151
|
Cell envelope components influencing filament length in the heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 2014; 196:4026-35. [PMID: 25201945 DOI: 10.1128/jb.02128-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Heterocyst-forming cyanobacteria grow as chains of cells (known as trichomes or filaments) that can be hundreds of cells long. The filament consists of individual cells surrounded by a cytoplasmic membrane and peptidoglycan layers. The cells, however, share a continuous outer membrane, and septal proteins, such as SepJ, are important for cell-cell contact and filament formation. Here, we addressed a possible role of cell envelope components in filamentation, the process of producing and maintaining filaments, in the model cyanobacterium Anabaena sp. strain PCC 7120. We studied filament length and the response of the filaments to mechanical fragmentation in a number of strains with mutations in genes encoding cell envelope components. Previously published peptidoglycan- and outer membrane-related gene mutants and strains with mutations in two genes (all5045 and alr0718) encoding class B penicillin-binding proteins isolated in this work were used. Our results show that filament length is affected in most cell envelope mutants, but the filaments of alr5045 and alr2270 gene mutants were particularly fragmented. All5045 is a dd-transpeptidase involved in peptidoglycan elongation during cell growth, and Alr2270 is an enzyme involved in the biosynthesis of lipid A, a key component of lipopolysaccharide. These results indicate that both components of the cell envelope, the murein sacculus and the outer membrane, influence filamentation. As deduced from the filament fragmentation phenotypes of their mutants, however, none of these elements is as important for filamentation as the septal protein SepJ.
Collapse
|
152
|
A model of filamentous cyanobacteria leading to reticulate pattern formation. Life (Basel) 2014; 4:433-56. [PMID: 25370380 PMCID: PMC4206854 DOI: 10.3390/life4030433] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 08/09/2014] [Accepted: 08/14/2014] [Indexed: 12/03/2022] Open
Abstract
The filamentous cyanobacterium, Pseudanabaena, has been shown to produce reticulate patterns that are thought to be the result of its gliding motility. Similar fossilized structures found in the geological record constitute some of the earliest signs of life on Earth. It is difficult to tie these fossils, which are billions of years old, directly to the specific microorganisms that built them. Identifying the physicochemical conditions and microorganism properties that lead microbial mats to form macroscopic structures can lead to a better understanding of the conditions on Earth at the dawn of life. In this article, a cell-based model is used to simulate the formation of reticulate patterns in cultures of Pseudanabaena. A minimal system of long and flexible trichomes capable of gliding motility is shown to be sufficient to produce stable patterns consisting of a network of streams. Varying model parameters indicate that systems with little to no cohesion, high trichome density and persistent movement are conducive to reticulate pattern formation, in conformance with experimental observations.
Collapse
|
153
|
Bengtsson-Palme J, Alm Rosenblad M, Molin M, Blomberg A. Metagenomics reveals that detoxification systems are underrepresented in marine bacterial communities. BMC Genomics 2014; 15:749. [PMID: 25179155 PMCID: PMC4161860 DOI: 10.1186/1471-2164-15-749] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Accepted: 08/26/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Environmental shotgun sequencing (metagenomics) provides a new way to study communities in microbial ecology. We here use sequence data from the Global Ocean Sampling (GOS) expedition to investigate toxicant selection pressures revealed by the presence of detoxification genes in marine bacteria. To capture a broad range of potential toxicants we selected detoxification protein families representing systems protecting microorganisms from a variety of stressors, such as metals, organic compounds, antibiotics and oxygen radicals. RESULTS Using a bioinformatics procedure based on comparative analysis to finished bacterial genomes we found that the amount of detoxification genes present in marine microorganisms seems surprisingly small. The underrepresentation is particularly evident for toxicant transporters and proteins involved in detoxifying metals. Exceptions are enzymes involved in oxidative stress defense where peroxidase enzymes are more abundant in marine bacteria compared to bacteria in general. In contrast, catalases are almost completely absent from the open ocean environment, suggesting that peroxidases and peroxiredoxins constitute a core line of defense against reactive oxygen species (ROS) in the marine milieu. CONCLUSIONS We found no indication that detoxification systems would be generally more abundant close to the coast compared to the open ocean. On the contrary, for several of the protein families that displayed a significant geographical distribution, like peroxidase, penicillin binding transpeptidase and divalent ion transport protein, the open ocean samples showed the highest abundance. Along the same lines, the abundance of most detoxification proteins did not increase with estimated pollution. The low level of detoxification systems in marine bacteria indicate that the majority of marine bacteria have a low capacity to adapt to increased pollution. Our study exemplifies the use of metagenomics data in ecotoxicology, and in particular how anthropogenic consequences on life in the sea can be examined.
