151
|
Rodríguez-Pérez F, Manford AG, Pogson A, Ingersoll AJ, Martínez-González B, Rape M. Ubiquitin-dependent remodeling of the actin cytoskeleton drives cell fusion. Dev Cell 2021; 56:588-601.e9. [PMID: 33609460 DOI: 10.1016/j.devcel.2021.01.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 11/14/2020] [Accepted: 01/24/2021] [Indexed: 12/11/2022]
Abstract
Cell-cell fusion is a frequent and essential event during development, and its dysregulation causes diseases ranging from infertility to muscle weakness. Fusing cells need to repeatedly remodel their plasma membrane through orchestrated formation and disassembly of actin filaments, but how the dynamic reorganization of the cortical actin cytoskeleton is controlled is still poorly understood. Here, we identified a ubiquitin-dependent toggle switch that establishes reversible actin bundling during mammalian cell fusion. We found that EPS8-IRSp53 complexes stabilize cortical actin bundles at sites of cell contact to promote close membrane alignment. EPS8 monoubiquitylation by CUL3KCTD10 displaces EPS8-IRSp53 from membranes and counteracts actin bundling, a dual activity that restricts actin bundling to allow paired cells to progress with fusion. We conclude that cytoskeletal rearrangements during development are precisely controlled by ubiquitylation, raising the possibility of modulating the efficiency of cell-cell fusion for therapeutic benefit.
Collapse
Affiliation(s)
- Fernando Rodríguez-Pérez
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Andrew G Manford
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Angela Pogson
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Andrew J Ingersoll
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Brenda Martínez-González
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Michael Rape
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
152
|
Schlesinger D, Elsässer SJ. Revisiting sORFs: overcoming challenges to identify and characterize functional microproteins. FEBS J 2021; 289:53-74. [PMID: 33595896 DOI: 10.1111/febs.15769] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/17/2021] [Accepted: 02/15/2021] [Indexed: 02/07/2023]
Abstract
Short ORFs (sORFs), that is, occurrences of a start and stop codon within 100 codons or less, can be found in organisms of all domains of life, outnumbering annotated protein-coding ORFs by orders of magnitude. Even though functional proteins smaller than 100 amino acids are known, the coding potential of sORFs has often been overlooked, as it is not trivial to predict and test for functionality within the large number of sORFs. Recent advances in ribosome profiling and mass spectrometry approaches, together with refined bioinformatic predictions, have enabled a huge leap forward in this field and identified thousands of likely coding sORFs. A relatively low number of small proteins or microproteins produced from these sORFs have been characterized so far on the molecular, structural, and/or mechanistic level. These however display versatile and, in some cases, essential cellular functions, allowing for the exciting possibility that many more, previously unknown small proteins might be encoded in the genome, waiting to be discovered. This review will give an overview of the steadily growing microprotein field, focusing on eukaryotic small proteins. We will discuss emerging themes in the molecular action of microproteins, as well as advances and challenges in microprotein identification and characterization.
Collapse
Affiliation(s)
- Dörte Schlesinger
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.,Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, Sweden
| | - Simon J Elsässer
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.,Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
153
|
Nasir MA, Nawaz S, Huang J. A Mini-review of Computational Approaches to Predict Functions and Findings of Novel Micro Peptides. Curr Bioinform 2021. [DOI: 10.2174/1574893615999200811130522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
:
New techniques in bioinformatics and the study of the transcriptome at a wide-scale
have uncovered the fact that a large part of the genome is being translated than recently perceived
thoughts and research, bringing about the creation of a various quantity of RNA with proteincoding
and noncoding potential. A lot of RNA particles have been considered as noncoding due to
many reasons, according to developing proofs. Like many sORFs that encode many functional
micro peptides have neglected due to their tiny sizes.
:
Advanced studies reveal many major biological functions of these sORFs and their encoded micro
peptides in a different and wide range of species. All the achievement in the identification of these
sORFs and micro peptides is due to the progressive bioinformatics and high-throughput
sequencing methods. This field has pulled in more consideration due to the detection of a large
number of more sORFs and micro peptides. Nowadays, COVID-19 grabs all the attention of
science as it is a sudden outbreak. sORFs of COVID-19 should be revealed for new ways to
understand this virus. This review discusses ongoing progress in the systems for the identification
and distinguishing proof of sORFs and micro peptides.
Collapse
Affiliation(s)
- Mohsin Ali Nasir
- Center for Informational Biology, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu 611731, China
| | - Samia Nawaz
- Center for Informational Biology, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu 611731, China
| | - Jian Huang
- Center for Informational Biology, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave, West Hi-Tech Zone, Chengdu 611731, China
| |
Collapse
|
154
|
Girardi F, Taleb A, Ebrahimi M, Datye A, Gamage DG, Peccate C, Giordani L, Millay DP, Gilbert PM, Cadot B, Le Grand F. TGFβ signaling curbs cell fusion and muscle regeneration. Nat Commun 2021; 12:750. [PMID: 33531466 PMCID: PMC7854756 DOI: 10.1038/s41467-020-20289-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 11/21/2020] [Indexed: 12/12/2022] Open
Abstract
Muscle cell fusion is a multistep process involving cell migration, adhesion, membrane remodeling and actin-nucleation pathways to generate multinucleated myotubes. However, molecular brakes restraining cell-cell fusion events have remained elusive. Here we show that transforming growth factor beta (TGFβ) pathway is active in adult muscle cells throughout fusion. We find TGFβ signaling reduces cell fusion, regardless of the cells' ability to move and establish cell-cell contacts. In contrast, inhibition of TGFβ signaling enhances cell fusion and promotes branching between myotubes in mouse and human. Exogenous addition of TGFβ protein in vivo during muscle regeneration results in a loss of muscle function while inhibition of TGFβR2 induces the formation of giant myofibers. Transcriptome analyses and functional assays reveal that TGFβ controls the expression of actin-related genes to reduce cell spreading. TGFβ signaling is therefore requisite to limit mammalian myoblast fusion, determining myonuclei numbers and myofiber size.
Collapse
Affiliation(s)
- Francesco Girardi
- Sorbonne Université, INSERM UMRS974, Association Institut de Myologie, Centre de Recherche en Myologie, 75013, Paris, France
| | - Anissa Taleb
- Sorbonne Université, INSERM UMRS974, Association Institut de Myologie, Centre de Recherche en Myologie, 75013, Paris, France
| | - Majid Ebrahimi
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S3G9, Canada
- Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, M5S3E1, Canada
| | - Asiman Datye
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S3G9, Canada
- Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, M5S3E1, Canada
| | - Dilani G Gamage
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Cécile Peccate
- Sorbonne Université, INSERM UMRS974, Association Institut de Myologie, Centre de Recherche en Myologie, 75013, Paris, France
| | - Lorenzo Giordani
- Sorbonne Université, INSERM UMRS974, Association Institut de Myologie, Centre de Recherche en Myologie, 75013, Paris, France
| | - Douglas P Millay
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Penney M Gilbert
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S3G9, Canada
- Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, M5S3E1, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S3G5, Canada
| | - Bruno Cadot
- Sorbonne Université, INSERM UMRS974, Association Institut de Myologie, Centre de Recherche en Myologie, 75013, Paris, France
| | - Fabien Le Grand
- Sorbonne Université, INSERM UMRS974, Association Institut de Myologie, Centre de Recherche en Myologie, 75013, Paris, France.
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS UMR 5310, INSERM U1217, 69008, Lyon, France.
| |
Collapse
|
155
|
Golani G, Leikina E, Melikov K, Whitlock JM, Gamage DG, Luoma-Overstreet G, Millay DP, Kozlov MM, Chernomordik LV. Myomerger promotes fusion pore by elastic coupling between proximal membrane leaflets and hemifusion diaphragm. Nat Commun 2021; 12:495. [PMID: 33479215 PMCID: PMC7820291 DOI: 10.1038/s41467-020-20804-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 12/08/2020] [Indexed: 01/09/2023] Open
Abstract
Myomerger is a muscle-specific membrane protein involved in formation of multinucleated muscle cells by mediating the transition from the early hemifusion stage to complete fusion. Here, we considered the physical mechanism of the Myomerger action based on the hypothesis that Myomerger shifts the spontaneous curvature of the outer membrane leaflets to more positive values. We predicted, theoretically, that Myomerger generates the outer leaflet elastic stresses, which propagate into the hemifusion diaphragm and accelerate the fusion pore formation. We showed that Myomerger ectodomain indeed generates positive spontaneous curvature of lipid monolayers. We substantiated the mechanism by experiments on myoblast fusion and influenza hemagglutinin-mediated cell fusion. In both processes, the effects of Myomerger ectodomain were strikingly similar to those of lysophosphatidylcholine known to generate a positive spontaneous curvature of lipid monolayers. The control of post-hemifusion stages by shifting the spontaneous curvature of proximal membrane monolayers may be utilized in diverse fusion processes.
Collapse
Affiliation(s)
- Gonen Golani
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Evgenia Leikina
- Section on Membrane Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kamran Melikov
- Section on Membrane Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jarred M Whitlock
- Section on Membrane Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Dilani G Gamage
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Gracia Luoma-Overstreet
- Section on Membrane Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Douglas P Millay
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, 45229, USA
| | - Michael M Kozlov
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.
| | - Leonid V Chernomordik
- Section on Membrane Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
156
|
Yang Y, Margam NN. Structural Insights into Membrane Fusion Mediated by Convergent Small Fusogens. Cells 2021; 10:cells10010160. [PMID: 33467484 PMCID: PMC7830690 DOI: 10.3390/cells10010160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/07/2021] [Accepted: 01/13/2021] [Indexed: 12/30/2022] Open
Abstract
From lifeless viral particles to complex multicellular organisms, membrane fusion is inarguably the important fundamental biological phenomena. Sitting at the heart of membrane fusion are protein mediators known as fusogens. Despite the extensive functional and structural characterization of these proteins in recent years, scientists are still grappling with the fundamental mechanisms underlying membrane fusion. From an evolutionary perspective, fusogens follow divergent evolutionary principles in that they are functionally independent and do not share any sequence identity; however, they possess structural similarity, raising the possibility that membrane fusion is mediated by essential motifs ubiquitous to all. In this review, we particularly emphasize structural characteristics of small-molecular-weight fusogens in the hope of uncovering the most fundamental aspects mediating membrane–membrane interactions. By identifying and elucidating fusion-dependent functional domains, this review paves the way for future research exploring novel fusogens in health and disease.
Collapse
|
157
|
An Upstream Open Reading Frame in Phosphatase and Tensin Homolog Encodes a Circuit Breaker of Lactate Metabolism. Cell Metab 2021; 33:128-144.e9. [PMID: 33406399 DOI: 10.1016/j.cmet.2020.12.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/08/2020] [Accepted: 12/11/2020] [Indexed: 12/25/2022]
Abstract
The metabolic role of micropeptides generated from untranslated regions remains unclear. Here we describe MP31, a micropeptide encoded by the upstream open reading frame (uORF) of phosphatase and tensin homolog (PTEN) acting as a "circuit breaker" that limits lactate-pyruvate conversion in mitochondria by competing with mitochondrial lactate dehydrogenase (mLDH) for nicotinamide adenine dinucleotide (NAD+). Knocking out the MP31 homolog in mice enhanced global lactate metabolism, manifesting as accelerated oxidative phosphorylation (OXPHOS) and increased lactate consumption and production. Conditional knockout (cKO) of MP31 homolog in mouse astrocytes initiated gliomagenesis and shortened the overall survival of the animals, establishing a tumor-suppressing role for MP31. Recombinant MP31 administered intraperitoneally penetrated the blood-brain barrier and inhibited mice GBM xenografts without neurological toxicity, suggesting the clinical implication and application of this micropeptide. Our findings reveal a novel mode of MP31-orchestrated lactate metabolism reprogramming in glioblastoma.
