151
|
The genomic origins of the world's first farmers. Cell 2022; 185:1842-1859.e18. [PMID: 35561686 PMCID: PMC9166250 DOI: 10.1016/j.cell.2022.04.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/04/2022] [Accepted: 04/06/2022] [Indexed: 11/24/2022]
Abstract
The precise genetic origins of the first Neolithic farming populations in Europe and Southwest Asia, as well as the processes and the timing of their differentiation, remain largely unknown. Demogenomic modeling of high-quality ancient genomes reveals that the early farmers of Anatolia and Europe emerged from a multiphase mixing of a Southwest Asian population with a strongly bottlenecked western hunter-gatherer population after the last glacial maximum. Moreover, the ancestors of the first farmers of Europe and Anatolia went through a period of extreme genetic drift during their westward range expansion, contributing highly to their genetic distinctiveness. This modeling elucidates the demographic processes at the root of the Neolithic transition and leads to a spatial interpretation of the population history of Southwest Asia and Europe during the late Pleistocene and early Holocene.
Collapse
|
152
|
Maróti Z, Neparáczki E, Schütz O, Maár K, Varga GIB, Kovács B, Kalmár T, Nyerki E, Nagy I, Latinovics D, Tihanyi B, Marcsik A, Pálfi G, Bernert Z, Gallina Z, Horváth C, Varga S, Költő L, Raskó I, Nagy PL, Balogh C, Zink A, Maixner F, Götherström A, George R, Szalontai C, Szenthe G, Gáll E, Kiss AP, Gulyás B, Kovacsóczy BN, Gál SS, Tomka P, Török T. The genetic origin of Huns, Avars, and conquering Hungarians. Curr Biol 2022; 32:2858-2870.e7. [PMID: 35617951 DOI: 10.1016/j.cub.2022.04.093] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/10/2022] [Accepted: 04/28/2022] [Indexed: 11/26/2022]
Abstract
Huns, Avars, and conquering Hungarians were migration-period nomadic tribal confederations that arrived in three successive waves in the Carpathian Basin between the 5th and 9th centuries. Based on the historical data, each of these groups are thought to have arrived from Asia, although their exact origin and relation to other ancient and modern populations have been debated. Recently, hundreds of ancient genomes were analyzed from Central Asia, Mongolia, and China, from which we aimed to identify putative source populations for the above-mentioned groups. In this study, we have sequenced 9 Hun, 143 Avar, and 113 Hungarian conquest period samples and identified three core populations, representing immigrants from each period with no recent European ancestry. Our results reveal that this "immigrant core" of both Huns and Avars likely originated in present day Mongolia, and their origin can be traced back to Xiongnus (Asian Huns), as suggested by several historians. On the other hand, the "immigrant core" of the conquering Hungarians derived from an earlier admixture of Mansis, early Sarmatians, and descendants of late Xiongnus. We have also shown that a common "proto-Ugric" gene pool appeared in the Bronze Age from the admixture of Mezhovskaya and Nganasan people, supporting genetic and linguistic data. In addition, we detected shared Hun-related ancestry in numerous Avar and Hungarian conquest period genetic outliers, indicating a genetic link between these successive nomadic groups. Aside from the immigrant core groups, we identified that the majority of the individuals from each period were local residents harboring "native European" ancestry.
Collapse
Affiliation(s)
- Zoltán Maróti
- Department of Archaeogenetics, Institute of Hungarian Research, 1041 Budapest, Hungary; Department of Pediatrics and Pediatric Health Center, University of Szeged, 6725 Szeged, Hungary
| | - Endre Neparáczki
- Department of Archaeogenetics, Institute of Hungarian Research, 1041 Budapest, Hungary; Department of Genetics, University of Szeged, 6726 Szeged, Hungary
| | - Oszkár Schütz
- Department of Genetics, University of Szeged, 6726 Szeged, Hungary
| | - Kitti Maár
- Department of Genetics, University of Szeged, 6726 Szeged, Hungary
| | - Gergely I B Varga
- Department of Archaeogenetics, Institute of Hungarian Research, 1041 Budapest, Hungary
| | - Bence Kovács
- Department of Archaeogenetics, Institute of Hungarian Research, 1041 Budapest, Hungary; Department of Genetics, University of Szeged, 6726 Szeged, Hungary
| | - Tibor Kalmár
- Department of Pediatrics and Pediatric Health Center, University of Szeged, 6725 Szeged, Hungary
| | - Emil Nyerki
- Department of Archaeogenetics, Institute of Hungarian Research, 1041 Budapest, Hungary; Department of Pediatrics and Pediatric Health Center, University of Szeged, 6725 Szeged, Hungary
| | - István Nagy
- SeqOmics Biotechnology Ltd., 6782 Mórahalom, Hungary; Institute of Biochemistry, Biological Research Centre, 6726 Szeged, Hungary
| | | | - Balázs Tihanyi
- Department of Archaeogenetics, Institute of Hungarian Research, 1041 Budapest, Hungary; Department of Biological Anthropology, University of Szeged, 6726 Szeged, Hungary
| | - Antónia Marcsik
- Department of Biological Anthropology, University of Szeged, 6726 Szeged, Hungary
| | - György Pálfi
- Department of Biological Anthropology, University of Szeged, 6726 Szeged, Hungary
| | - Zsolt Bernert
- Department of Anthropology, Hungarian Natural History Museum, 1083 Budapest, Hungary
| | - Zsolt Gallina
- Ásatárs Ltd., 6000 Kecskemét, Hungary; Department of Archaeology, Institute of Hungarian Research, 1041 Budapest, Hungary
| | - Ciprián Horváth
- Department of Archaeology, Institute of Hungarian Research, 1041 Budapest, Hungary
| | | | - László Költő
- Rippl-Rónai Municipal Museum with Country Scope, 7400 Kaposvár, Hungary
| | - István Raskó
- Institute of Genetics, Biological Research Centre, 6726 Szeged, Hungary
| | | | - Csilla Balogh
- Department of Art History, Istanbul Medeniyet University, 34720 Istanbul, Turkey
| | - Albert Zink
- Institute for Mummy Studies, EURAC Research, 39100 Bolzano, Italy
| | - Frank Maixner
- Institute for Mummy Studies, EURAC Research, 39100 Bolzano, Italy
| | - Anders Götherström
- Department of Archaeology and Classical Studies, Stockholm University, 11418 Stockholm, Sweden
| | - Robert George
- Department of Archaeology and Classical Studies, Stockholm University, 11418 Stockholm, Sweden
| | - Csaba Szalontai
- Hungarian National Museum, Department of Archaeology, 1088 Budapest, Hungary
| | - Gergely Szenthe
- Hungarian National Museum, Department of Archaeology, 1088 Budapest, Hungary
| | - Erwin Gáll
- "Vasile Pârvan" Institute of Archaeology, 010667 Bucharest, Romania
| | - Attila P Kiss
- Faculty of Humanities and Social Sciences, Institute of Archaeology, Pázmány Péter Catholic University, 1088 Budapest, Hungary
| | - Bence Gulyás
- Institute of Archaeological Sciences, Eötvös Loránd University, 1088 Budapest, Hungary
| | | | | | - Péter Tomka
- Department of Archaeology, Rómer Flóris Museum of Art and History, 9021 Győr, Hungary
| | - Tibor Török
- Department of Archaeogenetics, Institute of Hungarian Research, 1041 Budapest, Hungary; Department of Genetics, University of Szeged, 6726 Szeged, Hungary.
| |
Collapse
|
153
|
The spread of herds and horses into the Altai: How livestock and dairying drove social complexity in Mongolia. PLoS One 2022; 17:e0265775. [PMID: 35544454 PMCID: PMC9094512 DOI: 10.1371/journal.pone.0265775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/07/2022] [Indexed: 11/19/2022] Open
Abstract
The initial movement of herders and livestock into the eastern steppe is of great interest, as this region has long been home to pastoralist groups. Due to a paucity of faunal remains, however, it has been difficult to discern the timing of the adoption of domesticated ruminants and horses into the region, though recent research on ancient dairying has started to shed new light on this history. Here we present proteomic evidence for shifts in dairy consumption in the Altai Mountains, drawing on evidence from sites dating from the Early Bronze to the Late Iron Age. We compare these finds with evidence for the rise of social complexity in western Mongolia, as reflected in material remains signaling population growth, the establishment of structured cemeteries, and the erection of large monuments. Our results suggest that the subsistence basis for the development of complex societies began at the dawn of the Bronze Age, with the adoption of ruminant livestock. Investments in pastoralism intensified over time, enabling a food production system that sustained growing populations. While pronounced social changes and monumental constructions occurred in tandem with the first evidence for horse dairying, ~1350 cal BCE, these shifts were fueled by a long-term economic dependence on ruminant livestock. Therefore, the spread into the Mongolian Altai of herds, and then horses, resulted in immediate dietary changes, with subsequent social and demographic transformations occurring later.
Collapse
|
154
|
Gelabert P, Schmidt RW, Fernandes DM, Karsten JK, Harper TK, Madden GD, Ledogar SH, Sokhatsky M, Oota H, Kennett DJ, Pinhasi R. Genomes from Verteba cave suggest diversity within the Trypillians in Ukraine. Sci Rep 2022; 12:7242. [PMID: 35508651 PMCID: PMC9068698 DOI: 10.1038/s41598-022-11117-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 04/15/2022] [Indexed: 11/24/2022] Open
Abstract
The transition to agriculture occurred relatively late in Eastern Europe, leading researchers to debate whether it was a gradual, interactive process or a colonisation event. In the forest and forest-steppe regions of Ukraine, farming appeared during the fifth millennium BCE, associated with the Cucuteni-Trypillia cultural complex (CTCC, ~ 5000–3000 BCE). Across Europe, the Neolithisation process was highly variable across space and over time. Here, we investigate the population dynamics of early agriculturalists from the eastern forest-steppe region based on the analyses of 20 ancient genomes from the site of Verteba Cave (3935–825 cal BCE). Results reveal that the CTCC individuals’ ancestry is related to both western hunter-gatherers and Near Eastern farmers, has no local ancestry associated with Ukrainian Neolithic hunter-gatherers and has steppe ancestry. An Early Bronze Age individual has an ancestry profile related to the Yamnaya expansions but with 20% of ancestry related to the other Trypillian individuals, which suggests admixture between the Trypillians and the incoming populations carrying steppe-related ancestry. A Late Bronze Age individual dated to 980–825 cal BCE has a genetic profile indicating affinity to Beaker-related populations, detected close to 1000 years after the end of the Bell Beaker phenomenon during the third millennium BCE.
Collapse
Affiliation(s)
- Pere Gelabert
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria. .,Human Evolution and Archaeological Sciences, University of Vienna, Vienna, Austria.
| | - Ryan W Schmidt
- University of Porto, CIBIO-InBIO, Rua Padre Armando Quintas, nº 7, 4485-661, Vairão, Portugal. .,School of Archaeology & Earth Institute, University College, Dublin, Belfield, Dublin 4, Ireland.
| | - Daniel M Fernandes
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.,Human Evolution and Archaeological Sciences, University of Vienna, Vienna, Austria.,CIAS, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Jordan K Karsten
- Department of Anthropology, Global Religions, and Cultures, University of Wisconsin-Oshkosh, 800 Algoma Blvd, Oshkosh, WI, 54901, USA
| | - Thomas K Harper
- Institute for European and Mediterranean Archaeology, State University of New York at Buffalo, Buffalo, NY, 14260, USA
| | - Gwyn D Madden
- Department of Anthropology, Grand Valley State University, 1 Campus Dr., Allendale, MI, 49401, USA
| | - Sarah H Ledogar
- Department of Archaeology, Classics, and History, University of New England, Armidale, NSW, 2351, Australia
| | - Mykhailo Sokhatsky
- Borschiv Regional Museum of Local Lore, Borschiv, Ternopil Oblast, Ukraine
| | - Hiroki Oota
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Douglas J Kennett
- Department of Anthropology, University of California, Santa Barbara, CA, 93106, USA
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria. .,Human Evolution and Archaeological Sciences, University of Vienna, Vienna, Austria.
| |
Collapse
|
155
|
Genomic and dietary discontinuities during the Mesolithic and Neolithic in Sicily. iScience 2022; 25:104244. [PMID: 35494246 PMCID: PMC9051636 DOI: 10.1016/j.isci.2022.104244] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/21/2022] [Accepted: 04/07/2022] [Indexed: 11/23/2022] Open
Abstract
Sicily is a key region for understanding the agricultural transition in the Mediterranean because of its central position. Here, we present genomic and stable isotopic data for 19 prehistoric Sicilians covering the Mesolithic to Bronze Age periods (10,700–4,100 yBP). We find that Early Mesolithic hunter-gatherers (HGs) from Sicily are a highly drifted lineage of the Early Holocene western European HGs, whereas Late Mesolithic HGs carry ∼20% ancestry related to northern and (south) eastern European HGs, indicating substantial gene flow. Early Neolithic farmers are genetically most similar to farmers from the Balkans and Greece, with only ∼7% of ancestry from local Mesolithic HGs. The genetic discontinuities during the Mesolithic and Early Neolithic match the changes in material culture and diet. Three outlying individuals dated to ∼8,000 yBP; however, suggest that hunter-gatherers interacted with incoming farmers at Grotta dell’Uzzo, resulting in a mixed economy and diet for a brief interlude at the Mesolithic-Neolithic transition. Genetic transition between Early Mesolithic and Late Mesolithic hunter-gatherers A near-complete genetic turnover during the Mesolithic-Neolithic transition Exchange of subsistence practices between hunter-gatherers and early farmers
Collapse
|
156
|
Bjørn RG. Indo-European loanwords and exchange in Bronze Age Central and East Asia: Six new perspectives on prehistoric exchange in the Eastern Steppe Zone. EVOLUTIONARY HUMAN SCIENCES 2022; 4:e23. [PMID: 37599704 PMCID: PMC10432883 DOI: 10.1017/ehs.2022.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Loanword analysis is a unique contribution of historical linguistics to our understanding of prehistoric cultural interfaces. As language reflects the lives of its speakers, the substantiation of loanwords draws on the composite evidence from linguistic as well as auxiliary data from archaeology and genetics through triangulation. The Bronze Age of Central Asia is in principle linguistically mute, but a host of recent independent observations that tie languages, cultures and genetics together in various ways invites a comprehensive reassessment of six highly diagnostic loanwords ('seven', 'name/fame', 'sister-in-law', 'honey', 'metal' and 'horse') that are associated with the Bronze Age. Moreover, they are shared between Indo-European, Uralic, Turkic and sometimes Old Chinese. The successful identification of the interfaces for these loanwords can help settle longstanding debates on languages, migrations and the items themselves. Each item is analysed using the comparative method with reference to the archaeological record to assess the plausibility of a transfer. I argue that the six items can be dated to have entered Central and East Asian languages from immigrant Indo-European languages spoken in the Afanasievo and Andronovo cultures, including a novel source for the 'horse' in Old Chinese.
