151
|
Lamoth F. Aspergillus fumigatus-Related Species in Clinical Practice. Front Microbiol 2016; 7:683. [PMID: 27242710 PMCID: PMC4868848 DOI: 10.3389/fmicb.2016.00683] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 04/26/2016] [Indexed: 11/13/2022] Open
Abstract
Aspergillus fumigatus is the main etiologic agent of invasive aspergillosis (IA). Other Aspergillus species belonging to the section Fumigati (A. fumigatus complex) may occasionally be the cause of IA. These strains are often misidentified, as they cannot be distinguished from A. fumigatus by conventional morphological analysis and sequencing methods. This lack of recognition may have important consequences as these A. fumigatus-related species often display some level of intrinsic resistance to azoles and other antifungal drugs. A. lentulus, A. udagawae, A. viridinutans, and A. thermomutatus (Neosartorya pseudofischeri) have been associated with refractory cases of IA. Microbiologists should be able to suspect the presence of these cryptic species behind a putative A. fumigatus isolate on the basis of some simple characteristics, such as defect in sporulation and/or unusual antifungal susceptibility profile. However, definitive species identification requires specific sequencing analyses of the beta-tubulin or calmodulin genes, which are not available in most laboratories. Multiplex PCR assays or matrix-assisted laser desorption ionization - time-of-flight mass spectrometry (MALDI-TOF MS) gave promising results for rapid and accurate distinction between A. fumigatus and other Aspergillus spp. of the section Fumigati in clinical practice. Improved diagnostic procedures and antifungal susceptibility testing may be helpful for the early detection and management of these particular IA cases.
Collapse
Affiliation(s)
- Frédéric Lamoth
- Infectious Diseases Service, Department of Medicine, and Institute of Microbiology, Lausanne University HospitalLausanne, Switzerland
| |
Collapse
|
152
|
Homa M, Galgóczy L, Tóth E, Virágh M, Chandrasekaran M, Vágvölgyi C, Papp T. In vitro susceptibility of Scedosporium isolates to N-acetyl-L-cysteine alone and in combination with conventional antifungal agents. Med Mycol 2016; 54:776-9. [PMID: 27143635 DOI: 10.1093/mmy/myw029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 03/20/2016] [Indexed: 11/13/2022] Open
Abstract
In recent years, Scedosporium species have been more commonly recognized from severe, difficult-to-treat human infections, such as upper respiratory tract and pulmonary infections. To select an appropriate therapeutic approach for these infections is challenging, because of the commonly observed resistance of the causative agents to several antifungal drugs. Therefore, to find a novel strategy for the treatment of pulmonary Scedosporium infections the in vitro antifungal effect of a mucolytic agent, N-acetyl-L-cysteine and its in vitro combinations with conventional antifungals were investigated. Synergistic and indifferent interactions were registered in 23 and 13 cases, respectively. Antagonism was not revealed between the compounds.
Collapse
Affiliation(s)
- Mónika Homa
- University of Szeged, Faculty of Science and Informatics, Department of Microbiology, Közép fasor 52, H-6726 Szeged, Hungary
| | - László Galgóczy
- University of Szeged, Faculty of Science and Informatics, Department of Microbiology, Közép fasor 52, H-6726 Szeged, Hungary Medical University of Innsbruck, Biocenter, Division of Molecular Biology, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Eszter Tóth
- University of Szeged, Faculty of Science and Informatics, Department of Microbiology, Közép fasor 52, H-6726 Szeged, Hungary
| | - Máté Virágh
- University of Szeged, Faculty of Science and Informatics, Department of Microbiology, Közép fasor 52, H-6726 Szeged, Hungary
| | - Muthusamy Chandrasekaran
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Csaba Vágvölgyi
- University of Szeged, Faculty of Science and Informatics, Department of Microbiology, Közép fasor 52, H-6726 Szeged, Hungary Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Tamás Papp
- University of Szeged, Faculty of Science and Informatics, Department of Microbiology, Közép fasor 52, H-6726 Szeged, Hungary
| |
Collapse
|
153
|
Sabino R, Carolino E, Veríssimo C, Martinez M, Clemons KV, Stevens DA. Antifungal susceptibility of 175 Aspergillus isolates from various clinical and environmental sources. Med Mycol 2016; 54:740-756. [PMID: 27143632 DOI: 10.1093/mmy/myw024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 02/21/2016] [Indexed: 11/14/2022] Open
Abstract
Some environmental Aspergillus spp. isolates have been described as resistant to antifungals, potentially causing an emerging medical problem. In the present work, the antifungal susceptibility profile of 41 clinical and 134 environmental isolates of Aspergillus was determined using the CLSI microdilution method. The aim of this study was to compare environmental and clinical isolates with respect to their susceptibility, and assess the potential implications for therapy of isolates encountered in different environments. To our knowledge, this is the first report comparing antifungal susceptibility profiles of Aspergillus collected from different environmental sources (poultries, swineries, beach sand, and hospital environment). Significant differences were found in the distribution of the different species sections for the different sources. Significant differences were also found in the susceptibility profile of the different Aspergillus sections recovered from the various sources. Clear differences were found between the susceptibility of clinical and environmental isolates for caspofungin, amphotericin B and posaconazole, with clinical isolates showing overall greater susceptibility, except for caspofungin. In comparison to clinical isolates, hospital environmental isolates showed significantly less susceptibility to amphotericin B and posaconazole. These data indicate that species section identity and the site from which the isolate was recovered influence the antifungal susceptibility profile, which may affect initial antifungal choices.
Collapse
Affiliation(s)
- Raquel Sabino
- National Institute of Health Dr. Ricardo Jorge - URSZ- Infectious Diseases Department, Lisbon, Portugal
| | - Elisabete Carolino
- Scientific Area of Mathematics, Lisbon School of Health Technology - Polytechnic Institute of Lisbon, Lisbon, Portugal
| | - Cristina Veríssimo
- National Institute of Health Dr. Ricardo Jorge - URSZ- Infectious Diseases Department, Lisbon, Portugal
| | - Marife Martinez
- California Institute for Medical Research, San Jose, CA, United States
| | - Karl V Clemons
- California Institute for Medical Research, San Jose, CA, United States.,Stanford University School of Medicine, Stanford, CA, United States
| | - David A Stevens
- California Institute for Medical Research, San Jose, CA, United States.,Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
154
|
Alcazar-Fuoli L, Buitrago M, Gomez-Lopez A, Mellado E. An alternative host model of a mixed fungal infection by azole susceptible and resistant Aspergillus spp strains. Virulence 2016; 6:376-84. [PMID: 26065322 DOI: 10.1080/21505594.2015.1025192] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Aspergillus fumigatus is the most common mold involved in human infections. However, the number of non-fumigatus species able to cause disease is continuously increasing. Among them, Aspergillus lentulus is reported in hematological and cystic fibrosis patients and in those treated with corticosteroids. A. lentulus differs from A. fumigatus in some clinically relevant aspects such as virulence and antifungal susceptibility, showing high MICs to most antifungals. Previous studies proved that A. lentulus was pathogenic in immunocompromised mice, although the course of the infection was delayed compared to A. fumigatus. These differences could explain why A. lentulus is mostly found in mixed infections with A. fumigatus challenging the diagnosis and treatment. We used the alternative model host Galleria mellonella to compare virulence, host interaction, fungal burden and antifungal response when larvae were infected with A. fumigatus or A. lentulus alone, and with a mixture of both species. A. lentulus was pathogenic in G. mellonella but infected larvae did not respond to therapeutic doses of voriconazole. We were able to simultaneously detect A. fumigatus and A. lentulus by a multiplex Nested Real Time PCR (MN-PCR). Comparative analysis of larvae histological sections showed melanization of both species but presented a different pattern of immune response by haemocytes. Analysis of fungal burden and histology showed that A. lentulus survived in the G. mellonella despite the antifungal treatment in single and mixed infections. We conclude that the simultaneous presence of antifungal susceptible and resistant Aspergillus species would likely complicate the management of these infections.