Collapse
|
158
|
Azar C, Valentine MC, Trausch‐Azar J, Rois L, Mahjoub M, Nelson DM, Schwartz AL. RNA-Seq identifies genes whose proteins are upregulated during syncytia development in murine C2C12 myoblasts and human BeWo trophoblasts. Physiol Rep 2021; 9:e14671. [PMID: 33403800 PMCID: PMC7786548 DOI: 10.14814/phy2.14671] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 12/13/2022] Open
Abstract
The fusion of villous cytotrophoblasts into the multinucleated syncytiotrophoblast is critical for the essential functions of the mammalian placenta. Using RNA-Seq gene expression, quantitative protein expression, and siRNA knockdown we identified genes and their cognate proteins which are similarly upregulated in two cellular models of mammalian syncytia development (human BeWo cytotrophoblast to syncytiotrophoblast and murine C2C12 myoblast to myotube). These include DYSF, PDE4DIP, SPIRE2, NDRG1, PLEC, GPR146, HSPB8, DHCR7, and HDAC5. These findings provide avenues for further understanding of the mechanisms underlying mammalian placental syncytiotrophoblast development.
Collapse
Affiliation(s)
- Christopher Azar
- Department of PediatricsWashington University School of MedicineSt. LouisMOUSA
| | - Mark C. Valentine
- Department of Obstetrics and GynecologyWashington University School of MedicineSt. LouisMOUSA
| | - Julie Trausch‐Azar
- Department of PediatricsWashington University School of MedicineSt. LouisMOUSA
| | - Lisa Rois
- Department of PediatricsWashington University School of MedicineSt. LouisMOUSA
| | - Moe Mahjoub
- Department of MedicineWashington University School of MedicineSt. LouisMOUSA
| | - D. Michael Nelson
- Department of Obstetrics and GynecologyWashington University School of MedicineSt. LouisMOUSA
| | - Alan L. Schwartz
- Department of PediatricsWashington University School of MedicineSt. LouisMOUSA
- Department of Developmental BiologyWashington University School of MedicineSt. LouisMOUSA
| |
Collapse
|
159
|
Osana S, Kitajima Y, Suzuki N, Nunomiya A, Takada H, Kubota T, Murayama K, Nagatomi R. Puromycin-sensitive aminopeptidase is required for C2C12 myoblast proliferation and differentiation. J Cell Physiol 2020; 236:5293-5305. [PMID: 33378552 PMCID: PMC8049066 DOI: 10.1002/jcp.30237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 11/20/2020] [Accepted: 12/09/2020] [Indexed: 02/06/2023]
Abstract
The ubiquitin-proteasome system is a major protein degradation pathway in the cell. Proteasomes produce several peptides that are rapidly degraded to free amino acids by intracellular aminopeptidases. Our previous studies reported that proteolysis via proteasomes and aminopeptidases is required for myoblast proliferation and differentiation. However, the role of intracellular aminopeptidases in myoblast proliferation and differentiation had not been clarified. In this study, we investigated the effects of puromycin-sensitive aminopeptidase (PSA) on C2C12 myoblast proliferation and differentiation by knocking down PSA. Aminopeptidase enzymatic activity was reduced in PSA-knockdown myoblasts. Knockdown of PSA induced impaired cell cycle progression in C2C12 myoblasts and accumulation of cells at the G2/M phase. Additionally, after the induction of myogenic differentiation in PSA-knockdown myoblasts, multinucleated circular-shaped myotubes with impaired cell polarity were frequently identified. Cell division cycle 42 (CDC42) knockdown in myoblasts resulted in a loss of cell polarity and the formation of multinucleated circular-shaped myotubes, which were similar to PSA-knockdown myoblasts. These data suggest that PSA is required for the proliferation of myoblasts in the growth phase and for the determination of cell polarity and elongation of myotubes in the differentiation phase.
Collapse
Affiliation(s)
- Shion Osana
- Division of Biomedical Engineering for Health and Welfare, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Yasuo Kitajima
- Division of Developmental Regulation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan.,Department of Immunology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Naoki Suzuki
- Department of Neurology, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Aki Nunomiya
- IFOM, The FIRC Institute of Molecular Oncology, Milan, Italy
| | - Hiroaki Takada
- Department of Medicine and Science in Sports and Exercise, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Takahiro Kubota
- Department of Medicine and Science in Sports and Exercise, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Kazutaka Murayama
- Division of Biomedical Measurements and Diagnostics, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Ryoichi Nagatomi
- Division of Biomedical Engineering for Health and Welfare, Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan.,Department of Medicine and Science in Sports and Exercise, Graduate School of Medicine, Tohoku University, Sendai, Japan
| |
Collapse
|
160
|
Karstensen KT, Schein A, Petri A, Bøgsted M, Dybkær K, Uchida S, Kauppinen S. Long Non-Coding RNAs in Diffuse Large B-Cell Lymphoma. Noncoding RNA 2020; 7:1. [PMID: 33379241 PMCID: PMC7838888 DOI: 10.3390/ncrna7010001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 12/12/2022] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoid malignancy in adults. Although significant progress has been made in recent years to treat DLBCL patients, 30%-40% of the patients eventually relapse or are refractory to first line treatment, calling for better therapeutic strategies for DLBCL. Long non-coding RNAs (lncRNAs) have emerged as a highly diverse group of non-protein coding transcripts with intriguing molecular functions in human disease, including cancer. Here, we review the current understanding of lncRNAs in the pathogenesis and progression of DLBCL to provide an overview of the field. As the current knowledge of lncRNAs in DLBCL is still in its infancy, we provide molecular signatures of lncRNAs in DLBCL cell lines to assist further lncRNA research in DLBCL.
Collapse
Affiliation(s)
- Kasper Thystrup Karstensen
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, DK-2450 Copenhagen, Denmark; (K.T.K.); (A.S.); (A.P.)
| | - Aleks Schein
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, DK-2450 Copenhagen, Denmark; (K.T.K.); (A.S.); (A.P.)
| | - Andreas Petri
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, DK-2450 Copenhagen, Denmark; (K.T.K.); (A.S.); (A.P.)
| | - Martin Bøgsted
- Department of Clinical Medicine, Faculty of Medicine, Aalborg University, DK-9000 Aalborg, Denmark; (M.B.); (K.D.)
- Department of Haematology, Clinical Cancer Research Center, Aalborg University Hospital, DK-9000 Aalborg, Denmark
| | - Karen Dybkær
- Department of Clinical Medicine, Faculty of Medicine, Aalborg University, DK-9000 Aalborg, Denmark; (M.B.); (K.D.)
- Department of Haematology, Clinical Cancer Research Center, Aalborg University Hospital, DK-9000 Aalborg, Denmark
| | - Shizuka Uchida
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, DK-2450 Copenhagen, Denmark; (K.T.K.); (A.S.); (A.P.)
| | - Sakari Kauppinen
- Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, DK-2450 Copenhagen, Denmark; (K.T.K.); (A.S.); (A.P.)
| |
Collapse
|
161
|
Cramer AAW, Prasad V, Eftestøl E, Song T, Hansson KA, Dugdale HF, Sadayappan S, Ochala J, Gundersen K, Millay DP. Nuclear numbers in syncytial muscle fibers promote size but limit the development of larger myonuclear domains. Nat Commun 2020; 11:6287. [PMID: 33293533 PMCID: PMC7722938 DOI: 10.1038/s41467-020-20058-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 10/30/2020] [Indexed: 12/11/2022] Open
Abstract
Mammalian cells exhibit remarkable diversity in cell size, but the factors that regulate establishment and maintenance of these sizes remain poorly understood. This is especially true for skeletal muscle, comprised of syncytial myofibers that each accrue hundreds of nuclei during development. Here, we directly explore the assumed causal relationship between multinucleation and establishment of normal size through titration of myonuclear numbers during mouse neonatal development. Three independent mouse models, where myonuclear numbers were reduced by 75, 55, or 25%, led to the discovery that myonuclei possess a reserve capacity to support larger functional cytoplasmic volumes in developing myofibers. Surprisingly, the results revealed an inverse relationship between nuclei numbers and reserve capacity. We propose that as myonuclear numbers increase, the range of transcriptional return on a per nuclear basis in myofibers diminishes, which accounts for both the absolute reliance developing myofibers have on nuclear accrual to establish size, and the limits of adaptability in adult skeletal muscle.
Collapse
Affiliation(s)
- Alyssa A W Cramer
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Vikram Prasad
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Einar Eftestøl
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Taejeong Song
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Kenth-Arne Hansson
- Department of Biosciences, University of Oslo, Oslo, Norway
- Center for Integrative Neuroplasticity (CINPLA), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Hannah F Dugdale
- Center of Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Sakthivel Sadayappan
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA
| | - Julien Ochala
- Center of Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
- Randall Center for Cell and Molecular Biophysics, School of Basic & Medical Biosciences, Faculty of Life Sciences & Medicine, Guy's Campus, King's College London, London, UK
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Douglas P Millay
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA.
| |
Collapse
|
162
|
Zhang H, Wen J, Bigot A, Chen J, Shang R, Mouly V, Bi P. Human myotube formation is determined by MyoD-Myomixer/Myomaker axis. SCIENCE ADVANCES 2020; 6:eabc4062. [PMID: 33355126 PMCID: PMC11206528 DOI: 10.1126/sciadv.abc4062] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 10/27/2020] [Indexed: 06/12/2023]
Abstract
Myoblast fusion is essential for formations of myofibers, the basic cellular and functional units of skeletal muscles. Recent genetic studies in mice identified two long-sought membrane proteins, Myomaker and Myomixer, which cooperatively drive myoblast fusion. It is unknown whether and how human muscles, with myofibers of tremendously larger size, use this mechanism to achieve multinucleations. Here, we report an interesting fusion model of human myoblasts where Myomaker is sufficient to induce low-grade fusion, while Myomixer boosts its efficiency to generate giant myotubes. By CRISPR mutagenesis and biochemical assays, we identified MyoD as the key molecular switch of fusion that is required and sufficient to initiate Myomixer and Myomaker expression. Mechanistically, we defined the E-box motifs on promoters of Myomixer and Myomaker by which MyoD induces their expression for multinucleations of human muscle cells. Together, our study uncovered the key molecular apparatus and the transcriptional control mechanism underlying human myoblast fusion.
Collapse
Affiliation(s)
- Haifeng Zhang
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA
| | - Junfei Wen
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA
| | - Anne Bigot
- Center for Research in Myology UMRS974, Sorbonne Université, INSERM, Myology Institute AIM, Paris, France
| | - Jiacheng Chen
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA
| | - Renjie Shang
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Vincent Mouly
- Center for Research in Myology UMRS974, Sorbonne Université, INSERM, Myology Institute AIM, Paris, France
| | - Pengpeng Bi
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA.
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
163
|
Guerra-Almeida D, Nunes-da-Fonseca R. Small Open Reading Frames: How Important Are They for Molecular Evolution? Front Genet 2020; 11:574737. [PMID: 33193682 PMCID: PMC7606980 DOI: 10.3389/fgene.2020.574737] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 08/25/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Diego Guerra-Almeida
- Institute of Biodiversity and Sustainability, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo Nunes-da-Fonseca
- Institute of Biodiversity and Sustainability, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology in Molecular Entomology, Rio de Janeiro, Brazil
| |
Collapse
|
164
|
Lafranchi L, Schlesinger D, Kimler KJ, Elsässer SJ. Universal Single-Residue Terminal Labels for Fluorescent Live Cell Imaging of Microproteins. J Am Chem Soc 2020; 142:20080-20087. [PMID: 33175524 DOI: 10.1021/jacs.0c09574] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Genetically encoded fluorescent tags for visualization of proteins in living cells add six to several hundred amino acids to the protein of interest. While suitable for most proteins, common tags easily match and exceed the size of microproteins of 60 amino acids or less. The added molecular weight and structure of such fluorescent tag may thus significantly affect in vivo biophysical and biochemical properties of microproteins. Here, we develop single-residue terminal labeling (STELLA) tags that introduce a single noncanonical amino acid either at the N- or C-terminus of a protein or microprotein of interest for subsequent specific fluorescent labeling. Efficient terminal noncanonical amino acid mutagenesis is achieved using a precursor tag that is tracelessly cleaved. Subsequent selective bioorthogonal reaction with a cell-permeable organic dye enables live cell imaging of microproteins with minimal perturbation of their native sequence. The use of terminal residues for labeling provides a universally applicable and easily scalable strategy, which avoids alteration of the core sequence of the microprotein.
