151
|
Xu D, Zhang X, Yuan X, Han H, Xue Y, Guo X. Hazardous risk of antibiotic resistance genes: Host occurrence, distribution, mobility and vertical transmission from different environments to corn silage. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122671. [PMID: 37788797 DOI: 10.1016/j.envpol.2023.122671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/25/2023] [Accepted: 09/30/2023] [Indexed: 10/05/2023]
Abstract
Antibiotic resistance genes (ARGs) are one of the emerging contaminants posing a great deal of hazardous risk to public health. This study employed metagenomics and deciphered the potential risk of the antibiotic resistome and their vertical transfer to ensiled whole-crop corn silage harvested from six climate zones: 1. Warm temperate-fully humid-hot summer (Cfa), 2. Arid-desert-cold arid (BWk), 3. Snow-desert-cold summer (Dwc), 4. Snow-desert-hot summer (Dwa), 5. Arid-steppe-cold arid (BSk), and 6. Equatorial-desert (Aw) based on the Köppen-Geiger climate classification in China. The findings demonstrate a high diversity of ARGs, which is related to the drug classes of tetracycline, ciprofloxacin, lincosamide, fosfomycin, and beta lactam. Resistome variations are mostly related to variations in microbial composition and fermentation characteristics of the silages from different climate zones, which are indirectly influenced by environmental conditions. The most dominating ARGs in corn silage were tetM, acrA, H-NS, lnuA, emrR, and KpnG, which is primarily hosted by Klebsiella and Lactobacilli. There were 5 high-risk ARGs (tetM, bacA, SHV-1, dfrA17, and QnrS1) in silage from different climate zones, and the tetM was the most prevalent high-risk ARG. However, throughout the ensiling process, the abundance of ARGs, and mobile ARGs were reduced. The resistome contamination in silage from Tibet (Dwc) with high altitude and harsh environment was relatively low due to the low variety and abundance of ARGs, the low abundance of mobile ARGs and high-risk ARGs. In addition, most of the bacteria responsible for the silage fermentation were also found to be the hosts to the ARGs, although their abundance decreased after 90 d of silage fermentation. Hence, we alert the existence of ARGs-related biosafety risk in silages and call for more attention to the silage ARGs, their hosts, and mobile genetic elements in order to curtail their possible risk to public health.
Collapse
Affiliation(s)
- Dongmei Xu
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Xingguo Zhang
- Bioyi Biotechnology Co., Ltd., Wuhan, 430075, PR China
| | - Xianjun Yuan
- Institute of Ensiling and Processing of Grass, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Hongyan Han
- The Research Center for Laboratory Animal Science, College of Life Science, Inner Mongolia University, Hohhot, 010070, PR China
| | - Yanlin Xue
- Inner Mongolia Engineering Research Center of Development and Utilization of Microbial Resources in Silage, Inner Mongolia Academy of Agriculture and Animal Husbandry Science, Hohhot, 010031, PR China
| | - Xusheng Guo
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
152
|
Matsuda N, Aung MS, Urushibara N, Kawaguchiya M, Ohashi N, Taniguchi K, Kudo K, Ito M, Kobayashi N. Prevalence, clonal diversity, and antimicrobial resistance of hypervirulent Klebsiella pneumoniae and Klebsiella variicola clinical isolates in northern Japan. J Glob Antimicrob Resist 2023; 35:11-18. [PMID: 37604276 DOI: 10.1016/j.jgar.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/27/2023] [Accepted: 08/10/2023] [Indexed: 08/23/2023] Open
Abstract
OBJECTIVES Hypervirulent Klebsiella pneumoniae (hvKp) and Klebsiella variicola (hvKv) cause hospital/community-acquired infections, often associated with antimicrobial resistance (AMR). This study aimed to investigate the molecular epidemiology of hvKp and hvKv in northern Japan. METHODS A total of 500 K. pneumoniae and 421 K. variicola clinical isolates collected from August to December 2021 were studied. Prevalence of virulence factor-encoding genes, wzi sequence and associated K/KL type, sequence type (ST), and beta-lactamases and their types were characterized. RESULTS Any virulence gene (rmpA, rmpA2, peg-344, iucA, iutA, and iroB) and/or magA was detected in 25% (n = 125) of K. pneumoniae and 1% (n = 5) of K. variicola. Among these hvKp/hvKv, 22 wzi types (18 and 4 types, respectively) and 24 STs (20 and 4 STs, respectively) were identified. Sequence types of hvKp were classified into some clonal groups (CGs), among which CG35, including six STs, was the most common (n = 59; 47%), followed by CG23, and CG65. ST268 (CG35) associated with wzi95-K20 or wzi720 was the dominant lineage (n = 43, 34%), while K1:ST23/ST249 and K2:ST65/ST86 accounted for 26% and 13% of hvKp, respectively. Extended-spectrum beta-lactamase (ESBL) genes (blaCTX-M-2, blaCTX-M-3, blaCTX-M-15, and blaCTX-M-27) were detected in only ST23 and CG35 (ST268 and ST412) hvKp. No isolate was resistant to carbapenems, without detection of the ESBL gene in K. variicola. Phylogenetically, wzi was differentiated into two main clusters of K. pneumoniae and K. variicola. A major clonal group CG347 was identified in K. variicola. CONCLUSION Clonal structures were revealed for hvKp and hvKv clinical isolates with their AMR status in northern Japan.
Collapse
Affiliation(s)
- Norifumi Matsuda
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Meiji Soe Aung
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan.
| | - Noriko Urushibara
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Mitsuyo Kawaguchiya
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Nobuhide Ohashi
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | | | - Kenji Kudo
- Sapporo Clinical Laboratory, Inc., Sapporo, Hokkaido, Japan
| | - Masahiko Ito
- Sapporo Clinical Laboratory, Inc., Sapporo, Hokkaido, Japan
| | - Nobumichi Kobayashi
- Department of Hygiene, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| |
Collapse
|
153
|
Mendes G, Santos ML, Ramalho JF, Duarte A, Caneiras C. Virulence factors in carbapenem-resistant hypervirulent Klebsiella pneumoniae. Front Microbiol 2023; 14:1325077. [PMID: 38098668 PMCID: PMC10720631 DOI: 10.3389/fmicb.2023.1325077] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023] Open
Abstract
Hypervirulence and carbapenem-resistant have emerged as two distinct evolutionary pathotypes of Klebsiella pneumoniae, with both reaching their epidemic success and posing a great threat to public health. However, as the boundaries separating these two pathotypes fade, we assist a worrisome convergence in certain high-risk clones, causing hospital outbreaks and challenging every therapeutic option available. To better understand the basic biology of these pathogens, this review aimed to describe the virulence factors and their distribution worldwide among carbapenem-resistant highly virulent or hypervirulent K. pneumoniae strains, as well as to understand the interplay of these virulence strains with the carbapenemase produced and the sequence type of such strains. As we witness a shift in healthcare settings where carbapenem-resistant highly virulent or hypervirulent K. pneumoniae are beginning to emerge and replace classical K. pneumoniae strains, a better understanding of these strains is urgently needed for immediate and appropriate response.
Collapse
Affiliation(s)
- Gabriel Mendes
- Microbiology Research Laboratory on Environmental Health, Institute of Environmental Health (ISAMB), Associate Laboratory TERRA, Faculty of Medicine, Universidade de Lisboa, Lisbon, Portugal
| | - Maria Leonor Santos
- Microbiology Research Laboratory on Environmental Health, Institute of Environmental Health (ISAMB), Associate Laboratory TERRA, Faculty of Medicine, Universidade de Lisboa, Lisbon, Portugal
| | - João F. Ramalho
- Microbiology Research Laboratory on Environmental Health, Institute of Environmental Health (ISAMB), Associate Laboratory TERRA, Faculty of Medicine, Universidade de Lisboa, Lisbon, Portugal
| | - Aida Duarte
- Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
- Egas Moniz Center for Interdisciplinary Research, Egas Moniz School of Health and Science, Almada, Portugal
| | - Cátia Caneiras
- Microbiology Research Laboratory on Environmental Health, Institute of Environmental Health (ISAMB), Associate Laboratory TERRA, Faculty of Medicine, Universidade de Lisboa, Lisbon, Portugal
- Egas Moniz Center for Interdisciplinary Research, Egas Moniz School of Health and Science, Almada, Portugal
- Institute of Preventive Medicine and Public Health, Faculty of Medicine, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
154
|
Zhou C, Zhang H, Xu M, Liu Y, Yuan B, Lin Y, Shen F. Within-Host Resistance and Virulence Evolution of a Hypervirulent Carbapenem-Resistant Klebsiella pneumoniae ST11 Under Antibiotic Pressure. Infect Drug Resist 2023; 16:7255-7270. [PMID: 38023413 PMCID: PMC10658960 DOI: 10.2147/idr.s436128] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023] Open
Abstract
Background Hypervirulent carbapenem-resistant Klebsiella pneumoniae (hv-CRKP) has recently aroused an extremely severe health challenge and public concern. However, the underlying mechanisms of fitness costs that accompany antibiotic resistance acquisition remain largely unexplored. Here, we report a hv-CRKP-associated fatal infection and reveal a reduction in virulence due to the acquisition of aminoglycoside resistance. Methods The bacterial identification, antimicrobial susceptibility, hypermucoviscosity, virulence factors, MLST and serotypes were profiled.The clonal homology and plasmid acquisition among hv-CRKP strains were detected by XbaI and S1-PFGE. The virulence potential of the strains was evaluated using Galleria mellonella larvae infection model, serum resistance assay, capsular polysaccharide quantification, and biofilm formation assay. Genomic variations were identified using whole-genome sequencing (WGS). Results Four K. pneumoniae carbapenemase (KPC)-producing CRKP strains were consecutively isolated from an 86-year-old patient with severe pneumonia. Whole-genome sequencing (WGS) showed that all four hv-CRKP strains belonged to the ST11-KL64 clone. PFGE analysis revealed that the four ST11-KL64 hv-CRKP strains could be grouped into the same PFGE type. Under the pressure of antibiotics, the antimicrobial resistance of the strains increased and the virulence potential decreased. Further sequencing, using the Nanopore platform, was performed on three representative isolates (WYKP586, WYKP589, and WYKP594). Genomic analysis showed that the plasmids of these three strains underwent a large number of breaks and recombination events under antibiotic pressure. We found that as aminoglycoside resistance emerged via acquisition of the rmtB gene, the hypermucoviscosity and virulence of the strains decreased because of internal mutations in the rmpA and rmpA2 genes. Conclusion This study shows that ST11-KL64 hv-CRKP can further evolve to acquire aminoglycoside resistance accompanied by decreased virulence to adapt to antibiotic pressure in the host.
Collapse
Affiliation(s)
- Cong Zhou
- Department of Clinical Laboratory, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Hui Zhang
- Department of Clinical Laboratory, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Maosuo Xu
- Department of Clinical Laboratory, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Yajuan Liu
- Department of Clinical Laboratory, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Baoyu Yuan
- Department of Clinical Laboratory, Shanghai Children’s Hospital, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Yong Lin
- Department of Clinical Laboratory, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Fang Shen
- Department of Clinical Laboratory, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, People’s Republic of China
| |
Collapse
|
155
|
Huang L, Li Y, Xu C, Zhou M, Wang T, Wang T, Wang J, Tang J, Li Y, Dong N. A novel virulence plasmid encoding yersiniabactin, salmochelin, and RmpADC from hypervirulent Klebsiella pneumoniae of distinct genetic backgrounds. Antimicrob Agents Chemother 2023; 67:e0093523. [PMID: 37819104 PMCID: PMC10648971 DOI: 10.1128/aac.00935-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/25/2023] [Indexed: 10/13/2023] Open
Abstract
Hypervirulent Klebsiella pneumoniae (hvKP) is increasingly reported worldwide as a major clinical and public health threat. The virulence of hvKP is attributed largely to the carriage of virulence plasmids (KpVPs). To date, two dominant types of KpVP have been identified, namely, KpVP-1 and KpVP-2. In this study, we reported two hvKP strains from bloodstream infections that carry highly identical virulence plasmids that exhibited <40% coverage compared with KpVP-1 and KpVP-2. This novel virulence plasmid was designated KpVP-3. The two hvKP have different genetic backgrounds, which belonged to ST29-K54 and ST111-K63, respectively. They were both positive for the string test, highly virulent on the Galleria mellonella infection model, and possess high-level macrophage-killing resistance in vitro. Apart from the intrinsic non-susceptibility to ampicillin, both strains were susceptible to commonly used antibiotics. The virulence plasmid carried virulence genes rmpADC, iroBCDN (iro1), and the ybt locus (ybt4) which was not present on either KpVP-1 or KpVP-2. It did not carry antimicrobial resistance genes but carried an incomplete conjugation machinery containing only the traH and traF genes. The KpVP-3 plasmid was stably maintained in both hvKP strains and could not be eliminated with SDS treatment or by serial passage on stress-free agar plates. KpVP-3 was non-self-transmissible under experimental conditions. Data mining suggested KpVP-3-type plasmids have emerged in different countries including China, Australia, and the USA. The emergence of this novel virulence plasmid might pose a potential threat to public health. Heightened efforts are required to study its dissemination mechanism.
Collapse
Affiliation(s)
- Lili Huang
- Laboratory Department, Children’s Hospital of Soochow University, Suzhou, China
| | - Yunbing Li
- Department of Medical Microbiology, Experimental Center, Medical College of Soochow University, Suzhou, China
| | - Chen Xu
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Mi Zhou
- Department of Pharmacy, Children’s Hospital of Soochow University, Suzhou, China
| | - Tianyi Wang
- Department of Medical Microbiology, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, China
| | - Tianyu Wang
- Department of Medical Microbiology, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, China
| | - Jingyu Wang
- Department of Medical Microbiology, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, China
| | - Jiayi Tang
- Department of Medical Microbiology, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, China
| | - Yuanyuan Li
- Department of Medical Microbiology, Experimental Center, Medical College of Soochow University, Suzhou, China
| | - Ning Dong
- Department of Medical Microbiology, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, China
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, School of Biology & Basic Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, China
| |
Collapse
|
156
|
Lim SY, Kwon HJ, Lee YW, Sung H, Kim MN, Chang E, Bae S, Jung J, Kim MJ, Kim SH, Choi SH, Lee SO, Kim YS, Lee JY, Chong YP. Routine ophthalmologic examination in Klebsiella pneumoniae bacteremia is not necessary: incidence of and risk factors for ocular involvement. Antimicrob Agents Chemother 2023; 67:e0082223. [PMID: 37874294 PMCID: PMC10648850 DOI: 10.1128/aac.00822-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/12/2023] [Indexed: 10/25/2023] Open
Abstract
Klebsiella pneumoniae bacteremia is known to present a virulent clinical course, including multiple metastatic infections, which is not uncommon in Asia. However, there are limited data on the incidence and risk factors for ocular involvement in K. pneumoniae bacteremia. We retrospectively reviewed the medical records of all patients with K. pneumoniae bacteremia who underwent ophthalmologic examination in a tertiary center in Seoul, Korea, from February 2012 to December 2020. Two retinal specialists reviewed the findings of the ophthalmologic examinations and classified them as endophthalmitis, chorioretinitis, and no ocular involvement. Of 689 patients, 56 [8.1%; 95% confidence interval (CI) 6.2-10.4] had ocular involvement, and 9 (1.3%; 95% CI 0.6-2.5) were diagnosed with endophthalmitis. Of 47 patients with chorioretinitis, 45 (95.7%) improved with systemic antibiotic therapy alone. Community-onset bacteremia (100% vs 62.1% vs 57.4%, P = 0.04), cryptogenic liver abscess (55.6% vs 11.8% vs 8.5%, P = 0.003), and metastatic infection (66.7% vs 5.8% vs 10.6%, P < 0.001) were more common in endophthalmitis than in no ocular involvement or chorioretinitis. In the multivariable analysis, cryptogenic liver abscess [adjusted odds ratio (aOR), 6.63; 95% CI 1.44-35.20] and metastatic infection (aOR, 17.52; 95% CI 3.69-96.93) were independent risk factors for endophthalmitis. Endophthalmitis was not associated with 30-day mortality. Endophthalmitis is rare in Asian patients with K. pneumoniae bacteremia. Targeted ophthalmologic examination in those with cryptogenic liver abscess, metastatic infection, or ocular symptoms may be more appropriate than routine examination of all patients.
Collapse
Affiliation(s)
- So Yun Lim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hye Ji Kwon
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Yun Woo Lee
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Heungsup Sung
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Mi-Na Kim
- Department of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Euijin Chang
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Seongman Bae
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jiwon Jung
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Min Jae Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Sung-Han Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Sang-Ho Choi
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Sang-Oh Lee
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Yang Soo Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Joo Yong Lee
- Department of Ophthalmology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Yong Pil Chong
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
157
|
Pu D, Zhao J, Chang K, Zhuo X, Cao B. "Superbugs" with hypervirulence and carbapenem resistance in Klebsiella pneumoniae: the rise of such emerging nosocomial pathogens in China. Sci Bull (Beijing) 2023; 68:2658-2670. [PMID: 37821268 DOI: 10.1016/j.scib.2023.09.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/19/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023]
Abstract
Although hypervirulent Klebsiella pneumoniae (hvKP) can produce community-acquired infections that are fatal in young and adult hosts, such as pyogenic liver abscess, endophthalmitis, and meningitis, it has historically been susceptible to antibiotics. Carbapenem-resistant K. pneumoniae (CRKP) is usually associated with urinary tract infections acquired in hospitals, pneumonia, septicemias, and soft tissue infections. Outbreaks and quick spread of CRKP in hospitals have become a major challenge in public health due to the lack of effective antibacterial treatments. In the early stages of K. pneumoniae development, HvKP and CRKP first appear as distinct routes. However, the lines dividing the two pathotypes are vanishing currently, and the advent of carbapenem-resistant hypervirulent K. pneumoniae (CR-hvKP) is devastating as it is simultaneously multidrug-resistant, hypervirulent, and highly transmissible. Most CR-hvKP cases have been reported in Asian clinical settings, particularly in China. Typically, CR-hvKP develops when hvKP or CRKP acquires plasmids that carry either the carbapenem-resistance gene or the virulence gene. Alternatively, classic K. pneumoniae (cKP) may acquire a hybrid plasmid carrying both genes. In this review, we provide an overview of the key antimicrobial resistance mechanisms, virulence factors, clinical presentations, and outcomes associated with CR-hvKP infection. Additionally, we discuss the possible evolutionary processes and prevalence of CR-hvKP in China. Given the wide occurrence of CR-hvKP, continued surveillance and control measures of such organisms should be assigned a higher priority.
