151
|
Xie M, Lv M, Zhao Z, Li L, Jiang H, Yu Y, Zhang X, Liu P, Chen J. Plastisphere characterization in habitat of the highly endangered Shinisaurus crocodilurus: Bacterial composition, assembly, function and the comparison with surrounding environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165807. [PMID: 37506917 DOI: 10.1016/j.scitotenv.2023.165807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/15/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Abstract
Plastisphere is a new niche for microorganisms that complicate the ecological effects of plastics, and may profoundly influence biodiversity and habitat conservation. The DaGuishan National Nature Reserve, one of the largest habitats of the highly endangered crocodile lizard (Shinisaurus crocodilurus), is experiencing plastic pollution without sufficient attention. Here, plastisphere collected from captive tanks of crocodile lizards in this nature reserve was characterized for the first time. Three types of plastic (PE-PP, PE1, and PE2) together with the surrounding water and soil samples, were collected, and 16S rRNA sequencing technology was used to characterize the bacterial composition. The results demonstrated that plastisphere was driven by stochastic process and had a distinct bacterial community with higher diversity than that in surrounding water (p < 0.05). Bacteria related to nitrogen and carbon cycles (Pseudomonas psychrotolerans, Methylobacterium-Methylorubrum) were more abundant in plastisphere than in water or soil (p < 0.05). More importantly, plastics recruited pathogens and those bacteria function in antibiotic resistant genes (ARGs) coding. Bacteria related to polymer degradation also proliferated in plastisphere, especially Bacillus subtilis with a fold change of 42.01. The PE2 plastisphere, which had the lowest diversity and was dominated by Methylobacterium-Methylorubrum differed from PE 1 and PE-PP plastispheres totally. Plastics' morphology and aquatic nutrient levels contributed to the heterogeneity of different plastispheres. Overall, this study demonstrated that plastispheres diversify in composition and function, affecting ecosystem services directly or indirectly. Pathogens and bacteria related to ARGs expression enriched in the plastisphere should not be ignored because they may threaten the health of crocodile lizards by increasing the risk of infection. Plastic pollution control should be included in conservation efforts for crocodile lizards. This study provides new insights into the potential impacts of plastisphere, which is important for ecological risk assessments of plastic pollution in the habitats of endangered species.
Collapse
Affiliation(s)
- Mujiao Xie
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Mei Lv
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Zhiwen Zhao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Linmiao Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Haiying Jiang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Yepin Yu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Xiujuan Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Ping Liu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Jinping Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China.
| |
Collapse
|
152
|
Tang Y, Li G, Iqbal B, Tariq M, Rehman A, Khan I, Du D. Soil nutrient levels regulate the effect of soil microplastic contamination on microbial element metabolism and carbon use efficiency. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115640. [PMID: 37922780 DOI: 10.1016/j.ecoenv.2023.115640] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/11/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
Microplastics (MPs) are emerging environmental contaminants in soil ecosystems that disrupt the soil carbon (C) pool. Therefore, the response of microbial metabolism to MP-contaminated soil is crucial for soil-C stabilization. We undertook factorial experiments in a greenhouse with three types of soil microplastics with three levels of soil nutrients and undertook soil physiochemical analyses after 60 days. The present study revealed how the presence of degradable polylactic acid (PLA) and non-degradable polyethylene (PE) MPs affects soil microbial nutrient limitation and C use efficiency (CUE) at varying nutrient concentrations. The presence of PLA in soil with low nutrient levels led to a significant increase (29%) in the activities of nitrogen (N)-acquiring enzymes. In contrast, the presence of MPs had no effect on C- and N-acquiring enzymes. The occurrence of PE caused a 41% reduction in microbial C limitation in high-nutrient soils, and microbial nutrient metabolism was limited by the occurrence of MPs in soils amended with nutrients. A strong positive correlation between microbial C and nutrient limitation in the soil indicates that addressing C limitation followed by amendment of soil with MPs could potentially intensify microbial N limitation in soils with varying nutrients. In comparison, the microbial CUE increased by 10% with the application of degradable MPs (PLA) to soils with a low nutrient status. These findings highlight the significant influence of both degradable PLA and non-degradable PE MPs on soil microbial processes and C dynamics. In conclusion, PLA enhances metabolic efficiency in nutrient-rich soils, potentially aiding C utilization, whereas PE reduces microbial C limitation, offering promise for soil C sequestration strategies. Our findings underscore the importance of considering MPs in soil ecosystem studies and in broader sustainability efforts.
Collapse
Affiliation(s)
- Yi Tang
- School of Emergency Management, Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Guanlin Li
- School of Emergency Management, Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China; Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, People's Republic of China.
| | - Babar Iqbal
- School of Emergency Management, Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, People's Republic of China
| | - Muhammad Tariq
- School of Emergency Management, Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Abdul Rehman
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, 63100 Bahawalpur, Pakistan
| | - Ismail Khan
- School of Emergency Management, Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, People's Republic of China.
| | - Daolin Du
- School of Emergency Management, Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China
| |
Collapse
|
153
|
Khan A, Jie Z, Wang J, Nepal J, Ullah N, Zhao ZY, Wang PY, Ahmad W, Khan A, Wang W, Li MY, Zhang W, Elsheikh MS, Xiong YC. Ecological risks of microplastics contamination with green solutions and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165688. [PMID: 37490947 DOI: 10.1016/j.scitotenv.2023.165688] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/26/2023] [Accepted: 07/19/2023] [Indexed: 07/27/2023]
Abstract
The rise of plasticulture as mulching material in farming systems has raised concerns about microplastics (MPs) in the agricultural landscape. MPs are emerging pollutants in croplands and water systems with significant ecological risks, particularly over the long term. In the soil systems, MPs polymer type, thinness, shape, and size induces numerous effects on soil aggregates, dissolved organic carbon (C), rapidly oxidized organic C, microbial biomass C, microbial biomass nitrogen (N), microbial immobilization, degradation of organic matter, N cycling, and production of greenhouse gas emissions (GHGs), thereby posing a significant risk of impairing soil physical and biochemical properties over time. Further, toxic chemicals released from polyethylene mulching (PMs) might indirectly harm plant growth by affecting soil wetting-drying cycles, releasing toxic substances that interact with soil matrix, and suppressing soil microbial activity. In the environment, accumulation of MPs poses a risk to human health by accelerating emissions of GHGs, e.g., methane and carbon dioxide, or directly releasing toxic substances such as phthalic acid esters (PAEs) into the soils. Also, larger sizes MPs can adhere to root surface and block stomata could significantly change the shape of root epidermal cells resulting in arrest plant growth and development by restricting water-nutrient uptake, and gene expression and altering the biodiversity of the soil pollutants. In this review, we systematically analyzed the potential risks of MPs to the soil-plant and human body, their occurrence, abundance, and migration in agroecosystems. Further, the impacts of MPs on soil microbial function, nutrient cycling, soil C, and GHGs are mechanistically reviewed, with emphasis on potential green solutions such as organic materials amendments along with future research directions for more eco-friendly and sustainable plastic management in agroecosystems.
Collapse
Affiliation(s)
- Aziz Khan
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Zheng Jie
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan, 455000, China
| | - Jing Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Jaya Nepal
- Department of Soil, Water & Ecosystem Sciences, Indian River Research Center, University of Florida, Fort Pierce, FL, USA
| | - Najeeb Ullah
- Agriculture Research Station, office of VP For Research and Graduate Studies, Qatar University, Doha, Qatar
| | - Ze-Ying Zhao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Peng-Yang Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Wiqar Ahmad
- Department of the Soil and Environmental Sciences, AMKC, The University of Agriculture, Peshawar, Pakistan
| | - Adnan Khan
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Wei Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Meng-Ying Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Wei Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | | | - You-Cai Xiong
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
154
|
Chen L, Yu L, Li Y, Han B, Zhang J, Tao S, Liu W. Status, characteristics, and ecological risks of microplastics in farmland surface soils cultivated with different crops across mainland China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165331. [PMID: 37414184 DOI: 10.1016/j.scitotenv.2023.165331] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Microplastics (MPs) in agricultural soils could affect the safety of food crops. However, most relevant studies have paid scant attention to the crop fields and focused more on MPs in farmlands with or without film mulching in different regions. To detect MPs, we investigated farmland soils with >30 typical crop species from 109 cities in 31 administrative districts across mainland China. The relative contributions of different MP sources in different farmlands were estimated in detail based on a questionnaire survey, and we also assessed the ecological risks of MPs. Our results indicated the order of MP abundances in farmlands with different crop types, namely fruit fields > vegetable fields > mixed crop fields > food crop fields > cash crop fields. For the detailed sub-types, the highest MP abundance was detected in grape fields, which was significantly higher than that in solanaceous & cucurbitaceous vegetable fields (ranked second, p < 0.05), whereas the MP abundance was lowest in cotton and maize fields. The total contributions of three potential sources, namely livestock and poultry manure, irrigation water, and atmospheric deposition to MPs, varied depending on the crop types in the farmlands. Owing to exposure to MPs, the potential ecological risks to agroecosystems across mainland China were not negligible, particularly in fruit fields. The results of the current study could provide basic data and background information for future ecotoxicological studies and relevant regulatory strategies.
Collapse
Affiliation(s)
- LiYuan Chen
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Lu Yu
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - YuJun Li
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - BingJun Han
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - JiaoDi Zhang
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Shu Tao
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - WenXin Liu
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
155
|
Zhang Z, Kang Y, Wang W, Xu L, Liu J, Zhang Z, Wu H. Low-density polyethylene microplastics and biochar interactively affect greenhouse gas emissions and microbial community structure and function in paddy soil. CHEMOSPHERE 2023; 340:139860. [PMID: 37611773 DOI: 10.1016/j.chemosphere.2023.139860] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/29/2023] [Accepted: 08/16/2023] [Indexed: 08/25/2023]
Abstract
Paddy soils are susceptible to microplastics (MPs) contamination. As a common soil amendment, biochar (BC) has been extensively applied in paddy fields. The co-occurrence of MPs and BC may cause interactive effects on soil biogeochemical processes, which has yet been well studied. In this study, a 41-days of microcosm experiment was conducted using paddy soil added with 0.5-1.5 wt% of low-density polyethylene (LDPE) and 5 wt% of BC individually or jointly. Application of BC, LDPE, or their mixture into soil significantly increased the emission of methane (CH4), but suppressed the emission of carbon dioxide (CO2). LDPE addition lowered soil nitrous oxide (N2O) emissions, while BC exerted an opposite effect. Proteobacteria was the most dominant phylum with a relative abundance range of 35.1-51.0%, followed by Actinobacteria (19.3-30.9%) and Acidobacteria (7.5-23.5%). The abundances of the mcrA gene and pH values were increased in soils added with BC or/and LDPE, which were the possible reasons for the higher CH4 emissions in these treatments. The emission of N2O was positively related to the abundances of norB and narG genes, suggesting denitrification was a major pathway to produce N2O. Results of structural equation modeling demonstrated that addition of BC or/and LDPE MPs could affect greenhouse gas emissions from paddy soil by altering soil chemical properties, microbial community structure, and functional gene abundances.
Collapse
Affiliation(s)
- Zhiyu Zhang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun, 130012, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun, 130012, China; Jilin Normal University, 1301 Haifeng Street, Siping, 136000, China
| | - Yujuan Kang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun, 130012, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun, 130012, China
| | - Wenfeng Wang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun, 130012, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun, 130012, China.
| | - Lei Xu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun, 130012, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun, 130012, China
| | - Jiping Liu
- Jilin Normal University, 1301 Haifeng Street, Siping, 136000, China
| | - Zhongsheng Zhang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun, 130012, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun, 130012, China
| | - Haitao Wu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun, 130012, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Street, Changchun, 130012, China.
| |
Collapse
|
156
|
Chen L, Fan T, Yang M, Si D, Wu H, Wu S, Xu J, Zhou D. Sulfurization alters phenol-formaldehyde resin microplastics redox property and their efficiency in mediating arsenite oxidation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:166048. [PMID: 37572922 DOI: 10.1016/j.scitotenv.2023.166048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/19/2023] [Accepted: 08/02/2023] [Indexed: 08/14/2023]
Abstract
Microplastics weathering by various types of oxidants in the oxic environment and their interaction with environmental contaminants have drawn numerous scientific attention. However, the environmental fate of microplastics under a reducing environment has been largely unresolved. Herein, the change of physicochemical and redox properties of microplastics during the weathering under a sulfate-reducing environment and the interaction with arsenite were addressed. The sulfurization of phenol-formaldehyde resin microplastics under a sulfate-reducing environment generated smooth and porous particles with the induction of organic S species. Multiple spectroscopic results demonstrated thioether and thiophene groups formed by the substitute removal of O-containing functional groups. Moreover, the sulfurization process induced the reduction of carbonyl groups and oxidation of phenolic hydroxyl groups and resulted in the formation of semiquinone radicals. The O-containing functional groups contributed to microplastics redox property and As(III) oxidation while S-containing functional groups showed no obvious effect. The sulfurized microplastics had lower efficiency in mediating arsenite oxidation than the unsulfurized counterparts due to the decreased electron donating capacity. Producing hydrogen peroxides by electron-donating phenol groups and semiquinone radicals and the direct semiquinone radicals oxidation could mediate arsenite oxidation. The findings of this study help us understand the fate of microplastics in redox fluctuation interfaces.
Collapse
Affiliation(s)
- Lin Chen
- Ministry of Ecology and Environment of the People's Republic of China, Nanjing Institute of Environmental Sciences, Nanjing 210042, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Tingting Fan
- Ministry of Ecology and Environment of the People's Republic of China, Nanjing Institute of Environmental Sciences, Nanjing 210042, China
| | - Min Yang
- Ministry of Ecology and Environment of the People's Republic of China, Nanjing Institute of Environmental Sciences, Nanjing 210042, China.
| | - Dunfeng Si
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Haotian Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Song Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jian Xu
- Ministry of Ecology and Environment of the People's Republic of China, Nanjing Institute of Environmental Sciences, Nanjing 210042, China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
157
|
Rittelmann-Woods E, Lachaise T, van Kleunen M. Negative effects of EPDM microplastic and cork granules on plant growth are mitigated by earthworms and likely caused by their structural properties. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165354. [PMID: 37419348 DOI: 10.1016/j.scitotenv.2023.165354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/04/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
Soil microplastic pollution can have negative effects on organisms, including plants, but the underlying mechanisms are not fully understood. We tested whether structural or chemical properties of a microplastic cause its effects on plant above- and belowground growth and whether these effects can be influenced by earthworms. We conducted a factorial experiment in a greenhouse with seven common Central European grassland species. Microplastic granules of the synthetic rubber ethylene propylene diene monomer (EPDM),1 a frequently used infill material of artificial turfs, and cork granules with a comparable size and shape to the EPDM granules were used to test for structural effects of granules in general. To test for chemical effects, EPDM-infused fertilizer was used, which should have contained any leached water-soluble chemical components of EPDM. Two Lumbricus terrestris individuals were added to half of the pots, to test whether these earthworms modify effects of EPDM on plant growth. EPDM granules had a clear negative effect on plant growth, but since cork granules had a negative effect of similar magnitude, with an average decrease in biomass of 37 % in presence of granules, this is likely due to the structural properties of granules (i.e., size and shape). For some belowground plant traits, EPDM had a stronger effect than cork, which shows that there must be other factors playing into the effects of EPDM on plant growth. The EPDM-infused fertilizer did not have any significant effect on plant growth by itself, but it had in interaction with other treatments. Earthworms had an overall positive effect on plant growth and mitigated most of the negative effects of EPDM. Our study shows that EPDM microplastic can have negative effects on plant growth, and that these might be more related to its structural than to its chemical properties.