Collapse
Affiliation(s)
- Rasmus G. Bjørn
- Max Planck Institute for the Science of Human History, Kahlaische Strasse 10, 07745Jena, Germany
| |
Collapse
|
157
|
Brand CM, Colbran LL, Capra JA. Predicting Archaic Hominin Phenotypes from Genomic Data. Annu Rev Genomics Hum Genet 2022; 23:591-612. [PMID: 35440148 DOI: 10.1146/annurev-genom-111521-121903] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ancient DNA provides a powerful window into the biology of extant and extinct species, including humans' closest relatives: Denisovans and Neanderthals. Here, we review what is known about archaic hominin phenotypes from genomic data and how those inferences have been made. We contend that understanding the influence of variants on lower-level molecular phenotypes-such as gene expression and protein function-is a promising approach to using ancient DNA to learn about archaic hominin traits. Molecular phenotypes have simpler genetic architectures than organism-level complex phenotypes, and this approach enables moving beyond association studies by proposing hypotheses about the effects of archaic variants that are testable in model systems. The major challenge to understanding archaic hominin phenotypes is broadening our ability to accurately map genotypes to phenotypes, but ongoing advances ensure that there will be much more to learn about archaic hominin phenotypes from their genomes. Expected final online publication date for the Annual Review of Genomics and Human Genetics, Volume 23 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Colin M Brand
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA; , .,Bakar Computational Health Sciences Institute, University of California, San Francisco, California, USA
| | - Laura L Colbran
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - John A Capra
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA; , .,Bakar Computational Health Sciences Institute, University of California, San Francisco, California, USA
| |
Collapse
|
158
|
Witt KE, Villanea F, Loughran E, Zhang X, Huerta-Sanchez E. Apportioning archaic variants among modern populations. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200411. [PMID: 35430882 PMCID: PMC9014186 DOI: 10.1098/rstb.2020.0411] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The apportionment of human genetic diversity within and between populations has been measured to understand human relatedness and demographic history. Likewise, the distribution of archaic ancestry in modern populations can be leveraged to better understand the interaction between our species and its archaic relatives. Resolving the interactions between modern and archaic human populations can be difficult, as archaic variants in modern populations have been shaped by genetic drift, bottlenecks and gene flow. Here, we investigate the distribution of archaic variation in Eurasian populations. We find that archaic ancestry coverage at the individual- and population-level present distinct patterns in modern human populations: South Asians have nearly twice the number of population-unique archaic alleles compared with Europeans or East Asians, indicating that these populations experienced differing demographic and archaic admixture events. We confirm previous observations that East Asian individuals have more Neanderthal ancestry than European individuals, but surprisingly, when we compare the number of single nucleotide polymorphisms with archaic alleles found across a population, Europeans have more Neanderthal ancestry than East Asians. We compare these results to simulated models and conclude that these patterns are consistent with multiple admixture events between modern humans and Neanderthals. This article is part of the theme issue ‘Celebrating 50 years since Lewontin's apportionment of human diversity’.
Collapse
Affiliation(s)
- Kelsey E. Witt
- Ecology, Evolution, and Organismal Biology, Brown University, Providence, RI 02912, USA
- Center for Computational Molecular Biology, Brown University, Providence, RI 02912, USA
| | - Fernando Villanea
- Department of Anthropology, University of Colorado Boulder, Boulder, CO, USA
| | - Elle Loughran
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Republic of Ireland
| | - Xinjun Zhang
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | - Emilia Huerta-Sanchez
- Ecology, Evolution, and Organismal Biology, Brown University, Providence, RI 02912, USA
- Center for Computational Molecular Biology, Brown University, Providence, RI 02912, USA
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Republic of Ireland
| |
Collapse
|
159
|
Gnecchi-Ruscone GA, Szécsényi-Nagy A, Koncz I, Csiky G, Rácz Z, Rohrlach AB, Brandt G, Rohland N, Csáky V, Cheronet O, Szeifert B, Rácz TÁ, Benedek A, Bernert Z, Berta N, Czifra S, Dani J, Farkas Z, Hága T, Hajdu T, Jászberényi M, Kisjuhász V, Kolozsi B, Major P, Marcsik A, Kovacsóczy BN, Balogh C, Lezsák GM, Ódor JG, Szelekovszky M, Szeniczey T, Tárnoki J, Tóth Z, Tutkovics EK, Mende BG, Geary P, Pohl W, Vida T, Pinhasi R, Reich D, Hofmanová Z, Jeong C, Krause J. Ancient genomes reveal origin and rapid trans-Eurasian migration of 7 th century Avar elites. Cell 2022; 185:1402-1413.e21. [PMID: 35366416 PMCID: PMC9042794 DOI: 10.1016/j.cell.2022.03.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/28/2022] [Accepted: 03/04/2022] [Indexed: 12/12/2022]
Abstract
The Avars settled the Carpathian Basin in 567/68 CE, establishing an empire lasting over 200 years. Who they were and where they came from is highly debated. Contemporaries have disagreed about whether they were, as they claimed, the direct successors of the Mongolian Steppe Rouran empire that was destroyed by the Turks in ∼550 CE. Here, we analyze new genome-wide data from 66 pre-Avar and Avar-period Carpathian Basin individuals, including the 8 richest Avar-period burials and further elite sites from Avar's empire core region. Our results provide support for a rapid long-distance trans-Eurasian migration of Avar-period elites. These individuals carried Northeast Asian ancestry matching the profile of preceding Mongolian Steppe populations, particularly a genome available from the Rouran period. Some of the later elite individuals carried an additional non-local ancestry component broadly matching the steppe, which could point to a later migration or reflect greater genetic diversity within the initial migrant population.
Collapse
Affiliation(s)
| | - Anna Szécsényi-Nagy
- Institute of Archaeogenomics, Research Centre for the Humanities, Eötvös Loránd Research Network, 1097 Budapest, Hungary
| | - István Koncz
- Institute of Archaeological Sciences, ELTE Eötvös Loránd University, 1088 Budapest, Hungary
| | - Gergely Csiky
- Institute of Archaeology, Research Centre for the Humanities, Eötvös Loránd Research Network, 1097 Budapest, Hungary
| | - Zsófia Rácz
- Institute of Archaeological Sciences, ELTE Eötvös Loránd University, 1088 Budapest, Hungary
| | - A B Rohrlach
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany; ARC Centre of Excellence for Mathematical and Statistical Frontiers, School of Mathematical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Guido Brandt
- Max Planck Institute for the Science of Human History, 07745 Jena, Germany
| | - Nadin Rohland
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Veronika Csáky
- Institute of Archaeogenomics, Research Centre for the Humanities, Eötvös Loránd Research Network, 1097 Budapest, Hungary
| | - Olivia Cheronet
- Department of Evolutionary Anthropology, University of Vienna, 1030 Vienna, Austria
| | - Bea Szeifert
- Institute of Archaeogenomics, Research Centre for the Humanities, Eötvös Loránd Research Network, 1097 Budapest, Hungary
| | | | | | | | | | | | | | | | | | - Tamás Hajdu
- Dept. of Biological Anthropology, Eötvös Loránd University (ELTE), 1117 Budapest, Hungary
| | | | | | | | | | - Antónia Marcsik
- Dept. of Biological Anthropology, Szeged University, 6701 Szeged, Hungary
| | | | - Csilla Balogh
- Department of Art History, Istanbul Medeniyet University, 34720 Istanbul, Turkey
| | - Gabriella M Lezsák
- Research Centre for the Humanities, Eötvös Loránd Research Network, 1097 Budapest, Hungary
| | | | | | - Tamás Szeniczey
- Dept. of Biological Anthropology, Eötvös Loránd University (ELTE), 1117 Budapest, Hungary
| | | | | | | | - Balázs G Mende
- Institute of Archaeogenomics, Research Centre for the Humanities, Eötvös Loránd Research Network, 1097 Budapest, Hungary
| | - Patrick Geary
- Institute for Advanced Study, Princeton, NJ 08540, USA
| | - Walter Pohl
- Institute for Medieval Research, Austrian Academy of Sciences, 1020 Vienna, Austria; Institute of Austrian Historical Research, University of Vienna, 1010 Vienna, Austria
| | - Tivadar Vida
- Institute of Archaeological Sciences, ELTE Eötvös Loránd University, 1088 Budapest, Hungary
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna, 1030 Vienna, Austria
| | - David Reich
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Human Evolutionary Biology, Cambridge, MA 02138, USA; Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Zuzana Hofmanová
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany; Department of Archaeology and Museology, Faculty of Arts, Masaryk University, 60200 Brno, Czech Republic
| | - Choongwon Jeong
- School of Biological Sciences, Seoul National University, 08826 Seoul, Republic of Korea.
| | - Johannes Krause
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany.
| |
Collapse
|
160
|
Ma Y, Wang X, Shoshany N, Jiao X, Lee A, Ku G, Baple EL, Fasham J, Nadeem R, Naeem MA, Riazuddin S, Riazuddin SA, Crosby AH, Hejtmancik JF. CLCC1 c. 75C>A Mutation in Pakistani Derived Retinitis Pigmentosa Families Likely Originated With a Single Founder Mutation 2,000-5,000 Years Ago. Front Genet 2022; 13:804924. [PMID: 35391798 PMCID: PMC8980549 DOI: 10.3389/fgene.2022.804924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
Background: A CLCC1 c. 75C > A (p.D25E) mutation has been associated with autosomal recessive pigmentosa in patients in and from Pakistan. CLCC1 is ubiquitously expressed, and knockout models of this gene in zebrafish and mice are lethal in the embryonic period, suggesting that possible retinitis pigmentosa mutations in this gene might be limited to those leaving partial activity. In agreement with this hypothesis, the mutation is the only CLCC1 mutation associated with retinitis pigmentosa to date, and all identified patients with this mutation share a common SNP haplotype surrounding the mutation, suggesting a common founder. Methods: SNPs were genotyped by a combination of WGS and Sanger sequencing. The original founder haplotype, and recombination pathways were delineated by examination to minimize recombination events. Mutation age was estimated by four methods including an explicit solution, an iterative approach, a Bayesian approach and an approach based solely on ancestral segment lengths using high density SNP data. Results: All members of each of the nine families studied shared a single autozygous SNP haplotype for the CLCC1 region ranging from approximately 1–3.5 Mb in size. The haplotypes shared by the families could be derived from a single putative ancestral haplotype with at most two recombination events. Based on the haplotype and Gamma analysis, the estimated age of the founding mutation varied from 79 to 196 generations, or approximately 2,000–5,000 years, depending on the markers used in the estimate. The DMLE (Bayesian) estimates ranged from 2,160 generations assuming a population growth rate of 0–309 generations assuming a population growth rate of 2% with broad 95% confidence intervals. Conclusion: These results provide insight into the origin of the CLCC1 mutation in the Pakistan population. This mutation is estimated to have occurred 2000–5,000 years ago and has been transmitted to affected families of Pakistani origin in geographically dispersed locations around the world. This is the only mutation in CLCC1 identified to date, suggesting that the CLCC1 gene is under a high degree of constraint, probably imposed by functional requirements for this gene during embryonic development.
Collapse
Affiliation(s)
- Yan Ma
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, Bethesda, MD, United States
| | - Xun Wang
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, Bethesda, MD, United States.,State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - Nadav Shoshany
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, Bethesda, MD, United States.,Matlow's Ophthalmo-genetic Laboratory, Shamir Medical Center, Zeriffin, Israel
| | - Xiaodong Jiao
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, Bethesda, MD, United States
| | - Adrian Lee
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, Bethesda, MD, United States
| | - Gregory Ku
- Diabetes Center, University of California, San Francisco, San Francisco, CA, United States
| | - Emma L Baple
- Research, Innovation, Learning and Development (RILD) Wellcome Wolfson Centre, College of Medicine and Health, University of Exeter Medical School, Royal Devon and Exeter NHS Foundation Trust, Exeter, United Kingdom.,Peninsula Clinical Genetics Service, Royal Devon and Exeter Hospital (Heavitree), Gladstone Road, Exeter, United Kingdom
| | - James Fasham
- Research, Innovation, Learning and Development (RILD) Wellcome Wolfson Centre, College of Medicine and Health, University of Exeter Medical School, Royal Devon and Exeter NHS Foundation Trust, Exeter, United Kingdom.,Peninsula Clinical Genetics Service, Royal Devon and Exeter Hospital (Heavitree), Gladstone Road, Exeter, United Kingdom
| | - Raheela Nadeem
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Asif Naeem
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Sheikh Riazuddin
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan.,Allama Iqbal Medical College, University of Health Sciences, Lahore, Pakistan
| | - S Amer Riazuddin
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Andrew H Crosby
- Research, Innovation, Learning and Development (RILD) Wellcome Wolfson Centre, College of Medicine and Health, University of Exeter Medical School, Royal Devon and Exeter NHS Foundation Trust, Exeter, United Kingdom
| | - J Fielding Hejtmancik
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, Bethesda, MD, United States
| |
Collapse
|
161
|
Kumar V, Wang W, Zhang J, Wang Y, Ruan Q, Yu J, Wu X, Hu X, Wu X, Guo W, Wang B, Niyazi A, Lv E, Tang Z, Cao P, Liu F, Dai Q, Yang R, Feng X, Ping W, Zhang L, Zhang M, Hou W, Liu Y, Bennett EA, Fu Q. Bronze and Iron Age population movements underlie Xinjiang population history. Science 2022; 376:62-69. [PMID: 35357918 DOI: 10.1126/science.abk1534] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The Xinjiang region in northwest China is a historically important geographical passage between East and West Eurasia. By sequencing 201 ancient genomes from 39 archaeological sites, we clarify the complex demographic history of this region. Bronze Age Xinjiang populations are characterized by four major ancestries related to Early Bronze Age cultures from the central and eastern Steppe, Central Asian, and Tarim Basin regions. Admixtures between Middle and Late Bronze Age Steppe cultures continued during the Late Bronze and Iron Ages, along with an inflow of East and Central Asian ancestry. Historical era populations show similar admixed and diverse ancestries as those of present-day Xinjiang populations. These results document the influence that East and West Eurasian populations have had over time in the different regions of Xinjiang.
Collapse
Affiliation(s)
- Vikas Kumar
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China.,Shanghai Qi Zhi Institute, Shanghai 200232, China
| | - Wenjun Wang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China.,National Centre for Archaeology, Beijing 100013, China
| | - Jie Zhang
- Institute of Cultural Relics and Archaeology in Xinjiang, Urumqi 830011, China
| | - Yongqiang Wang
- Institute of Cultural Relics and Archaeology in Xinjiang, Urumqi 830011, China
| | - Qiurong Ruan
- Institute of Cultural Relics and Archaeology in Xinjiang, Urumqi 830011, China
| | - Jianjun Yu
- Institute of Cultural Relics and Archaeology in Xinjiang, Urumqi 830011, China
| | - Xiaohong Wu
- School of Archaeology and Museology, Peking University, Beijing 100871, China
| | - Xingjun Hu
- Institute of Cultural Relics and Archaeology in Xinjiang, Urumqi 830011, China
| | - Xinhua Wu
- Institute of Archaeology, Chinese Academy of Social Science, Beijing 100710, China
| | - Wu Guo
- Institute of Archaeology, Chinese Academy of Social Science, Beijing 100710, China
| | - Bo Wang
- Xinjiang Uygur Autonomous Region Museum, Urumqi 830002, China
| | - Alipujiang Niyazi
- Institute of Cultural Relics and Archaeology in Xinjiang, Urumqi 830011, China
| | - Enguo Lv
- Institute of Cultural Relics and Archaeology in Xinjiang, Urumqi 830011, China
| | - Zihua Tang
- Institute of Geology and Geophysics, Chinese Academy of Science, Beijing 100020, China
| | - Peng Cao
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Feng Liu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Qingyan Dai
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Ruowei Yang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Xiaotian Feng
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Wanjing Ping
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Lizhao Zhang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Ming Zhang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Weihong Hou
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Yichen Liu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China.,Shanghai Qi Zhi Institute, Shanghai 200232, China
| | - E Andrew Bennett
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China
| | - Qiaomei Fu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing 100044, China.,Shanghai Qi Zhi Institute, Shanghai 200232, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
162
|
South-to-north migration preceded the advent of intensive farming in the Maya region. Nat Commun 2022; 13:1530. [PMID: 35318319 PMCID: PMC8940966 DOI: 10.1038/s41467-022-29158-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 02/25/2022] [Indexed: 11/16/2022] Open
Abstract
The genetic prehistory of human populations in Central America is largely unexplored leaving an important gap in our knowledge of the global expansion of humans. We report genome-wide ancient DNA data for a transect of twenty individuals from two Belize rock-shelters dating between 9,600-3,700 calibrated radiocarbon years before present (cal. BP). The oldest individuals (9,600-7,300 cal. BP) descend from an Early Holocene Native American lineage with only distant relatedness to present-day Mesoamericans, including Mayan-speaking populations. After ~5,600 cal. BP a previously unknown human dispersal from the south made a major demographic impact on the region, contributing more than 50% of the ancestry of all later individuals. This new ancestry derived from a source related to present-day Chibchan speakers living from Costa Rica to Colombia. Its arrival corresponds to the first clear evidence for forest clearing and maize horticulture in what later became the Maya region. The genetic prehistory of central America has not been well explored. Here, the authors find evidence from ancient DNA from twenty individuals who lived in Belize 9,600 to 3,700 years ago of a migration from the south that coincided with the first evidence for forest clearing and the spread of maize horticulture.