Collapse
Affiliation(s)
- L Alcazar-Fuoli
- a Mycology Reference Laboratory; Centro Nacional de Microbiologia ; Instituto de Salud Carlos III ; Madrid , Spain
| | | | | | | |
Collapse
|
155
|
Bernal-Martínez L, Alastruey-Izquierdo A, Cuenca-Estrella M. Diagnostics and susceptibility testing in Aspergillus. Future Microbiol 2016; 11:315-28. [PMID: 26848512 DOI: 10.2217/fmb.15.140] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED Invasive aspergillosis is a major cause of morbidity and mortality in immunosuppressed patients. Early diagnosis and correct antifungal treatment have a direct impact on patient survival. A number of newer diagnostic procedures have been developed as alternatives to conventional microbiological methods. The detection of fungal components, largely antigens and DNA, are used in clinical laboratories to diagnose invasive aspergillosis. Other rapid diagnostic tests have been recently developed with promising results. However, antifungal resistance is becoming an emerging problem. The detection of this resistance is important to administer the proper antifungal agent. This text reviews the novelties on new diagnostics Aspergillus spp. PROCEDURES Intrinsic antifungal resistance and mechanisms of secondary resistance to triazoles in A. fumigatus are also reviewed.
Collapse
Affiliation(s)
- Leticia Bernal-Martínez
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; Spanish Network for the Research in Infectious Diseases (REIPI RD12/0015), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Alastruey-Izquierdo
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; Spanish Network for the Research in Infectious Diseases (REIPI RD12/0015), Instituto de Salud Carlos III, Madrid, Spain
| | - Manuel Cuenca-Estrella
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain; Spanish Network for the Research in Infectious Diseases (REIPI RD12/0015), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
156
|
Jover-Saénz A, Altermir-Martínez V, Barcenilla-Gaite F, Garrido-Calvo S. Artritis infecciosa con osteomielitis debida a Scedosporium prolificans en un paciente inmunocompetente. Med Clin (Barc) 2016; 146:e15-6. [DOI: 10.1016/j.medcli.2015.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/03/2015] [Accepted: 09/03/2015] [Indexed: 11/29/2022]
|
157
|
Gonçalves SS, Souza ACR, Chowdhary A, Meis JF, Colombo AL. Epidemiology and molecular mechanisms of antifungal resistance in CandidaandAspergillus. Mycoses 2016; 59:198-219. [DOI: 10.1111/myc.12469] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 12/14/2015] [Accepted: 12/18/2015] [Indexed: 12/15/2022]
Affiliation(s)
- Sarah Santos Gonçalves
- Laboratório Especial de Micologia, Disciplina de Infectologia, Escola Paulista de Medicina; Universidade Federal de São Paulo; São Paulo SP Brazil
| | - Ana Carolina Remondi Souza
- Laboratório Especial de Micologia, Disciplina de Infectologia, Escola Paulista de Medicina; Universidade Federal de São Paulo; São Paulo SP Brazil
| | - Anuradha Chowdhary
- Department of Medical Mycology; Vallabhbhai Patel Chest Institute; University of Delhi; Delhi India
| | - Jacques F. Meis
- Department of Medical Microbiology and Infectious Diseases; Canisius Wilhelmina Hospital; Nijmegen the Netherlands
- Department of Medical Microbiology; Radboud University Medical Centre; Nijmegen the Netherlands
| | - Arnaldo Lopes Colombo
- Laboratório Especial de Micologia, Disciplina de Infectologia, Escola Paulista de Medicina; Universidade Federal de São Paulo; São Paulo SP Brazil
| |
Collapse
|
158
|
Pellon A, Ramirez-Garcia A, Buldain I, Antoran A, Rementeria A, Hernando FL. Immunoproteomics-Based Analysis of the Immunocompetent Serological Response to Lomentospora prolificans. J Proteome Res 2016; 15:595-607. [PMID: 26732945 DOI: 10.1021/acs.jproteome.5b00978] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The filamentous fungus Lomentospora prolificans is an emerging pathogen causing severe infections mainly among the immunocompromised population. These diseases course with high mortality rates due to great virulence of the fungus, its inherent resistance to available antifungals, and absence of specific diagnostic tools. Despite being widespread in humanized environments, L. prolificans rarely causes infections in immunocompetent individuals likely due to their developed protective immune response. In this study, conidial and hyphal immunomes against healthy human serum IgG were analyzed, identifying immunodominant antigens and establishing their prevalence among the immunocompetent population. Thirteen protein spots from each morph were detected as reactive against at least 70% of serum samples, and identified by liquid chromatography tandem mass spectrometry (LC-MS/MS). Hence, the most seroprevalent antigens were WD40 repeat 2 protein, malate dehydrogenase, and DHN1, in conidia, and heat shock protein (Hsp) 70, Hsp90, ATP synthase β subunit, and glyceraldehyde-3-phosphate dehydrogenase, in hyphae. More interestingly, the presence of some of these seroprevalent antigens was determined on the cell surface, as Hsp70, enolase, or Hsp90. Thus, we have identified a diverse set of antigenic proteins, both in the entire proteome and cell surface subproteome, which may be used as targets to develop innovative therapeutic or diagnostic tools.
Collapse
Affiliation(s)
- Aize Pellon
- Fungal and Bacterial Biomics Research Group. Department of Immunology, Microbiology and Parasitology. Faculty of Science and Technology. University of the Basque Country (UPV/EHU) , Leioa 48940, Spain
| | - Andoni Ramirez-Garcia
- Fungal and Bacterial Biomics Research Group. Department of Immunology, Microbiology and Parasitology. Faculty of Science and Technology. University of the Basque Country (UPV/EHU) , Leioa 48940, Spain
| | - Idoia Buldain
- Fungal and Bacterial Biomics Research Group. Department of Immunology, Microbiology and Parasitology. Faculty of Science and Technology. University of the Basque Country (UPV/EHU) , Leioa 48940, Spain
| | - Aitziber Antoran
- Fungal and Bacterial Biomics Research Group. Department of Immunology, Microbiology and Parasitology. Faculty of Science and Technology. University of the Basque Country (UPV/EHU) , Leioa 48940, Spain
| | - Aitor Rementeria
- Fungal and Bacterial Biomics Research Group. Department of Immunology, Microbiology and Parasitology. Faculty of Science and Technology. University of the Basque Country (UPV/EHU) , Leioa 48940, Spain
| | - Fernando L Hernando
- Fungal and Bacterial Biomics Research Group. Department of Immunology, Microbiology and Parasitology. Faculty of Science and Technology. University of the Basque Country (UPV/EHU) , Leioa 48940, Spain
| |
Collapse
|
159
|
Gautier M, Normand AC, L'Ollivier C, Cassagne C, Reynaud-Gaubert M, Dubus JC, Brégeon F, Hendrickx M, Gomez C, Ranque S, Piarroux R. Aspergillus tubingensis: a major filamentous fungus found in the airways of patients with lung disease. Med Mycol 2016; 54:459-70. [PMID: 26773134 DOI: 10.1093/mmy/myv118] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 12/18/2015] [Indexed: 11/13/2022] Open
Abstract
The black Aspergillus group comprises A. niger and 18 other species, which are morphologically indistinguishable. Among this species subset, A. tubingensis, described in less than 30 human cases before 2014, is primarily isolated from ear, nose, and throat samples. Recently, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry has emerged as a powerful technique to identify microbes in diagnostic settings. We applied this method to identify 1,720 filamentous fungi routinely isolated from clinical samples our laboratory over a two-year study period. Accordingly, we found 85 isolates of A. niger, 58 of A. tubingensis, and six other black Aspergillus (4 A. carbonarius and 2 A. japonicus). A. tubingensis was the fifth most frequent mold isolated in our mycology laboratory, primarily isolated from respiratory samples (40/58 isolates). In this study, we mainly aimed to describe the clinical pattern of Aspergillus tubingensisWe analyzed the clinical features of the patients in whom A. tubingensis had been isolated from 40 respiratory samples. Thirty patients suffered from cystic fibrosis, chronic obstructive pulmonary disease or other types of chronic respiratory failure. Strikingly, 20 patients were experiencing respiratory acute exacerbation at the time the sample was collected. Antifungal susceptibility testing of 36 A. tubingensis isolates showed lower amphotericin B MICs (P < 10(-4)) and higher itraconazole and voriconazole MICs (P < 10(-4) and P = .0331, respectively) compared with 36 A. niger isolates. Further studies are required to better establish the role that this fungus plays in human diseases, especially in the context of cystic fibrosis and chronic pulmonary diseases.