Collapse
Affiliation(s)
- Elina Rittelmann-Woods
- Ecology, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany.
| | - Tom Lachaise
- Ecology, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany
| | - Mark van Kleunen
- Ecology, Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457 Konstanz, Germany; Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, China
| |
Collapse
|
158
|
Speißer B, van Kleunen M. Plants forage for soil patches free of plastic pollution but cannot bag the profits. Sci Rep 2023; 13:18506. [PMID: 37898611 PMCID: PMC10613303 DOI: 10.1038/s41598-023-45662-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/22/2023] [Indexed: 10/30/2023] Open
Abstract
Microplastics can affect their surroundings physically and chemically, resulting in diverse effects on plant-soil systems. Similar to other substances (e.g. nutrients and water), microplastics in the environment occur in patches. Such heterogeneous distributions could affect plant responses to plastic pollution. Yet, this has remained untested. We conducted a multispecies experiment including 29 herbaceous plant species and three different microplastic treatments (a control without microplastics, a homogeneous and a heterogeneous microplastic distribution). Based on biomass and root-morphological traits, we assessed how different plastic distributions affect the performance and root-foraging behavior of plants, and whether stronger root foraging is beneficial when microplastics are distributed patchily. Next to general effects on plant productivity and root morphology, we found very strong evidence for root-foraging responses to patchy plastic distributions, with a clear preference for plastic-free patches, resulting in 25% longer roots and 20% more root biomass in the plastic-free patches. Interestingly, however, these foraging responses were correlated with a reduced plant performance, indicating that the benefits of plastic avoidance did not compensate for the associated investments. Our results provide new insights in plant-microplastic interactions and suggest that plants might not just be passively affected by but could also actively respond to environmental plastic pollution.
Collapse
Affiliation(s)
- Benedikt Speißer
- Ecology, Department of Biology, University of Konstanz, 78464, Constance, Germany.
| | - Mark van Kleunen
- Ecology, Department of Biology, University of Konstanz, 78464, Constance, Germany
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, China
| |
Collapse
|
159
|
Zhu J, Dong G, Feng F, Ye J, Liao CH, Wu CH, Chen SC. Microplastics in the soil environment: Focusing on the sources, its transformation and change in morphology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165291. [PMID: 37406689 DOI: 10.1016/j.scitotenv.2023.165291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Microplastics (MPs) are small plastic pieces less than 5 mm in size. Previous studies have focused on the sources, transports, and fates of MPs in marine or sediment environments. However, limited attention has been given to the role of land as the primary source of MPs, and how plastic polymers are transformed into MPs through biological or abiotic effects during the transport process remains unclear. Here, we focus on the exploration of the main sources of MPs in the soil, highlighting that MP generation is not solely a byproduct of plastic production but can also result from the impact of biological and abiotic factors during the process of MPs transport. This review presents a new perspective on understanding the degradation of MPs in soil, considering soil as a distinct fluid and suggesting that the main transformation and change mediated by abiotic factors occur on the soil surface, while the main biodegradation occurs in the soil interior. This viewpoint is suggested because the role of some abiotic factors becomes less obvious in the soil interior, and MPs, whose surface is expected to colonize microorganisms, are gradually considered a carbon source independent of photosynthesis and net primary production. This review emphasizes the need to understand basic MPs information in soil for a rational evaluation of its environmental toxicity. Such understanding enables better control of MPs pollution in affected areas and prevents contamination in unaffected regions. Finally, knowledge gaps and future research directions necessary for advancements in this field are provided.
Collapse
Affiliation(s)
- Junyu Zhu
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, Fujian, People's Republic of China; School of Resources and Chemical Engineering, Sanming University, Sanming, Fujian, People's Republic of China
| | - Guowen Dong
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, Fujian, People's Republic of China; School of Resources and Chemical Engineering, Sanming University, Sanming, Fujian, People's Republic of China; Fujian Provincial Key Laboratory of Resources and Environmental Monitoring and Sustainable Management and Utilization, Sanming University, Sanming, Fujian, People's Republic of China
| | - Fu Feng
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, Fujian, People's Republic of China; School of Resources and Chemical Engineering, Sanming University, Sanming, Fujian, People's Republic of China
| | - Jing Ye
- College of Environment and chemical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi, People's Republic of China
| | - Ching-Hua Liao
- School of Resources and Chemical Engineering, Sanming University, Sanming, Fujian, People's Republic of China; Fujian Provincial Key Laboratory of Resources and Environmental Monitoring and Sustainable Management and Utilization, Sanming University, Sanming, Fujian, People's Republic of China
| | - Chih-Hung Wu
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, Fujian, People's Republic of China; School of Resources and Chemical Engineering, Sanming University, Sanming, Fujian, People's Republic of China; Fujian Provincial Key Laboratory of Resources and Environmental Monitoring and Sustainable Management and Utilization, Sanming University, Sanming, Fujian, People's Republic of China
| | - Sheng-Chung Chen
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, Fujian, People's Republic of China; School of Resources and Chemical Engineering, Sanming University, Sanming, Fujian, People's Republic of China; Fujian Provincial Key Laboratory of Resources and Environmental Monitoring and Sustainable Management and Utilization, Sanming University, Sanming, Fujian, People's Republic of China.
| |
Collapse
|
160
|
Xiang Y, Peñuelas J, Sardans J, Liu Y, Yao B, Li Y. Effects of microplastics exposure on soil inorganic nitrogen: A comprehensive synthesis. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132514. [PMID: 37708652 DOI: 10.1016/j.jhazmat.2023.132514] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/30/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023]
Abstract
Microplastics, a growing environmental concern, impact soil inorganic nitrogen (N) transformation, specifically affecting water-extractable nitrate N (NO3--N) and ammonium N (NH4+-N). However, inconsistencies among relevant findings necessitate a systematic analysis. Accordingly, the present meta-analysis addresses these discrepancies by evaluating the effects of microplastics on soil inorganic N and identifying key influencing factors. Our meta-analysis of 216 paired observations from 47 studies demonstrates microplastics exposure causes an overall significant reduction of 7.89% in soil NO3--N concentration, but has no significant impact on NH4+-N concentration. Subgroup analysis further revealed effects of microplastics on soil inorganic N were modulated by microplastics characteristics, experimental conditions (exposure time, experimental temperature, plant effects), and soil properties (soil texture, initial soil pH, initial soil organic carbon, soil total N concentration). We found that microplastics exposure above 27 ℃ enhances soil NO3--N concentration, a finding linked to specific soil properties and conditions, underscoring the impacts of global warming. Importantly, the microplastics polymer type was the most influential predictor of effects on soil NO3--N concentration, while soil NH4+-N concentration was primarily affected by soil texture and microplastics type. These findings illuminate the complex effects of microplastics on soil inorganic N, informing soil management amid increasing microplastics pollution.
Collapse
Affiliation(s)
- Yangzhou Xiang
- School of Geography and Resources, Guizhou Education University, Guiyang 550018, China
| | - Josep Peñuelas
- CSIC Global Ecology Unit, CREAF-CSIC-UAB, 08193 Bellaterra, Catalonia, Spain; CREAF - Ecological and Forestry Applications Research Centre, 08193 Cerdanyola del Vallès, Catalonia, Spain
| | - Jordi Sardans
- CSIC Global Ecology Unit, CREAF-CSIC-UAB, 08193 Bellaterra, Catalonia, Spain; CREAF - Ecological and Forestry Applications Research Centre, 08193 Cerdanyola del Vallès, Catalonia, Spain
| | - Ying Liu
- School of Biological Sciences, Guizhou Education University, Guiyang 550018, China
| | - Bin Yao
- State Key Laboratory of Tree Genetics and Breeding, Institute of Ecology Conservation and Restoration, Chinese Academy of Forestry, Beijing 100091, China.
| | - Yuan Li
- The State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems of Lanzhou University, National Field Scientific Observation and Research Station of Grassland Agro-Ecosystems in Gansu Qingyang, College of Pastoral Agriculture Science and Technology, Lanzhou 730020, China.
| |
Collapse
|
161
|
Zhang Y, Yang S, Zeng Y, Chen Y, Liu H, Yan X, Pu S. A new quantitative insight: Interaction of polyethylene microplastics with soil - microbiome - crop. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132302. [PMID: 37647663 DOI: 10.1016/j.jhazmat.2023.132302] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/09/2023] [Accepted: 08/12/2023] [Indexed: 09/01/2023]
Abstract
In this study, the interaction between primary/secondary PE MPs and soil - microbiome - crop complex system and PE MPs enrichment behavior in crops were studied by using the self-developed quantitative characterization method of Eu-MPs and in situ zymography. The results demonstrated for the first time the enrichment effect of micron-sized PE (> 10 µm) in crops, manifested as roots>leaves>stems. Primary PE MPs significantly increased soil TN, TC, SOM and β-glu activity and inhibited Phos activity. Age-PE MPs significantly reduced soil TN, TP, β-glu and Phos activities and also have significant inhibitory effects on plant height, stem diameter, and leaf dry weight of maize. Age-PE MPs significantly affected soil microbial diversity, mainly caused by bacterial genera such as UTCFX1, Sphingomonas, Subgroup-6 and Gemmatimonas. Age-PE MPs also affected some metabolism related to microbial community composition and maize growth, including Glycerolipid, Citrate cycle (TCA cycle), C5-Branched dibasic acid, Arginine and proline, Tyrosine metabolism, pentose phosphate pathway, Valine, leucine and isoleucine biosynthesis. These research results indicated that the PE MPs, which are widely present in farmland soils, can affect crop growth, soil microbial community and metabolic function after aging, thus affecting agroecosystems and terrestrial biodiversity.
Collapse
Affiliation(s)
- Ying Zhang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China
| | - Shuo Yang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China
| | - Yuping Zeng
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China
| | - Yi Chen
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China
| | - Hanshuang Liu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China
| | - Xinyao Yan
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China
| | - Shengyan Pu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| |
Collapse
|
162
|
Kim K, Song IG, Yoon H, Park JW. Sub-micron microplastics affect nitrogen cycling by altering microbial abundance and activities in a soil-legume system. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132504. [PMID: 37703725 DOI: 10.1016/j.jhazmat.2023.132504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/25/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023]
Abstract
Recently, the environmental and agricultural impact of plastic waste has attracted considerable attention. Here, we investigated the impact of sub-micron polyethylene (PE) and polypropylene (PP) microplastics (MPs) on nitrogen cycling, with emphasis on bacterial abundance and diversity in a soil-soybean (Glycine max) system. Exposure to soil containing MPs (50 and 500 mg kg-1) did not affect soybean growth, but significantly increased plant nitrogen uptake, which was confirmed by increased activities of nitrogenase in the soil and glutamine synthetase in soybean root. Additionally, there was an increase in 16S gene copy number and carbon and nitrogen substrate utilization, indicating increased abundance and activity of rhizosphere microbial communities. Moreover, MP contamination affected the taxonomic profile of rhizosphere bacteria, especially the abundance of symbiotic and free-living bacteria involved in nitrogen cycling. Furthermore, qPCR analysis of nitrogen-related genes and Kyoto Encyclopedia of Genes and Genomes analysis of 16S rRNA gene sequencing data revealed an increased abundance of functional genes associated with nitrogen fixation and nitrification. However, the concentration and polymer type of MPs did not have a significant impact in our system. Overall, these results provide insights into the interactions between MPs and rhizosphere bacterial communities in the soil-legume system.
Collapse
Affiliation(s)
- Kanghee Kim
- Environmental Exposure & Toxicology Research Center, Korea Institute of Toxicology, 17, Jegok-gil, Jinju 52834, Republic of Korea; Human and Environmental Toxicology Program, University of Science and Technology, 217, Gajeong-ro, Daejeon 34113, Republic of Korea
| | - In-Gyu Song
- Environmental Exposure & Toxicology Research Center, Korea Institute of Toxicology, 17, Jegok-gil, Jinju 52834, Republic of Korea
| | - Hakwon Yoon
- Environmental Exposure & Toxicology Research Center, Korea Institute of Toxicology, 17, Jegok-gil, Jinju 52834, Republic of Korea.
| | - June-Woo Park
- Environmental Exposure & Toxicology Research Center, Korea Institute of Toxicology, 17, Jegok-gil, Jinju 52834, Republic of Korea; Human and Environmental Toxicology Program, University of Science and Technology, 217, Gajeong-ro, Daejeon 34113, Republic of Korea.
| |
Collapse
|
163
|
Li Y, Hou Y, Hou Q, Long M, Wang Z, Rillig MC, Liao Y, Yong T. Soil microbial community parameters affected by microplastics and other plastic residues. Front Microbiol 2023; 14:1258606. [PMID: 37901816 PMCID: PMC10601715 DOI: 10.3389/fmicb.2023.1258606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/31/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction The impact of plastics on terrestrial ecosystems is receiving increasing attention. Although of great importance to soil biogeochemical processes, how plastics influence soil microbes have yet to be systematically studied. The primary objectives of this study are to evaluate whether plastics lead to divergent responses of soil microbial community parameters, and explore the potential driving factors. Methods We performed a meta-analysis of 710 paired observations from 48 published articles to quantify the impact of plastic on the diversity, biomass, and functionality of soil microbial communities. Results and discussion This study indicated that plastics accelerated soil organic carbon loss (effect size = -0.05, p = 0.004) and increased microbial functionality (effect size = 0.04, p = 0.003), but also reduced microbial biomass (effect size = -0.07, p < 0.001) and the stability of co-occurrence networks. Polyethylene significantly reduced microbial richness (effect size = -0.07, p < 0.001) while polypropylene significantly increased it (effect size = 0.17, p < 0.001). Degradable plastics always had an insignificant effect on the microbial community. The effect of the plastic amount on microbial functionality followed the "hormetic dose-response" model, the infection point was about 40 g/kg. Approximately 3564.78 μm was the size of the plastic at which the response of microbial functionality changed from positive to negative. Changes in soil pH, soil organic carbon, and total nitrogen were significantly positively correlated with soil microbial functionality, biomass, and richness (R2 = 0.04-0.73, p < 0.05). The changes in microbial diversity were decoupled from microbial community structure and functionality. We emphasize the negative impacts of plastics on soil microbial communities such as microbial abundance, essential to reducing the risk of ecological surprise in terrestrial ecosystems. Our comprehensive assessment of plastics on soil microbial community parameters deepens the understanding of environmental impacts and ecological risks from this emerging pollution.