Collapse
Affiliation(s)
- Lorenzo Lafranchi
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Division of Genome Biology, Karolinska Institutet, Stockholm, 17165, Sweden.,Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, 17165, Sweden
| | - Dörte Schlesinger
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Division of Genome Biology, Karolinska Institutet, Stockholm, 17165, Sweden.,Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, 17165, Sweden
| | - Kyle J Kimler
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Division of Genome Biology, Karolinska Institutet, Stockholm, 17165, Sweden.,Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, 17165, Sweden
| | - Simon J Elsässer
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Division of Genome Biology, Karolinska Institutet, Stockholm, 17165, Sweden.,Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, 17165, Sweden
| |
Collapse
|
165
|
The Small Toxic Salmonella Protein TimP Targets the Cytoplasmic Membrane and Is Repressed by the Small RNA TimR. mBio 2020; 11:mBio.01659-20. [PMID: 33172998 PMCID: PMC7667032 DOI: 10.1128/mbio.01659-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Next-generation sequencing (NGS) has enabled the revelation of a vast number of genomes from organisms spanning all domains of life. To reduce complexity when new genome sequences are annotated, open reading frames (ORFs) shorter than 50 codons in length are generally omitted. However, it has recently become evident that this procedure sorts away ORFs encoding small proteins of high biological significance. For instance, tailored small protein identification approaches have shown that bacteria encode numerous small proteins with important physiological functions. As the number of predicted small ORFs increase, it becomes important to characterize the corresponding proteins. In this study, we discovered a conserved but previously overlooked small enterobacterial protein. We show that this protein, which we dubbed TimP, is a potent toxin that inhibits bacterial growth by targeting the cell membrane. Toxicity is relieved by a small regulatory RNA, which binds the toxin mRNA to inhibit toxin synthesis. Small proteins are gaining increased attention due to their important functions in major biological processes throughout the domains of life. However, their small size and low sequence conservation make them difficult to identify. It is therefore not surprising that enterobacterial ryfA has escaped identification as a small protein coding gene for nearly 2 decades. Since its identification in 2001, ryfA has been thought to encode a noncoding RNA and has been implicated in biofilm formation in Escherichia coli and pathogenesis in Shigella dysenteriae. Although a recent ribosome profiling study suggested ryfA to be translated, the corresponding protein product was not detected. In this study, we provide evidence that ryfA encodes a small toxic inner membrane protein, TimP, overexpression of which causes cytoplasmic membrane leakage. TimP carries an N-terminal signal sequence, indicating that its membrane localization is Sec-dependent. Expression of TimP is repressed by the small RNA (sRNA) TimR, which base pairs with the timP mRNA to inhibit its translation. In contrast to overexpression, endogenous expression of TimP upon timR deletion permits cell growth, possibly indicating a toxicity-independent function in the bacterial membrane.
Collapse
|
166
|
Chen Y, Ho L, Tergaonkar V. sORF-Encoded MicroPeptides: New players in inflammation, metabolism, and precision medicine. Cancer Lett 2020; 500:263-270. [PMID: 33157158 DOI: 10.1016/j.canlet.2020.10.038] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/16/2020] [Accepted: 10/21/2020] [Indexed: 12/30/2022]
Abstract
Significant technological advances have enabled the discovery and identification of a new class of molecules, micropeptides or small ORF encoded peptides (SEPs) within non-coding RNAs (ncRNAs). As ncRNAs are well known to be transcriptionally silent, the discovery of SEPs implies that many ncRNAs are misannotated or play both coding and non-coding functions. SEPs have reportedly diverse regulatory roles in embryogenesis, myogenesis, inflammation, diseases, and cancer. SEPs appearing in different subcellular compartments show distinct functions. In this review, we summarized the functions of SEPs that have been characterized thus far. As SEPs are amenable to therapeutic development as biologics, understanding their underlying functions will provide novel targets for the treatment of inflammatory or metabolic disorders.
Collapse
Affiliation(s)
- Ying Chen
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, 138673, Singapore.
| | - Lena Ho
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, 138673, Singapore; Cardiovascular Metabolic Disorders Program, Duke-NUS Graduate School, Singapore; Institute of Medical Biology, A*STAR, Singapore
| | - Vinay Tergaonkar
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Singapore, 138673, Singapore; Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, 117597, Singapore.
| |
Collapse
|
167
|
Tomida T, Adachi-Akahane S. [Roles of p38 MAPK signaling in the skeletal muscle formation, regeneration, and pathology]. Nihon Yakurigaku Zasshi 2020; 155:241-247. [PMID: 32612037 DOI: 10.1254/fpj20030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Sarcopenia and frailty in aging, or cancer cachexia shows an abnormal decrease in skeletal muscle mass and muscle strength. However, the underlying mechanisms are not clear, and the promising drug seeds have not been discovered. The formation of skeletal muscle occurs not only during embryonic development but also in adulthood, and the muscle can be regenerated even if it is damaged by exercise overload or physical injury. Although p38MAPK is ubiquitous among tissues and transmits signal of inflammation and environmental stress into the nucleus, it has been revealed that this kinase is deeply involved in maintaining skeletal muscle homeostasis. Knowledge of p38MAPK accumulated so far suggests that it not only functions as an on-off switch for gene expression, but also it balances cell proliferation and differentiation of progenitor cells to properly respond to muscle damage and repair muscle according to its surrounding environmental cues. In addition, its role in cell fusion to induce myotube formation has been recently revealed. On the other hand, it has been pointed out that in aging and chronic inflammation, excessive enhancement of the p38MAPK activity may disrupt skeletal muscle homeostasis and lead to muscle pathology. Interestingly, animal models have shown that pharmacological manipulation of p38MAPK activity can re-activate aged muscle satellite cells, suggesting the possibility of plastically manipulating skeletal muscle aging. Furthermore, it has become possible to track the dynamics of intracellular signaling of skeletal muscle cells or muscle progenitor cells in time and space by using advanced imaging techniques. In this review, we focus on the functional roles and regulatory mechanism of p38MAPK in skeletal muscle and its relation to the pathology in the context of dysregulation of skeletal muscle formation and regeneration.
Collapse
Affiliation(s)
- Taichiro Tomida
- Department of Physiology, School of Medicine, Faculty of Medicine, Toho University
| | | |
Collapse
|
168
|
Genome-wide CRISPR screen identifies LGALS2 as an oxidative stress-responsive gene with an inhibitory function on colon tumor growth. Oncogene 2020; 40:177-188. [PMID: 33110234 PMCID: PMC7790754 DOI: 10.1038/s41388-020-01523-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/06/2020] [Accepted: 10/13/2020] [Indexed: 12/13/2022]
Abstract
Colorectal cancer is the third leading cause of cancer-related deaths in the United States and the third most common cancer in men and women. Around 20% colon cancer cases are closely linked with colitis. Both environmental and genetic factors are thought to contribute to colon inflammation and tumor development. However, the genetic factors regulating colitis and colon tumorigenesis remain elusive. Since reactive oxygen species (ROS) is vitally involved in tissue inflammation and tumorigenesis, here we employed a genome-wide CRISPR knockout screening approach to systemically identify the genetic factors involved in the regulation of oxidative stress. Next generation sequencing (NGS) showed that over 600 gRNAs including the ones targeting LGALS2 were highly enriched in cells survived after sublethal H2O2 challenge. LGALS2 encodes the glycan-binding protein Galectin 2 (Gal2), which is predominantly expressed in the gastrointestinal tract and downregulated in human colon tumors. To examine the role of Gal2 in colitis, we employed the dextran sodium sulfate (DSS)-induced acute colitis model in mice with (WT) or without Lgals2 (Gal2-KO) and showed that Gal2 deficiency ameliorated DSS-induced colitis. We further demonstrated that Gal2-KO mice developed significantly larger tumors than WT mice using Azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced colorectal cancer model. We found that STAT3 phosphorylation was significantly increased in Gal2-deficient tumors as compared to those in WT mice. Gal2 overexpression decreased the proliferation of human colon tumor epithelial cells and blunted H2O2-induced STAT3 phosphorylation. Overall, our results demonstrate that Gal2 plays a suppressive role in colon tumor growth and highlights the therapeutic potential of Gal2 in colon cancer.
Collapse
|
169
|
Fleming JW, Capel AJ, Rimington RP, Wheeler P, Leonard AN, Bishop NC, Davies OG, Lewis MP. Bioengineered human skeletal muscle capable of functional regeneration. BMC Biol 2020; 18:145. [PMID: 33081771 PMCID: PMC7576716 DOI: 10.1186/s12915-020-00884-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/30/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Skeletal muscle (SkM) regenerates following injury, replacing damaged tissue with high fidelity. However, in serious injuries, non-regenerative defects leave patients with loss of function, increased re-injury risk and often chronic pain. Progress in treating these non-regenerative defects has been slow, with advances only occurring where a comprehensive understanding of regeneration has been gained. Tissue engineering has allowed the development of bioengineered models of SkM which regenerate following injury to support research in regenerative physiology. To date, however, no studies have utilised human myogenic precursor cells (hMPCs) to closely mimic functional human regenerative physiology. RESULTS Here we address some of the difficulties associated with cell number and hMPC mitogenicity using magnetic association cell sorting (MACS), for the marker CD56, and media supplementation with fibroblast growth factor 2 (FGF-2) and B-27 supplement. Cell sorting allowed extended expansion of myogenic cells and supplementation was shown to improve myogenesis within engineered tissues and force generation at maturity. In addition, these engineered human SkM regenerated following barium chloride (BaCl2) injury. Following injury, reductions in function (87.5%) and myotube number (33.3%) were observed, followed by a proliferative phase with increased MyoD+ cells and a subsequent recovery of function and myotube number. An expansion of the Pax7+ cell population was observed across recovery suggesting an ability to generate Pax7+ cells within the tissue, similar to the self-renewal of satellite cells seen in vivo. CONCLUSIONS This work outlines an engineered human SkM capable of functional regeneration following injury, built upon an open source system adding to the pre-clinical testing toolbox to improve the understanding of basic regenerative physiology.
Collapse
Affiliation(s)
- J W Fleming
- School of Sports, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| | - A J Capel
- School of Sports, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| | - R P Rimington
- School of Sports, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| | - P Wheeler
- School of Sports, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| | - A N Leonard
- School of Sports, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| | - N C Bishop
- School of Sports, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| | - O G Davies
- School of Sports, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| | - M P Lewis
- School of Sports, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK.
| |
Collapse
|
170
|
Hu Z, Cao J, Liu G, Zhang H, Liu X. Comparative Transcriptome Profiling of Skeletal Muscle from Black Muscovy Duck at Different Growth Stages Using RNA-seq. Genes (Basel) 2020; 11:genes11101228. [PMID: 33092100 PMCID: PMC7590229 DOI: 10.3390/genes11101228] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/13/2020] [Accepted: 10/16/2020] [Indexed: 12/13/2022] Open
Abstract
In China, the production for duck meat is second only to that of chicken, and the demand for duck meat is also increasing. However, there is still unclear on the internal mechanism of regulating skeletal muscle growth and development in duck. This study aimed to identity candidate genes related to growth of duck skeletal muscle and explore the potential regulatory mechanism. RNA-seq technology was used to compare the transcriptome of skeletal muscles in black Muscovy ducks at different developmental stages (day 17, 21, 27, 31, and 34 of embryos and postnatal 6-month-olds). The SNPs and InDels of black Muscovy ducks at different growth stages were mainly in “INTRON”, “SYNONYMOUS_CODING”, “UTR_3_PRIME”, and “DOWNSTREAM”. The average number of AS in each sample was 37,267, mainly concentrated in TSS and TTS. Besides, a total of 19 to 5377 DEGs were detected in each pairwise comparison. Functional analysis showed that the DEGs were mainly involved in the processes of cell growth, muscle development, and cellular activities (junction, migration, assembly, differentiation, and proliferation). Many of DEGs were well known to be related to growth of skeletal muscle in black Muscovy duck, such as MyoG, FBXO1, MEF2A, and FoxN2. KEGG pathway analysis identified that the DEGs were significantly enriched in the pathways related to the focal adhesion, MAPK signaling pathway and regulation of the actin cytoskeleton. Some DEGs assigned to these pathways were potential candidate genes inducing the difference in muscle growth among the developmental stages, such as FAF1, RGS8, GRB10, SMYD3, and TNNI2. Our study identified several genes and pathways that may participate in the regulation of skeletal muscle growth in black Muscovy duck. These results should serve as an important resource revealing the molecular basis of muscle growth and development in duck.
