151
|
Wiers CE, Cabrera EA, Tomasi D, Wong CT, Demiral ŞB, Kim SW, Wang GJ, Volkow ND. Striatal Dopamine D2/D3 Receptor Availability Varies Across Smoking Status. Neuropsychopharmacology 2017; 42:2325-2332. [PMID: 28643800 PMCID: PMC5645737 DOI: 10.1038/npp.2017.131] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 06/07/2017] [Accepted: 06/11/2017] [Indexed: 12/18/2022]
Abstract
To assess how tobacco smoking status affects baseline dopamine D2/D3 (D2R) receptor availability and methylphenidate-induced dopamine (DA) release, we retrospectively analyzed D2R availability measures of 8 current smokers, 10 ex-smokers, and 18 nonsmokers who were scanned with positron emission tomography and [11C]raclopride, after administration of an injection of placebo or 0.5 mg/kg i.v. methylphenidate. There was a significant effect of smoking status on baseline striatal D2R availability; with current smokers showing lower striatal D2R availability compared with nonsmokers (caudate, putamen, and ventral striatum) and with ex-smokers (caudate and putamen). Baseline striatal D2R did not differ between nonsmokers and ex-smokers. The effect of smoking status on methylphenidate-induced DA release tended to be lower in smokers but the difference was not significant (p=0.08). For behavioral measures, current smokers showed significantly higher aggression scores compared with both nonsmokers and ex-smokers. These results suggest that with abstinence ex-smokers may recover from low striatal D2R availability and from increased behavioral aggression seen in active smokers. However, longitudinal studies are needed to assess this within abstaining smokers.
Collapse
Affiliation(s)
- Corinde E Wiers
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Elizabeth A Cabrera
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Dardo Tomasi
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Christopher T Wong
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Şükrü B Demiral
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Sung Won Kim
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Gene-Jack Wang
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Nora D Volkow
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
152
|
Karmakar A, Goswami R, Saha T, Maitra S, Roychowdhury A, Panda CK, Sinha S, Ray A, Mohanakumar KP, Rajamma U, Mukhopadhyay K. Pilot study indicate role of preferentially transmitted monoamine oxidase gene variants in behavioral problems of male ADHD probands. BMC MEDICAL GENETICS 2017; 18:109. [PMID: 28982350 PMCID: PMC5629801 DOI: 10.1186/s12881-017-0469-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 09/27/2017] [Indexed: 01/08/2023]
Abstract
Background Attention deficit hyperactivity disorder (ADHD) is an etiologically complex childhood onset neurobehavioral disorder characterized by age-inappropriate inattention, hyperactivity, and impulsivity. Symptom severity varies widely and boys are diagnosed more frequently than girls. ADHD probands were reported to have abnormal transmissions of dopamine, serotonin, and/or noradrenaline. Monoamine oxidase A (MAOA) and B (MAOB), mitochondrial outer membrane bound two isoenzymes, mediate degradation of these neurotransmitters and thus regulating their circulating levels. Case-control analyses in different populations, including Indians, suggested involvement of MAOA and MAOB genes in the etiology of ADHD. Due to high heritability rate of ADHD, we tested familial transmission of MAOA and MAOB variants to ADHD probands in 190 nuclear families having ADHD probands from Indo-Caucasoid ethnicity. Methods Subjects were recruited following the Diagnostic and Statistical Manual of Mental Disorders-4th edition (DSM-IV). Appropriate scales were used for measuring the behavioral traits in probands. Genotyping was performed through PCR-based amplification of target sites followed by DNA-sequencing and/or gel-electrophoresis. Data obtained were analyzed by family based statistical methods. Results Out of 58 variants present in the analyzed sites only 15 were found to be polymorphic (30 bp-uVNTR, rs5906883, rs1465107, rs1465108, rs5905809, rs5906957, rs6323, rs1137070 from MAOA and rs4824562, rs56220155, rs2283728, rs2283727, rs3027441, rs6324, rs3027440 from MAOB). Statistically significant maternal transmission of alleles to male probands was observed for MAOA rs5905809 ‘G’ (p = 0.04), rs5906957 ‘A’ (p = 0.04), rs6323 ‘G’ (p = 0.0001) and MAOB rs56220155 ‘A’ (p = 0.002), rs2283728 ‘C’ (p = 0.0008), rs2283727 ‘C’ (p = 0.0008), rs3027441 ‘T’ (p = 0.003), rs6324 ‘C’ (p = 0.003), rs3027440 ‘T’ (p = 0.0002). Significantly preferential maternal transmissions of different haplotype combinations to male probands were also noticed (p < 0.05), while female probands did not reveal such transmission bias. Behavioral traits of male probands exhibited significant association with gene variants. Age of the mother at pregnancy also revealed association with risk variants of male probands. Conclusions It may be inferred that the MAOA and MAOB variants may contribute to the etiology of ADHD in the Indo-Caucasoid population and could be responsible for higher occurrence of ADHD in the boys. Electronic supplementary material The online version of this article (10.1186/s12881-017-0469-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Arijit Karmakar
- Manovikas Biomedical Research and Diagnostic Centre, 482, Madudah, Plot: I-24, Sector-J, Manovikas Kendra, E.M. Bypass, Kolkata, 700 107, India
| | - Rishov Goswami
- Manovikas Biomedical Research and Diagnostic Centre, 482, Madudah, Plot: I-24, Sector-J, Manovikas Kendra, E.M. Bypass, Kolkata, 700 107, India
| | - Tanusree Saha
- Manovikas Biomedical Research and Diagnostic Centre, 482, Madudah, Plot: I-24, Sector-J, Manovikas Kendra, E.M. Bypass, Kolkata, 700 107, India
| | - Subhamita Maitra
- Manovikas Biomedical Research and Diagnostic Centre, 482, Madudah, Plot: I-24, Sector-J, Manovikas Kendra, E.M. Bypass, Kolkata, 700 107, India
| | - Anirban Roychowdhury
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, 37 S.P. Mukherjee Road, Kolkata, 700 026, India
| | - Chinmay Kumar Panda
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, 37 S.P. Mukherjee Road, Kolkata, 700 026, India
| | - Swagata Sinha
- Manovikas Biomedical Research and Diagnostic Centre, 482, Madudah, Plot: I-24, Sector-J, Manovikas Kendra, E.M. Bypass, Kolkata, 700 107, India
| | - Anirban Ray
- Department of Psychiatry, Institute of Post Graduate Medical Education & Research, Kolkata, 700 020, India
| | - Kochupurackal P Mohanakumar
- CSIR-Indian Institute of Chemical Biology, Laboratory of Clinical & Experimental Neurosciences, Cell Biology & Physiology Division, 4, Raja S.C. Mullick Road, Kolkata, 700 032, India.,Inter University Centre for Biomedical Research & Super Specialty Hospital, Mahatma Gandhi University Campus at Thalappady, Rubber Board PO, Kottayam, 686 009, Kerala State, India
| | - Usha Rajamma
- Manovikas Biomedical Research and Diagnostic Centre, 482, Madudah, Plot: I-24, Sector-J, Manovikas Kendra, E.M. Bypass, Kolkata, 700 107, India.,Inter University Centre for Biomedical Research & Super Specialty Hospital, Mahatma Gandhi University Campus at Thalappady, Rubber Board PO, Kottayam, 686 009, Kerala State, India
| | - Kanchan Mukhopadhyay
- Manovikas Biomedical Research and Diagnostic Centre, 482, Madudah, Plot: I-24, Sector-J, Manovikas Kendra, E.M. Bypass, Kolkata, 700 107, India.
| |
Collapse
|
153
|
Rahikainen AL, Majaharju S, Haukka J, Palo JU, Sajantila A. Serotonergic 5HTTLPR/rs25531 s-allele homozygosity associates with violent suicides in male citalopram users. Am J Med Genet B Neuropsychiatr Genet 2017; 174:691-700. [PMID: 28608626 DOI: 10.1002/ajmg.b.32553] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 04/13/2017] [Accepted: 05/05/2017] [Indexed: 12/27/2022]
Abstract
Depressive disorders are involved as a background factor in over 50% of suicide cases. The most widely used antidepressants today are serotonin selective reuptake inhibitors (SSRIs). However, not all users benefit from SSRI medication. Although the overall number of suicides in Finland have decreased notably during the last decade, the annual rate is still relatively high, particularly in male population. In this study, we tested the hypothesis that the genetic variants associated with decreased citalopram efficiency, 5HTTLPR/rs25531, and increased impulsive behavior, MAOA-uVNTR and HTR2B Q20*, are more frequent among citalopram users committing suicide than among the citalopram users in general. Also the effect of alcohol was evaluated. The study population comprised 349 suicide victims (184 males and 165 females). Based on the suicide method used, cases were divided into two groups; violent (88 males and 49 females) and non-violent (96 males and 116 females). The control group (284; 159 males and 125 females) consisted of citalopram users who died of causes other than suicide. We found that male citalopram users with low functioning s/s genotype of 5HTTLPR/rs25531 were in increased risk to commit violent suicide (OR 2.50, 95%CI 1.15-5.42, p = 0.020). Surprisingly, high blood alcohol concentration was observed to be a risk factor only in non-violent suicides (both males and females), but not in violent ones. No association between suicides and MAOA-uVNTR and HTR2B Q20*, which have been previously connected to violent and impulsive behavior, was detected.
Collapse
Affiliation(s)
| | - Salla Majaharju
- Metropolia University of Applied Sciences, Metropolia, Helsinki, Finland
| | - Jari Haukka
- Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Jukka U Palo
- Department of Forensic Medicine, University of Helsinki, Helsinki, Finland.,Forensic Genetics Unit, National Institute for Health and Welfare, Helsinki, Finland
| | - Antti Sajantila
- Department of Forensic Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
154
|
Abstract
Most of the energy we get to spend is furnished by mitochondria, minuscule living structures sitting inside our cells or dispatched back and forth within them to where they are needed. Mitochondria produce energy by burning down what remains of our meal after we have digested it, but at the cost of constantly corroding themselves and us. Here we review how our mitochondria evolved from invading bacteria and have retained a small amount of independence from us; how we inherit them only from our mother; and how they are heavily implicated in learning, memory, cognition, and virtually every mental or neurological affliction. We discuss why counteracting mitochondrial corrosion with antioxidant supplements is often unwise, and why our mitochondria, and therefore we ourselves, benefit instead from exercise, meditation, sleep, sunshine, and particular eating habits. Finally, we describe how malfunctioning mitochondria force rats to become socially subordinate to others, how such disparity can be evened off by a vitamin, and why these findings are relevant to us.
Collapse
Affiliation(s)
- Peter Kramer
- Department of General Psychology, University of Padua, Italy
| | - Paola Bressan
- Department of General Psychology, University of Padua, Italy
| |
Collapse
|
155
|
Klein M, Onnink M, van Donkelaar M, Wolfers T, Harich B, Shi Y, Dammers J, Arias-Vásquez A, Hoogman M, Franke B. Brain imaging genetics in ADHD and beyond - Mapping pathways from gene to disorder at different levels of complexity. Neurosci Biobehav Rev 2017; 80:115-155. [PMID: 28159610 PMCID: PMC6947924 DOI: 10.1016/j.neubiorev.2017.01.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 12/08/2016] [Accepted: 01/09/2017] [Indexed: 01/03/2023]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a common and often persistent neurodevelopmental disorder. Beyond gene-finding, neurobiological parameters, such as brain structure, connectivity, and function, have been used to link genetic variation to ADHD symptomatology. We performed a systematic review of brain imaging genetics studies involving 62 ADHD candidate genes in childhood and adult ADHD cohorts. Fifty-one eligible research articles described studies of 13 ADHD candidate genes. Almost exclusively, single genetic variants were studied, mostly focussing on dopamine-related genes. While promising results have been reported, imaging genetics studies are thus far hampered by methodological differences in study design and analysis methodology, as well as limited sample sizes. Beyond reviewing imaging genetics studies, we also discuss the need for complementary approaches at multiple levels of biological complexity and emphasize the importance of combining and integrating findings across levels for a better understanding of biological pathways from gene to disease. These may include multi-modal imaging genetics studies, bioinformatic analyses, and functional analyses of cell and animal models.
Collapse
Affiliation(s)
- Marieke Klein
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Marten Onnink
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Marjolein van Donkelaar
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Thomas Wolfers
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Benjamin Harich
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Yan Shi
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Janneke Dammers
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands; Department of Psychiatry, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Alejandro Arias-Vásquez
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands; Department of Psychiatry, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands; Department of Cognitive Neuroscience, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Martine Hoogman
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Barbara Franke
- Department of Human Genetics, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands; Department of Psychiatry, Radboud university medical center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.
| |
Collapse
|
156
|
O'Mahony C, de Paor A. The use of behavioural genetics in the criminal justice system: A disability & human rights perspective. INTERNATIONAL JOURNAL OF LAW AND PSYCHIATRY 2017; 54:16-25. [PMID: 28962683 DOI: 10.1016/j.ijlp.2017.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 07/03/2017] [Accepted: 07/25/2017] [Indexed: 06/07/2023]
|
157
|
Chen K, Kardys A, Chen Y, Flink S, Tabakoff B, Shih JC. Altered gene expression in early postnatal monoamine oxidase A knockout mice. Brain Res 2017; 1669:18-26. [PMID: 28535982 PMCID: PMC5531263 DOI: 10.1016/j.brainres.2017.05.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/10/2017] [Accepted: 05/16/2017] [Indexed: 11/19/2022]
Abstract
We reported previously that monoamine oxidase (MAO) A knockout (KO) mice show increased serotonin (5-hydroxytryptamine, 5-HT) levels and autistic-like behaviors characterized by repetitive behaviors, and anti-social behaviors. We showed that administration of the serotonin synthesis inhibitor para-chlorophenylalanine (pCPA) from post-natal day 1 (P1) through 7 (P7) in MAO A KO mice reduced the serotonin level to normal and reverses the repetitive behavior. These results suggested that the altered gene expression at P1 and P7 may be important for the autistic-like behaviors seen in MAO A KO mice and was studied here. In this study, Affymetrix mRNA array data for P1 and P7 MAO A KO mice were analyzed using Partek Genomics Suite and Ingenuity Pathways Analysis to identify genes differentially expressed versus wild-type and assess their functions and relationships. The number of significant differentially expressed genes (DEGs) varied with age: P1 (664) and P7 (3307) [false discovery rate (FDR) <0.05, fold-change (FC) >1.5 for autism-linked genes and >2.0 for functionally categorized genes]. Eight autism-linked genes were differentially expressed in P1 (upregulated: NLGN3, SLC6A2; down-regulated: HTR2C, MET, ADSL, MECP2, ALDH5A1, GRIN3B) while four autism-linked genes were differentially expressed at P7 (upregulated: HTR2B; downregulated: GRIN2D, GRIN2B, CHRNA4). Many other genes involved in neurodevelopment, apoptosis, neurotransmission, and cognitive function were differentially expressed at P7 in MAO A KO mice. This result suggests that modulation of these genes by the increased serotonin may lead to neurodevelopmental alteration in MAO A KO mice and results in autistic-like behaviors.