Collapse
Affiliation(s)
- Danni Pu
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China; Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China
| | - Jiankang Zhao
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China
| | - Kang Chang
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China
| | - Xianxia Zhuo
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China; Department of Pulmonary and Critical Care Medicine, Capital Medical University, Beijing 100069, China
| | - Bin Cao
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China; Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China; Department of Pulmonary and Critical Care Medicine, Capital Medical University, Beijing 100069, China; Tsinghua University-Peking University Joint Center for Life Sciences, Beijing 100084, China.
| |
Collapse
|
158
|
Feng L, Zhang M, Fan Z. Population genomic analysis of clinical ST15 Klebsiella pneumoniae strains in China. Front Microbiol 2023; 14:1272173. [PMID: 38033569 PMCID: PMC10684719 DOI: 10.3389/fmicb.2023.1272173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023] Open
Abstract
ST15 Klebsiella pneumoniae (Kpn) is a growing public health concern in China and worldwide, yet its genomic and evolutionary dynamics in this region remain poorly understood. This study comprehensively elucidates the population genomics of ST15 Kpn in China by analyzing 287 publicly available genomes. The proportion of the genomes increased sharply from 2012 to 2021, and 92.3% of them were collected from the Yangtze River Delta (YRD) region of eastern China. Carbapenemase genes, including OXA-232, KPC-2, and NDM, were detected in 91.6% of the studied genomes, and 69.2% of which were multidrug resistant (MDR) and hypervirulent (hv). Phylogenetic analysis revealed four clades, C1 (KL112, 59.2%), C2 (mainly KL19, 30.7%), C3 (KL48, 0.7%) and C4 (KL24, 9.4%). C1 appeared in 2007 and was OXA-232-producing and hv; C2 and C4 appeared between 2005 and 2007, and both were KPC-2-producing but with different levels of virulence. Transmission clustering detected 86.1% (n = 247) of the enrolled strains were grouped into 55 clusters (2-159 strains) and C1 was more transmissible than others. Plasmid profiling revealed 88 plasmid clusters (PCs) that were highly heterogeneous both between and within clades. 60.2% (n = 53) of the PCs carrying AMR genes and 7 of which also harbored VFs. KPC-2, NDM and OXA-232 were distributed across 14, 4 and 1 PCs, respectively. The MDR-hv strains all carried one of two homologous PCs encoding iucABCD and rmpA2 genes. Pangenome analysis revealed two major coinciding accessory components predominantly located on plasmids. One component, associated with KPC-2, encompassed 15 additional AMR genes, while the other, linked to OXA-232, involved seven more AMR genes. This study provides essential insights into the genomic evolution of the high-risk ST15 CP-Kpn strains in China and warrants rigorous monitoring.
Collapse
Affiliation(s)
- Li Feng
- Jiyang College, Zhejiang A&F University, Zhuji, China
| | | | | |
Collapse
|
159
|
Lau JZ, Kuo SH, Belo Y, Malach E, Maron B, Caraway HE, Oh MW, Zhang Y, Ismail N, Lau GW, Hayouka Z. Antibacterial efficacy of an ultra-short palmitoylated random peptide mixture in mouse models of infection by carbapenem-resistant Klebsiella pneumoniae. Antimicrob Agents Chemother 2023; 67:e0057423. [PMID: 37819119 PMCID: PMC10648864 DOI: 10.1128/aac.00574-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 08/18/2023] [Indexed: 10/13/2023] Open
Abstract
Indiscriminate use of antibiotics has imposed a selective pressure for the rapid rise in bacterial resistance, creating an urgent need for novel therapeutics for managing bacterial infectious diseases while counteracting bacterial resistance. Carbapenem-resistant Klebsiella pneumoniae strains have become a major challenge in modern medicine due to their ability to cause an array of severe infections. Recently, we have shown that the 20-mer random peptide mixtures are effective therapeutics against three ESKAPEE pathogens. Here, we evaluated the toxicity, biodistribution, bioavailability, and efficacy of the ultra-short palmitoylated 5-mer phenylalanine:lysine (FK5P) random peptide mixtures against multiple clinical isolates of carbapenem-resistant K. pneumoniae and K. oxytoca. We demonstrate the FK5P rapidly and effectively killed various strains of K. pneumoniae, inhibited the formation of biofilms, and disrupted mature biofilms. FK5P displayed strong toxicity profiles both in vitro and in mice, with prolonged favorable biodistribution and a long half-life. Significantly, FK5P reduced the bacterial burden in mouse models of acute pneumonia and bacteremia and increased the survival rate in a mouse model of bacteremia. Our results demonstrate that FK5P is a safe and promising therapy against Klebsiella species as well as other ESKAPEE pathogens.
Collapse
Affiliation(s)
- Jonathan Z. Lau
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Shanny Hsuan Kuo
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Yael Belo
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Einav Malach
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Bar Maron
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Hannah E. Caraway
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Myung Whan Oh
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Yi Zhang
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Nahed Ismail
- Department of Pathology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Gee W. Lau
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Zvi Hayouka
- Institute of Biochemistry, Food Science and Nutrition, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
160
|
Guo M, Gao B, Su J, Zeng Y, Cui Z, Liu H, Guo X, Zhu Y, Wei B, Zhao Y, Qin J, Lu X, Li Q. Phenotypic and genetic characterization of hypervirulent Klebsiella pneumoniae in patients with liver abscess and ventilator-associated pneumonia. BMC Microbiol 2023; 23:338. [PMID: 37957579 PMCID: PMC10644596 DOI: 10.1186/s12866-023-03022-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 09/14/2023] [Indexed: 11/15/2023] Open
Abstract
Ventilator-associated pneumonia (VAP) and pyogenic liver abscess (PLA) due to Klebsiella pneumoniae infection can trigger life-threatening malignant consequences, however, there are few studies on the strain-associated clinical pathogenic mechanisms between VAP and PLA. A total of 266 patients consist of 129 VAP and 137 PLA were included for analysis in this study. We conducted a comprehensive survey for the two groups of K. pneumoniae isolates, including phenotypic experiments, clinical epidemiology, genomic analysis, and instrumental analysis, i.e., to obtain the genomic differential profile of K. pneumoniae strains responsible for two distinct infection outcomes. We found that PLA group had a propensity for specific underlying diseases, especially diabetes and cholelithiasis. The resistance level of VAP was significantly higher than that of PLA (78.57% vs. 36%, P < 0.001), while the virulence results were opposite. There were also some differences in key signaling pathways of biochemical processes between the two groups. The combination of iucA, rmpA, hypermucoviscous phenotype, and ST23 presented in K. pneumoniae infection is more important and highly prudent for timely treatment. The present study may contribute a benchmark for the K. pneumoniae clinical screening, epidemiological surveillance, and effective therapeutic strategies.
Collapse
Affiliation(s)
- Mingquan Guo
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Shanghai Institute of Phage, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Bo Gao
- Department of Critical Care Medicine, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Jun Su
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yigang Zeng
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Zelin Cui
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haodong Liu
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - XiaoKui Guo
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongzhang Zhu
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Beiwen Wei
- Department of Laboratory Medicine, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanan Zhao
- Department of Laboratory Medicine, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juanxiu Qin
- Department of Laboratory Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xiaoye Lu
- Department of Emergency Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Qingtian Li
- Department of Laboratory Medicine, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
161
|
Byarugaba DK, Erima B, Wokorach G, Alafi S, Kibuuka H, Mworozi E, Najjuka F, Kiyengo J, Musinguzi AK, Wabwire-Mangen F. Genome Analysis of Klebsiella pneumoniae Reveals International High-Risk Pandemic MDR Clones Emerging in Tertiary Healthcare Settings in Uganda. Pathogens 2023; 12:1334. [PMID: 38003798 PMCID: PMC10674604 DOI: 10.3390/pathogens12111334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/14/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Klebsiella pneumoniae is a threat to public health due to its continued evolution. In this study, we investigated the evolution, convergence, and transmission of hypervirulent and multi-drug resistant (MDR) clones of K. pneumoniae within healthcare facilities in Uganda. There was high resistance to piperacillin (90.91%), cefuroxime (86.96%), ceftazidime (84.62%), cefotaxime (84.00%), amoxicillin/clavulanate (75%), nalidixic acid (73.68%), and nitrofurantoin (71.43%) antibiotics among K. pneumoniae isolates. The isolates were genetically diverse, consisting of 20 different sequence types (STs) and 34 K-serotype groups. Chromosomal fosA (for fosfomycin) and oqxAB efflux pump genes were detected in all isolates. Two carbapenem resistance genes, blaNDM-5 and blaOXA-181 plus extended-spectrum beta-lactamase (blaCTX-M-15) gene (68.12%), quinolone-resistant genes qnrS1 (28.99%), qnrB1 (13.04%), and qnrB6 (13.04%) and others were found. All, except three of the isolates, harbored plasmids. While the isolates carried a repertoire of virulence genes, only two isolates carried hypervirulent genes demonstrating a low prevalence (2.90%) of hypervirulent strains. Our study demonstrated genetically diverse populations of K. pneumoniae, low levels of carbapenem resistance among the isolates, and no convergence of MDR and hypervirulence. Emerging high-risk international pandemic clones (ST11, ST14, ST147, ST 86 and ST307) were detected in these healthcare settings which are difficult to treat.
Collapse
Affiliation(s)
- Denis K. Byarugaba
- Makerere University Walter Reed Project, Kampala P.O. Box 16524, Uganda; (B.E.); (G.W.); (S.A.); (H.K.); (E.M.); (F.W.-M.)
- College of Veterinary Medicine, Makerere University, Kampala P.O. Box 7062, Uganda
| | - Bernard Erima
- Makerere University Walter Reed Project, Kampala P.O. Box 16524, Uganda; (B.E.); (G.W.); (S.A.); (H.K.); (E.M.); (F.W.-M.)
| | - Godfrey Wokorach
- Makerere University Walter Reed Project, Kampala P.O. Box 16524, Uganda; (B.E.); (G.W.); (S.A.); (H.K.); (E.M.); (F.W.-M.)
- Multifunctional Research Laboratories, Gulu University, Gulu P.O. Box 166, Uganda
| | - Stephen Alafi
- Makerere University Walter Reed Project, Kampala P.O. Box 16524, Uganda; (B.E.); (G.W.); (S.A.); (H.K.); (E.M.); (F.W.-M.)
| | - Hannah Kibuuka
- Makerere University Walter Reed Project, Kampala P.O. Box 16524, Uganda; (B.E.); (G.W.); (S.A.); (H.K.); (E.M.); (F.W.-M.)
- College of Veterinary Medicine, Makerere University, Kampala P.O. Box 7062, Uganda
| | - Edison Mworozi
- Makerere University Walter Reed Project, Kampala P.O. Box 16524, Uganda; (B.E.); (G.W.); (S.A.); (H.K.); (E.M.); (F.W.-M.)
- College of Health Sciences, Makerere University, Kampala P.O. Box 7062, Uganda;
| | - Florence Najjuka
- College of Health Sciences, Makerere University, Kampala P.O. Box 7062, Uganda;
| | - James Kiyengo
- Uganda Peoples’ Defence Forces, Ministry of Defence, Kampala P.O. Box 3798, Uganda; (J.K.); (A.K.M.)
| | - Ambrose K. Musinguzi
- Uganda Peoples’ Defence Forces, Ministry of Defence, Kampala P.O. Box 3798, Uganda; (J.K.); (A.K.M.)
| | - Fred Wabwire-Mangen
- Makerere University Walter Reed Project, Kampala P.O. Box 16524, Uganda; (B.E.); (G.W.); (S.A.); (H.K.); (E.M.); (F.W.-M.)
- College of Health Sciences, Makerere University, Kampala P.O. Box 7062, Uganda;
| |
Collapse
|
162
|
Liu J, Zhang Y, Cai J, Shao L, Jiang X, Yin X, Zhao X, Wang S. Clinical and Microbiological Characteristics of Klebsiella pneumoniae Co-Infections in Pulmonary Tuberculosis: A Retrospective Study. Infect Drug Resist 2023; 16:7175-7185. [PMID: 38023404 PMCID: PMC10640825 DOI: 10.2147/idr.s421587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/21/2023] [Indexed: 12/01/2023] Open
Abstract
Background Klebsiella pneumoniae (K. pneumoniae) is one of the most common pathogens leading to pulmonary tuberculosis (PTB) co-infection, but the data of co-infections is scarce. This research aimed to study the clinical and microbiological characteristics of K. pneumoniae co-infections in pulmonary tuberculosis cases. Methods Clinical manifestations and examination results of PTB cases co-infected by K. pneumoniae were retrospectively collected from the medical record database of a tertiary teaching hospital in China between November 2019 and October 2021. The K. pneumoniae strains isolated from the patients were sent for whole-genome sequencing. Statistical analyses were conducted using Stata v.14.0. Results A total of 80 strains were collected from 76 PTB patients with K. pneumoniae co-infections (two strains were isolated from each of the four patients at different time points), including 37 primary and 39 retreated TB cases. Among these, 29 (36.3%) of the K. pneumoniae isolates were extended-spectrum β-lactamase (ESBL)-producing strains, and seven (8.8%) were determined as carbapenem-resistant Enterobacteriaceae (CRE) strains. We found that patients in the multidrug resistance (MDR)-group received more respiratory support than the non-MDR group (40.6% vs 18.2%, P= 0.031) and possessed higher elevated C-reactive protein (62.6% vs 41.8%, P=0.008) and lower haemoglobin (87.5% vs 47.7%, P=0.001). We found that 80.3% (61/76) patients had lung lesions and 57.8% (44/76) patients were immunocompromised within one month. The most common K. pneumoniae strain sequence type was ST23 (15%), followed by ST15 (12.5%) and ST273 (7.5%). Among the strains, 26.25% were classically hypervirulent K1/K2 K. pneumoniae, and all carried salmochelin and rmpA. Conclusion This study demonstrated the important clinical features, phenotypic and genomic characteristics of isolated strains of PTB patients with K. pneumoniae co-infection. These data suggested a special attention for multidrug resistant K. pneumoniae infections with more obvious inflammatory responses which calls for more respiratory support and timely clinical management.
Collapse
Affiliation(s)
- Jun Liu
- Department of Laboratory medicine, Wuxi Fifth People’s Hospital Affiliated to Nanjing Medical University, Wuxi, People’s Republic of China
| | - Yi Zhang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| | - Jianpeng Cai
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| | - Lingyun Shao
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
| | - Xiufeng Jiang
- Department of Respiratory and Critical Care Medicine, Wuxi Fifth People’s Hospital Affiliated to Nanjing Medical University, Wuxi, People’s Republic of China
| | - Xiaohong Yin
- Department of Tuberculosis, Wuxi Fifth People’s Hospital Affiliated to Nanjing Medical University, Wuxi, People’s Republic of China
| | - Xinguo Zhao
- Department of Tuberculosis, Wuxi Fifth People’s Hospital Affiliated to Nanjing Medical University, Wuxi, People’s Republic of China
| | - Sen Wang
- Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People’s Republic of China
- Huashen Institute of Microbes and Infections, Shanghai, People’s Republic of China
| |
Collapse
|
163
|
Nicolosi D, Petronio Petronio G, Russo S, Di Naro M, Cutuli MA, Russo C, Di Marco R. Innovative Phospholipid Carriers: A Viable Strategy to Counteract Antimicrobial Resistance. Int J Mol Sci 2023; 24:15934. [PMID: 37958915 PMCID: PMC10648799 DOI: 10.3390/ijms242115934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
The overuse and misuse of antibiotics have led to the emergence and spread of multidrug-resistant (MDR), extensively drug-resistant (XDR), and pan-drug-resistant (PDR) bacteria strains, usually associated with poorer patient outcomes and higher costs. In order to preserve the usefulness of these life-saving drugs, it is crucial to use them appropriately, as also recommended by the WHO. Moreover, innovative, safe, and more effective approaches are being investigated, aiming to revise drug treatments to improve their pharmacokinetics and distribution and to reduce the onset of drug resistance. Globally, to reduce the burden of antimicrobial resistance (AMR), guidelines and indications have been developed over time, aimed at narrowing the use and diminishing the environmental spread of these life-saving molecules by optimizing prescriptions, dosage, and times of use, as well as investing resources into obtaining innovative formulations with better pharmacokinetics, pharmacodynamics, and therapeutic results. This has led to the development of new nano-formulations as drug delivery vehicles, characterized by unique structural properties, biocompatible natures, and targeted activities such as state-of-the-art phospholipid particles generally grouped as liposomes, virosomes, and functionalized exosomes, which represent an attractive and innovative delivery approach. Liposomes and virosomes are chemically synthesized carriers that utilize phospholipids whose nature is predetermined based on their use, with a long track record as drug delivery systems. Exosomes are vesicles naturally released by cells, which utilize the lipids present in their cellular membranes only, and therefore, are highly biocompatible, with investigations as a delivery system having a more recent origin. This review will summarize the state of the art on microvesicle research, liposomes, virosomes, and exosomes, as useful and effective tools to tackle the threat of antibiotic resistance.
Collapse
Affiliation(s)
- Daria Nicolosi
- Department of Drug and Health Sciences, Università degli Studi di Catania, 95125 Catania, Italy; (D.N.); (M.D.N.)
| | - Giulio Petronio Petronio
- Department of Medicine and Health Sciences “V. Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy; (G.P.P.); (M.A.C.); (C.R.); (R.D.M.)
| | - Stefano Russo
- Division of Biochemistry, Medical Faculty Mannheim, Mannheim Institute for Innate Immunoscience (MI3), Heidelberg University (HBIGS), 68167 Mannheim, Germany
| | - Maria Di Naro
- Department of Drug and Health Sciences, Università degli Studi di Catania, 95125 Catania, Italy; (D.N.); (M.D.N.)
| | - Marco Alfio Cutuli
- Department of Medicine and Health Sciences “V. Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy; (G.P.P.); (M.A.C.); (C.R.); (R.D.M.)
| | - Claudio Russo
- Department of Medicine and Health Sciences “V. Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy; (G.P.P.); (M.A.C.); (C.R.); (R.D.M.)