Collapse
|
171
|
Wang L, Xu Z, Ling D, Li J, Wang Y, Shan T. The regulatory role of dietary factors in skeletal muscle development, regeneration and function. Crit Rev Food Sci Nutr 2020; 62:764-782. [PMID: 33021403 DOI: 10.1080/10408398.2020.1828812] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Skeletal muscle plays a crucial role in motor function, respiration, and whole-body energy homeostasis. How to regulate the development and function of skeletal muscle has become a hot research topic for improving lifestyle and extending life span. Numerous transcription factors and nutritional factors have been clarified are closely associated with the regulation of skeletal muscle development, regeneration and function. In this article, the roles of different dietary factors including green tea, quercetin, curcumin (CUR), eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and resveratrol (RES) in regulating skeletal muscle development, muscle mass, muscle function, and muscle recovery have been summarized and discussed. We also reviewed the potential regulatory molecular mechanism of these factors. Based on the current findings, dietary factors may be used as a potential therapeutic agent to treat skeletal muscle dysfunction as well as its related diseases.
Collapse
Affiliation(s)
- Liyi Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Ministry of Education, The Key Laboratory of Molecular Animal Nutrition, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Ziye Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Ministry of Education, The Key Laboratory of Molecular Animal Nutrition, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Defeng Ling
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Ministry of Education, The Key Laboratory of Molecular Animal Nutrition, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Jie Li
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Ministry of Education, The Key Laboratory of Molecular Animal Nutrition, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Yizhen Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Ministry of Education, The Key Laboratory of Molecular Animal Nutrition, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, Hangzhou, China.,Ministry of Education, The Key Laboratory of Molecular Animal Nutrition, Hangzhou, China.,Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| |
Collapse
|
172
|
Blanc RS, Kallenbach JG, Bachman JF, Mitchell A, Paris ND, Chakkalakal JV. Inhibition of inflammatory CCR2 signaling promotes aged muscle regeneration and strength recovery after injury. Nat Commun 2020; 11:4167. [PMID: 32820177 PMCID: PMC7441393 DOI: 10.1038/s41467-020-17620-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 07/06/2020] [Indexed: 02/07/2023] Open
Abstract
Muscle regeneration depends on a robust albeit transient inflammatory response. Persistent inflammation is a feature of age-related regenerative deficits, yet the underlying mechanisms are poorly understood. Here, we find inflammatory-related CC-chemokine-receptor 2 (Ccr2) expression in non-hematopoietic myogenic progenitors (MPs) during regeneration. After injury, the expression of Ccr2 in MPs corresponds to the levels of its ligands, the chemokines Ccl2, 7, and 8. We find stimulation of Ccr2-activity inhibits MP fusion and contribution to myofibers. This occurs in association with increases in MAPKp38δ/γ signaling, MyoD phosphorylation, and repression of the terminal myogenic commitment factor Myogenin. High levels of Ccr2-chemokines are a feature of regenerating aged muscle. Correspondingly, deletion of Ccr2 in MPs is necessary for proper fusion into regenerating aged muscle. Finally, opportune Ccr2 inhibition after injury enhances aged regeneration and functional recovery. These results demonstrate that inflammatory-induced activation of Ccr2 signaling in myogenic cells contributes to aged muscle regenerative decline. Chronic inflammation is a feature of age-related regenerative decline in skeletal muscles, but how it directly affects resident muscle stem cell fate and function is unclear. Here, the authors show that Ccr2 signaling in muscle stem cell derived progenitors represses terminal myogenic differentiation, and that targeting Ccr2 on aged myogenic progenitors rejuvenates aged skeletal muscle healing and function.
Collapse
Affiliation(s)
- Roméo S Blanc
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA.,Wilmot Cancer Institute, Stem Cell and Regenerative Medicine Institute, and The Rochester Aging Research Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Jacob G Kallenbach
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA.,Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY, USA
| | - John F Bachman
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA.,Department of Pathology and Laboratory Medicine, Cell Biology of Disease Graduate Program, University of Rochester Medical Center, Rochester, NY, USA
| | - Amanda Mitchell
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Nicole D Paris
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA.,Wilmot Cancer Institute, Stem Cell and Regenerative Medicine Institute, and The Rochester Aging Research Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Joe V Chakkalakal
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA. .,Wilmot Cancer Institute, Stem Cell and Regenerative Medicine Institute, and The Rochester Aging Research Center, University of Rochester Medical Center, Rochester, NY, USA. .,Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
173
|
Zhu KC, Liu BS, Guo HY, Zhang N, Guo L, Jiang SG, Zhang DC. Functional analysis of two MyoDs revealed their role in the activation of myomixer expression in yellowfin seabream (Acanthopagrus latus) (Hottuyn, 1782). Int J Biol Macromol 2020; 156:1081-1090. [PMID: 31756488 DOI: 10.1016/j.ijbiomac.2019.11.139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/11/2019] [Accepted: 11/17/2019] [Indexed: 11/24/2022]
Abstract
Myoblast determination protein (MyoD), a muscle-specific basic helix-loop-helix (bHLH) transcription factor, plays a pivotal role in regulating skeletal muscle growth and development. However, the regulation mechanism of MyoD has not been determined in marine fishes. In the present study, we isolated the MyoD1 (AlMyoD1) and MyoD2 (AlMyoD2) genomic sequences and analyzed the expression patterns in different tissues of yellowfin seabream (Acanthopagrus latus). The open reading frame (ORF) sequences of AlMyoD1 and AlMyoD2 encoded 297 and 271 amino acids possessing three common characteristic domains, respectively, containing a myogenic basic domain, a bHLH domain, and a ser-rich region (helix III). Phylogenetic and genome structure analyses exhibited classic phylogeny and highly conserved exon/intron architecture. Furthermore, the AlMyoD1 and AlMyoD2 transcription levels were higher in white muscle than in the other tissues. In order to further study AlMyoD function in muscle, promoter sequence analysis found that several E-box binding sites were present. Additionally, binding sites of Almyomixer involved in mammal myoblast fusion, which expression was also the highest in white muscle, were found in the promoter of AlMyoD. Pomoter activity assays further confirmed that both AlMyoD1 and AlMyoD2 can dramatically activate Almyomixer expression, and the AlMyoD1 M2 and AlMyoD2 M5 E-box binding sites were functionally important for Almyomixer transcription based on mutation analysis and electrophoretic mobile shift assays (EMSA). In summary, two MyoDs play a core role in Almyomixer regulation and may promote myofibre formation during muscle development and growth by regulating Almyomixer expression.
Collapse
Affiliation(s)
- Ke-Cheng Zhu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, Guangdong Province, PR China
| | - Bao-Suo Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, Guangdong Province, PR China
| | - Hua-Yang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, Guangdong Province, PR China
| | - Nan Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, Guangdong Province, PR China
| | - Liang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, Guangdong Province, PR China
| | - Shi-Gui Jiang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, Guangdong Province, PR China
| | - Dian-Chang Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300 Guangzhou, Guangdong Province, PR China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, PR China; Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou, Guangdong Province, PR China.
| |
Collapse
|
174
|
Bektik E, Cowan DB, Wang DZ. Long Non-Coding RNAs in Atrial Fibrillation: Pluripotent Stem Cell-Derived Cardiomyocytes as a Model System. Int J Mol Sci 2020; 21:ijms21155424. [PMID: 32751460 PMCID: PMC7432754 DOI: 10.3390/ijms21155424] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation (AF) is a type of sustained arrhythmia in humans often characterized by devastating alterations to the cardiac conduction system as well as the structure of the atria. AF can lead to decreased cardiac function, heart failure, and other complications. Long non-coding RNAs (lncRNAs) have been shown to play important roles in the cardiovascular system, including AF; however, a large group of lncRNAs is not conserved between mouse and human. Furthermore, AF has complex networks showing variations in mechanisms in different species, making it challenging to utilize conventional animal models to investigate the functional roles and potential therapeutic benefits of lncRNAs for AF. Fortunately, pluripotent stem cell (PSC)-derived cardiomyocytes (CMs) offer a reliable platform to study lncRNA functions in AF because of certain electrophysiological and molecular similarities with native human CMs. In this review, we first summarize the broad aspects of lncRNAs in various heart disease settings, then focus on their potential roles in AF development and pathophysiology. We also discuss current uses of PSCs in AF research and describe how these studies could be developed into novel therapeutics for AF and other cardiovascular diseases.
Collapse
Affiliation(s)
- Emre Bektik
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood, Boston, MA 02115, USA; (E.B.); (D.B.C.)
| | - Douglas B. Cowan
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood, Boston, MA 02115, USA; (E.B.); (D.B.C.)
| | - Da-Zhi Wang
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School, 300 Longwood, Boston, MA 02115, USA; (E.B.); (D.B.C.)
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- Correspondence:
| |
Collapse
|
175
|
Choi SW, Kim HW, Nam JW. The small peptide world in long noncoding RNAs. Brief Bioinform 2020; 20:1853-1864. [PMID: 30010717 PMCID: PMC6917221 DOI: 10.1093/bib/bby055] [Citation(s) in RCA: 185] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/08/2018] [Indexed: 02/07/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) are a group of transcripts that are longer than 200 nucleotides (nt) without coding potential. Over the past decade, tens of thousands of novel lncRNAs have been annotated in animal and plant genomes because of advanced high-throughput RNA sequencing technologies and with the aid of coding transcript classifiers. Further, a considerable number of reports have revealed the existence of stable, functional small peptides (also known as micropeptides), translated from lncRNAs. In this review, we discuss the methods of lncRNA classification, the investigations regarding their coding potential and the functional significance of the peptides they encode.
Collapse
Affiliation(s)
- Seo-Won Choi
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Hyun-Woo Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Jin-Wu Nam
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
176
|
Al Tanoury Z, Rao J, Tassy O, Gobert B, Gapon S, Garnier JM, Wagner E, Hick A, Hall A, Gussoni E, Pourquié O. Differentiation of the human PAX7-positive myogenic precursors/satellite cell lineage in vitro. Development 2020; 147:dev187344. [PMID: 32541004 PMCID: PMC7328153 DOI: 10.1242/dev.187344] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 05/29/2020] [Indexed: 12/12/2022]
Abstract
Satellite cells (SC) are muscle stem cells that can regenerate adult muscles upon injury. Most SC originate from PAX7+ myogenic precursors set aside during development. Although myogenesis has been studied in mouse and chicken embryos, little is known about human muscle development. Here, we report the generation of human induced pluripotent stem cell (iPSC) reporter lines in which fluorescent proteins have been introduced into the PAX7 and MYOG loci. We use single cell RNA sequencing to analyze the developmental trajectory of the iPSC-derived PAX7+ myogenic precursors. We show that the PAX7+ cells generated in culture can produce myofibers and self-renew in vitro and in vivo Together, we demonstrate that cells exhibiting characteristics of human fetal satellite cells can be produced in vitro from iPSC, opening interesting avenues for muscular dystrophy cell therapy. This work provides significant insights into the development of the human myogenic lineage.