Collapse
Affiliation(s)
- Kevin Chen
- Dept. of Pharmacology & Pharmaceutical Science, School of Pharmacy, Los Angeles, CA 90089, United States
| | - Abbey Kardys
- Dept. of Pharmacology & Pharmaceutical Science, School of Pharmacy, Los Angeles, CA 90089, United States
| | - Yibu Chen
- Norris Medical Library, University of Southern California, Los Angeles, CA 90089, United States
| | - Stephen Flink
- University of Colorado Health Science Center, Denver, CO 80262, United States
| | - Boris Tabakoff
- University of Colorado Health Science Center, Denver, CO 80262, United States
| | - Jean C Shih
- Dept. of Pharmacology & Pharmaceutical Science, School of Pharmacy, Los Angeles, CA 90089, United States; USC-Taiwan Center for Translational Research, University of Southern California, Los Angeles, CA 90089, United States; Dept. of Cell & Neurobiology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, United States.
| |
Collapse
|
158
|
Abstract
When individuals are exposed to stressful environmental challenges, the response varies widely in one or more of three components: psychology, behavior and physiology. This variability among individuals can be defined as temperament. In recent years, an increasing large body of evidence suggests that the dimensions of temperament, as well as personality, psychological disorders and behavioral traits, are influenced by genetic factors, and much of the variation appears to involve variation in genes or gene polymorphisms in the hypothalamic-pituitary-adrenocortical (HPA) axis and the behavior-controlling neurotransmitter networks. Here, we review our current understanding of the probabilistic impact of a number of candidate gene polymorphisms that control temperament, psychological disorders and behavioral traits in animals and human, including the gene polymorphisms related to corticotrophin-releasing hormone (CRH) production and adrenal cortisol production involved in the HPA axis, and a large number of gene polymorphisms in the dopaminergic and serotonergic neurotransmitter networks. It will very likely to assist in diagnosis and treatment of human relevant disorders, and provide useful contributions to our understanding of evolution, welfare and conservation, for animals in the wild and in production systems. Additionally, investigations of gene-gene and gene-environment complex interactions in humans and animals need further clear illustration.
Collapse
Affiliation(s)
- Xiaoyan Qiu
- a College of Animal Science and Technology, Southwest University , Chong Qing , PR China.,b UWA Institute of Agriculture and School of Animal Biology M082, Faculty of Sciences , University of Western Australia , Crawley , WA , Australia
| | - Graeme B Martin
- b UWA Institute of Agriculture and School of Animal Biology M082, Faculty of Sciences , University of Western Australia , Crawley , WA , Australia.,c Nuffield Department of Obstetrics and Gynecology , University of Oxford , Oxford , UK
| | - Dominique Blache
- b UWA Institute of Agriculture and School of Animal Biology M082, Faculty of Sciences , University of Western Australia , Crawley , WA , Australia
| |
Collapse
|
159
|
Mladenović M, Patsilinakos A, Pirolli A, Sabatino M, Ragno R. Understanding the Molecular Determinant of Reversible Human Monoamine Oxidase B Inhibitors Containing 2H-Chromen-2-One Core: Structure-Based and Ligand-Based Derived Three-Dimensional Quantitative Structure–Activity Relationships Predictive Models. J Chem Inf Model 2017; 57:787-814. [DOI: 10.1021/acs.jcim.6b00608] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Milan Mladenović
- Kragujevac Center
for Computational Biochemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, P.O. Box 60, Serbia
| | - Alexandros Patsilinakos
- Rome Center for Molecular Design, Department of Drug
Chemistry and Technologies, Faculty of Pharmacy and Medicine, Rome Sapienza University, P.le A. Moro 5, 00185, Rome Italy
- Alchemical Dynamics srl, 00125 Rome, Italy
| | - Adele Pirolli
- Rome Center for Molecular Design, Department of Drug
Chemistry and Technologies, Faculty of Pharmacy and Medicine, Rome Sapienza University, P.le A. Moro 5, 00185, Rome Italy
- Department of Information
Technology, IRBM Science Park, Via Pontina km 30, 600, 00071 Pomezia, Rome, Italy
| | - Manuela Sabatino
- Rome Center for Molecular Design, Department of Drug
Chemistry and Technologies, Faculty of Pharmacy and Medicine, Rome Sapienza University, P.le A. Moro 5, 00185, Rome Italy
| | - Rino Ragno
- Rome Center for Molecular Design, Department of Drug
Chemistry and Technologies, Faculty of Pharmacy and Medicine, Rome Sapienza University, P.le A. Moro 5, 00185, Rome Italy
- Alchemical Dynamics srl, 00125 Rome, Italy
| |
Collapse
|
160
|
Abstract
Although rates of child maltreatment are declining, more than 600,000 children in the United States are substantiated victims of abuse or neglect. The focus of this review is on the relationship between maltreatment and mental health problems in childhood and adulthood. Children and adults who are exposed to abuse or neglect in childhood are at risk for a range of poor mental health outcomes, including internalizing and externalizing psychopathology, posttraumatic stress disorder, psychotic symptoms, and personality disorders. I review three potential mechanisms by which maltreatment may increase risk for various forms of psychopathology, (a) hypervigilance to threat, (b) deficits in emotion recognition and understanding, and (c) low responsivity to reward. I also review genetic and psychosocial factors that moderate the relationship between maltreatment and risk for psychopathology. Finally, I discuss methodological limitations of the literature on maltreatment, with an emphasis on the challenges associated with establishing a causal role for maltreatment (and moderators or mediators of maltreatment) in the development of mental health problems and the reliance of many studies on retrospective self-reports.
Collapse
Affiliation(s)
- Sara R Jaffee
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania 19104;
| |
Collapse
|
161
|
Naoi M, Maruyama W, Shamoto-Nagai M. Type A monoamine oxidase and serotonin are coordinately involved in depressive disorders: from neurotransmitter imbalance to impaired neurogenesis. J Neural Transm (Vienna) 2017; 125:53-66. [PMID: 28293733 DOI: 10.1007/s00702-017-1709-8] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/12/2017] [Indexed: 12/30/2022]
Abstract
Type A monoamine oxidase (MAOA) catabolizes monoamine transmitters, serotonin, norepinephrine and dopamine, and plays a major role in the onset, progression and therapy of neuropsychiatric disorders. In depressive disorders, increase in MAOA expression and decrease in brain levels of serotonin and norepinephrine are proposed as the major pathogenic factors. The functional polymorphism of MAOA gene and genes in serotonin signal pathway are associated with depression. This review presents recent advance in studies on the role of MAOA in major depressive disorder and related emotional disorders. MAOA and serotonin regulate the prenatal development and postnatal maintenance of brain architecture and neurocircuit, as shown by MAOA-deficient humans and MAO knockout animal models. Impaired neurogenesis in the mature hippocampus has been proposed as "adult neurogenesis" hypothesis of depression. MAOA modulates the sensitivity to stress in the stages of brain development and maturation, and the interaction of gene-environmental factors in the early stage regulates the onset of depressive behaviors in adulthood. Vice versa environmental factors affect MAOA expression by epigenetic regulation. MAO inhibitors not only restore compromised neurotransmitters, but also protect neurons from cell death in depression through induction of anti-apoptotic Bcl-2 and prosurvival neurotrophic factors, especially brain-derived neurotrophic factor, the deficiency of which is detected in depression. This review discusses novel role of MAOA and serotonin in the pathogenesis and therapy of depressive disorders.
Collapse
Affiliation(s)
- Makoto Naoi
- Department of Health and Nutrition, Faculty of Psychological and Physical Science, Aichi Gakuin University, 12 Araike, Iwasaki-cho, Nisshin, Aichi, 320-0195, Japan.
| | - Wakako Maruyama
- Department of Health and Nutrition, Faculty of Psychological and Physical Science, Aichi Gakuin University, 12 Araike, Iwasaki-cho, Nisshin, Aichi, 320-0195, Japan
| | - Masayo Shamoto-Nagai
- Department of Health and Nutrition, Faculty of Psychological and Physical Science, Aichi Gakuin University, 12 Araike, Iwasaki-cho, Nisshin, Aichi, 320-0195, Japan
| |
Collapse
|
162
|
Naumenko VS, Ponimaskin EG, Popova NK. 5-HT1A receptor: Role in the regulation of different types of behavior. ACTA ACUST UNITED AC 2017. [DOI: 10.1134/s2079059717010105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
163
|
Abstract
Evidence concerning the ability of genetic risk factors to moderate the effects of environments has continued to accumulate over the last decade or so. For the behavioral sciences, this means that genetic risk factors might interact with environmental triggers to influence various human outcomes, including antisocial and aggressive behaviors. The current study seeks to further expand this line of inquiry by examining data drawn from the National Youth Survey Family Study. More specifically, we examined whether a polymorphism in the promoter region of the MAOA gene might condition the influence of exposure to deviant peer groups in the prediction of criminogenic behavior. Our findings offer some mixed evidence that genotype might condition the influence of delinquent peer affiliation on antisocial behavior during the course of human development.
Collapse
Affiliation(s)
- Yi-Fen Lu
- Department of Criminal Justice and Criminology, Sam Houston State University, P.O. Box 2296, Huntsville, TX, 77341-2296, USA.
| | - Scott Menard
- Department of Criminal Justice and Criminology, Sam Houston State University, P.O. Box 2296, Huntsville, TX, 77341-2296, USA
| |
Collapse
|
164
|
Yu MS, Tanese N. Huntingtin Is Required for Neural But Not Cardiac/Pancreatic Progenitor Differentiation of Mouse Embryonic Stem Cells In vitro. Front Cell Neurosci 2017; 11:33. [PMID: 28270748 PMCID: PMC5318384 DOI: 10.3389/fncel.2017.00033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Accepted: 02/06/2017] [Indexed: 12/25/2022] Open
Abstract
Mutation in the huntingtin (HTT) gene causes Huntington's disease (HD). It is an autosomal dominant trinucleotide-repeat expansion disease in which CAG repeat sequence expands to >35. This results in the production of mutant HTT protein with an increased stretch of glutamines near the N-terminus. The wild type HTT gene encodes a 350 kD protein whose function remains elusive. Mutant HTT protein has been implicated in transcription, axonal transport, cytoskeletal structure/function, signal transduction, and autophagy. HD is characterized by the appearance of nuclear inclusions and degeneration of the striatum. Although HTT protein is expressed early in embryos, most patients develop symptoms in mid-life. It is also unclear why the ubiquitously expressed mutant HTT specifically causes striatal atrophy. Wild type Htt is essential for development as Htt knockout mice die at day E7.5. Increasing evidence suggests mutant Htt may alter neurogenesis and development of striatal neurons resulting in neuronal loss. Using a mouse embryonic stem cell model, we examined the role of Htt in neural differentiation. We found cells lacking Htt inefficient in generating neural stem cells. In contrast differentiation into progenitors of mesoderm and endoderm lineages was not affected. The data suggests Htt is essential for neural but not cardiac/pancreatic progenitor differentiation of embryonic stem cells in vitro.
Collapse
Affiliation(s)
- Man Shan Yu
- Department of Microbiology, New York University School of Medicine, New York NY, USA
| | - Naoko Tanese
- Department of Microbiology, New York University School of Medicine, New York NY, USA
| |
Collapse
|
165
|
Ozen F, Yegin Z, Yavlal F, Saglam ZA, Koc H, Berber I. Lack of association between MAOA-uVNTR variants and excessive daytime sleepiness. Neurol Sci 2017; 38:769-774. [DOI: 10.1007/s10072-017-2836-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 01/31/2017] [Indexed: 10/20/2022]
|
166
|
Kolla NJ, Vinette SA. Monoamine Oxidase A in Antisocial Personality Disorder and Borderline Personality Disorder. Curr Behav Neurosci Rep 2017; 4:41-48. [PMID: 29568721 PMCID: PMC5846806 DOI: 10.1007/s40473-017-0102-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Purpose of Review Variation in the monoamine oxidase A (MAO-A) gene and MAO-A enzyme levels have been linked to antisocial behavior and aggression in clinical and non-clinical populations. Here, we provide an overview of the genetic, epigenetic, and neuroimaging research that has examined MAO-A structure and function in antisocial personality disorder (ASPD) and borderline personality disorder (BPD). Recent Findings The low-activity MAO-A variable nucleotide tandem repeat genetic polymorphism has shown a robust association with large samples of violent and seriously violent offenders, many of whom had ASPD. A recent positron emission tomography (PET) study of ASPD similarly revealed low MAO-A density in brain regions thought to contribute to the psychopathology of the condition. By contrast, PET has also demonstrated that brain MAO-A levels are increased in BPD and that they relate to symptoms of low mood and suicidality. Summary Candidate gene studies have produced the most compelling evidence connecting MAO-A genetic variants to both ASPD and BPD. Still, conflicting results abound in the literature, making it highly unlikely that ASPD or BPD is related to a specific MAO-A genetic variant. Future research should strive to examine how MAO-A genotypes interact with broad-spectrum environmental influences to produce brain endophenotypes that may ultimately become tractable targets for novel treatment strategies.