Collapse
Affiliation(s)
- Yüze Li
- Sichuan Engineering Research Center for Crop Strip Intercropping System, College of Agronomy, Sichuan Agricultural University, Chengdu, China
- College of Agronomy, Northwest A&F University, Xianyang, China
| | - Yuting Hou
- College of Agronomy, Northwest A&F University, Xianyang, China
| | - Quanming Hou
- College of Agronomy, Northwest A&F University, Xianyang, China
| | - Mei Long
- College of Agronomy, Northwest A&F University, Xianyang, China
| | - Ziting Wang
- College of Agronomy, Guangxi University, Nanning, China
- Guangxi Key Laboratory of Sugarcane Biology, Nanning, China
| | - Matthias C. Rillig
- Freie Universität Berlin, Institute of Biology, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Yuncheng Liao
- College of Agronomy, Northwest A&F University, Xianyang, China
| | - Taiwen Yong
- Sichuan Engineering Research Center for Crop Strip Intercropping System, College of Agronomy, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
164
|
Wang Q, Feng X, Liu Y, Li W, Cui W, Sun Y, Zhang S, Wang F, Xing B. Response of peanut plant and soil N-fixing bacterial communities to conventional and biodegradable microplastics. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132142. [PMID: 37515992 DOI: 10.1016/j.jhazmat.2023.132142] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/14/2023] [Accepted: 07/23/2023] [Indexed: 07/31/2023]
Abstract
Microplastics (MPs) occur and distribute widely in agroecosystems, posing a potential threat to soil-plant systems. However, little is known about their effects on legumes and N-fixing microbes. Here, we explored the effects of high-density polyethylene (HDPE), polystyrene (PS), and polylactic acid (PLA) on the growth of peanuts and soil N-fixing bacterial communities. All MPs treatments showed no phytotoxic effects on plant biomass, and PS and PLA even increased plant height, especially at the high dose. All MPs changed soil NO3--N and NH4+-N contents and the activities of urease and FDAse. Particularly, high-dose PLA decreased soil NO3--N content by 97% and increased soil urease activity by 104%. In most cases, MPs negatively affected plant N content, and high-dose PLA had the most pronounced effects. All MPs especially PLA changed soil N-fixing bacterial community structure. Symbiotic N-fixer Rhizoboales were greatly enriched by high-dose PLA, accompanied by the emergence of root nodulation, which may represent an adaptive strategy for peanuts to overcome N deficiency caused by PLA MPs pollution. Our findings indicate that MPs can change peanut-N fixing bacteria systems in a type- and dose-dependent manner, and biodegradable MPs may have more profound consequences for N biogeochemical cycling than traditional MPs.
Collapse
Affiliation(s)
- Quanlong Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province 266042, PR China
| | - Xueying Feng
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province 266042, PR China
| | - Yingying Liu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province 266042, PR China
| | - Wenguang Li
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province 266042, PR China
| | - Wenzhi Cui
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province 266042, PR China
| | - Yuhuan Sun
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province 266042, PR China
| | - Shuwu Zhang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province 266042, PR China
| | - Fayuan Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province 266042, PR China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
165
|
Li R, Wang J, Deng J, Peng G, Wang Y, Li T, Liu B, Zhang Y. Selective enrichments for color microplastics loading of marine lipophilic phycotoxins. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132137. [PMID: 37499500 DOI: 10.1016/j.jhazmat.2023.132137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/13/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023]
Abstract
Microplastics (MPs) and marine lipophilic phycotoxins (MLPs) are two classes of emerging contaminants. Together, they may exacerbate the negative impacts on nearshore marine ecosystems. Herein, the loading of 14 representative MLPs, closely related to toxin-producing algae, on MPs and their relations with colorful MPs have been explored for the first time based on both field and lab data. The objectives of our study are to explore the roles of multiple factors (waterborne MLPs and MP characteristics) in the loading of MLPs by MPs with the applications of various statistical means, and to further explore the role of the color of MP in the loading of specific MLPs through lab simulation experiments. Our results demonstrated that MPs color determined the loading of some specific MLPs on MPs and green MPs can load much more than other colorful fractions (p < 0.05). These interesting phenomena illustrated that the color effects on the loading processes of MLPs on MPs are a dynamic process, and it can be well explained by the shading effect of MP color, which may affect the growth and metabolism of the attached toxic-producing algae on MPs and hence the production of specific MLPs. Furthermore, loading of MLPs on MPs can be considered as the comprehensive physicochemical and biological processes. Our results caution us that special attention should be paid to explore the real-time dynamic color shading effects on all kinds of bio-secreted contaminants loading on MPs, and highlight the necessary to comprehensive investigate the interaction between biota, organic contaminants and MPs.
Collapse
Affiliation(s)
- Ruilong Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| | - Jiuming Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Environmental Science Research Center, Xiamen University, Xiamen 361102, China
| | - Jun Deng
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Gen Peng
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Yijin Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Tiezhu Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Beibei Liu
- Institute of Environmental and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yong Zhang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Environmental Science Research Center, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
166
|
Shen L, Zhang P, Lin Y, Huang X, Zhang S, Li Z, Fang Z, Wen Y, Liu H. Polystyrene microplastic attenuated the toxic effects of florfenicol on rice (Oryza sativa L.) seedlings in hydroponics: From the perspective of oxidative response, phototoxicity and molecular metabolism. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132176. [PMID: 37523959 DOI: 10.1016/j.jhazmat.2023.132176] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/16/2023] [Accepted: 07/26/2023] [Indexed: 08/02/2023]
Abstract
Antibiotics and microplastics (MPs) are two emerging pollutants in agroecosystems, however the effects of co-exposure to antibiotics and MPs remain unclear. The toxicity of florfenicol (FF) and polystyrene microplastics (PS-MPs) on rice seedlings was investigated. FF and PS-MPs caused colloidal agglomeration, which changed the environmental behavior of FF. FF inhibited rice growth and altered antioxidant enzyme (superoxide dismutase, peroxidase, and catalase) activities, leading to membrane lipid peroxidation; impaired photosynthetic systems, decreased photosynthetic pigments (Chlorophyll a, Chlorophyll b, and carotene), chlorophyll precursors (Proto IX, Mg-Proto IX, and Pchlide), photosynthetic and respiratory rates. The key photosynthesis related genes (PsaA, PsaB, PsbA, PsbB, PsbC, and PsbD) were significantly down-regulated. The ultrastructure of mesophyll cells was destroyed with chloroplast swelling, membrane surface blurring, irregular thylakoid lamellar structure, and number of peroxisomes increased. PS-MPs mitigated FF toxicity, and the IBR index values showed that 10 mg∙L-1 PS-MPs were more effective. Metabolomic analysis revealed that the abundance of metabolites and metabolic pathways were altered by FF, was greater than the combined "MPs-FF" contamination. The metabolism of amino acids, sugars, and organic acids were severely interfered. Among these, 15 metabolic pathways were significantly altered, with the most significant effects on phenylalanine metabolism and the citric acid cycle (p < 0.05).
Collapse
Affiliation(s)
- Luoqin Shen
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Ping Zhang
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Yanyao Lin
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Xinting Huang
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Siyi Zhang
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Zhiheng Li
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Zhiguo Fang
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China
| | - Yuezhong Wen
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Huijun Liu
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, Zhejiang Gongshang University, Hangzhou 310018, Zhejiang Province, China.
| |
Collapse
|
167
|
Liu J, Feng Q, Yang H, Fan X, Jiang Y, Wu T. Acute toxicity of tire wear particles and leachate to Daphnia magna. Comp Biochem Physiol C Toxicol Pharmacol 2023; 272:109713. [PMID: 37544637 DOI: 10.1016/j.cbpc.2023.109713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Tire wear particles (TWP) are a new pollutant widely present in the environment, and have been identified as microplastics (MPs), which are receiving increasing attention due to their toxic effects on aquatic organisms. In this study, D. magna was used as test organism, and the leachate from TWP was prepared by hot water extraction for 30 (30-E) and 120 min (120-E). The acute toxic effects of particles and leachate on D. magna were studied under different exposure concentrations. The results showed that zinc and pyrene were the highest detected contaminants in the leachate. The 48 h-LC50 values for particles and leachate were determined to be 56.99, 461.30 (30-E), and 153.00 mg/L (120-E), respectively. Following a 48 h exposure period, the immobilization of D. magna exposed to the particles and their leachate were increased with the concentration increase. The physical damage of the gut was found to be a possible mechanism for particle-induced biotoxicity. The compounds leached from TWP were responsible for the acute toxicity of leachate. Particles usually demonstrated a greater degree of toxicity in comparison to their leachate, especially at environmentally relevant concentrations. Exposure to particles and leachate resulted in the inhibition of swimming speed, swimming acceleration, filtration rate, and ingestion rate in D. magna. Furthermore, thoracic limb activity was observed to be inhibited. The heart rate of D. magna was significantly increased by the presence of particles at a concentration of 200 mg/L and leachate at concentrations of 400 and 800 mg/L (120-E). The observed alterations in behavior and physiological endpoints may be related to oxidative stress and neurotoxicity in the organism. Reduced superoxide dismutase (SOD) and total antioxidant capacity (T-AOC) activities indicated that D. magna may suffer from excessive oxidative stress, whereas the increase of acetylcholinesterase (AChE) activity may serve as a biomarker of susceptibility to evaluate the environmental risks of TWP and corresponding leachates as potential aquatic pollutants.. Therefore, a more comprehensive risk assessment of TWP in the environment is necessary.
Collapse
Affiliation(s)
- Jiaqiang Liu
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China; College of Environmental Engineering, Xuzhou University of Technology, Xuzhou, Jiangsu 221111, China
| | - Qiyan Feng
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China.
| | - Haohan Yang
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Xiulei Fan
- College of Environmental Engineering, Xuzhou University of Technology, Xuzhou, Jiangsu 221111, China
| | - Yuanyuan Jiang
- Xuzhou Environmental Monitoring Center, Xuzhou, Jiangsu 221018, China
| | - Tao Wu
- Xuzhou Environmental Monitoring Center, Xuzhou, Jiangsu 221018, China
| |
Collapse
|
168
|
Devi K, Singh AD, Dhiman S, Kour J, Bhardwaj T, Sharma N, Madaan I, Khanna K, Ohri P, Singh AP, Sirhindi G, Bhardwaj R, Kumar V. Current studies on the degradation of microplastics in the terrestrial and aquatic ecosystem. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:102010-102026. [PMID: 37670091 DOI: 10.1007/s11356-023-29640-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 08/28/2023] [Indexed: 09/07/2023]
Abstract
Soil and water are two important basic ecosystems for the survival of different organisms. The excessive microplastic pollutants in soil have been directly discharged into the terrestrial ecosystems. Microplastic pollutants (MPs) constitute a ubiquitous global menace due to their durability, flexibility, and tough nature. MPs posed threat to the sustainability of the ecosystem due to their small size and easy transportation via ecological series resulting in the accumulation of MPs in aquatic and terrestrial ecosystems. After being emitted into the terrestrial ecosystem, the MPs might be aged by oxidative degeneration (photo/thermal), reprecipitation (bioturbation), and hetero-accumulation. The mechanism of adsorption, degradation, and breakdown of MPs into unaffected plastic debris is accomplished by using several biological, physical, and chemical strategies. This review presents the importance of ecosystems, occurrence and sources of MPs, its toxicity, and the alteration in the ecology of the ecosystems. The inhibitory impact of MPs on the ecosystems also documents to unveil the ecological hazards of MPs. Further research is required to study the immobilization and recovery efficiency of MPs on a larger scale.
Collapse
Affiliation(s)
- Kamini Devi
- Department of Botanical and Environmental Sciences, Amritsar, Punjab, 143005, India
| | - Arun Dev Singh
- Department of Botanical and Environmental Sciences, Amritsar, Punjab, 143005, India
| | - Shalini Dhiman
- Department of Botanical and Environmental Sciences, Amritsar, Punjab, 143005, India
| | - Jaspreet Kour
- Department of Botanical and Environmental Sciences, Amritsar, Punjab, 143005, India
| | - Tamanna Bhardwaj
- Department of Botanical and Environmental Sciences, Amritsar, Punjab, 143005, India
| | - Neerja Sharma
- Department of Botanical and Environmental Sciences, Amritsar, Punjab, 143005, India
| | - Isha Madaan
- Government College of Education, Jalandhar, Punjab, 144001, India
- Department of Botany, Punjabi University, Patiala, Punjab, 147002, India
| | - Kanika Khanna
- Department of Botany, D.A.V. University, Jalandhar, Punjab, 144001, India
| | - Puja Ohri
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Amrit Pal Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Geetika Sirhindi
- Department of Botany, Punjabi University, Patiala, Punjab, 147002, India
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Amritsar, Punjab, 143005, India
| | - Vinod Kumar
- Department of Botany, Government Degree College, Jammu and Kashmir, Ramban, India.
| |
Collapse
|
169
|
Ng MS, Todd PA. The comparative effects of chronic microplastic and sediment deposition on the scleractinian coral Merulina ampliata. MARINE ENVIRONMENTAL RESEARCH 2023; 191:106135. [PMID: 37598615 DOI: 10.1016/j.marenvres.2023.106135] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/30/2023] [Accepted: 08/10/2023] [Indexed: 08/22/2023]
Abstract
Despite increasing research into the effects of microplastics on corals, no study to date has compared this relatively novel pollutant with a well-established stressor such as downwelling sediments. Here, Merulina ampliata coral fragments were exposed to polyethylene terephthalate (PET) and calcium carbonate particles (200-300 μm) at two deposition levels, high (115.20 ± 5.83 mg cm-2 d-1, mean ± SE) and low (22.87 ± 1.90 mg cm-2 d-1) in specially-designed Flow-Through Resuspension (FloTR) chambers. After 28 d, there were no significant differences between fragments exposed to sediments and microplastics for coral skeletal growth, Symbiodiniaceae density, and areal or cellular chlorophyll a concentrations. There were also no significant differences between levels of treatments, or with the control fragments. More PET microplastic particles were incorporated into the coral skeletons of fragments exposed to microplastics compared to those exposed to sediment and the control fragments, but there was no difference between fragments exposed to high and low microplastic levels. Together, the results show that M. ampliata appears to be able to cope with both microplastic and sediment stress, and suggests that microplastics do not represent a more serious threat than downwelling sediments at the levels tested.