Collapse
Affiliation(s)
- Magali Gautier
- Parasitology and Mycology, Assistance Publique-Hôpitaux de Marseille, CHU Timone-Adultes, 13385 Marseilles CEDEX 5, France
| | - Anne-Cécile Normand
- Parasitology and Mycology, Assistance Publique-Hôpitaux de Marseille, CHU Timone-Adultes, 13385 Marseilles CEDEX 5, France
| | - Coralie L'Ollivier
- Parasitology and Mycology, Assistance Publique-Hôpitaux de Marseille, CHU Timone-Adultes, 13385 Marseilles CEDEX 5, France
| | - Carole Cassagne
- Parasitology and Mycology, Assistance Publique-Hôpitaux de Marseille, CHU Timone-Adultes, 13385 Marseilles CEDEX 5, France
| | - Martine Reynaud-Gaubert
- Department of Respiratory diseases, CF Adult Centre and Lung Transplant Team; Assistance Publique-Hôpitaux de Marseille, CHU Nord, 13015 Marseilles, France URMITE CNRS IRD UMR 6236, IHU Méditerranée Infection, Aix-Marseille University, France
| | - Jean-Christophe Dubus
- Pediatric Pulmonology and CF Centre, Assistance Publique-Hôpitaux de Marseille, CHU Timone-Enfants, 13385 Marseilles CEDEX 5, France
| | - Fabienne Brégeon
- URMITE CNRS IRD UMR 6236, IHU Méditerranée Infection, Aix-Marseille University, France Service d'Explorations Fonctionnelles Respiratoires, Assistance Publique-Hôpitaux de Marseille, CHU Nord, 13015 Marseilles, France
| | - Marijke Hendrickx
- BCCM/IHEM: Scientific Institute of Public Health, Mycology and Aerobiology Section, Brussels, Belgium
| | - Carine Gomez
- Department of Respiratory diseases, CF Adult Centre and Lung Transplant Team; Assistance Publique-Hôpitaux de Marseille, CHU Nord, 13015 Marseilles, France URMITE CNRS IRD UMR 6236, IHU Méditerranée Infection, Aix-Marseille University, France
| | - Stéphane Ranque
- Parasitology and Mycology, Assistance Publique-Hôpitaux de Marseille, CHU Timone-Adultes, 13385 Marseilles CEDEX 5, France Aix-Marseille University, UMR MD3 IP-TPT, 13885 Marseilles, France
| | - Renaud Piarroux
- Parasitology and Mycology, Assistance Publique-Hôpitaux de Marseille, CHU Timone-Adultes, 13385 Marseilles CEDEX 5, France Aix-Marseille University, UMR MD3 IP-TPT, 13885 Marseilles, France
| |
Collapse
|
160
|
Homa M, Galgóczy L, Tóth E, Tóth L, Papp T, Chandrasekaran M, Kadaikunnan S, Alharbi NS, Vágvölgyi C. In vitro antifungal activity of antipsychotic drugs and their combinations with conventional antifungals against Scedosporium and Pseudallescheria isolates. Med Mycol 2015; 53:890-5. [PMID: 26316212 DOI: 10.1093/mmy/myv064] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2015] [Indexed: 01/04/2023] Open
Abstract
In the present study, in vitro antifungal activities of five antipsychotic drugs (i.e., chlorpromazine hydrochloride, CPZ; trifluoperazine hydrochloride, TPZ; amantadine hydrochloride; R-(-)-deprenyl hydrochloride, and valproic acid sodium salt) and five conventional antifungal drugs (i.e., amphotericin B, AMB; caspofungin, CSP; itraconazole; terbinafine, TRB and voriconazole, VRC) were investigated in broth microdilution tests against four clinical and five environmental Scedosporium and Pseudallescheria isolates. When used alone, phenothiazines CPZ and TPZ exerted remarkable antifungal effects. Thus, their in vitro combinations with AMB, CSP, VRC, and TRB were also examined against the clinical isolates. In combination with antifungal agents, CPZ was able to act synergistically with AMB and TRB in cases of one and two isolates, respectively. In all other cases, indifferent interactions were revealed. Antagonism was not observed between the tested agents. These combinations may establish a more effective and less toxic therapy after further in vitro and in vivo studies for Scedosporium and Pseudallescheria infections.