Collapse
Affiliation(s)
- Nathan J Kolla
- 1Centre for Addiction and Mental Health (CAMH), Toronto, ON Canada.,2Violence Prevention Neurobiological Research Unit, CAMH, Toronto, ON Canada.,3Department of Psychiatry, University of Toronto, Toronto, ON Canada
| | - Sarah A Vinette
- 1Centre for Addiction and Mental Health (CAMH), Toronto, ON Canada
| |
Collapse
|
167
|
Gu F, Chauhan V, Chauhan A. Monoamine oxidase-A and B activities in the cerebellum and frontal cortex of children and young adults with autism. J Neurosci Res 2017; 95:1965-1972. [DOI: 10.1002/jnr.24027] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 12/29/2016] [Accepted: 12/30/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Feng Gu
- NYS Institute for Basic Research in Developmental Disabilities; Staten Island New York
| | - Ved Chauhan
- NYS Institute for Basic Research in Developmental Disabilities; Staten Island New York
| | - Abha Chauhan
- NYS Institute for Basic Research in Developmental Disabilities; Staten Island New York
| |
Collapse
|
168
|
Zhang Y, Ming QS, Yi JY, Wang X, Chai QL, Yao SQ. Gene-Gene-Environment Interactions of Serotonin Transporter, Monoamine Oxidase A and Childhood Maltreatment Predict Aggressive Behavior in Chinese Adolescents. Front Behav Neurosci 2017; 11:17. [PMID: 28203149 PMCID: PMC5285338 DOI: 10.3389/fnbeh.2017.00017] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 01/18/2017] [Indexed: 01/30/2023] Open
Abstract
Gene-environment interactions that moderate aggressive behavior have been identified independently in the serotonin transporter (5-HTT) gene and monoamine oxidase A gene (MAOA). The aim of the present study was to investigate epistasis interactions between MAOA-variable number tandem repeat (VNTR), 5-HTTlinked polymorphism (LPR) and child abuse and the effects of these on aggressive tendencies in a group of otherwise healthy adolescents. A group of 546 Chinese male adolescents completed the Child Trauma Questionnaire and Youth self-report of the Child Behavior Checklist. Buccal cells were collected for DNA analysis. The effects of childhood abuse, MAOA-VNTR, 5-HTTLPR genotypes and their interactive gene-gene-environmental effects on aggressive behavior were analyzed using a linear regression model. The effect of child maltreatment was significant, and a three-way interaction among MAOA-VNTR, 5-HTTLPR and sexual abuse (SA) relating to aggressive behaviors was identified. Chinese male adolescents with high expression of the MAOA-VNTR allele and 5-HTTLPR “SS” genotype exhibited the highest aggression tendencies with an increase in SA during childhood. The findings reported support aggression being a complex behavior involving the synergistic effects of gene-gene-environment interactions.
Collapse
Affiliation(s)
- Yun Zhang
- Medical Psychological Institute, The Second Xiangya Hospital, Central South UniversityChangsha, China; Medical College, North West University for NationalitiesLanzhou, China
| | - Qing-Sen Ming
- Medical Psychological Institute, The Second Xiangya Hospital, Central South University Changsha, China
| | - Jin-Yao Yi
- Medical Psychological Institute, The Second Xiangya Hospital, Central South University Changsha, China
| | - Xiang Wang
- Medical Psychological Institute, The Second Xiangya Hospital, Central South University Changsha, China
| | - Qiao-Lian Chai
- Medical Psychological Institute, The Second Xiangya Hospital, Central South University Changsha, China
| | - Shu-Qiao Yao
- Medical Psychological Institute, The Second Xiangya Hospital, Central South University Changsha, China
| |
Collapse
|
169
|
Sacco J, Ruplin A, Skonieczny P, Ohman M. Polymorphisms in the canine monoamine oxidase a ( MAOA) gene: identification and variation among five broad dog breed groups. Canine Genet Epidemiol 2017; 4:1. [PMID: 28101368 PMCID: PMC5237129 DOI: 10.1186/s40575-016-0040-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 12/18/2016] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND In humans, reduced activity of the enzyme monoamine oxidase type A (MAOA) due to genetic polymorphisms within the MAOA gene leads to increased brain neurotransmitter levels associated with aggression. In order to study MAOA genetic diversity in dogs, we designed a preliminary study whose objectives were to identify novel alleles in functionally important regions of the canine MAOA gene, and to investigate whether the frequencies of these polymorphisms varied between five broad breed groups (ancient, herding, mastiff, modern European, and mountain). Fifty dogs representing these five breed groups were sequenced. RESULTS A total of eleven polymorphisms were found. Seven were single nucleotide polymorphisms (SNPs; two exonic, two intronic and three in the promoter), while four were repeat intronic variations. The most polymorphic loci were repeat regions in introns 1, 2 (7 alleles) and 10 (3 alleles), while the exonic and the promoter regions were highly conserved. Comparison of the allele frequencies of certain microsatellite polymorphisms among the breed groups indicated a decreasing or increasing trend in the number of repeats at different microsatellite loci, as well as the highest genetic diversity for the ancient breeds and the lowest for the most recent mountain breeds, perhaps attributable to canine domestication and recent breed formation. While a specific promoter SNP (-212A > G) is rare in the dog, it is the major allele in wolves. Replacement of this ancestral allele in domestic dogs may lead to the deletion of heat shock factor binding sites on the MAOA promoter. CONCLUSIONS Dogs exhibit significant variation in certain intronic regions of the MAOA gene, while the coding and promoter regions are well-conserved. Distinct genetic differences were observed between breed groups. Further studies are now required to establish whether such polymorphisms are associated in any way with MAOA level and canine behaviour including aggression.
Collapse
Affiliation(s)
- James Sacco
- Ellis Pharmacogenomics Laboratory, College of Pharmacy and Health Sciences, Drake University, Des Moines, IA 50311 USA
| | - Andrew Ruplin
- Ellis Pharmacogenomics Laboratory, College of Pharmacy and Health Sciences, Drake University, Des Moines, IA 50311 USA
| | - Paul Skonieczny
- Ellis Pharmacogenomics Laboratory, College of Pharmacy and Health Sciences, Drake University, Des Moines, IA 50311 USA
| | - Michael Ohman
- Ellis Pharmacogenomics Laboratory, College of Pharmacy and Health Sciences, Drake University, Des Moines, IA 50311 USA
| |
Collapse
|
170
|
The interactive effect of the MAOA-VNTR genotype and childhood abuse on aggressive behaviors in Chinese male adolescents. Psychiatr Genet 2017; 26:117-23. [PMID: 26945458 DOI: 10.1097/ypg.0000000000000125] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Gene-environment interactions that moderate aggressive behavior have been identified in association with the MAOA (monoamine oxidase A) gene. The present study examined the moderating effect of MAOA-VNTR (variable number of tandem repeats) on aggression behavior relating to child abuse among Chinese adolescents. MATERIALS AND METHODS A sample of 507 healthy Chinese male adolescents completed the Child Trauma Questionnaire-Short Form (CTQ-SF) and Youth Self-report of the Child Behavior Checklist. The participants' buccal cells were sampled and subjected to DNA analysis. The effects of childhood abuse (CTQ-SF scores), MAOA-VNTR [high-activity allele (H) versus low-activity allele (L)], and their interaction in aggressive behaviors were analyzed by linear regression. RESULTS Child maltreatment was found to be a significant independent factor in the manifestation of aggressive behavior, whereas MAOA activity was not. There was a significant interaction between MAOA-VNTR and childhood maltreatment in the exhibition of aggressive behaviors. In the context of physical or emotional abuse, boys in the MAOA-L group showed a greater tendency toward aggression than those in the MAOA-H group. CONCLUSION Aggressive behavior arising from childhood maltreatment is moderated by MAOA-VNTR, which may be differentially sensitive to the subtype of childhood maltreatment experienced, among Chinese adolescents.
Collapse
|
171
|
Cimino S, Cerniglia L, Ballarotto G, Marzilli E, Pascale E, D'Addario C, Adriani W, Tambelli R. DNA Methylation at the DAT Promoter and Risk for Psychopathology: Intergenerational Transmission between School-Age Youths and Their Parents in a Community Sample. Front Psychiatry 2017; 8:303. [PMID: 29375406 PMCID: PMC5767582 DOI: 10.3389/fpsyt.2017.00303] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/18/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The effect of gene polymorphisms and promoter methylation, associated with maladaptive developmental outcomes, vary depending on environmental factors (e.g., parental psychopathology). Most studies have focused on 0- to 5-year-old children, adolescents, or adults, whereas there is dearth of research on school-age youths and pre-adolescents. METHODS In a sample of 21 families recruited at schools, we addressed parents' psychopathological symptoms (through SCL-90-R); offspring emotional-behavioral functioning (through CBCL-6-18); dopamine transporter gene (DAT1) for epigenetic status of the 5'-untranslated region (UTR) and for genotype, i.e., variable number of tandem repeats polymorphism at the 3'-UTR. Possible associations were explored between bio-genetic and psychological characteristics within the same individual and between triplets of children, mothers, and fathers. RESULTS DAT methylation of CpG at positions M1, M6, and M7 in mothers was correlated with maternal (phobic) anxiety, whereas in fathers' position M6 was related to paternal depression, anxiety, hostility, psychoticism, and higher Global Severity Index (GSI). No significant correlations were found between maternal and offspring DAT methylation. Significant correlations were found between fathers' methylation at CpG M1 and children's methylation at CpG M6. Linear regressions showed that mothers and fathers' GSI predicted children's methylation at CpG sites M2, M3, and M6, whereas fathers' GSI predicted children's methylation at CpG sites, particularly M1, M2, and M6. Moreover, offspring methylation of DAT at CpG M2 predicted somatic complaint, internalizing and attention problems; methylation of DAT at CpG M6 predicted withdraw. CONCLUSION This study may have important clinical implication for the prevention and treatment of emotional-behavioral difficulties in children, as it adds to previous knowledge about the role of genetic and environmental factors in predicting psychopathological symptoms within non-clinical populations.
Collapse
Affiliation(s)
- Silvia Cimino
- Department of Dynamic and Clinical Psychology, Sapienza University of Rome, Rome, Italy
| | - Luca Cerniglia
- Faculty of Psychology, International Telematic University Uninettuno, Rome, Italy
| | - Giulia Ballarotto
- Department of Dynamic and Clinical Psychology, Sapienza University of Rome, Rome, Italy
| | - Eleonora Marzilli
- Department of Dynamic and Clinical Psychology, Sapienza University of Rome, Rome, Italy
| | - Esterina Pascale
- Department of Medical Surgical Sciences and Biotechnology, Sapienza University of Rome, Rome, Italy
| | - Claudio D'Addario
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy.,Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Walter Adriani
- Faculty of Psychology, International Telematic University Uninettuno, Rome, Italy.,Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Renata Tambelli
- Department of Dynamic and Clinical Psychology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
172
|
Jakubczyk A, Krasowska A, Bugaj M, Kopera M, Klimkiewicz A, Łoczewska A, Michalska A, Majewska A, Szejko N, Podgórska A, Sołowiej M, Markuszewski L, Jakima S, Płoski R, Brower K, Wojnar M. Paraphilic Sexual Offenders Do Not Differ From Control Subjects With Respect to Dopamine- and Serotonin-Related Genetic Polymorphisms. J Sex Med 2016; 14:125-133. [PMID: 27989490 DOI: 10.1016/j.jsxm.2016.11.309] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/11/2016] [Accepted: 11/16/2016] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Rape and pedophilic child molestation are the most commonly convicted sexual offenses in Poland. Recent studies have suggested a possible genetic contribution toward pathologic sexual interests and behaviors. AIM To analyze and compare functional polymorphisms of genes associated with the activity of the serotonin and dopamine systems in a group of paraphilic sexual offenders and control subjects. METHODS The study sample (n = 97) consisted of two groups: paraphilic sexual offenders (65 pedophilic child molesters and 32 rapists) and controls (n = 76). Genetic polymorphisms previously associated with behavioral control, addictive behaviors, and sexual functions were chosen for analyses. Specifically, functional polymorphisms in dopamine receptors genes (DRD1, DRD2, DRD4), catechol-O-methyltransferase gene (COMT), dopamine transporter gene (DAT), serotonin transporter gene (SLC6A4), serotonin type 2A receptor gene (5HTR2A), tryptophan hydroxylase 2 gene (TPH2), monoamine oxidase A gene (MAOA), and brain-derived neurotrophic factor gene (BDNF) were analyzed. MAIN OUTCOME MEASURES An association between a history of sexual offense and the distribution of genotypes and alleles in the analyzed polymorphisms. RESULTS Our results found no association between a history of sexual offense and the distribution of genotypes or alleles in the analyzed polymorphisms. CONCLUSION Although these results are limited by the small sample and are exploratory, they highlight a novel approach to sample selection in a population that is difficult to access and study. Future research should include larger samples and other relevant polymorphisms to advance this field of study.