Collapse
Affiliation(s)
- Ming Sheng Ng
- Experimental Marine Ecology Laboratory, Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore; Yale-NUS College, National University of Singapore, 16 College Avenue West, Singapore, 138527, Singapore.
| | - Peter A Todd
- Experimental Marine Ecology Laboratory, Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore.
| |
Collapse
|
170
|
Tian X, Weixie L, Wang S, Zhang Y, Xiang Q, Yu X, Zhao K, Zhang L, Penttinen P, Gu Y. Effect of polylactic acid microplastics and lead on the growth and physiological characteristics of buckwheat. CHEMOSPHERE 2023; 337:139356. [PMID: 37379973 DOI: 10.1016/j.chemosphere.2023.139356] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 06/17/2023] [Accepted: 06/25/2023] [Indexed: 06/30/2023]
Abstract
Microplastics (MPs) and heavy metals are common, often co-existing pollutants, that threaten crop growth and productivity worldwide. We analysed the adsorption of lead ions (Pb2+) to polylactic acid MPs (PLA-MPs) and their single factor and combined effects on tartary buckwheat (Fagopyrum tataricum L. Gaertn.) in hydroponics by measuring changes in the growth characteristics, antioxidant enzyme activities and Pb2+ uptake of buckwheat in response to PLA-MPs and Pb2+. PLA-MPs adsorbed Pb2+, and the better fitting second-order adsorption model implied that Pb2+ was adsorbed by chemisorption. However, the similar Pb2+ contents in the plants treated with Pb2+ only and those treated with the combined PLA-MPs-Pb2+ suggested that the adsorption played no role in the uptake of Pb2+. Low concentrations of PLA-MPs promoted shoot length. At high concentrations of both PLA-MPs and Pb2+, buckwheat growth was inhibited, and leaf peroxidase (POD), superoxide dismutase (SOD) and catalase (CAT) activities and malondialdehyde (MDA) contents were higher than in the control. No significant differences were observed in seedling growth between exposure to Pb2+ only and combined exposure to PLA-MPs with Pb2+, implying that PLA-MPs did not increase the toxicity of Pb2+ at macroscopic level. POD activity was higher and chlorophyll content was lower with PLA-MPs in the low Pb2+ dose treatments, suggesting that PLA-MPs may increase the toxicity of naturally occurring Pb2+. However, the conclusions must be verified in controlled experiments in natural soil conditions over the whole cultivation period of buckwheat.
Collapse
Affiliation(s)
- Xianrui Tian
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Luyao Weixie
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shuya Wang
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yanyan Zhang
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Quanju Xiang
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiumei Yu
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ke Zhao
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lingzi Zhang
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Petri Penttinen
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Yunfu Gu
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
171
|
Liu Q, Jiang D, Zhou H, Yuan X, Wu C, Hu C, Luque R, Wang S, Chu S, Xiao R, Zhang H. Pyrolysis-catalysis upcycling of waste plastic using a multilayer stainless-steel catalyst toward a circular economy. Proc Natl Acad Sci U S A 2023; 120:e2305078120. [PMID: 37695879 PMCID: PMC10523629 DOI: 10.1073/pnas.2305078120] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/14/2023] [Indexed: 09/13/2023] Open
Abstract
Current un-sustainable plastic management is exacerbating plastic pollution, an urgent shift is thus needed to create a recycling society. Such recovering carbon (C) and hydrogen (H) from waste plastic has been considered as one practical route to achieve a circular economy. Here, we performed a simple pyrolysis-catalysis deconstruction of waste plastic via a monolithic multilayer stainless-steel mesh catalyst to produce multiwalled carbon nanotubes (MWCNTs) and H2, which are important carbon material and energy carrier to achieve sustainable development. Results revealed that the C and H recovery efficiencies were as high as 86% and 70%, respectively. The unique oxidation-reduction process and improvement of surface roughness led to efficient exposure of active sites, which increased MWCNTs by suppressing macromolecule hydrocarbons. The C recovery efficiency declined by only 5% after 10 cycles, proving the long-term employment of the catalyst. This catalyst can efficiently convert aromatics to MWCNTs by the vapor-solid-solid mechanism and demonstrate good universality in processing different kinds of waste plastics. The produced MWCNTs showed potential in applications of lithium-ion batteries and telecommunication. Owing to the economic profits and environmental benefits of the developed route, we highlighted its potential as a promising alternative to conventional incineration, simultaneously achieving the waste-to-resource strategy and circular economy.
Collapse
Affiliation(s)
- Qingyu Liu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Department of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Dongyang Jiang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Department of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Hui Zhou
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
| | - Xiangzhou Yuan
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Department of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Chunfei Wu
- Department of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast BT7 1NN, United Kingdom
| | - Changsong Hu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Department of Energy and Environment, Southeast University, Nanjing 210096, China
- Department of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Rafael Luque
- Department of Engineering, Universitá degli studi Mediterranea di Reggio Calabria, Reggio Calabria I89122, Italy
| | - Shurong Wang
- State Key Laboratory of Clean Energy Utilization, Department of Energy and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Sheng Chu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Department of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Rui Xiao
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Department of Energy and Environment, Southeast University, Nanjing 210096, China
| | - Huiyan Zhang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Department of Energy and Environment, Southeast University, Nanjing 210096, China
| |
Collapse
|
172
|
Chattopadhyay P, Ariza-Tarazona MC, Cedillo-González EI, Siligardi C, Simmchen J. Combining photocatalytic collection and degradation of microplastics using self-asymmetric Pac-Man TiO 2. NANOSCALE 2023; 15:14774-14781. [PMID: 37465854 DOI: 10.1039/d3nr01512b] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Microplastics are a significant environmental threat and the lack of efficient removal techniques further amplifies this crisis. Photocatalytic semiconducting nanoparticles have the potential to degrade micropollutants, among them microplastics. The hydrodynamic effects leading to the propulsion of micromotors can lead to the accumulation of microplastics in close vicinity of the micromotor. Incorporating these different properties into a single photocatalytic micromotor (self-propulsion, phoretic assembly of passive colloids and photocatalytic oxidation of contaminants), we achieve a highly scalable, inherently-asymmetric Pac-Man TiO2 micromotor with the ability to actively collect and degrade microplastics. The target microplastics are homogeneous polystyrene microspheres (PS) to facilitate the optical degradation measurements. We cross-correlate the degradation with catalytic activity studies and critically evaluate the timescales required for all involved processes.
Collapse
Affiliation(s)
| | - Maria Camila Ariza-Tarazona
- Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia, Via P. Vivarelli 10/1, 41125 Modena, Italy
| | - Erika Iveth Cedillo-González
- Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia, Via P. Vivarelli 10/1, 41125 Modena, Italy
| | - Cristina Siligardi
- Department of Engineering "Enzo Ferrari", University of Modena and Reggio Emilia, Via P. Vivarelli 10/1, 41125 Modena, Italy
| | - Juliane Simmchen
- Chair of Physical Chemistry, TU Dresden, Zellescher Weg 19, Dresden, Germany.
- Pure and Applied Chemistry, University of Strathclyde, Glasgow G1 1BX, UK
| |
Collapse
|
173
|
Wang Y, Qian X, Chen J, Yuan X, Zhu N, Chen Y, Fan T, Li M, Toland H, Feng Z. Co-exposure of polystyrene microplastics influence cadmium trophic transfer along the "lettuce-snail" food chain: Focus on leaf age and the chemical fractionations of Cd in lettuce. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 892:164799. [PMID: 37302614 DOI: 10.1016/j.scitotenv.2023.164799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/25/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) and polystyrene microplastics (PS) co-contamination always occurs in environment; however, the trophic transfer of Cd and PS is still poorly understood. A hydroponic experiment was conducted to investigate the behavior of Cd in lettuce, together with the root or foliar exposure of different sized PS. Accumulation and chemical form distributions of Cd in leaves were distinguished into young and mature leaves. Subsequently, a 14-day snail feeding experiment was performed. Data showed that Cd accumulation in roots, rather than in leaves, are significantly affected by PS coexistence. However, mature leaves had a higher Cd content than young leaves under the root exposure of PS, while a reverse effect was observed in the foliar exposure. There existed a positive correlation between the food-chain transfer associated Cd (CdFi+Fii+Fiii) in mature leaves and Cd content in snail soft tissue (r = 0.705, p < 0.001), but not in young leaves. Though no bio-amplification of Cd in food chain was observed, an increase of Cd transfer factor (TF) from lettuce to snail was noted in the root exposure of 5 μm PS and the foliar exposure of 0.2 μm PS. Moreover, we observed a highest increase rate of 36.8 % in TF values from lettuce to snail viscera, and a chronic inflammatory response in snail stomach tissue. Therefore, more attentions should be paid to study the ecological risks of heavy metals and microplastics co-contamination in environment.
Collapse
Affiliation(s)
- Yimin Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Xinyue Qian
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Juan Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Xuyin Yuan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Ningyuan Zhu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Yudong Chen
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, PR China
| | - Tingting Fan
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, PR China
| | - Ming Li
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, PR China
| | - Harry Toland
- Geography & Earth Sciences, Aberystwyth University, Llandinam Building, Penglais Campus, Aberystwyth, Wales SY23 3DB, United Kingdom
| | - Zhiwang Feng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
174
|
Gopalakrishnan KK, Kashian DR. Complex interactions among temperature, microplastics and cyanobacteria may facilitate cyanobacteria proliferation and microplastic deposition. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115259. [PMID: 37473702 DOI: 10.1016/j.ecoenv.2023.115259] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 07/22/2023]
Abstract
Cyanobacterial blooms are a global concern prone to causing environmental and economic damages and are tightly linked to anthropogenic nutrient inputs. Likewise, microplastic pollution has also become globally ubiquitous inevitably co-occurring with blooms. However, little is known on how microplastics influence cyanobacterial physiologically and how potential physiological changes can affect their buoyancy, ultimately impacting their fate, and transport, including deposition during bloom events. Interactions of environmental relevant concentrations of high-density polyethylene microplastics (MPs) (0-0.4 mg/mL) and temperatures (2.5-32.5 °C) were evaluated to assess the effects of MPs on interactions of cyanobacteria Anabaena variabilis's growth, total organic carbon concentrations, extracellular polymeric substances (EPS) production, and MP deposition. Microplastics both stimulated and inhibited A. variabilis growth depending on the concentration. Lower MPs concentrations (0.1-0.2 mg/L) increased A. variabilis growth while higher MP concentrations (>0.3 mg/mL) impeded it across all temperatures studied. Carbon sources leached from MPs may have been a contributing factor to the increased growth at lower MPs concentration, while higher MPs concentration potentially shaded A. variabilis inhibiting its growth. Shading may have induced stress which corresponded with an observed increase in EPS production by A. variabilis when exposed to MP. Extracellular polymeric substances generation activated under adverse circumstances (MPs 0.4 mg/mL) enhanced MP deposition. Overall, our findings indicate that MPs play an important role in cyanobacterial blooms, and that these blooms may enhance MPs deposition.
Collapse
Affiliation(s)
| | - Donna R Kashian
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
175
|
Mészáros E, Bodor A, Kovács E, Papp S, Kovács K, Perei K, Feigl G. Impacts of Plastics on Plant Development: Recent Advances and Future Research Directions. PLANTS (BASEL, SWITZERLAND) 2023; 12:3282. [PMID: 37765446 PMCID: PMC10538034 DOI: 10.3390/plants12183282] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023]
Abstract
Plastics have inundated the world, with microplastics (MPs) being small particles, less than 5 mm in size, originating from various sources. They pervade ecosystems such as freshwater and marine environments, soils, and the atmosphere. MPs, due to their small size and strong adsorption capacity, pose a threat to plants by inhibiting seed germination, root elongation, and nutrient absorption. The accumulation of MPs induces oxidative stress, cytotoxicity, and genotoxicity in plants, which also impacts plant development, mineral nutrition, photosynthesis, toxic accumulation, and metabolite production in plant tissues. Furthermore, roots can absorb nanoplastics (NPs), which are then distributed to stems, leaves, and fruits. As MPs and NPs harm organisms and ecosystems, they raise concerns about physical damage and toxic effects on animals, and the potential impact on human health via food webs. Understanding the environmental fate and effects of MPs is essential, along with strategies to reduce their release and mitigate consequences. However, a full understanding of the effects of different plastics, whether traditional or biodegradable, on plant development is yet to be achieved. This review offers an up-to-date overview of the latest known effects of plastics on plants.
Collapse
Affiliation(s)
- Enikő Mészáros
- Department of Plant Biology, University of Szeged, Közép fasor 52, H6726 Szeged, Hungary
| | - Attila Bodor
- Department of Biotechnology, University of Szeged, Közép fasor 52, H6726 Szeged, Hungary; (A.B.); (K.P.)