- Consorzio Interuniversitario in Ingegneria e Medicina (COIIM), Azienda Sanitaria Regionale del Molise ASReM, UOC Governance del Farmaco, 86100 Campobasso, Italy
| | - Roberto Di Marco
- Department of Medicine and Health Sciences “V. Tiberio”, Università degli Studi del Molise, 86100 Campobasso, Italy; (G.P.P.); (M.A.C.); (C.R.); (R.D.M.)
| |
Collapse
|
164
|
Haddadi MH, Khoshnood S, Koupaei M, Heidary M, Moradi M, Jamshidi A, Behrouj H, Movahedpour A, Maleki MH, Ghanavati R. Evaluating the incidence of ampC-β-lactamase genes, biofilm formation, and antibiotic resistance among hypervirulent and classical Klebsiella pneumoniae strains. J Appl Microbiol 2023; 134:lxad241. [PMID: 37881066 DOI: 10.1093/jambio/lxad241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/18/2023] [Accepted: 10/21/2023] [Indexed: 10/27/2023]
Abstract
AIM Both immunocompetent and healthy individuals can become life-threateningly ill when exposed to the hypervirulent (hvKp) strains of Klebsiella pneumoniae (Kp). The main objectives of this study were to evaluate the presence of ampC-lactamase genes, biofilm formation, and antibiotic resistance in clinical strains of hvKp and cKp (classical K. pneumoniae). MATERIALS AND METHODS Kp strains were collected from patients referred to Shahidzadeh Hospital in Behbahan City, Khuzestan Province, Iran. Several techniques were used to identify hvKp. The hypermucoviscosity phenotype was determined using the string test. Isolates that developed dark colonies on tellurite agar were assumed to be hvKp strains. If any of the iucA, iutA, or peg-344 genes were detected, the isolates were classified as hvKp. Phenotypic and genotypic detection of AmpC β-lactamases of hvKp strains was performed by the combined disk method and polymerase chain reaction, respectively. In addition, crystal violet staining was used to determine the biofilm formation of these isolates. RESULTS For this study, 76 non-duplicative isolates of Kp were collected. Overall, 22 (28.94%) strains had positive string test results, and 31 (40.78%) isolates were grown in tellurite-containing medium. The genes iucA and iutA or peg-344 were found in 23.68% of all Kp strains and in 50% of tellurite-resistant isolates, respectively. The most effective antibiotics against hvKp isolates were tetracycline (85.52%) and chloramphenicol (63.15%). Using the cefoxitin disc diffusion method, we observed that 56.57% (43/76) of the strains were AmpC producer. A total of 30.26% (n = 23/76) of the isolates tested positive for at least one ampC gene, including blaDHA (52.63%, n = 40), blaCIT (40.78%, n = 31), blaACC (19.76%, n = 15), blaMOX (25%, n = 19), and blaFOX (43.42%, n = 33). Biofilm formation analysis revealed that most hvKp isolates were weak (n = 6, 40%) and moderate (n = 5, 33.33%) biofilm producers. CONCLUSION Healthcare practitioners should consider the possibility of the existence and acquisition of hvKp everywhere. The exact mechanisms of bacterial acquisition are also unknown, and it is unclear whether the occurrence of infections is related to healthcare or not. Thus, there are still many questions about hvKp that need to be investigated.
Collapse
Affiliation(s)
| | - Saeed Khoshnood
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam 69316, Iran
| | - Maryam Koupaei
- Department of Microbiology and Immunology, School of Medicine, Kashan University of Medical Sciences, Kashan 8759187131, Iran
| | - Mohsen Heidary
- Department of Laboratory Sciences, School of Paramedical Sciences, Sabzevar University of Medical Sciences, Sabzevar 6971938668 , Iran
| | - Melika Moradi
- Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 6136763316, Iran
| | - Ali Jamshidi
- Behbahan Faculty of Medical Sciences, Behbahan 6361796819, Iran
| | - Hamid Behrouj
- Behbahan Faculty of Medical Sciences, Behbahan 6361796819, Iran
| | | | - Mohammad Hassan Maleki
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam 69316, Iran
| | - Roya Ghanavati
- School of Paramedical Sciences, Behbahan Faculty of Medical Sciences, Behbahan 63617, Iran
| |
Collapse
|
165
|
Mario E, Hamza D, Abdel-Moein K. Hypervirulent Klebsiella pneumoniae among diarrheic farm animals: A serious public health concern. Comp Immunol Microbiol Infect Dis 2023; 102:102077. [PMID: 37844369 DOI: 10.1016/j.cimid.2023.102077] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 09/30/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023]
Abstract
Hypervirulent Klebsiella pneumoniae (hvKp) is an emerging pathogen and it has more virulence factors than classical Klebsiella pneumoniae strains. Carbapenem-resistant hvKp (CR-hvKp) is a dangerous bacteria that has both high virulence and antibiotic resistance and poses a global public health problem worldwide. The current study was carried out to investigate the occurrence of hvKp as well as carbapenem-resistant Klebsiella pneumoniae (CRKP) and CR-hvKp among diarrheic farm animals. For this purpose, rectal swabs from 165 farm animals (45 cattle, 66 sheep, and 54 goats) were collected. Samples were processed for the isolation and identification of Klebsiella pneumoniae. Moreover, hvKp was detected using molecular techniques by amplification of biomarker virulence genes (rmpA, rmpA2, iucA, iroB, and peg-344), followed by a string test. On the other hand, all K. pneumoniae isolates were examined for carbapenem resistance by both phenotypic and molecular methods. The phylogenetic analysis of peg-344 sequences was carried out. The overall prevalence rates of K. pneumoniae, hvKp, CRKP, and CR-hvKp were 24.2%, 7.9%, 16.4%, and 6.1% respectively. HvKp and CR-hvKp were detected among all examined farm animal species. On a Molecular basis, all biomarker virulence genes were identified except iroB, but rmpA is the most prevalent one. The phylogenetic analysis of peg-344 sequences obtained from the study points out their genetic relatedness to those circulated among humans. In conclusion, the emergence of hvKp and CR-hvKp among diarrheic farm animals confers a great public health implication and thus, the possible animal reservoirs for such hypervirulent-antimicrobial resistant strains cannot be ruled out.
Collapse
Affiliation(s)
- Esiri Mario
- Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, Egypt
| | - Dalia Hamza
- Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, Egypt.
| | - Khaled Abdel-Moein
- Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, Egypt
| |
Collapse
|
166
|
Fang J, Liu Q, Yang J, Kang X, Mei Y, Liu J, Wang G, Xiang T. Functional Portrait and Genomic Feature of Carbapenem-Resistant Pseudomonas mendocina Harboring blaNDM-1 and blaIMP-1 in China. Foodborne Pathog Dis 2023; 20:502-508. [PMID: 37729068 DOI: 10.1089/fpd.2023.0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023] Open
Abstract
The purpose of this research was to analyze the functional portraits and genomic features of carbapenem-resistant Pseudomonas mendocina carrying NDM-1 and IMP-1. The resistance mechanism of the strain was verified by in vivo experiments. Genomic data were aligned and analyzed in the NCBI database. Growth curve measurements were used to describe the growth characteristics of the bacteria. The virulence of P. mendocina strain was analyzed by serum killing assay and biofilm formation assay. Plasmid conjugation experiments were performed to verify the transferability of plasmids carrying drug-resistance genes. The P. mendocina strain was highly resistant to carbapenems. In addition, ST typing is unknown and has been submitted to Genebank. The strain carried two carbapenemase genes, including NDM-1 and IMP-1. Among them, blaNDM-1 was located on a 5.62832 Mb chromosome, and blaIMP-1 was located on a 172.851 Kb transferable plasmid, which was a very close relative of pIMP-NY7610 in China. The strain also had a variety of virulence genes, which were expressed in the siderophore, capsule, pilus, alginate, flagella, etc. The study suggests that the functional portrait and genomic features of carbapenem-resistant P. mendocina harboring blaNDM-1 and blaIMP-1 are unique to China. This outcome represents antibiotic resistance exhibited in the genus Pseudomonas by acquiring chromosomes and plasmid genes. The monitoring and supervision of antimicrobial usage must be strengthened since the multi-drug-resistant and moderately virulent P. mendocina will attract much attention in the near future.
Collapse
Affiliation(s)
- Jianhua Fang
- Infectious Disease Department, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Infectious Disease Department, Nanchang University, Nanchang, China
| | - Qiong Liu
- Department of Respiratory and Critial Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
- Department of Respiratory and Critial Care Medicine, Nanchang Medical College, Nanchang, China
| | - Jie Yang
- Department of Cerebral Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiuhua Kang
- Department of Hospital Infection Control, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yanfang Mei
- Laboratory Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jing Liu
- Infectious Disease Department, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Infectious Disease Department, Nanchang University, Nanchang, China
| | - Guoyu Wang
- Infectious Disease Department, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Infectious Disease Department, Nanchang University, Nanchang, China
| | - Tianxin Xiang
- Department of Hospital Infection Control, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Jiangxi Hospital of China-Japan Friendship Hospital, Nanchang, P.R. China
| |
Collapse
|
167
|
Lutgring JD, Kent AG, Bowers JR, Jasso-Selles DE, Albrecht V, Stevens VA, Pfeiffer A, Barnes R, Engelthaler DM, Johnson JK, Gargis AS, Rasheed JK, Limbago BM, Elkins CA, Karlsson M, Halpin AL. Comparison of carbapenem-susceptible and carbapenem-resistant Enterobacterales at nine sites in the USA, 2013-2016: a resource for antimicrobial resistance investigators. Microb Genom 2023; 9. [PMID: 37987646 DOI: 10.1099/mgen.0.001119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023] Open
Abstract
Carbapenem-resistant Enterobacterales (CRE) are an urgent public health threat. Genomic sequencing is an important tool for investigating CRE. Through the Division of Healthcare Quality Promotion Sentinel Surveillance system, we collected CRE and carbapenem-susceptible Enterobacterales (CSE) from nine clinical laboratories in the USA from 2013 to 2016 and analysed both phenotypic and genomic sequencing data for 680 isolates. We describe the molecular epidemiology and antimicrobial susceptibility testing (AST) data of this collection of isolates. We also performed a phenotype-genotype correlation for the carbapenems and evaluated the presence of virulence genes in Klebsiella pneumoniae complex isolates. These AST and genomic sequencing data can be used to compare and contrast CRE and CSE at these sites and serve as a resource for the antimicrobial resistance research community.
Collapse
Affiliation(s)
- Joseph D Lutgring
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Alyssa G Kent
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Goldbelt C6, LLC, Chesapeake, Virginia, USA
| | - Jolene R Bowers
- Pathogen and Microbiome Division, Translational Genomics Research Institute North, Flagstaff, Arizona, USA
| | - Daniel E Jasso-Selles
- Pathogen and Microbiome Division, Translational Genomics Research Institute North, Flagstaff, Arizona, USA
| | - Valerie Albrecht
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Present address: Office of the Director, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Valerie A Stevens
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Ashlyn Pfeiffer
- Pathogen and Microbiome Division, Translational Genomics Research Institute North, Flagstaff, Arizona, USA
| | - Riley Barnes
- Pathogen and Microbiome Division, Translational Genomics Research Institute North, Flagstaff, Arizona, USA
| | - David M Engelthaler
- Pathogen and Microbiome Division, Translational Genomics Research Institute North, Flagstaff, Arizona, USA
| | - J Kristie Johnson
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Amy S Gargis
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - J Kamile Rasheed
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Brandi M Limbago
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Present address: Office of Science, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Christopher A Elkins
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Maria Karlsson
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Goldbelt C6, LLC, Chesapeake, Virginia, USA
| | - Alison L Halpin
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
168
|
van der Geest R, Peñaloza HF, Xiong Z, Gonzalez-Ferrer S, An X, Li H, Fan H, Tabary M, Nouraie SM, Zhao Y, Zhang Y, Chen K, Alder JK, Bain WG, Lee JS. BATF2 enhances proinflammatory cytokine responses in macrophages and improves early host defense against pulmonary Klebsiella pneumoniae infection. Am J Physiol Lung Cell Mol Physiol 2023; 325:L604-L616. [PMID: 37724373 PMCID: PMC11068429 DOI: 10.1152/ajplung.00441.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 07/12/2023] [Accepted: 08/31/2023] [Indexed: 09/20/2023] Open
Abstract
Basic leucine zipper transcription factor ATF-like 2 (BATF2) is a transcription factor that is emerging as an important regulator of the innate immune system. BATF2 is among the top upregulated genes in human alveolar macrophages treated with LPS, but the signaling pathways that induce BATF2 expression in response to Gram-negative stimuli are incompletely understood. In addition, the role of BATF2 in the host response to pulmonary infection with a Gram-negative pathogen like Klebsiella pneumoniae (Kp) is not known. We show that induction of Batf2 gene expression in macrophages in response to Kp in vitro requires TRIF and type I interferon (IFN) signaling, but not MyD88 signaling. Analysis of the impact of BATF2 deficiency on macrophage effector functions in vitro showed that BATF2 does not directly impact macrophage phagocytic uptake and intracellular killing of Kp. However, BATF2 markedly enhanced macrophage proinflammatory gene expression and Kp-induced cytokine responses. In vivo, Batf2 gene expression was elevated in lung tissue of wild-type (WT) mice 24 h after pulmonary Kp infection, and Kp-infected BATF2-deficient (Batf2-/-) mice displayed an increase in bacterial burden in the lung, spleen, and liver compared with WT mice. WT and Batf2-/- mice showed similar recruitment of leukocytes following infection, but in line with in vitro observations, proinflammatory cytokine levels in the alveolar space were reduced in Batf2-/- mice. Altogether, these results suggest that BATF2 enhances proinflammatory cytokine responses in macrophages in response to Kp and contributes to the early host defense against pulmonary Kp infection.NEW & NOTEWORTHY This study investigates the signaling pathways that mediate induction of BATF2 expression downstream of TLR4 and also the impact of BATF2 on the host defense against pulmonary Kp infection. We demonstrate that Kp-induced upregulation of BATF2 in macrophages requires TRIF and type I IFN signaling. We also show that BATF2 enhances Kp-induced macrophage cytokine responses and that BATF2 contributes to the early host defense against pulmonary Kp infection.
Collapse
Affiliation(s)
- Rick van der Geest
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Hernán F Peñaloza
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Zeyu Xiong
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Shekina Gonzalez-Ferrer
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Xiaojing An
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Huihua Li
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Hongye Fan
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Mohammadreza Tabary
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - S Mehdi Nouraie
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Yanwu Zhao
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Yingze Zhang
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Kong Chen
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Jonathan K Alder
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - William G Bain
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Veterans Affairs Pittsburgh Health Care System, Pittsburgh, Pennsylvania, United States
| | - Janet S Lee
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- Acute Lung Injury Center of Excellence, Department of Medicine, Pittsburgh, Pennsylvania, United States
- Division of Pulmonary and Critical Care Medicine, John T. Milliken Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, United States
| |
Collapse
|
169
|
Yang J, He Y, Liao X, Hu J, Li K. Does postoperative pulmonary infection correlate with intestinal flora following gastric cancer surgery? - a nested case-control study. Front Microbiol 2023; 14:1267750. [PMID: 38029086 PMCID: PMC10658784 DOI: 10.3389/fmicb.2023.1267750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction The primary objective of this study was to investigate the potential correlation between gut microbes and postoperative pulmonary infection in gastric cancer patients. Additionally, we aimed to deduce the mechanism of differential functional genes in disease progression to gain a better understanding of the underlying pathophysiology. Methods A nested case-control study design was utilized to enroll patients with gastric cancer scheduled for surgery at West China Hospital of Sichuan University. Patients were categorized into two groups, namely, the pulmonary infection group and the control group, based on the development of postoperative pulmonary infection. Both groups were subjected to identical perioperative management protocols. Fecal samples were collected 24 h postoperatively and upon pulmonary infection diagnosis, along with matched controls. The collected samples were subjected to 16S rDNA and metagenomic analyses, and clinical data and blood samples were obtained for further analysis. Results A total of 180 fecal specimens were collected from 30 patients in both the pulmonary infection and control groups for 16S rDNA analysis, and 3 fecal samples from each group were selected for metagenomic analysis. The study revealed significant alterations in the functional genes of the intestinal microbiome in patients with postoperative pulmonary infection in gastric cancer, primarily involving Klebsiella, Enterobacter, Ruminococcus, and Collinsella. During postoperative pulmonary infection, gut flora and inflammatory factors were found to be associated with the lipopolysaccharide synthesis pathway and short-chain fatty acid (SCFA) synthesis pathway. Discussion The study identified enriched populations of Klebsiella, Escherella, and intestinal bacteria during pulmonary infection following gastric cancer surgery. These bacteria were found to regulate the lipopolysaccharide synthesis pathway, contributing to the initiation and progression of pulmonary infections. Inflammation modulation in patients with postoperative pulmonary infection may be mediated by short-chain fatty acids. The study also revealed that SCFA synthesis pathways were disrupted, affecting inflammation-related immunosuppression pathways. By controlling and maintaining intestinal barrier function, SCFAs may potentially reduce the occurrence of pulmonary infections after gastric cancer surgery. These findings suggest that targeting the gut microbiome and SCFA synthesis pathways may be a promising approach for preventing postoperative pulmonary infections in gastric cancer patients.