Collapse
Affiliation(s)
- Johan Bengtsson-Palme
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, SE-405 30 Göteborg, Sweden.
| | | | | | | |
Collapse
|
154
|
Felczykowska A, Dydecka A, Bohdanowicz M, Gąsior T, Soboň M, Kobos J, Bloch S, Nejman-Faleńczyk B, Węgrzyn G. The use of fosmid metagenomic libraries in preliminary screening for various biological activities. Microb Cell Fact 2014; 13:105. [PMID: 25048369 PMCID: PMC4347599 DOI: 10.1186/s12934-014-0105-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 07/11/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND It is generally believed that there are many natural sources of as yet unknown bioactive compounds with a high biotechnological potential. However, the common method based on the use of cell extracts in the preliminary screening for particular molecules or activities is problematic as amounts of obtained compounds may be low, and such experiments are hardly reproducible. Therefore, the aim of this work was to test whether a novel strategy to search for previously unknown biological activities can be efficient. This strategy is based on construction of metagenomic libraries and employment of Escherichia coli strains as cell factories producing compounds of properties potentially useful in biotechnology. RESULTS Three cyanobacterial metagenomic libraries were constructed in the fosmid system. The libraries were screened for various biological activities. Extracts from selected E. coli clones bearing constructs with fragments of cyanobacterial genomes revealed antimicrobial or anticancer activities. Interestingly, stimulation of growth of host bacteria bearing particular plasmids with certain cyanobacterial genes was detected, suggesting a potential possibility for improvement of E. coli cultivation during biotechnological production. The most interesting plasmids were sequenced, and putative mechanisms of biological effects caused by cyanobacterial gene products are discussed. CONCLUSIONS The strategy of exploring cyanobacteria as sources of bioactive compounds, based on E. coli cell factories producing compounds due to expression of genes from metagenomic libraries, appears to be effective.
Collapse
Affiliation(s)
- Agnieszka Felczykowska
- Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| | - Aleksandra Dydecka
- Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| | - Małgorzata Bohdanowicz
- Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| | - Tomasz Gąsior
- Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| | - Marek Soboň
- Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland. .,Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76, Nitra, Slovakia.
| | - Justyna Kobos
- Institute of Oceanography, University of Gdansk, Al. Marszałka Piłsudskiego 46, 81-378, Gdynia, Poland.
| | - Sylwia Bloch
- Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| | - Bożena Nejman-Faleńczyk
- Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| |
Collapse
|
155
|
Jiang HB, Lou WJ, Ke WT, Song WY, Price NM, Qiu BS. New insights into iron acquisition by cyanobacteria: an essential role for ExbB-ExbD complex in inorganic iron uptake. ISME JOURNAL 2014; 9:297-309. [PMID: 25012898 DOI: 10.1038/ismej.2014.123] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 06/09/2014] [Accepted: 06/12/2014] [Indexed: 01/12/2023]
Abstract
Cyanobacteria are globally important primary producers that have an exceptionally large iron requirement for photosynthesis. In many aquatic ecosystems, the levels of dissolved iron are so low and some of the chemical species so unreactive that growth of cyanobacteria is impaired. Pathways of iron uptake through cyanobacterial membranes are now being elucidated, but the molecular details are still largely unknown. Here we report that the non-siderophore-producing cyanobacterium Synechocystis sp. PCC 6803 contains three exbB-exbD gene clusters that are obligatorily required for growth and are involved in iron acquisition. The three exbB-exbDs are redundant, but single and double mutants have reduced rates of iron uptake compared with wild-type cells, and the triple mutant appeared to be lethal. Short-term measurements in chemically well-defined medium show that iron uptake by Synechocystis depends on inorganic iron (Fe') concentration and ExbB-ExbD complexes are essentially required for the Fe' transport process. Although transport of iron bound to a model siderophore, ferrioxamine B, is also reduced in the exbB-exbD mutants, the rate of uptake at similar total [Fe] is about 800-fold slower than Fe', suggesting that hydroxamate siderophore iron uptake may be less ecologically relevant than free iron. These results provide the first evidence that ExbB-ExbD is involved in inorganic iron uptake and is an essential part of the iron acquisition pathway in cyanobacteria. The involvement of an ExbB-ExbD system for inorganic iron uptake may allow cyanobacteria to more tightly maintain iron homeostasis, particularly in variable environments where iron concentrations range from limiting to sufficient.