Collapse
Affiliation(s)
- Ziad Al Tanoury
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Development and Stem Cells, CNRS (UMR 7104), Inserm U964, Université de Strasbourg, 67404, Illkirch Graffenstaden, France
- Department of Pathology, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA
| | - Jyoti Rao
- Department of Pathology, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA
| | - Olivier Tassy
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Development and Stem Cells, CNRS (UMR 7104), Inserm U964, Université de Strasbourg, 67404, Illkirch Graffenstaden, France
| | - Bénédicte Gobert
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Development and Stem Cells, CNRS (UMR 7104), Inserm U964, Université de Strasbourg, 67404, Illkirch Graffenstaden, France
- Anagenesis Biotechnologies, Parc d'innovation - BioParc 3, 850 Boulevard Sébastien Brandt, 67400 Illkirch Graffenstaden, France
| | - Svetlana Gapon
- Department of Pathology, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA 02115, USA
| | - Jean-Marie Garnier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Development and Stem Cells, CNRS (UMR 7104), Inserm U964, Université de Strasbourg, 67404, Illkirch Graffenstaden, France
| | - Erica Wagner
- Department of Pathology, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA 02115, USA
| | - Aurore Hick
- Anagenesis Biotechnologies, Parc d'innovation - BioParc 3, 850 Boulevard Sébastien Brandt, 67400 Illkirch Graffenstaden, France
| | - Arielle Hall
- Division of Genetics and Genomics, Boston Children's Hospital, 3 Blackfan Circle, CLS, Boston, MA 15021, USA
| | - Emanuela Gussoni
- Division of Genetics and Genomics, Boston Children's Hospital, 3 Blackfan Circle, CLS, Boston, MA 15021, USA
| | - Olivier Pourquié
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Department of Development and Stem Cells, CNRS (UMR 7104), Inserm U964, Université de Strasbourg, 67404, Illkirch Graffenstaden, France
- Department of Pathology, Brigham and Women's Hospital, 60 Fenwood Road, Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School, 60 Fenwood Road, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
177
|
Khilji S, Hamed M, Chen J, Li Q. Dissecting myogenin-mediated retinoid X receptor signaling in myogenic differentiation. Commun Biol 2020; 3:315. [PMID: 32555436 PMCID: PMC7303199 DOI: 10.1038/s42003-020-1043-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 05/21/2020] [Indexed: 11/18/2022] Open
Abstract
Deciphering the molecular mechanisms underpinning myoblast differentiation is a critical step in developing the best strategy to promote muscle regeneration in patients suffering from muscle-related diseases. We have previously established that a rexinoid x receptor (RXR)-selective agonist, bexarotene, enhances the differentiation and fusion of myoblasts through a direct regulation of MyoD expression, coupled with an augmentation of myogenin protein. Here, we found that RXR signaling associates with the distribution of myogenin at poised enhancers and a distinct E-box motif. We also found an association of myogenin with rexinoid-responsive gene expression and identified an epigenetic signature related to histone acetyltransferase p300. Moreover, RXR signaling augments residue-specific histone acetylation at enhancers co-occupied by p300 and myogenin. Thus, genomic distribution of transcriptional regulators is an important designate for identifying novel targets as well as developing therapeutics that modulate epigenetic landscape in a selective manner to promote muscle regeneration.
Collapse
Affiliation(s)
- Saadia Khilji
- Department of Cellular and Molecular Medicine and Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Munerah Hamed
- Department of Cellular and Molecular Medicine and Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Jihong Chen
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Qiao Li
- Department of Cellular and Molecular Medicine and Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
178
|
Hromowyk KJ, Talbot JC, Martin BL, Janssen PML, Amacher SL. Cell fusion is differentially regulated in zebrafish post-embryonic slow and fast muscle. Dev Biol 2020; 462:85-100. [PMID: 32165147 PMCID: PMC7225055 DOI: 10.1016/j.ydbio.2020.03.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 02/08/2020] [Accepted: 03/03/2020] [Indexed: 12/13/2022]
Abstract
Skeletal muscle fusion occurs during development, growth, and regeneration. To investigate how muscle fusion compares among different muscle cell types and developmental stages, we studied muscle cell fusion over time in wild-type, myomaker (mymk), and jam2a mutant zebrafish. Using live imaging, we show that embryonic myoblast elongation and fusion correlate tightly with slow muscle cell migration. In wild-type embryos, only fast muscle fibers are multinucleate, consistent with previous work showing that the cell fusion regulator gene mymk is specifically expressed throughout the embryonic fast muscle domain. However, by 3 weeks post-fertilization, slow muscle fibers also become multinucleate. At this late-larval stage, mymk is not expressed in muscle fibers, but is expressed in small cells near muscle fibers. Although previous work showed that both mymk and jam2a are required for embryonic fast muscle cell fusion, we observe that muscle force and function is almost normal in mymk and jam2a mutant embryos, despite the lack of fast muscle multinucleation. We show that genetic requirements change post-embryonically, with jam2a becoming much less important by late-larval stages and mymk now required for muscle fusion and growth in both fast and slow muscle cell types. Correspondingly, adult mymk mutants perform poorly in sprint and endurance tests compared to wild-type and jam2a mutants. We show that adult mymk mutant muscle contains small mononucleate myofibers with average myonuclear domain size equivalent to that in wild type adults. The mymk mutant fibers have decreased Laminin expression and increased numbers of Pax7-positive cells, suggesting that impaired fiber growth and active regeneration contribute to the muscle phenotype. Our findings identify several aspects of muscle fusion that change with time in slow and fast fibers as zebrafish develop beyond embryonic stages.
Collapse
Affiliation(s)
- Kimberly J Hromowyk
- Department of Molecular Genetics and Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA; Center for Muscle Health and Neuromuscular Disorders, The Ohio State University and Nationwide Children's Hospital, Columbus, OH, 43210, USA; Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, 43210, USA
| | - Jared C Talbot
- Department of Molecular Genetics and Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA; Center for Muscle Health and Neuromuscular Disorders, The Ohio State University and Nationwide Children's Hospital, Columbus, OH, 43210, USA.
| | - Brit L Martin
- Center for Muscle Health and Neuromuscular Disorders, The Ohio State University and Nationwide Children's Hospital, Columbus, OH, 43210, USA; Molecular, Cellular, and Developmental Biology Graduate Program, The Ohio State University, Columbus, OH, 43210, USA; Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, 43210, USA
| | - Paul M L Janssen
- Center for Muscle Health and Neuromuscular Disorders, The Ohio State University and Nationwide Children's Hospital, Columbus, OH, 43210, USA; Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, 43210, USA; Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, 43210, USA
| | - Sharon L Amacher
- Department of Molecular Genetics and Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA; Center for Muscle Health and Neuromuscular Disorders, The Ohio State University and Nationwide Children's Hospital, Columbus, OH, 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
179
|
Fukada SI, Akimoto T, Sotiropoulos A. Role of damage and management in muscle hypertrophy: Different behaviors of muscle stem cells in regeneration and hypertrophy. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118742. [PMID: 32417255 DOI: 10.1016/j.bbamcr.2020.118742] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/07/2020] [Accepted: 05/12/2020] [Indexed: 12/12/2022]
Abstract
Skeletal muscle is a dynamic tissue with two unique abilities; one is its excellent regenerative ability, due to the activity of skeletal muscle-resident stem cells named muscle satellite cells (MuSCs); and the other is the adaptation of myofiber size in response to external stimulation, intrinsic factors, or physical activity, which is known as plasticity. Low physical activity and some disease conditions lead to the reduction of myofiber size, called atrophy, whereas hypertrophy refers to the increase in myofiber size induced by high physical activity or anabolic hormones/drugs. MuSCs are essential for generating new myofibers during regeneration and the increase in new myonuclei during hypertrophy; however, there has been little investigation of the molecular mechanisms underlying MuSC activation, proliferation, and differentiation during hypertrophy compared to those of regeneration. One reason is that 'degenerative damage' to myofibers during muscle injury or upon hypertrophy (especially overloaded muscle) is believed to trigger similar activation/proliferation of MuSCs. However, evidence suggests that degenerative damage of myofibers is not necessary for MuSC activation/proliferation during hypertrophy. When considering MuSC-based therapy for atrophy, including sarcopenia, it will be indispensable to elucidate MuSC behaviors in muscles that exhibit non-degenerative damage, because degenerated myofibers are not present in the atrophied muscles. In this review, we summarize recent findings concerning the relationship between MuSCs and hypertrophy, and discuss what remains to be discovered to inform the development and application of relevant treatments for muscle atrophy.
Collapse
Affiliation(s)
- So-Ichiro Fukada
- Project for Muscle Stem Cell Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.
| | | | - Athanassia Sotiropoulos
- Institut National de la Santé et de la Recherche Médicale U1016, Institut Cochin, Paris, France
| |
Collapse
|
180
|
The micropeptide LEMP plays an evolutionarily conserved role in myogenesis. Cell Death Dis 2020; 11:357. [PMID: 32393776 PMCID: PMC7214441 DOI: 10.1038/s41419-020-2570-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 01/16/2023]
Abstract
In recent years, micropeptides have been increasingly identified as important regulators in various biological processes. However, whether micropeptides are functionally conserved remains largely unknown. Here, we uncovered a micropeptide with evolutionarily conserved roles in myogenesis. RNA-seq data analysis of proliferating mouse satellite cells (SCs) and differentiated myotubes identified a previously annotated lncRNA, MyolncR4 (1500011K16RIK), which is upregulated during muscle differentiation. Significantly, MyolncR4 is highly conserved across vertebrate species. Multiple lines of evidence demonstrate that MyolncR4 encodes a 56-aa micropeptide, which was named as LEMP (lncRNA encoded micropeptide). LEMP promotes muscle formation and regeneration in mouse. In zebrafish, MyolncR4 is enriched in developing somites and elimination of LEMP results in impaired muscle development, which could be efficiently rescued by expression of the mouse LEMP. Interestingly, LEMP is localized at both the plasma membrane and mitochondria, and associated with multiple mitochondrial proteins, suggestive of its involvement in mitochondrial functions. Together, our work uncovers a micropeptide that plays an evolutionarily conserved role in skeletal muscle differentiation, pinpointing the functional importance of this growing family of small peptides.
Collapse
|
181
|
Petrany MJ, Song T, Sadayappan S, Millay DP. Myocyte-derived Myomaker expression is required for regenerative fusion but exacerbates membrane instability in dystrophic myofibers. JCI Insight 2020; 5:136095. [PMID: 32310830 PMCID: PMC7253022 DOI: 10.1172/jci.insight.136095] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/08/2020] [Indexed: 12/21/2022] Open
Abstract
Muscle progenitor cell fusion is required for the formation and regeneration of multinucleated skeletal muscle fibers. Chronic muscle regeneration in Duchenne muscular dystrophy (DMD) is characterized by ongoing fusion of satellite cell (SC) progeny, but the effects of fusion on disease and the mechanisms by which fusion is accomplished in this setting are not fully understood. Using the mdx mouse model of DMD, we deleted the fusogenic protein Myomaker in SCs or myofibers. Following deletion in SCs, mice displayed a complete lack of myocyte fusion, resulting in severe muscle loss, enhanced fibrosis, and significant functional decline. Reduction of Myomaker in mature myofibers in mdx mice, however, led to minimal alterations in fusion dynamics. Unexpectedly, myofiber-specific deletion of Myomaker resulted in improvement of disease phenotype, with enhanced function and decreased muscle damage. Our data indicate that Myomaker has divergent effects on dystrophic disease severity depending upon its compartment of expression. These findings show that myocyte fusion is absolutely required for effective regeneration in DMD, but persistent Myomaker expression in myofibers due to ongoing fusion may have unintended deleterious consequences for muscle integrity. Thus, sustained activation of a component of the myogenic program in dystrophic myofibers exacerbates disease.
