151
|
Michel L, Touil H, Pikor NB, Gommerman JL, Prat A, Bar-Or A. B Cells in the Multiple Sclerosis Central Nervous System: Trafficking and Contribution to CNS-Compartmentalized Inflammation. Front Immunol 2015; 6:636. [PMID: 26732544 PMCID: PMC4689808 DOI: 10.3389/fimmu.2015.00636] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 12/03/2015] [Indexed: 12/25/2022] Open
Abstract
Clinical trial results of peripheral B cell depletion indicate abnormal proinflammatory B cell properties, and particularly antibody-independent functions, contribute to relapsing MS disease activity. However, potential roles of B cells in progressive forms of disease continue to be debated. Prior work indicates that presence of B cells is fostered within the inflamed MS central nervous system (CNS) environment, and that B cell-rich immune cell collections may be present within the meninges of patients. A potential association is reported between such meningeal immune cell collections and the subpial pattern of cortical injury that is now considered important in progressive disease. Elucidating the characteristics of B cells that populate the MS CNS, how they traffic into the CNS and how they may contribute to progressive forms of the disease has become of considerable interest. Here, we will review characteristics of human B cells identified within distinct CNS subcompartments of patients with MS, including the cerebrospinal fluid, parenchymal lesions, and meninges, as well as the relationship between B cell populations identified in these subcompartments and the periphery. We will further describe the different barriers of the CNS and the possible mechanisms of migration of B cells across these barriers. Finally, we will consider the range of human B cell responses (including potential for antibody production, cytokine secretion, and antigen presentation) that may contribute to propagating inflammation and injury cascades thought to underlie MS progression.
Collapse
Affiliation(s)
- Laure Michel
- Département de Neurosciences, Centre de Recherche du Centre Hospitalier de l'Université de Montréal , Montréal, QC , Canada
| | - Hanane Touil
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University , Montréal, QC , Canada
| | - Natalia B Pikor
- Department of Immunology, University of Toronto , Toronto, ON , Canada
| | | | - Alexandre Prat
- Département de Neurosciences, Centre de Recherche du Centre Hospitalier de l'Université de Montréal , Montréal, QC , Canada
| | - Amit Bar-Or
- Neuroimmunology Unit, Montreal Neurological Institute, McGill University, Montréal, QC, Canada; Experimental Therapeutics Program, Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| |
Collapse
|
152
|
Hohlfeld R, Dornmair K, Meinl E, Wekerle H. The search for the target antigens of multiple sclerosis, part 2: CD8+ T cells, B cells, and antibodies in the focus of reverse-translational research. Lancet Neurol 2015; 15:317-31. [PMID: 26724102 DOI: 10.1016/s1474-4422(15)00313-0] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 10/13/2015] [Accepted: 10/22/2015] [Indexed: 01/16/2023]
Abstract
Interest in CD8+ T cells and B cells was initially inspired by observations in multiple sclerosis rather than in animal models: CD8+ T cells predominate in multiple sclerosis lesions, oligoclonal immunoglobulin bands in CSF have long been recognised as diagnostic and prognostic markers, and anti-B-cell therapies showed considerable efficacy in multiple sclerosis. Taking a reverse-translational approach, findings from human T-cell receptor (TCR) and B-cell receptor (BCR) repertoire studies provided strong evidence for antigen-driven clonal expansion in the brain and CSF. New methods allow the reconstruction of human TCRs and antibodies from tissue-infiltrating immune cells, which can be used for the unbiased screening of antigen libraries. Myelin oligodendrocyte glycoprotein (MOG) has received renewed attention as an antibody target in childhood multiple sclerosis and in a small subgroup of adult patients with multiple sclerosis. Furthermore, there is growing evidence that a separate condition in adults exists, tentatively called MOG-antibody-associated encephalomyelitis, which has clinical features that overlap with neuromyelitis optica spectrum disorder and multiple sclerosis. Although CD8+ T cells and B cells are thought to have a pathogenic role in some subgroups of patients, their target antigens have yet to be identified.
Collapse
Affiliation(s)
- Reinhard Hohlfeld
- Institute of Clinical Neuroimmunology, Biomedical Center and University Hospital, Campus Martinsried-Grosshadern, Ludwig-Maximilians University, Munich, Germany; Munich Cluster of Systems Neurology (SyNergy), Munich, Germany.