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, H6726 Szeged, Hungary
| | - Etelka Kovács
- Department of Biotechnology, University of Szeged, Közép fasor 52, H6726 Szeged, Hungary; (A.B.); (K.P.)
| | - Sarolta Papp
- Department of Plant Biology, University of Szeged, Közép fasor 52, H6726 Szeged, Hungary
| | - Kamilla Kovács
- Department of Plant Biology, University of Szeged, Közép fasor 52, H6726 Szeged, Hungary
| | - Katalin Perei
- Department of Biotechnology, University of Szeged, Közép fasor 52, H6726 Szeged, Hungary; (A.B.); (K.P.)
| | - Gábor Feigl
- Department of Plant Biology, University of Szeged, Közép fasor 52, H6726 Szeged, Hungary
| |
Collapse
|
176
|
Kauts S, Mishra Y, Yousuf S, Bhardwaj R, Singh SK, Alshabrmi FM, Abdurahman M, Vamanu E, Singh MP. Toxicological Profile of Polyethylene Terephthalate (PET) Microplastic in Ingested Drosophila melanogaster (Oregon R +) and Its Adverse Effect on Behavior and Development. TOXICS 2023; 11:782. [PMID: 37755792 PMCID: PMC10537121 DOI: 10.3390/toxics11090782] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023]
Abstract
Microplastics are readily available in the natural environment. Due to the pervasiveness of microplastic pollution, its effects on living organisms necessitate further investigation. The size, time of exposure, and amount of microplastic particles appear to be the most essential factor in determining their toxicological effects, either organismal or sub-organismal. For our research work, we preferred to work on a terrestrial model organism Drosophila melanogaster (Oregon R+). Therefore, in the present study, we characterized 2-100 µm size PET microplastic and confirmed its accumulation in Drosophila, which allowed us to proceed further in our research work. At larger dosages, research on locomotory activities such as climbing, jumping, and crawling indicated a decline in physiological and neuromuscular functions. Our studies also determined retarded development in flies and decreased survival rate in female flies after exposure to the highest concentration of microplastics. These experimental findings provide insight into the possible potential neurotoxic effects of microplastics and their detrimental effects on the development and growth of flies.
Collapse
Affiliation(s)
- Simran Kauts
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar 144411, India
| | - Yachana Mishra
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar 144411, India
| | - Sumaira Yousuf
- Department of Zoology, School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar 144411, India
| | - Rima Bhardwaj
- Department of Chemistry Poona College, Savitribai Phule Pune University, Pune 411007, India
| | - Sandeep K. Singh
- Indian Scientific Education and Technology Foundation, Lucknow 226002, India
| | - Fahad M. Alshabrmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Mahmoud Abdurahman
- Department of PH, College of Medicine, Imam Muhammad Ibn Saud Islamic University, Riyadh 13317, Saudi Arabia
| | - Emanuel Vamanu
- Faculty of Biotechnology, University of Agricultural Sciences and Veterinary Medicine, 011464 Bucharest, Romania
| | - Mahendra P. Singh
- Department of Zoology, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur 273009, India
- Centre of Genomics and Bioinformatics (CGB), Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur 273009, India
| |
Collapse
|
177
|
Chen L, Wang D, Sun T, Fan T, Wu S, Fang G, Yang M, Zhou D. Quantification of the redox properties of microplastics and their effect on arsenite oxidation. FUNDAMENTAL RESEARCH 2023; 3:777-785. [PMID: 38933300 PMCID: PMC11197510 DOI: 10.1016/j.fmre.2022.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/23/2022] [Accepted: 03/29/2022] [Indexed: 10/18/2022] Open
Abstract
Microplastics have attracted global concern. The environmental-weathering processes control their fate, transport, transformation, and toxicity to wildlife and human health, but their impacts on biogeochemical redox processes remain largely unknown. Herein, multiple spectroscopic and electrochemical approaches in concert with wet-chemistry analyses were employed to characterize the redox properties of weathered microplastics. The spectroscopic results indicated that weathering of phenol-formaldehyde resins (PFs) by hydrogen peroxide (H2O2) led to a slight decrease in the content of phenol functional groups, accompanied by an increase in semiquinone radicals, quinone, and carboxylic groups. Electrochemical and wet-chemistry quantifications, coupled with microbial-chemical characterizations, demonstrated that the PFs exhibited appreciable electron-donating capacity (0.264-1.15 mmol e- g-1) and electron-accepting capacity (0.120-0.300 mmol e- g-1). Specifically, the phenol groups and semiquinone radicals were responsible for the electron-donating capacity, whereas the quinone groups dominated the electron-accepting capacity. The reversible redox peaks in the cyclic voltammograms and the enhanced electron-donating capacity after accepting electrons from microbial reduction demonstrated the reversibility of the electron-donating and -accepting reactions. More importantly, the electron-donating phenol groups and weathering-induced semiquinone radicals were found to mediate the production of H2O2 from oxygen for arsenite oxidation. In addition to the H2O2-weathered PFs, the ozone-aged PF and polystyrene were also found to have electron-donating and arsenite-oxidation capacity. This study reports important redox properties of microplastics and their effect in mediating contaminant transformation. These findings will help to better understand the fate, transformation, and biogeochemical roles of microplastics on element cycling and contaminant fate.
Collapse
Affiliation(s)
- Lin Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Dengjun Wang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Tianran Sun
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Tingting Fan
- Ministry of Environmental Protection of the People's Republic of China, Nanjing Institute of Environmental Sciences, Nanjing 210008, China
| | - Song Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Guodong Fang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Min Yang
- Ministry of Environmental Protection of the People's Republic of China, Nanjing Institute of Environmental Sciences, Nanjing 210008, China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
178
|
Kaur M, Yang K, Wang L, Xu M. Interactive effects of polyethylene microplastics and cadmium on growth of Glycine max. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:101178-101191. [PMID: 37648924 DOI: 10.1007/s11356-023-29534-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/22/2023] [Indexed: 09/01/2023]
Abstract
The interaction of microplastics (MPs) and heavy metals (HMs) can lead to aggravation of detrimental effects in the plants, animals, and even human beings. Keeping this in view, the present study was designed to assess the combined toxic effects of polyethylene MPs (PE-MPs) and cadmium (Cd) on germination indices and seedling growth of soybean (Glycine max). Particle sizes of 13 and 6.5 μm and six treatments (control, Cd, 6.5 μm PE, 6.5 μm PE + Cd, 13 μm PE, and 13 μm PE + Cd) were set to simulate the effects of PE-MPs and Cd on the growth of soybean when used alone or in combined form. As compared to the control, 6.5 μm PE treatment showed significant effect on most of the germination indices, i.e., decrease in the germination index by 31%, 44% decrease in the vigor index, and 28% decrease in germination rate whereas mean germination time showed no significant differences. Treatment of smaller-size PE-MPs and Cd significantly inhibited both dry and fresh weights. All treatment groups resulted in significant effect on catalase, peroxidase, and superoxide dismutase activities of seedlings depicting adverse effects of interaction of PE-MPs and Cd. Our findings demonstrated the phyto-toxicity of PE-MPs and Cd in G. max, and it would lead to serious implications in human beings. Our study is important as it provides preliminary information regarding MP absorption and their accumulation in different levels of food chain. It can also form the basis for future research on single the combined effects of different types and sizes of MPs and heavy metals on the terrestrial plants.
Collapse
Affiliation(s)
- Mandeep Kaur
- College of Geography and Environmental Science, Henan University, Jinming Campus, Kaifeng, 475004, Henan, China
- Henan Key Laboratory of Earth System Observation and Modeling, Henan University, Jinming Campus, Kaifeng, 475004, Henan, China
| | - Ke Yang
- Jinming Campus, Miami College, Henan University, Kaifeng, 475004, Henan, China
| | - Lin Wang
- College of Geography and Environmental Science, Henan University, Jinming Campus, Kaifeng, 475004, Henan, China.
- Henan Key Laboratory of Earth System Observation and Modeling, Henan University, Jinming Campus, Kaifeng, 475004, Henan, China.
- Jinming Campus, Miami College, Henan University, Kaifeng, 475004, Henan, China.
| | - Ming Xu
- College of Geography and Environmental Science, Henan University, Jinming Campus, Kaifeng, 475004, Henan, China
- Henan Key Laboratory of Earth System Observation and Modeling, Henan University, Jinming Campus, Kaifeng, 475004, Henan, China
- BNU-HKUST Laboratory for Green Innovation, Beijing Normal University, Zhuhai, China
| |
Collapse
|
179
|
Muhib MI, Rahman MM. Microplastics contamination in fish feeds: Characterization and potential exposure risk assessment for cultivated fish of Bangladesh. Heliyon 2023; 9:e19789. [PMID: 37809616 PMCID: PMC10559114 DOI: 10.1016/j.heliyon.2023.e19789] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 10/10/2023] Open
Abstract
Fish feed is becoming an increasingly vital source of nourishment for farmed fish, which are mainly coming from marine fish and agricultural sources. Anthropogenic particles, such as microplastics, are abundant in both marine fish and agricultural byproducts that are utilized to make fish feed. This study investigated whether fish feed could be a source of microplastic contamination, and revealed that a 20 weeks adult farmed tilapia fish might consume up to 268.45 ± 1.438 microplastic particles via fish feed where finisher type feeds were found to be mostly contributory in this number. The microplastics were initially observed with a stereomicroscope and FESEM-EDS. Polymeric composition of microplastics was determined to be polypropylene (PP), nylon-6 (NY-6), polyethylene terephthalate (PET), polystyrene (PS), polyvinyl alcohol (PVA), polyethylene (PE), high- and low-density polyethylene (HDPE, LDPE), ethylene vinyl acetate (EVA), polycarbonate (PC), poly vinyl acetate (PVAc), poly urethane (PU) and polyvinyl chloride (PVC) by FTIR. Results also revealed that the size of microplastic particles in all fish feed ranged from 14 μm to 4480 μm, with 550 ± 45.45 to 11,600 ± 56.1 microplastic particles/kg of fish feed. The FESEM-EDS data demonstrated to overlook the microplastic surface along with attachment of heavy metals onto that surface such as Pb, Ni, and Co in finisher type feed that could create additional health risks.
Collapse
Affiliation(s)
- Md Iftakharul Muhib
- Laboratory of Environmental Health and Ecotoxicology, Department of Environmental Sciences, Jahangirnagar University, Dhaka, 1342, Bangladesh
- Department of Environmental Sciences, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Md Mostafizur Rahman
- Laboratory of Environmental Health and Ecotoxicology, Department of Environmental Sciences, Jahangirnagar University, Dhaka, 1342, Bangladesh
- Department of Environmental Sciences, Jahangirnagar University, Dhaka, 1342, Bangladesh
| |
Collapse
|
180
|
Lin YD, Huang PH, Chen YW, Hsieh CW, Tain YL, Lee BH, Hou CY, Shih MK. Sources, Degradation, Ingestion and Effects of Microplastics on Humans: A Review. TOXICS 2023; 11:747. [PMID: 37755757 PMCID: PMC10534390 DOI: 10.3390/toxics11090747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/24/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023]
Abstract
Celluloid, the predecessor to plastic, was synthesized in 1869, and due to technological advancements, plastic products appear to be ubiquitous in daily life. The massive production, rampant usage, and inadequate disposal of plastic products have led to severe environmental pollution. Consequently, reducing the employment of plastic has emerged as a pressing concern for governments globally. This review explores microplastics, including their origins, absorption, and harmful effects on the environment and humans. Several methods exist for breaking down plastics, including thermal, mechanical, light, catalytic, and biological processes. Despite these methods, microplastics (MPs, between 1 and 5 mm in size) continue to be produced during degradation. Acknowledging the significant threat that MPs pose to the environment and human health is imperative. This form of pollution is pervasive in the air and food and infiltrates our bodies through ingestion, inhalation, or skin contact. It is essential to assess the potential hazards that MPs can introduce. There is evidence suggesting that MPs may have negative impacts on different areas of human health. These include the respiratory, gastrointestinal, immune, nervous, and reproductive systems, the liver and organs, the skin, and even the placenta and placental barrier. It is encouraging to see that most of the countries have taken steps to regulate plastic particles. These measures aim to reduce plastic usage, which is essential today. At the same time, this review summarizes the degradation mechanism of plastics, their impact on human health, and plastic reduction policies worldwide. It provides valuable information for future research on MPs and regulatory development.
Collapse
Affiliation(s)
- Yan-Duan Lin
- Department of Seafood Science, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; (Y.-D.L.); (C.-Y.H.)
| | - Ping-Hsiu Huang
- School of Food, Jiangsu Food and Pharmaceutical Science College, No.4, Meicheng Road, Higher Education Park, Huai’an 223003, China;
| | - Yu-Wei Chen
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan; (Y.-W.C.); (C.-W.H.)
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan;
| | - Chang-Wei Hsieh
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan; (Y.-W.C.); (C.-W.H.)
- Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan
| | - You-Lin Tain
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan;
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
- College of Medicine, Chang Gung University, Taoyuan 33305, Taiwan
| | - Bao-Hong Lee
- Department of Horticulture, National Chiayi University, Chiayi 60004, Taiwan;
| | - Chih-Yao Hou
- Department of Seafood Science, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; (Y.-D.L.); (C.-Y.H.)
| | - Ming-Kuei Shih
- Graduate Institute of Food Culture and Innovation, National Kaohsiung University of Hospitality and Tourism, Kaohsiung 812301, Taiwan
| |
Collapse
|
181
|
Li X, Kong Y, Juhasz AL, Zhou P, Zhang Q, Cui X. Effect of Microplastic Types on the In Vivo Bioavailability of Polychlorinated Biphenyls. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12838-12846. [PMID: 37587565 DOI: 10.1021/acs.est.3c04068] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
As MPs are released into the soil, various equilibrium statuses are expected. MPs could play roles as a "source," a "cleaner," or a "sink" of HOCs. Three types of MPs (LDPE, PLA, and PS) were selected to study their effect on polychlorinated biphenyl (PCBs) relative bioavailability (RBA) measured by a mouse model. As a "source" of HOCs, exposure to MP-sorbed PCBs resulted in their accumulation in adipose tissue with PCB RBA as 101 ± 6.73% for LDPE, 76.2 ± 19.2% for PLA, and 9.22 ± 2.02% for PS. The addition of 10% MPs in PCB-contaminated soil led to a significant (p < 0.05) reduction in PCB RBA (52.2 ± 16.7%, 49.3 ± 4.85%, and 47.1 ± 5.99% for LDPE, PLA, and PS) compared to control (75.0 ± 4.26%), implying MPs acted as "cleaner" by adsorbing PCBs from the digestive system and reducing PCB accumulation. MPs acted as a "sink" for PCBs in contaminated soil after aging, but the sink effect varied among MP types with more pronounced effect for LDPE than PLA and PS. Therefore, the role played by MPs in bioavailability of HOCs closely depended on the MP types as well as the equilibrium status among MPs, soil, and HOCs.