Collapse
Affiliation(s)
- Michael J. Petrany
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Taejeong Song
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, and
| | - Sakthivel Sadayappan
- Department of Internal Medicine, Division of Cardiovascular Health and Disease, and
| | - Douglas P. Millay
- Division of Molecular Cardiovascular Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
182
|
Zhang Y, Le T, Grabau R, Mohseni Z, Kim H, Natale DR, Feng L, Pan H, Yang H. TMEM16F phospholipid scramblase mediates trophoblast fusion and placental development. SCIENCE ADVANCES 2020; 6:eaba0310. [PMID: 32494719 PMCID: PMC7202889 DOI: 10.1126/sciadv.aba0310] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 02/19/2020] [Indexed: 05/12/2023]
Abstract
Cell-cell fusion or syncytialization is fundamental to the reproduction, development, and homeostasis of multicellular organisms. In addition to various cell type-specific fusogenic proteins, cell surface externalization of phosphatidylserine (PS), a universal eat-me signal in apoptotic cells, has been observed in different cell fusion events. Nevertheless, the molecular underpinnings of PS externalization and cellular mechanisms of PS-facilitated cell-cell fusion are unclear. Here, we report that TMEM16F, a Ca2+-activated phospholipid scramblase (CaPLSase), plays an essential role in placental trophoblast fusion by translocating PS to cell surface independent of apoptosis. The placentas from the TMEM16F knockout mice exhibit deficiency in trophoblast syncytialization and placental development, which lead to perinatal lethality. We thus identified a new biological function of TMEM16F CaPLSase in trophoblast fusion and placental development. Our findings provide insight into understanding cell-cell fusion mechanism of other cell types and on mitigating pregnancy complications such as miscarriage, intrauterine growth restriction, and preeclampsia.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Biochemistry, Duke University Medical Center, Durham, NC, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| | - Trieu Le
- Department of Biochemistry, Duke University Medical Center, Durham, NC, USA
| | - Ryan Grabau
- The USF Health Heart Institute, University of South Florida, Tampa, FL, USA
| | - Zahra Mohseni
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| | - Hoejeong Kim
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA
| | - David R. Natale
- Departments of Obstetrics and Gynaecology and Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Liping Feng
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Jiao Tong University School of Medicine, Shanghai, China
| | - Hua Pan
- The USF Health Heart Institute, University of South Florida, Tampa, FL, USA
| | - Huanghe Yang
- Department of Biochemistry, Duke University Medical Center, Durham, NC, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
- Corresponding author.
| |
Collapse
|
183
|
Lian YL, Chen KW, Chou YT, Ke TL, Chen BC, Lin YC, Chen L. PIP3 depletion rescues myoblast fusion defects in human rhabdomyosarcoma cells. J Cell Sci 2020; 133:jcs240325. [PMID: 32220979 DOI: 10.1242/jcs.240325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 03/10/2020] [Indexed: 11/20/2022] Open
Abstract
Myoblast fusion is required for myotube formation during myogenesis, and defects in myoblast differentiation and fusion have been implicated in a number of diseases, including human rhabdomyosarcoma. Although transcriptional regulation of the myogenic program has been studied extensively, the mechanisms controlling myoblast fusion remain largely unknown. This study identified and characterized the dynamics of a distinct class of blebs, termed bubbling blebs, which are smaller than those that participate in migration. The formation of these bubbling blebs occurred during differentiation and decreased alongside a decline in phosphatidylinositol-(3,4,5)-trisphosphate (PIP3) at the plasma membrane before myoblast fusion. In a human rhabdomyosarcoma-derived (RD) cell line that exhibits strong blebbing dynamics and myoblast fusion defects, PIP3 was constitutively abundant on the membrane during myogenesis. Targeting phosphatase and tensin homolog (PTEN) to the plasma membrane reduced PIP3 levels, inhibited bubbling blebs and rescued myoblast fusion defects in RD cells. These findings highlight the differential distribution and crucial role of PIP3 during myoblast fusion and reveal a novel mechanism underlying myogenesis defects in human rhabdomyosarcoma.
Collapse
Affiliation(s)
- Yen-Ling Lian
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Kuan-Wei Chen
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yu-Ting Chou
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ting-Ling Ke
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Bi-Chang Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Yu-Chun Lin
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 30013, Taiwan
- Department of Medical Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Linyi Chen
- Institute of Molecular Medicine, National Tsing Hua University, Hsinchu 30013, Taiwan
- Department of Medical Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
184
|
Merino-Valverde I, Greco E, Abad M. The microproteome of cancer: From invisibility to relevance. Exp Cell Res 2020; 392:111997. [PMID: 32302626 DOI: 10.1016/j.yexcr.2020.111997] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 01/08/2023]
Abstract
Recent findings have revealed that many genomic regions previously annotated as non-protein coding actually contain small open reading frames, smaller that 300 bp, that are transcribed and translated into evolutionary conserved microproteins. To date, only a small subset of them have been functionally characterized, but they play key functions in fundamental processes such as DNA repair, RNA processing and metabolism regulation. This emergent field seems to hide a new category of molecular regulators with clinical potential. In this review, we focus on its relevance for cancer. Following Hanahan and Weinberg's classification of the hallmarks of cancer, we provide an overview of those microproteins known to be implicated in cancer or those that, based on their function, are likely to play a role in cancer. The resulting picture is that while we are at the very early times of this field, it holds the promise to provide crucial information to understand cancer biology.
Collapse
Affiliation(s)
| | - Emanuela Greco
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, 08035, Spain
| | - María Abad
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, 08035, Spain.
| |
Collapse
|
185
|
Yeh CF, Chang YCE, Lu CY, Hsuan CF, Chang WT, Yang KC. Expedition to the missing link: Long noncoding RNAs in cardiovascular diseases. J Biomed Sci 2020; 27:48. [PMID: 32241300 PMCID: PMC7114803 DOI: 10.1186/s12929-020-00647-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/27/2020] [Indexed: 12/31/2022] Open
Abstract
With the advances in deep sequencing-based transcriptome profiling technology, it is now known that human genome is transcribed more pervasively than previously thought. Up to 90% of the human DNA is transcribed, and a large proportion of the human genome is transcribed as long noncoding RNAs (lncRNAs), a heterogenous group of non-coding transcripts longer than 200 nucleotides. Emerging evidence suggests that lncRNAs are functional and contribute to the complex regulatory networks involved in cardiovascular development and diseases. In this article, we will review recent evidence on the roles of lncRNAs in the biological processes of cardiovascular development and disorders. The potential applications of lncRNAs as biomarkers and targets for therapeutics are also discussed.
Collapse
Affiliation(s)
- Chih-Fan Yeh
- Graduate Institute and Department of Pharmacology, National Taiwan University School of Medicine, No.1, Sec. 1, Ren-Ai Rd, 1150R, Taipei, Taiwan.,Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, No.1, Sec. 1, Ren-Ai Rd, 1150R, Taipei, Taiwan
| | - Yu-Chen Eugene Chang
- Graduate Institute and Department of Pharmacology, National Taiwan University School of Medicine, No.1, Sec. 1, Ren-Ai Rd, 1150R, Taipei, Taiwan
| | - Cheng-Yuan Lu
- Graduate Institute and Department of Pharmacology, National Taiwan University School of Medicine, No.1, Sec. 1, Ren-Ai Rd, 1150R, Taipei, Taiwan
| | - Chin-Feng Hsuan
- Division of Cardiology, Department of Internal Medicine, E-Da Dachang Hospital, Kaohsiung, Taiwan.,Department of Medicine, I-Shou University School of Medicine, Kaohsiung, Taiwan
| | - Wei-Tien Chang
- Department of Emergency Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Kai-Chien Yang
- Graduate Institute and Department of Pharmacology, National Taiwan University School of Medicine, No.1, Sec. 1, Ren-Ai Rd, 1150R, Taipei, Taiwan. .,Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, No.1, Sec. 1, Ren-Ai Rd, 1150R, Taipei, Taiwan.
| |
Collapse
|
186
|
Chen B, You W, Wang Y, Shan T. The regulatory role of Myomaker and Myomixer-Myomerger-Minion in muscle development and regeneration. Cell Mol Life Sci 2020; 77:1551-1569. [PMID: 31642939 PMCID: PMC11105057 DOI: 10.1007/s00018-019-03341-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/07/2019] [Accepted: 10/10/2019] [Indexed: 12/12/2022]
Abstract
Skeletal muscle plays essential roles in motor function, energy, and glucose metabolism. Skeletal muscle formation occurs through a process called myogenesis, in which a crucial step is the fusion of mononucleated myoblasts to form multinucleated myofibers. The myoblast/myocyte fusion is triggered and coordinated in a muscle-specific way that is essential for muscle development and post-natal muscle regeneration. Many molecules and proteins have been found and demonstrated to have the capacity to regulate the fusion of myoblast/myocytes. Interestingly, two newly discovered muscle-specific membrane proteins, Myomaker and Myomixer (also called Myomerger and Minion), have been identified as fusogenic regulators in vertebrates. Both Myomaker and Myomixer-Myomerger-Minion have the capacity to directly control the myogenic fusion process. Here, we review and discuss the latest studies related to these two proteins, including the discovery, structure, expression pattern, functions, and regulation of Myomaker and Myomixer-Myomerger-Minion. We also emphasize and discuss the interaction between Myomaker and Myomixer-Myomerger-Minion, as well as their cooperative regulatory roles in cell-cell fusion. Moreover, we highlight the areas for exploration of Myomaker and Myomixer-Myomerger-Minion in future studies and consider their potential application to control cell fusion for cell-therapy purposes.
Collapse
Affiliation(s)
- Bide Chen
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, China
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
- Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Wenjing You
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, China
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
- Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Yizhen Wang
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, China
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
- Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China
| | - Tizhong Shan
- College of Animal Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, China.
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China.
- Zhejiang Provincial Laboratory of Feed and Animal Nutrition, Hangzhou, China.
| |
Collapse
|
187
|
Rong S, Wang L, Peng Z, Liao Y, Li D, Yang X, Nuessler AK, Liu L, Bao W, Yang W. The mechanisms and treatments for sarcopenia: could exosomes be a perspective research strategy in the future? J Cachexia Sarcopenia Muscle 2020; 11:348-365. [PMID: 31989804 PMCID: PMC7113536 DOI: 10.1002/jcsm.12536] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/20/2019] [Accepted: 12/02/2019] [Indexed: 12/14/2022] Open
Abstract
The age-related loss of muscle mass and muscle function known as sarcopenia is a primary contributor to the problems faced by the old people. Sarcopenia has been a major public health problem with high prevalence in many countries. The related underlying molecular mechanisms of sarcopenia are not completely understood. This review is focused on the potential mechanisms and current research strategies for sarcopenia with the aim of facilitating the recognition and treatment of age-related sarcopenia. Previous studies suggested that protein synthesis and degradation, autophagy, impaired satellite cell activation, mitochondria dysfunction, and other factors associated with muscle weakness and muscle degeneration may be potential molecular pathophysiology of sarcopenia. Importantly, we also prospectively highlight that exosomes (small vesicles) as carriers can regulate muscle regeneration and protein synthesis according to recent researches. Dietary strategies and exercise represent the interventions that can also alleviate the progression of sarcopenia. At last, building on recent studies pointing to exosomes with the roles in increasing muscle regeneration, mediating the beneficial effects of exercise, and serving as messengers of intercellular communication and as carriers for research strategies of many diseases, we propose that exosomes could be a potential research direction or strategies of sarcopenia in the future.