Collapse
|
163
|
Zavala EI, Aximu-Petri A, Richter J, Nickel B, Vernot B, Meyer M. Quantifying and reducing cross-contamination in single- and multiplex hybridization capture of ancient DNA. Mol Ecol Resour 2022; 22:2196-2207. [PMID: 35263821 DOI: 10.1111/1755-0998.13607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 11/29/2022]
Abstract
The use of hybridization capture has enabled a massive upscaling in sample sizes for ancient DNA studies, allowing the analysis of hundreds of skeletal remains (Mathieson et al., 2015; Narasimhan et al., 2019) or sediments (Vernot et al., 2021; Wang et al., 2021; Zavala et al., 2021) in single studies. Nevertheless, demands in throughput continue to grow, and hybridization capture has become a limiting step in sample preparation due to the large consumption of reagents, consumables and time. Here we explore the possibility of improving the economics of sample preparation via multiplex capture, i.e. the hybridization capture of pools of double-indexed ancient DNA libraries. We demonstrate that this strategy is feasible, at least for small genomic targets such as mitochondrial DNA, if the annealing temperature is increased and PCR cycles are limited in post-capture amplification to avoid index swapping by jumping PCR, which manifests as cross-contamination in resulting sequence data. We also show that the re-amplification of double-indexed libraries to PCR plateau before or after hybridization capture can sporadically lead to small, but detectable cross-contamination even if libraries are amplified in separate reactions. We provide protocols for both manual capture and automated capture in 384-well format that are compatible with single- and multiplex capture and effectively suppress cross-contamination and artefact formation. Last, we provide a simple computational method for quantifying cross-contamination due to index swapping in double-indexed libraries, which we recommend using for routine quality checks in studies that are sensitive to cross-contamination.
Collapse
Affiliation(s)
- Elena I Zavala
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Ayinuer Aximu-Petri
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Julia Richter
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Birgit Nickel
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Benjamin Vernot
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Matthias Meyer
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
164
|
Liu CC, Witonsky D, Gosling A, Lee JH, Ringbauer H, Hagan R, Patel N, Stahl R, Novembre J, Aldenderfer M, Warinner C, Di Rienzo A, Jeong C. Ancient genomes from the Himalayas illuminate the genetic history of Tibetans and their Tibeto-Burman speaking neighbors. Nat Commun 2022; 13:1203. [PMID: 35260549 PMCID: PMC8904508 DOI: 10.1038/s41467-022-28827-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
Present-day Tibetans have adapted both genetically and culturally to the high altitude environment of the Tibetan Plateau, but fundamental questions about their origins remain unanswered. Recent archaeological and genetic research suggests the presence of an early population on the Plateau within the past 40 thousand years, followed by the arrival of subsequent groups within the past 10 thousand years. Here, we obtain new genome-wide data for 33 ancient individuals from high elevation sites on the southern fringe of the Tibetan Plateau in Nepal, who we show are most closely related to present-day Tibetans. They derive most of their ancestry from groups related to Late Neolithic populations at the northeastern edge of the Tibetan Plateau but also harbor a minor genetic component from a distinct and deep Paleolithic Eurasian ancestry. In contrast to their Tibetan neighbors, present-day non-Tibetan Tibeto-Burman speakers living at mid-elevations along the southern and eastern margins of the Plateau form a genetic cline that reflects a distinct genetic history. Finally, a comparison between ancient and present-day highlanders confirms ongoing positive selection of high altitude adaptive alleles.
Collapse
Affiliation(s)
- Chi-Chun Liu
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| | - David Witonsky
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| | - Anna Gosling
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA.,Department of Anatomy, University of Otago, Dunedin, 9054, New Zealand
| | - Ju Hyeon Lee
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Harald Ringbauer
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA.,Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Richard Hagan
- Department of Anthropology, University of Oklahoma, Norman, OK, 73019, USA.,Department of Archaeology, University of York, York, YO10 5DD, UK
| | - Nisha Patel
- Department of Plant and Microbiology, University of Oklahoma, Norman, OK, 73019, USA.,Kintai Therapeutics, Cambridge, MA, 02139, USA
| | - Raphaela Stahl
- Max Planck Institute for Evolutionary Anthropology, 04103, Leipzig, Germany
| | - John Novembre
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA
| | - Mark Aldenderfer
- Department of Anthropology and Heritage Studies, University of California, Merced, CA, 95343, USA.
| | - Christina Warinner
- Max Planck Institute for Evolutionary Anthropology, 04103, Leipzig, Germany. .,Department of Anthropology, Harvard University, Cambridge, MA, 02138, USA.
| | - Anna Di Rienzo
- Department of Human Genetics, University of Chicago, Chicago, IL, 60637, USA.
| | - Choongwon Jeong
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
165
|
Wohns AW, Wong Y, Jeffery B, Akbari A, Mallick S, Pinhasi R, Patterson N, Reich D, Kelleher J, McVean G. A unified genealogy of modern and ancient genomes. Science 2022; 375:eabi8264. [PMID: 35201891 PMCID: PMC10027547 DOI: 10.1126/science.abi8264] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The sequencing of modern and ancient genomes from around the world has revolutionized our understanding of human history and evolution. However, the problem of how best to characterize ancestral relationships from the totality of human genomic variation remains unsolved. Here, we address this challenge with nonparametric methods that enable us to infer a unified genealogy of modern and ancient humans. This compact representation of multiple datasets explores the challenges of missing and erroneous data and uses ancient samples to constrain and date relationships. We demonstrate the power of the method to recover relationships between individuals and populations as well as to identify descendants of ancient samples. Finally, we introduce a simple nonparametric estimator of the geographical location of ancestors that recapitulates key events in human history.
Collapse
Affiliation(s)
- Anthony Wilder Wohns
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford; Oxford OX3 7LF, UK
| | - Yan Wong
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford; Oxford OX3 7LF, UK
| | - Ben Jeffery
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford; Oxford OX3 7LF, UK
| | - Ali Akbari
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- Department of Human Evolutionary Biology, Harvard University; Cambridge, MA 02138, USA
- Department of Genetics, Harvard Medical School; Boston, MA 02115, USA
| | - Swapan Mallick
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- Howard Hughes Medical Institute; Boston, MA 02115, USA
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna; 1090 Vienna, Austria
| | - Nick Patterson
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- Department of Human Evolutionary Biology, Harvard University; Cambridge, MA 02138, USA
- Howard Hughes Medical Institute; Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School; Boston, MA 02115, USA
| | - David Reich
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- Department of Human Evolutionary Biology, Harvard University; Cambridge, MA 02138, USA
- Howard Hughes Medical Institute; Boston, MA 02115, USA
- Department of Genetics, Harvard Medical School; Boston, MA 02115, USA
| | - Jerome Kelleher
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford; Oxford OX3 7LF, UK
| | - Gil McVean
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford; Oxford OX3 7LF, UK
- Corresponding author.
| |
Collapse
|
166
|
Ancient DNA and deep population structure in sub-Saharan African foragers. Nature 2022; 603:290-296. [PMID: 35197631 PMCID: PMC8907066 DOI: 10.1038/s41586-022-04430-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 01/14/2022] [Indexed: 12/16/2022]
Abstract
Multiple lines of genetic and archaeological evidence suggest that there were major demographic changes in the terminal Late Pleistocene epoch and early Holocene epoch of sub-Saharan Africa1–4. Inferences about this period are challenging to make because demographic shifts in the past 5,000 years have obscured the structures of more ancient populations3,5. Here we present genome-wide ancient DNA data for six individuals from eastern and south-central Africa spanning the past approximately 18,000 years (doubling the time depth of sub-Saharan African ancient DNA), increase the data quality for 15 previously published ancient individuals and analyse these alongside data from 13 other published ancient individuals. The ancestry of the individuals in our study area can be modelled as a geographically structured mixture of three highly divergent source populations, probably reflecting Pleistocene interactions around 80–20 thousand years ago, including deeply diverged eastern and southern African lineages, plus a previously unappreciated ubiquitous distribution of ancestry that occurs in highest proportion today in central African rainforest hunter-gatherers. Once established, this structure remained highly stable, with limited long-range gene flow. These results provide a new line of genetic evidence in support of hypotheses that have emerged from archaeological analyses but remain contested, suggesting increasing regionalization at the end of the Pleistocene epoch. DNA analysis of 6 individuals from eastern and south-central Africa spanning the past approximately 18,000 years, and of 28 previously published ancient individuals, provides genetic evidence supporting hypotheses of increasing regionalization at the end of the Pleistocene.
Collapse
|
167
|
Aneli S, Saupe T, Montinaro F, Solnik A, Molinaro L, Scaggion C, Carrara N, Raveane A, Kivisild T, Metspalu M, Scheib CL, Pagani L. The Genetic Origin of Daunians and the Pan-Mediterranean Southern Italian Iron Age Context. Mol Biol Evol 2022; 39:msac014. [PMID: 35038748 PMCID: PMC8826970 DOI: 10.1093/molbev/msac014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The geographical location and shape of Apulia, a narrow land stretching out in the sea at the South of Italy, made this region a Mediterranean crossroads connecting Western Europe and the Balkans. Such movements culminated at the beginning of the Iron Age with the Iapygian civilization which consisted of three cultures: Peucetians, Messapians, and Daunians. Among them, the Daunians left a peculiar cultural heritage, with one-of-a-kind stelae and pottery, but, despite the extensive archaeological literature, their origin has been lost to time. In order to shed light on this and to provide a genetic picture of Iron Age Southern Italy, we collected and sequenced human remains from three archaeological sites geographically located in Northern Apulia (the area historically inhabited by Daunians) and radiocarbon dated between 1157 and 275 calBCE. We find that Iron Age Apulian samples are still distant from the genetic variability of modern-day Apulians, they show a degree of genetic heterogeneity comparable with the cosmopolitan Republican and Imperial Roman civilization, even though a few kilometers and centuries separate them, and they are well inserted into the Iron Age Pan-Mediterranean genetic landscape. Our study provides for the first time a window on the genetic make-up of pre-Roman Apulia, whose increasing connectivity within the Mediterranean landscape, would have contributed to laying the foundation for modern genetic variability. In this light, the genetic profile of Daunians may be compatible with an at least partial autochthonous origin, with plausible contributions from the Balkan peninsula.
Collapse
Affiliation(s)
- Serena Aneli
- Department of Biology, University of Padua, Padova, Italy
| | - Tina Saupe
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Francesco Montinaro
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
- Department of Biology-Genetics, University of Bari, Bari, Italy
| | - Anu Solnik
- Core Facility, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Ludovica Molinaro
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Cinzia Scaggion
- Department of Geosciences, University of Padua, Padova, Italy
| | - Nicola Carrara
- Anthropology Museum, University of Padova, Padova, Italy
| | - Alessandro Raveane
- Laboratory of Hematology-Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Toomas Kivisild
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Mait Metspalu
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Christiana L Scheib
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
- St John’s College, Cambridge, United Kingdom
| | - Luca Pagani
- Department of Biology, University of Padua, Padova, Italy
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia
| |
Collapse
|
168
|
Abstract
Joint phylogenetic analysis of ancient DNA (aDNA) with modern phylogenies is hampered by low sequence coverage and post-mortem deamination, often resulting in overconservative or incorrect assignment. We provide a new efficient likelihood-based workflow, pathPhynder, that takes advantage of all the polymorphic sites in the target sequence. This effectively evaluates the number of ancestral and derived alleles present on each branch and reports the most likely placement of an ancient sample in the phylogeny and a haplogroup assignment, together with alternatives and supporting evidence. To illustrate the application of pathPhynder, we show improved Y chromosome assignments for published aDNA sequences, using a newly compiled Y variation data set (120,908 markers from 2,014 samples) that significantly enhances Y haplogroup assignment for low coverage samples. We apply the method to all published male aDNA samples from Africa, giving new insights into ancient migrations and the relationships between ancient and modern populations. The same software can be used to place samples with large amounts of missing data into other large non-recombining phylogenies such as the mitochondrial tree.
Collapse
Affiliation(s)
- Rui Martiniano
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Bianca De Sanctis
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Pille Hallast
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
- Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Richard Durbin
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- Wellcome Sanger Institute, Hinxton, Cambridge, United Kingdom
| |
Collapse
|
169
|
Changmai P, Jaisamut K, Kampuansai J, Kutanan W, Altınışık NE, Flegontova O, Inta A, Yüncü E, Boonthai W, Pamjav H, Reich D, Flegontov P. Indian genetic heritage in Southeast Asian populations. PLoS Genet 2022; 18:e1010036. [PMID: 35176016 PMCID: PMC8853555 DOI: 10.1371/journal.pgen.1010036] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 01/12/2022] [Indexed: 11/20/2022] Open
Abstract
The great ethnolinguistic diversity found today in mainland Southeast Asia (MSEA) reflects multiple migration waves of people in the past. Maritime trading between MSEA and India was established at the latest 300 BCE, and the formation of early states in Southeast Asia during the first millennium CE was strongly influenced by Indian culture, a cultural influence that is still prominent today. Several ancient Indian-influenced states were located in present-day Thailand, and various populations in the country are likely to be descendants of people from those states. To systematically explore Indian genetic heritage in MSEA populations, we generated genome-wide SNP data (using the Affymetrix Human Origins array) for 119 present-day individuals belonging to 10 ethnic groups from Thailand and co-analyzed them with published data using PCA, ADMIXTURE, and methods relying on f-statistics and on autosomal haplotypes. We found low levels of South Asian admixture in various MSEA populations for whom there is evidence of historical connections with the ancient Indian-influenced states but failed to find this genetic component in present-day hunter-gatherer groups and relatively isolated groups from the highlands of Northern Thailand. The results suggest that migration of Indian populations to MSEA may have been responsible for the spread of Indian culture in the region. Our results also support close genetic affinity between Kra-Dai-speaking (also known as Tai-Kadai) and Austronesian-speaking populations, which fits a linguistic hypothesis suggesting cladality of the two language families.
Collapse
Affiliation(s)
- Piya Changmai
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Kitipong Jaisamut
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Jatupol Kampuansai
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center in Bioresources for Agriculture, Industry and Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Wibhu Kutanan
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
| | - N Ezgi Altınışık
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Olga Flegontova
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Angkhana Inta
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center in Bioresources for Agriculture, Industry and Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Eren Yüncü
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Worrawit Boonthai
- Research Unit in Physical Anthropology and Health Science, Thammasat University, Pathum thani, Thailand
| | - Horolma Pamjav
- Hungarian Institute for Forensic Sciences, Institute of Forensic Genetics, Budapest, Hungary
| | - David Reich
- Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Pavel Flegontov
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
- Kalmyk Research Center of the Russian Academy of Sciences, Elista, Kalmykia, Russia
| |
Collapse
|
170
|
Cardinali I, Bodner M, Capodiferro MR, Amory C, Rambaldi Migliore N, Gomez EJ, Myagmar E, Dashzeveg T, Carano F, Woodward SR, Parson W, Perego UA, Lancioni H, Achilli A. Mitochondrial DNA Footprints from Western Eurasia in Modern Mongolia. Front Genet 2022; 12:819337. [PMID: 35069708 PMCID: PMC8773455 DOI: 10.3389/fgene.2021.819337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 12/14/2021] [Indexed: 11/15/2022] Open
Abstract
Mongolia is located in a strategic position at the eastern edge of the Eurasian Steppe. Nomadic populations moved across this wide area for millennia before developing more sedentary communities, extended empires, and complex trading networks, which connected western Eurasia and eastern Asia until the late Medieval period. We provided a fine-grained portrait of the mitochondrial DNA (mtDNA) variation observed in present-day Mongolians and capable of revealing gene flows and other demographic processes that took place in Inner Asia, as well as in western Eurasia. The analyses of a novel dataset (N = 2,420) of mtDNAs highlighted a clear matrilineal differentiation within the country due to a mixture of haplotypes with eastern Asian (EAs) and western Eurasian (WEu) origins, which were differentially lost and preserved. In a wider genetic context, the prevalent EAs contribution, larger in eastern and central Mongolian regions, revealed continuous connections with neighboring Asian populations until recent times, as attested by the geographically restricted haplotype-sharing likely facilitated by the Genghis Khan’s so-called Pax Mongolica. The genetic history beyond the WEu haplogroups, notably detectable on both sides of Mongolia, was more difficult to explain. For this reason, we moved to the analysis of entire mitogenomes (N = 147). Although it was not completely possible to identify specific lineages that evolved in situ, two major changes in the effective (female) population size were reconstructed. The more recent one, which began during the late Pleistocene glacial period and became steeper in the early Holocene, was probably the outcome of demographic events connected to western Eurasia. The Neolithic growth could be easily explained by the diffusion of dairy pastoralism, as already proposed, while the late glacial increase indicates, for the first time, a genetic connection with western Eurasian refuges, as supported by the unusual high frequency and internal sub-structure in Mongolia of haplogroup H1, a well-known post-glacial marker in Europe. Bronze Age events, without a significant demographic impact, might explain the age of some mtDNA haplogroups. Finally, a diachronic comparison with available ancient mtDNAs made it possible to link six mitochondrial lineages of present-day Mongolians to the timeframe and geographic path of the Silk Route.