| | - Klaus Dornmair
- Institute of Clinical Neuroimmunology, Biomedical Center and University Hospital, Campus Martinsried-Grosshadern, Ludwig-Maximilians University, Munich, Germany
| | - Edgar Meinl
- Institute of Clinical Neuroimmunology, Biomedical Center and University Hospital, Campus Martinsried-Grosshadern, Ludwig-Maximilians University, Munich, Germany
| | - Hartmut Wekerle
- HERTIE Senior Professor Group Neuroimmunology, Max Planck Institute of Neurobiology, Martinsried, Germany
| |
Collapse
|
153
|
Claes N, Fraussen J, Stinissen P, Hupperts R, Somers V. B Cells Are Multifunctional Players in Multiple Sclerosis Pathogenesis: Insights from Therapeutic Interventions. Front Immunol 2015; 6:642. [PMID: 26734009 PMCID: PMC4685142 DOI: 10.3389/fimmu.2015.00642] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 12/07/2015] [Indexed: 01/07/2023] Open
Abstract
Multiple sclerosis (MS) is a severe disease of the central nervous system (CNS) characterized by autoimmune inflammation and neurodegeneration. Historically, damage to the CNS was thought to be mediated predominantly by activated pro-inflammatory T cells. B cell involvement in the pathogenesis of MS was solely attributed to autoantibody production. The first clues for the involvement of antibody-independent B cell functions in MS pathology came from positive results in clinical trials of the B cell-depleting treatment rituximab in patients with relapsing-remitting (RR) MS. The survival of antibody-secreting plasma cells and decrease in T cell numbers indicated the importance of other B cell functions in MS such as antigen presentation, costimulation, and cytokine production. Rituximab provided us with an example of how clinical trials can lead to new research opportunities concerning B cell biology. Moreover, analysis of the antibody-independent B cell functions in MS has gained interest since these trials. Limited information is present on the effects of current immunomodulatory therapies on B cell functions, although effects of both first-line (interferon, glatiramer acetate, dimethyl fumarate, and teriflunomide), second-line (fingolimod, natalizumab), and even third-line (monoclonal antibody therapies) treatments on B cell subtype distribution, expression of functional surface markers, and secretion of different cytokines by B cells have been studied to some extent. In this review, we summarize the effects of different MS-related treatments on B cell functions that have been described up to now in order to find new research opportunities and contribute to the understanding of the pathogenesis of MS.
Collapse
Affiliation(s)
- Nele Claes
- Hasselt University, Biomedical Research Institute and Transnationale Universiteit Limburg, School of Life Sciences , Diepenbeek , Belgium
| | - Judith Fraussen
- Hasselt University, Biomedical Research Institute and Transnationale Universiteit Limburg, School of Life Sciences , Diepenbeek , Belgium
| | - Piet Stinissen
- Hasselt University, Biomedical Research Institute and Transnationale Universiteit Limburg, School of Life Sciences , Diepenbeek , Belgium
| | - Raymond Hupperts
- Department of Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands; Department of Neurology, Academic MS Center Limburg, Zuyderland Medisch Centrum, Sittard, Netherlands
| | - Veerle Somers
- Hasselt University, Biomedical Research Institute and Transnationale Universiteit Limburg, School of Life Sciences , Diepenbeek , Belgium
| |
Collapse
|
154
|
Galson JD, Trück J, Fowler A, Clutterbuck EA, Münz M, Cerundolo V, Reinhard C, van der Most R, Pollard AJ, Lunter G, Kelly DF. Analysis of B Cell Repertoire Dynamics Following Hepatitis B Vaccination in Humans, and Enrichment of Vaccine-specific Antibody Sequences. EBioMedicine 2015; 2:2070-9. [PMID: 26844287 PMCID: PMC4703725 DOI: 10.1016/j.ebiom.2015.11.034] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 11/18/2015] [Accepted: 11/18/2015] [Indexed: 12/20/2022] Open
Abstract
Generating a diverse B cell immunoglobulin repertoire is essential for protection against infection. The repertoire in humans can now be comprehensively measured by high-throughput sequencing. Using hepatitis B vaccination as a model, we determined how the total immunoglobulin sequence repertoire changes following antigen exposure in humans, and compared this to sequences from vaccine-specific sorted cells. Clonal sequence expansions were seen 7 days after vaccination, which correlated with vaccine-specific plasma cell numbers. These expansions caused an increase in mutation, and a decrease in diversity and complementarity-determining region 3 sequence length in the repertoire. We also saw an increase in sequence convergence between participants 14 and 21 days after vaccination, coinciding with an increase of vaccine-specific memory cells. These features allowed development of a model for in silico enrichment of vaccine-specific sequences from the total repertoire. Identifying antigen-specific sequences from total repertoire data could aid our understanding B cell driven immunity, and be used for disease diagnostics and vaccine evaluation.