Collapse
Affiliation(s)
- Shuang Rong
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Nutrition and Food Hygiene, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Liangliang Wang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhao Peng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuxiao Liao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuefeng Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Andreas K Nuessler
- Department of Traumatology, BG Trauma Center, University of Tübingen, Tübingen, Germany
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Bao
- Department of Epidemology, College of Public Health, University of Iowa, IA, USA
| | - Wei Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
188
|
Li M, Li X, Zhang Y, Wu H, Zhou H, Ding X, Zhang X, Jin X, Wang Y, Yin X, Li C, Yang P, Xu H. Micropeptide MIAC Inhibits HNSCC Progression by Interacting with Aquaporin 2. J Am Chem Soc 2020; 142:6708-6716. [PMID: 32176498 DOI: 10.1021/jacs.0c00706] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Several important micropeptides encoded by noncoding RNAs have been identified in recent years; however, there have never been any reports of micropeptides in head and neck squamous cell carcinoma (HNSCC). Here we report the discovery and characterization of a human endogenous peptide named micropeptide inhibiting actin cytoskeleton (MIAC). Comprehensive analysis of the TCGA (The Cancer Genome Atlas) database (n = 500), clinical fresh samples (n = 94), and tissue microarrays (n = 60) revealed that lower MIAC expression is correlated with poor overall survival of HNSCC patients. Meanwhile, RNA-sequencing analysis of 9657 human tissues across 32 cancer types from TCGA cohorts found that MIAC is significantly associated with the progression of 5 other different tumors. Mechanistically, MIAC directly interacts with AQP2 (Aquaporin 2) to inhibit the actin cytoskeleton by regulating SEPT2 (Septin 2)/ITGB4 (Integrin Beta 4) and ultimately suppressing the tumor growth and metastasis of HNSCC. Collectively, the mechanism investigation and evaluation of MIAC activity in vivo and in vitro highlights that MIAC plays an important role in HNSCC tumorigenesis.
Collapse
Affiliation(s)
| | | | | | - Heming Wu
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, P. R. China
| | | | - Xu Ding
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, P. R. China
| | - Xiaomin Zhang
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing 210029, P. R. China
| | | | | | | | - Chencheng Li
- Nanjing Anji Biotechnology Co. Ltd., Nanjing, Jiangsu 210009, P. R. China
| | | | | |
Collapse
|
189
|
Orr MW, Mao Y, Storz G, Qian SB. Alternative ORFs and small ORFs: shedding light on the dark proteome. Nucleic Acids Res 2020; 48:1029-1042. [PMID: 31504789 DOI: 10.1093/nar/gkz734] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/03/2019] [Accepted: 08/15/2019] [Indexed: 02/06/2023] Open
Abstract
Traditional annotation of protein-encoding genes relied on assumptions, such as one open reading frame (ORF) encodes one protein and minimal lengths for translated proteins. With the serendipitous discoveries of translated ORFs encoded upstream and downstream of annotated ORFs, from alternative start sites nested within annotated ORFs and from RNAs previously considered noncoding, it is becoming clear that these initial assumptions are incorrect. The findings have led to the realization that genetic information is more densely coded and that the proteome is more complex than previously anticipated. As such, interest in the identification and characterization of the previously ignored 'dark proteome' is increasing, though we note that research in eukaryotes and bacteria has largely progressed in isolation. To bridge this gap and illustrate exciting findings emerging from studies of the dark proteome, we highlight recent advances in both eukaryotic and bacterial cells. We discuss progress in the detection of alternative ORFs as well as in the understanding of functions and the regulation of their expression and posit questions for future work.
Collapse
Affiliation(s)
- Mona Wu Orr
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Yuanhui Mao
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Gisela Storz
- Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Shu-Bing Qian
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
190
|
Chen J, Brunner AD, Cogan JZ, Nuñez JK, Fields AP, Adamson B, Itzhak DN, Li JY, Mann M, Leonetti MD, Weissman JS. Pervasive functional translation of noncanonical human open reading frames. Science 2020; 367:1140-1146. [PMID: 32139545 DOI: 10.1126/science.aay0262] [Citation(s) in RCA: 376] [Impact Index Per Article: 75.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 11/22/2019] [Accepted: 01/13/2020] [Indexed: 12/12/2022]
Abstract
Ribosome profiling has revealed pervasive but largely uncharacterized translation outside of canonical coding sequences (CDSs). In this work, we exploit a systematic CRISPR-based screening strategy to identify hundreds of noncanonical CDSs that are essential for cellular growth and whose disruption elicits specific, robust transcriptomic and phenotypic changes in human cells. Functional characterization of the encoded microproteins reveals distinct cellular localizations, specific protein binding partners, and hundreds of microproteins that are presented by the human leukocyte antigen system. We find multiple microproteins encoded in upstream open reading frames, which form stable complexes with the main, canonical protein encoded on the same messenger RNA, thereby revealing the use of functional bicistronic operons in mammals. Together, our results point to a family of functional human microproteins that play critical and diverse cellular roles.
Collapse
Affiliation(s)
- Jin Chen
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA.,Howard Hughes Medical Institute, University of California, San Francisco, CA 94158, USA
| | - Andreas-David Brunner
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - J Zachery Cogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA.,Howard Hughes Medical Institute, University of California, San Francisco, CA 94158, USA
| | - James K Nuñez
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA.,Howard Hughes Medical Institute, University of California, San Francisco, CA 94158, USA
| | - Alexander P Fields
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA.,Howard Hughes Medical Institute, University of California, San Francisco, CA 94158, USA
| | - Britt Adamson
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA.,Howard Hughes Medical Institute, University of California, San Francisco, CA 94158, USA
| | - Daniel N Itzhak
- Cell Atlas Initiative, Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Jason Y Li
- Cell Atlas Initiative, Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried 82152, Germany.,Clinical Proteomics Group, Proteomics Program, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen 2200, Denmark
| | - Manuel D Leonetti
- Cell Atlas Initiative, Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Jonathan S Weissman
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA. .,Howard Hughes Medical Institute, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
191
|
Wu S, Zhang L, Deng J, Guo B, Li F, Wang Y, Wu R, Zhang S, Lu J, Zhou Y. A Novel Micropeptide Encoded by Y-Linked LINC00278 Links Cigarette Smoking and AR Signaling in Male Esophageal Squamous Cell Carcinoma. Cancer Res 2020; 80:2790-2803. [DOI: 10.1158/0008-5472.can-19-3440] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 01/15/2020] [Accepted: 03/10/2020] [Indexed: 11/16/2022]
|
192
|
Mitochondrial peptide BRAWNIN is essential for vertebrate respiratory complex III assembly. Nat Commun 2020; 11:1312. [PMID: 32161263 PMCID: PMC7066179 DOI: 10.1038/s41467-020-14999-2] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 02/14/2020] [Indexed: 11/08/2022] Open
Abstract
The emergence of small open reading frame (sORF)-encoded peptides (SEPs) is rapidly expanding the known proteome at the lower end of the size distribution. Here, we show that the mitochondrial proteome, particularly the respiratory chain, is enriched for small proteins. Using a prediction and validation pipeline for SEPs, we report the discovery of 16 endogenous nuclear encoded, mitochondrial-localized SEPs (mito-SEPs). Through functional prediction, proteomics, metabolomics and metabolic flux modeling, we demonstrate that BRAWNIN, a 71 a.a. peptide encoded by C12orf73, is essential for respiratory chain complex III (CIII) assembly. In human cells, BRAWNIN is induced by the energy-sensing AMPK pathway, and its depletion impairs mitochondrial ATP production. In zebrafish, Brawnin deletion causes complete CIII loss, resulting in severe growth retardation, lactic acidosis and early death. Our findings demonstrate that BRAWNIN is essential for vertebrate oxidative phosphorylation. We propose that mito-SEPs are an untapped resource for essential regulators of oxidative metabolism.
Collapse
|
193
|
Xu J, Zhou C, Foo KS, Yang R, Xiao Y, Bylund K, Sahara M, Chien KR. Genome-wide CRISPR screen identifies ZIC2 as an essential gene that controls the cell fate of early mesodermal precursors to human heart progenitors. Stem Cells 2020; 38:741-755. [PMID: 32129551 PMCID: PMC7891398 DOI: 10.1002/stem.3168] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 01/15/2020] [Accepted: 01/29/2020] [Indexed: 12/20/2022]
Abstract
Cardiac progenitor formation is one of the earliest committed steps of human cardiogenesis and requires the cooperation of multiple gene sets governed by developmental signaling cascades. To determine the key regulators for cardiac progenitor formation, we have developed a two‐stage genome‐wide CRISPR‐knockout screen. We mimicked the progenitor formation process by differentiating human pluripotent stem cells (hPSCs) into cardiomyocytes, monitored by two distinct stage markers of early cardiac mesodermal formation and commitment to a multipotent heart progenitor cell fate: MESP1 and ISL1, respectively. From the screen output, we compiled a list of 15 candidate genes. After validating seven of them, we identified ZIC2 as an essential gene for cardiac progenitor formation. ZIC2 is known as a master regulator of neurogenesis. hPSCs with ZIC2 mutated still express pluripotency markers. However, their ability to differentiate into cardiomyocytes was greatly attenuated. RNA‐Seq profiling of the ZIC2‐mutant cells revealed that the mutants switched their cell fate alternatively to the noncardiac cell lineage. Further, single cell RNA‐seq analysis showed the ZIC2 mutants affected the apelin receptor‐related signaling pathway during mesoderm formation. Our results provide a new link between ZIC2 and human cardiogenesis and document the potential power of a genome‐wide unbiased CRISPR‐knockout screen to identify the key steps in human mesoderm precursor cell‐ and heart progenitor cell‐fate determination during in vitro hPSC cardiogenesis.
Collapse
Affiliation(s)
- Jiejia Xu
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Chikai Zhou
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Kylie S Foo
- Department of Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Ran Yang
- Department of Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Yao Xiao
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Kristine Bylund
- Department of Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Makoto Sahara
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.,Department of Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Kenneth R Chien
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.,Department of Medicine, Karolinska Institutet, Huddinge, Sweden
| |
Collapse
|
194
|
Aging Induced p53/p21 in Genioglossus Muscle Stem Cells and Enhanced Upper Airway Injury. Stem Cells Int 2020; 2020:8412598. [PMID: 32190060 PMCID: PMC7073476 DOI: 10.1155/2020/8412598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/18/2020] [Accepted: 02/08/2020] [Indexed: 12/28/2022] Open
Abstract
Aging of population brings related social problems, such as muscle attenuation and regeneration barriers with increased aging. Muscle repair and regeneration depend on muscle stem cells (MuSCs). Obstructive sleep apnea (OSA) rises in the aging population. OSA leads to hypoxia and upper airway muscle injury. However, little is known about the effect of increasing age and hypoxia to the upper airway muscle. The genioglossus (GG) is the major dilator muscle to keep the upper airway open. Here, we reported that muscle fiber and MuSC function declined with aging in GG. Increasing age also decreased the migration and proliferation of GG MuSCs. p53 and p21 were high expressions both in muscle tissue and in GG MuSCs. We further found that hypoxia inhibited GG MuSC proliferation and decreased myogenic differentiation. Then, hypoxia enhanced the inhibition effect of aging to proliferation and differentiation. Finally, we investigated that hypoxia and aging interact to form a vicious circle with upregulation of p53 and p21. This vicious hypoxia plus aging damage accelerated upper airway muscle injury. Aging and hypoxia are the major damage elements in OSA patients, and we propose that the damage mechanism of hypoxia and aging in GG MuSCs will help to improve upper airway muscle regeneration.
