151
|
Anstett DN, Branch HA, Angert AL. Regional differences in rapid evolution during severe drought. Evol Lett 2021; 5:130-142. [PMID: 33868709 PMCID: PMC8045920 DOI: 10.1002/evl3.218] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 11/06/2020] [Accepted: 01/15/2021] [Indexed: 11/09/2022] Open
Abstract
Climate change is increasing drought intensity, threatening biodiversity. Rapid evolution of drought adaptations might be required for population persistence, particularly in rear-edge populations that may already be closer to physiological limits. Resurrection studies are a useful tool to assess adaptation to climate change, yet these studies rarely encompass the geographic range of a species. Here, we sampled 11 populations of scarlet monkeyflower (Mimulus cardinalis), collecting seeds across the plants' northern, central, and southern range to track trait evolution from the lowest to the greatest moisture anomaly over a 7-year period. We grew families generated from these populations across well-watered and terminal drought treatments in a greenhouse and quantified five traits associated with dehydration escape and avoidance. When considering pre-drought to peak-drought phenotypes, we find that later date of flowering evolved across the range of M. cardinalis, suggesting a shift away from dehydration escape. Instead, traits consistent with dehydration avoidance evolved, with smaller and/or thicker leaves evolving in central and southern regions. The southern region also saw a loss of plasticity in these leaf traits by the peak of the drought, whereas flowering time remained plastic across all regions. This observed shift in traits from escape to avoidance occurred only in certain regions, revealing the importance of geographic context when examining adaptations to climate change.
Collapse
Affiliation(s)
- Daniel N Anstett
- Biodiversity Research Centre and Department of Botany University of British Columbia Vancouver British Columbia V6T 1Z4 Canada
| | - Haley A Branch
- Biodiversity Research Centre and Department of Botany University of British Columbia Vancouver British Columbia V6T 1Z4 Canada
| | - Amy L Angert
- Biodiversity Research Centre and Department of Botany University of British Columbia Vancouver British Columbia V6T 1Z4 Canada.,Department of Zoology University of British Columbia Vancouver British Columbia V6T 1Z4 Canada
| |
Collapse
|
152
|
Clark JS, Andrus R, Aubry-Kientz M, Bergeron Y, Bogdziewicz M, Bragg DC, Brockway D, Cleavitt NL, Cohen S, Courbaud B, Daley R, Das AJ, Dietze M, Fahey TJ, Fer I, Franklin JF, Gehring CA, Gilbert GS, Greenberg CH, Guo Q, HilleRisLambers J, Ibanez I, Johnstone J, Kilner CL, Knops J, Koenig WD, Kunstler G, LaMontagne JM, Legg KL, Luongo J, Lutz JA, Macias D, McIntire EJB, Messaoud Y, Moore CM, Moran E, Myers JA, Myers OB, Nunez C, Parmenter R, Pearse S, Pearson S, Poulton-Kamakura R, Ready E, Redmond MD, Reid CD, Rodman KC, Scher CL, Schlesinger WH, Schwantes AM, Shanahan E, Sharma S, Steele MA, Stephenson NL, Sutton S, Swenson JJ, Swift M, Veblen TT, Whipple AV, Whitham TG, Wion AP, Zhu K, Zlotin R. Continent-wide tree fecundity driven by indirect climate effects. Nat Commun 2021; 12:1242. [PMID: 33623042 PMCID: PMC7902660 DOI: 10.1038/s41467-020-20836-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/01/2020] [Indexed: 01/31/2023] Open
Abstract
Indirect climate effects on tree fecundity that come through variation in size and growth (climate-condition interactions) are not currently part of models used to predict future forests. Trends in species abundances predicted from meta-analyses and species distribution models will be misleading if they depend on the conditions of individuals. Here we find from a synthesis of tree species in North America that climate-condition interactions dominate responses through two pathways, i) effects of growth that depend on climate, and ii) effects of climate that depend on tree size. Because tree fecundity first increases and then declines with size, climate change that stimulates growth promotes a shift of small trees to more fecund sizes, but the opposite can be true for large sizes. Change the depresses growth also affects fecundity. We find a biogeographic divide, with these interactions reducing fecundity in the West and increasing it in the East. Continental-scale responses of these forests are thus driven largely by indirect effects, recommending management for climate change that considers multiple demographic rates.