Collapse
Affiliation(s)
- Hai-Bo Jiang
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Hubei, People's Republic of China
| | - Wen-Jing Lou
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Hubei, People's Republic of China
| | - Wen-Ting Ke
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Hubei, People's Republic of China
| | - Wei-Yu Song
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Hubei, People's Republic of China
| | - Neil M Price
- Department of Biology, McGill University, Montreal, Québec, Canada
| | - Bao-Sheng Qiu
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Hubei, People's Republic of China
| |
Collapse
|
156
|
Shao J, Gu JD, Peng L, Luo S, Luo H, Yan Z, Wu G. Modification of cyanobacterial bloom-derived biomass using potassium permanganate enhanced the removal of microcystins and adsorption capacity toward cadmium (II). JOURNAL OF HAZARDOUS MATERIALS 2014; 272:83-88. [PMID: 24681589 DOI: 10.1016/j.jhazmat.2014.03.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 03/01/2014] [Accepted: 03/03/2014] [Indexed: 06/03/2023]
Abstract
Cyanobacterial biomass shows high adsorption capacity toward heavy metal ions. However, the cyanotoxins in the cyanobacterial biomass inhibit its application in heavy metals removal. In order to safely and effectively remove Cd(II) from water using cyanobacterial bloom-derived biomass (CBDB), KMnO4 was used to modify CBDB. The results indicated that the microcystins in the CBDB were successfully removed by KMnO4. Potassium permanganate oxidation caused the transformation of hydroxyl to carboxyl on the CBDB, and formed manganese dioxide on the surface of CBDB. The oxidized CBDB showed higher adsorption capacity toward Cd(II) than that of unoxidized treatment. The optimal KMnO4 concentration for increasing the adsorption capacity of CBDB toward Cd(II) was 0.2g/L. The adsorption isotherm of Cd(II) by oxidized- or unoxidized-CBDB was well fitted by Langmuir model, indicating that the adsorption of Cd(II) by CBDB was monolayer adsorption. The desorption ratio of Cd(II) from oxidized CBDB was higher than that from unoxidized CBDB in the desorption process using NH4NO3 and EDTA as desorbent. The results presented in this study suggest that KMnO4 modified CBDB may be used as a safe and high efficient adsorbent in Cd(II) removal from water.
Collapse
Affiliation(s)
- Jihai Shao
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China; Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Hunan Agricultural University, Changsha 410128, PR China
| | - Ji-Dong Gu
- Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Hunan Agricultural University, Changsha 410128, PR China; Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Liang Peng
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| | - Si Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| | - Huili Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| | - Zhiyong Yan
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China.
| | - Genyi Wu
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China.
| |
Collapse
|
157
|
Vilhauer L, Jervis J, Ray WK, Helm RF. The exo-proteome and exo-metabolome of Nostoc punctiforme (Cyanobacteria) in the presence and absence of nitrate. Arch Microbiol 2014; 196:357-67. [PMID: 24643449 DOI: 10.1007/s00203-014-0974-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 02/27/2014] [Indexed: 01/04/2023]
Abstract
The ability of nitrogen-fixing filamentous Cyanobacteria to adapt to multiple environments comes in part from assessing and responding to external stimuli, an event that is initiated in the extracellular milieu. While it is known that these organisms produce numerous extracellular substances, little work has been done to characterize both the metabolites and proteins present under standard laboratory growth conditions. We have assessed the extracellular milieu of Nostoc punctiforme when grown in liquid culture in the presence and absence of a nitrogen source (nitrate). The extracellular proteins identified were enriched in integrin β-propellor domains and calcium-binding sites with sequences unique to N. punctiforme, supporting a role for extracellular proteins in modulating species-specific recognition and behavior processes. Extracellular proteases are present and active under both conditions, with the cells grown with nitrate having a higher activity when normalized to chlorophyll levels. The released metabolites are enriched in peptidoglycan-derived tetrasaccharides, with higher levels in nitrate-free media.