Collapse
Affiliation(s)
- Mónika Homa
- University of Szeged, Faculty of Science and Informatics, Department of Microbiology, Szeged, Hungary
| | - László Galgóczy
- University of Szeged, Faculty of Science and Informatics, Department of Microbiology, Szeged, Hungary Innsbruck Medical University, Biocenter, Division of Molecular Biology, Innsbruck, Austria
| | - Eszter Tóth
- University of Szeged, Faculty of Science and Informatics, Department of Microbiology, Szeged, Hungary
| | - Liliána Tóth
- University of Szeged, Faculty of Science and Informatics, Department of Microbiology, Szeged, Hungary
| | - Tamás Papp
- King Saud University, Botany and Microbiology Department, Riyadh, Kingdom of Saudi Arabia
| | | | - Shine Kadaikunnan
- King Saud University, Botany and Microbiology Department, Riyadh, Kingdom of Saudi Arabia
| | - Naiyf S Alharbi
- King Saud University, Botany and Microbiology Department, Riyadh, Kingdom of Saudi Arabia
| | - Csaba Vágvölgyi
- University of Szeged, Faculty of Science and Informatics, Department of Microbiology, Szeged, Hungary King Saud University, Botany and Microbiology Department, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
161
|
Peghin M, Monforte V, Martin-Gomez MT, Ruiz-Camps I, Berastegui C, Saez B, Riera J, Ussetti P, Solé J, Gavaldá J, Roman A. 10 years of prophylaxis with nebulized liposomal amphotericin B and the changing epidemiology ofAspergillusspp. infection in lung transplantation. Transpl Int 2015; 29:51-62. [DOI: 10.1111/tri.12679] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 07/06/2015] [Accepted: 08/31/2015] [Indexed: 11/27/2022]
Affiliation(s)
- Maddalena Peghin
- Department of Infectious Diseases; Hospital Universitari de la Vall d'Hebron; Barcelona Spain
- Department of Medicine; Universitat Autònoma de Barcelona; Barcelona Spain
| | - Victor Monforte
- Department of Pulmonology and Lung Transplant Unit; Hospital Universitari de la Vall d'Hebron; Barcelona Spain
- Ciber Enfermedades Respiratorias (CIBERES); Instituto de Salud Carlos III; Madrid Spain
| | | | - Isabel Ruiz-Camps
- Department of Infectious Diseases; Hospital Universitari de la Vall d'Hebron; Barcelona Spain
- Department of Medicine; Universitat Autònoma de Barcelona; Barcelona Spain
| | - Cristina Berastegui
- Department of Pulmonology and Lung Transplant Unit; Hospital Universitari de la Vall d'Hebron; Barcelona Spain
- Ciber Enfermedades Respiratorias (CIBERES); Instituto de Salud Carlos III; Madrid Spain
| | - Berta Saez
- Department of Pulmonology and Lung Transplant Unit; Hospital Universitari de la Vall d'Hebron; Barcelona Spain
- Ciber Enfermedades Respiratorias (CIBERES); Instituto de Salud Carlos III; Madrid Spain
| | - Jordi Riera
- Department of Intensive Care Unit; Hospital Universitari de la Vall d'Hebron; Barcelona Spain
| | - Piedad Ussetti
- Department of Pulmonology and Lung Transplant Unit; Hospital Puerta del Hierro; Madrid Spain
| | - Juan Solé
- Department of Thoracic Surgery; Hospital Universitari de la Vall d'Hebron; Barcelona Spain
| | - Joan Gavaldá
- Department of Infectious Diseases; Hospital Universitari de la Vall d'Hebron; Barcelona Spain
- Department of Medicine; Universitat Autònoma de Barcelona; Barcelona Spain
| | - Antonio Roman
- Department of Pulmonology and Lung Transplant Unit; Hospital Universitari de la Vall d'Hebron; Barcelona Spain
- Ciber Enfermedades Respiratorias (CIBERES); Instituto de Salud Carlos III; Madrid Spain
| |
Collapse
|
162
|
Cafarchia C, Iatta R, Immediato D, Puttilli MR, Otranto D. Azole susceptibility ofMalassezia pachydermatisandMalassezia furfurand tentative epidemiological cut-off values. Med Mycol 2015; 53:743-8. [DOI: 10.1093/mmy/myv049] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 05/22/2015] [Indexed: 01/19/2023] Open
|
163
|
Nationwide Surveillance of Azole Resistance in Aspergillus Diseases. Antimicrob Agents Chemother 2015; 59:4569-76. [PMID: 25987612 DOI: 10.1128/aac.00233-15] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 05/12/2015] [Indexed: 01/12/2023] Open
Abstract
Aspergillus disease affects a broad patient population, from patients with asthma to immunocompromised patients. Azole resistance has been increasingly reported in both clinical and environmental Aspergillus strains. The prevalence and clinical impact of azole resistance in different patient populations are currently unclear. This 1-year prospective multicenter cohort study aimed to provide detailed epidemiological data on Aspergillus resistance among patients with Aspergillus disease in Belgium. Isolates were prospectively collected in 18 hospitals (April 2011 to April 2012) for susceptibility testing. Clinical and treatment data were collected with a questionnaire. The outcome was evaluated to 1 year after a patient's inclusion. A total of 220 Aspergillus isolates from 182 patients were included. The underlying conditions included invasive aspergillosis (n = 122 patients), allergic bronchopulmonary aspergillosis (APBA) (n = 39 patients), chronic pulmonary aspergillosis (n = 10 patients), Aspergillus bronchitis (n = 7 patients), and aspergilloma (n = 5 patients). The overall azole resistance prevalence was 5.5% (95% confidence interval [CI] 2.8 to 10.2%) and was 7.0% (4/57; 95% CI, 2.3 to 17.2%) in patients with APBA, bronchitis, aspergilloma, or chronic aspergillosis and 4.6% in patients with invasive aspergillosis (5/108; 95% CI, 1.7 to 10.7%). The 6-week survival in invasive aspergillosis was 52.5%, while susceptibility testing revealed azole resistance in only 2/58 of the deceased patients. The clinical impact of Aspergillus fumigatus resistance was limited in our patient population with Aspergillus diseases.
Collapse
|
164
|
Chowdhary A, Sharma C, Kathuria S, Hagen F, Meis JF. Prevalence and mechanism of triazole resistance in Aspergillus fumigatus in a referral chest hospital in Delhi, India and an update of the situation in Asia. Front Microbiol 2015; 6:428. [PMID: 26005442 PMCID: PMC4424976 DOI: 10.3389/fmicb.2015.00428] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 04/22/2015] [Indexed: 01/23/2023] Open
Abstract
Aspergillus fumigatus causes varied clinical syndromes ranging from colonization to deep infections. The mainstay of therapy of Aspergillus diseases is triazoles but several studies globally highlighted variable prevalence of triazole resistance, which hampers the management of aspergillosis. We studied the prevalence of resistance in clinical A. fumigatus isolates during 4 years in a referral Chest Hospital in Delhi, India and reviewed the scenario in Asia and the Middle East. Aspergillus species (n = 2117) were screened with selective plates for azole resistance. The isolates included 45.4% A. flavus, followed by 32.4% A. fumigatus, 15.6% Aspergillus species and 6.6% A. terreus. Azole resistance was found in only 12 (1.7%) A. fumigatus isolates. These triazole resistant A. fumigatus (TRAF) isolates were subjected to (a) calmodulin and β tubulin gene sequencing (b) in vitro antifungal susceptibility testing against triazoles using CLSI M38-A2 (c) sequencing of cyp51A gene and real-time PCR assay for detection of mutations and (d) microsatellite typing of the resistant isolates. TRAF harbored TR34/L98H mutation in 10 (83.3%) isolates with a pan-azole resistant phenotype. Among the remaining two TRAF isolates, one had G54E and the other had three non-synonymous point mutations. The majority of patients were diagnosed as invasive aspergillosis followed by allergic bronchopulmonary aspergillosis and chronic pulmonary aspergillosis. The Indian TR34/L98H isolates had a unique genotype and were distinct from the Chinese, Middle East, and European TR34/L98H strains. This resistance mechanism has been linked to the use of fungicide azoles in agricultural practices in Europe as it has been mainly reported from azole naïve patients. Reports published from Asia demonstrate the same environmental resistance mechanism in A. fumigatus isolates from two highly populated countries in Asia, i.e., China and India and also from the neighboring Middle East.