Collapse
Affiliation(s)
- Irene Cardinali
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Martin Bodner
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Christina Amory
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Edgar J Gomez
- Sorenson Molecular Genealogy Foundation, Salt Lake City, UT, United States.,FamilySearch Int., Salt Lake City, UT, United States
| | - Erdene Myagmar
- Department of Anthropology and Archaeology, National University of Mongolia, Ulaanbaatar, Mongolia
| | - Tumen Dashzeveg
- Department of Anthropology and Archaeology, National University of Mongolia, Ulaanbaatar, Mongolia
| | - Francesco Carano
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Scott R Woodward
- Sorenson Molecular Genealogy Foundation, Salt Lake City, UT, United States
| | - Walther Parson
- Institute of Legal Medicine, Medical University of Innsbruck, Innsbruck, Austria.,Forensic Science Program, The Pennsylvania State University, State College, PA, United States
| | - Ugo A Perego
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy.,Sorenson Molecular Genealogy Foundation, Salt Lake City, UT, United States.,Department of Math and Science, Southeastern Community College, Burlington, IA, United States
| | - Hovirag Lancioni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Alessandro Achilli
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, Pavia, Italy
| |
Collapse
|
171
|
Argüelles JM, Fuentes A, Yáñez B. Analyzing asymmetries and praxis in aDNA research: A bioanthropological critique. AMERICAN ANTHROPOLOGIST 2022. [DOI: 10.1111/aman.13692] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
172
|
Contrasting maternal and paternal genetic histories among five ethnic groups from Khyber Pakhtunkhwa, Pakistan. Sci Rep 2022; 12:1027. [PMID: 35046511 PMCID: PMC8770644 DOI: 10.1038/s41598-022-05076-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 12/10/2021] [Indexed: 11/24/2022] Open
Abstract
Northwest Pakistan has served as a point of entry to South Asia for different populations since ancient times. However, relatively little is known about the population genetic history of the people residing within this region. To better understand human dispersal in the region within the broader history of the subcontinent, we analyzed mtDNA diversity in 659 and Y-chromosome diversity in 678 individuals, respectively, from five ethnic groups (Gujars, Jadoons, Syeds, Tanolis and Yousafzais), from Swabi and Buner Districts, Khyber Pakhtunkhwa Province, Pakistan. The mtDNAs of all individuals were subject to control region sequencing and SNP genotyping, while Y-chromosomes were analyzed using 54 SNPs and 19 STR loci. The majority of the mtDNAs belonged to West Eurasian haplogroups, with the rest belonging to either South or East Asian lineages. Four of the five Pakistani populations (Gujars, Jadoons, Syeds, Yousafzais) possessed strong maternal genetic affinities with other Pakistani and Central Asian populations, whereas one (Tanolis) did not. Four haplogroups (R1a, R1b, O3, L) among the 11 Y-chromosome lineages observed among these five ethnic groups contributed substantially to their paternal genetic makeup. Gujars, Syeds and Yousafzais showed strong paternal genetic affinities with other Pakistani and Central Asian populations, whereas Jadoons and Tanolis had close affinities with Turkmen populations from Central Asia and ethnic groups from northeast India. We evaluate these genetic data in the context of historical and archeological evidence to test different hypotheses concerning their origins and biological relationships.
Collapse
|
173
|
Genetic continuity of Indo-Iranian speakers since the Iron Age in southern Central Asia. Sci Rep 2022; 12:733. [PMID: 35031610 PMCID: PMC8760286 DOI: 10.1038/s41598-021-04144-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 12/14/2021] [Indexed: 12/14/2022] Open
Abstract
Since prehistoric times, southern Central Asia has been at the crossroads of the movement of people, culture, and goods. Today, the Central Asian populations are divided into two cultural and linguistic groups: the Indo-Iranian and the Turko-Mongolian groups. Previous genetic studies unveiled that migrations from East Asia contributed to the spread of Turko-Mongolian populations in Central Asia and the partial replacement of the Indo-Iranian populations. However, little is known about the origin of the latters. To shed light on this, we compare the genetic data on two current-day Indo-Iranian populations — Yaghnobis and Tajiks — with genome-wide data from published ancient individuals. The present Indo-Iranian populations from Central Asia display a strong genetic continuity with Iron Age samples from Turkmenistan and Tajikistan. We model Yaghnobis as a mixture of 93% Iron Age individual from Turkmenistan and 7% from Baikal. For the Tajiks, we observe a higher Baikal ancestry and an additional admixture event with a South Asian population. Our results, therefore, suggest that in addition to a complex history, Central Asia shows a remarkable genetic continuity since the Iron Age, with only limited gene flow.
Collapse
|
174
|
Palaeoenvironmental proxies indicate long-term development of agro-pastoralist landscapes in Inner Asian mountains. Sci Rep 2022; 12:554. [PMID: 35017595 PMCID: PMC8752612 DOI: 10.1038/s41598-021-04546-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/24/2021] [Indexed: 11/25/2022] Open
Abstract
A growing body of archaeological research on agro-pastoralist populations of the Inner Asian mountains indicates that these groups adapted various systems of mobile herding and cultivation to ecotopes across the region from as early as 5000 BP. It has been argued that these adaptations allowed the development of flexible social-ecological systems well suited to the long-term management of these mountain landscapes. At present, less attention has been paid to examining the long-term ecological legacy of these adaptations within the sedimentary or palaeoenvironmental record. Here we present sediment, palynomorph and charcoal data that we interpret as indicating agro-pastoralist environmental perturbations, taken from three cores at middle and high altitudes in the Kashmir Valley at the southern end of the Inner Asian mountains. Our data indicate spatially and temporally discontinuous patterns of agro-pastoralist land use beginning close to 4000 BP. Periods of intensification of upland herding are often coincident with phases of regional social or environmental change, in particular we find the strongest signals for agro-pastoralism in the environmental record contemporary with regionally arid conditions. These patterns support previous arguments that specialised agro-pastoralist ecologies across the region are well placed to respond to past and future climate deteriorations. Our data indicating long-term co-evolution of humans and landscape in the study area also have implications for the ongoing management of environments generally perceived as “pristine” or “wilderness”.
Collapse
|
175
|
Ma B, Chen J, Yang X, Bai J, Ouyang S, Mo X, Chen W, Wang CC, Hai X. The Genetic Structure and East-West Population Admixture in Northwest China Inferred From Genome-Wide Array Genotyping. Front Genet 2022; 12:795570. [PMID: 34992635 PMCID: PMC8724515 DOI: 10.3389/fgene.2021.795570] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/06/2021] [Indexed: 01/02/2023] Open
Abstract
Northwest China is a contacting region for East and West Eurasia and an important center for investigating the migration and admixture history of human populations. However, the comprehensive genetic structure and admixture history of the Altaic speaking populations and Hui group in Northwest China were still not fully characterized due to insufficient sampling and the lack of genome-wide data. Thus, We genotyped genome-wide SNPs for 140 individuals from five Chinese Mongolic, Turkic speaking groups including Dongxiang, Bonan, Yugur, and Salar, as well as the Hui group. Analysis based on allele-sharing and haplotype-sharing were used to elucidate the population history of Northwest Chinese populations, including PCA, ADMIXTURE, pairwise Fst genetic distance, f-statistics, qpWave/qpAdm and ALDER, fineSTRUCTURE and GLOBETROTTER. We observed Dongxiang, Bonan, Yugur, Salar, and Hui people were admixed populations deriving ancestry from both East and West Eurasians, with the proportions of West Eurasian related contributions ranging from 9 to 15%. The genetic admixture was probably driven by male-biased migration- showing a higher frequency of West Eurasian related Y chromosomal lineages than that of mtDNA detected in Northwest China. ALDER-based admixture and haplotype-based GLOBETROTTER showed this observed West Eurasian admixture signal was introduced into East Eurasia approximately 700 ∼1,000 years ago. Generally, our findings provided supporting evidence that the flourish transcontinental communication between East and West Eurasia played a vital role in the genetic formation of northwest Chinese populations.
Collapse
Affiliation(s)
- Bin Ma
- Key Laboratory of Environmental Ecology and Population Health in Northwest Minority Areas, Northwest Minzu University, Lanzhou, China
| | - Jinwen Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Xiaomin Yang
- Department of Anthropology and Ethnology, School of Sociology and Anthropology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China
| | - Jingya Bai
- Key Laboratory of Environmental Ecology and Population Health in Northwest Minority Areas, Northwest Minzu University, Lanzhou, China
| | - Siwei Ouyang
- Key Laboratory of Environmental Ecology and Population Health in Northwest Minority Areas, Northwest Minzu University, Lanzhou, China
| | - Xiaodan Mo
- Key Laboratory of Environmental Ecology and Population Health in Northwest Minority Areas, Northwest Minzu University, Lanzhou, China
| | - Wangsheng Chen
- Key Laboratory of Environmental Ecology and Population Health in Northwest Minority Areas, Northwest Minzu University, Lanzhou, China
| | - Chuan-Chao Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.,Department of Anthropology and Ethnology, School of Sociology and Anthropology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, China.,State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Xiangjun Hai
- Key Laboratory of Environmental Ecology and Population Health in Northwest Minority Areas, Northwest Minzu University, Lanzhou, China
| |
Collapse
|
176
|
Kaifu Y, Kurniawan I, Yurnaldi D, Setiawan R, Setiyabudi E, Insani H, Takai M, Nishioka Y, Takahashi A, Aziz F, Yoneda M. Modern human teeth unearthed from below the ∼128,000-year-old level at Punung, Java: A case highlighting the problem of recent intrusion in cave sediments. J Hum Evol 2022; 163:103122. [PMID: 35016125 DOI: 10.1016/j.jhevol.2021.103122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 11/27/2022]
Abstract
The emergence of modern humans in the eastern edge of the Eurasian Continent is debated between two major models: early (∼130-70 ka) and late (∼50 ka) dispersal models. The former view is grounded mainly on the claims that several cave sites in Southeast Asia and southern China yielded modern human fossils of those early ages, but such reports have been disputed for the lack of direct dating of the human remains and insufficient documentation of stratigraphy and taphonomy. By tracing possible burial process and conducting direct dating for an early Late Pleistocene paleontological site of Punung III, East Java, we here report a case that demonstrates how unexpected intrusion of recent human remains into older stratigraphic levels could occur in cave sediments. This further highlights the need of direct dating and taphonomic assessment before accepting either model. We also emphasize that the state of fossilization of bones and teeth is a useful guide for initial screening of recent intrusion and should be reported particularly when direct dating is unavailable. Additionally, we provide a revised stratigraphy and faunal list of Punung III, a key site that defines the tropical rainforest Punung Fauna during the early Late Pleistocene of the region.
Collapse
Affiliation(s)
- Yousuke Kaifu
- The University Museum, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, Japan.
| | - Iwan Kurniawan
- Bandung Geological Museum, Geological Agency of Indonesia, Jl. Diponegoro No. 57 Bandung, West Java, Indonesia
| | - Dida Yurnaldi
- Geological Survey Institute, Geological Agency of Indonesia, Jl. Diponegoro No. 57 Bandung, West Java 40122, Indonesia
| | - Ruly Setiawan
- Geological Survey Institute, Geological Agency of Indonesia, Jl. Diponegoro No. 57 Bandung, West Java 40122, Indonesia
| | - Erick Setiyabudi
- Bandung Geological Museum, Geological Agency of Indonesia, Jl. Diponegoro No. 57 Bandung, West Java, Indonesia
| | - Halmi Insani
- Bandung Geological Museum, Geological Agency of Indonesia, Jl. Diponegoro No. 57 Bandung, West Java, Indonesia
| | - Masanaru Takai
- Systematics and Phylogeny Section, Primate Research Institute, Kyoto University, Kanrin, Inuyama, Aichi, Japan
| | - Yuichiro Nishioka
- Museum of Natural and Environmental History, Shizuoka, 5762 Oya, Suruga-ku, Shizuoka City, Shizuoka, Japan
| | - Akio Takahashi
- Faculty of Biosphere-Geosphere Science, Okayama University of Science, Ridaicho 1-1, Kitaku, Okayama, Japan
| | - Fachroel Aziz
- Bandung Geological Museum, Geological Agency of Indonesia, Jl. Diponegoro No. 57 Bandung, West Java, Indonesia
| | - Minoru Yoneda
- The University Museum, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
177
|
Khussainova E, Kisselev I, Iksan O, Bekmanov B, Skvortsova L, Garshin A, Kuzovleva E, Zhaniyazov Z, Zhunussova G, Musralina L, Kahbatkyzy N, Amirgaliyeva A, Begmanova M, Seisenbayeva A, Bespalova K, Perfilyeva A, Abylkassymova G, Farkhatuly A, Good SV, Djansugurova L. Genetic Relationship Among the Kazakh People Based on Y-STR Markers Reveals Evidence of Genetic Variation Among Tribes and Zhuz. Front Genet 2022; 12:801295. [PMID: 35069700 PMCID: PMC8777105 DOI: 10.3389/fgene.2021.801295] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/10/2021] [Indexed: 11/21/2022] Open
Abstract
Ethnogenesis of Kazakhs took place in Central Asia, a region of high genetic and cultural diversity. Even though archaeological and historical studies have shed some light on the formation of modern Kazakhs, the process of establishment of hierarchical socioeconomic structure in the Steppe remains contentious. In this study, we analyzed haplotype variation at 15 Y-chromosomal short-tandem-repeats obtained from 1171 individuals from 24 tribes representing the three socio-territorial subdivisions (Senior, Middle and Junior zhuz) in Kazakhstan to comprehensively characterize the patrilineal genetic architecture of the Kazakh Steppe. In total, 577 distinct haplotypes were identified belonging to one of 20 haplogroups; 16 predominant haplogroups were confirmed by SNP-genotyping. The haplogroup distribution was skewed towards C2-M217, present in all tribes at a global frequency of 51.9%. Despite signatures of spatial differences in haplotype frequencies, a Mantel test failed to detect a statistically significant correlation between genetic and geographic distance between individuals. An analysis of molecular variance found that ∼8.9% of the genetic variance among individuals was attributable to differences among zhuzes and ∼20% to differences among tribes within zhuzes. The STRUCTURE analysis of the 1164 individuals indicated the presence of 20 ancestral groups and a complex three-subclade organization of the C2-M217 haplogroup in Kazakhs, a result supported by the multidimensional scaling analysis. Additionally, while the majority of the haplotypes and tribes overlapped, a distinct cluster of the O2 haplogroup, mostly of the Naiman tribe, was observed. Thus, firstly, our analysis indicated that the majority of Kazakh tribes share deep heterogeneous patrilineal ancestries, while a smaller fraction of them are descendants of a founder paternal ancestor. Secondly, we observed a high frequency of the C2-M217 haplogroups along the southern border of Kazakhstan, broadly corresponding to both the path of the Mongolian invasion and the ancient Silk Road. Interestingly, we detected three subclades of the C2-M217 haplogroup that broadly exhibits zhuz-specific clustering. Further study of Kazakh haplotypes variation within a Central Asian context is required to untwist this complex process of ethnogenesis.