Collapse
Affiliation(s)
- Andrzej Jakubczyk
- Department of Psychiatry, Medical University of Warsaw, Warsaw, Poland
| | | | - Marcin Bugaj
- Department of Psychiatry, Medical University of Warsaw, Warsaw, Poland
| | - Maciej Kopera
- Department of Psychiatry, Medical University of Warsaw, Warsaw, Poland
| | - Anna Klimkiewicz
- Department of Psychiatry, Medical University of Warsaw, Warsaw, Poland
| | - Agata Łoczewska
- Department of Psychiatry, Medical University of Warsaw, Warsaw, Poland
| | - Aneta Michalska
- Department of Psychiatry, Medical University of Warsaw, Warsaw, Poland
| | | | - Natalia Szejko
- Department of Neurology, Wolski Hospital, Warsaw, Poland; Department of Neurology, Faculty of Health Science, Medical University of Warsaw, Warsaw, Poland
| | - Anna Podgórska
- Department of Genetics, Institute of Physiology and Pathology of Hearing, Warsaw, Poland
| | | | - Leszek Markuszewski
- Department of Endocrinology and Metabolic Diseases, Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
| | - Sławomir Jakima
- Department of Sexology, Center of Psychotherapy Nowowiejski Hospital, Warsaw, Poland
| | - Rafał Płoski
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Kirk Brower
- Department of Endocrinology and Metabolic Diseases, Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
| | - Marcin Wojnar
- Department of Psychiatry, Medical University of Warsaw, Warsaw, Poland; Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
173
|
Eisner P, Klasen M, Wolf D, Zerres K, Eggermann T, Eisert A, Zvyagintsev M, Sarkheil P, Mathiak KA, Zepf F, Mathiak K. Cortico-limbic connectivity in MAOA-L carriers is vulnerable to acute tryptophan depletion. Hum Brain Mapp 2016; 38:1622-1635. [PMID: 27935229 DOI: 10.1002/hbm.23475] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/09/2016] [Accepted: 11/14/2016] [Indexed: 01/12/2023] Open
Abstract
INTRODUCTION A gene-environment interaction between expression genotypes of the monoamine oxidase A (MAOA) and adverse childhood experience increases the risk of antisocial behavior. However, the neural underpinnings of this interaction remain uninvestigated. A cortico-limbic circuit involving the prefrontal cortex (PFC) and the amygdala is central to the suppression of aggressive impulses and is modulated by serotonin (5-HT). MAOA genotypes may modulate the vulnerability of this circuit and increase the risk for emotion regulation deficits after specific life events. Acute tryptophan depletion (ATD) challenges 5-HT regulation and may identify vulnerable neuronal circuits, contributing to the gene-environment interaction. METHODS Functional magnetic resonance imaging measured the resting-state state activity in 64 healthy males in a double-blind, placebo-controlled study. Cortical maps of amygdala correlation identified the impact of ATD and its interaction with low- (MAOA-L) and high-expression variants (MAOA-H) of MAOA on cortico-limbic connectivity. RESULTS Across all Regions of Interest (ROIs) exhibiting an ATD effect on cortico-limbic connectivity, MAOA-L carriers were more susceptible to ATD than MAOA-H carriers. In particular, the MAOA-L group exhibited a larger reduction of amygdala connectivity with the right prefrontal cortex and a larger increase of amygdala connectivity with the insula and dorsal PCC. CONCLUSION MAOA-L carriers were more susceptable to a central 5-HT challenge in cortico-limbic networks. Such vulnerability of the cortical serotonergic system may contribute to the emergence of antisocial behavior after systemic challenges, observed as gene-environment interaction. Hum Brain Mapp 38:1622-1635, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Patrick Eisner
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Medical School, RWTH Aachen University, Aachen, Germany.,JARA-Translational Brain Medicine, Aachen, Germany
| | - Martin Klasen
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Medical School, RWTH Aachen University, Aachen, Germany.,JARA-Translational Brain Medicine, Aachen, Germany
| | - Dhana Wolf
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Medical School, RWTH Aachen University, Aachen, Germany.,JARA-Translational Brain Medicine, Aachen, Germany
| | - Klaus Zerres
- Department of Human Genetics, Medical School, RWTH Aachen University, Aachen, Germany
| | - Thomas Eggermann
- Department of Human Genetics, Medical School, RWTH Aachen University, Aachen, Germany
| | - Albrecht Eisert
- Department of Pharmacy, RWTH Aachen University, Aachen, Germany
| | - Mikhail Zvyagintsev
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Medical School, RWTH Aachen University, Aachen, Germany.,JARA-Translational Brain Medicine, Aachen, Germany
| | - Pegah Sarkheil
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Medical School, RWTH Aachen University, Aachen, Germany.,JARA-Translational Brain Medicine, Aachen, Germany
| | - Krystyna A Mathiak
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Medical School, RWTH Aachen University, Aachen, Germany.,JARA-Translational Brain Medicine, Aachen, Germany
| | - Florian Zepf
- Department of Child and Adolescent Psychiatry, School of Psychiatry and Clinical Neurosciences and School of Pediatrics and Child Health; Faculty of Medicine, Dentistry and Health Sciences; The University of Western Australia (M561), Perth, Australia.,Department of Health in Western Australia, Specialized Child and Adolescent Mental Health Services (CAMHS), Perth, Australia
| | - Klaus Mathiak
- Department of Psychiatry, Psychotherapy, and Psychosomatics, Medical School, RWTH Aachen University, Aachen, Germany.,JARA-Translational Brain Medicine, Aachen, Germany
| |
Collapse
|
174
|
Luykx JJ, Olde Loohuis LM, Neeleman M, Strengman E, Bakker SC, Lentjes E, Borgdorff P, van Dongen EPA, Bruins P, Kahn RS, Horvath S, de Jong S, Ophoff RA. Peripheral blood gene expression profiles linked to monoamine metabolite levels in cerebrospinal fluid. Transl Psychiatry 2016; 6:e983. [PMID: 27959337 PMCID: PMC5290339 DOI: 10.1038/tp.2016.245] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 10/15/2016] [Indexed: 01/07/2023] Open
Abstract
The blood-brain barrier separates circulating blood from the central nervous system (CNS). The scope of this barrier is not fully understood which limits our ability to relate biological measurements from peripheral to central phenotypes. For example, it is unknown to what extent gene expression levels in peripheral blood are reflective of CNS metabolism. In this study, we examine links between central monoamine metabolite levels and whole-blood gene expression to better understand the connection between peripheral systems and the CNS. To that end, we correlated the prime monoamine metabolites in cerebrospinal fluid (CSF) with whole-genome gene expression microarray data from blood (N=240 human subjects). We additionally applied gene-enrichment analysis and weighted gene co-expression network analyses (WGCNA) to identify modules of co-expressed genes in blood that may be involved with monoamine metabolite levels in CSF. Transcript levels of two genes were significantly associated with CSF serotonin metabolite levels after Bonferroni correction for multiple testing: THAP7 (P=2.8 × 10-8, β=0.08) and DDX6 (P=2.9 × 10-7, β=0.07). Differentially expressed genes were significantly enriched for genes expressed in the brain tissue (P=6.0 × 10-52). WGCNA revealed significant correlations between serotonin metabolism and hub genes with known functions in serotonin metabolism, for example, HTR2A and COMT. We conclude that gene expression levels in whole blood are associated with monoamine metabolite levels in the human CSF. Our results, including the strong enrichment of brain-expressed genes, illustrate that gene expression profiles in peripheral blood can be relevant for quantitative metabolic phenotypes in the CNS.
Collapse
Affiliation(s)
- J J Luykx
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands,Department of Translational Neuroscience Human Neurogenetics Unit, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands,Department of Psychiatry, ZNA Hospitals, Antwerp, Belgium
| | - L M Olde Loohuis
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
| | - M Neeleman
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - E Strengman
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - S C Bakker
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - E Lentjes
- Department of Clinical Chemistry and Hematology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - P Borgdorff
- Department of Anesthesiology, Intensive Care and Pain Management, Diakonessenhuis Hospital, Utrecht, The Netherlands
| | - E P A van Dongen
- Department of Anesthesiology, Intensive Care and Pain Management, University Medical Center Utrecht, Utrecht, The Netherlands
| | - P Bruins
- Department of Anesthesiology, Intensive Care and Pain Management, University Medical Center Utrecht, Utrecht, The Netherlands
| | - R S Kahn
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands
| | - S Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA,Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA
| | - S de Jong
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
| | - R A Ophoff
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands,Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA,Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA,Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095 USA. E-mail:
| |
Collapse
|
175
|
Batllori M, Molero-Luis M, Casado M, Sierra C, Artuch R, Ormazabal A. Biochemical Analyses of Cerebrospinal Fluid for the Diagnosis of Neurometabolic Conditions. What Can We Expect? Semin Pediatr Neurol 2016; 23:273-284. [PMID: 28284389 DOI: 10.1016/j.spen.2016.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
In this article, we review the state-of-the-art analysis of different biomarkers in the cerebrospinal fluid for the diagnosis of genetically conditioned, rare, neurometabolic diseases, including glucose transport defects, neurotransmitter (dopamine, serotonin, and gamma-aminobutyric acid) and pterin deficiencies, and vitamin defects (folate, vitamin B6, and thiamine) that affect the brain. The analysis of several key metabolites are detailed, which thus highlights the preanalytical and analytical factors that should be cautiously controlled to avoid misdiagnosis; moreover, these factors may facilitate an adequate interpretation of the biochemical profiles in the context of severe neuropediatric disorders. Secondary disturbances in these biomarkers, which are associated with other genetic or environmental conditions, are also detailed. Importantly, the early biochemical identification of biochemical disturbances in the cerebrospinal fluid may improve the clinical outcomes of a remarkable number of patients, who may exhibit good neurologic outcomes using the available therapies for these disorders.
Collapse
Affiliation(s)
- Marta Batllori
- Clinical Biochemistry Department, Centre for Biomedical Research on Rare Disease (CIBERER-ISCIII), Pediatric Research Institute, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Marta Molero-Luis
- Clinical Biochemistry Department, Centre for Biomedical Research on Rare Disease (CIBERER-ISCIII), Pediatric Research Institute, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Mercedes Casado
- Clinical Biochemistry Department, Centre for Biomedical Research on Rare Disease (CIBERER-ISCIII), Pediatric Research Institute, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Cristina Sierra
- Clinical Biochemistry Department, Centre for Biomedical Research on Rare Disease (CIBERER-ISCIII), Pediatric Research Institute, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Rafael Artuch
- Clinical Biochemistry Department, Centre for Biomedical Research on Rare Disease (CIBERER-ISCIII), Pediatric Research Institute, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Aida Ormazabal
- Clinical Biochemistry Department, Centre for Biomedical Research on Rare Disease (CIBERER-ISCIII), Pediatric Research Institute, Hospital Sant Joan de Déu, Barcelona, Spain.
| |
Collapse
|
176
|
Affiliation(s)
- Johannes Fuss
- Correspondence to: J. Fuss, Institute for Sex Research and Forensic Psychiatry, Martinistr. 52, Center for Psychosocial Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany;
| |
Collapse
|
177
|
Malki K, Du Rietz E, Crusio WE, Pain O, Paya-Cano J, Karadaghi RL, Sluyter F, de Boer SF, Sandnabba K, Schalkwyk LC, Asherson P, Tosto MG. Transcriptome analysis of genes and gene networks involved in aggressive behavior in mouse and zebrafish. Am J Med Genet B Neuropsychiatr Genet 2016; 171:827-38. [PMID: 27090961 DOI: 10.1002/ajmg.b.32451] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 04/01/2016] [Indexed: 01/01/2023]
Abstract
Despite moderate heritability estimates, the molecular architecture of aggressive behavior remains poorly characterized. This study compared gene expression profiles from a genetic mouse model of aggression with zebrafish, an animal model traditionally used to study aggression. A meta-analytic, cross-species approach was used to identify genomic variants associated with aggressive behavior. The Rankprod algorithm was used to evaluated mRNA differences from prefrontal cortex tissues of three sets of mouse lines (N = 18) selectively bred for low and high aggressive behavior (SAL/LAL, TA/TNA, and NC900/NC100). The same approach was used to evaluate mRNA differences in zebrafish (N = 12) exposed to aggressive or non-aggressive social encounters. Results were compared to uncover genes consistently implicated in aggression across both studies. Seventy-six genes were differentially expressed (PFP < 0.05) in aggressive compared to non-aggressive mice. Seventy genes were differentially expressed in zebrafish exposed to a fight encounter compared to isolated zebrafish. Seven genes (Fos, Dusp1, Hdac4, Ier2, Bdnf, Btg2, and Nr4a1) were differentially expressed across both species 5 of which belonging to a gene-network centred on the c-Fos gene hub. Network analysis revealed an association with the MAPK signaling cascade. In human studies HDAC4 haploinsufficiency is a key genetic mechanism associated with brachydactyly mental retardation syndrome (BDMR), which is associated with aggressive behaviors. Moreover, the HDAC4 receptor is a drug target for valproic acid, which is being employed as an effective pharmacological treatment for aggressive behavior in geriatric, psychiatric, and brain-injury patients. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Karim Malki
- King's College London, Social, Genetic and Developmental Psychiatry Centre (MRC), Institute of Psychiatry, Psychology and Neuroscience, United Kingdom
| | - Ebba Du Rietz
- King's College London, Social, Genetic and Developmental Psychiatry Centre (MRC), Institute of Psychiatry, Psychology and Neuroscience, United Kingdom
| | - Wim E Crusio
- University of Bordeaux, Aquitaine Institute for Cognitive and Integrative Neuroscience, Bordeaux, France.,CNRS, Aquitaine Institute for Cognitive and Integrative Neuroscience, Bordeaux, France
| | - Oliver Pain
- Centre of Brain and Cognitive Development, Birkbeck, University of London, United Kingdom.,Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Jose Paya-Cano
- King's College London, Social, Genetic and Developmental Psychiatry Centre (MRC), Institute of Psychiatry, Psychology and Neuroscience, United Kingdom
| | - Rezhaw L Karadaghi
- King's College London, Social, Genetic and Developmental Psychiatry Centre (MRC), Institute of Psychiatry, Psychology and Neuroscience, United Kingdom
| | - Frans Sluyter
- King's College London, Social, Genetic and Developmental Psychiatry Centre (MRC), Institute of Psychiatry, Psychology and Neuroscience, United Kingdom
| | - Sietse F de Boer
- Groningen Institute for Evolutionary LifeSciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Kenneth Sandnabba
- Faculty of Arts, Psychology and Theology, Åbo Akademi University, Turku, Finland
| | - Leonard C Schalkwyk
- School of Biological Sciences, University of Essex, Colchester, United Kingdom
| | - Philip Asherson
- King's College London, Social, Genetic and Developmental Psychiatry Centre (MRC), Institute of Psychiatry, Psychology and Neuroscience, United Kingdom
| | - Maria Grazia Tosto
- King's College London, Social, Genetic and Developmental Psychiatry Centre (MRC), Institute of Psychiatry, Psychology and Neuroscience, United Kingdom.,Laboratory for Cognitive Investigations and Behavioural Genetics, Tomsk State University, Tomsk, Russia
| |
Collapse
|
178
|
Rautiainen MR, Paunio T, Repo-Tiihonen E, Virkkunen M, Ollila HM, Sulkava S, Jolanki O, Palotie A, Tiihonen J. Genome-wide association study of antisocial personality disorder. Transl Psychiatry 2016; 6:e883. [PMID: 27598967 PMCID: PMC5048197 DOI: 10.1038/tp.2016.155] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 06/20/2016] [Accepted: 07/16/2016] [Indexed: 01/05/2023] Open
Abstract
The pathophysiology of antisocial personality disorder (ASPD) remains unclear. Although the most consistent biological finding is reduced grey matter volume in the frontal cortex, about 50% of the total liability to developing ASPD has been attributed to genetic factors. The contributing genes remain largely unknown. Therefore, we sought to study the genetic background of ASPD. We conducted a genome-wide association study (GWAS) and a replication analysis of Finnish criminal offenders fulfilling DSM-IV criteria for ASPD (N=370, N=5850 for controls, GWAS; N=173, N=3766 for controls and replication sample). The GWAS resulted in suggestive associations of two clusters of single-nucleotide polymorphisms at 6p21.2 and at 6p21.32 at the human leukocyte antigen (HLA) region. Imputation of HLA alleles revealed an independent association with DRB1*01:01 (odds ratio (OR)=2.19 (1.53-3.14), P=1.9 × 10(-5)). Two polymorphisms at 6p21.2 LINC00951-LRFN2 gene region were replicated in a separate data set, and rs4714329 reached genome-wide significance (OR=1.59 (1.37-1.85), P=1.6 × 10(-9)) in the meta-analysis. The risk allele also associated with antisocial features in the general population conditioned for severe problems in childhood family (β=0.68, P=0.012). Functional analysis in brain tissue in open access GTEx and Braineac databases revealed eQTL associations of rs4714329 with LINC00951 and LRFN2 in cerebellum. In humans, LINC00951 and LRFN2 are both expressed in the brain, especially in the frontal cortex, which is intriguing considering the role of the frontal cortex in behavior and the neuroanatomical findings of reduced gray matter volume in ASPD. To our knowledge, this is the first study showing genome-wide significant and replicable findings on genetic variants associated with any personality disorder.