Collapse
Affiliation(s)
- James S. Clark
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA ,grid.450307.5INRAE, LESSEM, University Grenoble Alpes, Saint-Martin-d’Heres, France
| | - Robert Andrus
- grid.266190.a0000000096214564Department of Geography, University of Colorado Boulder, Boulder, CO USA
| | - Melaine Aubry-Kientz
- grid.266096.d0000 0001 0049 1282School of Natural Sciences, University of California, Merced, Merced, CA USA
| | - Yves Bergeron
- grid.265695.bForest Research Institute, University of Quebec in Abitibi-Temiscamingue, Rouyn-Noranda, QC Canada
| | - Michal Bogdziewicz
- grid.5633.30000 0001 2097 3545Department of Systematic Zoology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Don C. Bragg
- grid.497399.90000 0001 2106 5338USDA Forest Service, Southern Research Station, Monticello, AR USA
| | - Dale Brockway
- grid.472551.00000 0004 0404 3120USDA Forest Service Southern Research Station, Auburn, AL USA
| | - Natalie L. Cleavitt
- grid.5386.8000000041936877XNatural Resources, Cornell University, Ithaca, NY USA
| | - Susan Cohen
- grid.10698.360000000122483208Institute for the Environment, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Benoit Courbaud
- grid.450307.5INRAE, LESSEM, University Grenoble Alpes, Saint-Martin-d’Heres, France
| | - Robert Daley
- grid.454846.f0000 0001 2331 3972Greater Yellowstone Network, National Park Service, Bozeman, MT USA
| | - Adrian J. Das
- grid.2865.90000000121546924USGS Western Ecological Research Center, Three Rivers, CA USA
| | - Michael Dietze
- grid.189504.10000 0004 1936 7558Earth and Environment, Boston University, Boston, MA USA
| | - Timothy J. Fahey
- grid.472551.00000 0004 0404 3120USDA Forest Service Southern Research Station, Auburn, AL USA
| | - Istem Fer
- grid.8657.c0000 0001 2253 8678Finnish Meteorological Institute, Helsinki, Finland
| | - Jerry F. Franklin
- grid.34477.330000000122986657Forest Resources, University of Washington, Seattle, WA USA
| | - Catherine A. Gehring
- grid.261120.60000 0004 1936 8040Department of Biological Science, Northern Arizona University, Flagstaff, AZ USA
| | - Gregory S. Gilbert
- grid.205975.c0000 0001 0740 6917University of California, Santa Cruz, Santa Cruz, CA USA
| | - Cathryn H. Greenberg
- grid.472551.00000 0004 0404 3120USDA Forest Service, Bent Creek Experimental Forest, Asheville, NC USA
| | - Qinfeng Guo
- grid.472551.00000 0004 0404 3120USDA Forest Service Southern Research Station, Eastern Forest Environmental Threat Assessment Center, Research Triangle Park, NC USA
| | - Janneke HilleRisLambers
- grid.34477.330000000122986657Department of Biology, University of Washington, Seattle, WA USA
| | - Ines Ibanez
- grid.214458.e0000000086837370School for Environment and Sustainability, University of Michigan, Ann Arbor, MI USA
| | - Jill Johnstone
- grid.25152.310000 0001 2154 235XDepartment of Biology, University of Saskatchewan, Saskatoon, SK Canada
| | - Christopher L. Kilner
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA
| | - Johannes Knops
- grid.440701.60000 0004 1765 4000Health and Environmental Sciences Department, Xian Jiaotong-Liverpool University, Suzhou, China
| | - Walter D. Koenig
- grid.47840.3f0000 0001 2181 7878Hastings Reservation, University of California Berkeley, Carmel Valley, CA USA
| | - Georges Kunstler
- grid.450307.5INRAE, LESSEM, University Grenoble Alpes, Saint-Martin-d’Heres, France
| | - Jalene M. LaMontagne
- grid.254920.80000 0001 0707 2013Department of Biological Sciences, DePaul University, Chicago, IL USA
| | - Kristin L. Legg
- grid.454846.f0000 0001 2331 3972Greater Yellowstone Network, National Park Service, Bozeman, MT USA
| | - Jordan Luongo
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA
| | - James A. Lutz
- grid.53857.3c0000 0001 2185 8768Department of Wildland Resources, Utah State University Ecology Center, Logan, UT USA
| | - Diana Macias
- grid.266832.b0000 0001 2188 8502Department of Biology, University of New Mexico, Albuquerque, NM USA
| | | | - Yassine Messaoud
- grid.265704.20000 0001 0665 6279Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, Quebec Canada
| | - Christopher M. Moore
- grid.254333.00000 0001 2296 8213Department of Biology, Colby College, Waterville, ME USA
| | - Emily Moran
- grid.266190.a0000000096214564Department of Geography, University of Colorado Boulder, Boulder, CO USA
| | - Jonathan A. Myers
- grid.4367.60000 0001 2355 7002Department of Biology, Washington University in St. Louis, St. Louis, MO USA
| | - Orrin B. Myers
- grid.266832.b0000 0001 2188 8502University of New Mexico, Albuquerque, NM USA
| | - Chase Nunez
- grid.507516.00000 0004 7661 536XDepartment for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Konstanz, Germany
| | - Robert Parmenter
- grid.454846.f0000 0001 2331 3972Valles Caldera National Preserve, National Park Service, Jemez Springs, NM USA
| | - Sam Pearse
- grid.2865.90000000121546924Fort Collins Science Center, Fort Collins, CO USA
| | - Scott Pearson
- grid.435676.50000 0000 8528 5973Department of Natural Sciences, Mars Hill University, Mars Hill, NC USA
| | - Renata Poulton-Kamakura
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA
| | - Ethan Ready
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA
| | - Miranda D. Redmond
- grid.47894.360000 0004 1936 8083Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO USA
| | - Chantal D. Reid
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA
| | - Kyle C. Rodman
- grid.450307.5INRAE, LESSEM, University Grenoble Alpes, Saint-Martin-d’Heres, France
| | - C. Lane Scher
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA
| | - William H. Schlesinger
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA
| | - Amanda M. Schwantes
- grid.17063.330000 0001 2157 2938Ecology and Evolutionary Biology, University of Toronto, Toronto, ON Canada
| | - Erin Shanahan
- grid.454846.f0000 0001 2331 3972Greater Yellowstone Network, National Park Service, Bozeman, MT USA
| | - Shubhi Sharma
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA
| | - Michael A. Steele
- grid.268256.d0000 0000 8510 1943Department of Biology, Wilkes University, Wilkes-Barre, PA USA