Collapse
|
195
|
Reynolds JC, Bwiza CP, Lee C. Mitonuclear genomics and aging. Hum Genet 2020; 139:381-399. [PMID: 31997134 PMCID: PMC7147958 DOI: 10.1007/s00439-020-02119-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 01/17/2020] [Indexed: 12/25/2022]
Abstract
Our cells operate based on two distinct genomes that are enclosed in the nucleus and mitochondria. The mitochondrial genome presumably originates from endosymbiotic bacteria. With time, a large portion of the original genes in the bacterial genome is considered to have been lost or transferred to the nuclear genome, leaving a reduced 16.5 Kb circular mitochondrial DNA (mtDNA). Traditionally only 37 genes, including 13 proteins, were thought to be encoded within mtDNA, its genetic repertoire is expanding with the identification of mitochondrial-derived peptides (MDPs). The biology of aging has been largely unveiled to be regulated by genes that are encoded in the nuclear genome, whereas the mitochondrial genome remained more cryptic. However, recent studies position mitochondria and mtDNA as an important counterpart to the nuclear genome, whereby the two organelles constantly regulate each other. Thus, the genomic network that regulates lifespan and/or healthspan is likely constituted by two unique, yet co-evolved, genomes. Here, we will discuss aspects of mitochondrial biology, especially mitochondrial communication that may add substantial momentum to aging research by accounting for both mitonuclear genomes to more comprehensively and inclusively map the genetic and molecular networks that govern aging and age-related diseases.
Collapse
Affiliation(s)
- Joseph C Reynolds
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Conscience P Bwiza
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA
| | - Changhan Lee
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, 90089, USA.
- USC Norris Comprehensive Cancer Center, Los Angeles, CA, 90089, USA.
- Biomedical Sciences, Graduate School, Ajou University, Suwon, 16499, South Korea.
| |
Collapse
|
196
|
Abstract
Recent advancements in genetic and proteomic technologies have revealed that more of the genome encodes proteins than originally thought possible. Specifically, some putative long noncoding RNAs (lncRNAs) have been misannotated as noncoding. Numerous lncRNAs have been found to contain short open reading frames (sORFs) which have been overlooked because of their small size. Many of these sORFs encode small proteins or micropeptides with fundamental biological importance. These micropeptides can aid in diverse processes, including cell division, transcription regulation, and cell signaling. Here we discuss strategies for establishing the coding potential of putative lncRNAs and describe various functions of known micropeptides.
Collapse
|
197
|
Horibata Y, Mitsuhashi S, Shimizu H, Maejima S, Sakamoto H, Aoyama C, Ando H, Sugimoto H. The phosphatidylcholine transfer protein StarD7 is important for myogenic differentiation in mouse myoblast C2C12 cells and human primary skeletal myoblasts. Sci Rep 2020; 10:2845. [PMID: 32071354 PMCID: PMC7029042 DOI: 10.1038/s41598-020-59444-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 01/27/2020] [Indexed: 01/05/2023] Open
Abstract
StarD7 is a phosphatidylcholine (PC)-specific lipid transfer protein essential for the maintenance of mitochondrial PC composition, morphogenesis, and respiration. Here, we studied the role of StarD7 in skeletal myoblast differentiation using mouse myoblast C2C12 cells and human primary myoblasts. Immunofluorescence and immuno-electron microscopy revealed that StarD7 was distributed in the cytosol, inner mitochondria space, and outer leaflet of the outer mitochondrial membrane in C2C12 cells. Unlike human kidney embryonic cell line HEK293 cells, the mitochondrial proteinase PARL was not involved in the processing and maturation of StarD7 in C2C12 cells. StarD7 was constantly expressed during myogenic differentiation of C2C12 cells. The siRNA-mediated knockdown of StarD7 in C2C12 cells and human primary myoblasts significantly impaired myogenic differentiation and reduced the expression of myomaker, myomerger and PGC-1α. The reduction in mitochondrial PC levels and oxygen consumption rates, decreased expression of myomaker, myomerger and PGC-1α, as well as impaired myogenic differentiation, were completely restored when the protein was reintroduced into StarD7-knockout C2C12 cells. These results suggest that StarD7 is important for skeletal myogenesis in mammals.
Collapse
Affiliation(s)
- Yasuhiro Horibata
- Department of Biochemistry, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Satomi Mitsuhashi
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Fukuura 3-9, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Hiroaki Shimizu
- Department of Biochemistry, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Sho Maejima
- Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Ushimado, Setouchi, Okayama, 701-4303, Japan
| | - Hirotaka Sakamoto
- Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Ushimado, Setouchi, Okayama, 701-4303, Japan
| | - Chieko Aoyama
- Department of Biochemistry, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Hiromi Ando
- Department of Biochemistry, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan
| | - Hiroyuki Sugimoto
- Department of Biochemistry, Dokkyo Medical University School of Medicine, 880 Kitakobayashi, Mibu, Tochigi, 321-0293, Japan.
| |
Collapse
|
198
|
Martone J, Mariani D, Desideri F, Ballarino M. Non-coding RNAs Shaping Muscle. Front Cell Dev Biol 2020; 7:394. [PMID: 32117954 PMCID: PMC7019099 DOI: 10.3389/fcell.2019.00394] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 12/26/2019] [Indexed: 12/19/2022] Open
Abstract
In 1957, Francis Crick speculated that RNA, beyond its protein-coding capacity, could have its own function. Decade after decade, this theory was dramatically boosted by the discovery of new classes of non-coding RNAs (ncRNAs), including long ncRNAs (lncRNAs) and circular RNAs (circRNAs), which play a fundamental role in the fine spatio-temporal control of multiple layers of gene expression. Recently, many of these molecules have been identified in a plethora of different tissues, and they have emerged to be more cell-type specific than protein-coding genes. These findings shed light on how ncRNAs are involved in the precise tuning of gene regulatory mechanisms governing tissues homeostasis. In this review, we discuss the recent findings on the mechanisms used by lncRNAs and circRNAs to sustain skeletal and cardiac muscle formation, paying particular attention to the technological developments that, over the last few years, have aided their genome-wide identification and study. Together with lncRNAs and circRNAs, the emerging contribution of Piwi-interacting RNAs and transfer RNA-derived fragments to myogenesis will be also discussed, with a glimpse on the impact of their dysregulation in muscle disorders, such as myopathies, muscle atrophy, and rhabdomyosarcoma degeneration.
Collapse
Affiliation(s)
- Julie Martone
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy
| | - Davide Mariani
- Center for Human Technologies, Italian Institute of Technology, Genoa, Italy
| | - Fabio Desideri
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy
| | - Monica Ballarino
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
199
|
Choi IY, Lim H, Cho HJ, Oh Y, Chou BK, Bai H, Cheng L, Kim YJ, Hyun S, Kim H, Shin JH, Lee G. Transcriptional landscape of myogenesis from human pluripotent stem cells reveals a key role of TWIST1 in maintenance of skeletal muscle progenitors. eLife 2020; 9:e46981. [PMID: 32011235 PMCID: PMC6996923 DOI: 10.7554/elife.46981] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 01/14/2020] [Indexed: 12/15/2022] Open
Abstract
Generation of skeletal muscle cells with human pluripotent stem cells (hPSCs) opens new avenues for deciphering essential, but poorly understood aspects of transcriptional regulation in human myogenic specification. In this study, we characterized the transcriptional landscape of distinct human myogenic stages, including OCT4::EGFP+ pluripotent stem cells, MSGN1::EGFP+ presomite cells, PAX7::EGFP+ skeletal muscle progenitor cells, MYOG::EGFP+ myoblasts, and multinucleated myotubes. We defined signature gene expression profiles from each isolated cell population with unbiased clustering analysis, which provided unique insights into the transcriptional dynamics of human myogenesis from undifferentiated hPSCs to fully differentiated myotubes. Using a knock-out strategy, we identified TWIST1 as a critical factor in maintenance of human PAX7::EGFP+ putative skeletal muscle progenitor cells. Our data revealed a new role of TWIST1 in human skeletal muscle progenitors, and we have established a foundation to identify transcriptional regulations of human myogenic ontogeny (online database can be accessed in http://www.myogenesis.net/).
Collapse
Affiliation(s)
- In Young Choi
- The Institute for Cell EngineeringJohns Hopkins University, School of MedicineBaltimoreUnited States
- Department of Medicine, Graduate SchoolKyung Hee UniversitySeoulRepublic of Korea
| | - Hotae Lim
- The Institute for Cell EngineeringJohns Hopkins University, School of MedicineBaltimoreUnited States
- College of Veterinary MedicineChungbuk National UniversityChungbukRepublic of Korea
| | - Hyeon Jin Cho
- Lieber Institute for Brain Development, Johns Hopkins Medical CampusBaltimoreUnited States
| | - Yohan Oh
- The Institute for Cell EngineeringJohns Hopkins University, School of MedicineBaltimoreUnited States
| | - Bin-Kuan Chou
- The Institute for Cell EngineeringJohns Hopkins University, School of MedicineBaltimoreUnited States
- Division of Hematology, Department of MedicineJohns Hopkins University, School of MedicineBaltimoreUnited States
| | - Hao Bai
- The Institute for Cell EngineeringJohns Hopkins University, School of MedicineBaltimoreUnited States
- Division of Hematology, Department of MedicineJohns Hopkins University, School of MedicineBaltimoreUnited States
| | - Linzhao Cheng
- Division of Hematology, Department of MedicineJohns Hopkins University, School of MedicineBaltimoreUnited States
| | - Yong Jun Kim
- Department of Pathololgy, College of MedicineKyung Hee UniversitySeoulRepublic of Korea
| | - SangHwan Hyun
- The Institute for Cell EngineeringJohns Hopkins University, School of MedicineBaltimoreUnited States
- College of Veterinary MedicineChungbuk National UniversityChungbukRepublic of Korea
| | - Hyesoo Kim
- The Institute for Cell EngineeringJohns Hopkins University, School of MedicineBaltimoreUnited States
- Department of NeurologyJohns Hopkins University, School of MedicineBaltimoreUnited States
| | - Joo Heon Shin
- Lieber Institute for Brain Development, Johns Hopkins Medical CampusBaltimoreUnited States
| | - Gabsang Lee
- The Institute for Cell EngineeringJohns Hopkins University, School of MedicineBaltimoreUnited States
- Department of NeurologyJohns Hopkins University, School of MedicineBaltimoreUnited States
- The Solomon H. Synder Department of NeuroscienceJohns Hopkins University, School of MedicineBaltimoreUnited States
| |
Collapse
|
200
|
Chen R, Lei S, Jiang T, Zeng J, Zhou S, She Y. Roles of lncRNAs and circRNAs in regulating skeletal muscle development. Acta Physiol (Oxf) 2020; 228:e13356. [PMID: 31365949 DOI: 10.1111/apha.13356] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 07/26/2019] [Accepted: 07/27/2019] [Indexed: 02/06/2023]
Abstract
The multistep biological process of myogenesis is regulated by a variety of myoblast regulators, such as myogenic differentiation antigen, myogenin, myogenic regulatory factor, myocyte enhancer factor2A-D and myosin heavy chain. Proliferation and differentiation during skeletal muscle myogenesis contribute to the physiological function of muscles. Certain non-coding RNAs, including long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), are involved in the regulation of muscle development, and the aberrant expressions of lncRNAs and circRNAs are associated with muscular diseases. In this review, we summarize the recent advances concerning the roles of lncRNAs and circRNAs in regulating the developmental aspects of myogenesis. These findings have remarkably broadened our understanding of the gene regulation mechanisms governing muscle proliferation and differentiation, which makes it more feasible to design novel preventive, diagnostic and therapeutic strategies for muscle disorders.
Collapse
Affiliation(s)
- Rui Chen
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute Guangdong Second Provincial General Hospital Guangzhou China
| | - Si Lei
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute Guangdong Second Provincial General Hospital Guangzhou China
| | - Ting Jiang
- Department of Radiology, The Third Affiliated Hospital Sun Yat‐sen University Guangzhou China
| | - Jie Zeng
- Department of Medical Ultrasonics, The Third Affiliated Hospital Sun Yat‐sen University Guangzhou China
| | - Shanyao Zhou
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute Guangdong Second Provincial General Hospital Guangzhou China
| | - Yanling She
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute Guangdong Second Provincial General Hospital Guangzhou China
| |
Collapse
|