Collapse
Affiliation(s)
- M-R Rautiainen
- National Institute for Health and Welfare, Department of Health, Helsinki, Finland,Department of Forensic Psychiatry, Niuvanniemi Hospital, University of Eastern Finland, Kuopio, Finland,Department of Psychiatry, University of Helsinki, Helsinki, Finland,Department of Psychiatry, Helsinki University Hospital, Helsinki, Finland
| | - T Paunio
- National Institute for Health and Welfare, Department of Health, Helsinki, Finland,Department of Psychiatry, University of Helsinki, Helsinki, Finland,Department of Psychiatry, Helsinki University Hospital, Helsinki, Finland,Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland,National Institute for Health and Welfare, Department of Health, PO Box 30, Helsinki FI-00271, FinlandE-mail:
| | - E Repo-Tiihonen
- Department of Forensic Psychiatry, Niuvanniemi Hospital, University of Eastern Finland, Kuopio, Finland
| | - M Virkkunen
- Department of Psychiatry, University of Helsinki, Helsinki, Finland,Department of Psychiatry, Helsinki University Hospital, Helsinki, Finland
| | - H M Ollila
- National Institute for Health and Welfare, Department of Health, Helsinki, Finland,Stanford University Center for Sleep Sciences, Palo Alto, CA, USA
| | - S Sulkava
- National Institute for Health and Welfare, Department of Health, Helsinki, Finland,Department of Psychiatry, University of Helsinki, Helsinki, Finland,Department of Psychiatry, Helsinki University Hospital, Helsinki, Finland
| | - O Jolanki
- Stanford University Center for Sleep Sciences, Palo Alto, CA, USA
| | - A Palotie
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki, Finland,Wellcome Trust Sanger Institute, Hinxton, UK,Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA,Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA,Psychiatric and Neurodevelopmental Genetics Unit, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - J Tiihonen
- Department of Forensic Psychiatry, Niuvanniemi Hospital, University of Eastern Finland, Kuopio, Finland,Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden,Karolinska Institutet, Department of Clinical Neuroscience, Byggnad R5, Stockholm S-171 76, Sweden. E-mail:
| |
Collapse
|
179
|
Ramsay RR, Majekova M, Medina M, Valoti M. Key Targets for Multi-Target Ligands Designed to Combat Neurodegeneration. Front Neurosci 2016; 10:375. [PMID: 27597816 PMCID: PMC4992697 DOI: 10.3389/fnins.2016.00375] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 08/02/2016] [Indexed: 12/13/2022] Open
Abstract
HIGHLIGHTS Compounds that interact with multiple targets but minimally with the cytochrome P450 system (CYP) address the many factors leading to neurodegeneration.Acetyl- and Butyryl-cholineEsterases (AChE, BChE) and Monoamine Oxidases A/B (MAO A, MAO B) are targets for Multi-Target Designed Ligands (MTDL).ASS234 is an irreversible inhibitor of MAO A >MAO B and has micromolar potency against the cholinesterases.ASS234 is a poor CYP substrate in human liver, yielding the depropargylated metabolite.SMe1EC2, a stobadine derivative, showed high radical scavenging property, in vitro and in vivo giving protection in head trauma and diabetic damage of endothelium.Control of mitochondrial function and morphology by manipulating fission and fusion is emerging as a target area for therapeutic strategies to decrease the pathological outcome of neurodegenerative diseases. Growing evidence supports the view that neurodegenerative diseases have multiple and common mechanisms in their aetiologies. These multifactorial aspects have changed the broadly common assumption that selective drugs are superior to "dirty drugs" for use in therapy. This drives the research in studies of novel compounds that might have multiple action mechanisms. In neurodegeneration, loss of neuronal signaling is a major cause of the symptoms, so preservation of neurotransmitters by inhibiting the breakdown enzymes is a first approach. Acetylcholinesterase (AChE) inhibitors are the drugs preferentially used in AD and that one of these, rivastigmine, is licensed also for PD. Several studies have shown that monoamine oxidase (MAO) B, located mainly in glial cells, increases with age and is elevated in Alzheimer (AD) and Parkinson's Disease's (PD). Deprenyl, a MAO B inhibitor, significantly delays the initiation of levodopa treatment in PD patients. These indications underline that AChE and MAO are considered a necessary part of multi-target designed ligands (MTDL). However, both of these targets are simply symptomatic treatment so if new drugs are to prevent degeneration rather than compensate for loss of neurotransmitters, then oxidative stress and mitochondrial events must also be targeted. MAO inhibitors can protect neurons from apoptosis by mechanisms unrelated to enzyme inhibition. Understanding the involvement of MAO and other proteins in the induction and regulation of the apoptosis in mitochondria will aid progress toward strategies to prevent the loss of neurons. In general, the oxidative stress observed both in PD and AD indicate that antioxidant properties are a desirable part of MTDL molecules. After two or more properties are incorporated into one molecule, the passage from a lead compound to a therapeutic tool is strictly linked to its pharmacokinetic and toxicity. In this context the interaction of any new molecules with cytochrome P450 and other xenobiotic metabolic processes is a crucial point. The present review covers the biochemistry of enzymes targeted in the design of drugs against neurodegeneration and the cytochrome P450-dependent metabolism of MTDLs.
Collapse
Affiliation(s)
- Rona R. Ramsay
- Biomedical Sciences Research Complex, University of St. AndrewsSt. Andrews, UK
| | - Magdalena Majekova
- Department of Biochemical Pharmacology, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of SciencesBratislava, Slovakia
| | - Milagros Medina
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias and BIFI, Universidad de ZaragozaZaragoza, Spain
| | - Massimo Valoti
- Dipartimento di Scienze della Vita, Università degli Studi di SienaSiena, Italy
| |
Collapse
|
180
|
Godar SC, Fite PJ, McFarlin KM, Bortolato M. The role of monoamine oxidase A in aggression: Current translational developments and future challenges. Prog Neuropsychopharmacol Biol Psychiatry 2016; 69:90-100. [PMID: 26776902 PMCID: PMC4865459 DOI: 10.1016/j.pnpbp.2016.01.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/02/2016] [Accepted: 01/04/2016] [Indexed: 11/17/2022]
Abstract
Drawing upon the recent resurgence of biological criminology, several studies have highlighted a critical role for genetic factors in the ontogeny of antisocial and violent conduct. In particular, converging lines of evidence have documented that these maladaptive manifestations of aggression are influenced by monoamine oxidase A (MAOA), the enzyme that catalyzes the degradation of brain serotonin, norepinephrine and dopamine. The interest on the link between MAOA and aggression was originally sparked by Han Brunner's discovery of a syndrome characterized by marked antisocial behaviors in male carriers of a nonsense mutation of this gene. Subsequent studies showed that MAOA allelic variants associated with low enzyme activity moderate the impact of early-life maltreatment on aggression propensity. In spite of overwhelming evidence pointing to the relationship between MAOA and aggression, the neurobiological substrates of this link remain surprisingly elusive; very little is also known about the interventions that may reduce the severity of pathological aggression in genetically predisposed subjects. Animal models offer a unique experimental tool to investigate these issues; in particular, several lines of transgenic mice harboring total or partial loss-of-function Maoa mutations have been shown to recapitulate numerous psychological and neurofunctional endophenotypes observed in humans. This review summarizes the current knowledge on the link between MAOA and aggression; in particular, we will emphasize how an integrated translational strategy coordinating clinical and preclinical research may prove critical to elucidate important aspects of the pathophysiology of aggression, and identify potential targets for its diagnosis, prevention and treatment.
Collapse
Affiliation(s)
- Sean C Godar
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, (KS), USA; Consortium for Translational Research on Aggression and Drug Abuse (ConTRADA), University of Kansas, Lawrence, (KS), USA
| | - Paula J Fite
- Consortium for Translational Research on Aggression and Drug Abuse (ConTRADA), University of Kansas, Lawrence, (KS), USA; Clinical Child Psychology Program, University of Kansas, Lawrence, (KS), USA
| | - Kenneth M McFarlin
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, (KS), USA; Consortium for Translational Research on Aggression and Drug Abuse (ConTRADA), University of Kansas, Lawrence, (KS), USA
| | - Marco Bortolato
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, (KS), USA; Consortium for Translational Research on Aggression and Drug Abuse (ConTRADA), University of Kansas, Lawrence, (KS), USA.
| |
Collapse
|
181
|
Guo YP, Commons KG. Serotonin neuron abnormalities in the BTBR mouse model of autism. Autism Res 2016; 10:66-77. [PMID: 27478061 DOI: 10.1002/aur.1665] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 06/08/2016] [Accepted: 06/13/2016] [Indexed: 12/21/2022]
Abstract
The inbred mouse strain BTBR T+ Itpr3tf /J (BTBR) is studied as a model of idiopathic autism because they are less social and more resistant to change than other strains. Forebrain serotonin receptors and the response to serotonin drugs are altered in BTBR mice, yet it remains unknown if serotonin neurons themselves are abnormal. In this study, we found that serotonin tissue content and the density of serotonin axons is reduced in the hippocampus of BTBR mice in comparison to C57BL/6J (C57) mice. This was accompanied by possible compensatory changes in serotonin neurons that were most pronounced in regions known to provide innervation to the hippocampus: the caudal dorsal raphe (B6) and the median raphe. These changes included increased numbers of serotonin neurons and hyperactivation of Fos expression. Metrics of serotonin neurons in the rostral 2/3 of the dorsal raphe and serotonin content of the prefrontal cortex were less impacted. Thus, serotonin neurons exhibit region-dependent abnormalities in the BTBR mouse that may contribute to their altered behavioral profile. Autism Res 2017, 10: 66-77. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yue-Ping Guo
- Department of Anesthesiology, Second Affiliated Hospital, Harbin Medical University, Harbin, China.,Department of Anesthesiology, Perioperative, and Pain Medicine, Boston Children's Hospital; Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts
| | - Kathryn G Commons
- Department of Anesthesiology, Perioperative, and Pain Medicine, Boston Children's Hospital; Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
182
|
Ramsay RR. Molecular aspects of monoamine oxidase B. Prog Neuropsychopharmacol Biol Psychiatry 2016; 69:81-9. [PMID: 26891670 DOI: 10.1016/j.pnpbp.2016.02.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 02/06/2016] [Accepted: 02/11/2016] [Indexed: 02/07/2023]
Abstract
Monoamine oxidases (MAO) influence the monoamine levels in brain by virtue of their role in neurotransmitter breakdown. MAO B is the predominant form in glial cells and in platelets. MAO B structure, function and kinetics are described as a background for the effect of alterations in its activity on behavior. The need to inhibit MAO B to combat decreased brain amines continues to drive the search for new drugs. Reversible and irreversible inhibitors are now designed using data-mining, computational screening, docking and molecular dynamics. Multi-target ligands designed to combat the elevated activity of MAO B in Alzheimer's and Parkinson's Diseases incorporate MAO inhibition (usually irreversible) as well as iron chelation, antioxidant or neuroprotective properties. The main focus of drug design is the catalytic activity of MAO, but the imidazoline I2 site in the entrance cavity of MAO B is also a pharmacological target. Endogenous regulation of MAO B expression is discussed briefly in light of new studies measuring mRNA, protein, or activity in healthy and degenerative samples, including the effect of DNA methylation on the expression. Overall, this review focuses on examples of recent research on the molecular aspects of the expression, activity, and inhibition of MAO B.