| | - Nathan L. Stephenson
- grid.2865.90000000121546924USGS Western Ecological Research Center, Three Rivers, CA USA
| | - Samantha Sutton
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA
| | - Jennifer J. Swenson
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA
| | - Margaret Swift
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA
| | - Thomas T. Veblen
- grid.450307.5INRAE, LESSEM, University Grenoble Alpes, Saint-Martin-d’Heres, France
| | - Amy V. Whipple
- grid.261120.60000 0004 1936 8040Department of Biological Science, Northern Arizona University, Flagstaff, AZ USA
| | - Thomas G. Whitham
- grid.261120.60000 0004 1936 8040Department of Biological Science, Northern Arizona University, Flagstaff, AZ USA
| | - Andreas P. Wion
- grid.47894.360000 0004 1936 8083Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO USA
| | - Kai Zhu
- grid.205975.c0000 0001 0740 6917University of California, Santa Cruz, Santa Cruz, CA USA
| | - Roman Zlotin
- grid.411377.70000 0001 0790 959XGeography Department and Russian and East European Institute, Bloomington, IN USA
| |
Collapse
|
153
|
Rangeland Fractional Components Across the Western United States from 1985 to 2018. REMOTE SENSING 2021. [DOI: 10.3390/rs13040813] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Monitoring temporal dynamics of rangelands to detect and understand change in vegetation cover and composition provides a wealth of information to improve management and sustainability. Remote sensing allows the evaluation of both abrupt and gradual rangeland change at unprecedented spatial and temporal extents. Here, we describe the production of the National Land Cover Database (NLCD) Back in Time (BIT) dataset which quantified the percent cover of rangeland components (bare ground, herbaceous, annual herbaceous, litter, shrub, and sagebrush (Artemisia spp. Nutt.) across the western United States using Landsat imagery from 1985 to 2018. We evaluate the relationships of component trends with climate drivers at an ecoregion scale, describe the nature of landscape change, and demonstrate several case studies related to changes in grazing management, prescribed burns, and vegetation treatments. Our results showed the net cover of shrub, sagebrush, and litter significantly (p < 0.01) decreased, bare ground and herbaceous cover had no significant change, and annual herbaceous cover significantly (p < 0.05) increased. Change was ubiquitous, with a mean of 92% of pixels with some change and 38% of pixels with significant change (p < 0.10). However, most change was gradual, well over half of pixels have a range of less than 10%, and most change occurred outside of known disturbances. The BIT data facilitate a comprehensive assessment of rangeland condition, evaluation of past management actions, understanding of system variability, and opportunities for future planning.
Collapse
|
154
|
Projected Changes in Water Year Types and Hydrological Drought in California’s Central Valley in the 21st Century. CLIMATE 2021. [DOI: 10.3390/cli9020026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The study explores the potential changes in water year types and hydrological droughts as well as runoff, based on which the former two metrics are calculated in the Central Valley of California, United States, in the 21st century. The latest operative projections from four representative climate models under two greenhouse-gas emission scenarios are employed for this purpose. The study shows that the temporal distribution of annual runoff is expected to change in terms of shifting more volume to the wet season (October–March) from the snowmelt season (April–July). Increases in wet season runoff volume are more noticeable under the higher (versus lower) emission scenario, while decreases in snowmelt season runoff are generally more significant under the lower (versus higher) emission scenario. In comparison, changes in the water year types are more influenced by climate models rather than emission scenarios. When comparing two regions in the Central Valley, the rain-dominated Sacramento River region is projected to experience more wet years and less critical years than the snow-dominated San Joaquin River region due to their hydroclimatic and geographic differences. Hydrological droughts in the snowmelt season and wet season mostly exhibit upward and downward trends, respectively. However, the uncertainty in the direction of the trend on annual and multi-year scales tends to be climate-model dependent. Overall, this study highlights non-stationarity and long-term uncertainty in these study metrics. They need to be considered when developing adaptive water resources management strategies, some of which are discussed in the study.
Collapse
|
155
|
Parrish CH, Hebert D, Jackson A, Ramasamy K, McDaniel H, Giacomelli GA, Bergren MR. Optimizing spectral quality with quantum dots to enhance crop yield in controlled environments. Commun Biol 2021; 4:124. [PMID: 33504914 PMCID: PMC7840809 DOI: 10.1038/s42003-020-01646-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 12/24/2020] [Indexed: 11/22/2022] Open
Abstract
Bioregenerative life-support systems (BLSS) involving plants will be required to realize self-sustaining human settlements beyond Earth. To improve plant productivity in BLSS, the quality of the solar spectrum can be modified by lightweight, luminescent films. CuInS2/ZnS quantum dot (QD) films were used to down-convert ultraviolet/blue photons to red emissions centered at 600 and 660 nm, resulting in increased biomass accumulation in red romaine lettuce. All plant growth parameters, except for spectral quality, were uniform across three production environments. Lettuce grown under the 600 and 660 nm-emitting QD films respectively increased edible dry mass (13 and 9%), edible fresh mass (11% each), and total leaf area (8 and 13%) compared with under a control film containing no QDs. Spectral modifications by the luminescent QD films improved photosynthetic efficiency in lettuce and could enhance productivity in greenhouses on Earth, or in space where, further conversion is expected from greater availability of ultraviolet photons.