Collapse
Affiliation(s)
- Jie Yang
- Colorectal Cancer Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Yuhua He
- Colorectal Cancer Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Xi Liao
- Colorectal Cancer Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Jiankun Hu
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ka Li
- West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| |
Collapse
|
170
|
Zhu Q, Lin Q, Jiang Y, Chen S, Tian J, Yang S, Li Y, Li M, Wang Y, Shen C, Meng S, Yang L, Feng Y, Qu J. Construction and application of the conditionally essential gene knockdown library in Klebsiella pneumoniae to screen potential antimicrobial targets and virulence genes via Mobile-CRISPRi-seq. Appl Environ Microbiol 2023; 89:e0095623. [PMID: 37815340 PMCID: PMC10617577 DOI: 10.1128/aem.00956-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/09/2023] [Indexed: 10/11/2023] Open
Abstract
Klebsiella pneumoniae is a ubiquitous human pathogen, and its clinical treatment faces two major challenges: multidrug resistance and the pathogenesis of hypervirulent K. pneumoniae. The discovery and study of conditionally essential (CE) genes that can function as potential antimicrobial targets has always been a research concern due to their restriction in the development of novel antibiotics. However, the lack of essential functional genomic data has hampered the study of the mechanisms of essential genes related to antimicrobial susceptibility. In this study, we developed a pooled CE genes mobile clustered regularly interspaced short palindromic repeat (CRISPR) interference screening method (Mobile-CRISPRi-seq) for K. pneumoniae to identify genes that play critical roles in antimicrobial fitness in vitro and host immunity in vivo. Targeting 870 predicted CE genes in K. pneumoniae, Mobile-CRISPRi-seq uncovered the depletion of tetrahydrofolate synthesis pathway genes folB and folP under trimethoprim pressure. Our screening also identified genes waaE and fldA related to polymyxin and β-lactam susceptibility by applying a screening strategy based on Mobile-CRISPRi-seq and comparative genomics. Furthermore, using a mouse infection model and Mobile-CRISPRi-seq, multiple virulence genes were identified, and among these genes, pal, yciS, and ribB were demonstrated to contribute to the pathogenesis of K. pneumoniae. This study provides a simple, rapid, and effective platform for screening potential antimicrobial targets and virulence genes in K. pneumoniae, and this broadly applicable system can be expanded for high-throughput functional gene study in multiple pathogenic bacteria, especially in gram-negative bacteria. IMPORTANCE The discovery and investigation of conditionally essential (CE) genes that can function as potential antimicrobial targets has always been a research concern because of the restriction of antimicrobial targets in the development of novel antibiotics. In this study, we developed a pooled CE gene-wide mobile clustered regularly interspaced short palindromic repeat (CRISPR) interference sequencing (Mobile-CRISPRi-seq) strategy in Klebsiella pneumoniae to identify genes that play critical roles in the fitness of antimicrobials in vitro and host immunity in vivo. The data suggest a robust tool to screen for loss-of-function phenotypes in a pooled gene knockdown library in K. pneumoniae, and Mobile-CRISPRi-seq may be expanded to multiple bacteria for screening and identification of genes with crucial roles in the fitness of antimicrobials and hosts.
Collapse
Affiliation(s)
- Qing Zhu
- Department of Clinical Laboratory, Shenzhen Third People’s Hospital, National Clinical Research Center for Infectious Diseases, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Qiang Lin
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong Province, China
| | - Yushan Jiang
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Shuyan Chen
- Shenzhen Third People’s Hospital, National Clinical Research Center for Infectious Diseases, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Junxuan Tian
- Department of Clinical Laboratory, Shenzhen Third People’s Hospital, National Clinical Research Center for Infectious Diseases, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Shijin Yang
- Department of Clinical Laboratory, Shenzhen Third People’s Hospital, National Clinical Research Center for Infectious Diseases, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Yuanchun Li
- Department of Clinical Laboratory, Shenzhen Third People’s Hospital, National Clinical Research Center for Infectious Diseases, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Mengjun Li
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yuelin Wang
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Chenguang Shen
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Songdong Meng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liang Yang
- Shenzhen Third People’s Hospital, National Clinical Research Center for Infectious Diseases, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong Province, China
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Youjun Feng
- Department of Clinical Laboratory, Shenzhen Third People’s Hospital, National Clinical Research Center for Infectious Diseases, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong Province, China
- Departments of Microbiology and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Jiuxin Qu
- Department of Clinical Laboratory, Shenzhen Third People’s Hospital, National Clinical Research Center for Infectious Diseases, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| |
Collapse
|
171
|
DeLeo FR, Porter AR, Kobayashi SD, Freedman B, Hao M, Jiang J, Lin YT, Kreiswirth BN, Chen L. Interaction of multidrug-resistant hypervirulent Klebsiella pneumoniae with components of human innate host defense. mBio 2023; 14:e0194923. [PMID: 37671860 PMCID: PMC10653787 DOI: 10.1128/mbio.01949-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 09/07/2023] Open
Abstract
IMPORTANCE Klebsiella pneumoniae strains with a combination of multidrug resistance and hypervirulence genotypes (MDR hvKp) have emerged as a cause of human infections. The ability of these microbes to avoid killing by the innate immune system remains to be tested fully. To that end, we compared the ability of a global collection of hvKp and MDR hvKp clinical isolates to survive in human blood and resist phagocytic killing by human neutrophils. The two MDR hvKp clinical isolates tested (ST11 and ST147) were killed in human blood and by human neutrophils in vitro, whereas phagocytic killing of hvKp clinical isolates (ST23 and ST86) required specific antisera. Although the data were varied and often isolate specific, they are an important first step toward gaining an enhanced understanding of host defense against MDR hvKp.
Collapse
Affiliation(s)
- Frank R. DeLeo
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Adeline R. Porter
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Scott D. Kobayashi
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Brett Freedman
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Mingju Hao
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, China
| | - Jianping Jiang
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Yi-Tsung Lin
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Institute of Emergency and Critical Care Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Barry N. Kreiswirth
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Liang Chen
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| |
Collapse
|
172
|
Zhao Q, Yan J, Wang J, Liu R, Bartlam M. Structural analysis of the ferric-binding protein KfuA from Klebsiella pneumoniae. Biochem Biophys Res Commun 2023; 679:52-57. [PMID: 37669596 DOI: 10.1016/j.bbrc.2023.08.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 08/31/2023] [Indexed: 09/07/2023]
Abstract
Iron acquisition is an essential process of cell physiology for biological systems. In Klebsiella pneumoniae, the siderophore and ferric-acquisition ABC (ATP-Binding-Cassette) transporter KfuABC is utilized for iron uptake. Initial recognition of the various ferric sources in periplasm and transportation across the cytoplasmic membrane is performed by the substrate-binding protein (SBP) KfuA. Here we report the 2.0 Å resolution crystal structure of KfuA from K. pneumoniae, which crystallizes in the space group P1211 with a single monomer in the asymmetric unit. A bound metal ion reveals the residues required for binding ferric ions. Binding analysis shows that ferric iron and the iron-mimicking gallium bind with high affinity to KfuA. Growth curves show that gallium inhibits growth of K. pneumoniae whereas ferric iron enhances it. This work suggests a mechanism whereby gallium effectively competes with ferric iron, disrupting iron-dependent biological functions via binding to KfuA and leading to heightened antimicrobial efficacy. Significantly, humans lack equivalent ABC transporters like SBP KfuA, underscoring the potential of KfuA as an attractive target for therapeutic intervention.
Collapse
Affiliation(s)
- Qi Zhao
- College of Life Sciences, Nankai University, Tianjin, 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Jiaqi Yan
- College of Life Sciences, Nankai University, Tianjin, 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Jingjing Wang
- College of Life Sciences, Nankai University, Tianjin, 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China
| | - Ruihua Liu
- College of Life Sciences, Nankai University, Tianjin, 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China.
| | - Mark Bartlam
- College of Life Sciences, Nankai University, Tianjin, 300071, China; State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071, China; Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, 300071, China.
| |
Collapse
|
173
|
Li Y, Xu Y, Li W, Li J, Wu W, Kang J, Jiang H, Liu P, Liu J, Gong W, Li X, Ni C, Liu M, Chen L, Li S, Wu X, Zhao Y, Ren J. Itaconate inhibits SYK through alkylation and suppresses inflammation against hvKP induced intestinal dysbiosis. Cell Mol Life Sci 2023; 80:337. [PMID: 37897551 PMCID: PMC11073195 DOI: 10.1007/s00018-023-04971-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/23/2023] [Accepted: 09/18/2023] [Indexed: 10/30/2023]
Abstract
Hypervirulent Klebsiella pneumoniae (hvKP) is a highly lethal opportunistic pathogen that elicits more severe inflammatory responses compared to classical Klebsiella pneumoniae (cKP). In this study, we investigated the interaction between hvKP infection and the anti-inflammatory immune response gene 1 (IRG1)-itaconate axis. Firstly, we demonstrated the activation of the IRG1-itaconate axis induced by hvKP, with a dependency on SYK signaling rather than STING. Importantly, we discovered that exogenous supplementation of itaconate effectively inhibited excessive inflammation by directly inhibiting SYK kinase at the 593 site through alkylation. Furthermore, our study revealed that itaconate effectively suppressed the classical activation phenotype (M1 phenotype) and macrophage cell death induced by hvKP. In vivo experiments demonstrated that itaconate administration mitigated hvKP-induced disturbances in intestinal immunopathology and homeostasis, including the restoration of intestinal barrier integrity and alleviation of dysbiosis in the gut microbiota, ultimately preventing fatal injury. Overall, our study expands the current understanding of the IRG1-itaconate axis in hvKP infection, providing a promising foundation for the development of innovative therapeutic strategies utilizing itaconate for the treatment of hvKP infections.
Collapse
Affiliation(s)
- Yangguang Li
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Department of General Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Yu Xu
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Weizhen Li
- School of Medicine, Anhui University of Science and Technology, Huainan, 232000, China
| | - Jiayang Li
- School of Medicine, Southeast University, Nanjing, 210000, China
| | - Wenqi Wu
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jiaqi Kang
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Haiyang Jiang
- Department of General Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Peizhao Liu
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Juanhan Liu
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Wenbin Gong
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shanxi Province, China
| | - Xuanheng Li
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Chujun Ni
- Department of General Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Mingda Liu
- The Core Laboratory, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Lijuan Chen
- Department of General Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Sicheng Li
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiuwen Wu
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Yun Zhao
- Department of General Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210009, China.
| | - Jianan Ren
- Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
- Department of General Surgery, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210009, China.
| |
Collapse
|
174
|
Huang Y, Ali MR, Li W, Wang W, Dai Y, Lu H, He Z, Li Y, Sun B. Epidemiological characteristics of multidrug-resistant Acinetobacter baumannii ST369 in Anhui, China. mSystems 2023; 8:e0073123. [PMID: 37655924 PMCID: PMC10654100 DOI: 10.1128/msystems.00731-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 09/02/2023] Open
Abstract
IMPORTANCE Acinetobacter baumannii is a major health threat due to its antibiotic resistance and ability to cause nosocomial infections. Epidemiological studies indicated that the majority of globally prevalent ST369 clones originated from China, indicating a significant impact on public health in the country. In this study, we conducted whole-genome sequencing, comparative genomics, and Galleria mellonella infection model on eight A. baumannii ST369 isolates collected from a provincial hospital in China to comprehensively understand the organism. We identified two mutations (G540A and G667D) on the wzc gene that can affect bacterial virulence and viscosity. We confirmed their impact on resistance and virulence. We also investigated the potential involvement of AB46_0125 and AB152_03903 proteins in virulence. This finding provides a theoretical reference for further research on A. baumannii ST369 clinical isolates with similar mutations.
Collapse
Affiliation(s)
- Yi Huang
- Department of Oncology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Md Roushan Ali
- Department of Oncology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wei Li
- Department of Oncology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wanying Wang
- Intensive Care Unit, Biomedical Research Center, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Yuanyuan Dai
- Department of Oncology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Huaiwei Lu
- Department of Oncology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhien He
- Department of Oncology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yujie Li
- Department of Oncology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Baolin Sun
- Department of Oncology, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
175
|
Russo TA, Alvarado CL, Davies CJ, Drayer ZJ, Carlino-MacDonald U, Hutson A, Luo TL, Martin MJ, Corey BW, Moser KA, Rasheed JK, Halpin AL, McGann PT, Lebreton F. Differentiation of hypervirulent and classical Klebsiella pneumoniae with acquired drug resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.30.547231. [PMID: 37961280 PMCID: PMC10634668 DOI: 10.1101/2023.06.30.547231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Distinguishing hypervirulent (hvKp) from classical Klebsiella pneumoniae (cKp) strains is important for clinical care, surveillance, and research. Some combination of iucA, iroB, peg-344, rmpA, and rmpA2 are most commonly used, but it is unclear what combination of genotypic or phenotypic markers (e.g. siderophore concentration, mucoviscosity) most accurately predicts the hypervirulent phenotype. Further, acquisition of antimicrobial resistance may affect virulence and confound identification. Therefore, 49 K. pneumoniae strains that possessed some combination of iucA, iroB, peg-344, rmpA, and rmpA2 and had acquired resistance were assembled and categorized as hypervirulent hvKp (hvKp) (N=16) or cKp (N=33) via a murine infection model. Biomarker number, siderophore production, mucoviscosity, virulence plasmid's Mash/Jaccard distances to the canonical pLVPK, and Kleborate virulence score were measured and evaluated to accurately differentiate these pathotypes. Both stepwise logistic regression and a CART model were used to determine which variable was most predictive of the strain cohorts. The biomarker count alone was the strongest predictor for both analyses. For logistic regression the area under the curve for biomarker count was 0.962 (P = 0.004). The CART model generated the classification rule that a biomarker count = 5 would classify the strain as hvKP, resulting in a sensitivity for predicting hvKP of 94% (15/16), a specificity of 94% (31/33), and an overall accuracy of 94% (46/49). Although a count of ≥ 4 was 100% (16/16) sensitive for predicting hvKP, the specificity and accuracy decreased to 76% (25/33) and 84% (41/49) respectively. These findings can be used to inform the identification of hvKp. Importance Hypervirulent Klebsiella pneumoniae (hvKp) is a concerning pathogen that can cause life-threatening infections in otherwise healthy individuals. Importantly, although strains of hvKp have been acquiring antimicrobial resistance, the effect on virulence is unclear. Therefore, it is of critical importance to determine whether a given antimicrobial resistant K. pneumoniae isolate is hypervirulent. This report determined which combination of genotypic and phenotypic markers could most accurately identify hvKp strains with acquired resistance. Both logistic regression and a machine-learning prediction model demonstrated that biomarker count alone was the strongest predictor. The presence of all 5 of the biomarkers iucA, iroB, peg-344, rmpA, and rmpA2 was most accurate (94%); the presence of ≥ 4 of these biomarkers was most sensitive (100%). Accurately identifying hvKp is vital for surveillance and research, and the availability of biomarker data could alert the clinician that hvKp is a consideration, which in turn would assist in optimizing patient care.
Collapse
|
176
|
Zhou C, Sun L, Li H, Huang L, Liu X. Risk Factors and Mortality of Elderly Patients with Hospital-Acquired Pneumonia of Carbapenem-Resistant Klebsiella pneumoniae Infection. Infect Drug Resist 2023; 16:6767-6779. [PMID: 37881505 PMCID: PMC10595997 DOI: 10.2147/idr.s431085] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/14/2023] [Indexed: 10/27/2023] Open
Abstract
Purpose Hospital-acquired pneumonia (HAP) caused by carbapenem-resistant K. pneumoniae (CRKP), especially in elderly patients, results in high morbidity and mortality. Studies on risk factors, mortality, and antimicrobial susceptibility of CRKP pulmonary infection among elderly patients are lacking. Patients and Methods A retrospective case-control study was conducted from January 2019 to December 2021. The elderly inpatients (≥65 years) who were diagnosed with HAP caused by K. pneumoniae were enrolled. Clinical data were collected. Univariate and multivariate logistic regression analyses were used to identify risk factors. Propensity score matching was used to minimize the effect of potential confounding variables. Kaplan-Meier analysis was used to compare survival. Results A total of 115 patients with CRKP infection and 78 patients with carbapenem-susceptible K. pneumoniae (CSKP) infection were recruited. There were four independent risk factors for CRKP infection: history of intensive care unit (ICU) stays from hospital admission to positive respiratory specimen culture for K. pneumoniae (odds ratio (OR)=2.530), Charlson comorbidity index score ≥3 (OR = 2.420), prior exposure to carbapenems (OR = 5.280), and prior K. pneumoniae infection or colonization in the preceding 3 years (OR = 18.529). The all-cause 30-day mortality was 22.3%, the mortality of CRKP and CSKP infection was 28.7% and 12.8%, respectively. Independent risk factors for mortality included: older age (OR = 1.107), immunocompromised patients (OR = 8.632), severe pneumonia (OR = 51.244), quick Sepsis-related Organ Failure Assessment (qSOFA) score ≥2 (OR = 6.187), exposure to tigecycline before infection (OR = 24.702), and prolonged ICU stay (OR = 0.987). Thirty-day mortality was significantly lower in patients receiving ceftazidime-avibactam (CAZ-AVI) containing regimens than patients receiving polymyxin B sulfate (PB) containing regimens (P = 0.048). qSOFA score had a good prognostic effect [area under receiver operating characteristic curve (AUROC) of 0.838]. Conclusion Active screening of CRKP for the high-risk populations, especially elderly patients, is significant for early detection and successful management of CRKP infection.
Collapse
Affiliation(s)
- Chaoe Zhou
- Department of Geriatrics, Peking University First Hospital, Beijing, People’s Republic of China
| | - Liying Sun
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, People’s Republic of China
| | - Haixia Li
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, People’s Republic of China
| | - Lei Huang
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, People’s Republic of China
| | - Xinmin Liu
- Department of Geriatrics, Peking University First Hospital, Beijing, People’s Republic of China
| |
Collapse
|
177
|
Ali MR, Yang Y, Dai Y, Lu H, He Z, Li Y, Sun B. Prevalence of multidrug-resistant hypervirulent Klebsiella pneumoniae without defined hypervirulent biomarkers in Anhui, China: a new dimension of hypervirulence. Front Microbiol 2023; 14:1247091. [PMID: 37869673 PMCID: PMC10585048 DOI: 10.3389/fmicb.2023.1247091] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 08/30/2023] [Indexed: 10/24/2023] Open
Abstract
Klebsiella pneumoniae is an opportunistic pathogen that mainly causes nosocomial infections and hospital-associated pneumonia in elderly and immunocompromised people. However, multidrug-resistant hypervirulent K. pneumoniae (MDR-hvKp) has emerged recently as a serious threat to global health that can infect both immunocompromised and healthy individuals. It is scientifically established that plasmid-mediated regulator of mucoid phenotype genes (rmpA and rmpA2) and other virulence factors (aerobactin and salmochelin) are mainly responsible for this phenotype. In this study, we collected 23 MDR-hvKp isolates and performed molecular typing, whole genome sequencing, comparative genomic analysis, and phenotypic experiments, including the Galleria mellonella infection model, to reveal its genetic and phenotypic features. Meanwhile, we discovered two MDR-hvKp isolates (22122315 and 22091569) that showed a wide range of hypervirulence and hypermucoviscosity without rmpA and rmpA2 and any virulence factors. In phenotypic experiments, isolate 22122315 showed the highest hypervirulence (infection model) with significant mucoviscosity, and conversely, isolate 22091569 exhibited the highest mucoviscosity (string test) with higher virulence compared to control. These two isolates carried carbapenemase (blaKPC - 2), β-lactamase (blaOXA - 1, blaTEM - 1B), extended-spectrum β-lactamase (ESBL) genes (blaCTX - M - 15, blaSHV - 106), outer membrane protein-coding genes (ompA), fimbriae encoding genes (ecpABCDER), and enterobactin coding genes (entAB, fepC). In addition, single nucleotide polymorphism analysis indicated that both isolates, 22122315 and 22091569, were found to have novel mutations in loci FEBNDAKP_03184 (c. 2084A > C, p. Asn695Thr), and EOFMAFIB_02276 (c. 1930C > A, p. Pro644Thr), respectively. Finally, NCBI blast analysis suggested these mutations are located in the wzc of the capsule polysaccharide (cps) region and are responsible for putative tyrosine kinase. This study would be a strong reference for enhancing the current understanding of identifying the MDR-hvKp isolates that lacked both mucoid regulators and virulence factors.