Collapse
Affiliation(s)
- Rona R Ramsay
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews KY16 9ST, United Kingdom.
| |
Collapse
|
183
|
Harro J, Oreland L. The role of MAO in personality and drug use. Prog Neuropsychopharmacol Biol Psychiatry 2016; 69:101-11. [PMID: 26964906 DOI: 10.1016/j.pnpbp.2016.02.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/16/2016] [Accepted: 02/17/2016] [Indexed: 02/04/2023]
Abstract
Monoamine oxidases, both MAO-A and MAO-B, have been implicated in personality traits and complex behaviour, including drug use. Findings supporting the involvement of MAO-A and MAO-B in shaping personality and in the development of strategies of making behavioural choices come from a variety of studies that have examined either prevalence of gene variants in clinical groups or population-derived samples, estimates of enzyme activity in blood or, by positron emission tomography, in the brain and, most recently, measurement of methylation of the gene. Most of the studies converge in associating MAO-A and MAO-B with impulsive, aggressive or antisocial personality traits or behaviours, including alcohol-related problems, and for MAO-A available evidence strongly supports interaction with adverse environmental exposures in childhood. What is known about genotype effects, and on expression and activity of the enzyme in the brain and in blood has not yet been possible to unite into a mechanistic model of the role of monoamine systems, but the reason for this low degree of generalization is likely caused by the cross-sectional nature of investigation that has not incorporated the developmental effects of MAO-s in critical time windows, including the foetal period. The "risk variants" of both MAO-s appear to increase behavioural plasticity, as supportive environments may particularly well enhance the hidden potential of their carriers. Importantly, male and female brain and behaviours have been found very different with regard to MAO×life events interaction. Future studies need to take into consideration these developmental aspects and sex/gender, as well as to specify the role of different types of environmental factors.
Collapse
Affiliation(s)
- Jaanus Harro
- Division of Neuropsychopharmacology, Department of Psychology, Estonian Centre of Behavioural and Health Sciences, University of Tartu, Estonia; Psychiatry Clinic, North Estonia Medical Centre, Tallinn, Estonia.
| | - Lars Oreland
- Department of Neuroscience, Pharmacology, University of Uppsala, Biomedical Centre, Uppsala, Sweden
| |
Collapse
|
184
|
Nikolac Perkovic M, Svob Strac D, Nedic Erjavec G, Uzun S, Podobnik J, Kozumplik O, Vlatkovic S, Pivac N. Monoamine oxidase and agitation in psychiatric patients. Prog Neuropsychopharmacol Biol Psychiatry 2016; 69:131-46. [PMID: 26851573 DOI: 10.1016/j.pnpbp.2016.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/15/2016] [Accepted: 02/02/2016] [Indexed: 11/17/2022]
Abstract
Subjects with schizophrenia or conduct disorder display a lifelong pattern of antisocial, aggressive and violent behavior and agitation. Monoamine oxidase (MAO) is an enzyme involved in the degradation of various monoamine neurotransmitters and neuromodulators and therefore has a role in various psychiatric and neurodegenerative disorders and pathological behaviors. Platelet MAO-B activity has been associated with psychopathy- and aggression-related personality traits, while variants of the MAOA and MAOB genes have been associated with diverse clinical phenotypes, including aggressiveness, antisocial problems and violent delinquency. The aim of the study was to evaluate the association of platelet MAO-B activity, MAOB rs1799836 polymorphism and MAOA uVNTR polymorphism with severe agitation in 363 subjects with schizophrenia and conduct disorder. The results demonstrated significant association of severe agitation and smoking, but not diagnosis or age, with platelet MAO-B activity. Higher platelet MAO-B activity was found in subjects with severe agitation compared to non-agitated subjects. Platelet MAO-B activity was not associated with MAOB rs1799836 polymorphism. These results suggested the association between increased platelet MAO-B activity and severe agitation. No significant association was found between severe agitation and MAOA uVNTR or MAOB rs1799836 polymorphism, revealing that these individual polymorphisms in MAO genes are not related to severe agitation in subjects with schizophrenia and conduct disorder. As our study included 363 homogenous Caucasian male subjects, our data showing this negative genetic association will be a useful addition to future meta-analyses.
Collapse
Affiliation(s)
- Matea Nikolac Perkovic
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka cesta 54, 10000 Zagreb, Croatia
| | - Dubravka Svob Strac
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka cesta 54, 10000 Zagreb, Croatia
| | - Gordana Nedic Erjavec
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka cesta 54, 10000 Zagreb, Croatia
| | - Suzana Uzun
- Clinic for Psychiatry Vrapce, Bolnicka cesta 32, 10000 Zagreb, Croatia
| | - Josip Podobnik
- Department of Psychiatry, Psychiatric Hospital for Children and Youth Zagreb, Kukuljeviceva 11, 10000 Zagreb, Croatia
| | - Oliver Kozumplik
- Clinic for Psychiatry Vrapce, Bolnicka cesta 32, 10000 Zagreb, Croatia
| | | | - Nela Pivac
- Rudjer Boskovic Institute, Division of Molecular Medicine, Bijenicka cesta 54, 10000 Zagreb, Croatia.
| |
Collapse
|
185
|
Fišar Z. Drugs related to monoamine oxidase activity. Prog Neuropsychopharmacol Biol Psychiatry 2016; 69:112-24. [PMID: 26944656 DOI: 10.1016/j.pnpbp.2016.02.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/25/2016] [Accepted: 02/26/2016] [Indexed: 02/07/2023]
Abstract
Progress in understanding the role of monoamine neurotransmission in pathophysiology of neuropsychiatric disorders was made after the discovery of the mechanisms of action of psychoactive drugs, including monoamine oxidase (MAO) inhibitors. The increase in monoamine neurotransmitter availability, decrease in hydrogen peroxide production, and neuroprotective effects evoked by MAO inhibitors represent an important approach in the development of new drugs for the treatment of mental disorders and neurodegenerative diseases. New drugs are synthesized by acting as multitarget-directed ligands, with MAO, acetylcholinesterase, and iron chelation as targets. Basic information is summarized in this paper about the drug-induced regulation of monoaminergic systems in the brain, with a focus on MAO inhibition. Desirable effects of MAO inhibition include increased availability of monoamine neurotransmitters, decreased oxidative stress, decreased formation of neurotoxins, induction of pro-survival genes and antiapoptotic factors, and improved mitochondrial functions.
Collapse
Affiliation(s)
- Zdeněk Fišar
- Department of Psychiatry, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague 2, Czech Republic.
| |
Collapse
|
186
|
Svob Strac D, Kovacic Petrovic Z, Nikolac Perkovic M, Umolac D, Nedic Erjavec G, Pivac N. Platelet monoamine oxidase type B, MAOB intron 13 and MAOA-uVNTR polymorphism and symptoms of post-traumatic stress disorder. Stress 2016; 19:362-73. [PMID: 27112218 DOI: 10.1080/10253890.2016.1174849] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Post-traumatic stress disorder (PTSD), a disorder that develops following exposure to traumatic experience(s), is frequently associated with agitation, aggressive behavior and psychotic symptoms. Monoamine oxidase (MAO) degrades different biogenic amines and regulates mood, emotions and behavior, and has a role in the pathophysiology of various neuropsychiatric disorders. The aim of the study was to investigate the association between different symptoms occurring in PTSD [PTSD symptom severity assessed by the Clinician Administered PTSD Scale (CAPS), agitation and selected psychotic symptoms assessed by the Positive and Negative Syndrome Scale (PANSS)] and platelet MAO-B activity and/or genetic variants of MAOB rs1799836 and MAOA-uVNTR polymorphisms in 249 Croatian male veterans with PTSD. Our study revealed slightly higher platelet MAO-B activity in veterans with PTSD with more severe PTSD symptoms and in veterans with agitation, and significantly higher platelet MAO-B activity in veterans with more pronounced psychotic symptoms compared to veterans with less pronounced psychotic symptoms. Platelet MAO-B activity was associated with smoking but not with age. Genetic variants of MAOB rs1799836 and MAOA-uVNTR were not associated with agitation and selected psychotic symptoms in veterans with PTSD. A marginally significant association was found between MAOB rs1799836 polymorphism and severity of PTSD symptoms, but it was not confirmed since carriers of G or A allele of MAOB rs1799836 did not differ in their total CAPS scores. These findings suggest an association of platelet MAO-B activity, but a lack of association of MAOB rs1799836 and MAOA-uVNTR, with selected psychotic symptoms in ethnically homogenous veterans with PTSD.
Collapse
Affiliation(s)
- Dubravka Svob Strac
- a Division of Molecular Medicine , Rudjer Boskovic Institute , Zagreb , Croatia
| | - Zrnka Kovacic Petrovic
- b Department of Psychopharmacology, Croatian Institute for Brain Research, School of Medicine , University of Zagreb, Zagreb , Croatia
- c Department of Biological Psychiatry and Psychogeriatry, University Psychiatric Hospital Vrapce , Zagreb , Croatia
| | | | - Danica Umolac
- a Division of Molecular Medicine , Rudjer Boskovic Institute , Zagreb , Croatia
| | | | - Nela Pivac
- a Division of Molecular Medicine , Rudjer Boskovic Institute , Zagreb , Croatia
| |
Collapse
|
187
|
Zhang-James Y, Faraone SV. Genetic architecture for human aggression: A study of gene-phenotype relationship in OMIM. Am J Med Genet B Neuropsychiatr Genet 2016; 171:641-9. [PMID: 26288127 DOI: 10.1002/ajmg.b.32363] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/05/2015] [Indexed: 01/02/2023]
Abstract
Genetic studies of human aggression have mainly focused on known candidate genes and pathways regulating serotonin and dopamine signaling and hormonal functions. These studies have taught us much about the genetics of human aggression, but no genetic locus has yet achieved genome-significance. We here present a review based on a paradoxical hypothesis that studies of rare, functional genetic variations can lead to a better understanding of the molecular mechanisms underlying complex multifactorial disorders such as aggression. We examined all aggression phenotypes catalogued in Online Mendelian Inheritance in Man (OMIM), an Online Catalog of Human Genes and Genetic Disorders. We identified 95 human disorders that have documented aggressive symptoms in at least one individual with a well-defined genetic variant. Altogether, we retrieved 86 causal genes. Although most of these genes had not been implicated in human aggression by previous studies, the most significantly enriched canonical pathways had been previously implicated in aggression (e.g., serotonin and dopamine signaling). Our findings provide strong evidence to support the causal role of these pathways in the pathogenesis of aggression. In addition, the novel genes and pathways we identified suggest additional mechanisms underlying the origins of human aggression. Genome-wide association studies with very large samples will be needed to determine if common variants in these genes are risk factors for aggression. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yanli Zhang-James
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, New York
| | - Stephen V Faraone
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, New York.,Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York.,K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen, Bergen, Norway
| |
Collapse
|
188
|
Waltes R, Chiocchetti AG, Freitag CM. The neurobiological basis of human aggression: A review on genetic and epigenetic mechanisms. Am J Med Genet B Neuropsychiatr Genet 2016; 171:650-75. [PMID: 26494515 DOI: 10.1002/ajmg.b.32388] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/25/2015] [Indexed: 12/17/2022]
Abstract
Aggression is an evolutionary conserved behavior present in most species including humans. Inadequate aggression can lead to long-term detrimental personal and societal effects. Here, we differentiate between proactive and reactive forms of aggression and review the genetic determinants of it. Heritability estimates of aggression in general vary between studies due to differing assessment instruments for aggressive behavior (AB) as well as age and gender of study participants. In addition, especially non-shared environmental factors shape AB. Current hypotheses suggest that environmental effects such as early life stress or chronic psychosocial risk factors (e.g., maltreatment) and variation in genes related to neuroendocrine, dopaminergic as well as serotonergic systems increase the risk to develop AB. In this review, we summarize the current knowledge of the genetics of human aggression based on twin studies, genetic association studies, animal models, and epigenetic analyses with the aim to differentiate between mechanisms associated with proactive or reactive aggression. We hypothesize that from a genetic perspective, the aminergic systems are likely to regulate both reactive and proactive aggression, whereas the endocrine pathways seem to be more involved in regulation of reactive aggression through modulation of impulsivity. Epigenetic studies on aggression have associated non-genetic risk factors with modifications of the stress response and the immune system. Finally, we point to the urgent need for further genome-wide analyses and the integration of genetic and epigenetic information to understand individual differences in reactive and proactive AB. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Regina Waltes
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Goethe University Hospital, Frankfurt am Main, Germany
| | - Andreas G Chiocchetti
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Goethe University Hospital, Frankfurt am Main, Germany
| | - Christine M Freitag
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Goethe University Hospital, Frankfurt am Main, Germany
| |
Collapse
|
189
|
Aebi M, van Donkelaar MMJ, Poelmans G, Buitelaar JK, Sonuga‐Barke EJS, Stringaris A, consortium IMAGE, Faraone SV, Franke B, Steinhausen H, van Hulzen KJE. Gene-set and multivariate genome-wide association analysis of oppositional defiant behavior subtypes in attention-deficit/hyperactivity disorder. Am J Med Genet B Neuropsychiatr Genet 2016; 171:573-88. [PMID: 26184070 PMCID: PMC4715802 DOI: 10.1002/ajmg.b.32346] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 06/29/2015] [Indexed: 12/02/2022]
Abstract
Oppositional defiant disorder (ODD) is a frequent psychiatric disorder seen in children and adolescents with attention-deficit-hyperactivity disorder (ADHD). ODD is also a common antecedent to both affective disorders and aggressive behaviors. Although the heritability of ODD has been estimated to be around 0.60, there has been little research into the molecular genetics of ODD. The present study examined the association of irritable and defiant/vindictive dimensions and categorical subtypes of ODD (based on latent class analyses) with previously described specific polymorphisms (DRD4 exon3 VNTR, 5-HTTLPR, and seven OXTR SNPs) as well as with dopamine, serotonin, and oxytocin genes and pathways in a clinical sample of children and adolescents with ADHD. In addition, we performed a multivariate genome-wide association study (GWAS) of the aforementioned ODD dimensions and subtypes. Apart from adjusting the analyses for age and sex, we controlled for "parental ability to cope with disruptive behavior." None of the hypothesis-driven analyses revealed a significant association with ODD dimensions and subtypes. Inadequate parenting behavior was significantly associated with all ODD dimensions and subtypes, most strongly with defiant/vindictive behaviors. In addition, the GWAS did not result in genome-wide significant findings but bioinformatics and literature analyses revealed that the proteins encoded by 28 of the 53 top-ranked genes functionally interact in a molecular landscape centered around Beta-catenin signaling and involved in the regulation of neurite outgrowth. Our findings provide new insights into the molecular basis of ODD and inform future genetic studies of oppositional behavior. © 2015 The Authors. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Marcel Aebi