Collapse
Affiliation(s)
- Jacob D. Galson
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Center, Oxford OX3 7LE, United Kingdom
- Welcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, United Kingdom
| | - Johannes Trück
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Center, Oxford OX3 7LE, United Kingdom
- Paediatric Immunology, University Children's Hospital, Zürich, 8032, Switzerland
| | - Anna Fowler
- Welcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, United Kingdom
| | - Elizabeth A. Clutterbuck
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Center, Oxford OX3 7LE, United Kingdom
| | - Márton Münz
- Welcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, United Kingdom
| | - Vincenzo Cerundolo
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford OX3 9DS, United Kingdom
| | | | | | - Andrew J. Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Center, Oxford OX3 7LE, United Kingdom
| | - Gerton Lunter
- Welcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, United Kingdom
| | - Dominic F. Kelly
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Center, Oxford OX3 7LE, United Kingdom
| |
Collapse
|
155
|
Willis SN, Stathopoulos P, Chastre A, Compton SD, Hafler DA, O'Connor KC. Investigating the Antigen Specificity of Multiple Sclerosis Central Nervous System-Derived Immunoglobulins. Front Immunol 2015; 6:600. [PMID: 26648933 PMCID: PMC4663633 DOI: 10.3389/fimmu.2015.00600] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/09/2015] [Indexed: 12/25/2022] Open
Abstract
The central nervous system (CNS) of patients with multiple sclerosis (MS) is the site where disease pathology is evident. Damaged CNS tissue is commonly associated with immune cell infiltration. This infiltrate often includes B cells that are found in multiple locations throughout the CNS, including the cerebrospinal fluid (CSF), parenchyma, and the meninges, frequently forming tertiary lymphoid structures in the latter. Several groups, including our own, have shown that B cells from distinct locations within the MS CNS are clonally related and display the characteristics of an antigen-driven response. However, the antigen(s) driving this response have yet to be conclusively defined. To explore the antigen specificity of the MS B cell response, we produced recombinant human immunoglobulin (rIgG) from a series of expanded B cell clones that we isolated from the CNS tissue of six MS brains. The specificity of these MS-derived rIgG and control rIgG derived from non-MS tissues was then examined using multiple methodologies that included testing individual candidate antigens, screening with high-throughput antigen arrays and evaluating binding to CNS-derived cell lines. We report that while several MS-derived rIgG recognized particular antigens, including neurofilament light and a protocadherin isoform, none were unique to MS, as non-MS-derived rIgG used as controls invariably displayed similar binding specificities. We conclude that while MS CNS resident B cells display the characteristics of an antigen-driven B cell response, the antigen(s) driving this response remain at large.
Collapse
Affiliation(s)
- Simon N Willis
- Department of Neurology, Yale School of Medicine , New Haven, CT , USA ; Walter and Eliza Hall Institute of Medical Research , Parkville, VIC , Australia ; Department of Medical Biology, University of Melbourne , Parkville, VIC , Australia
| | | | - Anne Chastre
- Department of Neurology, Yale School of Medicine , New Haven, CT , USA
| | - Shannon D Compton
- Department of Neurology, Yale School of Medicine , New Haven, CT , USA
| | - David A Hafler
- Department of Neurology, Yale School of Medicine , New Haven, CT , USA ; Department of Immunobiology, Yale School of Medicine , New Haven, CT , USA
| | - Kevin C O'Connor
- Department of Neurology, Yale School of Medicine , New Haven, CT , USA
| |
Collapse
|
156
|
Yaari G, Kleinstein SH. Practical guidelines for B-cell receptor repertoire sequencing analysis. Genome Med 2015; 7:121. [PMID: 26589402 PMCID: PMC4654805 DOI: 10.1186/s13073-015-0243-2] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
High-throughput sequencing of B-cell immunoglobulin repertoires is increasingly being applied to gain insights into the adaptive immune response in healthy individuals and in those with a wide range of diseases. Recent applications include the study of autoimmunity, infection, allergy, cancer and aging. As sequencing technologies continue to improve, these repertoire sequencing experiments are producing ever larger datasets, with tens- to hundreds-of-millions of sequences. These data require specialized bioinformatics pipelines to be analyzed effectively. Numerous methods and tools have been developed to handle different steps of the analysis, and integrated software suites have recently been made available. However, the field has yet to converge on a standard pipeline for data processing and analysis. Common file formats for data sharing are also lacking. Here we provide a set of practical guidelines for B-cell receptor repertoire sequencing analysis, starting from raw sequencing reads and proceeding through pre-processing, determination of population structure, and analysis of repertoire properties. These include methods for unique molecular identifiers and sequencing error correction, V(D)J assignment and detection of novel alleles, clonal assignment, lineage tree construction, somatic hypermutation modeling, selection analysis, and analysis of stereotyped or convergent responses. The guidelines presented here highlight the major steps involved in the analysis of B-cell repertoire sequencing data, along with recommendations on how to avoid common pitfalls.