Collapse
Affiliation(s)
- Md Roushan Ali
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yu Yang
- Department of Emergency Medicine, The Affiliated Provincial Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yuanyuan Dai
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Huaiwei Lu
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhien He
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yujie Li
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Baolin Sun
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
178
|
Qiu J, Wei D, Ma J, Liu R, Shi J, Ren Q, Wei C, Huo B, Zhu L, Xiang T, Liu Y, Cheng N. Covert dissemination of pLVPK-like virulence plasmid in ST29-K54 Klebsiella pneumoniae: emergence of low virulence phenotype strains. Front Cell Infect Microbiol 2023; 13:1194133. [PMID: 37829609 PMCID: PMC10565659 DOI: 10.3389/fcimb.2023.1194133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 09/01/2023] [Indexed: 10/14/2023] Open
Abstract
This study aimed to explore the epidemic, clinical characteristics, and molecular and virulence attributes of Klebsiella pneumoniae serotype K54 (K54-Kp). A retrospective study was conducted on 328 strains of Klebsiella pneumoniae screened in a Chinese hospital from January 2016 to December 2019. The virulence genes and antibiotic resistance genes (ARGs) were detected by PCR, and a drug sensitivity test was adopted to detect drug resistance. Multilocus sequence typing (MLST) and PFGE were performed to determine the clonal correlation between isolates. Biofilm formation assay, serum complement-mediated killing, and Galleria mellonella infection were used to characterize the virulence potential. Our results showed that thirty strains of K54-Kp were screened from 328 strains of bacteria, with an annual detection rate of 2.29%. K54-Kp had a high resistance rate to antibiotics commonly used in the clinic, and patients with hepatobiliary diseases were prone to K54-Kp infection. MLST typing showed 10 sequence typing, mainly ST29 (11/30), which concentrated in the B2 cluster. K54-Kp primarily carried virulence genes of aerobactin, silS, allS, wcaG, wabG, and mrkD, among which the terW gene was closely related to ST29 (p<0.05). The strains infected by the bloodstream had strong biofilm formation ability (p<0.05). Most strains were sensitive to serum. Still, the virulence of pLVPK-like virulence plasmid in ST29-K54 Klebsiella pneumoniae was lower than that of ST11 type and NTUH-K2044 in the Galleria mellonella model. Therefore, these findings supply a foundation to roundly comprehend K54-Kp, and clinicians should strengthen supervision and attention.
Collapse
Affiliation(s)
- Jiehui Qiu
- Department of Infectious Disease, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Dandan Wei
- Departments of Clinical Laboratory, Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, China
- National Regional Center for Respiratory Medicine, China-Japan Friendship Hospital Jiangxi Hospital, Nanchang, China
| | - Jiaxin Ma
- Department of Infectious Disease, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ren Liu
- Department of Infectious Disease, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jianglong Shi
- Department of Infectious Disease, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qun Ren
- Department of Infectious Disease, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Chunping Wei
- Department of Infectious Disease, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Binghui Huo
- Departments of Clinical Laboratory, Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lanlan Zhu
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Tianxin Xiang
- Medical Center for Major Public Health Events in Jiangxi Province, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yang Liu
- Departments of Clinical Laboratory, Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, China
- National Regional Center for Respiratory Medicine, China-Japan Friendship Hospital Jiangxi Hospital, Nanchang, China
- Jiangxi Medicine Academy of Nutrition and Health Management, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Na Cheng
- Medical Center for Major Public Health Events in Jiangxi Province, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
179
|
Cai R, Ren Z, Zhao R, Lu Y, Wang X, Guo Z, Song J, Xiang W, Du R, Zhang X, Han W, Ru H, Gu J. Structural biology and functional features of phage-derived depolymerase Depo32 on Klebsiella pneumoniae with K2 serotype capsular polysaccharides. Microbiol Spectr 2023; 11:e0530422. [PMID: 37750730 PMCID: PMC10581125 DOI: 10.1128/spectrum.05304-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 08/03/2023] [Indexed: 09/27/2023] Open
Abstract
Hypervirulent Klebsiella pneumoniae with capsular polysaccharides (CPSs) causes severe nosocomial- and community-acquired infections. Phage-derived depolymerases can degrade CPSs from K. pneumoniae to attenuate bacterial virulence, but their antimicrobial mechanisms and clinical potential are not well understood. In the present study, Klebsiella phage GH-K3-derived depolymerase Depo32 (encoded by gene gp32) was identified to exhibit high efficiency in specifically degrading the CPSs of K2 serotype K. pneumoniae. The cryo-electron microscopy structure of trimeric Depo32 at a resolution up to 2.32 Å revealed potential catalytic centers in the cleft of each of the two adjacent subunits. K. pneumoniae subjected to Depo32 became more sensitive to phagocytosis by RAW264.7 cells and activated the cells by the mitogen-activated protein kinase signaling pathway. In addition, intranasal inoculation with Depo32 (a single dose of 200 µg, 20 µg daily for 3 days, or in combination with gentamicin) rescued all C57BL/6J mice infected with a lethal dose of K. pneumoniae K7 without interference from its neutralizing antibody. In summary, this work elaborates on the mechanism by which Depo32 targets the degradation of K2 serotype CPSs and its potential as an antivirulence agent. IMPORTANCE Depolymerases specific to more than 20 serotypes of Klebsiella spp. have been identified, but most studies only evaluated the single-dose treatment of depolymerases with relatively simple clinical evaluation indices and did not reveal the anti-infection mechanism of these depolymerases in depth. On the basis of determining the biological characteristics, the structure of Depo32 was analyzed by cryo-electron microscopy, and the potential active center was further identified. In addition, the effects of Depo32 on macrophage phagocytosis, signaling pathway activation, and serum killing were revealed, and the efficacy of the depolymerase (single treatment, multiple treatments, or in combination with gentamicin) against acute pneumonia caused by Klebsiella pneumoniae was evaluated. Moreover, the roles of the active sites of Depo32 were also elucidated in the in vitro and in vivo studies. Therefore, through structural biology, cell biology, and in vivo experiments, this study demonstrated the mechanism by which Depo32 targets K2 serotype K. pneumoniae infection.
Collapse
Affiliation(s)
- Ruopeng Cai
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Zhuolu Ren
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Rihong Zhao
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Yan Lu
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Xinwu Wang
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Changchun, Jilin, China
| | - Zhimin Guo
- Infectious Diseases and Pathogen Biology Center, Clinical Laboratory Department, First Hospital of Jilin University, Changchun, Jilin, China
| | - Jinming Song
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Wentao Xiang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
| | - Rui Du
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, Jilin, China
- College of Chinese Medicine Materials, Jilin Agricultural University, Changchun, Jilin, China
| | - Xiaokang Zhang
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- Inter disciplinary Center for Brain Information, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong, China
| | - Wenyu Han
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Heng Ru
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingmin Gu
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
180
|
Zhang Y, Ruff SE, Oskolkov N, Tierney BT, Ryon K, Danko D, Mason CE, Elhaik E. The microbial biodiversity at the archeological site of Tel Megiddo (Israel). Front Microbiol 2023; 14:1253371. [PMID: 37808297 PMCID: PMC10559971 DOI: 10.3389/fmicb.2023.1253371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 08/25/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction The ancient city of Tel Megiddo in the Jezreel Valley (Israel), which lasted from the Neolithic to the Iron Age, has been continuously excavated since 1903 and is now recognized as a World Heritage Site. The site features multiple ruins in various areas, including temples and stables, alongside modern constructions, and public access is allowed in designated areas. The site has been studied extensively since the last century; however, its microbiome has never been studied. We carried out the first survey of the microbiomes in Tel Megiddo. Our objectives were to study (i) the unique microbial community structure of the site, (ii) the variation in the microbial communities across areas, (iii) the similarity of the microbiomes to urban and archeological microbes, (iv) the presence and abundance of potential bio-corroding microbes, and (v) the presence and abundance of potentially pathogenic microbes. Methods We collected 40 swab samples from ten major areas and identified microbial taxa using next-generation sequencing of microbial genomes. These genomes were annotated and classified taxonomically and pathogenetically. Results We found that eight phyla, six of which exist in all ten areas, dominated the site (>99%). The relative sequence abundance of taxa varied between the ruins and the sampled materials and was assessed using all metagenomic reads mapping to a respective taxon. The site hosted unique taxa characteristic of the built environment and exhibited high similarity to the microbiome of other monuments. We identified acid-producing bacteria that may pose a risk to the site through biocorrosion and staining and thus pose a danger to the site's preservation. Differences in the microbiomes of the publicly accessible or inaccessible areas were insignificant; however, pathogens were more abundant in the former. Discussion We found that Tel Megiddo combines microbiomes of arid regions and monuments with human pathogens. The findings shed light on the microbial community structures and have relevance for bio-conservation efforts and visitor health.
Collapse
Affiliation(s)
- Yali Zhang
- Department of Biology, Lund University, Lund, Sweden
| | - S. Emil Ruff
- The Marine Biological Laboratory, Woods Hole, MA, United States
| | - Nikolay Oskolkov
- Department of Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Lund University, Lund, Sweden
| | - Braden T. Tierney
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States
| | - Krista Ryon
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States
| | - David Danko
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States
| | - Christopher E. Mason
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, New York, NY, United States
- The Feil Family Brain and Mind Research Institute (BMRI), New York, NY, United States
- The Information Society Project, Yale Law School, New Haven, CT, United States
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, United States
| | - Eran Elhaik
- Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
181
|
Jiang Y, Hu X, Fan S, Liu W, Chen J, Wang L, Deng Q, Yang J, Yang A, Lou Z, Guan Y, Xia H, Gu B. RVFScan predicts virulence factor genes and hypervirulence of the clinical metagenome. Brief Bioinform 2023; 24:bbad403. [PMID: 37930030 PMCID: PMC10631995 DOI: 10.1093/bib/bbad403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/27/2023] [Accepted: 10/17/2023] [Indexed: 11/07/2023] Open
Abstract
Bacterial infections often involve virulence factors that play a crucial role in the pathogenicity of bacteria. Accurate detection of virulence factor genes (VFGs) is essential for precise treatment and prognostic management of hypervirulent bacterial infections. However, there is a lack of rapid and accurate methods for VFG identification from the metagenomic data of clinical samples. Here, we developed a Reads-based Virulence Factors Scanner (RVFScan), an innovative user-friendly online tool that integrates a comprehensive VFG database with similarity matrix-based criteria for VFG prediction and annotation using metagenomic data without the need for assembly. RVFScan demonstrated superior performance compared to previous assembly-based and read-based VFG predictors, achieving a sensitivity of 97%, specificity of 98% and accuracy of 98%. We also conducted a large-scale analysis of 2425 clinical metagenomic datasets to investigate the utility of RVFScan, the species-specific VFG profiles and associations between VFGs and virulence phenotypes for 24 important pathogens were analyzed. By combining genomic comparisons and network analysis, we identified 53 VFGs with significantly higher abundances in hypervirulent Klebsiella pneumoniae (hvKp) than in classical K. pneumoniae. Furthermore, a cohort of 1256 samples suspected of K. pneumoniae infection demonstrated that RVFScan could identify hvKp with a sensitivity of 90%, specificity of 100% and accuracy of 98.73%, with 90% of hvKp samples consistent with clinical diagnosis (Cohen's kappa, 0.94). RVFScan has the potential to detect VFGs in low-biomass and high-complexity clinical samples using metagenomic reads without assembly. This capability facilitates the rapid identification and targeted treatment of hvKp infections and holds promise for application to other hypervirulent pathogens.
Collapse
Affiliation(s)
- Yue Jiang
- Department of Bioinformatics, Hugobiotech Co., Ltd., Beijing 100176, China
| | - Xuejiao Hu
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Shu Fan
- Department of Bioinformatics, Hugobiotech Co., Ltd., Beijing 100176, China
| | - Weijiang Liu
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Jingjing Chen
- Pulmonary and Critical Care Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Liang Wang
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Qianyun Deng
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Jing Yang
- Department of Bioinformatics, Hugobiotech Co., Ltd., Beijing 100176, China
| | - Aimei Yang
- Pediatric Intensive Care Unit, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Zheng Lou
- Department of Bioinformatics, Hugobiotech Co., Ltd., Beijing 100176, China
| | - Yuanlin Guan
- Department of Bioinformatics, Hugobiotech Co., Ltd., Beijing 100176, China
| | - Han Xia
- Department of Bioinformatics, Hugobiotech Co., Ltd., Beijing 100176, China
| | - Bing Gu
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| |
Collapse
|
182
|
Wang Z, Liu Y, Liu P, Jian Z, Yan Q, Tang B, Yang A, Liu W. Genomic and clinical characterization of Klebsiella pneumoniae carrying the pks island. Front Microbiol 2023; 14:1189120. [PMID: 37808295 PMCID: PMC10551629 DOI: 10.3389/fmicb.2023.1189120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023] Open
Abstract
Background The pks island and its production of the bacterial secondary metabolite genotoxin, colibactin, have attracted increasing attention. However, genomic articles focusing on pks islands in Klebsiella pneumoniae, as well as comparative genomic studies of mobile genetic elements, such as prophages, plasmids, and insertion sequences, are lacking. In this study, a large-scale analysis was conducted to understand the prevalence and evolution of pks islands, differences in mobile genetic elements between pks-negative and pks-positive K. pneumoniae, and clinical characteristics of infection caused by pks-positive K. pneumoniae. Methods The genomes of 2,709 K. pneumoniae were downloaded from public databases, among which, 1,422 were from NCBI and 1,287 were from the China National GeneBank DataBase (CNGBdb). Screening for virulence and resistance genes, phylogenetic tree construction, and pan-genome analysis were performed. Differences in mobile genetic elements between pks-positive and pks-negative strains were compared. The clinical characteristics of 157 pks-positive and 157 pks-negative K. pneumoniae infected patients were investigated. Results Of 2,709 K. pneumoniae genomes, 245 pks-positive genomes were screened. The four siderophores, type VI secretion system, and nutritional factor genes were present in at least 77.9% (191/245), 66.9% (164/245), and 63.3% (155/245) of pks-positive strains, respectively. The number and fragment length of prophage were lower in pks-positive strains than in pks-negative strains (p < 0.05). The prevalence of the IS6 family was higher in pks-negative strains than in pks-positive strains, and the prevalence of multiple plasmid replicon types differed between the pks-positive and pks-negative strains (p < 0.05). The detection rate of pks-positive K. pneumoniae in abscess samples was higher than that of pks-negative K. pneumoniae (p < 0.05). Conclusion The pks-positive strains had abundant virulence genes. There were differences in the distribution of mobile genetic elements between pks-positive and pks-negative isolates. Further analysis of the evolutionary pattern of pks island and epidemiological surveillance in different populations are needed.
Collapse
Affiliation(s)
- Zhiqian Wang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yanjun Liu
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Peilin Liu
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zijuan Jian
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qun Yan
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bin Tang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Awen Yang
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenen Liu
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| |
Collapse
|
183
|
Song S, Zhao S, Wang W, Jiang F, Sun J, Ma P, Kang H. Characterization of ST11 and ST15 Carbapenem-Resistant Hypervirulent Klebsiella pneumoniae from Patients with Ventilator-Associated Pneumonia. Infect Drug Resist 2023; 16:6017-6028. [PMID: 37705511 PMCID: PMC10496924 DOI: 10.2147/idr.s426901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/24/2023] [Indexed: 09/15/2023] Open
Abstract
Background The prevalence of carbapenem-resistant hypervirulent Klebsiella pneumoniae (hv-CRKP) is a serious public threat globally. Here, we performed clinical, molecular, and phenotypic monitoring of hv-CRKP strains isolated from the intensive care unit (ICU) to offer evidence for prevention and control in hospitals. Methods Data analysis of ICU patients suffering from ventilator-associated pneumonia (VAP) because of hv-CRKP infection, admitted at the Chinese Teaching Hospital between March 2019 and September 2021 was performed. Patients' antibiotic-resistance genes, virulence-associated genes, and capsular serotypes of these isolates were detected. Homology analysis of the strains was performed by MLST and PFGE. Six different strains were tested for their virulence traits using the serum killing test and the Galleria mellonella infection assay. For whole genome sequencing, KP3 was selected as a representative strain. Results Clinical data of 19 hv-CRKP-VAP patients were collected and their hv-CRKP were isolated, including 10 of ST11-KL64, 4 of ST15-KL112, 2 of ST11-KL47, 1 of ST15-KL19, 1 of ST17-KL140, and 1 of ST48-KL62. Four ST15 and 8 ST11 isolates revealed high homology, respectively. Most strains carried the carbapenemase gene blaKPC-2 (14/19, 73.68%), followed by blaOXA-232 (4/19, 21.05%). All strains were resistant to almost all the antibiotics except polymyxin and tigacycline. Ten patients were treated with polymyxin or tigacycline based on their susceptibility results, and unfortunately 6 patients died. All strains exhibited a hyper-viscous phenotype, and the majority (17/19, 89.47%) of them contained rmpA and rmpA2. The serum killing test showed that KP9 was resistant to normal healthy serum, others were intermediately or highly sensitive. G. mellonella larvae infection assay suggested that the strains in this study were hypervirulent. Conclusion This study highlights the dominant strain and molecular epidemiology of hv-CRKP in a hospital in China. We should pay more attention to the effect of hv-CRKP on VAP, strengthen monitoring and control transmission.