Collapse
Affiliation(s)
- Laura Vilhauer
- Department of Biochemistry, Virginia Tech, 143 Life Sciences 1, Blacksburg, VA, 24061-0910, USA
| | | | | | | |
Collapse
|
158
|
Miyagishima SY, Kabeya Y, Sugita C, Sugita M, Fujiwara T. DipM is required for peptidoglycan hydrolysis during chloroplast division. BMC PLANT BIOLOGY 2014; 14:57. [PMID: 24602296 PMCID: PMC4015805 DOI: 10.1186/1471-2229-14-57] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 02/26/2014] [Indexed: 05/11/2023]
Abstract
BACKGROUND Chloroplasts have evolved from a cyanobacterial endosymbiont and their continuity has been maintained over time by chloroplast division, a process which is performed by the constriction of a ring-like division complex at the division site. The division complex has retained certain components of the cyanobacterial division complex, which function inside the chloroplast. It also contains components developed by the host cell, which function outside of the chloroplast and are believed to generate constrictive force from the cytosolic side, at least in red algae and Viridiplantae. In contrast to the chloroplasts in these lineages, those in glaucophyte algae possess a peptidoglycan layer between the two envelope membranes, as do cyanobacteria. RESULTS In this study, we show that chloroplast division in the glaucophyte C. paradoxa does not involve any known chloroplast division proteins of the host eukaryotic origin, but rather, peptidoglycan spitting and probably the outer envelope division process rely on peptidoglycan hydrolyzing activity at the division site by the DipM protein, as in cyanobacterial cell division. In addition, we found that DipM is required for normal chloroplast division in the moss Physcomitrella patens. CONCLUSIONS These results suggest that the regulation of peptidoglycan splitting was essential for chloroplast division in the early evolution of chloroplasts and this activity is likely still involved in chloroplast division in Viridiplantae.
Collapse
Affiliation(s)
- Shin-ya Miyagishima
- Center for Frontier Research, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Yukihiro Kabeya
- Center for Frontier Research, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Chieko Sugita
- Center for Gene Research, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Mamoru Sugita
- Center for Gene Research, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan
| | - Takayuki Fujiwara
- Center for Frontier Research, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
159
|
Chang SC, Li CH, Lin JJ, Li YH, Lee MR. Effective removal of Microcystis aeruginosa and microcystin-LR using nanosilicate platelets. CHEMOSPHERE 2014; 99:49-55. [PMID: 24268348 DOI: 10.1016/j.chemosphere.2013.09.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2013] [Revised: 09/04/2013] [Accepted: 09/09/2013] [Indexed: 06/02/2023]
Abstract
Drinking water safety has been threatened by increasing harmful algal blooms (HABs) in water sources. HABs are closely associated with eutrophication in freshwater lakes, e.g. Lake Tai in China, and marine environments as well, e.g. Baltic Sea in Europe. Among all HABs, Microcystis aeruginosa attracted much attention due to its easy proliferation and potent toxins, microcystins. Most of the current control technologies can result in immediate release of microcystins which are hard to remove by drinking water treatment processes. Here we propose to simultaneously remove M. aeruginosa and its toxin, microcystin-LR (MC-LR), using nanosilicate platelet (NSP) derived from natural clay mineral. In this study, NSP showed strong selective growth inhibition and good settling enhancing effects on M. aeruginosa and highly efficient removal of MC-LR. NSP can inhibit the growth of M. aeruginosa (initial cell concentration at 3.00×10(6)cellmL(-1)) with a LC50 at 0.28ppm after 12h exposure. At the dosage of 100ppm, NSP can enhance settling of suspended M. aeruginosa. Bacterial growth inhibition tests showed NSP had very mild growth inhibition effects on Escherichia coli at high dosage but promoted the growth of Pseudomonas aeruginosa and Bacillus halodurans. For MC-LR removal, at an initial concentration of 100μgL(-1), NSP achieved higher than 99% removal. Thus, the results suggest that NSP could be an excellent candidate for controlling M. aeruginosa-related HABs in water bodies.