Collapse
Affiliation(s)
- Xinyu Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yi Kong
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Albert L Juhasz
- Future Industries Institute, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Pengfei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Qian Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xinyi Cui
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
182
|
Wang L, Li S, Ahmad IM, Zhang G, Sun Y, Wang Y, Sun C, Jiang C, Cui P, Li D. Global face mask pollution: threats to the environment and wildlife, and potential solutions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 887:164055. [PMID: 37178835 PMCID: PMC10174332 DOI: 10.1016/j.scitotenv.2023.164055] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/20/2023] [Accepted: 05/07/2023] [Indexed: 05/15/2023]
Abstract
Face masks are an indispensable low-cost public healthcare necessity for containing viral transmission. After the coronavirus disease (COVID-19) became a pandemic, there was an unprecedented demand for, and subsequent increase in face mask production and use, leading to global ecological challenges, including excessive resource consumption and significant environmental pollution. Here, we review the global demand volume for face masks and the associated energy consumption and pollution potential throughout their life cycle. First, the production and distribution processes consume petroleum-based raw materials and other energy sources and release greenhouse gases. Second, most methods of mask waste disposal result in secondary microplastic pollution and the release of toxic gases and organic substances. Third, face masks discarded in outdoor environments represent a new plastic pollutant and pose significant challenges to the environment and wildlife in various ecosystems. Therefore, the long-term impacts on environmental and wildlife health aspects related to the production, use, and disposal of face masks should be considered and urgently investigated. Here, we propose five reasonable countermeasures to alleviate these global-scale ecological crises induced by mask use during and following the COVID-19 pandemic era: increasing public awareness; improving mask waste management; innovating waste disposal methods; developing biodegradable masks; and formulating relevant policies and regulations. Implementation of these measures will help address the pollution caused by face masks.
Collapse
Affiliation(s)
- Limin Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University; Shijiazhuang 050024, China; Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang 050024, China
| | - Shengxuan Li
- School of Languages and Culture, Hebei GEO University; Shijiazhuang 050031, China
| | - Ibrahim M Ahmad
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University; Shijiazhuang 050024, China
| | - Guiying Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University; Shijiazhuang 050024, China
| | - Yanfeng Sun
- Ocean College of Hebei Agricultural University, Qinhuangdao 066003, China
| | - Yang Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University; Shijiazhuang 050024, China; Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang 050024, China
| | - Congnan Sun
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University; Shijiazhuang 050024, China; Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang 050024, China
| | - Chuan Jiang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University; Shijiazhuang 050024, China; Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang 050024, China
| | - Peng Cui
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Dongming Li
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University; Shijiazhuang 050024, China; Hebei Collaborative Innovation Center for Eco-Environment, Hebei Normal University, Shijiazhuang 050024, China..
| |
Collapse
|
183
|
Li P, Lai Y, Zheng RG, Li QC, Sheng X, Yu S, Hao Z, Cai YQ, Liu J. Extraction of Common Small Microplastics and Nanoplastics Embedded in Environmental Solid Matrices by Tetramethylammonium Hydroxide Digestion and Dichloromethane Dissolution for Py-GC-MS Determination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12010-12018. [PMID: 37506359 DOI: 10.1021/acs.est.3c03255] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Determination of microplastics and nanoplastics (MNPs), especially small MPs and NPs (<150 μm), in solid environmental matrices is a challenging task due to the formation of stable aggregates between MNPs and natural colloids. Herein, a novel method for extracting small MPs and NPs embedded in soils/sediments/sludges has been developed by combining tetramethylammonium hydroxide (TMAH) digestion with dichloromethane (DCM) dissolution. The solid samples were digested with TMAH, and the collected precipitate was washed with anhydrous ethanol to eliminate the natural organic matter. Then, the MNPs in precipitate were extracted by dissolving in DCM under ultrasonic conditions. Under the optimized digestion and extraction conditions, the factors including sizes and concentrations of MNPs showed insignificant effects on the extraction process. The feasibility of this sample preparation method was verified by the satisfactory spiked recoveries (79.6-91.4%) of polystyrene, polyethylene, polypropylene, poly(methyl methacrylate), polyvinyl chloride, and polyethylene terephthalate MNPs in soil/sediment/sludge samples. The proposed sample preparation method was coupled with pyrolysis gas chromatography-mass spectrometry to determine trace small MPs and NPs with a relatively low detection limit of 2.3-29.2 μg/g. Notably, commonly used MNPs were successfully detected at levels of 4.6-51.4 μg/g in 6 soil/sediment/sludge samples. This proposed method is promising for evaluating small solid-embedded MNP pollution.
Collapse
Affiliation(s)
- Peng Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yujian Lai
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Rong-Gang Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing-Cun Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueying Sheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Sujuan Yu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Zhineng Hao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Ya-Qi Cai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingfu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
184
|
Feng J, Liu L, Zhang Y, Wang Q, Liang H, Wang H, Song P. Rethinking the pathway to sustainable fire retardants. EXPLORATION (BEIJING, CHINA) 2023; 3:20220088. [PMID: 37933239 PMCID: PMC10624375 DOI: 10.1002/exp.20220088] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 05/10/2023] [Indexed: 11/08/2023]
Abstract
Flame retardants are currently used in a wide range of industry sectors for saving lives and property by mitigating fire hazards. The growing fire safety requirements for materials boost an escalating demand for consumption of fire retardants. This has significantly driven both the industry and scientific community to pursue sustainable fire retardants, but what makes a sustainable flame retardant? Here an overview of recent advances in sustainable flame retardants is offered, and their renewable raw materials, green synthesis and life cycle assessments are highlighted. A discussion on key challenges that hinder the innovation of fire retardants and design principles for creating truly sustainable yet cost-effective fire retardants are also presented. This short work is expected to help drive the development of sustainable, cost-effective fire retardants, and expedite the creation of a more sustainable and safer society.
Collapse
Affiliation(s)
- Jiabing Feng
- China‐Australia Institute for Advanced Materials and ManufacturingJiaxing UniversityJiaxingChina
| | - Lei Liu
- College of Environment and Safety EngineeringQingdao University of Science and TechnologyQingdaoChina
| | - Yan Zhang
- Laboratory of Polymer Materials and EngineeringNingboTech UniversityNingboChina
| | - Qingsheng Wang
- Department of Chemical EngineeringTexas A&M UniversityTexasUSA
| | - Hong Liang
- Mary Kay O'Connor Process Safety Center, Artie McFerrin Department of Chemical EngineeringTexas A&M UniversityTexasUSA
| | - Hao Wang
- Centre for Future MaterialsUniversity of Southern QueenslandSpringfieldAustralia
| | - Pingan Song
- Centre for Future MaterialsUniversity of Southern QueenslandSpringfieldAustralia
- School of Agriculture and Environmental ScienceUniversity of Southern QueenslandSpringfieldAustralia
| |
Collapse
|
185
|
Williams-Mounsey J, Crowle A, Grayson R, Holden J. Removal of mesh track on an upland blanket peatland leads to changes in vegetation composition and structure. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 339:117935. [PMID: 37075635 DOI: 10.1016/j.jenvman.2023.117935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/31/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Mesh tracks on peatlands are often granted permits on a temporary basis under the presumption that the tracks are either removed at the end of their permitted use or remain unused in situ. However, the fragility of peatland habitats and poor resilience of the specialist plant communities within them, mean that these linear disturbances may persist post-abandonment or post-removal. We removed sections of mesh track, abandoned five years earlier, from a blanket peatland using two different removal treatment methods (mown and unprepared) and studied a third treatment with sections left in place over a period of 19 months. On abandoned tracks, invasive species including Campylopus introflexus and Deschampsia flexulosa had established, while track removal led to extensive loss of Sphagnum species. Loss of surficial nanotopographic vegetation structures during track removal was extensive, and micro-erosion features were prevalent in both removal treatments. Abandoned sections of track performed comparably better across all metrics than removed sections. However, similarity between the vegetation assemblage of the abandoned track and the controls was <40% at the study outset, with NMDS (Non-metric Multidimensional Scaling) highlighting divergences. There was a mean species loss of 5 per quadrat for the removed sections. Bare peat was present in 52% of all track quadrats by the finish of the study. Our findings suggest that mesh tracks left in situ and track removal both present significant barriers to recovery and additional conservation interventions may be required after peatland tracks are abandoned.
Collapse
Affiliation(s)
| | - Alistair Crowle
- Natural England, Unex House, Bourges Boulevard, Peterborough, PE1 1NG, UK
| | - Richard Grayson
- Water@leeds, School of Geography, University of Leeds, Leeds, LS2 9JT, UK
| | - Joseph Holden
- Water@leeds, School of Geography, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
186
|
Liu M, Wang C, Zhu B. Drought Alleviates the Negative Effects of Microplastics on Soil Micro-Food Web Complexity and Stability. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37471306 DOI: 10.1021/acs.est.3c01538] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Soil ecosystems are under considerable pressure due to anthropogenic factors, including microplastics (MPs) pollution and drought. However, little is known about the interactive effects of MPs and drought on soil organisms, especially soil micro-food web. We conducted a microcosm experiment with MPs pollution (including two types and two sizes of MPs) and drought to investigate their interaction effects on soil microbial, protist, and nematode communities in soil micro-food web. We found that MPs significantly decreased the complexity and stability of soil micro-food web, with greater negative effects of biodegradable and smaller-sized MPs than conventional and larger-sized MPs. Drought had negative effects on soil micro-food web in the non-MPs pollution soils while increasing the complexity and stability of soil micro-food web in the MPs pollution soils. Drought increased the proportion of negative correlations between bacteria and fungi in the biodegradable MPs soils while decreasing the proportion of negative correlations between protists and nematodes in the smaller-sized MPs soils. Our study reveals that drought may alleviate the negative effects of MPs on soil micro-food web by reducing competition among lower trophic levels in the biodegradable MPs pollution soils while reducing competition among higher trophic levels in the smaller-sized MPs pollution soils.
Collapse
Affiliation(s)
- Mengli Liu
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China
| | - Chong Wang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Biao Zhu
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China
| |
Collapse
|
187
|
Zhang ZA, Qin X, Zhang Y. Using Data-Driven Methods and Aging Information to Quantitatively Identify Microplastic Environmental Sources and Establish a Comprehensive Discrimination Index. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37465930 DOI: 10.1021/acs.est.3c03048] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The global distribution of microplastics (MPs) across various environmental compartments has garnered significant attention. However, the differences in the characteristics of MPs in different environments remain unclear, and there is still a lack of quantitative analysis of their environmental sources. In addition, the inclusion of aging in source apportionment is a novel approach that has not been widely explored. In this study, we conducted a meta-analysis of the literature from the past 10 years and extracted conventional and aging characteristic data of MPs from 321 sampling points across 7 environmental compartments worldwide. We established a data-driven analysis framework using these data sets to identify different MP communities across environmental compartments, screen key MP features, and develop an environmental source analysis model for MPs. Our results indicate significant differences in the characteristics of MP communities across environments. The key features of differentiation were identified using the LEfSe method and include the carbonyl index, hydroxyl index, fouling index, proportions of polypropylene, white, black/gray, and film/sheet. These features were screened for each environmental compartment. An environmental source identification model was established based on these features with an accuracy of 75.1%. In order to accurately represent the single/multisource case in a more probabilistic manner, we proposed the MP environmental source index (MESI) to provide a probability estimation of the sample having multiple sources. Our findings contribute to a better understanding of MP migration trends and fluxes in the plastic cycle and inform effective prevention and control strategies for MP pollution.
Collapse
Affiliation(s)
- Zhan-Ao Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xinran Qin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
188
|
Karunarathna B, Wanniarachchi JD, Prashantha MAB, Govender KK. Enhancing styrene monomer recovery from polystyrene pyrolysis: insights from density functional theory. J Mol Model 2023; 29:255. [PMID: 37464131 DOI: 10.1007/s00894-023-05661-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/12/2023] [Indexed: 07/20/2023]
Abstract
CONTEXT Plastic waste pyrolysis offers a potential solution to reduce plastic accumulation, but prioritizing monomer recovery from the process is crucial to effectively address the environmental consequences of plastic accumulation. This study focuses on enhancing the yield of styrene during the pyrolysis of polystyrene by investigating thermal and kinetic data. A comprehensive investigation into the thermal degradation pathways of polystyrene is imperative to overcome the challenges associated with its waste management. The calculated bond dissociation energies reveal that the cleavage of non-terminal carbon-carbon bonds is energetically favorable, resulting in the formation of high molecular weight benzylic radicals. Based on these findings, four pyrolysis pathways are proposed, and the associated thermodynamic and kinetic parameters are determined using the DFT method. The major products identified in this study include styrene, α-methylstyrene, isopropylbenzene, methylbenzene, ethylbenzene, and methane. Furthermore, optimizing the temperature profile of the reactor is shown to enhance the recovery of styrene, thereby contributing to the reduction of plastic waste. This study provides valuable insights into the effective resource recovery from polystyrene waste pyrolysis, emphasizing the significance of managing pyrolysis conditions to achieve maximum yield. By controlling the temperature profile during the pyrolysis process, it is possible to obtain a high yield of styrene, facilitating the efficient recovery of the monomer from waste polystyrene and addressing the environmental concerns associated with plastic accumulation. METHODS In this study, all calculations were performed using the B3LYP/6-31G(d) level of theory with the Gaussian 16 program package. The proposed model underwent geometry optimization and frequency calculations. Transition states were optimized using the TS Berny method, and energy profiles along reaction pathways were refined using the QST3 method. The IRC method validated proposed mechanisms and investigated energy profiles. Structural models were visualized using GaussView 6.0.
Collapse
Affiliation(s)
- Baggya Karunarathna
- Department of Chemistry, Eastern University Sri Lanka, Vantharumoolai, Chenkalady, Sri Lanka.
| | | | - M A B Prashantha
- Department of Chemistry, University of Sri Jayewardenepura, Gangodawila, Nugegoda, Sri Lanka
| | - K K Govender
- Department of Chemical Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein Campus, 2028, Johannesburg, South Africa
- National Institute for Theoretical and Computational Sciences, NITheCS, Stellenbosch, South Africa
| |
Collapse
|
189
|
Gao S, Wu Q, Peng M, Zeng J, Jiang T, Ruan Y, Xu L, Guo K. Rapid urbanization affects microplastic communities in lake sediments: A case study of Lake Aha in southwest China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 338:117824. [PMID: 37004481 DOI: 10.1016/j.jenvman.2023.117824] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/06/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
Effective management of pollutants in urban environments is crucial for achieving sustainable cities. Microplastics, as an emerging pollutant widely present in contemporary environments, have received widespread attention in recent years. However, limited studies have reported the impact of rapid urbanization on regional microplastics. In this study, the abundance and composition of microplastic communities in the sediments of Lake Aha were analyzed using a "microplastic community" and slicing the sediments at 5 cm intervals. Results showed that microplastic abundance of sediments in Lake Aha was relatively high (up to 1700 items/kg) and decreased with increasing depth, with the highest abundance found in the surface layer (0-5 cm, 1090 ± 474 items/kg). Hierarchical cluster analysis (HCA), principal component analysis (PCA), and analysis of similarities (ANOSIM) revealed that the different sediment layers could be classified into high and low urbanization level groups based on the composition of microplastic communities. Linear discriminant analysis effect size (LEfSe) indicated that agricultural input was the main source of microplastic pollution during low urbanization levels, characterized by low abundance, large particle size, and high fiber proportion, while urban activities dominated during high urbanization levels, with high abundance, small particle size, high proportion of Polyethylene terephthalate (PET), fragments, and granules, and colorful microplastics. This study clarifies the impact of urbanization on the abundance and composition of microplastics in lake sediments, which has implications for more effective management and control of microplastic pollution in regions undergoing rapid urbanization.