Collapse
Affiliation(s)
- Gur Yaari
- Bioengineering Program, Faculty of Engineering, Bar-Ilan University, 5290002, Ramat Gan, Israel.
| | - Steven H Kleinstein
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06511, USA. .,Departments of Pathology and Immunobiology, Yale University School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
157
|
Blauth K, Owens GP, Bennett JL. The Ins and Outs of B Cells in Multiple Sclerosis. Front Immunol 2015; 6:565. [PMID: 26594215 PMCID: PMC4633507 DOI: 10.3389/fimmu.2015.00565] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 10/23/2015] [Indexed: 12/25/2022] Open
Abstract
B cells play a central role in multiple sclerosis (MS) pathology. B and plasma cells may contribute to disease activity through multiple mechanisms: antigen presentation, cytokine secretion, or antibody production. Molecular analyses of B cell populations in MS patients have revealed significant overlaps between peripheral lymphoid and clonally expanded central nervous system (CNS) B cell populations, indicating that B cell trafficking may play a critical role in driving MS exacerbations. In this review, we will assess our current knowledge of the mechanisms and pathways governing B cell migration into the CNS and examine evidence for and against a compartmentalized B cell response driving progressive MS pathology.
Collapse
Affiliation(s)
- Kevin Blauth
- Department of Neurology, University of Colorado Denver , Aurora, CO , USA
| | - Gregory P Owens
- Department of Neurology, University of Colorado Denver , Aurora, CO , USA
| | - Jeffrey L Bennett
- Department of Neurology, University of Colorado Denver , Aurora, CO , USA ; Department of Ophthalmology, University of Colorado Denver , Aurora, CO , USA ; Program in Neuroscience, University of Colorado Denver , Aurora, CO , USA
| |
Collapse
|
158
|
Galson JD, Trück J, Fowler A, Münz M, Cerundolo V, Pollard AJ, Lunter G, Kelly DF. In-Depth Assessment of Within-Individual and Inter-Individual Variation in the B Cell Receptor Repertoire. Front Immunol 2015; 6:531. [PMID: 26528292 PMCID: PMC4601265 DOI: 10.3389/fimmu.2015.00531] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/28/2015] [Indexed: 11/24/2022] Open
Abstract
High-throughput sequencing of the B cell receptor (BCR) repertoire can provide rapid characterization of the B cell response in a wide variety of applications in health, after vaccination and in infectious, inflammatory and immune-driven disease, and is starting to yield clinical applications. However, the interpretation of repertoire data is compromised by a lack of studies to assess the intra and inter-individual variation in the BCR repertoire over time in healthy individuals. We applied a standardized isotype-specific BCR repertoire deep sequencing protocol to a single highly sampled participant, and then evaluated the method in 9 further participants to comprehensively describe such variation. We assessed total repertoire metrics of mutation, diversity, VJ gene usage and isotype subclass usage as well as tracking specific BCR sequence clusters. There was good assay reproducibility (both in PCR amplification and biological replicates), but we detected striking fluctuations in the repertoire over time that we hypothesize may be due to subclinical immune activation. Repertoire properties were unique for each individual, which could partly be explained by a decrease in IgG2 with age, and genetic differences at the immunoglobulin locus. There was a small repertoire of public clusters (0.5, 0.3, and 1.4% of total IgA, IgG, and IgM clusters, respectively), which was enriched for expanded clusters containing sequences with suspected specificity toward antigens that should have been historically encountered by all participants through prior immunization or infection. We thus provide baseline BCR repertoire information that can be used to inform future study design, and aid in interpretation of results from these studies. Furthermore, our results indicate that BCR repertoire studies could be used to track changes in the public repertoire in and between populations that might relate to population immunity against infectious diseases, and identify the characteristics of inflammatory and immunological diseases.
Collapse
Affiliation(s)
- Jacob D. Galson
- Oxford Vaccine Group, Department of Paediatrics, The NIHR Oxford Biomedical Research Center, University of Oxford, Oxford, UK
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Johannes Trück
- Oxford Vaccine Group, Department of Paediatrics, The NIHR Oxford Biomedical Research Center, University of Oxford, Oxford, UK
- Paediatric Immunology, University Children’s Hospital, Zürich, Switzerland
| | - Anna Fowler
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Márton Münz
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Vincenzo Cerundolo
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford, UK
| | - Andrew J. Pollard
- Oxford Vaccine Group, Department of Paediatrics, The NIHR Oxford Biomedical Research Center, University of Oxford, Oxford, UK
| | - Gerton Lunter
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Dominic F. Kelly
- Oxford Vaccine Group, Department of Paediatrics, The NIHR Oxford Biomedical Research Center, University of Oxford, Oxford, UK
| |
Collapse
|
159
|
Grigoriadis N, van Pesch V. A basic overview of multiple sclerosis immunopathology. Eur J Neurol 2015; 22 Suppl 2:3-13. [DOI: 10.1111/ene.12798] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 06/05/2015] [Indexed: 12/12/2022]
Affiliation(s)
- N. Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology; Second Department of Neurology; AHEPA University Hospital; Aristotle University of Thessaloniki; Macedonia Greece
| | - V. van Pesch
- Neurology Department; Cliniques Universitaires St-Luc; Brussels Belgium
| | | |
Collapse
|
160
|
Dendrou CA, Fugger L, Friese MA. Immunopathology of multiple sclerosis. Nat Rev Immunol 2015; 15:545-58. [PMID: 26250739 DOI: 10.1038/nri3871] [Citation(s) in RCA: 1497] [Impact Index Per Article: 149.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Two decades of clinical experience with immunomodulatory treatments for multiple sclerosis point to distinct immunological pathways that drive disease relapses and progression. In light of this, we discuss our current understanding of multiple sclerosis immunopathology, evaluate long-standing hypotheses regarding the role of the immune system in the disease and delineate key questions that are still unanswered. Recent and anticipated advances in the field of immunology, and the increasing recognition of inflammation as an important component of neurodegeneration, are shaping our conceptualization of disease pathophysiology, and we explore the potential implications for improved healthcare provision to patients in the future.