Collapse
Affiliation(s)
- Shuang Song
- Medical Technology School, Xuzhou Medical University, Xuzhou, People’s Republic of China
- Department of Clinical Laboratory, Affiliated Hospital of Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Shulong Zhao
- Department of Clinical Laboratory, Affiliated Hospital of Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Wei Wang
- Medical Technology School, Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Fei Jiang
- Department of Clinical Laboratory, Affiliated Hospital of Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Jingfang Sun
- Department of Clinical Laboratory, Affiliated Hospital of Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Ping Ma
- Medical Technology School, Xuzhou Medical University, Xuzhou, People’s Republic of China
- Department of Clinical Laboratory, Affiliated Hospital of Xuzhou Medical University, Xuzhou, People’s Republic of China
| | - Haiquan Kang
- Department of Clinical Laboratory, Affiliated Hospital of Xuzhou Medical University, Xuzhou, People’s Republic of China
| |
Collapse
|
184
|
Li Y, Ni M. Regulation of biofilm formation in Klebsiella pneumoniae. Front Microbiol 2023; 14:1238482. [PMID: 37744914 PMCID: PMC10513181 DOI: 10.3389/fmicb.2023.1238482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
Klebsiella pneumoniae is an important Gram-negative opportunistic pathogen that is responsible for a variety of nosocomial and community-acquired infections. Klebsiella pneumoniae has become a major public health issue owing to the rapid global spread of extensively-drug resistant (XDR) and hypervirulent strains. Biofilm formation is an important virulence trait of K. pneumoniae. A biofilm is an aggregate of microorganisms attached to an inert or living surface by a self-produced exo-polymeric matrix that includes proteins, polysaccharides and extracellular DNA. Bacteria within the biofilm are shielded from antibiotics treatments and host immune responses, making it more difficult to eradicate K. pneumoniae-induced infection. However, the detailed mechanisms of biofilm formation in K. pneumoniae are still not clear. Here, we review the factors involved in the biofilm formation of K. pneumoniae, which might provide new clues to address this clinical challenge.
Collapse
Affiliation(s)
| | - Ming Ni
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
185
|
Kao CY, Zhang YZ, Bregente CJB, Kuo PY, Chen PK, Chao JY, Duong TTT, Wang MC, Thuy TTD, Hidrosollo JH, Tsai PF, Li YC, Lin WH. A 24-year longitudinal study of Klebsiella pneumoniae isolated from patients with bacteraemia and urinary tract infections reveals the association between capsular serotypes, antibiotic resistance, and virulence gene distribution. Epidemiol Infect 2023; 151:e155. [PMID: 37675569 PMCID: PMC10548544 DOI: 10.1017/s0950268823001486] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/20/2023] [Accepted: 08/26/2023] [Indexed: 09/08/2023] Open
Abstract
Longitudinal studies on the variations of phenotypic and genotypic characteristics of K. pneumoniae across two decades are rare. We aimed to determine the antimicrobial susceptibility and virulence factors for K. pneumoniae isolated from patients with bacteraemia or urinary tract infection (UTI) from 1999 to 2022. A total of 699 and 1,267 K. pneumoniae isolates were isolated from bacteraemia and UTI patients, respectively, and their susceptibility to twenty antibiotics was determined; PCR was used to identify capsular serotypes and virulence-associated genes. K64 and K1 serotypes were most frequently observed in UTI and bacteraemia, respectively, with an increasing frequency of K20, K47, and K64 observed in recent years. entB and wabG predominated across all isolates and serotypes; the least frequent virulence gene was htrA. Most isolates were susceptible to carbapenems, amikacin, tigecycline, and colistin, with the exception of K20, K47, and K64 where resistance was widespread. The highest average number of virulence genes was observed in K1, followed by K2, K20, and K5 isolates, which suggest their contribution to the high virulence of K1. In conclusion, we found that the distribution of antimicrobial susceptibility, virulence gene profiles, and capsular types of K. pneumoniae over two decades were associated with their clinical source.
Collapse
Affiliation(s)
- Cheng-Yen Kao
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yen-Zhen Zhang
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Carl Jay Ballena Bregente
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Pei-Yun Kuo
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Pek Kee Chen
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jo-Yen Chao
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tran Thi Thuy Duong
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ming-Cheng Wang
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tran Thi Dieu Thuy
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jazon Harl Hidrosollo
- Institute of Microbiology and Immunology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Pei-Fang Tsai
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ying-Chi Li
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Hung Lin
- Department of Internal Medicine, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
186
|
Zhang QB, Zhu P, Zhang S, Rong YJ, Huang ZA, Sun LW, Cai T. Hypervirulent Klebsiella pneumoniae detection methods: a minireview. Arch Microbiol 2023; 205:326. [PMID: 37672079 DOI: 10.1007/s00203-023-03665-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 09/07/2023]
Abstract
Hypervirulent Klebsiella pneumoniae (hvKp), characterized by high virulence and epidemic potential, has become a global public health challenge. Therefore, improving the identification of hvKp and enabling earlier and faster detection in the community to support subsequent effective treatment and prevention of hvKp are an urgent issue. To address these issues, a number of assays have emerged, such as String test, Galleria mellonella infection test, PCR, isothermal exponential amplification, and so on. In this paper, we have collected articles on the detection methods of hvKp and conducted a retrospective review based on two aspects: traditional detection technology and biomarker-based detection technology. We summarize the advantages and limitations of these detection methods and discuss the challenges as well as future directions, hoping to provide new insights and references for the rapid detection of hvKp in the future. The aim of this study is to focus on the research papers related to Hypervirulent Klebsiella pneumoniae involving the period from 2012 to 2022. We conducted searches using the keywords "Hypervirulent Klebsiella pneumoniae, biomarkers, detection techniques" on ScienceDirect and Google Scholar. Additionally, we also searched on PubMed, using MeSH terms associated with the keywords (such as Klebsiella pneumoniae, Klebsiella Infections, Virulence, Biomarkers, diagnosis, etc.).
Collapse
Affiliation(s)
- Qi-Bin Zhang
- The Affiliated People's Hospital of Ningbo University, Ningbo, China
| | - Peng Zhu
- Ningbo No. 2 Hospital, Ningbo, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, China
| | - Shun Zhang
- Ningbo No. 2 Hospital, Ningbo, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, China
| | - Yan-Jing Rong
- Ningbo No. 2 Hospital, Ningbo, China
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, China
| | - Zuo-An Huang
- Ningbo No. 2 Hospital, Ningbo, China
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, China
| | | | - Ting Cai
- Ningbo No. 2 Hospital, Ningbo, China.
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China.
- Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of Zhejiang Province, Ningbo, China.
| |
Collapse
|
187
|
Mentasti M, David S, Turton J, Morgan M, Turner L, Westlake J, Jenkins J, Williams C, Rey S, Watkins J, Daniel V, Mitchell S, Forbes G, Wootton M, Jones L. Clonal expansion and rapid characterization of Klebsiella pneumoniae ST1788, an otherwise uncommon strain spreading in Wales, UK. Microb Genom 2023; 9:001104. [PMID: 37668148 PMCID: PMC10569728 DOI: 10.1099/mgen.0.001104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 08/19/2023] [Indexed: 09/06/2023] Open
Abstract
A multidrug-resistant strain of Klebsiella pneumoniae (Kp) sequence type (ST) 1788, an otherwise uncommon ST worldwide, was isolated from 65 patients at 11 hospitals and 11 general practices across South and West Wales, UK, between February 2019 and November 2021. A collection of 97 Kp ST1788 isolates (including 94 from Wales) was analysed to investigate the diversity and spread across Wales and to identify molecular marker(s) to aid development of a strain-specific real-time PCR. Whole genome sequencing (WGS) was performed with Illumina technology and the data were used to perform phylogenetic analyses. Pan-genome analysis of further Kp genome collections was used to identify an ST1788-specific gene target; a real-time PCR was then validated against a panel of 314 strains and 218 broth-enriched screening samples. Low genomic diversity was demonstrated amongst the 94 isolates from Wales. Evidence of spread within and across healthcare facilities was found. A yersiniabactin locus and the KL2 capsular locus were identified in 85/94 (90.4 %) and 94/94 (100 %) genomes respectively; bla SHV-232, bla TEM-1, bla CTX-M-15 and bla OXA-1 were simultaneously carried by 86/94 (91.5 %) isolates; 4/94 (4.3 %) isolates also carried bla OXA-48 carbapenemase. Aminoglycoside and fluoroquinolone resistance markers were found in 94/94 (100 %) and 86/94 (91.5 %) isolates respectively. The ST1788-specific real-time PCR was 100 % sensitive and specific. Our analyses demonstrated recent clonal expansion and spread of Kp ST1788 in the community and across healthcare facilities in South and West Wales with isolates carrying well-defined antimicrobial resistance and virulence markers. An ST1788-specific marker was also identified, enabling rapid and reliable preliminary characterization of isolates by real-time PCR. This study confirms the utility of WGS in investigating novel strains and in aiding proactive implementation of molecular tools to assist infection control specialists.
Collapse
Affiliation(s)
- Massimo Mentasti
- Specialist Antimicrobial Chemotherapy Unit, Public Health Wales Microbiology, Cardiff, CF14 4XW, UK
| | - Sophia David
- Centre for Genomic Pathogen Surveillance, Big Data Institute, University of Oxford, Oxford, OX3 7LF, UK
| | - Jane Turton
- HCAI, Fungal, AMR, AMU & Sepsis Division, UK Health Security Agency, London, NW9 5HT, UK
| | - Mari Morgan
- Healthcare Associated Infection, Antimicrobial Resistance Prescribing Programme, Public Health Wales Health Protection, Cardiff, CF10 4BZ, UK
| | - Luke Turner
- Bacteriology Department, Public Health Wales Microbiology, Swansea, SA2 8QA, UK
| | - Joseph Westlake
- Specialist Antimicrobial Chemotherapy Unit, Public Health Wales Microbiology, Cardiff, CF14 4XW, UK
| | - Jonathan Jenkins
- Pathogen Genomics Unit, Public Health Wales Microbiology, Cardiff, CF14 4XW, UK
| | - Catie Williams
- Pathogen Genomics Unit, Public Health Wales Microbiology, Cardiff, CF14 4XW, UK
| | - Sara Rey
- Pathogen Genomics Unit, Public Health Wales Microbiology, Cardiff, CF14 4XW, UK
| | - Joanne Watkins
- Pathogen Genomics Unit, Public Health Wales Microbiology, Cardiff, CF14 4XW, UK
| | - Victoria Daniel
- Bacteriology Department, Public Health Wales Microbiology, Cardiff, CF14 4XW, UK
| | - Shanine Mitchell
- Bacteriology Department, Public Health Wales Microbiology, Cardiff, CF14 4XW, UK
| | - Gavin Forbes
- Bacteriology Department, Public Health Wales Microbiology, Cardiff, CF14 4XW, UK
| | - Mandy Wootton
- Specialist Antimicrobial Chemotherapy Unit, Public Health Wales Microbiology, Cardiff, CF14 4XW, UK
| | - Lim Jones
- Specialist Antimicrobial Chemotherapy Unit, Public Health Wales Microbiology, Cardiff, CF14 4XW, UK
| |
Collapse
|
188
|
Abstract
Pyogenic liver abscesses (PLAs) are a suppurative infection of the hepatic parenchyma responsible for significant morbidity and mortality. PLAs are categorized into a variety of mechanisms: (1) via the portal vein, (2) through the biliary tract, (3) via the hepatic artery, (4) from trauma, (5) contiguously via direct extension, and (6) cryptogenically. The pathogenesis of PLA, which informs treatment, can often be discerned based on host factors, clinical presentation, and causative microorganisms. The Streptococcus anginosus group, hypervirulent Klebsiella pneumoniae , and multidrug-resistant gram-negative pathogens have emerged as microbiologically challenging organisms to treat. The identification of hypervirulent K. pneumoniae should prompt for assessment for metastatic spread and consideration of prolonged antimicrobial treatment. Abdominal imaging is indispensable in characterizing PLAs and facilitating source control interventions. Source control remains the most critical aspect of PLA management, followed by antimicrobial therapy. Empiric antibiotics for PLAs are informed by the suspected etiology of PLA formation. Duration of antimicrobial therapy is individualized and dependent on multiple components, including the success of achieving source control, host factors, mechanism of PLA development, and the illness course of the individual-factoring in clinical, biochemical, and radiographic parameters.
Collapse
Affiliation(s)
- John C Lam
- Division of Infectious Diseases, Department of Medicine, University of California Los Angeles, Los Angeles, CA
| | - William Stokes
- Provincial Laboratory for Public Health, Alberta Precision Laboratories, Calgary
- Department of Pathology and Laboratory Medicine, University of Alberta
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
189
|
Prasad M, Kosowsky T, Chen X, Davoudi Moghaddam S, Ness S, Peeler C, Siegel NH, Subramanian ML. Unrelenting Vision Loss: The Virulence of Klebsiella pneumoniae. Cureus 2023; 15:e44786. [PMID: 37809162 PMCID: PMC10558182 DOI: 10.7759/cureus.44786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2023] [Indexed: 10/10/2023] Open
Abstract
A 37-year-old Hispanic male with a recent history of COVID-19 infection and type 2 diabetes mellitus was admitted to the hospital with shortness of breath, chest pain, and hyperglycemia. Eye exam and imaging findings indicated endogenous endophthalmitis confirmed by blood cultures that speciated to Klebsiella pneuomoniae. The patient's eye condition progressed, ultimately resulting in no light perception less than a month after the initial evaluation. Due to the rapidly progressive nature of Klebsiella endogenous endophthalmitis, we recommend that primary teams consult ophthalmology for close monitoring of patients with a high index of suspicion.
Collapse
Affiliation(s)
- Minali Prasad
- Ophthalmology, Boston University Chobanian & Avedisian School of Medicine, Boston, USA
| | - Tova Kosowsky
- Ophthalmology, Boston Medical Center, Boston, USA
- Ophthalmology, Boston University Chobanian & Avedisian School of Medicine, Boston, USA
| | - Xuejing Chen
- Ophthalmology, Boston Medical Center, Boston, USA
- Ophthalmology, Boston University Chobanian & Avedisian School of Medicine, Boston, USA
| | - Samaneh Davoudi Moghaddam
- Ophthalmology, Boston Medical Center, Boston, USA
- Ophthalmology, Boston University Chobanian & Avedisian School of Medicine, Boston, USA
| | - Steven Ness
- Ophthalmology, Boston Medical Center, Boston, USA
- Ophthalmology, Boston University Chobanian & Avedisian School of Medicine, Boston, USA
| | - Crandall Peeler
- Ophthalmology, Boston Medical Center, Boston, USA
- Ophthalmology, Boston University Chobanian & Avedisian School of Medicine, Boston, USA
| | - Nicole H Siegel
- Ophthalmology, Boston Medical Center, Boston, USA
- Ophthalmology, Boston University Chobanian & Avedisian School of Medicine, Boston, USA
| | - Manju L Subramanian
- Ophthalmology, Boston Medical Center, Boston, USA
- Ophthalmology, Boston University Chobanian & Avedisian School of Medicine, Boston, USA
| |
Collapse
|
190
|
Catalano A, Iacopetta D, Ceramella J, Pellegrino M, Giuzio F, Marra M, Rosano C, Saturnino C, Sinicropi MS, Aquaro S. Antibiotic-Resistant ESKAPE Pathogens and COVID-19: The Pandemic beyond the Pandemic. Viruses 2023; 15:1843. [PMID: 37766250 PMCID: PMC10537211 DOI: 10.3390/v15091843] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/26/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Antibacterial resistance is a renewed public health plague in modern times, and the COVID-19 pandemic has rekindled this problem. Changes in antibiotic prescribing behavior, misinformation, financial hardship, environmental impact, and governance gaps have generally enhanced the misuse and improper access to antibiotics during the COVID-19 pandemic. These determinants, intersected with antibacterial resistance in the current pandemic, may amplify the potential for a future antibacterial resistance pandemic. The occurrence of infections with multidrug-resistant (MDR), extensively drug-resistant (XDR), difficult-to-treat drug-resistant (DTR), carbapenem-resistant (CR), and pan-drug-resistant (PDR) bacteria is still increasing. The aim of this review is to highlight the state of the art of antibacterial resistance worldwide, focusing on the most important pathogens, namely Enterobacterales, Acinetobacter baumannii, and Klebsiella pneumoniae, and their resistance to the most common antibiotics.
Collapse
Affiliation(s)
- Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.I.); (J.C.); (M.P.); (M.M.); (M.S.S.); (S.A.)
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.I.); (J.C.); (M.P.); (M.M.); (M.S.S.); (S.A.)
| | - Michele Pellegrino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.I.); (J.C.); (M.P.); (M.M.); (M.S.S.); (S.A.)
| | - Federica Giuzio
- Department of Science, University of Basilicata, 85100 Potenza, Italy; (F.G.); (C.S.)
| | - Maria Marra
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.I.); (J.C.); (M.P.); (M.M.); (M.S.S.); (S.A.)
| | - Camillo Rosano
- Proteomics and Mass Spectrometry Unit, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132 Genova, Italy;
| | - Carmela Saturnino
- Department of Science, University of Basilicata, 85100 Potenza, Italy; (F.G.); (C.S.)
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.I.); (J.C.); (M.P.); (M.M.); (M.S.S.); (S.A.)
| | - Stefano Aquaro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (D.I.); (J.C.); (M.P.); (M.M.); (M.S.S.); (S.A.)
| |
Collapse
|
191
|
Huang J, Chen Y, Li M, Xie S, Tong H, Guo Z, Chen Y. Prognostic models for estimating severity of disease and predicting 30-day mortality of Hypervirulent Klebsiella pneumoniae infections: a bicentric retrospective study. BMC Infect Dis 2023; 23:554. [PMID: 37626308 PMCID: PMC10464203 DOI: 10.1186/s12879-023-08528-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Hypervirulent Klebsiella pneumoniae (hvKP) is emerging globally and can cause various, severe infections in healthy individuals. However, the clinical manifestations of hvKP infections are nonspecific, and there is no gold standard for differentiating hvKP strains. Our objective was to develop prognostic models for estimating severity of disease and predicting 30-day all-cause mortality in patients with hvKP infections. METHODS We enrolled 116 patients diagnosed with hvKP infections and obtained their demographic and clinical data. Taking septic shock and acute respiratory distress syndrome (ARDS) as the primary outcomes for disease severity and 30-day all-cause mortality as the primary outcome for clinical prognosis, we explored the influencing factors and constructed prognostic models. RESULTS The results showed that increased Acute Physiologic and Chronic Health Evaluation (APACHE) II score [odds ratio (OR) = 1.146; 95% confidence interval (CI), 1.059-1.240], decreased albumin (ALB) level (OR = 0.867; 95% CI, 0.758-0.990), diabetes (OR = 9.591; 95% CI, 1.766-52.075) and high procalcitonin (PCT) level (OR = 1.051; 95%CI, 1.005-1.099) were independent risk factors for septic shock. And increased APACHE II score (OR = 1.254; 95% CI, 1.110-1.147), community-acquired pneumonia (CAP) (OR = 11.880; 95% CI, 2.524-55.923), and extrahepatic lesion involved (OR = 14.718; 95% CI, 1.005-215.502) were independent risk factors for ARDS. Prognostic models were constructed for disease severity with these independent risk factors, and the models were significantly correlated with continuous renal replacement therapy (CRRT) duration, vasopressor duration, mechanical ventilator duration and length of ICU stay. The 30-day all-cause mortality rate in our study was 28.4%. Younger age [hazard ratio (HR) = 0.947; 95% CI, 0.923-0.973)], increased APACHE II score (HR = 1.157; 95% CI, 1.110-1.207), and decreased ALB level (HR = 0.924; 95% CI, 0.869-0.983) were the independent risk factors for 30-day all-cause mortality. A prediction model for 30-day mortality was constructed, which had a good validation effect. CONCLUSIONS We developed validated models containing routine clinical parameters for estimating disease severity and predicting 30-day mortality in patients with hvKP infections and confirmed their calibration. The models may assist clinicians in assessing disease severity and estimating the 30-day mortality early.