- Department of Forensic Psychiatry, Child and Youth Forensic ServiceUniversity Hospital of PsychiatryZurichSwitzerland
- Department of Child and Adolescent PsychiatryUniversity of ZurichZurichSwitzerland
| | - Marjolein M. J. van Donkelaar
- Department of Human GeneticsRadboud University Medical Center, Donders Institute for Brain, Cognition and BehaviourNijmegenThe Netherlands
| | - Geert Poelmans
- Department of Human GeneticsRadboud University Medical Center, Donders Institute for Brain, Cognition and BehaviourNijmegenThe Netherlands
- Department of Cognitive NeuroscienceDonders Institute for Brain, Cognition and Behaviour, Radboud University Medical CenterNijmegenThe Netherlands
- Department of Molecular Animal PhysiologyDonders Institute for Brain, Cognition and Behavior, Radboud Institute for Molecular Life Sciences, Radboud UniversityNijmegenThe Netherlands
| | - Jan K. Buitelaar
- Department of Cognitive NeuroscienceDonders Institute for Brain, Cognition and Behaviour, Radboud University Medical CenterNijmegenThe Netherlands
| | - Edmund J. S. Sonuga‐Barke
- Developmental Brain‐Behaviour LaboratoryDepartment of PsychologyUniversity of SouthamptonSouthamptonUK
- Department of Experimental Clinical and Health PsychologyGhent UniversityGhentBelgium
| | | | - IMAGE consortium
- Department of Forensic Psychiatry, Child and Youth Forensic ServiceUniversity Hospital of PsychiatryZurichSwitzerland
| | - Stephen V. Faraone
- Department of PsychiatrySUNY Upstate Medical UniversitySyracuseNew York
- Departmentof Neuroscience and PhysiologySUNY Upstate Medical UniversitySyracuseNew York
- Department of BiomedicineK.G. Jebsen Centre for Psychiatric DisordersUniversity of BergenBergenNorway
| | - Barbara Franke
- Department of Human GeneticsRadboud University Medical Center, Donders Institute for Brain, Cognition and BehaviourNijmegenThe Netherlands
- Department of PsychiatryDonders Institute for Brain, Cognition and Behaviour, Radboud University Medical CenterNijmegenThe Netherlands
| | - Hans‐Christoph Steinhausen
- Department of Child and Adolescent PsychiatryUniversity of ZurichZurichSwitzerland
- Department of Psychology, Clinical Psychology and EpidemiologyUniversity of BaselBaselSwitzerland
- Research Unit for Child and Adolescent Psychiatry, Psychiatric HospitalAalborg University HospitalAalborgDenmark
| | - Kimm J. E. van Hulzen
- Department of Human GeneticsRadboud University Medical Center, Donders Institute for Brain, Cognition and BehaviourNijmegenThe Netherlands
| |
Collapse
|
190
|
Fernàndez-Castillo N, Cormand B. Aggressive behavior in humans: Genes and pathways identified through association studies. Am J Med Genet B Neuropsychiatr Genet 2016; 171:676-96. [PMID: 26773414 DOI: 10.1002/ajmg.b.32419] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 01/04/2016] [Indexed: 12/21/2022]
Abstract
Aggressive behavior has both genetic and environmental components. Many association studies have been performed to identify genetic factors underlying aggressive behaviors in humans. In this review we summarize the previous work performed in this field, considering both candidate gene (CGAS) and genome-wide association studies (GWAS), excluding those performed in samples where the primary diagnosis is a psychiatric or neurological disorder other than an aggression-related phenotype. Subsequently, we have studied the enrichment of pathways and functions in GWAS data. The results of our searches show that most CGAS have identified associations with genes involved in dopaminergic and serotonergic neurotransmission and in hormone regulation. On the other hand, GWAS have not yet identified genome-wide significant associations, but top nominal findings are related to several signaling pathways, such as axon guidance or estrogen receptor signaling, and also to neurodevelopmental processes and synaptic plasticity. Future studies should use larger samples, homogeneous phenotypes and standardized measurements to identify genes that underlie aggressive behaviors in humans. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Noèlia Fernàndez-Castillo
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Catalonia, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Catalonia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain
| | - Bru Cormand
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Catalonia, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Catalonia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain
| |
Collapse
|
191
|
Freudenberg F, Carreño Gutierrez H, Post AM, Reif A, Norton WHJ. Aggression in non-human vertebrates: Genetic mechanisms and molecular pathways. Am J Med Genet B Neuropsychiatr Genet 2016; 171:603-40. [PMID: 26284957 DOI: 10.1002/ajmg.b.32358] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 07/28/2015] [Indexed: 11/07/2022]
Abstract
Aggression is an adaptive behavioral trait that is important for the establishment of social hierarchies and competition for mating partners, food, and territories. While a certain level of aggression can be beneficial for the survival of an individual or species, abnormal aggression levels can be detrimental. Abnormal aggression is commonly found in human patients with psychiatric disorders. The predisposition to aggression is influenced by a combination of environmental and genetic factors and a large number of genes have been associated with aggression in both human and animal studies. In this review, we compare and contrast aggression studies in zebrafish and mouse. We present gene ontology and pathway analyses of genes linked to aggression and discuss the molecular pathways that underpin agonistic behavior in these species. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Florian Freudenberg
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital of Frankfurt, Frankfurt am Main, Germany
| | | | - Antonia M Post
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital of Frankfurt, Frankfurt am Main, Germany
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital of Frankfurt, Frankfurt am Main, Germany
| | - William H J Norton
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Leicester, UK
| |
Collapse
|
192
|
van IJzendoorn MH. Attachment, Emergent Morality, and Aggression: Toward a Developmental Socioemotional Model of Antisocial Behaviour. INTERNATIONAL JOURNAL OF BEHAVIORAL DEVELOPMENT 2016. [DOI: 10.1080/016502597384631] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Does attachment play a role in the development of moral reasoning and antisocial behaviour? In this contribution we discuss the role of attachment relationships in the development of early precursors of morality and antisocial behaviour, in particular compliance and aggression in infancy and in childhood. Findings are presented on the role of attachment representations in the development of morality, authoritarianism, and criminal behaviour in adolescence and young adulthood. For heuristic purposes, two socioemotional models of the development of mild and serious types of antisocial behaviour are proposed in which attachment is a prominent feature.
Collapse
|
193
|
Affiliation(s)
- Robert Plomin
- MRC Research Professor of Behavioural Genetics and Deputy Director of the Research Centre for Social, Genetic, and Developmental Psychiatry at the Institute of Psychiatry, 113 Denmark Hill, Denmark Hill, London SE5 8AF, United Kingdom
| |
Collapse
|
194
|
Kalbitzer U, Roos C, Kopp GH, Butynski TM, Knauf S, Zinner D, Fischer J. Insights into the genetic foundation of aggression in Papio and the evolution of two length-polymorphisms in the promoter regions of serotonin-related genes (5-HTTLPR and MAOALPR) in Papionini. BMC Evol Biol 2016; 16:121. [PMID: 27287312 PMCID: PMC4901440 DOI: 10.1186/s12862-016-0693-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Accepted: 05/25/2016] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Aggressive behaviors are an integral part of competitive interactions. There is considerable variation in aggressiveness among individuals both within and among species. Aggressiveness is a quantitative trait that is highly heritable. In modern humans and macaques (Macaca spp.), variation in aggressiveness among individuals is associated with polymorphisms in the serotonergic (5-HT) neurotransmitter system. To further investigate the genetics underlying interspecific variation in aggressiveness, 123 wild individuals from five baboon species (Papio papio, P. hamadryas, P. anubis, P. cynocephalus, and P. ursinus) were screened for two polymorphisms in promoter regions of genes relevant for the 5-HT system (5-HTTLPR and MAOALPR). RESULTS Surprisingly, despite considerable interspecific variation in aggressiveness, baboons are monomorphic in 5-HTTLPR, except for P. hamadryas, which carries one additional allele. Accordingly, this locus cannot be linked to behavioral variation among species. A comparison among 19 papionin species, including nine species of macaques, shows that the most common baboon allele is similar to the one described for Barbary macaques (Macaca sylvanus), probably representing the ancestral allele in this tribe. It should be noted that (almost) all baboons live in Africa, but within Macaca only M. sylvanus lives on this continent. Baboons are, however, highly polymorphic in the so-called 'warrior gene' MAOALPR, carrying three alleles. Due to considerable variation in allele frequencies among populations of the same species, this genotype cannot be invoked to explain variation in aggressiveness at the species level. CONCLUSIONS This study provides another indication that 5-HTTLPR is not related to aggressiveness in primates per se, but may have been under differential selective pressures among taxa and potentially among populations in different geographic regions. The results on MAOALPR alleles in Papio indicate that variation in the metabolism of monoamine neurotransmitters and associated behaviors is more important among populations than among species. We, therefore, propose to compile behavioral data from additional populations of Papio to obtain further insight into the genetics underlying behavioral differences among primate species.
Collapse
Affiliation(s)
- Urs Kalbitzer
- Cognitive Ethology Laboratory, German Primate Center (DPZ), Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany.
- Department of Anthropology and Archaeology, University of Calgary, 2500 University Dr NW, Calgary, AB, T2N 1N4, Canada.
| | - Christian Roos
- Gene Bank of Primates and Primate Genetics Laboratory, German Primate Center (DPZ), Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany
| | - Gisela H Kopp
- Cognitive Ethology Laboratory, German Primate Center (DPZ), Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany
- Department of Biology, University of Konstanz, 78457, Constance, Germany
- Department of Migration and Immuno-Ecology, Max Planck Institute for Ornithology, Am Obstberg 1, 78315, Radolfzell, Germany
| | - Thomas M Butynski
- Lolldaiga Hills Research Programme, Sustainability Centre Eastern Africa, P. O. Box 149, Nanyuki, 10400, Kenya
| | - Sascha Knauf
- Work Group Neglected Tropical Diseases, Pathology Unit, German Primate Center (DPZ), Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany
| | - Dietmar Zinner
- Cognitive Ethology Laboratory, German Primate Center (DPZ), Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany
| | - Julia Fischer
- Cognitive Ethology Laboratory, German Primate Center (DPZ), Leibniz Institute for Primate Research, Kellnerweg 4, 37077, Göttingen, Germany
| |
Collapse
|
195
|
Oanca G, Purg M, Mavri J, Shih JC, Stare J. Insights into enzyme point mutation effect by molecular simulation: phenylethylamine oxidation catalyzed by monoamine oxidase A. Phys Chem Chem Phys 2016; 18:13346-56. [PMID: 27121693 DOI: 10.1039/c6cp00098c] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The I335Y point mutation effect on the kinetics of phenylethylamine decomposition catalyzed by monoamine oxidase A was elucidated by means of molecular simulation. The established empirical valence bond methodology was used in conjunction with the free energy perturbation sampling technique and a classical force field representing the state of reactants and products. The methodology allows for the simulation of chemical reactions, in the present case the breaking of the α-C-H bond in a phenylethylamine substrate and the subsequent hydrogen transfer to the flavin cofactor, resulting in the formation of the N-H bond on flavin. The empirical parameters were calibrated against the experimental data for the simulated reaction in a wild type protein and then used for the calculation of the reaction free energy profile in the I335Y mutant. In very good agreement with the measured kinetic data, mutation increases the free energy barrier for the rate limiting step by slightly more than 1 kcal mol(-1) and consequently decreases the rate constant by about an order of magnitude. The magnitude of the computed effect slightly varies with simulation settings, but always remains in reasonable agreement with the experiment. Analysis of trajectories reveals a major change in the interaction between phenyl rings of the substrate and the neighboring Phe352 residue upon the I335Y mutation due to the increased local polarity, leading to an attenuated quadrupole interaction between the rings and destabilization of the transition state. Additionally, the increased local polarity in the mutant allows for a larger number of water molecules to be present near the active site, effectively shielding the catalytic effect of the enzyme and contributing to the increased barrier.
Collapse
Affiliation(s)
- Gabriel Oanca
- Laboratory of Biocomputing and Bioinformatics, National Institute of Chemistry, Ljubljana, Slovenia.
| | | | | | | | | |
Collapse
|
196
|
Malki K, Tosto MG, Pain O, Sluyter F, Mineur YS, Crusio WE, de Boer S, Sandnabba KN, Kesserwani J, Robinson E, Schalkwyk LC, Asherson P. Comparative mRNA analysis of behavioral and genetic mouse models of aggression. Am J Med Genet B Neuropsychiatr Genet 2016; 171B:427-36. [PMID: 26888158 DOI: 10.1002/ajmg.b.32424] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 01/22/2016] [Indexed: 11/06/2022]
Abstract
Mouse models of aggression have traditionally compared strains, most notably BALB/cJ and C57BL/6. However, these strains were not designed to study aggression despite differences in aggression-related traits and distinct reactivity to stress. This study evaluated expression of genes differentially regulated in a stress (behavioral) mouse model of aggression with those from a recent genetic mouse model aggression. The study used a discovery-replication design using two independent mRNA studies from mouse brain tissue. The discovery study identified strain (BALB/cJ and C57BL/6J) × stress (chronic mild stress or control) interactions. Probe sets differentially regulated in the discovery set were intersected with those uncovered in the replication study, which evaluated differences between high and low aggressive animals from three strains specifically bred to study aggression. Network analysis was conducted on overlapping genes uncovered across both studies. A significant overlap was found with the genetic mouse study sharing 1,916 probe sets with the stress model. Fifty-one probe sets were found to be strongly dysregulated across both studies mapping to 50 known genes. Network analysis revealed two plausible pathways including one centered on the UBC gene hub which encodes ubiquitin, a protein well-known for protein degradation, and another on P38 MAPK. Findings from this study support the stress model of aggression, which showed remarkable molecular overlap with a genetic model. The study uncovered a set of candidate genes including the Erg2 gene, which has previously been implicated in different psychopathologies. The gene networks uncovered points at a Redox pathway as potentially being implicated in aggressive related behaviors.