Collapse
Affiliation(s)
- Shilin Gao
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China; Key Laboratory of Karst Geological Resources and Environment, Guizhou University, Ministry of Education, Guiyang, Guizhou, 550025, China
| | - Qixin Wu
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China; Key Laboratory of Karst Geological Resources and Environment, Guizhou University, Ministry of Education, Guiyang, Guizhou, 550025, China.
| | - Meixue Peng
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China; Key Laboratory of Karst Geological Resources and Environment, Guizhou University, Ministry of Education, Guiyang, Guizhou, 550025, China
| | - Jie Zeng
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China; Key Laboratory of Karst Geological Resources and Environment, Guizhou University, Ministry of Education, Guiyang, Guizhou, 550025, China
| | - Tingting Jiang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China; Key Laboratory of Karst Geological Resources and Environment, Guizhou University, Ministry of Education, Guiyang, Guizhou, 550025, China
| | - Yunjun Ruan
- College of Bigdata and Information Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Li Xu
- Beijing Research Center for Agricultural Standards and Testing, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Ke Guo
- Guiyang Research Academy of Eco-Environmental Science, Guiyang, Guizhou, 550025, China
| |
Collapse
|
190
|
Yu Y, Li X, Fan H, Li Y, Yao H. Dose effect of polyethylene microplastics on nitrous oxide emissions from paddy soils cultivated for different periods. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131445. [PMID: 37088019 DOI: 10.1016/j.jhazmat.2023.131445] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/04/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
The presence of microplastics (MPs) under flooded conditions is beneficial for nitrifiers and denitrifiers to produce nitrous oxide (N2O), but their dose effect remains unclear. This study evaluated the impact of different doses of polyethylene (PE) MPs on the release of N2O from paddy soils cultivated for different years. Compared with unpolluted soils, low doses of MPs (≤ 0.1%) had a negligible influence on N2O emissions, and high amounts of MPs (≥ 0.5%) significantly (p < 0.05) increased N2O emissions from the paddy soils cultivated for 3, 15 and 40 years by 2.5-4.3, 3.9-8.5 and 8.9-27.7 times, respectively. Moreover, an exponential model indicated that a 0.2% concentration of PE MPs appeared to be the dose threshold that accelerated the release of N2O from the all soils. Increased MP concentrations accelerated N2O emissions by affecting microbial functional genes involved in N2O production and reduction, but microbial taxonomic attributes involved in nitrogen cycling played an insignificant role in controlling N2O emissions. Overall, our results indicated that high doses (≥ 0.5%) of PE MPs essentially accelerated the emission of N2O from rice soils, and a longer cultivation period (40 years) enhanced the positive effect of MPs on N2O emissions.
Collapse
Affiliation(s)
- Yongxiang Yu
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, 206 Guanggu 1st Road, Wuhan 430205, PR China
| | - Xing Li
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, 206 Guanggu 1st Road, Wuhan 430205, PR China
| | - Haoxin Fan
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, 206 Guanggu 1st Road, Wuhan 430205, PR China
| | - Yaying Li
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, PR China
| | - Huaiying Yao
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, 206 Guanggu 1st Road, Wuhan 430205, PR China; Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, PR China.
| |
Collapse
|
191
|
Wang Y, Liu L, Cao S, Yu J, Li X, Su Y, Li G, Gao H, Zhao Z. Spatio-temporal variation of soil microplastics as emerging pollutant after long-term application of plastic mulching and organic compost in apple orchards. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 328:121571. [PMID: 37028788 DOI: 10.1016/j.envpol.2023.121571] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/20/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023]
Abstract
Microplastics (MPs) pollution in agroecosystems have aroused great alarm and widespread concern. However, the spatial distribution and temporal variation characteristics of MPs in apple orchards with long-term plastic mulching and organic compost input are still poorly understood. This study investigated MPs accumulation characteristics and vertical distribution after applying plastic mulch and organic compost in apple orchards for 3 (AO-3), 9 (AO-9), 17 (AO-17), and 26 (AO-26) years on the Loess Plateau. The clear tillage (no plastic mulching and organic composts) area was used as a control (CK). At a soil depth of 0-40 cm, AO-3, AO-9, AO-17, and AO-26 treatments increased the abundances of MPs, and the black fibers and fragments of rayon and polypropylene were dominant. In the 0-20 cm soil layer, the abundances of MPs increased with the treatment time; the abundance was 4333 pieces kg-1 after 26 years of treatment, gradually decreasing with soil depth. In different treatments and soil layers, the percentages of MPs <1000 μm were dominant (>50%). The AO-17 and AO-26 treatments significantly increased the MPs with the size of 0-500 μm at 0-40 cm and the abundances of pellets in 0-60 cm soil. In conclusion, the long-term (≥17 years) application of plastic mulching and organic composts increased the abundances of small particles at 0-40 cm, and plastic mulching contributed the most to MPs, while organic composts increased the complexity and diversity of MPs.
Collapse
Affiliation(s)
- Yuanji Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China; College of Horticultur, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Li Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China; College of Horticultur, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Shan Cao
- College of Food Science and Engineering, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Jing Yu
- College of Horticultur, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Xiangyu Li
- College of Horticultur, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Yating Su
- College of Horticultur, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Gaochao Li
- College of Horticultur, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Hua Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China; College of Horticultur, Northwest A & F University, Yangling, Shaanxi, 712100, China
| | - Zhengyang Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A & F University, Yangling, 712100, Shaanxi, China; College of Horticultur, Northwest A & F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
192
|
Pelegrini K, Pereira TCB, Maraschin TG, Teodoro LDS, Basso NRDS, De Galland GLB, Ligabue RA, Bogo MR. Micro- and nanoplastic toxicity: A review on size, type, source, and test-organism implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:162954. [PMID: 36948318 DOI: 10.1016/j.scitotenv.2023.162954] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 05/13/2023]
Abstract
Polymeric wastes are among the current major environmental problems due to potential pollution and contamination. Within the spectrum of polymeric waste, microplastics (MPs) and nanoplastics (NPs) have gained ground in recent research since these particles can affect the local biota, inducing toxic effects on several organisms. Different outcomes have been reported depending on particle sizes, shape, types, and exposed organisms and conditions, among other variables. This review aimed to compile and discuss the current knowledge and possible literature gaps regarding the MPs and NPs generation and their toxicological effects as stressors, considering polymer type (as polyethylene, polypropylene, polyethylene terephthalate, polystyrene, polyvinyl chloride, or others), size (micro- or nano-scale), source (commercial, lab-synthesized, or environmental) and test organism group. In that sense, 615 publications were analyzed, among which 72 % discussed micro-sized plastics, while <28 % assayed the toxicity of NPs (<1 μm). For most polymers, MPs and NPs were commercially purchased and used without additional size reduction processes; except for polyethylene terephthalate studies that mostly used grinding and cutting methods to obtain MPs. Polystyrene (PS) was the main polymer studied, as both MPs and NPs. PS accounts for >90 % of NPs reports evaluated, reflecting a major literature gap if compared to its 35.3 % share on MPs studies. Among the main organisms, arthropods and fish combined accounted for nearly 40 % of toxicity testing. Overall, the different types of plastics showed a tendency to report toxic effects, except for the 'Survival/lethality' category, which might indicate that polymeric particles induce mostly sublethal toxic effects. Furthermore, despite differences in publication numbers, we observed greater toxicity reported for NPs than MPs with oxidative stress among the majorly investigated endpoints. This study allowed a hazard profile overview of micro/nanoplastics (MNPs) and the visualization of literature gaps, under a broad diversity of toxicological evidence.
Collapse
Affiliation(s)
- Kauê Pelegrini
- Escola Politécnica, Pontifícia Universidade Católica do Rio Grande Do Sul (PUCRS). Av. Ipiranga, 6681, CEP: 90619-900 Porto Alegre, RS, Brazil; Programa de Engenharia e Tecnologia de Materiais, Escola Politécnica, PUCRS, Av. Ipiranga, 6690, CEP: 90610-000 Porto Alegre, RS, Brazil.
| | - Talita Carneiro Brandão Pereira
- Laboratório de Biologia Genômica e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS). Av. Ipiranga, 6681, CEP: 90619-900 Porto Alegre, RS, Brazil; Programa de Medicina e Ciências da Saúde, Escola de Medicina, PUCRS, Av. Ipiranga, 6690, CEP: 90610-000 Porto Alegre, RS, Brazil.
| | - Thuany Garcia Maraschin
- Escola Politécnica, Pontifícia Universidade Católica do Rio Grande Do Sul (PUCRS). Av. Ipiranga, 6681, CEP: 90619-900 Porto Alegre, RS, Brazil; Programa de Engenharia e Tecnologia de Materiais, Escola Politécnica, PUCRS, Av. Ipiranga, 6690, CEP: 90610-000 Porto Alegre, RS, Brazil.
| | - Lilian De Souza Teodoro
- Laboratório de Biologia Genômica e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS). Av. Ipiranga, 6681, CEP: 90619-900 Porto Alegre, RS, Brazil; Programa de Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, PUCRS, Av. Ipiranga, 6681, CEP: 90619-900 Porto Alegre, RS, Brazil
| | - Nara Regina De Souza Basso
- Escola Politécnica, Pontifícia Universidade Católica do Rio Grande Do Sul (PUCRS). Av. Ipiranga, 6681, CEP: 90619-900 Porto Alegre, RS, Brazil; Programa de Engenharia e Tecnologia de Materiais, Escola Politécnica, PUCRS, Av. Ipiranga, 6690, CEP: 90610-000 Porto Alegre, RS, Brazil
| | - Griselda Ligia Barrera De Galland
- Instituto de Química, Universidade Federal Do Rio Grande Do Sul (UFRGS), Av. Bento Gonçalves, 9500, CEP: 91570-970 Porto Alegre, RS, Brazil.
| | - Rosane Angelica Ligabue
- Escola Politécnica, Pontifícia Universidade Católica do Rio Grande Do Sul (PUCRS). Av. Ipiranga, 6681, CEP: 90619-900 Porto Alegre, RS, Brazil; Programa de Engenharia e Tecnologia de Materiais, Escola Politécnica, PUCRS, Av. Ipiranga, 6690, CEP: 90610-000 Porto Alegre, RS, Brazil.
| | - Mauricio Reis Bogo
- Laboratório de Biologia Genômica e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS). Av. Ipiranga, 6681, CEP: 90619-900 Porto Alegre, RS, Brazil; Programa de Medicina e Ciências da Saúde, Escola de Medicina, PUCRS, Av. Ipiranga, 6690, CEP: 90610-000 Porto Alegre, RS, Brazil; Programa de Biologia Celular e Molecular, Escola de Ciências da Saúde e da Vida, PUCRS, Av. Ipiranga, 6681, CEP: 90619-900 Porto Alegre, RS, Brazil.
| |
Collapse
|
193
|
Sun H, Li Z, Wen J, Zhou Q, Gong Y, Zhao X, Mao H. Co-exposure of maize to polyethylene microplastics and ZnO nanoparticles: Impact on growth, fate, and interaction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162705. [PMID: 36907408 DOI: 10.1016/j.scitotenv.2023.162705] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/27/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
Microplastics (MPs), especially polyethylene MPs (PE MPs), which are the primary component of mulch, have attracted increasing attention in recent years. ZnO nanoparticles (NPs), which constitute a metal-based nanomaterial commonly used in agricultural production, co-converge with PE MPs in the soil. However, studies revealing the behavior and fate of ZnO NPs in soil-plant systems in the presence of MPs are limited. In this study, a pot experiment was used to evaluate the effects of maize co-exposure to PE MPs (0.5 % and 5 % w/w) and ZnO NPs (500 mg/kg) on growth, element distribution, speciation, and adsorption mechanism. The results demonstrate that individual exposure to PE MPs posed no significant toxicity; however, it significantly decreased maize grain yield (essentially 0). ZnO NP-exposure treatments significantly increased the Zn concentration and distribution intensity in maize tissues. Among them, the Zn concentration in the maize root exceeded 200 mg/kg, compared with 40 mg/kg in the grain. Moreover, the Zn concentrations in various tissues decreased in the following order: stem, leaf, cob, bract, and grain. Reassuringly, ZnO NPs still could not be transported to the maize stem under co-exposure to PE MPs. ZnO NPs had been biotransformed (64 % of the Zn was associated with histidine, with the remainder being associated with P [phytate] and cysteine) in maize stem. This study provides new insights into the plant physiological risks of PE MP and ZnO NP co-exposure in the soil-plant system and assesses the fate of ZnO NPs.
Collapse
Affiliation(s)
- Hongda Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Zhuofan Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Jinyu Wen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Qianqian Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Yafang Gong
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Xiaohan Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
| | - Hui Mao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
194
|
Jia H, Yu H, Li J, Qi J, Zhu Z, Hu C. Trade-off of abiotic stress response in floating macrophytes as affected by nanoplastic enrichment. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131140. [PMID: 36905907 DOI: 10.1016/j.jhazmat.2023.131140] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/20/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Nanoparticles have been found in large-scale environmental media in recent years, causing toxic effects in various organisms and even humans through food chain transmission. The ecotoxicological impact of microplastics on specific organisms is currently receiving much attention. However, relatively little research to date has examined the mechanisms through which nanoplastic residue may exert an interference effect on floating macrophytes in constructed wetlands. In our study, the aquatic plant Eichhornia crassipes was subjected to 100 nm polystyrene nanoplastics at concentrations of 0.1, 1 and 10 mg L-1 after 28 days of exposure. E. crassipes can decrease the concentration of nanoplastics in water by 61.42∼90.81% through phytostabilization. The abiotic stress of nanoplastics on the phenotypic plasticity (morphological and photosynthetic properties and antioxidant systems as well as molecular metabolism) of E. crassipes was assessed. The presence of nanoplastics reduced the biomass (10.66%∼22.05%), and the functional organ (petiole) diameters of E. crassipes decreased by 7.38%. The photosynthetic efficiency was determined, showing that the photosynthetic systems of E. crassipes are very sensitive to stress by nanoplastics at a concentration of 10 mg L-1. Oxidative stress and imbalance of antioxidant systems in functional organs are associated with multiple pressure modes from nanoplastic concentrations. The catalase contents of roots increased by 151.19% in the 10 mg L-1 treatment groups compared with the control group. Moreover, 10 mg L-1 concentrations of the nanoplastic pollutant interfere with purine and lysine metabolism in the root system. The hypoxanthine content was reduced by 6.58∼8.32% under exposure to different concentrations of nanoplastics. In the pentose phosphate pathway, the phosphoric acid content was decreased by 32.70% at 10 mg L-1 PS-NPs. In the pentose phosphate pathway, the phosphoric acid content was decreased by 32.70% at 10 mg L-1 PS-NPs. Nanoplastics disturb the efficiency of water purification by floating macrophytes, which reduces the chemical oxygen demand (COD) removal efficiency (from 73% to 31.33%) due to various abiotic stresses. This study provided important information for further clarifying the impact of nanoplastics on the stress response of floating macrophytes.