Collapse
Affiliation(s)
- Jieen Huang
- Department of Intensive Care Medicine, Binhaiwan Central Hospital of Dongguan, No.111, Humen Road, Humen Town, Dongguan City, Guangdong Province, China
| | - Yanzhu Chen
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Ming Li
- Department of Laboratory Medicine, Binhaiwan Central Hospital of Dongguan, Dongguan City, Guangdong Province, China
| | - Shujin Xie
- Department of Laboratory Medicine, Dongguan Tungwah Hospital, No.1, Dongcheng East Road, Dongguan City, Guangdong Province, China
| | - Huasheng Tong
- Department of Emergency Medicine, General Hospital of Southern Theatre Command, No. 919, Renmin North Road, Yuexiu District, Guangzhou City, Guangdong Province, China.
| | - Zhusheng Guo
- Department of Laboratory Medicine, Dongguan Tungwah Hospital, No.1, Dongcheng East Road, Dongguan City, Guangdong Province, China.
| | - Yi Chen
- Department of Intensive Care Medicine, Binhaiwan Central Hospital of Dongguan, No.111, Humen Road, Humen Town, Dongguan City, Guangdong Province, China.
| |
Collapse
|
192
|
Jati AP, Sola-Campoy PJ, Bosch T, Schouls LM, Hendrickx APA, Bautista V, Lara N, Raangs E, Aracil B, Rossen JWA, Friedrich AW, Navarro Riaza AM, Cañada-García JE, Ramírez de Arellano E, Oteo-Iglesias J, Pérez-Vázquez M, García-Cobos S. Widespread Detection of Yersiniabactin Gene Cluster and Its Encoding Integrative Conjugative Elements (ICE Kp) among Nonoutbreak OXA-48-Producing Klebsiella pneumoniae Clinical Isolates from Spain and the Netherlands. Microbiol Spectr 2023; 11:e0471622. [PMID: 37310221 PMCID: PMC10434048 DOI: 10.1128/spectrum.04716-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/22/2023] [Indexed: 06/14/2023] Open
Abstract
In this study, we determined the presence of virulence factors in nonoutbreak, high-risk clones and other isolates belonging to less common sequence types associated with the spread of OXA-48-producing Klebsiella pneumoniae clinical isolates from The Netherlands (n = 61) and Spain (n = 53). Most isolates shared a chromosomally encoded core of virulence factors, including the enterobactin gene cluster, fimbrial fim and mrk gene clusters, and urea metabolism genes (ureAD). We observed a high diversity of K-Locus and K/O loci combinations, KL17 and KL24 (both 16%), and the O1/O2v1 locus (51%) being the most prevalent in our study. The most prevalent accessory virulence factor was the yersiniabactin gene cluster (66.7%). We found seven yersiniabactin lineages-ybt 9, ybt 10, ybt 13, ybt 14, ybt 16, ybt 17, and ybt 27-which were chromosomally embedded in seven integrative conjugative elements (ICEKp): ICEKp3, ICEKp4, ICEKp2, ICEKp5, ICEKp12, ICEKp10, and ICEKp22, respectively. Multidrug-resistant lineages-ST11, ST101, and ST405-were associated with ybt 10/ICEKp4, ybt 9/ICEKp3, and ybt 27/ICEKp22, respectively. The fimbrial adhesin kpi operon (kpiABCDEFG) was predominant among ST14, ST15, and ST405 isolates, as well as the ferric uptake system kfuABC, which was also predominant among ST101 isolates. No convergence of hypervirulence and resistance was observed in this collection of OXA-48-producing K. pneumoniae clinical isolates. Nevertheless, two isolates, ST133 and ST792, were positive for the genotoxin colibactin gene cluster (ICEKp10). In this study, the integrative conjugative element, ICEKp, was the major vehicle for yersiniabactin and colibactin gene clusters spreading. IMPORTANCE Convergence of multidrug resistance and hypervirulence in Klebsiella pneumoniae isolates has been reported mostly related to sporadic cases or small outbreaks. Nevertheless, little is known about the real prevalence of carbapenem-resistant hypervirulent K. pneumoniae since these two phenomena are often separately studied. In this study, we gathered information on the virulent content of nonoutbreak, high-risk clones (i.e., ST11, ST15, and ST405) and other less common STs associated with the spread of OXA-48-producing K. pneumoniae clinical isolates. The study of virulence content in nonoutbreak isolates can help us to expand information on the genomic landscape of virulence factors in K. pneumoniae population by identifying virulence markers and their mechanisms of spread. Surveillance should focus not only on antimicrobial resistance but also on virulence characteristics to avoid the spread of multidrug and (hyper)virulent K. pneumoniae that may cause untreatable and more severe infections.
Collapse
Affiliation(s)
- Afif P. Jati
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, The Netherlands
- Indonesian Society of Bioinformatics and Biodiversity, Indonesia
| | - Pedro J. Sola-Campoy
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Thijs Bosch
- Infectious Diseases Research, Diagnostics and Laboratory Surveillance, Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Leo M. Schouls
- Infectious Diseases Research, Diagnostics and Laboratory Surveillance, Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Antoni P. A. Hendrickx
- Infectious Diseases Research, Diagnostics and Laboratory Surveillance, Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Verónica Bautista
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Noelia Lara
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Erwin Raangs
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, The Netherlands
| | - Belén Aracil
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- CIBER de Enfermedades Infecciosas, Spanish Network for Research in Infectious Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - John W. A. Rossen
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, The Netherlands
- Laboratory of Medical Microbiology and Infectious Diseases, Isala Hospital, Zwolle, The Netherlands
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Alex W. Friedrich
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, The Netherlands
- University Hospital Münster, Institute of European Prevention Networks in Infection Control, Münster, Germany
| | - Ana M. Navarro Riaza
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Javier E. Cañada-García
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Eva Ramírez de Arellano
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- CIBER de Enfermedades Infecciosas, Spanish Network for Research in Infectious Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús Oteo-Iglesias
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- CIBER de Enfermedades Infecciosas, Spanish Network for Research in Infectious Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - María Pérez-Vázquez
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- CIBER de Enfermedades Infecciosas, Spanish Network for Research in Infectious Diseases, Instituto de Salud Carlos III, Madrid, Spain
| | - Silvia García-Cobos
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, The Netherlands
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - The Dutch and Spanish Collaborative Working Groups on Surveillance on Carbapenemase-Producing Enterobacterales
- University of Groningen, University Medical Center Groningen, Department of Medical Microbiology and Infection Prevention, Groningen, The Netherlands
- Indonesian Society of Bioinformatics and Biodiversity, Indonesia
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones Relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- Infectious Diseases Research, Diagnostics and Laboratory Surveillance, Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
- CIBER de Enfermedades Infecciosas, Spanish Network for Research in Infectious Diseases, Instituto de Salud Carlos III, Madrid, Spain
- Laboratory of Medical Microbiology and Infectious Diseases, Isala Hospital, Zwolle, The Netherlands
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
- University Hospital Münster, Institute of European Prevention Networks in Infection Control, Münster, Germany
| |
Collapse
|
193
|
Yang Z, Zhou R, Chen Y, Zhang X, Liu L, Luo M, Chen J, Chen K, Zeng T, Liu B, Wu Y, Huang J, Liu Z, Ouyang J. Clinical and Molecular Characteristics and Antibacterial Strategies of Klebsiella pneumoniae in Pyogenic Infection. Microbiol Spectr 2023; 11:e0064023. [PMID: 37341605 PMCID: PMC10434161 DOI: 10.1128/spectrum.00640-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/24/2023] [Indexed: 06/22/2023] Open
Abstract
Treatment of Klebsiella pneumoniae causing pyogenic infections is challenging. The clinical and molecular characteristics of Klebsiella pneumoniae causing pyogenic infections are poorly understood, and antibacterial treatment strategies are limited. We analyzed the clinical and molecular characteristics of K. pneumoniae from patients with pyogenic infections and used time-kill assays to reveal the bactericidal kinetics of antimicrobial agents against hypervirulent K. pneumoniae (hvKp). A total of 54 K. pneumoniae isolates were included, comprising 33 hvKp and 21 classic K. pneumoniae (cKp) isolates, and the hvKp and cKp isolates were identified using five genes (iroB, iucA, rmpA, rmpA2, and peg-344) that have been applied as hvKp strain markers. The median age of all cases was 54 years (25th and 75th percentiles, 50.5 to 70), 62.96% of individuals had diabetes, and 22.22% of isolates were sourced from individuals without underlying disease. The ratios of white blood cells/procalcitonin and C-reactive protein/procalcitonin were potential clinical markers for the identification of suppurative infection caused by hvKp and cKp. The 54 K. pneumoniae isolates were classified into 8 sequence type 11 (ST11) and 46 non-ST11 strains. ST11 strains carrying multiple drug resistance genes have a multidrug resistance phenotype, while non-ST11 strains carrying only intrinsic resistance genes are generally susceptible to antibiotics. Bactericidal kinetics revealed that hvKp isolates were not easily killed by antimicrobials at susceptible breakpoint concentrations compared with cKp. Given the varied clinical and molecular features and the catastrophic pathogenicity of K. pneumoniae, it is critical to determine the characteristics of such isolates for optimal management and effective treatment of K. pneumoniae causing pyogenic infections. IMPORTANCE Klebsiella pneumoniae may cause pyogenic infections, which are potentially life-threatening and bring great challenges for clinical management. However, the clinical and molecular characteristics of K. pneumoniae are poorly understood, and effective antibacterial treatment strategies are limited. We analyzed the clinical and molecular features of 54 isolates from patients with various pyogenic infections. We found that most patients with pyogenic infections had underlying diseases, such as diabetes. The ratio of white blood cells to procalcitonin and the ratio of C-reactive protein to procalcitonin were potential clinical markers for differentiating hypervirulent K. pneumoniae strains from classical K. pneumoniae strains that cause pyogenic infections. K. pneumoniae isolates of ST11 were generally more resistant to antibiotics than non-ST11 isolates. Most importantly, hypervirulent K. pneumoniae strains were more tolerant to antibiotics than classic K. pneumoniae isolates.
Collapse
Affiliation(s)
- Zhiyu Yang
- Department of Clinical Laboratory, Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Runmei Zhou
- Department of Pharmacy, Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yusheng Chen
- Department of Pharmacy, Ningyuan County Hospital of Traditional Chinese Medicine, Ningyuan, Hunan, China
| | - Xiaotuan Zhang
- Department of Clinical Laboratory, Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Luogen Liu
- Clinical Research Center, Second Affiliated Hospital, University of South China, Hengyang, China
| | - Min Luo
- Department of Clinical Laboratory, Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Jinlin Chen
- Department of Clinical Laboratory, Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Kuilin Chen
- Department of Clinical Laboratory, Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Tong Zeng
- Key Laboratory of Medical Imaging and Artificial Intelligence of Hunan Province, Xiangnan University, Chenzhou, China
| | - Bin Liu
- Department of Clinical Laboratory, Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yuan Wu
- Department of Clinical Laboratory, Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Jielite Huang
- Clinical Laboratory, Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Zhuoran Liu
- Department of Clinical Laboratory, Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Jinglin Ouyang
- Clinical Research Center, Second Affiliated Hospital, University of South China, Hengyang, China
- Department of Ultrasound Medicine, Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
194
|
Seijas-Pereda L, Rescalvo-Casas C, Hernando-Gozalo M, Angmorkie-Eshun V, Agyei E, Adu-Gyamfi V, Sarsah I, Alfonso-Romero M, Cuadros-González J, Soliveri-de Carranza J, Pérez-Tanoira R. The Antimicrobial Resistance (AMR) Rates of Enterobacterales in a Rural Hospital from the Eastern Region, Ghana: A Retrospective Study, 2022. Antibiotics (Basel) 2023; 12:1321. [PMID: 37627741 PMCID: PMC10451727 DOI: 10.3390/antibiotics12081321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/08/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Low- and middle-income countries bear a disproportionate burden of antimicrobial resistance and often lack adequate surveillance due to a paucity of microbiological studies. In this 2022 study, our goal was to contribute to a more precise antimicrobial treatment by understanding the prevalence of resistance in a rural environment, promoting antibiotic stewardship, and raising awareness about antimicrobial resistance. We assessed the prevalence of Multidrug-Resistant (MDR) and Extensively Drug-Resistant (XDR) Enterobacterales in clinical samples from 2905 patients being treated at Saint Dominic's Hospital, Akwatia, in the countryside of the Eastern Region, Ghana, in the year 2022. To this purpose, the samples were cultured on agar plates prepared in the laboratory using purified Oxoid™ Thermo Scientific™ agar (Thermo Fisher Scientific; Waltham, MA, USA). Cystine Lactose Electrolyte-Deficient (CLED) agar was used for urine samples, while blood agar, chocolate agar, and MacConkey agar were used for the rest of the specimens tested (HVS, blood, BFA, sputum). Antimicrobial susceptibility was determined on site using the disc diffusion method (Kirby-Bauer test). MDR bacteria accounted for more than half (53.7%) of all microorganisms tested for three or more antibiotics and 37.3% of these were XDR. Multivariate regression analysis was performed to identify risk factors associated with acquiring MDR/XDR bacteria. The results showed an increased likelihood of MDR acquisition linked to being male (OR 2.39, p < 0.001 for MDR and OR 1.95, p = 0.027 for XDR), higher age (OR 1.01, p = 0.049 for MDR), non-sputum samples (OR 0.32, p = 0.009 for MDR), and urine samples (OR 7.46, p < 0.001 for XDR). These findings emphasize the urgency for surveillance and control of antimicrobial resistance; to this end, making accurate diagnostics, studying the microorganism in question, and conducting susceptibility testing is of the utmost importance.
Collapse
Affiliation(s)
- Laura Seijas-Pereda
- Departamento de Biomedicina y Biotecnología, Facultad de Medicina, Universidad de Alcalá, 28805 Madrid, Spain; (C.R.-C.); (J.C.-G.); (J.S.-d.C.)
- Departamento de Microbiología Clínica, Hospital Universitario Príncipe de Asturias, 28805 Madrid, Spain;
| | - Carlos Rescalvo-Casas
- Departamento de Biomedicina y Biotecnología, Facultad de Medicina, Universidad de Alcalá, 28805 Madrid, Spain; (C.R.-C.); (J.C.-G.); (J.S.-d.C.)
- Departamento de Microbiología Clínica, Hospital Universitario Príncipe de Asturias, 28805 Madrid, Spain;
| | - Marcos Hernando-Gozalo
- Departamento de Microbiología Clínica, Hospital Universitario Príncipe de Asturias, 28805 Madrid, Spain;
- Departamento de Química Orgánica y Química Inorgánica, Facultad de Farmacia, Universidad de Alcalá, 28805 Madrid, Spain
| | - Vida Angmorkie-Eshun
- Laboratory of Microbiology, Saint Dominic’s Hospital, Akwatia P.O. Box 59, Ghana; (V.A.-E.); (E.A.); (V.A.-G.); (I.S.); (M.A.-R.)
| | - Eunice Agyei
- Laboratory of Microbiology, Saint Dominic’s Hospital, Akwatia P.O. Box 59, Ghana; (V.A.-E.); (E.A.); (V.A.-G.); (I.S.); (M.A.-R.)
| | - Vivian Adu-Gyamfi
- Laboratory of Microbiology, Saint Dominic’s Hospital, Akwatia P.O. Box 59, Ghana; (V.A.-E.); (E.A.); (V.A.-G.); (I.S.); (M.A.-R.)
| | - Isaac Sarsah
- Laboratory of Microbiology, Saint Dominic’s Hospital, Akwatia P.O. Box 59, Ghana; (V.A.-E.); (E.A.); (V.A.-G.); (I.S.); (M.A.-R.)
| | - Maite Alfonso-Romero
- Laboratory of Microbiology, Saint Dominic’s Hospital, Akwatia P.O. Box 59, Ghana; (V.A.-E.); (E.A.); (V.A.-G.); (I.S.); (M.A.-R.)
| | - Juan Cuadros-González
- Departamento de Biomedicina y Biotecnología, Facultad de Medicina, Universidad de Alcalá, 28805 Madrid, Spain; (C.R.-C.); (J.C.-G.); (J.S.-d.C.)
- Departamento de Microbiología Clínica, Hospital Universitario Príncipe de Asturias, 28805 Madrid, Spain;
| | - Juan Soliveri-de Carranza
- Departamento de Biomedicina y Biotecnología, Facultad de Medicina, Universidad de Alcalá, 28805 Madrid, Spain; (C.R.-C.); (J.C.-G.); (J.S.-d.C.)
| | - Ramón Pérez-Tanoira
- Departamento de Biomedicina y Biotecnología, Facultad de Medicina, Universidad de Alcalá, 28805 Madrid, Spain; (C.R.-C.); (J.C.-G.); (J.S.-d.C.)