Collapse
Affiliation(s)
- Anuradha Chowdhary
- Department of Medical Mycology, Vallabhbhai Patel Chest Institute, University of Delhi Delhi, India
| | - Cheshta Sharma
- Department of Medical Mycology, Vallabhbhai Patel Chest Institute, University of Delhi Delhi, India
| | - Shallu Kathuria
- Department of Medical Mycology, Vallabhbhai Patel Chest Institute, University of Delhi Delhi, India
| | - Ferry Hagen
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital Nijmegen, Netherlands
| | - Jacques F Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital Nijmegen, Netherlands ; Department of Medical Microbiology, Radboud University Medical Center Nijmegen, Netherlands
| |
Collapse
|
165
|
Mejdrová I, Chalupská D, Kögler M, Šála M, Plačková P, Baumlová A, Hřebabecký H, Procházková E, Dejmek M, Guillon R, Strunin D, Weber J, Lee G, Birkus G, Mertlíková-Kaiserová H, Boura E, Nencka R. Highly Selective Phosphatidylinositol 4-Kinase IIIβ Inhibitors and Structural Insight into Their Mode of Action. J Med Chem 2015; 58:3767-93. [PMID: 25897704 DOI: 10.1021/acs.jmedchem.5b00499] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Phosphatidylinositol 4-kinase IIIβ is a cellular lipid kinase pivotal to pathogenesis of various RNA viruses. These viruses hijack the enzyme in order to modify the structure of intracellular membranes and use them for the construction of functional replication machinery. Selective inhibitors of this enzyme are potential broad-spectrum antiviral agents, as inhibition of this enzyme results in the arrest of replication of PI4K IIIβ-dependent viruses. Herein, we report a detailed study of novel selective inhibitors of PI4K IIIβ, which exert antiviral activity against a panel of single-stranded positive-sense RNA viruses. Our crystallographic data show that the inhibitors occupy the binding site for the adenine ring of the ATP molecule and therefore prevent the phosphorylation reaction.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Gary Lee
- ‡Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Gabriel Birkus
- ‡Gilead Sciences, Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | | | | | | |
Collapse
|
166
|
Araujo R, Oliveira M, Amorim A, Sampaio-Maia B. Unpredictable susceptibility of emerging clinical moulds to tri-azoles: review of the literature and upcoming challenges for mould identification. Eur J Clin Microbiol Infect Dis 2015; 34:1289-301. [PMID: 25894985 DOI: 10.1007/s10096-015-2374-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 03/23/2015] [Indexed: 02/06/2023]
Abstract
Tri-azoles represent the front-line drugs for the treatment of mould diseases; nevertheless, some emerging moulds, such as Fusarium spp., Scedosporium spp., Mucorales and others, may be less susceptible or resistant to these antifungals. A review of the literature was conducted on the susceptibility of rare moulds to the tri-azoles itraconazole, posaconazole and voriconazole. Particular attention was paid to isolates identified by molecular analyses. The range of susceptibility values described for the three tri-azoles was frequently large (from 0.06 to >16), and a high variability was found within each species; isolates were rarely reported as entirely susceptible to all tri-azoles. In addition, the susceptibility of 76 emerging moulds from our collection (including Hypocreales, Dothideomycetes, Scedosporium spp., Mucorales and rare Aspergillus spp.) to itraconazole and voriconazole was determined by the Clinical and Laboratory Standards Institute (CLSI) M38-A2 and European Committee for Antimicrobial Susceptibility Testing (EUCAST) methods. Susceptibility discrepancies (of two dilutions) were found comparing CLSI and EUCAST for Dothideomycetes; the values for the remaining moulds were similar. More practical, faster and inexpensive susceptibility tools are welcome for testing emerging moulds, as these tests still represent a critical tool to support clinicians on the selection of proper antifungal treatment. The susceptibility of emerging moulds to tri-azoles cannot be predicted exclusively following mould identification, as the isolates' susceptibilities showed highly variable values. Some emerging moulds still remain very difficult to identity, even following standard molecular analyses which result in complex fungal collections. This fact limits the definition of epidemiological cut-offs and clinical breakpoints that are still imperative for emerging moulds.
Collapse
Affiliation(s)
- R Araujo
- IPATIMUP, Institute of Molecular Pathology and Immunology, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465, Porto, Portugal,
| | | | | | | |
Collapse
|
167
|
Viegas C, Faria T, dos Santos M, Carolino E, Gomes AQ, Sabino R, Viegas S. Fungal burden in waste industry: an occupational risk to be solved. ENVIRONMENTAL MONITORING AND ASSESSMENT 2015; 187:199. [PMID: 25796518 DOI: 10.1007/s10661-015-4412-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 03/04/2015] [Indexed: 06/04/2023]
Abstract
High loads of fungi have been reported in different types of waste management plants. This study intends to assess fungal contamination in one waste-sorting plant before and after cleaning procedures in order to analyze their effectiveness. Air samples of 50 L were collected through an impaction method, while surface samples, taken at the same time, were collected by the swabbing method and subject to further macro- and microscopic observations. In addition, we collected air samples of 250 L using the impinger Coriolis μ air sampler (Bertin Technologies) at 300 L/min airflow rate in order to perform real-time quantitative PCR (qPCR) amplification of genes from specific fungal species, namely Aspergillus fumigatus and Aspergillus flavus complexes, as well as Stachybotrys chartarum species. Fungal quantification in the air ranged from 180 to 5,280 CFU m(-3) before cleaning and from 220 to 2,460 CFU m(-3) after cleaning procedures. Surfaces presented results that ranged from 29×10(4) to 109×10(4) CFU m(-2) before cleaning and from 11×10(4) to 89×10(4) CFU m(-2) after cleaning. Statistically significant differences regarding fungal load were not detected between before and after cleaning procedures. Toxigenic strains from A. flavus complex and S. chartarum were not detected by qPCR. Conversely, the A. fumigatus species was successfully detected by qPCR and interestingly it was amplified in two samples where no detection by conventional methods was observed. Overall, these results reveal the inefficacy of the cleaning procedures and that it is important to determine fungal burden in order to carry out risk assessment.
Collapse
Affiliation(s)
- Carla Viegas
- Environment and Health RG, Lisbon School of Health Technology, Polytechnic Institute of Lisbon, Lisbon, Portugal,
| | | | | | | | | | | | | |
Collapse
|
168
|
How we treat invasive fungal diseases in patients with acute leukemia: the importance of an individualized approach. Blood 2014; 124:3858-69. [DOI: 10.1182/blood-2014-04-516211] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
AbstractInvasive fungal diseases (IFDs) represent an important cause of treatment failure in adults with acute leukemia. Because of leukemia’s heterogeneity, the risk for IFDs is highly variable. We therefore apply a risk-adapted antifungal strategy with strong emphasis on pretreatment and day-15 posttreatment to allow earlier and more individualized interventions. We determine pretreatment risks for IFDs based on 4 factors: (1) host fitness for standard therapy (ie, fit, unfit, or frail); (2) leukemia resistance (high vs low probability of achieving complete remission [CR]); (3) anticipated treatment-related toxicity such as neutropenia, mucositis, and steroid-induced immunosuppression; and (4) patient exposure to opportunistic fungi. Accordingly, we stratify patients as high, intermediate, or low risk for IFDs and apply risk-adapted antifungal strategies, including primary or secondary prophylaxis and diagnostic-based preemptive or empiric therapy. Prevention of IFDs also relies on optimizing organ function, decreasing exposure to opportunistic fungi, and improving net state of immunosuppression with use of better-tolerated and investigational agents for unfit patients and those with adverse leukemia biology. Novel targeted and safe therapies that can achieve higher rates of sustained CR among patients with adverse genetics offer the best promise for reducing the burden of IFDs in these patients.