Collapse
Affiliation(s)
| | - Ilya Kisselev
- Institute of Genetics and Physiology, Almaty, Kazakhstan
- The University of Winnipeg, Winnipeg, MB, Canada
| | - Olzhas Iksan
- Institute of Genetics and Physiology, Almaty, Kazakhstan
- Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Bakhytzhan Bekmanov
- Institute of Genetics and Physiology, Almaty, Kazakhstan
- Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | | | - Alexander Garshin
- Institute of Genetics and Physiology, Almaty, Kazakhstan
- Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | | | | | | | - Lyazzat Musralina
- Institute of Genetics and Physiology, Almaty, Kazakhstan
- Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | | | | | | | | | - Kira Bespalova
- Institute of Genetics and Physiology, Almaty, Kazakhstan
| | | | | | | | - Sara V. Good
- The University of Winnipeg, Winnipeg, MB, Canada
| | | |
Collapse
|
178
|
Yang X, Sarengaowa, He G, Guo J, Zhu K, Ma H, Zhao J, Yang M, Chen J, Zhang X, Tao L, Liu Y, Zhang XF, Wang CC. Genomic Insights Into the Genetic Structure and Natural Selection of Mongolians. Front Genet 2021; 12:735786. [PMID: 34956310 PMCID: PMC8693022 DOI: 10.3389/fgene.2021.735786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 11/02/2021] [Indexed: 11/13/2022] Open
Abstract
Mongolians dwell at the Eastern Eurasian Steppe, where is the agriculture and pasture interlaced area, practice pastoral subsistence strategies for generations, and have their own complex genetic formation history. There is evidence that the eastward expansion of Western Steppe herders transformed the lifestyle of post-Bronze Age Mongolia Plateau populations and brought gene flow into the gene pool of Eastern Eurasians. Here, we reported genome-wide data for 42 individuals from the Inner Mongolia Autonomous Region of North China. We observed that our studied Mongolians were structured into three distinct genetic clusters possessing different genetic affinity with previous studied Inner Mongolians and Mongols and various Eastern and Western Eurasian ancestries: two subgroups harbored dominant Eastern Eurasian ancestry from Neolithic millet farmers of Yellow River Basin; another subgroup derived Eastern Eurasian ancestry primarily from Neolithic hunter-gatherers of North Asia. Besides, three-way/four-way qpAdm admixture models revealed that both north and southern Western Eurasian ancestry related to the Western Steppe herders and Iranian farmers contributed to the genetic materials into modern Mongolians. ALDER-based admixture coefficient and haplotype-based GLOBETROTTER demonstrated that the former western ancestry detected in modern Mongolian could be recently traced back to a historic period in accordance with the historical record about the westward expansion of the Mongol empire. Furthermore, the natural selection analysis of Mongolians showed that the Major Histocompatibility Complex (MHC) region underwent significantly positive selective sweeps. The functional genes, alcohol dehydrogenase (ADH) and lactase persistence (LCT), were not identified, while the higher/lower frequencies of derived mutations were strongly correlated with the genetic affinity to East Asian/Western Eurasian populations. Our attested complex population movement and admixture in the agriculture and pasture interlaced area played an important role in the formation of modern Mongolians.
Collapse
Affiliation(s)
- Xiaomin Yang
- Department of Anthropology and Ethnology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, School of Sociology and Anthropology, Xiamen University, Xiamen, China.,State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.,State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Sarengaowa
- Department of Anthropology and Ethnology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, School of Sociology and Anthropology, Xiamen University, Xiamen, China
| | - Guanglin He
- Department of Anthropology and Ethnology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, School of Sociology and Anthropology, Xiamen University, Xiamen, China.,State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.,State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Jianxin Guo
- Department of Anthropology and Ethnology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, School of Sociology and Anthropology, Xiamen University, Xiamen, China.,State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.,State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Kongyang Zhu
- Department of Anthropology and Ethnology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, School of Sociology and Anthropology, Xiamen University, Xiamen, China.,State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.,State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Hao Ma
- Department of Anthropology and Ethnology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, School of Sociology and Anthropology, Xiamen University, Xiamen, China.,State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.,State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Jing Zhao
- Department of Anthropology and Ethnology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, School of Sociology and Anthropology, Xiamen University, Xiamen, China.,State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.,State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Meiqing Yang
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Jing Chen
- Department of Forensic Medicine, Guizhou Medical University, Guiyang, China
| | - Xianpeng Zhang
- Institute of Biological Anthropology, Jinzhou Medical University, Liaoning, China
| | - Le Tao
- Department of Anthropology and Ethnology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, School of Sociology and Anthropology, Xiamen University, Xiamen, China.,State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.,State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Yilan Liu
- Department of Anthropology and Ethnology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, School of Sociology and Anthropology, Xiamen University, Xiamen, China.,State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.,State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Xiu-Fang Zhang
- Department of Pediatrics, Xiang'an Hospital of Xiamen University, Xiamen, China
| | - Chuan-Chao Wang
- Department of Anthropology and Ethnology, Institute of Anthropology, National Institute for Data Science in Health and Medicine, School of Sociology and Anthropology, Xiamen University, Xiamen, China.,State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.,State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| |
Collapse
|
179
|
Sirak KA, Fernandes DM, Lipson M, Mallick S, Mah M, Olalde I, Ringbauer H, Rohland N, Hadden CS, Harney É, Adamski N, Bernardos R, Broomandkhoshbacht N, Callan K, Ferry M, Lawson AM, Michel M, Oppenheimer J, Stewardson K, Zalzala F, Patterson N, Pinhasi R, Thompson JC, Van Gerven D, Reich D. Social stratification without genetic differentiation at the site of Kulubnarti in Christian Period Nubia. Nat Commun 2021; 12:7283. [PMID: 34907168 PMCID: PMC8671435 DOI: 10.1038/s41467-021-27356-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 11/16/2021] [Indexed: 12/23/2022] Open
Abstract
Relatively little is known about Nubia's genetic landscape prior to the influence of the Islamic migrations that began in the late 1st millennium CE. Here, we increase the number of ancient individuals with genome-level data from the Nile Valley from three to 69, reporting data for 66 individuals from two cemeteries at the Christian Period (~650-1000 CE) site of Kulubnarti, where multiple lines of evidence suggest social stratification. The Kulubnarti Nubians had ~43% Nilotic-related ancestry (individual variation between ~36-54%) with the remaining ancestry consistent with being introduced through Egypt and ultimately deriving from an ancestry pool like that found in the Bronze and Iron Age Levant. The Kulubnarti gene pool - shaped over a millennium - harbors disproportionately female-associated West Eurasian-related ancestry. Genetic similarity among individuals from the two cemeteries supports a hypothesis of social division without genetic distinction. Seven pairs of inter-cemetery relatives suggest fluidity between cemetery groups. Present-day Nubians are not directly descended from the Kulubnarti Nubians, attesting to additional genetic input since the Christian Period.
Collapse
Affiliation(s)
- Kendra A Sirak
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA.
- Department of Anthropology, Emory University, Atlanta, GA, 30322, USA.
- Earth Institute and School of Archaeology, University College Dublin, Dublin, 4, Ireland.
| | - Daniel M Fernandes
- Earth Institute and School of Archaeology, University College Dublin, Dublin, 4, Ireland
- Department of Evolutionary Anthropology, University of Vienna, Vienna, 1090, Austria
- CIAS, Department of Life Sciences, University of Coimbra, 3000-456, Coimbra, Portugal
| | - Mark Lipson
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Swapan Mallick
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Matthew Mah
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Iñigo Olalde
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, Barcelona, Spain
| | - Harald Ringbauer
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Nadin Rohland
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Carla S Hadden
- Center for Applied Isotope Studies, University of Georgia, Athens, GA, 30602, USA
| | - Éadaoin Harney
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Nicole Adamski
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Rebecca Bernardos
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Nasreen Broomandkhoshbacht
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
- Department of Anthropology, University of California, Santa Cruz, CA, 95064, USA
| | - Kimberly Callan
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Matthew Ferry
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Ann Marie Lawson
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Megan Michel
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Jonas Oppenheimer
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA, 95064, USA
| | - Kristin Stewardson
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Fatma Zalzala
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Nick Patterson
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Ron Pinhasi
- Earth Institute and School of Archaeology, University College Dublin, Dublin, 4, Ireland
- Department of Evolutionary Anthropology, University of Vienna, Vienna, 1090, Austria
| | - Jessica C Thompson
- Department of Anthropology, Emory University, Atlanta, GA, 30322, USA
- Department of Anthropology, Yale University, New Haven, CT, 06511, USA
- Yale Peabody Museum of Natural History, New Haven, CT, 06511, USA
- Institute of Human Origins, Arizona State University, Tempe, AZ, 85287, USA
| | - Dennis Van Gerven
- Department of Anthropology, University of Colorado at Boulder, Boulder, CO, 80309, USA
| | - David Reich
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
180
|
White AE, de-Dios T, Carrión P, Bonora GL, Llovera L, Cilli E, Lizano E, Khabdulina MK, Tleugabulov DT, Olalde I, Marquès-Bonet T, Balloux F, Pettener D, van Dorp L, Luiselli D, Lalueza-Fox C. Genomic Analysis of 18th-Century Kazakh Individuals and Their Oral Microbiome. BIOLOGY 2021; 10:biology10121324. [PMID: 34943238 PMCID: PMC8698332 DOI: 10.3390/biology10121324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 11/16/2022]
Abstract
The Asian Central Steppe, consisting of current-day Kazakhstan and Russia, has acted as a highway for major migrations throughout history. Therefore, describing the genetic composition of past populations in Central Asia holds value to understanding human mobility in this pivotal region. In this study, we analyse paleogenomic data generated from five humans from Kuygenzhar, Kazakhstan. These individuals date to the early to mid-18th century, shortly after the Kazakh Khanate was founded, a union of nomadic tribes of Mongol Golden Horde and Turkic origins. Genomic analysis identifies that these individuals are admixed with varying proportions of East Asian ancestry, indicating a recent admixture event from East Asia. The high amounts of DNA from the anaerobic Gram-negative bacteria Tannerella forsythia, a periodontal pathogen, recovered from their teeth suggest they may have suffered from periodontitis disease. Genomic analysis of this bacterium identified recently evolved virulence and glycosylation genes including the presence of antibiotic resistance genes predating the antibiotic era. This study provides an integrated analysis of individuals with a diet mostly based on meat (mainly horse and lamb), milk, and dairy products and their oral microbiome.
Collapse
Affiliation(s)
- Anna E. White
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, 08003 Barcelona, Spain; (A.E.W.); (T.d.-D.); (P.C.); (L.L.); (E.L.); (I.O.); (T.M.-B.)
| | - Toni de-Dios
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, 08003 Barcelona, Spain; (A.E.W.); (T.d.-D.); (P.C.); (L.L.); (E.L.); (I.O.); (T.M.-B.)
- Estonian Biocentre, Institute of Genomics, University of Tartu, 51010 Tartu, Estonia
| | - Pablo Carrión
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, 08003 Barcelona, Spain; (A.E.W.); (T.d.-D.); (P.C.); (L.L.); (E.L.); (I.O.); (T.M.-B.)
| | - Gian Luca Bonora
- ISMEO—International Association for Mediterranean and East Studies, 00186 Rome, Italy;
| | - Laia Llovera
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, 08003 Barcelona, Spain; (A.E.W.); (T.d.-D.); (P.C.); (L.L.); (E.L.); (I.O.); (T.M.-B.)
| | - Elisabetta Cilli
- Department of Cultural Heritage, University of Bologna, 48121 Ravenna, Italy;
| | - Esther Lizano
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, 08003 Barcelona, Spain; (A.E.W.); (T.d.-D.); (P.C.); (L.L.); (E.L.); (I.O.); (T.M.-B.)
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Maral K. Khabdulina
- K.A. Akishev Institute of Archaeology, L.N. Gumilev Eurasian National University, Nur-Sultan 010000, Kazakhstan; (M.K.K.); (D.T.T.)
| | - Daniyar T. Tleugabulov
- K.A. Akishev Institute of Archaeology, L.N. Gumilev Eurasian National University, Nur-Sultan 010000, Kazakhstan; (M.K.K.); (D.T.T.)
| | - Iñigo Olalde
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, 08003 Barcelona, Spain; (A.E.W.); (T.d.-D.); (P.C.); (L.L.); (E.L.); (I.O.); (T.M.-B.)
- Centro de Investigación “Lascaray” Ikergunea, BIOMICs Research Group, Universidad del País Vasco, 01006 Vitoria-Gasteiz, Spain
| | - Tomàs Marquès-Bonet
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, 08003 Barcelona, Spain; (A.E.W.); (T.d.-D.); (P.C.); (L.L.); (E.L.); (I.O.); (T.M.-B.)
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), 08036 Barcelona, Spain
| | - François Balloux
- UCL Genetics Institute, Department of Genetics Evolution & Environment, University College London, London WC1E 6BT, UK;
| | - Davide Pettener
- Department of Biological, Geological and Environmental Sciences, University of Bologna, 40126 Bologna, Italy;
| | - Lucy van Dorp
- UCL Genetics Institute, Department of Genetics Evolution & Environment, University College London, London WC1E 6BT, UK;
- Correspondence: (L.v.D.); (D.L.); (C.L.-F.); Tel.: +34-617-277-935 (C.L.-F.)
| | - Donata Luiselli
- Department of Cultural Heritage, University of Bologna, 48121 Ravenna, Italy;
- Correspondence: (L.v.D.); (D.L.); (C.L.-F.); Tel.: +34-617-277-935 (C.L.-F.)
| | - Carles Lalueza-Fox
- Institute of Evolutionary Biology, CSIC-Universitat Pompeu Fabra, 08003 Barcelona, Spain; (A.E.W.); (T.d.-D.); (P.C.); (L.L.); (E.L.); (I.O.); (T.M.-B.)
- Correspondence: (L.v.D.); (D.L.); (C.L.-F.); Tel.: +34-617-277-935 (C.L.-F.)
| |
Collapse
|
181
|
Arciero E, Dogra SA, Malawsky DS, Mezzavilla M, Tsismentzoglou T, Huang QQ, Hunt KA, Mason D, Sharif SM, van Heel DA, Sheridan E, Wright J, Small N, Carmi S, Iles MM, Martin HC. Fine-scale population structure and demographic history of British Pakistanis. Nat Commun 2021; 12:7189. [PMID: 34893604 PMCID: PMC8664933 DOI: 10.1038/s41467-021-27394-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 11/09/2021] [Indexed: 02/08/2023] Open
Abstract
Previous genetic and public health research in the Pakistani population has focused on the role of consanguinity in increasing recessive disease risk, but little is known about its recent population history or the effects of endogamy. Here, we investigate fine-scale population structure, history and consanguinity patterns using genotype chip data from 2,200 British Pakistanis. We reveal strong recent population structure driven by the biraderi social stratification system. We find that all subgroups have had low recent effective population sizes (Ne), with some showing a decrease 15‒20 generations ago that has resulted in extensive identity-by-descent sharing and homozygosity, increasing the risk of recessive disorders. Our results from two orthogonal methods (one using machine learning and the other coalescent-based) suggest that the detailed reporting of parental relatedness for mothers in the cohort under-represents the true levels of consanguinity. These results demonstrate the impact of cultural practices on population structure and genomic diversity in Pakistanis, and have important implications for medical genetic studies.