Collapse
Affiliation(s)
- Charles H Parrish
- Controlled Environment Agriculture Center, The University of Arizona, Tucson, AZ, 85719, USA
| | | | | | | | | | - Gene A Giacomelli
- Controlled Environment Agriculture Center, The University of Arizona, Tucson, AZ, 85719, USA.
| | | |
Collapse
|
156
|
Merrick MJ, Morandini M, Greer VL, Koprowski JL. Endemic Population Response to Increasingly Severe Fire: A Cascade of Endangerment for the Mt. Graham Red Squirrel. Bioscience 2021. [DOI: 10.1093/biosci/biaa153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Abstract
Drought, past fire suppression, insect invasion, and high-severity fire represent a disturbance cascade characteristic of forests in the western United States. The result is altered forest ecosystems diminished in their function and capacity to support biodiversity. Small habitat specialists are particularly vulnerable to the impacts of disturbances because of their limited movement capacity and high site fidelity. Research suggests that small mammals suffer limited direct mortality from fire but are increasingly vulnerable to local extirpation because of secondary impacts that include habitat loss and reduced food availability, survival, and reproduction. We examine the direct and secondary impacts of increasingly severe fire events on the endangered Mt. Graham red squirrel—a model system to demonstrate how disturbances can threaten the persistence of range-limited species. We document survival, space use, and displacement prior to and following fires and discuss implications for conservation. We suggest that management plans address future threats, including disturbance-related habitat loss.
Collapse
Affiliation(s)
| | | | | | - John L Koprowski
- School of Natural Resources and the Environment, University of Arizona, Tucson, Arizona, United States
- JK is also a dean, professor, and the Wyoming Excellence Chair of at the Haub School of Environment and Natural Resources, University of Wyoming
| |
Collapse
|
157
|
OUP accepted manuscript. J Mammal 2021. [DOI: 10.1093/jmammal/gyab170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
158
|
Johnson RA. Desiccation limits recruitment in the pleometrotic desert seed-harvester ant Veromessor pergandei. Ecol Evol 2021; 11:294-308. [PMID: 33437430 PMCID: PMC7790620 DOI: 10.1002/ece3.7039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/07/2020] [Accepted: 10/21/2020] [Indexed: 11/14/2022] Open
Abstract
The desert harvester ant Veromessor pergandei displays geographic variation in colony founding with queens initiating nests singly (haplometrosis) or in groups (pleometrosis). The transition from haplo- to pleometrotic founding is associated with lower rainfall. Numerous hypotheses have been proposed to explain the evolution of cooperative founding in this species, but the ultimate explanation remains unanswered. In laboratory experiments, water level was positively associated with survival, condition, and brood production by single queens. Queen survival also was positively influenced by water level and queen number in a two-factor experiment. Water level also was a significant effect for three measures of queen condition, but queen number was not significant for any measure. Foundress queens excavated after two weeks of desiccating conditions were dehydrated compared to alate queens captured from their natal colony, indicating that desiccation can be a source of queen mortality. Long-term monitoring in central Arizona, USA, documented that recruitment only occurred in four of 20 years. A discriminant analysis using rainfall as a predictor of recruitment correctly predicted recruitment in 17 of 20 years for total rainfall from January to June (the period for mating flights and establishment) and in 19 of 20 years for early plus late rainfall (January-March and April-June, respectively), often with a posterior probability > 0.90. Moreover, recruitment occurred only in years in which both early and late rainfall exceeded the long-term mean. This result also was supported by the discriminant analysis predicting no recruitment when long-term mean early and late rainfall were included as ungrouped periods. These data suggest that pleometrosis in V. pergandei evolved to enhance colony survival in areas with harsh abiotic (desiccating) conditions, facilitating colonization of habitats in which solitary queens could not establish even in wet years. This favorable-year hypothesis supports enhanced worker production as the primary advantage of pleometrosis.
