsilon RI) is the member of the antigen (Ag) receptor superfamily responsible for linking pathogen-or allergen-specific IgEs with cellular immunologic effector functions. This review provides background information on Fc epsilon RI function combined with more detailed summaries of recent progress in understanding specific aspects of Fc epsilon RI biology and biochemistry. Topics covered include the coordination and function of the large multiprotein signaling complexes that are assembled when Fc epsilon RI and other Ag receptors are engaged, new information on human receptor structures and tissue distribution, and the role of the FcR beta chain in signaling and its potential contribution to atopic phenotypes.
Collapse
Affiliation(s)
- J P Kinet
- Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
193
|
Samelson LE. Adaptor proteins and T-cell antigen receptor signaling. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 1999; 71:393-403. [PMID: 10354706 DOI: 10.1016/s0079-6107(98)00050-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- L E Samelson
- Section on Lymphocyte Signaling, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-5430, USA.
| |
Collapse
|
194
|
Penuel E, Martin GS. Transformation by v-Src: Ras-MAPK and PI3K-mTOR mediate parallel pathways. Mol Biol Cell 1999; 10:1693-703. [PMID: 10359590 PMCID: PMC25360 DOI: 10.1091/mbc.10.6.1693] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
An increase in the level of active, GTP-bound Ras is not necessary for transformation of chicken embryo fibroblasts (CEF) by v-Src. This suggests that other Ras-independent pathways contribute to transformation by v-Src. To address the possibility that activation of phosphatidylinositol-3-kinase (PI3K) and the mammalian target of rapamycin (mTOR/FRAP), represents one of these pathways, we have examined the effect of simultaneous inhibition of the Ras-MAPK and PI3K-mTOR pathways on transformation of CEF by v-Src. Transformation was assessed by the standard parameters of morphological alteration, increased hexose uptake, loss of density inhibition, and anchorage-independent growth. Inhibition of the Ras-MAPK pathway by expression of the dominant-negative Ras mutant HRasN17 or by addition of the MAPK kinase (MEK) inhibitor PD98059 reduced several of these parameters but failed to block transformation. Similarly, inhibition of the PI3K-mTOR pathway by addition of the PI3K inhibitor 2-[4-morpholinyl]-8-phenyl-4H-1-benzopyran-4-one (LY294002) or the mTOR inhibitor rapamycin, although reducing several parameters of transformation, also failed to block transformation. However, simultaneous inhibition of signaling by the Ras-MAPK pathway and the PI3K-mTOR pathway essentially blocked transformation. These data indicate that transformation of CEF by v-Src is mediated by two parallel pathways, the Ras-MAPK pathway and the PI-3K-mTOR pathway, which both contribute to transformation. The possibility that simultaneous activation of other pathways is also required is not excluded.
Collapse
Affiliation(s)
- E Penuel
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, California 94720-3204, USA
| | | |
Collapse
|
195
|
Pigazzi A, Heydrick S, Folli F, Benoit S, Michelson A, Loscalzo J. Nitric oxide inhibits thrombin receptor-activating peptide-induced phosphoinositide 3-kinase activity in human platelets. J Biol Chem 1999; 274:14368-75. [PMID: 10318860 DOI: 10.1074/jbc.274.20.14368] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Although nitric oxide (NO) has potent antiplatelet actions, the signaling pathways affected by NO in the platelet are poorly understood. Since NO can induce platelet disaggregation and phosphoinositide 3-kinase (PI3-kinase) activation renders aggregation irreversible, we tested the hypothesis that NO exerts its antiplatelet effects at least in part by inhibiting PI3-kinase. The results demonstrate that the NO donor S-nitrosoglutathione (S-NO-glutathione) inhibits the stimulation of PI3-kinase associated with tyrosine-phosphorylated proteins and of p85/PI3-kinase associated with the SRC family kinase member LYN following the exposure of platelets to thrombin receptor-activating peptide. The activation of LYN-associated PI3-kinase was unrelated to changes in the amount of PI3-kinase physically associated with LYN signaling complexes but did require the activation of LYN and other tyrosine kinases. The cyclic GMP-dependent kinase activator 8-bromo-cyclic GMP had similar effects on PI3-kinase activity, consistent with a model in which the cyclic nucleotide mediates the effects of NO. Additional studies showed that wortmannin and S-NO-glutathione have additive inhibitory effects on thrombin receptor-activating peptide-induced platelet aggregation and the surface expression of platelet activation markers. These data provide evidence of a distinct and novel mechanism for the inhibitory effects of NO on platelet function.