Collapse
Affiliation(s)
- Huawei Jia
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China
| | - Hongwei Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jingwen Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China
| | - Jing Qi
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zongqiang Zhu
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China
| | - Chengzhi Hu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
195
|
Zhang S, Pei L, Zhao Y, Shan J, Zheng X, Xu G, Sun Y, Wang F. Effects of microplastics and nitrogen deposition on soil multifunctionality, particularly C and N cycling. JOURNAL OF HAZARDOUS MATERIALS 2023; 451:131152. [PMID: 36934700 DOI: 10.1016/j.jhazmat.2023.131152] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/18/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Both nitrogen deposition (ND) and microplastics (MPs) pose global change challenges. The effects of MPs co-existing with ND on ecosystem functions are still largely unknown. Herein, we conducted a 10-month soil incubation experiment to explore the effects of polyethylene (PE) and polylactic acid (PLA) MPs on soil multifunctionality under different ND scenarios. We found that the interactions between ND and MPs affected soil multifucntionality. FAPROTAX function prediction indicated that both ND and MPs affected C and N cycling. ND increased some C-cycling processes, such as cellulolysis, ligninolysis, and plastic degradation. MPs also showed stimulating effects on these processes, particularly in the soil with ND. ND significantly decreased the abundance of functional genes NifH, amoA, and NirK, leading to inhibited N-fixation, nitrification, and denitrification. The addition of MPs also modified N-cycling processes: 0.1% PE enriched the bacterial groups for nitrate reduction, nitrate respiration, nitrite respiration, and nitrate ammonification, and 1% PLA MPs enriched N-fixation bacteria at all ND levels. We found that ND caused lower soil pH but higher soil N, decreased bacterial diversity and richness, and changed the composition and activity of functional bacteria, which explains why ND changed soil functions and regulated the impact of MPs.
Collapse
Affiliation(s)
- Shuwu Zhang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province 266042, PR China
| | - Lei Pei
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province 266042, PR China
| | - Yanxin Zhao
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province 266042, PR China
| | - Jun Shan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xuebo Zheng
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Guangjian Xu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province 266042, PR China
| | - Yuhuan Sun
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province 266042, PR China
| | - Fayuan Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province 266042, PR China.
| |
Collapse
|
196
|
Hao YY, Liu HW, Zhao J, Feng J, Hao X, Huang Q, Gu B, Liu YR. Plastispheres as hotspots of microbially-driven methylmercury production in paddy soils. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131699. [PMID: 37270960 DOI: 10.1016/j.jhazmat.2023.131699] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/09/2023] [Accepted: 05/23/2023] [Indexed: 06/06/2023]
Abstract
Microplastics (MPs) as emerging contaminants have accumulated extensively in agricultural ecosystems and are known to exert important effects on biogeochemical processes. However, how MPs in paddy soils influence the conversion of mercury (Hg) to neurotoxic methylmercury (MeHg) remains poorly understood. Here, we evaluated the effects of MPs on Hg methylation and associated microbial communities in microcosms using two typical paddy soils in China (i.e., yellow and red soils). Results showed that the addition of MPs significantly increased MeHg production in both soils, which could be related to higher Hg methylation potential in the plastisphere than in the bulk soil. We found significant divergences in the community composition of Hg methylators between the plastisphere and the bulk soil. In addition, the plastisphere had higher proportions of Geobacterales in the yellow soil and Methanomicrobia in the red soil compared with the bulk soil, respectively; and plastisphere also had more densely connected microbial groups between non-Hg methylators and Hg methylators. These microbiota in the plastisphere are different from those in the bulk soil, which could partially account for their distinct MeHg production ability. Our findings suggest plastisphere as a unique biotope for MeHg production and provide new insights into the environment risks of MP accumulation in agricultural soils.
Collapse
Affiliation(s)
- Yun-Yun Hao
- National Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Hui-Wen Liu
- National Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiating Zhao
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Jiao Feng
- National Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiuli Hao
- National Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaoyun Huang
- National Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China
| | - Baohua Gu
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Yu-Rong Liu
- National Key Laboratory of Agricultural Microbiology and College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
197
|
Zhang J, Peng M, Lian E, Xia L, Asimakopoulos AG, Luo S, Wang L. Identification of Poly(ethylene terephthalate) Nanoplastics in Commercially Bottled Drinking Water Using Surface-Enhanced Raman Spectroscopy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37220668 DOI: 10.1021/acs.est.3c00842] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Micro/nanoplastics have emerged as global contaminants of serious concern to human and ecosystem health. However, identification and visualization of microplastics and particularly nanoplastics have remained elusive due to the lack of feasible and reliable analytical approaches, particularly for trace nanoplastics. Here, an efficient surface-enhanced Raman spectroscopy (SERS)-active substrate with triangular cavity arrays is reported. The fabricated substrate exhibited high SERS performance for standard polystyrene (PS) nanoplastic detection with size down to 50 nm and a detection limit of 0.001% (1.5 × 1011 particles/mL). Poly(ethylene terephthalate) (PET) nanoplastics collected from commercially bottled drinking water were detected with an average mean size of ∼88.2 nm. Furthermore, the concentration of the collected sample was estimated to be about 108 particles/mL by nanoparticle tracking analysis (NTA), and the annual nanoplastic consumption of human beings through bottled drinking water was also estimated to be about 1014 particles, assuming water consumption of 2 L/day for adults. The facile and highly sensitive SERS substrate provides more possibilities for detecting trace nanoplastics in an aquatic environment with high sensitivity and reliability.
Collapse
Affiliation(s)
- Junjie Zhang
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Miao Peng
- Laboratory of Environmental Toxicology and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Enkui Lian
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Lu Xia
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | | | - Sihai Luo
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Lei Wang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
198
|
Talukdar A, Bhattacharya S, Bandyopadhyay A, Dey A. Microplastic pollution in the Himalayas: Occurrence, distribution, accumulation and environmental impacts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162495. [PMID: 36868287 DOI: 10.1016/j.scitotenv.2023.162495] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Microplastics have been reported from various ecosystems including lakes, ponds, wetlands, mountains, and forests globally. Recent research works showed microplastic deposition and accumulation in the Himalayan mountains and adjoining ecosystems, rivers and streams. Fine particles of microplastic originating from different anthropogenic sources can travel long distances, even upwards (altitudinally) through atmospheric transport and can pollute remote and pristine locations situated in the Himalayas. Precipitation also plays a vital role in influencing deposition and fallout of microplastics in the Himalayas. Microplastics can be trapped in the snow in glaciers for a long time and can be released into freshwater rivers by snow melting. Microplastic pollution in Himalayan rivers such as the Ganga, Indus, Brahmaputra, Alaknanda, and Kosi has been researched on both the upper and lower catchments. Additionally, Himalayan region draws many domestic and international tourists throughout the year, resulting in generation of massive and unmanageable volume of plastics wastes and finally ending up in the open landscapes covering forests, river streams and valley. Fragmentation of these plastic wastes can lead to microplastic formation and accumulation in the Himalayas. This paper discusses and explains occurrence and distribution of microplastics in the Himalayan landscapes, possible adverse effects of microplastic on local ecosystems and human population and policy intervention needed to mitigate microplastic pollution in the Himalayas. A knowledge gap was noticed regarding the fate of microplastics in the freshwater ecosystems and their control mechanisms in the Indian Himalayas. Regulatory approaches for microplastics management in the Himalayas sit within the broader plastics/solid waste management and can be implemented effectively by following integrated approaches.
Collapse
Affiliation(s)
| | - Sayan Bhattacharya
- School of Ecology and Environment Studies, Nalanda University, Rajgir, Nalanda, Bihar 803116, India.
| | | | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata 700073, West Bengal, India
| |
Collapse
|
199
|
Behera S, Das S. Environmental impacts of microplastic and role of plastisphere microbes in the biodegradation and upcycling of microplastic. CHEMOSPHERE 2023; 334:138928. [PMID: 37211165 DOI: 10.1016/j.chemosphere.2023.138928] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 04/12/2023] [Accepted: 05/11/2023] [Indexed: 05/23/2023]
Abstract
Increasing usage of plastic has led to the deposition of plastic in the environment which later become microplastic, a pollutant of global concern. These polymeric particles affect the ecosystem bestowing toxicity and impede the biogeochemical cycles. Besides, microplastic particles have been known for their role in aggravating the effect of various other environmental pollutants including organic pollutants and heavy metals. These microplastic surfaces are often colonized by the microbial communities also known as "plastisphere microbes" forming biofilms. These microbes include cyanobacteria like Nostoc, Scytonema, etc., and diatoms like Navicula, Cyclotella, etc. Which become the primary colonizer. In addition to the autotrophic microbes, Gammaproteobacteria and Alphaproteobacteria dominate the plastisphere microbial community. These biofilm-forming microbes can efficiently degrade the microplastic in the environment by secreting various catabolic enzymes such as lipase, esterase, hydroxylase, etc. Besides, these microbes have shown great potential for the bioconversion of microplastic to polyhydroxyalkanoates (PHA), an energy efficient and sustainable alternative to the petroleum based plastics. Thus, these microbes can be used for the creation of a circular economy using waste to wealth strategy. This review provides a deeper insight into the distribution, transportation, transformation, and biodegradation of microplastic in the ecosystem. The formation of plastisphere by the biofilm-forming microbes has been described in the article. In addition, the microbial metabolic pathways and genetic regulations involved in the biodegradation have been discussed in detail. The article suggests the microbial bioremediation and upcycling of microplastic along with various other strategies for effectively mitigate the microplastic pollution.
Collapse
Affiliation(s)
- Shivananda Behera
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India.
| |
Collapse
|
200
|
Liu W, Zhang B, Yao Q, Feng X, Shen T, Guo P, Wang P, Bai Y, Li B, Wang P, Li R, Qu Z, Liu N. Toxicological effects of micro/nano-plastics on mouse/rat models: a systematic review and meta-analysis. Front Public Health 2023; 11:1103289. [PMID: 37275491 PMCID: PMC10233117 DOI: 10.3389/fpubh.2023.1103289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 04/11/2023] [Indexed: 06/07/2023] Open
Abstract
Micro/nano-plastics (MNPs) are considered a heterogeneous class of environmental contaminants that cause multiple toxic effects on biological species. As the commonly used mammalian models to study the effects of MNPs with regard to their toxic effects, the mouse and rat models are making a great contribution to the disciplines of environmental toxicology and medical health. However, the toxic effects of MNPs have not been systematically summarized. Therefore, a systematic review and a meta-analysis of the toxic effects of MNPs on mouse/rat models were conducted. A total of seven main categories were established in this systematic review, and 24 subcategories were further divided according to the specific physiological significance of the endpoint or the classification of the physiological system, which covered all the selected pieces of literature. A total of 1,762 biological endpoints were found, and 52.78% of them were significantly affected. This fact indicates that there are relative factors, including the size, polymer type, concentration, and exposure time of MNPs and different sexes of mouse/rat models that could significantly affect the biological endpoints. These biological endpoints can be classified into various factors, such as the dose-response relationships between MNP concentration and physiological categories of the nervous system, growth, reproduction, digestive tract histopathology, and inflammatory cytokine level, among others. MNPs negatively affected the blood glucose metabolism, lipid metabolism, and reproductive function in mice. The reproductive function in male mice is more sensitive to the toxic effects of MNPs. These findings also provide insights into and directions for exploring the evidence and mechanisms of the toxic effects of MNPs on human health. It is clear that more research is required on the pathological mechanisms at the molecular level and the long-term effects of tissue accumulation.
Collapse
Affiliation(s)
- Weijia Liu
- Institute of Environment and Health, South China Hospital of Shenzhen University, Shenzhen, China
- Institute of Chronic Disease Risks Assessment, School of Nursing and Health, Henan University, Kaifeng, China
| | - Bowen Zhang
- Institute of Environment and Health, South China Hospital of Shenzhen University, Shenzhen, China
| | - Qianqian Yao
- Institute of Environment and Health, South China Hospital of Shenzhen University, Shenzhen, China
| | - Xihua Feng
- Institute of Environment and Health, South China Hospital of Shenzhen University, Shenzhen, China
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Tianling Shen
- Institute of Environment and Health, South China Hospital of Shenzhen University, Shenzhen, China
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Peisen Guo
- Institute of Environment and Health, South China Hospital of Shenzhen University, Shenzhen, China
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Panpan Wang
- Institute of Environment and Health, South China Hospital of Shenzhen University, Shenzhen, China
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yitong Bai
- Institute of Environment and Health, South China Hospital of Shenzhen University, Shenzhen, China
- Institute of Chronic Disease Risks Assessment, School of Nursing and Health, Henan University, Kaifeng, China
| | - Bo Li
- Institute of Environment and Health, South China Hospital of Shenzhen University, Shenzhen, China
| | - Peixi Wang
- Institute of Environment and Health, South China Hospital of Shenzhen University, Shenzhen, China
| | - Ruiling Li
- Institute of Environment and Health, South China Hospital of Shenzhen University, Shenzhen, China
| | - Zhi Qu
- Institute of Environment and Health, South China Hospital of Shenzhen University, Shenzhen, China
| | - Nan Liu
- Institute of Environment and Health, South China Hospital of Shenzhen University, Shenzhen, China
- Institute of Chronic Disease Risks Assessment, School of Nursing and Health, Henan University, Kaifeng, China
- College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|