Collapse
|
169
|
Erdem E, Kandemir H, Arıkan-Akdağlı S, Esen E, Açıkalın A, Yağmur M, İlkit M. Aspergillus terreus infection in a sutureless self-sealing incision made during cataract surgery. Mycopathologia 2014; 179:129-34. [PMID: 25362536 DOI: 10.1007/s11046-014-9829-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 10/26/2014] [Indexed: 11/26/2022]
Abstract
Here, we describe a case of keratitis caused by Aspergillus terreus in an 80-year-old immunocompetent woman 1 month after uneventful cataract surgery. The patient presented with decreased visual acuity (20/50) and severe pain in her right eye. Examination revealed a 3.5 × 4.5 mm white-colored deep stromal infiltration located on the temporal corneal tunnel incision. Corneal scraping samples were obtained for cytological and culture examinations. The cinnamon-brown colonies consisting of a dense felt of conidiophores were identified as A. terreus using molecular data. Using CLSI M38-A2 microdilution method, minimum inhibitory concentration values of amphotericin B, itraconazole, voriconazole, and posaconazole were determined to be 2, 1, 0.25, and 1 μg/ml, respectively, and minimum effective concentration values of caspofungin and anidulafungin were ≤0.03 and ≤0.03, respectively, at 48 h for the A. terreus strain. Antifungal therapy was started as topical 1 % voriconazole drops hourly and 5 % natamycin ointment five times a day; however, corneal infection and melting progressed despite the ongoing intensive treatment and visual acuity dropped to the 20/200 level at the end of the first week. Amniotic membrane transplantation was performed to promote corneal healing. Topical medication was tapered and discontinued within 2 months based on the clinical features. The ulcer healed with scarring and vascularization, and visual acuity improved to 20/50. In conclusion, A. terreus is a very uncommon cause of mycotic keratitis and is especially rare after cataract surgery. We suggest that early and accurate diagnosis and appropriate treatment of A. terreus keratitis may have a major impact on preventing severe disease complications.
Collapse
Affiliation(s)
- Elif Erdem
- Department of Ophthalmology, Faculty of Medicine, University of Çukurova, Adana, Turkey
| | | | | | | | | | | | | |
Collapse
|
170
|
HARUN A. Fungal genotyping - current clinical application. Malays J Med Sci 2014; 21:1-2. [PMID: 25897275 PMCID: PMC4391447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 10/20/2014] [Indexed: 06/04/2023] Open
Abstract
The emergence of fungal species as opportunistic pathogens has warranted further studies on their pathogenicity, epidemiology, and transmissibility. Fungal genotyping has been employed to study the genetic relatedness within the organism, in order to obtain answers to epidemiological questions (such as in outbreak confirmation) as well as to provide basis for the improvement for patients care. Various fungal genotyping methods have been previously published, which can be chosen depending on the intended use and the capability of individual laboratory.
Collapse
Affiliation(s)
- Azian HARUN
- Sub-Editor (Laboratory Base), Malaysian Journal of Medical Sciences, Universiti Sains Malaysia Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
171
|
Sabino R, Ferreira JAG, Moss RB, Valente J, Veríssimo C, Carolino E, Clemons KV, Everson C, Banaei N, Penner J, Stevens DA. Molecular epidemiology of Aspergillus collected from cystic fibrosis patients. J Cyst Fibros 2014; 14:474-81. [PMID: 25459562 DOI: 10.1016/j.jcf.2014.10.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 10/16/2014] [Accepted: 10/19/2014] [Indexed: 11/24/2022]
Abstract
BACKGROUND Aspergillus respiratory infection is a common complication in cystic fibrosis (CF) and is associated with loss of pulmonary function and allergic disease. METHODS Fifty-three Aspergillus isolates recovered from CF patients were identified to species by Internal Transcribed Spacer Region (ITS), β-tubulin, and calmodulin sequencing. RESULTS Three species complexes (Terrei, Nigri, and Fumigati) were found. Identification to species level gave a single Aspergillus terreus sensu stricto, one Aspergillus niger sensu stricto and 51 Aspergillus fumigatus sensu stricto isolates. No cryptic species were found. CONCLUSIONS To our knowledge, this is the first prospective study of Aspergillus species in CF using molecular methods. The paucity of non-A. fumigatus and of cryptic species of A. fumigatus suggests a special association of A. fumigatus sensu stricto with CF airways, indicating it likely displays unique characteristics making it suitable for chronic residence in that milieu. These findings could refine an epidemiologic and therapeutic approach geared to this pathogen.
Collapse
Affiliation(s)
- Raquel Sabino
- National Institute of Health Dr. Ricardo Jorge-Infectious Diseases Department, Lisbon, Portugal; Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA, United States; California Institute for Medical Research, San Jose, CA, United States.
| | - Jose A G Ferreira
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA, United States; California Institute for Medical Research, San Jose, CA, United States; School of Medicine, Faculdade da Saúde e Ecologia Humana-FASEH, Vespasiano, Brazil
| | - Richard B Moss
- Department of Pediatrics, Division of Pulmonology, Stanford University, Stanford, CA, United States
| | - Joana Valente
- National Institute of Health Dr. Ricardo Jorge-Infectious Diseases Department, Lisbon, Portugal
| | - Cristina Veríssimo
- National Institute of Health Dr. Ricardo Jorge-Infectious Diseases Department, Lisbon, Portugal
| | - Elisabete Carolino
- Scientific Area of Mathematics, Lisbon School of Health Technology, Polytechnic Institute of Lisbon, Lisbon, Portugal
| | - Karl V Clemons
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA, United States; California Institute for Medical Research, San Jose, CA, United States
| | - Cassie Everson
- Department of Pediatrics, Division of Pulmonology, Stanford University, Stanford, CA, United States
| | - Niaz Banaei
- Clinical Microbiology Laboratory, Stanford University, Stanford, CA, United States
| | - John Penner
- California Institute for Medical Research, San Jose, CA, United States
| | - David A Stevens
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, CA, United States; California Institute for Medical Research, San Jose, CA, United States
| |
Collapse
|
172
|
Pemán J, Quindós G. Aspectos actuales de las enfermedades invasivas por hongos filamentosos. Rev Iberoam Micol 2014; 31:213-8. [DOI: 10.1016/j.riam.2014.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 07/24/2014] [Indexed: 10/24/2022] Open
|
173
|
Unusual forms of subacute invasive pulmonary aspergillosis in patients with solid tumors. J Infect 2014; 69:387-95. [DOI: 10.1016/j.jinf.2014.03.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/26/2014] [Accepted: 03/28/2014] [Indexed: 11/19/2022]
|
174
|
Chowdhary A, Kathuria S, Singh PK, Sharma B, Dolatabadi S, Hagen F, Meis JF. Molecular characterization andin vitroantifungal susceptibility of 80 clinical isolates of mucormycetes in Delhi, India. Mycoses 2014; 57 Suppl 3:97-107. [DOI: 10.1111/myc.12234] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/28/2014] [Accepted: 04/28/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Anuradha Chowdhary
- Department of Medical Mycology; Vallabhbhai Patel Chest Institute; University of Delhi; Delhi India
| | - Shallu Kathuria
- Department of Medical Mycology; Vallabhbhai Patel Chest Institute; University of Delhi; Delhi India
| | - Pradeep Kumar Singh
- Department of Medical Mycology; Vallabhbhai Patel Chest Institute; University of Delhi; Delhi India
| | - Brijesh Sharma
- Department of Medicine; Post Graduate Institute of Medical Education and Research; Dr. Ram Manohar Lohia Hospital; Delhi India
| | - Somayeh Dolatabadi
- CBS-KNAW Fungal Biodiversity Center; Utrecht the Netherlands
- Institute for Biodiversity and Ecosystem Dynamics; University of Amsterdam; Amsterdam The Netherlands
| | - Ferry Hagen
- Department of Medical Microbiology and Infectious Diseases; Canisius-Wilhelmina Hospital; Nijmegen the Netherlands
| | - Jacques F. Meis
- Department of Medical Microbiology and Infectious Diseases; Canisius-Wilhelmina Hospital; Nijmegen the Netherlands
- Department of Medical Microbiology; Radboud University Medical Centre; Nijmegen the Netherlands
| |
Collapse
|
175
|
Treatment of infections by cryptic Aspergillus species. Mycopathologia 2014; 178:441-5. [PMID: 25216599 DOI: 10.1007/s11046-014-9811-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 08/28/2014] [Indexed: 12/16/2022]
Abstract
The best treatment for patients with invasive aspergillosis caused by cryptic Aspergillus species remains uncertain, mainly due to the limited clinical data that have been published so far. In face of this limitation, patients should be treated with standard first-line therapy for invasive aspergillosis, with therapy being modified according to in vitro susceptibility testing. In this review, we summarize the importance of cryptic Aspergillus species in modern medicine, including their prevalence, methods for detection and response to antifungal drugs.