Collapse
|
159
|
Johnson SS, Constible J, Knowlton K, Gifford B, Roberts JD, Ada MSD, Jette SL. Knowing Well, Being Well: well-being born of understanding: Climate Change & Well-Being: The Role for Health Promotion Professionals. Am J Health Promot 2020; 35:140-152. [PMID: 33327755 DOI: 10.1177/0890117120970334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
160
|
Constible J, Knowlton K. How Can U.S. Employers Keep Workers Safe From the Health Harms of Climate Change? Am J Health Promot 2020; 35:143-146. [PMID: 33327757 DOI: 10.1177/0890117120970334b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
| | - Kim Knowlton
- Natural Resources Defense Council, Washington, DC, USA.,Columbia University Mailman School of Public Health, New York, NY, USA
| |
Collapse
|
161
|
Barron R, Martinez P, Serpe M, Buerki S. Development of an In Vitro Method of Propagation for Artemisia tridentata subsp. tridentata to Support Genome Sequencing and Genotype-by-Environment Research. PLANTS 2020; 9:plants9121717. [PMID: 33291424 PMCID: PMC7762119 DOI: 10.3390/plants9121717] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/25/2020] [Accepted: 12/03/2020] [Indexed: 12/05/2022]
Abstract
Basin big sagebrush (Artemisia tridentata subsp. tridentata) is a keystone species of the sagebrush steppe, a widespread ecosystem of western North America threatened by climate change. The study’s goal was to develop an in vitro method of propagation for this taxon to support genome sequencing and genotype-by-environment research on drought tolerance. Such research may ultimately facilitate the reintroduction of big sagebrush in degraded habitats. Seedlings were generated from two diploid mother plants (2n = 2x = 18) collected in environments with contrasting precipitation regimes. The effects of IBA and NAA on rooting of shoot tips were tested on 45 individuals and 15 shoot tips per individual. Growth regulator and individual-seedling effects on percent rooting and roots per shoot tip were evaluated using statistical and clustering analyses. Furthermore, rooted shoot tips were transferred into new media to ascertain their continued growth in vitro. The results suggest that A. tridentata is an outbred species, as shown by individuals’ effect on rooting and growth. IBA addition was the most effective method for promoting adventitious rooting, especially in top-performing individuals. These individuals also have high survival and growth rates upon transferring to new media, making them suitable candidates for generating biomass for genome sequencing and producing clones for genotype-by-environment research.
Collapse
Affiliation(s)
- Rachael Barron
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA; (R.B.); (P.M.); (M.S.)
- Department of Plant Sciences, Simplot, Boise, ID 83706, USA
| | - Peggy Martinez
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA; (R.B.); (P.M.); (M.S.)
| | - Marcelo Serpe
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA; (R.B.); (P.M.); (M.S.)
| | - Sven Buerki
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA; (R.B.); (P.M.); (M.S.)
- Correspondence:
| |
Collapse
|
162
|
Al-Yaari A, Wigneron JP, Ciais P, Reichstein M, Ballantyne A, Ogée J, Ducharne A, Swenson JJ, Frappart F, Fan L, Wingate L, Li X, Hufkens K, Knapp AK. Asymmetric responses of ecosystem productivity to rainfall anomalies vary inversely with mean annual rainfall over the conterminous United States. GLOBAL CHANGE BIOLOGY 2020; 26:6959-6973. [PMID: 32902073 DOI: 10.1111/gcb.15345] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 09/01/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
The CONterminous United States (CONUS) presents a large range of climate conditions and biomes where terrestrial primary productivity and its inter-annual variability are controlled regionally by rainfall and/or temperature. Here, the response of ecosystem productivity to those climate variables was investigated across different biomes from 2010 to 2018 using three climate datasets of precipitation, air temperature or drought severity, combined with several proxies of ecosystem productivity: a remote sensing product of aboveground biomass, an net primary productivity (NPP) remote sensing product, an NPP model-based product and four gross primary productivity products. We used an asymmetry index (AI) where positive AI indicates a greater increase of ecosystem productivity in wet years compared to the decline in dry years, and negative AI indicates a greater decline of ecosystem productivity in dry years compared to the increase in wet years. We found consistent spatial patterns of AI across the CONUS for the different products, with negative asymmetries over the Great Plains and positive asymmetries over the southwestern CONUS. Shrubs and, to a lesser extent, evergreen forests show a persistent positive asymmetry, whilst (natural) grasslands appear to have transitioned from positive to negative anomalies during the last decade. The general tendency of dominant negative asymmetry response for ecosystem productivity across the CONUS appears to be influenced by the negative asymmetry of precipitation anomalies. AI was found to be a function of mean rainfall: more positive AIs were found in dry areas where plants are adapted to drought and take advantage of rainfall pulses, and more negative AIs were found in wet areas, with a threshold delineating the two regimes corresponding to a mean annual rainfall of 200-400 mm/year.