Collapse
Affiliation(s)
- Elena Arciero
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
| | - Sufyan A Dogra
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | | | | | - Theofanis Tsismentzoglou
- Leeds Institute for Data Analytics, University of Leeds, Leeds, UK
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Qin Qin Huang
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Karen A Hunt
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Dan Mason
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Saghira Malik Sharif
- Yorkshire Regional Genetics Service, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - David A van Heel
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Eamonn Sheridan
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Neil Small
- Faculty of Health Studies, University of Bradford, Richmond Road, Bradford, UK
| | - Shai Carmi
- Braun School of Public Health and Community Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Mark M Iles
- Leeds Institute for Data Analytics, University of Leeds, Leeds, UK
- Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Hilary C Martin
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.
| |
Collapse
|
182
|
Lv FH, Cao YH, Liu GJ, Luo LY, Lu R, Liu MJ, Li WR, Zhou P, Wang XH, Shen M, Gao L, Yang JQ, Yang H, Yang YL, Liu CB, Wan PC, Zhang YS, Pi WH, Ren YL, Shen ZQ, Wang F, Wang YT, Li JQ, Salehian-Dehkordi H, Hehua E, Liu YG, Chen JF, Wang JK, Deng XM, Esmailizadeh A, Dehghani-Qanatqestani M, Charati H, Nosrati M, Štěpánek O, Rushdi HE, Olsaker I, Curik I, Gorkhali NA, Paiva SR, Caetano AR, Ciani E, Amills M, Weimann C, Erhardt G, Amane A, Mwacharo JM, Han JL, Hanotte O, Periasamy K, Johansson AM, Hallsson JH, Kantanen J, Coltman DW, Bruford MW, Lenstra JA, Li MH. Whole-genome resequencing of worldwide wild and domestic sheep elucidates genetic diversity, introgression and agronomically important loci. Mol Biol Evol 2021; 39:6459180. [PMID: 34893856 PMCID: PMC8826587 DOI: 10.1093/molbev/msab353] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Domestic sheep and their wild relatives harbor substantial genetic variants that can form the backbone of molecular breeding, but their genome landscapes remain understudied. Here, we present a comprehensive genome resource for wild ovine species, landraces and improved breeds of domestic sheep, comprising high-coverage (∼16.10×) whole genomes of 810 samples from 7 wild species and 158 diverse domestic populations. We detected, in total, ∼121.2 million single nucleotide polymorphisms, ∼61 million of which are novel. Some display significant (P < 0.001) differences in frequency between wild and domestic species, or are private to continent-wide or individual sheep populations. Retained or introgressed wild gene variants in domestic populations have contributed to local adaptation, such as the variation in the HBB associated with plateau adaptation. We identified novel and previously reported targets of selection on morphological and agronomic traits such as stature, horn, tail configuration, and wool fineness. We explored the genetic basis of wool fineness and unveiled a novel mutation (chr25: T7,068,586C) in the 3′-UTR of IRF2BP2 as plausible causal variant for fleece fiber diameter. We reconstructed prehistorical migrations from the Near Eastern domestication center to South-and-Southeast Asia and found two main waves of migrations across the Eurasian Steppe and the Iranian Plateau in the Early and Late Bronze Ages. Our findings refine our understanding of genome variation as shaped by continental migrations, introgression, adaptation, and selection of sheep.
Collapse
Affiliation(s)
- Feng-Hua Lv
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yin-Hong Cao
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, China
| | | | - Ling-Yun Luo
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ran Lu
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ming-Jun Liu
- Animal Biotechnological Research Center, Xinjiang Academy of Animal Science, Urumqi, China
| | - Wen-Rong Li
- Animal Biotechnological Research Center, Xinjiang Academy of Animal Science, Urumqi, China
| | - Ping Zhou
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Xin-Hua Wang
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Min Shen
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Lei Gao
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Jing-Quan Yang
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Hua Yang
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Yong-Lin Yang
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Chang-Bin Liu
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Peng-Cheng Wan
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Yun-Sheng Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Wen-Hui Pi
- Institute of Animal Husbandry and Veterinary Medicine, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural and Reclamation Sciences, Shihezi, China
| | - Yan-Ling Ren
- Shandong Binzhou Academy of Animal Science and Veterinary Medicine, Binzhou, China
| | - Zhi-Qiang Shen
- Shandong Binzhou Academy of Animal Science and Veterinary Medicine, Binzhou, China
| | - Feng Wang
- Institute of Sheep and Goat Science, Nanjing Agricultural University, Nanjing, China
| | - Yu-Tao Wang
- College of Life and Geographic Sciences, Kashi University, Kashi, China
| | - Jin-Quan Li
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot, China
| | - Hosein Salehian-Dehkordi
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Eer Hehua
- Grass-Feeding Livestock Engineering Technology Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
| | - Yong-Gang Liu
- College of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Jian-Fei Chen
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Jian-Kui Wang
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Xue-Mei Deng
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Ali Esmailizadeh
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | | | - Hadi Charati
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Maryam Nosrati
- Department of Agriculture, Payame Noor University, Tehran, Iran
| | - Ondřej Štěpánek
- Department of Virology, State Veterinary Institute Jihlava, Jihlava, Czech Republic
| | - Hossam E Rushdi
- Department of Animal Production, Faculty of Agriculture, Cairo University, 12613 Giza, Egypt
| | - Ingrid Olsaker
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Ino Curik
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Zagreb, Croatia
| | - Neena A Gorkhali
- Animal Breeding Division, National Animal Science Institute, Nepal Agriculture Research Council (NARC), Kathmandu, Nepal
| | - Samuel R Paiva
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, PqEB, Brasília, DF, Brazil
| | - Alexandre R Caetano
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica, PqEB, Brasília, DF, Brazil
| | - Elena Ciani
- Dipartimento di Bioscienze, Biotecnologie e Biofarmaceutica, Università degli Studi di Bari Aldo 24 Moro, Bari, Italy
| | - Marcel Amills
- Department of Animal Genetics, Center for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain
- Department of Animal Sciences, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Christina Weimann
- Department of Animal Breeding and Genetics, Justus-Liebig-University Giessen, Giessen, Germany
| | - Georg Erhardt
- Department of Animal Breeding and Genetics, Justus-Liebig-University Giessen, Giessen, Germany
| | - Agraw Amane
- Department of Microbial, Cellular and Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
- LiveGene Program, International Livestock Research Institute, Addis Ababa, Ethiopia
| | - Joram M Mwacharo
- Small Ruminant Genomics, International Centre for Agricultural Research in the Dry Areas (ICARDA), Addis Ababa, Ethiopia
- CTLGH and SRUC, The Roslin Institute Building, Easter Bush Campus, Edinburgh, Scotland
| | - Jian-Lin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Livestock Genetics Program, International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Olivier Hanotte
- LiveGene Program, International Livestock Research Institute, Addis Ababa, Ethiopia
- School of Life Sciences, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Kathiravan Periasamy
- Animal Production and Health Laboratory, Joint FAO/IAEA Division, International Atomic Energy Agency (IAEA), Vienna, Austria
| | - Anna M Johansson
- Department of Animal Breeding and Genetics, Faculty of Veterinary Medicine and Animal Science, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jón H Hallsson
- Faculty of Natural Resources and Environmental Sciences, Agricultural University of Iceland, Borgarnes, Iceland
| | - Juha Kantanen
- Production Systems, Natural Resources Institute Finland (Luke), Jokioinen, Finland
| | - David W Coltman
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Michael W Bruford
- School of Biosciences, Cardiff University, Cathays Park, Cardiff, Wales, United Kingdom
- Sustainable Places Research Institute, Cardiff University, Wales, United Kingdom
| | - Johannes A Lenstra
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Meng-Hua Li
- College of Animal Science and Technology, China Agricultural University, Beijing, China
- Corresponding author: E-mail:
| |
Collapse
|
183
|
The Sequence Analysis of Mitochondrial DNA Revealed Some Major Centers of Horse Domestications: The Archaeologist's Cut. J Equine Vet Sci 2021; 109:103830. [PMID: 34871751 DOI: 10.1016/j.jevs.2021.103830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 11/22/2022]
Abstract
The question about the time and the place of horse domestication, a process which had a profound impact on the progress of mankind, is disputable. According to the most widely accepted hypothesis, the earliest domestication of the horse happened in the western parts of the Eurasian steppes, between the Northern Black Sea region and present-day Kazakhstan and Turkmenistan. It seems that it occurred not earlier than the first half and most probably during the middle (even the last third) of the fourth millennium BC (from ∼ 5.5 kya). The next steps of large-scale horse breeding occurred almost simultaneously in Eurasia and North Africa due to the development of the social structure of human communities. On the other hand, the morphological differences between wild and domestic animals are rather vague and the genetic introgression between them is speculative. In this review, we have tried to gather all available scientific data on the existing possible hypotheses for the earliest domestication of the horse, as well as to highlight some data on the most plausible ones. This is due to the frequency of some significant data on the frequency of strictly defined mitotypes in different historical periods of human civilizations existing in the same periods.
Collapse
|
184
|
Villalba-Mouco V, Oliart C, Rihuete-Herrada C, Childebayeva A, Rohrlach AB, Fregeiro MI, Celdrán Beltrán E, Velasco-Felipe C, Aron F, Himmel M, Freund C, Alt KW, Salazar-García DC, García Atiénzar G, de Miguel Ibáñez MP, Hernández Pérez MS, Barciela V, Romero A, Ponce J, Martínez A, Lomba J, Soler J, Martínez AP, Avilés Fernández A, Haber-Uriarte M, Roca de Togores Muñoz C, Olalde I, Lalueza-Fox C, Reich D, Krause J, García Sanjuán L, Lull V, Micó R, Risch R, Haak W. Genomic transformation and social organization during the Copper Age-Bronze Age transition in southern Iberia. SCIENCE ADVANCES 2021; 7:eabi7038. [PMID: 34788096 PMCID: PMC8597998 DOI: 10.1126/sciadv.abi7038] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
The emerging Bronze Age (BA) of southeastern Iberia saw marked social changes. Late Copper Age (CA) settlements were abandoned in favor of hilltop sites, and collective graves were largely replaced by single or double burials with often distinctive grave goods indirectly reflecting a hierarchical social organization, as exemplified by the BA El Argar group. We explored this transition from a genomic viewpoint by tripling the amount of data available for this period. Concomitant with the rise of El Argar starting ~2200 cal BCE, we observe a complete turnover of Y-chromosome lineages along with the arrival of steppe-related ancestry. This pattern is consistent with a founder effect in male lineages, supported by our finding that males shared more relatives at sites than females. However, simple two-source models do not find support in some El Argar groups, suggesting additional genetic contributions from the Mediterranean that could predate the BA.
Collapse
Affiliation(s)
- Vanessa Villalba-Mouco
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Kahlaische Strasse 10, 07745 Jena, Germany
- Institute of Evolutionary Biology, CSIC–Universitat Pompeu Fabra, Barcelona, Spain
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Camila Oliart
- Department of Prehistory, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Ainash Childebayeva
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Kahlaische Strasse 10, 07745 Jena, Germany
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Adam B. Rohrlach
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Kahlaische Strasse 10, 07745 Jena, Germany
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
- ARC Centre of Excellence for Mathematical and Statistical Frontiers, School of Mathematical Sciences, The University of Adelaide, Adelaide SA-5005, Australia
| | - María Inés Fregeiro
- Department of Prehistory, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Eva Celdrán Beltrán
- Department of Prehistory, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Franziska Aron
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Kahlaische Strasse 10, 07745 Jena, Germany
| | - Marie Himmel
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Kahlaische Strasse 10, 07745 Jena, Germany
| | - Caecilia Freund
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Kahlaische Strasse 10, 07745 Jena, Germany
| | - Kurt W. Alt
- Center of Natural and Cultural Human History, Danube Private University, Steiner Landstr. 124, A-3500 Krems, Austria
- Department of Biomedical Engineering, University of Basel, Gewerbestrasse 14-16, CH-4123 Allschwil, Switzerland
| | - Domingo C. Salazar-García
- Grupo de investigación en Prehistoria IT-1223-19 (UPV-EHU)/IKERBASQUE—Basque Foundation for Science, Vitoria, Spain
- Departament de Prehistòria, Arqueologia i Història Antiga, Universitat de València, València, Spain
- Department of Geological Sciences, University of Cape Town, Cape Town, South Africa
| | - Gabriel García Atiénzar
- Institute for Research in Archaeology and Historical Heritage (INAPH), Universidad de Alicante, 03690 Alicante, Spain
| | - Ma. Paz de Miguel Ibáñez
- Institute for Research in Archaeology and Historical Heritage (INAPH), Universidad de Alicante, 03690 Alicante, Spain
| | - Mauro S. Hernández Pérez
- Institute for Research in Archaeology and Historical Heritage (INAPH), Universidad de Alicante, 03690 Alicante, Spain
| | - Virginia Barciela
- Institute for Research in Archaeology and Historical Heritage (INAPH), Universidad de Alicante, 03690 Alicante, Spain
| | - Alejandro Romero
- Institute for Research in Archaeology and Historical Heritage (INAPH), Universidad de Alicante, 03690 Alicante, Spain
- Departamento de Biotecnología, Universidad de Alicante, 03690 Alicante, Spain
| | - Juana Ponce
- Museo Arqueológico Municipal de Lorca, Murcia, Spain
| | | | - Joaquín Lomba
- Department of Prehistory, Universidad de Murcia, Murcia, Spain
| | | | | | - Azucena Avilés Fernández
- Arqueología y Diseño Web S.L. (Grupo Entorno), Floridablanca 14, 1.°D, 30800 Lorca, Murcia, Spain
| | | | | | - Iñigo Olalde
- Institute of Evolutionary Biology, CSIC–Universitat Pompeu Fabra, Barcelona, Spain
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Carles Lalueza-Fox
- Institute of Evolutionary Biology, CSIC–Universitat Pompeu Fabra, Barcelona, Spain
| | - David Reich
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Johannes Krause
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Kahlaische Strasse 10, 07745 Jena, Germany
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | | | - Vicente Lull
- Department of Prehistory, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Rafael Micó
- Department of Prehistory, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Roberto Risch
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Kahlaische Strasse 10, 07745 Jena, Germany
- Department of Prehistory, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Wolfgang Haak
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Kahlaische Strasse 10, 07745 Jena, Germany
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
- School of Biological Sciences, The University of Adelaide, Adelaide SA-5005, Australia
| |
Collapse
|
185
|
Cox SL, Moots HM, Stock JT, Shbat A, Bitarello BD, Nicklisch N, Alt KW, Haak W, Rosenstock E, Ruff CB, Mathieson I. Predicting skeletal stature using ancient
DNA. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2021. [PMCID: PMC9298243 DOI: 10.1002/ajpa.24426] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Samantha L. Cox
- Department of Genetics, Perelman School of Medicine University of Pennsylvania Philadelphia Pennsylvania USA
- Physical Anthropology Section, Penn Museum University of Pennsylvania Philadelphia Pennsylvania USA
| | - Hannah M. Moots
- Department of Anthropology Stanford University Stanford California USA
| | - Jay T. Stock
- Department of Anthropology Western University London Ontario Canada
- Department of Archaeology Max Planck Institute for the Science of Human History Jena Germany
| | - Andrej Shbat
- Institute of Anatomy, First Faculty of Medicine Charles University Prague Czech Republic
| | - Bárbara D. Bitarello
- Department of Genetics, Perelman School of Medicine University of Pennsylvania Philadelphia Pennsylvania USA
| | - Nicole Nicklisch
- Center of Natural and Cultural Human History Danube Private University Krems Austria
| | - Kurt W. Alt
- Center of Natural and Cultural Human History Danube Private University Krems Austria
| | - Wolfgang Haak
- Department of Archaeogenetics Max Planck Institute for the Science of Human History Jena Germany
| | - Eva Rosenstock
- Bonn Center for ArchaeoSciences Institut für Archäologie und Kulturanthropologie, Universität Bonn Bonn Germany
| | - Christopher B. Ruff
- Center for Functional Anatomy and Evolution Johns Hopkins University School of Medicine Baltimore Maryland USA
| | - Iain Mathieson
- Department of Genetics, Perelman School of Medicine University of Pennsylvania Philadelphia Pennsylvania USA
| |
Collapse
|
186
|
Zhang F, Ning C, Scott A, Fu Q, Bjørn R, Li W, Wei D, Wang W, Fan L, Abuduresule I, Hu X, Ruan Q, Niyazi A, Dong G, Cao P, Liu F, Dai Q, Feng X, Yang R, Tang Z, Ma P, Li C, Gao S, Xu Y, Wu S, Wen S, Zhu H, Zhou H, Robbeets M, Kumar V, Krause J, Warinner C, Jeong C, Cui Y. The genomic origins of the Bronze Age Tarim Basin mummies. Nature 2021; 599:256-261. [PMID: 34707286 PMCID: PMC8580821 DOI: 10.1038/s41586-021-04052-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 09/23/2021] [Indexed: 12/14/2022]
Abstract
The identity of the earliest inhabitants of Xinjiang, in the heart of Inner Asia, and the languages that they spoke have long been debated and remain contentious1. Here we present genomic data from 5 individuals dating to around 3000-2800 BC from the Dzungarian Basin and 13 individuals dating to around 2100-1700 BC from the Tarim Basin, representing the earliest yet discovered human remains from North and South Xinjiang, respectively. We find that the Early Bronze Age Dzungarian individuals exhibit a predominantly Afanasievo ancestry with an additional local contribution, and the Early-Middle Bronze Age Tarim individuals contain only a local ancestry. The Tarim individuals from the site of Xiaohe further exhibit strong evidence of milk proteins in their dental calculus, indicating a reliance on dairy pastoralism at the site since its founding. Our results do not support previous hypotheses for the origin of the Tarim mummies, who were argued to be Proto-Tocharian-speaking pastoralists descended from the Afanasievo1,2 or to have originated among the Bactria-Margiana Archaeological Complex3 or Inner Asian Mountain Corridor cultures4. Instead, although Tocharian may have been plausibly introduced to the Dzungarian Basin by Afanasievo migrants during the Early Bronze Age, we find that the earliest Tarim Basin cultures appear to have arisen from a genetically isolated local population that adopted neighbouring pastoralist and agriculturalist practices, which allowed them to settle and thrive along the shifting riverine oases of the Taklamakan Desert.