Collapse
|
176
|
In vitro combination of isavuconazole with micafungin or amphotericin B deoxycholate against medically important molds. Antimicrob Agents Chemother 2014; 58:6934-7. [PMID: 25136021 DOI: 10.1128/aac.03261-14] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Whether isavuconazole, an extended-spectrum triazole, possesses synergistic activity in combination therapy with echinocandins or amphotericin B for the treatment of invasive molds infections has not been studied. Our in vitro combination studies showed that isavuconazole and micafungin are synergistically active against Aspergillus fumigatus, Aspergillus flavus, Aspergillus terreus, and Cunninghamella bertholletiae. These results suggest that isavuconazole, in combination with micafungin, may have a role in the treatment of invasive aspergillosis and warrants further investigation.
Collapse
|
177
|
Genetic relatedness versus biological compatibility between Aspergillus fumigatus and related species. J Clin Microbiol 2014; 52:3707-21. [PMID: 25100816 DOI: 10.1128/jcm.01704-14] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Aspergillus section Fumigati contains 12 clinically relevant species. Among these Aspergillus species, A. fumigatus is the most frequent agent of invasive aspergillosis, followed by A. lentulus and A. viridinutans. Genealogical concordance and mating experiments were performed to examine the relationship between phylogenetic distance and mating success in these three heterothallic species. Analyses of 19 isolates from section Fumigati revealed the presence of three previously unrecognized species within the broadly circumscribed species A. viridinutans. A single mating type was found in the new species Aspergillus pseudofelis and Aspergillus pseudoviridinutans, but in Aspergillus parafelis, both mating types were present. Reciprocal interspecific pairings of all species in the study showed that the only successful crosses occurred with the MAT1-2 isolates of both A. parafelis and A. pseudofelis. The MAT1-2 isolate of A. parafelis was fertile when paired with the MAT1-1 isolates of A. fumigatus, A. viridinutans, A. felis, A. pseudoviridinutans, and A. wyomingensis but was not fertile with the MAT1-1 isolate of A. lentulus. The MAT1-2 isolates of A. pseudofelis were fertile when paired with the MAT1-1 isolate of A. felis but not with any of the other species. The general infertility in the interspecies crossings suggests that genetically unrelated species are also biologically incompatible, with the MAT1-2 isolates of A. parafelis and A. pseudofelis being the exception. Our findings underscore the importance of genealogical concordance analysis for species circumscription, as well as for accurate species identification, since misidentification of morphologically similar pathogens with differences in innate drug resistance may be of grave consequences for disease management.
Collapse
|
178
|
Cryptic and rare Aspergillus species in Brazil: prevalence in clinical samples and in vitro susceptibility to triazoles. J Clin Microbiol 2014; 52:3633-40. [PMID: 25078909 DOI: 10.1128/jcm.01582-14] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aspergillus spp. are among the most common causes of opportunistic invasive fungal infections in tertiary care hospitals. Little is known about the prevalence and in vitro susceptibility of Aspergillus species in Latin America, because there are few medical centers able to perform accurate identification at the species level. The purpose of this study was to analyze the distribution of cryptic and rare Aspergillus species among clinical samples from 133 patients with suspected aspergillosis admitted in 12 medical centers in Brazil and to analyze the in vitro activity of different antifungal drugs. The identification of Aspergillus species was performed based on a polyphasic approach, as well as sequencing analysis of the internal transcribed spacer (ITS) region, calmodulin, and β-tubulin genes and phylogenetic analysis when necessary. The in vitro susceptibility tests with voriconazole, posaconazole, and itraconazole were performed according to the CLSI M38-A2 document (2008). We demonstrated a high prevalence of cryptic species causing human infection. Only three isolates, representing the species Aspergillus thermomutatus, A. ochraceus, and A. calidoustus, showed less in vitro susceptibility to at least one of the triazoles tested. Accurate identifications of Aspergillus at the species level and with in vitro susceptibility tests are important because some species may present unique resistance patterns against specific antifungal drugs.
Collapse
|
179
|
Analysis of the protein domain and domain architecture content in fungi and its application in the search of new antifungal targets. PLoS Comput Biol 2014; 10:e1003733. [PMID: 25033262 PMCID: PMC4102429 DOI: 10.1371/journal.pcbi.1003733] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 06/04/2014] [Indexed: 01/25/2023] Open
Abstract
Over the past several years fungal infections have shown an increasing incidence in the susceptible population, and caused high mortality rates. In parallel, multi-resistant fungi are emerging in human infections. Therefore, the identification of new potential antifungal targets is a priority. The first task of this study was to analyse the protein domain and domain architecture content of the 137 fungal proteomes (corresponding to 111 species) available in UniProtKB (UniProt KnowledgeBase) by January 2013. The resulting list of core and exclusive domain and domain architectures is provided in this paper. It delineates the different levels of fungal taxonomic classification: phylum, subphylum, order, genus and species. The analysis highlighted Aspergillus as the most diverse genus in terms of exclusive domain content. In addition, we also investigated which domains could be considered promiscuous in the different organisms. As an application of this analysis, we explored three different ways to detect potential targets for antifungal drugs. First, we compared the domain and domain architecture content of the human and fungal proteomes, and identified those domains and domain architectures only present in fungi. Secondly, we looked for information regarding fungal pathways in public repositories, where proteins containing promiscuous domains could be involved. Three pathways were identified as a result: lovastatin biosynthesis, xylan degradation and biosynthesis of siroheme. Finally, we classified a subset of the studied fungi in five groups depending on their occurrence in clinical samples. We then looked for exclusive domains in the groups that were more relevant clinically and determined which of them had the potential to bind small molecules. Overall, this study provides a comprehensive analysis of the available fungal proteomes and shows three approaches that can be used as a first step in the detection of new antifungal targets. Some fungi have become pathogenic to plants and in a lesser extent to animals. Under certain conditions their presence in the human body can prove a threat for human health, especially for immunocompromised patients. Yet, some fungi can also infect healthy individuals. The low sensitivity of the antifungal drugs available together with the clinically observed resistance of some fungi raises the demand for new alternative treatments. Proteins are biological molecules which perform essential functions within the living organisms. Many of those functions are attributed to the varying folded structure of each protein. These configurations are composed of functional units -also called domains- each one independently responsible for a fraction of the overall biological function. Understanding how the different block combinations are distributed across members of the same or similar families of organisms is important. For instance, exclusive domain combinations can hold particular acquired functions. Blocks displaying a high mobility can play major roles for the organism's survival. The biological goal of this study was to analyse the functional implications of protein domains and domain combinations in the available fungal proteomes. This information can be used to highlight proteins and pathways that could be potentially used as drug targets.