Collapse
Affiliation(s)
| | | | - Philippe Ciais
- Laboratoire des Sciences du Climat et de l'Environnement, IPSL, Gif-sur-Yvette, France
| | - Markus Reichstein
- Department of Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Ashley Ballantyne
- W.A. Franke College of Forestry & Conservation Global Climate and Ecology Laboratory, University of Montana, Missoula, MT, USA
| | - Jerome Ogée
- INRAE, Université de Bordeaux, UMR1391 ISPA, Villenave d'Ornon, France
| | | | | | | | - Lei Fan
- School of Geographical Sciences, Nanjing University of Information Science and Technology, Nanjing, China
| | - Lisa Wingate
- INRAE, Université de Bordeaux, UMR1391 ISPA, Villenave d'Ornon, France
| | - Xiaojun Li
- INRAE, Université de Bordeaux, UMR1391 ISPA, Villenave d'Ornon, France
| | - Koen Hufkens
- Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Alan K Knapp
- Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
163
|
Decomposition of roots of different diameters in response to different drought periods in a subtropical evergreen broad-leaf forest in Ailao Mountain. Glob Ecol Conserv 2020. [DOI: 10.1016/j.gecco.2020.e01236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
164
|
Dethier EN, Sartain SL, Renshaw CE, Magilligan FJ. Spatially coherent regional changes in seasonal extreme streamflow events in the United States and Canada since 1950. SCIENCE ADVANCES 2020; 6:6/49/eaba5939. [PMID: 33277243 PMCID: PMC7717913 DOI: 10.1126/sciadv.aba5939] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 10/21/2020] [Indexed: 06/12/2023]
Abstract
Complex hydroclimate in the United States and Canada has limited identification of possible ongoing changes in streamflow. We address this challenge by classifying 541 stations in the United States and Canada into 15 "hydro-regions," each with similar seasonal streamflow characteristics. Analysis of seasonal streamflow records at these stations from 1910 to present indicates regionally coherent changes in the frequency of extreme high- and low-flow events. Where changes are significant, these events have, on average, doubled in frequency relative to 1950 to 1969. In hydro-regions influenced by snowmelt runoff, extreme high-flow event frequency has increased despite snowpack depletion by warming winter temperatures. In drought-prone hydro-regions of the western United States and Southeast, extreme low-flow event frequency has increased, particularly during summer and fall. The magnitude and regional consistency of these hydrologic changes warrant attention by watershed stakeholders. The hydro-region framework facilitates quantification and further analyses of these changes to extreme streamflow.
Collapse
Affiliation(s)
- Evan N Dethier
- Department of Earth Sciences, Dartmouth College, 6105 Hinman, Hanover, NH 03755, USA.
| | - Shannon L Sartain
- Department of Earth Sciences, Dartmouth College, 6105 Hinman, Hanover, NH 03755, USA
| | - Carl E Renshaw
- Department of Earth Sciences, Dartmouth College, 6105 Hinman, Hanover, NH 03755, USA
| | | |
Collapse
|
165
|
A climatic dipole drives short- and long-term patterns of postfire forest recovery in the western United States. Proc Natl Acad Sci U S A 2020; 117:29730-29737. [PMID: 33168732 DOI: 10.1073/pnas.2007434117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Researchers are increasingly examining patterns and drivers of postfire forest recovery amid growing concern that climate change and intensifying fires will trigger ecosystem transformations. Diminished seed availability and postfire drought have emerged as key constraints on conifer recruitment. However, the spatial and temporal extent to which recurring modes of climatic variability shape patterns of postfire recovery remain largely unexplored. Here, we identify a north-south dipole in annual climatic moisture deficit anomalies across the Interior West of the US and characterize its influence on forest recovery from fire. We use annually resolved establishment models from dendrochronological records to correlate this climatic dipole with short-term postfire juvenile recruitment. We also examine longer-term recovery trajectories using Forest Inventory and Analysis data from 989 burned plots. We show that annual postfire ponderosa pine recruitment probabilities in the northern Rocky Mountains (NR) and the southwestern US (SW) track the strength of the dipole, while declining overall due to increasing aridity. This indicates that divergent recovery trajectories may be triggered concurrently across large spatial scales: favorable conditions in the SW can correspond to drought in the NR that inhibits ponderosa pine establishment, and vice versa. The imprint of this climatic dipole is manifest for years postfire, as evidenced by dampened long-term likelihoods of juvenile ponderosa pine presence in areas that experienced postfire drought. These findings underscore the importance of climatic variability at multiple spatiotemporal scales in driving cross-regional patterns of forest recovery and have implications for understanding ecosystem transformations and species range dynamics under global change.
Collapse
|
166
|
Whitham TG, Allan GJ, Cooper HF, Shuster SM. Intraspecific Genetic Variation and Species Interactions Contribute to Community Evolution. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2020. [DOI: 10.1146/annurev-ecolsys-011720-123655] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Evolution has been viewed as occurring primarily through selection among individuals. We present a framework based on multilevel selection for evaluating evolutionary change from individuals to communities, with supporting empirical evidence. Essential to this evaluation is the role that interspecific indirect genetic effects play in shaping community organization, in generating variation among community phenotypes, and in creating community heritability. If communities vary in phenotype, and those phenotypes are heritable and subject to selection at multiple levels, then a community view of evolution must be merged with mainstream evolutionary theory. Rapid environmental change during the Anthropocene will require a better understanding of these evolutionary processes, especially selection acting at the community level, which has the potential to eliminate whole communities while favoring others.