Collapse
Affiliation(s)
- Calliope A Dendrou
- Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology and MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK
| | - Lars Fugger
- Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology and MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK.,Clinical Institute, Aarhus University Hospital, DK-8200 Aarhus, Denmark
| | - Manuel A Friese
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
161
|
Abstract
While over the past decades T cells have been considered key players in the pathogenesis of multiple sclerosis (MS), it has only recently become evident that B cells have a major contributing role. Our understanding of the role of B cells has evolved substantially following the clinical success of B cell-targeting therapies and increasing experimental evidence for significant B cell involvement. Rather than mere antibody-producing cells, it is becoming clear that they are team players with the capacity to prime and regulate T cells, and function both as pro- and anti-inflammatory mediators. However, despite tremendous efforts, the target antigen(s) of B cells in MS have yet to be identified. The first part of this review summarizes the clinical evidence and results from animal studies pointing to the relevance of B cells in the pathogenesis of MS. The second part gives an overview of the currently known potential autoantigen targets. The third part recapitulates and critically appraises the currently available B cell-directed therapies.
Collapse
|
162
|
Intrathecal BCR transcriptome in multiple sclerosis versus other neuroinflammation: Equally diverse and compartmentalized, but more mutated, biased and overlapping with the proteome. Clin Immunol 2015; 160:211-25. [PMID: 26055752 DOI: 10.1016/j.clim.2015.06.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 05/28/2015] [Accepted: 06/01/2015] [Indexed: 12/22/2022]
Abstract
The mechanisms driving the intrathecal synthesis of IgG in multiple sclerosis (MS) are unknown. We combined high-throughput sequencing of transcribed immunoglobulin heavy-chain variable (IGHV) genes and mass spectrometry to chart the diversity and compartmentalization of IgG-producing B cells in the cerebrospinal fluid (CSF) of MS patients and controls with other neuroinflammatory diseases. In both groups, a few clones dominated the intrathecal IGHV transcriptome. In most MS patients and some controls, dominant transcripts matched the CSF IgG. The IGHV transcripts in CSF of MS patients frequently carried IGHV4 genes and had more replacement mutations compared to controls. In both groups, dominant IGHV transcripts were identified within clusters of clonally related B cells that had identical or related IGHV transcripts in the blood. These findings suggest more pronounced affinity maturation, but an equal degree of diversity and compartmentalization of the intrathecal B-cell response in MS compared to other neuroinflammatory diseases.
Collapse
|
163
|
Diversity, cellular origin and autoreactivity of antibody-secreting cell population expansions in acute systemic lupus erythematosus. Nat Immunol 2015; 16:755-65. [PMID: 26006014 PMCID: PMC4512288 DOI: 10.1038/ni.3175] [Citation(s) in RCA: 392] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 04/13/2015] [Indexed: 12/17/2022]
Abstract
Acute SLE courses with antibody-secreting cells (ASC) surges whose origin, diversity, and contribution to serum autoantibodies remain unknown. Deep sequencing, autoantibody proteome and single-cell analysis demonstrated highly diversified ASC punctuated by VH4-34 clones that produce dominant serum autoantibodies. A fraction of ASC clones contained unmutated autoantibodies, a finding consistent with differentiation outside the germinal centers. A substantial ASC segment derived from a distinct subset of newly activated naïve cells of significant clonality that persist in the circulation for several months. Thus, selection of SLE autoreactivities occurred during polyclonal activation with prolonged recruitment of recently activated naïve B cells. These findings shed light into SLE pathogenesis, help explain the benefit of anti-B cell agents and facilitate the design of future therapies.