- Departamento de Microbiología Clínica, Hospital Universitario Príncipe de Asturias, 28805 Madrid, Spain;
| |
Collapse
|
195
|
Zou H, Zhou Z, Berglund B, Zheng B, Meng M, Zhao L, Zhang H, Wang Z, Wu T, Li Q, Li X. Persistent transmission of carbapenem-resistant, hypervirulent Klebsiella pneumoniae between a hospital and urban aquatic environments. WATER RESEARCH 2023; 242:120263. [PMID: 37390655 DOI: 10.1016/j.watres.2023.120263] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/02/2023]
Abstract
The increasing prevalence of infections caused by carbapenem-resistant hypervirulent Klebsiella pneumoniae strains (CR-hvKP) prompts the question of whether these strains also circulate outside of clinical settings. However, the environmental occurrence and dissemination of CR-hvKP are poorly studied. In the current study, we investigated the epidemiological characteristics, and dissemination dynamics of carbapenem-resistant K. pneumoniae (CRKP) isolated from a hospital, an urban wastewater treatment plant (WWTP), and adjacent rivers in Eastern China during one year of monitoring. A total of 101 CRKP were isolated, 54 were determined to be CR-hvKP harboring pLVPK-like virulence plasmids, which were isolated from the hospital (29 out of 51), WWTP (23 out of 46), and rivers (2 out of 4), respectively. The period with lowest detection rate of CR-hvKP in the WWTP, August, corresponded with the lowest detection rate at the hospital. Comparing the inlet and outlet of the WWTP, no significant reduction of the detection of CR-hvKP and relative abundance of carbapenem resistance genes was observed. The detection rate of CR-hvKP and the relative abundance of carbapenemase genes were significantly higher in the WWTP in colder months compared to warmer months. Clonal dissemination of CR-hvKP clones of ST11-KL64 between the hospital and the aquatic environment, as well as the horizontal spread of IncFII-IncR and IncC plasmids carrying carbapenemase genes, was observed. Furthermore, phylogenetic analysis showed that the ST11-KL64 CR-hvKP strain has spread nationally by interregional transmission. These results indicated transmission of CR-hvKP clones between hospital and urban aquatic environments, prompting the need for improved wastewater disinfection and epidemiological models to predict the public health hazard from prevalence data of CR-hvKP.
Collapse
Affiliation(s)
- Huiyun Zou
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Ziyu Zhou
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Björn Berglund
- Department of Cell and Molecular Biology, Uppsala University, Uppsala 751 24, Sweden
| | - Beiwen Zheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Min Meng
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Ling Zhao
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Hui Zhang
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Zhongyi Wang
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Tianle Wu
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Qi Li
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xuewen Li
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
196
|
He W, Wu C, Chen G, Zhang G, Zhao Z, Wen S, Zhou Y, Deng X, Feng Y, Zhong LL, Tian GB, Dai M. Comparative Genomic Analysis of Hypervirulence Carbapenem-Resistant Klebsiella pneumoniae from Inpatients with Infection and Gut Colonization, China. Infect Drug Resist 2023; 16:5251-5261. [PMID: 37601558 PMCID: PMC10437719 DOI: 10.2147/idr.s416770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/12/2023] [Indexed: 08/22/2023] Open
Abstract
Background The emergence and spread of hypervirulent carbapenem-resistant Klebsiella pneumoniae (hv-CRKP) is a potential epidemiological threat that needs to be monitored. However, the transmission and pathogenic characteristics of hv-CRKP in China remain unclear. We investigated the epidemiological characteristics of gut colonized hv-CRKP in a hospital in Guangdong Province, China. Methods A total of 46 gut colonized hv-CRKP isolates were collected from Sun Yat-Sen Memorial Hospital (Guangzhou, China) from August 31st to December 31st, 2021. Minimum inhibitory concentrations (MICs) were obtained for 15 antibiotics for 46 hv-CRKP isolates. BALB/C mice infection model and mucoviscosity assay was used to evaluate the virulence of the isolates. The characteristics of genome, phylogenetic relationship and the structure of the plasmid of 46 gut colonized hv-CRKP isolates were compared with pathogenic isolates from GeneBank based on whole-genome data. Results The hv-CRKP isolation rate of all gut colonized carbapenem-resistant Klebsiella pneumoniae was 17% (46/270), and the intestinal colonization rate of hv-CRKP was irrelevant to the sex, age, department of hospitalization, and history of antibiotic use of the host. The gut colonized hv-CRKP showed pandrug resistance and hypervirulence. The gut colonized hv-CRKP and pathogenic hv-CRKP prevalent in China were mainly ST11 hv-CRKP and had two major epidemic clades. The similarities in genomic characteristics between gut colonized hv-CRKP and pathogenic hv-CRKP were consistent. The gut colonized hv-CRKP carried an incomplete structure pK2044 virulence plasmid from hypervirulent K. pneumoniae NTUH-K2044 by analyzing the virulence plasmid structure. Conclusion Our results suggest that the gut colonized ST11 hv-CRKP may serve as a reservoir for the clinical pathogenic ST11 HV-CRKP. It is necessary to further strengthen the monitoring of gut colonized hv-CRKP and research the potential mechanism of infection caused by gut colonized hv-CRKP.
Collapse
Affiliation(s)
- Wan He
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, 610500, People’s Republic of China
| | - Changbu Wu
- Department of Immunology and Microbiology, Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People’s Republic of China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, People’s Republic of China
| | - Guanping Chen
- Department of Immunology and Microbiology, Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People’s Republic of China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, People’s Republic of China
- Department of Immunology, School of Medicine, Sun Yat-Sen University, Shenzhen, 518107, People’s Republic of China
| | - Guili Zhang
- Department of Immunology and Microbiology, Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People’s Republic of China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, People’s Republic of China
| | - Zihan Zhao
- Department of Immunology and Microbiology, Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People’s Republic of China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, People’s Republic of China
| | - Shu’an Wen
- Department of Immunology and Microbiology, Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People’s Republic of China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, People’s Republic of China
| | - Yuan Zhou
- Department of Immunology and Microbiology, Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People’s Republic of China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, People’s Republic of China
| | - Xue Deng
- Department of Immunology and Microbiology, Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People’s Republic of China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, People’s Republic of China
| | - Yu Feng
- Department of Immunology and Microbiology, Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People’s Republic of China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, People’s Republic of China
| | - Lan-Lan Zhong
- Department of Immunology and Microbiology, Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People’s Republic of China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, People’s Republic of China
| | - Guo-Bao Tian
- Department of Immunology and Microbiology, Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, People’s Republic of China
- Key Laboratory of Tropical Diseases Control (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, People’s Republic of China
- Department of Immunology, School of Medicine, Sun Yat-Sen University, Shenzhen, 518107, People’s Republic of China
| | - Min Dai
- School of Laboratory Medicine, Chengdu Medical College, Chengdu, 610500, People’s Republic of China
| |
Collapse
|
197
|
Chen J, Zhang H, Liao X. Hypervirulent Klebsiella pneumoniae. Infect Drug Resist 2023; 16:5243-5249. [PMID: 37589017 PMCID: PMC10426436 DOI: 10.2147/idr.s418523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/03/2023] [Indexed: 08/18/2023] Open
Abstract
Hypervirulent Klebsiella pneumoniae (hvKP), especially multidrug-resistant hvKP (MDR-hvKP) infections, are distributed globally, and lead to several outbreaks with high pathogenicity and mortality in immunocompetent individuals. This is usually characterized by a rapidly metastatic spread resulting in multiple pyogenic tissue abscesses. To date, even though the explanation of hypervirulent factors of hvKP has been identified, it still remains to be fully understood. The most common key virulence agents of hvKP included (1) siderophore systems for iron acquisition, (2) increased capsule production, (3) the colibactin toxin, (4) hypermucoviscosity, and so on. Several hypervirulence factors have been renewed, and the evolution of MDR-hvKP has been deeply explored recently. We aim to describe a chain of key virulence agents attributed to the lethality of hvKP and MDR-hvKP. In this review, recent advances in renewed factors in hypervirulence were summarized, and potential therapeutic targets are explored. Novel co-existence of hypervirulence agents and multidrug-resistant elements, even the superplasmid, was screened. Superplasmid simultaneously harbours hypervirulence and multidrug-resistant genes and can mobile autonomously by its complete conjugative elements. Research into related immunity has also gained traction, which may cause multiple invasive infections with higher mortality rates than classical ones, such as neutrophil- and complement-mediated activity. The evolution of virulence and multidrug resistance is accelerating. More reliable methods for identifying hvKP or MDR-hvKP must be investigated. Furthermore, it is critical to investigate innovative treatment targets in the future.
Collapse
Affiliation(s)
- Junjun Chen
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
- Department of Critical Care Medicine, West China Tianfu Hospital of Sichuan University, Chengdu, People’s Republic of China
| | - Huan Zhang
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
- Department of Cardiac Vascular Surgery Critical Care Medicine, The Third People’s Hospital of Chengdu, Chengdu, People’s Republic of China
| | - Xuelian Liao
- Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
- Department of Critical Care Medicine, West China Tianfu Hospital of Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
198
|
Li P, Peng T, Xiang T, Luo W, Liao W, Wei DD, Luo S, He Z, Liu P, Zhang W, Liu Y. Klebsiella pneumoniae outer membrane vesicles induce strong IL-8 expression via NF-κB activation in normal pulmonary bronchial cells. Int Immunopharmacol 2023; 121:110352. [PMID: 37354781 DOI: 10.1016/j.intimp.2023.110352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/10/2023] [Accepted: 05/13/2023] [Indexed: 06/26/2023]
Abstract
BACKGROUND Outer membrane vesicles (OMVs) derived from bacteria are known to play a crucial role in the interactions between bacteria and their environment, as well as bacteria-bacteria and bacteria-host interactions.Specifically, OMVs derived from Klebsiella pneumoniae have been implicated in contributing to the pathogenesis of this bacterium.Hypervirulent Klebsiella pneumoniae (hvKp) has emerged as a global pathogen of great concern due to its heightened virulence compared to classical K. pneumoniae (cKp), and its ability to cause community-acquired infections, even in healthy individuals.The objective of this study was to investigate potential differences between hvKp-derived OMVs and cKp-derived OMVs in their interactions with microorganisms and host cells. METHODS Four strains of K. pneumoniae were used to produce OMVs: hvKp strain NTUH-K2044 (K1, ST23), hvKp clinical strain AP8555, and two cKP clinical strains C19 and C250. To examine the morphology and size of the bacterial OMVs, transmission electron microscopy (TEM) was utilized. Additionally, dynamic light scattering (DLS) was used to analyze the size characterization of the OMVs.The normal pulmonary bronchial cell line HBE was exposed to OMVs derived from hvKp and cKP. Interleukin 8 (IL-8) messenger RNA (mRNA) expression was assessed using reverse transcription-polymerase chain reaction (RT-PCR), while IL-8 secretion was analyzed using enzyme-linked immunosorbent assay (ELISA).Furthermore, the activation of nuclear factor kappa B (NF-κB) was evaluated using both Western blotting and confocal microscopy. RESULTS After purification, OMVs appeared as electron-dense particles with a uniform spherical morphology when observed through TEM.DLS analysis indicated that hvKp-derived OMVs from K2044 and AP8555 measured an average size of 116.87 ± 4.95 nm and 96.23 ± 2.16 nm, respectively, while cKP-derived OMVs from C19 and C250 measured an average size of 297.67 ± 26.3 nm and 325 ± 6.06 nm, respectively. The average diameter of hvKp-derived OMVs was smaller than that of cKP-derived OMVs.A total vesicular protein amount of 47.35 mg, 41.90 mg, 16.44 mg, and 12.65 mg was generated by hvKp-K2044, hvKp-AP8555, cKP-C19, and cKP-C250, respectively, obtained from 750 mL of culture supernatant. Both hvKp-derived OMVs and cKP-derived OMVs induced similar expression levels of IL-8 mRNA and protein. However, IL-8 expression was reduced when cells were exposed to BAY11-7028, an inhibitor of the NF-κB pathway.Western blotting and confocal microscopy revealed increased phosphorylation of p65 in cells exposed to OMVs. CONCLUSIONS Klebsiella pneumoniae produces outer membrane vesicles (OMVs) that play a key role in microorganism-host interactions. HvKp, a hypervirulent strain of K. pneumoniae, generates more OMVs than cKP.The average size of OMVs derived from hvKp is smaller than that of cKP-derived OMVs.Despite these differences, both hvKp-derived and cKP-derived OMVs induce a similar level of expression of IL-8 mRNA and protein.OMVs secreted by K. pneumoniae stimulate the secretion of interleukin 8 by activating the nuclear factor NF-κB.
Collapse
Affiliation(s)
- Ping Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang 330006, China; Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China; Yichun People's Hospital, Yichun 336000, China
| | - Tingxiu Peng
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang 330006, China; Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Tianxin Xiang
- Department of Infectious Diseases, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang 330006, China
| | - Wanying Luo
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang 330006, China; Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Wenjian Liao
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang 330006, China
| | - Dan-Dan Wei
- Department of Clinical Microbiology, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang 330006, China; National Regional Center for Respiratory Medicine, Jiang Xi Hospital of China-Japan Friendship Hospital, Nanchang 330006, China
| | - Shuai Luo
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang 330006, China; Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Zhiyong He
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang 330006, China; Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Peng Liu
- Department of Clinical Microbiology, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang 330006, China
| | - Wei Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang 330006, China; Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China.
| | - Yang Liu
- Department of Clinical Microbiology, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang 330006, China; National Regional Center for Respiratory Medicine, Jiang Xi Hospital of China-Japan Friendship Hospital, Nanchang 330006, China.
| |
Collapse
|
199
|
Ljubović AD, Granov Ð, Husić E, Gačanović D, Halković J, lab.ing AČ, Kotorić Keser Š, Loga Zec S. Prevalence of extended-spectrum β-lactamase and carbapenem-resistant Klebsiella pneumoniae in clinical samples. Saudi Med J 2023; 44:801-807. [PMID: 37582566 PMCID: PMC10425626 DOI: 10.15537/smj.2023.44.8.20230237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/11/2023] [Indexed: 08/17/2023] Open
Abstract
OBJECTIVES To assess the prevalence of these resistant strains in the overall isolates of Klebsiella pneumoniae (K. pneumoniae) in hospital settings. METHODS This retrospective study was conducted from November 2020 to November 2021. The identification and antibiotic susceptibility testing were performed using standard laboratory methods according to the EUCAST standards. The detection of ESBL and carbapenemase production was performed using phenotypic methods such as E-test, combined-disk test with various inhibitors (ROSCO Diagnostica A/S), chromogenic medium for the detection of ESBL/carbapenemase-producing Enterobacteriaceae (CPE) isolates, and the VITEK 2 Compact system (BioMerieux). RESULTS 944 isolates of K. pneumoniae were detected in various clinical specimens. Among these, ESBL-producing strains were detected in 349/944 (37%), whereas carbapenem- resistant strains in 188/944 (20%) of the isolates. The remaining isolates (407/944 [43%]) belonged to the wild type. ESBL isolates were the most common in wound swabs (138 [39.5%]), whereas CRKP isolates in screening samples (110 [58.5%]). The majority of ESBL isolates were detected in surgical departments (105 [30.1%]), whereas CRKP isolates in adult intensive care unit departments (79 [42.%]). CONCLUSION Our results show an increasing frequency of CRKP strains. This presents a significant issue in terms of infection prevention and control in hospital settings.
Collapse
Affiliation(s)
- Amela Dedeić Ljubović
- From the Unit of Clinical Microbiology, Clinical Center of the University of Sarajevo, Sarajevo, Bosnia and Herzegovina.
| | - Ðana Granov
- From the Unit of Clinical Microbiology, Clinical Center of the University of Sarajevo, Sarajevo, Bosnia and Herzegovina.
| | - Erna Husić
- From the Unit of Clinical Microbiology, Clinical Center of the University of Sarajevo, Sarajevo, Bosnia and Herzegovina.
| | - Džemilja Gačanović
- From the Unit of Clinical Microbiology, Clinical Center of the University of Sarajevo, Sarajevo, Bosnia and Herzegovina.
| | - Jasmina Halković
- From the Unit of Clinical Microbiology, Clinical Center of the University of Sarajevo, Sarajevo, Bosnia and Herzegovina.
| | - Azra Čamdžić lab.ing
- From the Unit of Clinical Microbiology, Clinical Center of the University of Sarajevo, Sarajevo, Bosnia and Herzegovina.
| | - Šejla Kotorić Keser
- From the Unit of Clinical Microbiology, Clinical Center of the University of Sarajevo, Sarajevo, Bosnia and Herzegovina.
| | - Svjetlana Loga Zec
- From the Unit of Clinical Microbiology, Clinical Center of the University of Sarajevo, Sarajevo, Bosnia and Herzegovina.
| |
Collapse
|
200
|
Ahmed OB, Asghar AH, Bamaga M, Bahwerth FS, Ibrahim ME. Characterization of aminoglycoside resistance genes in multidrug-resistant Klebsiella pneumoniae collected from tertiary hospitals during the COVID-19 pandemic. PLoS One 2023; 18:e0289359. [PMID: 37506109 PMCID: PMC10381092 DOI: 10.1371/journal.pone.0289359] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
Since the peak of the coronavirus disease 2019 (COVID-19) pandemic, concerns around multidrug-resistant (MDR) bacterial pathogens have increased. This study aimed to characterize aminoglycoside resistance genes in MDR Klebsiella pneumoniae (K. pneumoniae) collected during the COVID-19 pandemic. A total of 220 clinical isolates of gram-negative bacteria were collected from tertiary hospitals in Makkah, Saudi Arabia, between April 2020 and January 2021. The prevalence of K. pneumoniae was 40.5%; of the 89 K. pneumoniae isolates, MDR patterns were found among 51 (57.3%) strains. The MDR isolates showed elevated resistance rates to aminoglycoside agents, including amikacin (100%), gentamicin (98%), and tobramycin (98%). PCR assays detected one or more aminoglycoside genes in 42 (82.3%) MDR K. pneumoniae strains. The rmtD gene was the most predominant gene (66.7%; 34/51), followed by aac(6')-Ib and aph(3')-Ia (45.1%; 23/51). The aac(3)-II gene was the least frequent gene (7.8%; 4/51) produced by our isolates. The rmtC gene was not detected in the studied isolates. Our findings indicated a high risk of MDR bacterial infections through the COVID-19 outbreak. Therefore, there is a need for continuous implementation of effective infection prevention control (IPC) measures to monitor the occurrence of MDR pathogens and the emergence of MDR bacterial infections through the COVID-19 outbreak.
Collapse
Affiliation(s)
- Omar B Ahmed
- Department of Environmental and Health Research, The Custodian of the Two Holy Mosques Institute for Hajj and Umrah Research, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Atif H Asghar
- Department of Environmental and Health Research, The Custodian of the Two Holy Mosques Institute for Hajj and Umrah Research, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Majid Bamaga
- Department of Environmental and Health Research, The Custodian of the Two Holy Mosques Institute for Hajj and Umrah Research, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Mutasim E Ibrahim
- Department of Basic Medical Sciences (Microbiology Unit), College of Medicine, University of Bisha, Bisha, Saudi Arabia
| |
Collapse
|