Collapse
Affiliation(s)
- Karim Malki
- King's College London, MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, London, United Kingdom
| | - Maria G Tosto
- King's College London, MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, London, United Kingdom.,Laboratory for Cognitive Investigations and Behavioral Genetics, Tomsk State University, Tomsk, Russia
| | - Oliver Pain
- Centre for Brain and Cognitive Development, Birkbeck, University of London, London, United Kingdom.,Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Frans Sluyter
- King's College London, MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, London, United Kingdom
| | - Yann S Mineur
- Department of Psychiatry, School of Medicine, Yale University, New Haven, Connecticut
| | - Wim E Crusio
- Aquitaine Institute for Cognitive and Integrative Neuroscience, University of Bordeaux, Bordeaux, France.,CNRS, Aquitaine Institute for Cognitive and Integrative Neuroscience, Bordeaux, France
| | - Sietse de Boer
- Groningen Institute for Evolutionary LifeSciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Kenneth N Sandnabba
- Faculty of Arts, Psychology and Theology, Åbo Akademi University, Turku, Finland
| | - Jad Kesserwani
- King's College London, MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, London, United Kingdom
| | - Edward Robinson
- King's College London, MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, London, United Kingdom
| | - Leonard C Schalkwyk
- School of Biological Sciences, University of Essex, Colchester, United Kingdom
| | - Philip Asherson
- King's College London, MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, London, United Kingdom
| |
Collapse
|
197
|
Kolla NJ, Dunlop K, Downar J, Links P, Bagby RM, Wilson AA, Houle S, Rasquinha F, Simpson AI, Meyer JH. Association of ventral striatum monoamine oxidase-A binding and functional connectivity in antisocial personality disorder with high impulsivity: A positron emission tomography and functional magnetic resonance imaging study. Eur Neuropsychopharmacol 2016; 26:777-86. [PMID: 26908392 DOI: 10.1016/j.euroneuro.2015.12.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 12/07/2015] [Accepted: 12/14/2015] [Indexed: 01/13/2023]
Abstract
Impulsivity is a core feature of antisocial personality disorder (ASPD) associated with abnormal brain function and neurochemical alterations. The ventral striatum (VS) is a key region of the neural circuitry mediating impulsive behavior, and low monoamine oxidase-A (MAO-A) level in the VS has shown a specific relationship to the impulsivity of ASPD. Because it is currently unknown whether phenotypic MAO-A markers can influence brain function in ASPD, we investigated VS MAO-A level and the functional connectivity (FC) of two seed regions, superior and inferior VS (VSs, VSi). Nineteen impulsive ASPD males underwent [(11)C] harmine positron emission tomography scanning to measure VS MAO-A VT, an index of MAO-A density, and resting-state functional magnetic resonance imaging that assessed the FC of bilateral seed regions in the VSi and VSs. Subjects also completed self-report impulsivity measures. Results revealed functional coupling of the VSs with bilateral dorsomedial prefrontal cortex (DMPFC) that was correlated with VS MAO-A VT (r=0.47, p=0.04), and functional coupling of the VSi with right hippocampus that was anti-correlated with VS MAO-A VT (r=-0.55, p=0.01). Additionally, VSs-DMPFC FC was negatively correlated with NEO Personality Inventory-Revised impulsivity (r=-0.49, p=0.03), as was VSi-hippocampus FC with Barratt Impulsiveness Scale-11 motor impulsiveness (r=-0.50, p=0.03). These preliminary results highlight an association of VS MAO-A level with the FC of striatal regions linked to impulsive behavior in ASPD and suggest that phenotype-based brain markers of ASPD have relevance to understanding brain function.
Collapse
Affiliation(s)
- Nathan J Kolla
- CAMH Research Imaging Centre, Canada; Campbell Family Mental Health Research Institute, CAMH, Canada; Department of Psychiatry, University of Toronto, Canada; Institute of Medical Science, University of Toronto, Canada.
| | - Katharine Dunlop
- Institute of Medical Science, University of Toronto, Canada; University Health Network, Canada
| | - Jonathan Downar
- Department of Psychiatry, University of Toronto, Canada; Institute of Medical Science, University of Toronto, Canada; University Health Network, Canada
| | - Paul Links
- Institute of Medical Science, University of Toronto, Canada; Department of Psychiatry, University of Western Ontario, Canada
| | - R Michael Bagby
- CAMH Research Imaging Centre, Canada; Department of Psychiatry, University of Toronto, Canada; Department of Psychology, University of Toronto, Canada
| | - Alan A Wilson
- CAMH Research Imaging Centre, Canada; Campbell Family Mental Health Research Institute, CAMH, Canada; Department of Psychiatry, University of Toronto, Canada; Institute of Medical Science, University of Toronto, Canada
| | - Sylvain Houle
- CAMH Research Imaging Centre, Canada; Campbell Family Mental Health Research Institute, CAMH, Canada; Department of Psychiatry, University of Toronto, Canada
| | - Fawn Rasquinha
- CAMH Research Imaging Centre, Canada; Campbell Family Mental Health Research Institute, CAMH, Canada
| | | | - Jeffrey H Meyer
- CAMH Research Imaging Centre, Canada; Campbell Family Mental Health Research Institute, CAMH, Canada; Department of Psychiatry, University of Toronto, Canada; Institute of Medical Science, University of Toronto, Canada
| |
Collapse
|
198
|
El-Terras A, Soliman MM, Alkhedaide A, Attia HF, Alharthy A, Banaja AE. Carbonated soft drinks induce oxidative stress and alter the expression of certain genes in the brains of Wistar rats. Mol Med Rep 2016; 13:3147-54. [PMID: 26936207 DOI: 10.3892/mmr.2016.4903] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 01/07/2016] [Indexed: 11/06/2022] Open
Abstract
In Saudi Arabia, the consumption of carbonated soft drinks is common and often occurs with each meal. Carbonated soft drink consumption has been shown to exhibit effects on the liver, kidney and bone. However, the effects of these soft drinks on brain activity have not been widely examined, particularly at the gene level. Therefore, the current study was conducted with the aim of evaluating the effects of chronic carbonated soft drink consumption on oxidative stress, brain gene biomarkers associated with aggression and brain histology. In total, 40 male Wistar rats were divided into four groups: Group 1 served as a control and was provided access to food and water ad libitum; and groups 2‑4 were given free access to food and carbonated soft drinks only (Cola for group 2, Pepsi for group 3 and 7‑UP for group 4). Animals were maintained on these diets for 3 consecutive months. Upon completion of the experimental period, animals were sacrificed and serological and histopathological analyses were performed on blood and tissues samples. Reverse transcription‑polymerase chain reaction was used to analyze alterations in gene expression levels. Results revealed that carbonated soft drinks increased the serum levels of malondialdehyde (MDA). Carbonated soft drinks were also observed to downregulate the expression of antioxidants glutathione reductase (GR), catalase and glutathione peroxidase (GPx) in the brain when compared with that in the control rats. Rats administered carbonated soft drinks also exhibited decreased monoamine oxidase A (MAO‑A) and acetylcholine esterase (AChE) serum and mRNA levels in the brain. In addition, soft drink consumption upregulated mRNA expression of dopamine D2 receptor (DD2R), while 5-hydroxytryptamine transporter (5‑HTT) expression was decreased. However, following histological examination, all rats had a normal brain structure. The results of this study demonstrated that that carbonated soft drinks induced oxidative stress and altered the expression of certain genes that are associated with the brain activity and thus should be consumed with caution.
Collapse
Affiliation(s)
- Adel El-Terras
- Al‑Saedan Research Chair for Genetic Behavioral Disorders, Taif University, Taif, Mecca 21421, Kingdom of Saudi Arabia
| | - Mohamed Mohamed Soliman
- Al‑Saedan Research Chair for Genetic Behavioral Disorders, Taif University, Taif, Mecca 21421, Kingdom of Saudi Arabia
| | - Adel Alkhedaide
- Medical Laboratory Department, Faculty of Applied Medical Sciences, Taif University, Turabah, Mecca 21411, Kingdom of Saudi Arabia
| | - Hossam Fouad Attia
- Al‑Saedan Research Chair for Genetic Behavioral Disorders, Taif University, Taif, Mecca 21421, Kingdom of Saudi Arabia
| | - Abdullah Alharthy
- Al‑Saedan Research Chair for Genetic Behavioral Disorders, Taif University, Taif, Mecca 21421, Kingdom of Saudi Arabia
| | - Abdel Elah Banaja
- Department of Biology, Faculty of Science, Taif University, Taif, Mecca 11111, Kingdom of Saudi Arabia
| |
Collapse
|
199
|
Liu CH, Ren J, Liu PK. Amphetamine manipulates monoamine oxidase-A level and behavior using theranostic aptamers of transcription factors AP-1/NF-kB. J Biomed Sci 2016; 23:21. [PMID: 26841904 PMCID: PMC4738766 DOI: 10.1186/s12929-016-0239-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 01/20/2016] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Monoamine oxidase (MAO) enzymes play a critical role in controlling the catabolism of monoamine neurotransmitters and biogenic trace amines and behavior in humans. However, the mechanisms that regulate MAO are unclear. Several transcription factor proteins are proposed to modulate the transcription of MAO gene, but evidence supporting these hypotheses is controversial. We aimed to investigate the mechanism of gene transcription regulator proteins on amphetamine-induced behavior. We applied aptamers containing a DNA binding sequence, as well as a random sequence (without target) to study the modulation of amphetamine-induced MAO levels and hyperactivity in living mice. METHODS We pretreated in adult male C57black6 mice (Taconic Farm, Germantown, NY) (n ≥ 3 litters at a time), 2 to 3 months of age (23 ± 2 gm body weight) with double-stranded (ds) DNA aptamers with sequence specific to activator protein-1 (5ECdsAP1), nuclear factor-kappa beta (5ECdsNF-kB), special protein-1 (5ECdsSP-1) or cyclicAMP responsive element binding (5ECdsCreB) protein binding regions, 5ECdsRan [a random sequence without target], single-stranded AP-1 (5ECssAP-1) (8 nmol DNA per kg) or saline (5 μl, intracerebroventricular [icv] injection) control before amphetamine administration (4 mg/kg, i.p.). We then measured and analyzed locomotor activities and the level of MAO-A and MAO-B activity. RESULTS In the pathological condition of amphetamine exposure, we showed here that pretreatment with 5ECdsAP1 and 5ECdsNF-kB reversed the decrease of MAO-A activity (p < 0.05, t test), but not activity of the B isomer (MAO-B), in the ventral tegmental area (VTA) and substantia nigra (SN) of C57black6 mice. The change in MAO-A level coincided with a reversed amphetamine-induced restless behavior of mice. Pretreatments with saline, 5ECdsCreB, 5ECdsSP-1, 5ECdsRan or 5ECssAP-1 had no effect. CONCLUSION Our data lead us to conclude that elevation of AP-1 or NF-kB indirectly decreases MAO-A protein levels which, in turn, diminishes MAO-A ability in the VTA of the mesolimbic dopaminergic pathway that has been implicated in cells under stress especially in the SN and VTA. This study has implications for design for the treatment of drug exposure and perhaps Parkinson's dementia.
Collapse
Affiliation(s)
- Christina H Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, 02129, USA.,Present address: NIH, 6707 Democracy Blvd, Suite 200, Bethesda, MD, 20892, USA
| | - Jiaqian Ren
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, 02129, USA
| | - Philip K Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, 02129, USA.
| |
Collapse
|
200
|
Veroude K, Zhang-James Y, Fernàndez-Castillo N, Bakker MJ, Cormand B, Faraone SV. Genetics of aggressive behavior: An overview. Am J Med Genet B Neuropsychiatr Genet 2016; 171B:3-43. [PMID: 26345359 DOI: 10.1002/ajmg.b.32364] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 08/05/2015] [Indexed: 12/24/2022]
Abstract
The Research Domain Criteria (RDoC) address three types of aggression: frustrative non-reward, defensive aggression and offensive/proactive aggression. This review sought to present the evidence for genetic underpinnings of aggression and to determine to what degree prior studies have examined phenotypes that fit into the RDoC framework. Although the constructs of defensive and offensive aggression have been widely used in the animal genetics literature, the human literature is mostly agnostic with regard to all the RDoC constructs. We know from twin studies that about half the variance in behavior may be explained by genetic risk factors. This is true for both dimensional, trait-like, measures of aggression and categorical definitions of psychopathology. The non-shared environment seems to have a moderate influence with the effects of shared environment being unclear. Human molecular genetic studies of aggression are in an early stage. The most promising candidates are in the dopaminergic and serotonergic systems along with hormonal regulators. Genome-wide association studies have not yet achieved genome-wide significance, but current samples are too small to detect variants having the small effects one would expect for a complex disorder. The strongest molecular evidence for a genetic basis for aggression comes from animal models comparing aggressive and non-aggressive strains or documenting the effects of gene knockouts. Although we have learned much from these prior studies, future studies should improve the measurement of aggression by using a systematic method of measurement such as that proposed by the RDoC initiative.
Collapse
Affiliation(s)
- Kim Veroude
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
| | - Yanli Zhang-James
- Departments of Psychiatry and of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York.,Departments of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York
| | - Noèlia Fernàndez-Castillo
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Catalonia, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Catalonia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain
| | - Mireille J Bakker
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Nijmegen, The Netherlands
| | - Bru Cormand
- Departament de Genètica, Facultat de Biologia, Universitat de Barcelona, Catalonia, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB), Catalonia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain
| | - Stephen V Faraone
- Departments of Psychiatry and of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York.,Departments of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, New York.,K.G. Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen, Bergen, Norway
| |
Collapse
|