Collapse
|
164
|
Decreased Frequency of Circulating Myelin Oligodendrocyte Glycoprotein B Lymphocytes in Patients with Relapsing-Remitting Multiple Sclerosis. J Immunol Res 2015; 2015:673503. [PMID: 26090495 PMCID: PMC4452172 DOI: 10.1155/2015/673503] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 10/26/2014] [Accepted: 11/14/2014] [Indexed: 11/25/2022] Open
Abstract
Although there is no evidence for a role of anti-MOG antibodies in adult MS, no information on B lymphocytes with MOG-committed BCR is available. We report here on the frequency of anti-MOG B cells forming rosettes with polystyrene beads (BBR) covalently bound to the extracellular domain of rhMOG in 38 relapsing-remitting patients (RRMS) and 50 healthy individuals (HI). We show a substantial proportion of circulating anti-MOG-BBR in both RRMS and HI. Strikingly, MOG-specific B cells frequencies were lower in MS than in HI. Anti-MOG antibodies measured by a cell-based assay were not different between MS patients and controls, suggesting a specific alteration of anti-MOG B cells in MS. Although anti-MOG-BBR were higher in CNS fluid than in blood, no difference was observed between MS and controls. Lower frequency of MOG-BBR in MS was not explained by an increased apoptosis, but a trend for lower proliferative capacity was noted. Despite an efficient B cell transmigration across brain derived endothelial cells, total and anti-MOG B cells transmigration was similar between MS and HI. The striking alteration in MOG-specific B cells, independent of anti-MOG antibody titers, challenges our view on the role of MOG-specific B cells in MS.
Collapse
|
165
|
Salou M, Garcia A, Michel L, Gainche-Salmon A, Loussouarn D, Nicol B, Guillot F, Hulin P, Nedellec S, Baron D, Ramstein G, Soulillou JP, Brouard S, Nicot AB, Degauque N, Laplaud DA. Expanded CD8 T-cell sharing between periphery and CNS in multiple sclerosis. Ann Clin Transl Neurol 2015; 2:609-22. [PMID: 26125037 PMCID: PMC4479522 DOI: 10.1002/acn3.199] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 03/03/2015] [Indexed: 01/21/2023] Open
Abstract
Objective In multiple sclerosis (MS), central nervous system (CNS), cerebrospinal fluid (CSF), and blood display TCR clonal expansions of CD8+ T cells. These clones have been assumed – but never demonstrated – to be similar in the three compartments. Addressing this key question is essential to infer the implication of peripheral clonally expanded CD8+ T cells in the disease. Methods For the first time, TCR Vβ repertoire from paired blood (purified CD8+ and CD4+ T cells), CSF and CNS (22 lesions, various inflammatory and demyelination statuses) samples from three MS patients was studied using complementary determining region 3 (CDR3) spectratyping and high-throughput sequencing. In parallel, blood and CNS clonally expanded CD8+ T cells were characterized by fluorescent staining. Results TCR Vβ repertoire analysis revealed strong sharing of predominant T-cell clones between CNS lesions, CSF, and blood CD8+ T cells. In parallel, we showed that blood oligoclonal CD8+ T cells exhibit characteristics of pathogenic cells, as they displayed a bias toward a memory phenotype in MS patients, with increased expression of CCR5, CD11a and Granzyme B (GZM-B) compared to non oligoclonal counterparts. CNS-infiltrating T cells were mainly CD8 expressing CD11a and GZM-B. Interpretation This study highlights the predominant implication of CD8+ T cells in MS pathophysiology and demonstrates that potentially aggressive CD8+ T cells can be easily identified and characterized from blood and CSF samples.
Collapse
Affiliation(s)
- Marion Salou
- INSERM, UMR 1064 Nantes, F-44093, France ; Medicine Department, Nantes University Nantes, F-44035, France
| | - Alexandra Garcia
- INSERM, UMR 1064 Nantes, F-44093, France ; Nantes Hospital, ITUN Nantes, F-44093, France
| | - Laure Michel
- INSERM, UMR 1064 Nantes, F-44093, France ; Neurology Department, Nantes Hospital Nantes, F-44093, France
| | | | | | - Bryan Nicol
- INSERM, UMR 1064 Nantes, F-44093, France ; Medicine Department, Nantes University Nantes, F-44035, France
| | - Flora Guillot
- INSERM, UMR 1064 Nantes, F-44093, France ; Medicine Department, Nantes University Nantes, F-44035, France
| | - Philippe Hulin
- SFR François Bonamy, Cellular and Tissue Imaging Core Facility (MicroPICell) Nantes, F-44093, France
| | - Steven Nedellec
- SFR François Bonamy, Cellular and Tissue Imaging Core Facility (MicroPICell) Nantes, F-44093, France
| | - Daniel Baron
- INSERM, UMR 1064 Nantes, F-44093, France ; Medicine Department, Nantes University Nantes, F-44035, France ; Nantes Hospital, ITUN Nantes, F-44093, France
| | | | | | - Sophie Brouard
- INSERM, UMR 1064 Nantes, F-44093, France ; Nantes Hospital, ITUN Nantes, F-44093, France
| | - Arnaud B Nicot
- INSERM, UMR 1064 Nantes, F-44093, France ; Medicine Department, Nantes University Nantes, F-44035, France ; Nantes Hospital, ITUN Nantes, F-44093, France
| | - Nicolas Degauque
- INSERM, UMR 1064 Nantes, F-44093, France ; Nantes Hospital, ITUN Nantes, F-44093, France
| | - David A Laplaud
- INSERM, UMR 1064 Nantes, F-44093, France ; Neurology Department, Nantes Hospital Nantes, F-44093, France ; INSERM 004, Centre d'Investigation Clinique Nantes, F-44093, France
| |
Collapse
|
166
|
Abstract
Deep sequencing of immunoglobulin repertoires in multiple sclerosis patients reveals dysregulation of peripheral B cell immunity (Palanichamy et al. and Stern et al., this issue).