Collapse
Affiliation(s)
- A Pigazzi
- Whitaker Cardiovascular Institute and Evans Department of Medicine, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | | | |
Collapse
|
196
|
Harpur AG, Layton MJ, Das P, Bottomley MJ, Panayotou G, Driscoll PC, Waterfield MD. Intermolecular interactions of the p85alpha regulatory subunit of phosphatidylinositol 3-kinase. J Biol Chem 1999; 274:12323-32. [PMID: 10212202 DOI: 10.1074/jbc.274.18.12323] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The regulatory subunit of phosphatidylinositol 3-kinase, p85, contains a number of well defined domains involved in protein-protein interactions, including an SH3 domain and two SH2 domains. In order to investigate in detail the nature of the interactions of these domains with each other and with other binding partners, a series of deletion and point mutants was constructed, and their binding characteristics and apparent molecular masses under native conditions were analyzed. The SH3 domain and the first proline-rich motif bound each other, and variants of p85 containing the SH3 and BH domains and the first proline-rich motif were dimeric. Analysis of the apparent molecular mass of the deletion mutants indicated that each of these domains contributed residues to the dimerization interface, and competition experiments revealed that there were intermolecular SH3 domain-proline-rich motif interactions and BH-BH domain interactions mediating dimerization of p85alpha both in vitro and in vivo. Binding of SH2 domain ligands did not affect the dimeric state of p85alpha. Recently, roles for the p85 subunit have been postulated that do not involve the catalytic subunit, and if p85 exists on its own we propose that it would be dimeric.
Collapse
Affiliation(s)
- A G Harpur
- Ludwig Institute for Cancer Research, 91 Riding House St., London W1P 8BT, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
197
|
Hanna AN, Chan EY, Xu J, Stone JC, Brindley DN. A novel pathway for tumor necrosis factor-alpha and ceramide signaling involving sequential activation of tyrosine kinase, p21(ras), and phosphatidylinositol 3-kinase. J Biol Chem 1999; 274:12722-9. [PMID: 10212255 DOI: 10.1074/jbc.274.18.12722] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Treatment of confluent rat2 fibroblasts with C2-ceramide (N-acetylsphingosine), sphingomyelinase, or tumor necrosis factor-alpha (TNFalpha) increased phosphatidylinositol (PI) 3-kinase activity by 3-6-fold after 10 min. This effect of C2-ceramide depended on tyrosine kinase activity and an increase in Ras-GTP levels. Increased PI 3-kinase activity was also accompanied by its translocation to the membrane fraction, increases in tyrosine phosphorylation of the p85 subunit, and physical association with Ras. Activation of PI 3-kinase by TNFalpha, sphingomyelinase, and C2-ceramide was inhibited by tyrosine kinase inhibitors (genistein and PP1). The stimulation of PI 3-kinase by sphingomyelinase and C2-ceramide was not observed in fibroblasts expressing dominant-negative Ras (N17) and the stimulation by TNFalpha was decreased by 70%. PI 3-kinase activation by C2-ceramide was not modified by inhibitors of acidic and neutral ceramidases, and it was not observed with the relatively inactive analog, dihydro-C2-ceramide. It is proposed that activation of Ras and PI 3-kinase by ceramide can contribute to signaling effects of TNFalpha that occur downstream of sphingomyelinase activation and result in increased fibroblasts proliferation.
Collapse
Affiliation(s)
- A N Hanna
- Signal Transduction Laboratories, and the Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2S2, Canada
| | | | | | | | | |
Collapse
|
198
|
Buhl AM, Cambier JC. Phosphorylation of CD19 Y484 and Y515, and Linked Activation of Phosphatidylinositol 3-Kinase, Are Required for B Cell Antigen Receptor-Mediated Activation of Bruton’s Tyrosine Kinase. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.8.4438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Bruton’s tyrosine kinase (Btk) plays a critical role in B cell Ag receptor (BCR) signaling, as indicated by the X-linked immunodeficiency and X-linked agammaglobulinemia phenotypes of mice and men that express mutant forms of the kinase. Although Btk activity can be regulated by Src-family and Syk tyrosine kinases, and perhaps by phosphatidylinositol 3,4,5-trisphosphate, BCR-coupled signaling pathways leading to Btk activation are poorly understood. In view of previous findings that CD19 is involved in BCR-mediated phosphatidylinositol 3-kinase (PI3-K) activation, we assessed its role in Btk activation. Using a CD19 reconstituted myeloma model and CD19 gene-ablated animals we found that BCR-mediated Btk activation and phosphorylation are dependent on the expression of CD19, while BCR-mediated activation of Lyn and Syk is not. Wortmannin preincubation inhibited the BCR-mediated activation and phosphorylation of Btk. Btk activation was not rescued in the myeloma by expression of a CD19 mutant in which tyrosine residues previously shown to mediate CD19 interaction with PI3-K, Y484 and Y515, were changed to phenylalanine. Taken together, the data presented indicate that BCR aggregation-driven CD19 phosphorylation functions to promote Btk activation via recruitment and activation of PI3-K. Resultant phosphatidylinositol 3,4,5-trisphosphate probably functions to localize Btk for subsequent phosphorylation and activation by Src and Syk family kinases.