Collapse
|
180
|
Alastruey-Izquierdo A, Alcazar-Fuoli L, Cuenca-Estrella M. Antifungal Susceptibility Profile of Cryptic Species of Aspergillus. Mycopathologia 2014; 178:427-33. [DOI: 10.1007/s11046-014-9775-z] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 06/15/2014] [Indexed: 10/25/2022]
|
181
|
Howard SJ. Multi-Resistant Aspergillosis due to Cryptic Species. Mycopathologia 2014; 178:435-9. [DOI: 10.1007/s11046-014-9774-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 06/15/2014] [Indexed: 11/24/2022]
|
182
|
Ruiz-Camps I, Jarque I. [Invasive mould disease in haematological patients]. Rev Iberoam Micol 2014; 31:249-54. [PMID: 25434346 DOI: 10.1016/j.riam.2014.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 06/02/2014] [Indexed: 10/25/2022] Open
Abstract
Invasive mould infections (IMI) are a persistent problem with high morbidity and mortality rates among patients receiving chemotherapy for hematological malignancies and hematopoietic stem cell transplant recipients. Management of IMI in this setting has become increasingly complex with the advent of new antifungal agents and diagnostic tests, which have resulted in different therapeutic strategies (prophylactic, empirical, pre-emptive, and directed). A proper assessment of the individual risk for IMI appears to be critical in order to use the best prophylactic and therapeutic approach and increase the survival rates. Among the available antifungal drugs, the most frequently used in the hematologic patient are fluconazole, mould-active azoles (itraconazole, posaconazole and voriconazole), candins (anidulafungin, caspofungin and micafungin), and lipid formulations of amphotericin B. Specific recommendations for their use, and criteria for selecting the antifungal agents are discussed in this paper.
Collapse
Affiliation(s)
- Isabel Ruiz-Camps
- Servicio de Enfermedades Infecciosas, Hospital Universitario Vall d'Hebron, Barcelona, España.
| | - Isidro Jarque
- Servicio de Hematología, Hospital Universitario y Politécnico La Fe, Valencia, España
| |
Collapse
|
183
|
Moreno Camacho A, Ruiz Camps I. [Nosocomial infection in patients receiving a solid organ transplant or haematopoietic stem cell transplant]. Enferm Infecc Microbiol Clin 2014; 32:386-95. [PMID: 24950613 PMCID: PMC7103322 DOI: 10.1016/j.eimc.2014.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 05/27/2014] [Indexed: 12/25/2022]
Abstract
Bacterial infections are the most common infections in solid organ transplant recipients. These infections occur mainly in the first month after transplantation and are hospital-acquired. Nosocomial infections cause significant morbidity and are the most common cause of mortality in this early period of transplantation. These infections are caused by multi-drug resistant (MDR) microorganisms, mainly Gram-negative enterobacteria, non-fermentative Gram-negative bacilli, enterococci, and staphylococci. The patients at risk of developing nosocomial bacterial infections are those previously colonized with MDR bacteria while on the transplant waiting list. Intravascular catheters, the urinary tract, the lungs, and surgical wounds are the most frequent sources of infection. Preventive measures are the same as those applied in non-immunocompromised, hospitalized patients except in patients at high risk for developing fungal infection. These patients need antifungal therapy during their hospitalization, and for preventing some bacterial infections in the early transplant period, patients need vaccinations on the waiting list according to the current recommendations. Although morbidity and mortality related to infectious diseases have decreased during the last few years in haematopoietic stem cell transplant recipients, they are still one of the most important complications in this population. Furthermore, as occurs in the general population, the incidence of nosocomial infections has increased during the different phases of transplantation. It is difficult to establish general preventive measures in these patients, as there are many risk factors conditioning these infections. Firstly, they undergo multiple antibiotic treatments and interventions; secondly, there is a wide variability in the degree of neutropenia and immunosuppression among patients, and finally they combine hospital and home stay during the transplant process. However, some simple measures could be implemented to improve the current situation.
Collapse
Affiliation(s)
- Asunción Moreno Camacho
- Servicio de Enfermedades Infecciosas, Hospital Clínic-IDIBAPS, Universidad de Barcelona, Barcelona, España.
| | - Isabel Ruiz Camps
- Servicio de Enfermedades Infecciosas, Hospital Universitari Vall d'Hebron, Universidad Autónoma de Barcelona, Barcelona, España
| |
Collapse
|
184
|
Chowdhary A, Sharma C, Hagen F, Meis JF. Exploring azole antifungal drug resistance in Aspergillus fumigatus with special reference to resistance mechanisms. Future Microbiol 2014; 9:697-711. [DOI: 10.2217/fmb.14.27] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
ABSTRACT: Aspergillus fumigatus, a ubiquitously distributed opportunistic pathogen, is the global leading cause of aspergillosis. Azole antifungals play an important role in the management of aspergillosis. However, over a decade, azole resistance in A. fumigatus isolates has been increasingly reported with variable prevalence worldwide and it is challenging the effective management of aspergillosis. The high mortality rates observed in patients with invasive aspergillosis caused by azole-resistant A. fumigatus (ARAF) isolates pose serious challenges to the clinical microbiologist for timely identification of resistance and appropriate therapeutic interventions. The majority of ARAF isolates contain alterations in the cyp51A gene; however, there have been increasing reports on non-cyp51A mutations contributing to azole resistant phenotypes. This review highlights the emergence and various mechanisms implicated in the development of azole resistance in A. fumigatus. We further present recent developments related to the environmental route in the emergence of ARAF isolates and discuss the therapeutic options available.
Collapse
Affiliation(s)
- Anuradha Chowdhary
- Department of Medical Mycology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Cheshta Sharma
- Department of Medical Mycology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Ferry Hagen
- Department of Medical Microbiology & Infectious Diseases, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
| | - Jacques F Meis
- Department of Medical Microbiology & Infectious Diseases, Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
185
|
Alcazar-Fuoli L, Mellado E. Current status of antifungal resistance and its impact on clinical practice. Br J Haematol 2014; 166:471-84. [PMID: 24749533 DOI: 10.1111/bjh.12896] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 03/17/2014] [Indexed: 11/30/2022]
Abstract
Mortality linked to invasive fungal diseases remains very high despite the availability of novel antifungals and new therapeutic strategies. Candida albicans and Aspergillus fumigatus account for most invasive mycosis produced by yeast or moulds, respectively. Other Candida non-albicans are increasingly being reported and newly emerging, as well as cryptic, filamentous fungi often cause disseminated infections in immunocompromised hosts. Management of invasive fungal infections is becoming a challenge as emerging fungal pathogens generally show poor response to many antifungals. The ability of reference antifungal susceptibility testing methods to detect emerging resistance patterns, together with the molecular characterization of antifungal resistance mechanisms, are providing useful information to optimize the effectiveness of antifungal therapy. The current status of antifungal resistance epidemiology with special emphasis on the molecular resistant mechanisms that have been described in the main pathogenic fungal species are reviewed.
Collapse
Affiliation(s)
- Laura Alcazar-Fuoli
- Mycology Reference Laboratory, Centro Nacional de Microbiologia, Instituto de Salud Carlos III, Madrid, Spain
| | | |
Collapse
|
186
|
Cuenca-Estrella M. Antifungal drug resistance mechanisms in pathogenic fungi: from bench to bedside. Clin Microbiol Infect 2014; 20 Suppl 6:54-9. [PMID: 24372680 DOI: 10.1111/1469-0691.12495] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The phenotypic methods for identification of antifungal resistance are reliable procedures, and MIC determination by reference techniques is the gold standard to detect resistant clinical isolates. In recent years, progress has been made towards the description of resistance mechanisms at molecular level. There are methods of detection that can be useful for clinical laboratories, but lack of standardization precludes their full and effective integration in the routine daily practice. The molecular detection of Candida resistance to azoles and to echinocandins and of Aspergillus resistance to triazoles can be clinically relevant and could help to design more efficient prevention and control strategies. This text reviews the present state of the detection of mechanisms of resistance at the molecular level in Candida spp. and Aspergillus spp. and its relevance to clinical practice.
Collapse
Affiliation(s)
- M Cuenca-Estrella
- National Center for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
187
|
|