Collapse
Affiliation(s)
- Fan Zhang
- School of Life Sciences, Jilin University, Changchun, China
| | - Chao Ning
- Max Planck Institute for the Science of Human History, Jena, Germany.
| | - Ashley Scott
- Max Planck Institute for the Science of Human History, Jena, Germany
| | - Qiaomei Fu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, China
| | - Rasmus Bjørn
- Max Planck Institute for the Science of Human History, Jena, Germany
| | - Wenying Li
- Xinjiang Institute of Cultural Relics and Archaeology, Ürümqi, China
| | - Dong Wei
- School of Archaeology, Jilin University, Changchun, China
| | - Wenjun Wang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, China
| | - Linyuan Fan
- School of Life Sciences, Jilin University, Changchun, China
| | | | - Xingjun Hu
- Xinjiang Institute of Cultural Relics and Archaeology, Ürümqi, China
| | - Qiurong Ruan
- Xinjiang Institute of Cultural Relics and Archaeology, Ürümqi, China
| | - Alipujiang Niyazi
- Xinjiang Institute of Cultural Relics and Archaeology, Ürümqi, China
| | - Guanghui Dong
- MOE Key Laboratory of Western China's Environmental Systems, College of Earth & Environmental Sciences, Lanzhou University, Lanzhou, China
| | - Peng Cao
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, China
| | - Feng Liu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, China
| | - Qingyan Dai
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, China
| | - Xiaotian Feng
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, China
| | - Ruowei Yang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, China
| | - Zihua Tang
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| | - Pengcheng Ma
- School of Life Sciences, Jilin University, Changchun, China
| | - Chunxiang Li
- School of Life Sciences, Jilin University, Changchun, China
| | - Shizhu Gao
- College of Pharmacia Sciences, Jilin University, Changchun, China
| | - Yang Xu
- School of Life Sciences, Jilin University, Changchun, China
| | - Sihao Wu
- School of Life Sciences, Jilin University, Changchun, China
| | - Shaoqing Wen
- Institute of Archaeological Science, Fudan University, Shanghai, China
| | - Hong Zhu
- School of Archaeology, Jilin University, Changchun, China
| | - Hui Zhou
- School of Life Sciences, Jilin University, Changchun, China
| | - Martine Robbeets
- Max Planck Institute for the Science of Human History, Jena, Germany
| | - Vikas Kumar
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, China
| | - Johannes Krause
- Max Planck Institute for the Science of Human History, Jena, Germany. .,Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| | - Christina Warinner
- Max Planck Institute for the Science of Human History, Jena, Germany. .,Department of Anthropology, Harvard University, Cambridge, MA, USA.
| | - Choongwon Jeong
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea.
| | - Yinqiu Cui
- School of Life Sciences, Jilin University, Changchun, China. .,Key Laboratory for Evolution of Past Life and Environment in Northeast Asia, Ministry of Education, Jilin University, Changchun, China. .,Research Center for Chinese Frontier Archaeology of Jilin University, Jilin University, Changchun, China.
| |
Collapse
|
187
|
Doumani Dupuy PN. The unexpected ancestry of Inner Asian mummies. Nature 2021; 599:204-206. [PMID: 34707262 DOI: 10.1038/d41586-021-02872-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
188
|
Analysis of whole exome sequencing in severe mental illness hints at selection of brain development and immune related genes. Sci Rep 2021; 11:21088. [PMID: 34702870 PMCID: PMC8548332 DOI: 10.1038/s41598-021-00123-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 10/01/2021] [Indexed: 11/15/2022] Open
Abstract
Evolutionary trends may underlie some aspects of the risk for common, non-communicable disorders, including psychiatric disease. We analyzed whole exome sequencing data from 80 unique individuals from India coming from families with two or more individuals with severe mental illness. We used Population Branch Statistics (PBS) to identify variants and genes under positive selection and identified 74 genes as candidates for positive selection. Of these, 20 were previously associated with Schizophrenia, Alzheimer’s disease and cognitive abilities in genome wide association studies. We then checked whether any of these 74 genes were involved in common biological pathways or related to specific cellular or molecular functions. We found that immune related pathways and functions related to innate immunity such as antigen binding were over-represented. We also evaluated for the presence of Neanderthal introgressed segments in these genes and found Neanderthal introgression in a single gene out of the 74 candidate genes. However, the introgression pattern indicates the region is unlikely to be the source for selection. Our findings hint at how selection pressures in individuals from families with a history of severe mental illness may diverge from the general population. Further, it also provides insights into the genetic architecture of severe mental illness, such as schizophrenia and its link to immune factors.
Collapse
|
189
|
Ning C, Zheng HX, Zhang F, Wu S, Li C, Zhao Y, Xu Y, Wei D, Wu Y, Gao S, Jin L, Cui Y. Ancient Mitochondrial Genomes Reveal Extensive Genetic Influence of the Steppe Pastoralists in Western Xinjiang. Front Genet 2021; 12:740167. [PMID: 34630530 PMCID: PMC8493956 DOI: 10.3389/fgene.2021.740167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/20/2021] [Indexed: 11/15/2022] Open
Abstract
The population prehistory of Xinjiang has been a hot topic among geneticists, linguists, and archaeologists. Current ancient DNA studies in Xinjiang exclusively suggest an admixture model for the populations in Xinjiang since the early Bronze Age. However, almost all of these studies focused on the northern and eastern parts of Xinjiang; the prehistoric demographic processes that occurred in western Xinjiang have been seldomly reported. By analyzing complete mitochondrial sequences from the Xiabandi (XBD) cemetery (3,500–3,300 BP), the up-to-date earliest cemetery excavated in western Xinjiang, we show that all the XBD mitochondrial sequences fall within two different West Eurasian mitochondrial DNA (mtDNA) pools, indicating that the migrants into western Xinjiang from west Eurasians were a consequence of the early expansion of the middle and late Bronze Age steppe pastoralists (Steppe_MLBA), admixed with the indigenous populations from Central Asia. Our study provides genetic links for an early existence of the Indo-Iranian language in southwestern Xinjiang and suggests that the existence of Andronovo culture in western Xinjiang involved not only the dispersal of ideas but also population movement.
Collapse
Affiliation(s)
- Chao Ning
- School of Life Sciences, Jilin University, Changchun, China.,Max Planck Institute for the Science of Human History, Jena, Germany
| | - Hong-Xiang Zheng
- State Key Laboratory of Genetic Engineering, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China
| | - Fan Zhang
- School of Life Sciences, Jilin University, Changchun, China
| | - Sihao Wu
- School of Life Sciences, Jilin University, Changchun, China
| | - Chunxiang Li
- School of Life Sciences, Jilin University, Changchun, China
| | - Yongbin Zhao
- College of Life Science, Jilin Normal University, Siping, China
| | - Yang Xu
- School of Life Sciences, Jilin University, Changchun, China
| | - Dong Wei
- School of Archaeology, Jilin University, Changchun, China
| | - Yong Wu
- Xinjiang Cultural Relics and Archaeology Institute, Urumchi, China
| | - Shizhu Gao
- School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai, China
| | - Yinqiu Cui
- School of Life Sciences, Jilin University, Changchun, China
| |
Collapse
|
190
|
Luo X, Liu Q, Jiang J, Tang W, Ding Y, Zhou L, Yu J, Tang X, An Y, Zhao X. Characterization of a Cohort of Patients With LIG4 Deficiency Reveals the Founder Effect of p.R278L, Unique to the Chinese Population. Front Immunol 2021; 12:695993. [PMID: 34630384 PMCID: PMC8498043 DOI: 10.3389/fimmu.2021.695993] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 09/06/2021] [Indexed: 01/13/2023] Open
Abstract
DNA ligase IV (LIG4) deficiency is an extremely rare autosomal recessive primary immunodeficiency disease caused by mutations in LIG4. Patients suffer from a broad spectrum of clinical problems, including microcephaly, growth retardation, developmental delay, dysmorphic facial features, combined immunodeficiency, and a predisposition to autoimmune diseases and malignancy. In this study, the clinical, molecular, and immunological characteristics of 15 Chinese patients with LIG4 deficiency are summarized in detail. p.R278L (c.833G>T) is a unique mutation site present in the majority of Chinese cases. We conducted pedigree and haplotype analyses to examine the founder effect of this mutation site in China. This suggests that implementation of protocols for genetic diagnosis and for genetic counseling of affected pedigrees is essential. Also, the search might help determine the migration pathways of populations with Asian ancestry.
Collapse
Affiliation(s)
- Xianze Luo
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Qing Liu
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jinqiu Jiang
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Wenjing Tang
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China.,Department of Rheumatism and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yuan Ding
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China.,Department of Healthy Examination Center, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Lina Zhou
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Yu
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Department of Hematological Oncology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xuemei Tang
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China.,Department of Rheumatism and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yunfei An
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China.,Department of Rheumatism and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaodong Zhao
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China.,Department of Rheumatism and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
191
|
Rio J, Quilodrán CS, Currat M. Spatially explicit paleogenomic simulations support cohabitation with limited admixture between Bronze Age Central European populations. Commun Biol 2021; 4:1163. [PMID: 34621003 PMCID: PMC8497574 DOI: 10.1038/s42003-021-02670-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 09/13/2021] [Indexed: 02/08/2023] Open
Abstract
The Bronze Age is a complex period of social, cultural and economic changes. Recent paleogenomic studies have documented a large and rapid genetic change in early Bronze Age populations from Central Europe. However, the detailed demographic and genetic processes involved in this change are still debated. Here we have used spatially explicit simulations of genomic components to better characterize the demographic and migratory conditions that may have led to this change. We investigated various scenarios representing the expansion of pastoralists from the Pontic steppe, potentially linked to the Yamnaya cultural complex, and their interactions with local populations in Central Europe, considering various eco-evolutionary factors, such as population admixture, competition and long-distance dispersal. Our results do not support direct competition but rather the cohabitation of pastoralists and farmers in Central Europe, with limited gene flow between populations. They also suggest occasional long-distance migrations accompanying the expansion of pastoralists and a demographic decline in both populations following their initial contact. These results link recent archaeological and paleogenomic observations and move further the debate of genomic changes during the early Bronze Age.
Collapse
Affiliation(s)
- Jérémy Rio
- Department of Genetics and Evolution - Anthropology Unit, University of Geneva, Geneva, Switzerland
| | - Claudio S Quilodrán
- Department of Genetics and Evolution - Anthropology Unit, University of Geneva, Geneva, Switzerland
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Mathias Currat
- Department of Genetics and Evolution - Anthropology Unit, University of Geneva, Geneva, Switzerland.
- Institute of Genetics and Genomics in Geneva (IGE3), University of Geneva, Geneva, Switzerland.
| |
Collapse
|
192
|
Scheidel W. Fitness and Power: The Contribution of Genetics to the History of Differential Reproduction. EVOLUTIONARY PSYCHOLOGY 2021; 19:14747049211066599. [PMID: 34918580 PMCID: PMC10303451 DOI: 10.1177/14747049211066599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 11/28/2021] [Indexed: 11/16/2022] Open
Abstract
Textual evidence from pre-modern societies supports the prediction that status differences among men translate to variance in reproductive success. In recent years, analysis of genetic data has opened up new ways of studying this relationship. By investigating cases that range over several millennia, these analyses repeatedly document the replacement of local men by newcomers and reveal instances of exceptional reproductive success of specific male lineages. These findings suggest that violent population transfers and conquests could generate considerable reproductive advantages for male dominants. At the same time, this does not always seem to have been the case. Moreover, it is difficult to link such outcomes to particular historical characters or events, or to identify status-biased reproductive inequalities within dominant groups. The proximate factors that mediated implied imbalances in reproductive success often remain unclear. A better understanding of the complex interplay between social power and genetic fitness will only arise from sustained transdisciplinary engagement.
Collapse
|
193
|
Spengler RN, Stark S, Zhou X, Fuks D, Tang L, Mir-Makhamad B, Bjørn R, Jiang H, Olivieri LM, Begmatov A, Boivin N. A Journey to the West: The Ancient Dispersal of Rice Out of East Asia. RICE (NEW YORK, N.Y.) 2021; 14:83. [PMID: 34564763 PMCID: PMC8464642 DOI: 10.1186/s12284-021-00518-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 08/05/2021] [Indexed: 06/08/2023]
Abstract
Rice is one of the most culturally valued and widely grown crops in the world today, and extensive research over the past decade has clarified much of the narrative of its domestication and early spread across East and South Asia. However, the timing and routes of its dispersal into West Asia and Europe, through which rice eventually became an important ingredient in global cuisines, has remained less clear. In this article, we discuss the piecemeal, but growing, archaeobotanical data for rice in West Asia. We also integrate written sources, linguistic data, and ethnohistoric analogies, in order to better understand the adoption of rice outside its regions of origin. The human-mediated westward spread of rice proceeded gradually, while its social standing and culinary uses repeatedly changing over time and place. Rice was present in West Asia and Europe by the tail end of the first millennium BC, but did not become a significant crop in West Asia until the past few centuries. Complementary historical, linguistic, and archaeobotanical data illustrate two separate and roughly contemporaneous routes of westward dispersal, one along the South Asian coast and the other through Silk Road trade. By better understanding the adoption of this water-demanding crop in the arid regions of West Asia, we explore an important chapter in human adaptation and agricultural decision making.
Collapse
Affiliation(s)
- Robert N Spengler
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Thuringia, Germany.
| | - Sören Stark
- Institute for the Study of the Ancient World, New York University, New York City, NY, USA
| | - Xinying Zhou
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
- Department of Archaeology and Anthropology, University of Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, China
| | - Daniel Fuks
- McDonald Institute for Archaeological Research, University of Cambridge, Department of Archaeology, Cambridge, UK
- Martin (Szusz) Department of Land of Israel Studies and Archaeology, Bar-Ilan University, Ramat Gan, Israel
| | - Li Tang
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Thuringia, Germany
| | - Basira Mir-Makhamad
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Thuringia, Germany
| | - Rasmus Bjørn
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Thuringia, Germany
| | - Hongen Jiang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| | - Luca M Olivieri
- Dipartimento di Studi sull'Asia e sull'Africa Mediterranea, Università Ca' Foscari Venezia, Venice, Italy
- ISMEO - International Association for Mediterranean and Oriental Studies, Rome, Italy
| | - Alisher Begmatov
- Berlin-Brandenburg Academy of Sciences and Humanities, Turfanforschung, Berlin, Germany
| | - Nicole Boivin
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Thuringia, Germany
- Department of Anthropology, Smithsonian Institution, National Museum of Natural History, Washington, DC, USA
- School of Social Science, The University of Queensland, Brisbane, Australia
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Canada
| |
Collapse
|
194
|
Posth C, Zaro V, Spyrou MA, Vai S, Gnecchi-Ruscone GA, Modi A, Peltzer A, Mötsch A, Nägele K, Vågene ÅJ, Nelson EA, Radzevičiūtė R, Freund C, Bondioli LM, Cappuccini L, Frenzel H, Pacciani E, Boschin F, Capecchi G, Martini I, Moroni A, Ricci S, Sperduti A, Turchetti MA, Riga A, Zavattaro M, Zifferero A, Heyne HO, Fernández-Domínguez E, Kroonen GJ, McCormick M, Haak W, Lari M, Barbujani G, Bondioli L, Bos KI, Caramelli D, Krause J. The origin and legacy of the Etruscans through a 2000-year archeogenomic time transect. SCIENCE ADVANCES 2021; 7:eabi7673. [PMID: 34559560 PMCID: PMC8462907 DOI: 10.1126/sciadv.abi7673] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
The origin, development, and legacy of the enigmatic Etruscan civilization from the central region of the Italian peninsula known as Etruria have been debated for centuries. Here we report a genomic time transect of 82 individuals spanning almost two millennia (800 BCE to 1000 CE) across Etruria and southern Italy. During the Iron Age, we detect a component of Indo-European–associated steppe ancestry and the lack of recent Anatolian-related admixture among the putative non–Indo-European–speaking Etruscans. Despite comprising diverse individuals of central European, northern African, and Near Eastern ancestry, the local gene pool is largely maintained across the first millennium BCE. This drastically changes during the Roman Imperial period where we report an abrupt population-wide shift to ~50% admixture with eastern Mediterranean ancestry. Last, we identify northern European components appearing in central Italy during the Early Middle Ages, which thus formed the genetic landscape of present-day Italian populations.