Collapse
Affiliation(s)
- Daniel R Lu
- Division of Immunology and Rheumatology, Stanford University, Stanford, CA 94305, USA. Stanford Immunology Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - William H Robinson
- Division of Immunology and Rheumatology, Stanford University, Stanford, CA 94305, USA. Stanford Immunology Program, Stanford University School of Medicine, Stanford, CA 94305, USA. VA Palo Alto Health Care System, Palo Alto, CA 94304, USA.
| |
Collapse
|
167
|
|
168
|
von Büdingen HC, Palanichamy A, Lehmann-Horn K, Michel BA, Zamvil SS. Update on the autoimmune pathology of multiple sclerosis: B-cells as disease-drivers and therapeutic targets. Eur Neurol 2015; 73:238-246. [PMID: 25824054 DOI: 10.1159/000377675] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 02/01/2015] [Indexed: 01/10/2023]
Abstract
BACKGROUND Collectively, research on the role of B-cells in the pathogenesis of multiple sclerosis (MS) illustrates how translational medicine has given rise to promising therapeutic approaches for one of the most debilitating chronic neurological diseases in young adults. First described in 1935, the experimental autoimmune/allergic encephalomyelitis model is a key animal model that has provided the foundation for important developments in targeted therapeutics. SUMMARY While additional B-cell therapies for MS are presently being developed by the pharmaceutical industry, much remains to be understood about the role played by B-cells in MS. The goal of this review is to summarize how B-cells may contribute to MS pathogenesis and thereby provide a basis for understanding why B-cell depletion is so effective in the treatment of this disease. Key Messages: B-cells are key players in the pathogenesis of MS, and their depletion via B-cell-targeted therapy ameliorates disease activity. CLINICAL IMPLICATIONS In 2008, data from the first CD20-targeting B-cell depleting therapeutic trials using rituximab in MS were published. Since then, there has been a large body of evidence demonstrating the effectiveness of B-cell depletion mediated via anti-CD20 antibodies. Intense research efforts focusing on the immunopathological relevance of B-cells has gained significant momentum and given rise to a constellation of promising therapeutic agents for this complex B-cell-driven disease, including novel anti-CD20 antibodies, as well as agents targeting CD19 and BAFF-R.
Collapse
|
169
|
Abstract
The development of high-throughput DNA sequencing technologies has enabled large-scale characterization of functional antibody repertoires, a new method of understanding protective and pathogenic immune responses. Important parameters to consider when sequencing antibody repertoires include the methodology, the B-cell population and clinical characteristics of the individuals analysed, and the bioinformatic analysis. Although focused sequencing of immunoglobulin heavy chains or complement determining regions can be utilized to monitor particular immune responses and B-cell malignancies, high-fidelity analysis of the full-length paired heavy and light chains expressed by individual B cells is critical for characterizing functional antibody repertoires. Bioinformatic identification of clonal antibody families and recombinant expression of representative members produces recombinant antibodies that can be used to identify the antigen targets of functional immune responses and to investigate the mechanisms of their protective or pathogenic functions. Integrated analysis of coexpressed functional genes provides the potential to further pinpoint the most important antibodies and clonal families generated during an immune response. Sequencing antibody repertoires is transforming our understanding of immune responses to autoimmunity, vaccination, infection and cancer. We anticipate that antibody repertoire sequencing will provide next-generation biomarkers, diagnostic tools and therapeutic antibodies for a spectrum of diseases, including rheumatic diseases.