Collapse
Affiliation(s)
- Thomas G. Whitham
- Department of Biological Sciences and Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, Arizona 86011, USA
| | - Gerard J. Allan
- Department of Biological Sciences and Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, Arizona 86011, USA
| | - Hillary F. Cooper
- Department of Biological Sciences and Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, Arizona 86011, USA
| | - Stephen M. Shuster
- Department of Biological Sciences and Center for Adaptable Western Landscapes, Northern Arizona University, Flagstaff, Arizona 86011, USA
| |
Collapse
|
167
|
Barbaree BA, Reiter ME, Hickey CM, Strum KM, Isola JE, Jennings S, Tarjan LM, Strong CM, Stenzel LE, Shuford WD. Effects of drought on the abundance and distribution of non-breeding shorebirds in central California, USA. PLoS One 2020; 15:e0240931. [PMID: 33085697 PMCID: PMC7577470 DOI: 10.1371/journal.pone.0240931] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/05/2020] [Indexed: 12/01/2022] Open
Abstract
Conservation of migratory species requires anticipating the potential impacts of extreme climatic events, such as extreme drought. During drought, reduced habitat availability for shorebirds creates the potential for changes in their abundance and distribution, in part because many species are highly mobile and rely on networks of interior and coastal habitats. Understanding how shorebirds responded to a recent drought cycle that peaked from 2013 to 2015 in central California, USA, will help optimize management of wetlands and fresh water for wildlife. In the Central Valley, a vast interior region that is characterized by a mosaic of wetlands and agricultural lands, we found 22% and 29% decreases in the annual abundance of shorebirds during periods of 3-year drought (2013–2015) and 2-year extreme drought (2014–2015), respectively, when compared to non-drought years. Lower abundance of shorebirds coincided with significant decreases in the mean proportion flooded of survey units (7% and 9%, respectively) that were reliant on fresh water. Drought was associated with lower abundance within both the interior Central Valley and coastal San Francisco Bay for greater and lesser yellowlegs (Tringa melanoleuca and T. flavipes) and long- and short-billed dowitchers (Limnodromus scolopaceus and L. griseus). Only dunlins (Calidris alpina) had patterns of abundance that suggested substantial shifts in distribution between the Central Valley and coastal regions of San Francisco Bay and Point Reyes. Our results indicate that drought has the potential to reduce, at least temporally, shorebird populations and flooded habitat in the Central Valley, and the ability to respond to drought by taking advantage of nearby coastal habitats may limit the long-term effects of drought on some species. Successful conservation strategies must balance the impacts of reduced habitat availability at interior sites with the ability of some migratory shorebirds to adapt rapidly to shifting distributions of resources.
Collapse
Affiliation(s)
- Blake A. Barbaree
- Point Blue Conservation Science, Petaluma, California, United States of America
- * E-mail:
| | - Matthew E. Reiter
- Point Blue Conservation Science, Petaluma, California, United States of America
| | - Catherine M. Hickey
- Point Blue Conservation Science, Petaluma, California, United States of America
| | - Khara M. Strum
- Audubon California, Sacramento, California, United States of America
| | - Jennifer E. Isola
- United States Fish and Wildlife Service, Sacramento National Wildlife Refuge Complex, Willows, California, United States of America
| | - Scott Jennings
- Audubon Canyon Ranch, Marshall, California, United States of America
| | - L. Max Tarjan
- San Francisco Bay Bird Observatory, Milpitas, California, United States of America
| | - Cheryl M. Strong
- United States Fish and Wildlife Service, Newport Field Office, Newport, Oregon, United States of America
| | - Lynne E. Stenzel
- Point Blue Conservation Science, Petaluma, California, United States of America
| | - W. David Shuford
- Point Blue Conservation Science, Petaluma, California, United States of America
| |
Collapse
|
168
|
Keen RM, Voelker SL, Bentz BJ, Wang SYS, Ferrell R. Stronger influence of growth rate than severity of drought stress on mortality of large ponderosa pines during the 2012-2015 California drought. Oecologia 2020; 194:359-370. [PMID: 33030569 DOI: 10.1007/s00442-020-04771-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/25/2020] [Indexed: 11/29/2022]
Abstract
Forests in the western United States are being subject to more frequent and severe drought events as the climate warms. The 2012-2015 California drought is a recent example, whereby drought stress was exacerbated by a landscape-scale outbreak of western pine beetle (Dendroctonus brevicomis) and resulted in widespread mortality of dominant canopy species including ponderosa pine (Pinus ponderosa). In this study, we compared pairs of large surviving and beetle-killed ponderosa pines following the California drought in the southern Sierra Nevadas to evaluate physiological characteristics related to survival. Inter-annual growth rates and tree-ring stable isotopes (∆13C and δ18O) were utilized to compare severity of drought stress and climate sensitivity in ponderosa pines that survived and those that were killed by western pine beetle. Compared to beetle-killed trees, surviving trees had higher growth rates and grew in plots with lower ponderosa pine basal area. However, there were no detectable differences in tree-ring ∆13C, δ18O, or stable isotope sensitivity to drought-related meteorological variables. These results indicate that differences in severity of drought stress had little influence on local, inter-tree differences in growth rate and survival of large ponderosa pines during this drought event. Many previous studies have shown that large trees are more likely to be attacked and killed by bark beetles compared to small trees. Our results further suggest that among large ponderosa pines, those that were more resistant to drought stress and bark beetle attacks were in the upper echelon of growth rates among trees within a stand and across the landscape.