Collapse
Affiliation(s)
- Anne Mette Buhl
- *Division of Basic Sciences, Department of Pediatrics, National Jewish Medical and Research Center, and
| | - John C. Cambier
- *Division of Basic Sciences, Department of Pediatrics, National Jewish Medical and Research Center, and
- †Department of Immunology, University of Colorado Health Sciences Center, Denver, CO 80206
| |
Collapse
|
199
|
Abstract
Two-dimensional gel electrophoresis of anti-p59fyn immunoprecipitates obtained from non-transformed resting human T lymphocytes resulted in the identification of an oligomeric protein complex which is constitutively formed between Fyn and several additional phosphoproteins (pp43, pp72, pp85, the protein tyrosine kinase Pyk2, as well as the two recently cloned adaptor proteins, SKAP55 and SLAP-130). With the exception of pp85, these proteins seem to preferentially interact with Fyn since they are not detectable in Lck immunoprecipitates prepared under the same experimental conditions. Among the individual members of the Fyn-complex pp85, SKAP55 and pp43 are constitutively phosphorylated on tyrosine residue(s) in vivo and likely interact with Fyn via its src homology 2 (SH2)-domain. In contrast to non-transformed T lymphocytes, continuously proliferating transformed human T cell lines express an altered Fyn-complex. Thus, despite normal expression and tyrosine phosphorylation, SKAP55 does not associate with Fyn in Jurkat cells and in other human T cell lines. Instead two novel proteins interact with Fyn among which one has previously been identified as alpha-tubulin. Importantly, almost identical alterations of the Fyn-complex as observed in Jurkat cells are induced in non-transformed T lymphocytes following mitogenic stimulation. These data suggest that Fyn and its associated proteins could be involved in the control of human T cell proliferation. Moreover, the analogous constitutive alterations in transformed T cell lines could indicate that deregulation of the Fyn-complex might be functionally associated with the malignant phenotype of these cells.
Collapse
Affiliation(s)
- A Marie-Cardine
- Institute for Immunology, Immunomodulation Laboratory, Ruprecht-Karls University of Heidelberg, Germany.
| | | | | |
Collapse
|
200
|
Vanhaesebroeck B, Higashi K, Raven C, Welham M, Anderson S, Brennan P, Ward SG, Waterfield MD. Autophosphorylation of p110delta phosphoinositide 3-kinase: a new paradigm for the regulation of lipid kinases in vitro and in vivo. EMBO J 1999; 18:1292-302. [PMID: 10064595 PMCID: PMC1171219 DOI: 10.1093/emboj/18.5.1292] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Phosphoinositide 3-kinases (PI3Ks) are lipid kinases which also possess an in vitro protein kinase activity towards themselves or their adaptor proteins. The physiological relevance of these phosphorylations is unclear at present. Here, the protein kinase activity of the tyrosine kinase-linked PI3K, p110delta, is characterized and its functional impact assessed. In vitro autophosphorylation of p110delta completely down-regulates its lipid kinase activity. The single site of autophosphorylation was mapped to Ser1039 at the C-terminus of p110delta. Antisera specific for phospho-Ser1039 revealed a very low level of phosphorylation of this residue in cell lines. However, p110delta that is recruited to activated receptors (such as CD28 in T cells) shows a time-dependent increase in Ser1039 phosphorylation and a concomitant decrease in associated lipid kinase activity. Treatment of cells with okadaic acid, an inhibitor of Ser/Thr phosphatases, also dramatically increases the level of Ser1039-phosphorylated p110delta. LY294002 and wortmannin blocked these in vivo increases in Ser1039 phosphorylation, consistent with the notion that PI3Ks, and possibly p110delta itself, are involved in the in vivo phosphorylation of p110delta. In summary, we show that PI3Ks are subject to regulatory phosphorylations in vivo similar to those identified under in vitro conditions, identifying a new level of control of these signalling molecules.
Collapse
Affiliation(s)
- B Vanhaesebroeck
- Ludwig Institute for Cancer Research, 91 Riding House Street, London W1P 8BT, UK.
| | | | | | | | | | | | | | | |
Collapse
|