Collapse
Affiliation(s)
- Cosimo Posth
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena 07745, Germany
- Institute for Archaeological Sciences, Archaeo- and Palaeogenetics, University of Tübingen, Tübingen 72074, Germany
- Senckenberg Centre for Human Evolution and Palaeoenvironment, University of Tübingen, Tübingen 72074, Germany
| | - Valentina Zaro
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena 07745, Germany
- Department of Biology, University of Florence, Florence 50122, Italy
| | - Maria A. Spyrou
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena 07745, Germany
- Institute for Archaeological Sciences, Archaeo- and Palaeogenetics, University of Tübingen, Tübingen 72074, Germany
| | - Stefania Vai
- Department of Biology, University of Florence, Florence 50122, Italy
| | - Guido A. Gnecchi-Ruscone
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena 07745, Germany
| | - Alessandra Modi
- Department of Biology, University of Florence, Florence 50122, Italy
| | - Alexander Peltzer
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena 07745, Germany
| | - Angela Mötsch
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena 07745, Germany
| | - Kathrin Nägele
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena 07745, Germany
| | - Åshild J. Vågene
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena 07745, Germany
- Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Copenhagen 1350, Denmark
| | - Elizabeth A. Nelson
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena 07745, Germany
- Department of Anthropology, University of Connecticut, Storrs, CT 06269, USA
| | - Rita Radzevičiūtė
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena 07745, Germany
| | - Cäcilia Freund
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena 07745, Germany
| | | | - Luca Cappuccini
- Department of History, Archeology, Geography, Art and Entertainment, University of Florence, Firenze 50121, Italy
| | - Hannah Frenzel
- Anatomy Institute, University of Leipzig, Leipzig 04103, Germany
| | - Elsa Pacciani
- Superintendence of Archaeology, Fine Arts and Landscape for Firenze, Pistoia and Prato, Italy
| | - Francesco Boschin
- Department of Physical Sciences, Earth and Environment, Research Unit Prehistory and Anthropology, University of Siena, Siena 53100, Italy
| | - Giulia Capecchi
- Department of Physical Sciences, Earth and Environment, Research Unit Prehistory and Anthropology, University of Siena, Siena 53100, Italy
| | - Ivan Martini
- Department of Physical Sciences, Earth and Environment, University of Siena, Siena 53100, Italy
| | - Adriana Moroni
- Department of Physical Sciences, Earth and Environment, Research Unit Prehistory and Anthropology, University of Siena, Siena 53100, Italy
| | - Stefano Ricci
- Department of Physical Sciences, Earth and Environment, Research Unit Prehistory and Anthropology, University of Siena, Siena 53100, Italy
| | - Alessandra Sperduti
- Bioarchaeology Service, Museum of Civilizations, Rome 00144, Italy
- Asia, Africa and Mediterranean Department, University of Naples, Naples 80134, Italy
| | | | - Alessandro Riga
- Department of Biology, University of Florence, Florence 50122, Italy
| | - Monica Zavattaro
- Museum of Anthropology and Ethnology, Museum System of the University of Florence, Florence 50122, Italy
| | - Andrea Zifferero
- Department of History and Cultural Heritage, University of Siena, Siena 53100, Italy
| | - Henrike O. Heyne
- Institute for Molecular Medicine Finland (FIMM), Helsinki, Finland
- Program for Medical and Population Genetics/Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Guus J. Kroonen
- Department of Nordic Studies and Linguistics, University of Copenhagen, Copenhagen 2300, Denmark
- Leiden University Center for Linguistics, Leiden 2311 BE, Netherlands
| | - Michael McCormick
- Initiative for the Science of the Human Past, Department of History-Max Planck Harvard Research Center for the Archaeoscience of the Ancient Mediterranean, Harvard University, Cambridge, MA 02138, USA
| | - Wolfgang Haak
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena 07745, Germany
| | - Martina Lari
- Department of Biology, University of Florence, Florence 50122, Italy
| | - Guido Barbujani
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara 44121, Italy
| | - Luca Bondioli
- Bioarchaeology Service, Museum of Civilizations, Rome 00144, Italy
- Department of Cultural Heritage, University of Padua, Padua 35139, Italy
| | - Kirsten I. Bos
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena 07745, Germany
| | - David Caramelli
- Department of Biology, University of Florence, Florence 50122, Italy
| | - Johannes Krause
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena 07745, Germany
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig 04103, Germany
| |
Collapse
|
195
|
Liu Y, Mao X, Krause J, Fu Q. Insights into human history from the first decade of ancient human genomics. Science 2021; 373:1479-1484. [PMID: 34554811 DOI: 10.1126/science.abi8202] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Yichen Liu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, 100044, China
| | - Xiaowei Mao
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, 100044, China
| | - Johannes Krause
- Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, 04103 Leipzig, Germany
| | - Qiaomei Fu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Center for Excellence in Life and Paleoenvironment, Chinese Academy of Sciences, Beijing, 100044, China.,University of the Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
196
|
Cooke NP, Mattiangeli V, Cassidy LM, Okazaki K, Stokes CA, Onbe S, Hatakeyama S, Machida K, Kasai K, Tomioka N, Matsumoto A, Ito M, Kojima Y, Bradley DG, Gakuhari T, Nakagome S. Ancient genomics reveals tripartite origins of Japanese populations. SCIENCE ADVANCES 2021; 7:eabh2419. [PMID: 34533991 PMCID: PMC8448447 DOI: 10.1126/sciadv.abh2419] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
Prehistoric Japan underwent rapid transformations in the past 3000 years, first from foraging to wet rice farming and then to state formation. A long-standing hypothesis posits that mainland Japanese populations derive dual ancestry from indigenous Jomon hunter-gatherer-fishers and succeeding Yayoi farmers. However, the genomic impact of agricultural migration and subsequent sociocultural changes remains unclear. We report 12 ancient Japanese genomes from pre- and postfarming periods. Our analysis finds that the Jomon maintained a small effective population size of ~1000 over several millennia, with a deep divergence from continental populations dated to 20,000 to 15,000 years ago, a period that saw the insularization of Japan through rising sea levels. Rice cultivation was introduced by people with Northeast Asian ancestry. Unexpectedly, we identify a later influx of East Asian ancestry during the imperial Kofun period. These three ancestral components continue to characterize present-day populations, supporting a tripartite model of Japanese genomic origins.
Collapse
Affiliation(s)
- Niall P. Cooke
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | | | - Lara M. Cassidy
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Kenji Okazaki
- Department of Anatomy, Faculty of Medicine, Tottori University, Japan
| | | | - Shin Onbe
- Kumakogen Board of Education, Kumakogen, Japan
| | | | - Kenichi Machida
- Toyama Prefectural Research Office for Archaeological Heritage, Toyama, Japan
| | - Kenji Kasai
- Toyama Prefectural Center for Archaeological Operations, Toyama, Japan
| | | | | | - Masafumi Ito
- Foundation of Ishikawa Archaeological Artifacts Center, Kanazawa, Japan
| | - Yoshitaka Kojima
- Center for the Study of Ancient Civilizations and Cultural Resources, College of Human and Social Sciences, Kanazawa University, Kanazawa, Japan
| | - Daniel G. Bradley
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Takashi Gakuhari
- Center for the Study of Ancient Civilizations and Cultural Resources, College of Human and Social Sciences, Kanazawa University, Kanazawa, Japan
| | - Shigeki Nakagome
- School of Medicine, Trinity College Dublin, Dublin, Ireland
- Center for the Study of Ancient Civilizations and Cultural Resources, College of Human and Social Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
197
|
Dual origins of the Northwest Chinese Kyrgyz: the admixture of Bronze age Siberian and Medieval Niru'un Mongolian Y chromosomes. J Hum Genet 2021; 67:175-180. [PMID: 34531527 DOI: 10.1038/s10038-021-00979-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/31/2021] [Accepted: 09/13/2021] [Indexed: 01/25/2023]
Abstract
The Kyrgyz are a trans-border ethnic group, mainly living in Kyrgyzstan. Previous genetic investigations of Central Asian populations have repeatedly investigated the Central Asian Kyrgyz. However, from the standpoint of human evolution and genetic diversity, Northwest Chinese Kyrgyz is one of the more poorly studied populations. In this study, we analyzed the non-recombining portion of the Y-chromosome from 298 male Kyrgyz samples from Xinjiang Uygur Autonomous Region in northwestern China, using a high-resolution analysis of 108 biallelic markers and 17 or 24 STRs. First, via a Y-SNP-based PCA plot, Northwest Chinese Kyrgyz tended to cluster with other Kyrgyz population and are located in the West Asian and Central Asian group. Second, we found that the Northwest Chinese Kyrgyz display a high proportion of Y-lineage R1a1a1b2a2a-Z2125, related to Bronze Age Siberian, and followed by Y-lineage C2b1a3a1-F3796, related to Medieval Niru'un Mongols, such as Uissun tribe from Kazakhs. In these two dominant lineages, two unique recent descent clusters have been detected via NETWORK analysis, respectively, but they have nearly the same TMRCA ages (about 13th-14th centuries). This finding once again shows that the expansions of Mongol Empire had a striking effect on the Central Asian gene pool.
Collapse
|
198
|
Parental relatedness through time revealed by runs of homozygosity in ancient DNA. Nat Commun 2021; 12:5425. [PMID: 34521843 PMCID: PMC8440622 DOI: 10.1038/s41467-021-25289-w] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 07/21/2021] [Indexed: 02/08/2023] Open
Abstract
Parental relatedness of present-day humans varies substantially across the globe, but little is known about the past. Here we analyze ancient DNA, leveraging that parental relatedness leaves genomic traces in the form of runs of homozygosity. We present an approach to identify such runs in low-coverage ancient DNA data aided by haplotype information from a modern phased reference panel. Simulation and experiments show that this method robustly detects runs of homozygosity longer than 4 centimorgan for ancient individuals with at least 0.3 × coverage. Analyzing genomic data from 1,785 ancient humans who lived in the last 45,000 years, we detect low rates of first cousin or closer unions across most ancient populations. Moreover, we find a marked decay in background parental relatedness co-occurring with or shortly after the advent of sedentary agriculture. We observe this signal, likely linked to increasing local population sizes, across several geographic transects worldwide.
Collapse
|
199
|
Ceballos FC, Gürün K, Altınışık NE, Gemici HC, Karamurat C, Koptekin D, Vural KB, Mapelli I, Sağlıcan E, Sürer E, Erdal YS, Götherström A, Özer F, Atakuman Ç, Somel M. Human inbreeding has decreased in time through the Holocene. Curr Biol 2021; 31:3925-3934.e8. [PMID: 34216555 DOI: 10.1016/j.cub.2021.06.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 04/19/2021] [Accepted: 06/10/2021] [Indexed: 10/21/2022]
Abstract
The history of human inbreeding is controversial.1 In particular, how the development of sedentary and/or agricultural societies may have influenced overall inbreeding levels, relative to those of hunter-gatherer communities, is unclear.2-5 Here, we present an approach for reliable estimation of runs of homozygosity (ROHs) in genomes with ≥3× mean sequence coverage across >1 million SNPs and apply this to 411 ancient Eurasian genomes from the last 15,000 years.5-34 We show that the frequency of inbreeding, as measured by ROHs, has decreased over time. The strongest effect is associated with the Neolithic transition, but the trend has since continued, indicating a population size effect on inbreeding prevalence. We further show that most inbreeding in our historical sample can be attributed to small population size instead of consanguinity. Cases of high consanguinity were rare and only observed among members of farming societies in our sample. Despite the lack of evidence for common consanguinity in our ancient sample, consanguineous traditions are today prevalent in various modern-day Eurasian societies,1,35-37 suggesting that such practices may have become widespread within the last few millennia.
Collapse
Affiliation(s)
- Francisco C Ceballos
- Department of Biological Sciences, Middle East Technical University, 06800 Ankara, Turkey
| | - Kanat Gürün
- Department of Biological Sciences, Middle East Technical University, 06800 Ankara, Turkey
| | - N Ezgi Altınışık
- Human-G Laboratory, Department of Anthropology, Hacettepe University, 06800 Ankara, Turkey
| | - Hasan Can Gemici
- Department of Settlement Archaeology, Middle East Technical University, 06800 Ankara, Turkey
| | - Cansu Karamurat
- Department of Settlement Archaeology, Middle East Technical University, 06800 Ankara, Turkey
| | - Dilek Koptekin
- Department of Biological Sciences, Middle East Technical University, 06800 Ankara, Turkey
| | - Kıvılcım Başak Vural
- Department of Biological Sciences, Middle East Technical University, 06800 Ankara, Turkey
| | - Igor Mapelli
- Department of Biological Sciences, Middle East Technical University, 06800 Ankara, Turkey
| | - Ekin Sağlıcan
- Department of Biological Sciences, Middle East Technical University, 06800 Ankara, Turkey
| | - Elif Sürer
- Department of Modeling and Simulation, Graduate School of Informatics, Middle East Technical University, 06800 Ankara, Turkey
| | - Yılmaz Selim Erdal
- Human-G Laboratory, Department of Anthropology, Hacettepe University, 06800 Ankara, Turkey
| | - Anders Götherström
- Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden; Centre for Palaeogenetics, Svante Arrhenius väg 20C, 106 91 Stockholm, Sweden
| | - Füsun Özer
- Human-G Laboratory, Department of Anthropology, Hacettepe University, 06800 Ankara, Turkey
| | - Çiğdem Atakuman
- Department of Settlement Archaeology, Middle East Technical University, 06800 Ankara, Turkey
| | - Mehmet Somel
- Department of Biological Sciences, Middle East Technical University, 06800 Ankara, Turkey.
| |
Collapse
|
200
|
Landscape genetics and the genetic legacy of Upper Paleolithic and Mesolithic hunter-gatherers in the modern Caucasus. Sci Rep 2021; 11:17985. [PMID: 34504229 PMCID: PMC8429691 DOI: 10.1038/s41598-021-97519-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 08/26/2021] [Indexed: 11/24/2022] Open
Abstract
This study clarifies the role of refugia and landscape permeability in the formation of the current genetic structure of peoples of the Caucasus. We report novel genome-wide data for modern individuals from the Caucasus, and analyze them together with available Paleolithic and Mesolithic individuals from Eurasia and Africa in order (1) to link the current and ancient genetic structures via landscape permeability, and (2) thus to identify movement paths between the ancient refugial populations and the Caucasus. The ancient genetic ancestry is best explained by landscape permeability implying that human movement is impeded by terrain ruggedness, swamps, glaciers and desert. Major refugial source populations for the modern Caucasus are those of the Caucasus, Anatolia, the Balkans and Siberia. In Rugged areas new genetic signatures take a long time to form, but once they do so, they remain for a long time. These areas act as time capsules harboring genetic signatures of ancient source populations and making it possible to help reconstruct human history based on patterns of variation today.
Collapse
|