Collapse
Affiliation(s)
- Rachel M Keen
- Division of Biology, Kansas State University, Manhattan, KS, USA.
| | - Steve L Voelker
- Department of Environmental and Forest Biology, SUNY ESF, Syracuse, NY, USA
| | - Barbara J Bentz
- USDA Forest Service, Rocky Mountain Research Station, Logan, UT, USA
| | - S-Y Simon Wang
- Department of Plants, Soils and Climate, Utah State University, Logan, UT, USA
| | | |
Collapse
|
169
|
Li H, Sinha A, Anquetil André A, Spötl C, Vonhof HB, Meunier A, Kathayat G, Duan P, Voarintsoa NRG, Ning Y, Biswas J, Hu P, Li X, Sha L, Zhao J, Edwards RL, Cheng H. A multimillennial climatic context for the megafaunal extinctions in Madagascar and Mascarene Islands. SCIENCE ADVANCES 2020; 6:6/42/eabb2459. [PMID: 33067226 PMCID: PMC7567594 DOI: 10.1126/sciadv.abb2459] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 08/12/2020] [Indexed: 06/02/2023]
Abstract
Madagascar and the Mascarene Islands of Mauritius and Rodrigues underwent catastrophic ecological and landscape transformations, which virtually eliminated their entire endemic vertebrate megafauna during the past millennium. These ecosystem changes have been alternately attributed to either human activities, climate change, or both, but parsing their relative importance, particularly in the case of Madagascar, has proven difficult. Here, we present a multimillennial (approximately the past 8000 years) reconstruction of the southwest Indian Ocean hydroclimate variability using speleothems from the island of Rodrigues, located ∼1600 km east of Madagascar. The record shows a recurring pattern of hydroclimate variability characterized by submillennial-scale drying trends, which were punctuated by decadal-to-multidecadal megadroughts, including during the late Holocene. Our data imply that the megafauna of the Mascarenes and Madagascar were resilient, enduring repeated past episodes of severe climate stress, but collapsed when a major increase in human activity occurred in the context of a prominent drying trend.
Collapse
Affiliation(s)
- Hanying Li
- Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an, China
| | - Ashish Sinha
- Department of Earth Science, California State University, Dominguez Hills, Carson, CA, USA.
| | - Aurèle Anquetil André
- François Leguat Giant Tortoise and Cave Reserve, Anse Quitor, Rodrigues Island, Mauritius
| | - Christoph Spötl
- Institute of Geology, University of Innsbruck, 6020 Innsbruck, Austria
| | - Hubert B Vonhof
- Max Planck Institute of Chemistry, Hahn-Meitnerweg 1, Mainz, Germany
| | - Arnaud Meunier
- François Leguat Giant Tortoise and Cave Reserve, Anse Quitor, Rodrigues Island, Mauritius
| | - Gayatri Kathayat
- Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an, China
| | - Pengzhen Duan
- Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an, China
| | - Ny Riavo G Voarintsoa
- Department of Earth and Environmental Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Youfeng Ning
- Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an, China
| | - Jayant Biswas
- National Cave Research and Protection Organization, Raipur, India
| | - Peng Hu
- Center for Monsoon System Research, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xianglei Li
- Department of Earth Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Lijuan Sha
- Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an, China
| | - Jingyao Zhao
- Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an, China
| | - R Lawrence Edwards
- Department of Earth Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Hai Cheng
- Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an, China.
- Department of Earth Sciences, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
170
|
Driscoll AW, Bitter NQ, Sandquist DR, Ehleringer JR. Multidecadal records of intrinsic water-use efficiency in the desert shrub Encelia farinosa reveal strong responses to climate change. Proc Natl Acad Sci U S A 2020; 117:18161-18168. [PMID: 32719142 PMCID: PMC7414048 DOI: 10.1073/pnas.2008345117] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
While tree rings have enabled interannual examination of the influence of climate on trees, this is not possible for most shrubs. Here, we leverage a multidecadal record of annual foliar carbon isotope ratio collections coupled with 39 y of survey data from two populations of the drought-deciduous desert shrub Encelia farinosa to provide insight into water-use dynamics and climate. This carbon isotope record provides a unique opportunity to examine the response of desert shrubs to increasing temperature and water stress in a region where climate is changing rapidly. Population mean carbon isotope ratios fluctuated predictably in response to interannual variations in temperature, vapor pressure deficit, and precipitation, and responses were similar among individuals. We leveraged the well-established relationships between leaf carbon isotope ratios and the ratio of intracellular to ambient CO2 concentrations to calculate intrinsic water-use efficiency (iWUE) of the plants and to quantify plant responses to long-term environmental change. The population mean iWUE value increased by 53 to 58% over the study period, much more than the 20 to 30% increase that has been measured in forests [J. Peñuelas, J. G. Canadell, R. Ogaya, Glob. Ecol. Biogeogr. 20, 597-608 (2011)]. Changes were associated with both increased CO2 concentration and increased water stress. Individuals whose lifetimes spanned the entire study period exhibited increases in iWUE that were very similar to the population mean, suggesting that there was significant plasticity within individuals rather than selection at the population scale.
Collapse
Affiliation(s)
- Avery W Driscoll
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112
| | - Nicholas Q Bitter
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112
| | - Darren R Sandquist
- Department of Biological Science, California State University, Fullerton, CA 92834
| | - James R Ehleringer
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112;
| |
Collapse
|
171
|
Affiliation(s)
| | - Samira A. S. Omar
- Kuwait Institute for Scientific Research P.O. Box 24885 13109 Safat Kuwait
| |
Collapse
|
172
|
|
173
|
Affiliation(s)
- David W. Stahle
- Department of Geosciences, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|