Collapse
Affiliation(s)
- William H. Robinson
- Division of Immunology and Rheumatology, CCSR 4135, 269 Campus Drive, Stanford, CA 94305, USA.
| |
Collapse
|
170
|
Abstract
Autoimmune B cells play a major role in mediating tissue damage in multiple sclerosis (MS). In MS, B cells are believed to cross the blood-brain barrier and undergo stimulation, antigen-driven affinity maturation and clonal expansion within the supportive CNS environment. These highly restricted populations of clonally expanded B cells and plasma cells can be detected in MS lesions, in cerebrospinal fluid, and also in peripheral blood. In phase II trials in relapsing MS, monoclonal antibodies that target circulating CD20-positive B lymphocytes dramatically reduced disease activity. These beneficial effects occurred within weeks of treatment, indicating that a direct effect on B cells--and likely not on putative autoantibodies--was responsible. The discovery that depletion of B cells has an impact on MS biology enabled a paradigm shift in understanding how the inflammatory phase of MS develops, and will hopefully lead to development of increasingly selective therapies against culprit B cells and related humoral immune system pathways. More broadly, these studies illustrate how lessons learned from the bedside have unique power to inform translational research. They highlight the essential role of clinician scientists, currently endangered, who navigate the rocky and often unpredictable terrain between the worlds of clinical medicine and biomedical research.
Collapse
Affiliation(s)
- Stephen L Hauser
- Department of Neurology, University of California, San Francisco, USA
| |
Collapse
|
171
|
Claes N, Dhaeze T, Fraussen J, Broux B, Van Wijmeersch B, Stinissen P, Hupperts R, Hellings N, Somers V. Compositional changes of B and T cell subtypes during fingolimod treatment in multiple sclerosis patients: a 12-month follow-up study. PLoS One 2014; 9:e111115. [PMID: 25360562 PMCID: PMC4215872 DOI: 10.1371/journal.pone.0111115] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 09/27/2014] [Indexed: 11/19/2022] Open
Abstract
Background and objective The long term effects of fingolimod, an oral treatment for relapsing-remitting (RR) multiple sclerosis (MS), on blood circulating B and T cell subtypes in MS patients are not completely understood. This study describes for the first time the longitudinal effects of fingolimod treatment on B and T cell subtypes. Furthermore, expression of surface molecules involved in antigen presentation and costimulation during fingolimod treatment are assessed in MS patients in a 12 month follow-up study. Methods Using flow cytometry, B and T cell subtypes, and their expression of antigen presentation, costimulation and migration markers were measured during a 12 month follow-up in the peripheral blood of MS patients. Data of fingolimod-treated MS patients (n = 49) were compared to those from treatment-naive (n = 47) and interferon-treated (n = 27) MS patients. Results In the B cell population, we observed a decrease in the proportion of non class-switched and class-switched memory B cells (p<0.001), both implicated in MS pathogenesis, while the proportion of naive B cells was increased during fingolimod treatment in the peripheral blood (PB) of MS patients (p<0.05). The remaining T cell population, in contrast, showed elevated proportions of memory conventional and regulatory T cells (p<0.01) and declined proportions of naive conventional and regulatory cells (p<0.05). These naive T cell subtypes are main drivers of MS pathogenesis. B cell expression of CD80 and CD86 and programmed death (PD) -1 expression on circulating follicular helper T cells was increased during fingolimod follow-up (p<0.05) pointing to a potentially compensatory mechanism of the remaining circulating lymphocyte subtypes that could provide additional help during normal immune responses. Conclusions MS patients treated with fingolimod showed a change in PB lymphocyte subtype proportions and expression of functional molecules on T and B cells, suggesting an association with the therapeutic efficacy of fingolimod.
Collapse
Affiliation(s)
- Nele Claes
- Hasselt University, Biomedical Research Institute and Transnationale Universiteit Limburg, School of Life Sciences, Diepenbeek, Belgium
| | - Tessa Dhaeze
- Hasselt University, Biomedical Research Institute and Transnationale Universiteit Limburg, School of Life Sciences, Diepenbeek, Belgium
| | - Judith Fraussen
- Hasselt University, Biomedical Research Institute and Transnationale Universiteit Limburg, School of Life Sciences, Diepenbeek, Belgium
| | - Bieke Broux
- Hasselt University, Biomedical Research Institute and Transnationale Universiteit Limburg, School of Life Sciences, Diepenbeek, Belgium
| | - Bart Van Wijmeersch
- Hasselt University, Biomedical Research Institute and Transnationale Universiteit Limburg, School of Life Sciences, Diepenbeek, Belgium
- Rehabilitation & MS-Center, Overpelt, Belgium
| | - Piet Stinissen
- Hasselt University, Biomedical Research Institute and Transnationale Universiteit Limburg, School of Life Sciences, Diepenbeek, Belgium
| | - Raymond Hupperts
- Department of Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Department of Neurology, Orbis Medical Center, Sittard, The Netherlands
| | - Niels Hellings
- Hasselt University, Biomedical Research Institute and Transnationale Universiteit Limburg, School of Life Sciences, Diepenbeek, Belgium
| | - Veerle Somers
- Hasselt University, Biomedical Research Institute and Transnationale Universiteit Limburg, School of Life Sciences, Diepenbeek, Belgium
- * E-mail:
| |
Collapse
|