Collapse
Affiliation(s)
- Shu-Chi Chang
- Department of Environmental Engineering, National Chung Hsing University, No. 250, Kuo-Kuang Road, Taichung 40227, Taiwan.
| | - Cheng-Hao Li
- Department of Environmental Engineering, National Chung Hsing University, No. 250, Kuo-Kuang Road, Taichung 40227, Taiwan
| | - Jiang-Jen Lin
- Institute of Polymer Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Yen-Hsien Li
- Department of Chemistry, National Chung Hsing University, No. 250, Kuo-Kuang Road, Taichung 40227, Taiwan
| | - Maw-Rong Lee
- Department of Chemistry, National Chung Hsing University, No. 250, Kuo-Kuang Road, Taichung 40227, Taiwan
| |
Collapse
|
160
|
Barnett JP, Scanlan DJ, Blindauer CA. Identification of major zinc-binding proteins from a marine cyanobacterium: insight into metal uptake in oligotrophic environments. Metallomics 2014; 6:1254-68. [DOI: 10.1039/c4mt00048j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The open ocean cyanobacteriumSynechococcussp. WH8102 thrives at extremely low zinc concentrations. Metalloproteomics experiments have identified an outer-membrane bound porin with zinc-binding ability that is upregulated at low zinc levels, suggesting a role for porins in highly efficient zinc uptake.
Collapse
|
161
|
Möllers KB, Cannella D, Jørgensen H, Frigaard NU. Cyanobacterial biomass as carbohydrate and nutrient feedstock for bioethanol production by yeast fermentation. BIOTECHNOLOGY FOR BIOFUELS 2014; 7:64. [PMID: 24739806 PMCID: PMC4022056 DOI: 10.1186/1754-6834-7-64] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 03/27/2014] [Indexed: 05/04/2023]
Abstract
BACKGROUND Microbial bioconversion of photosynthetic biomass is a promising approach to the generation of biofuels and other bioproducts. However, rapid, high-yield, and simple processes are essential for successful applications. Here, biomass from the rapidly growing photosynthetic marine cyanobacterium Synechococcus sp. PCC 7002 was fermented using yeast into bioethanol. RESULTS The cyanobacterium accumulated a total carbohydrate content of about 60% of cell dry weight when cultivated under nitrate limitation. The cyanobacterial cells were harvested by centrifugation and subjected to enzymatic hydrolysis using lysozyme and two alpha-glucanases. This enzymatic hydrolysate was fermented into ethanol by Saccharomyces cerevisiae without further treatment. All enzyme treatments and fermentations were carried out in the residual growth medium of the cyanobacteria with the only modification being that pH was adjusted to the optimal value. The highest ethanol yield and concentration obtained was 0.27 g ethanol per g cell dry weight and 30 g ethanol L(-1), respectively. About 90% of the glucose in the biomass was converted to ethanol. The cyanobacterial hydrolysate was rapidly fermented (up to 20 g ethanol L(-1) day(-1)) even in the absence of any other nutrient additions to the fermentation medium. CONCLUSIONS Cyanobacterial biomass was hydrolyzed using a simple enzymatic treatment and fermented into ethanol more rapidly and to higher concentrations than previously reported for similar approaches using cyanobacteria or microalgae. Importantly, as well as fermentable carbohydrates, the cyanobacterial hydrolysate contained additional nutrients that promoted fermentation. This hydrolysate is therefore a promising substitute for the relatively expensive nutrient additives (such as yeast extract) commonly used for Saccharomyces fermentations.
Collapse
Affiliation(s)
- K Benedikt Möllers
- Department of Biology, University of Copenhagen, Strandpromenaden 5, 3000 Helsingør, Denmark
| | - David Cannella
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Rolighedsvej 23, 1958 Frederiksberg C, Denmark
| | - Henning Jørgensen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Rolighedsvej 23, 1958 Frederiksberg C, Denmark
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, Søltofts Plads, Building 229, 2800 Kgs Lyngby, Denmark
| | - Niels-Ulrik Frigaard
- Department of Biology, University of Copenhagen, Strandpromenaden 5, 3000 Helsingør, Denmark
| |
Collapse
|
162
|
Thiel T, Pratte BS, Zhong J, Goodwin L, Copeland A, Lucas S, Han C, Pitluck S, Land ML, Kyrpides NC, Woyke T. Complete genome sequence of Anabaena variabilis ATCC 29413. Stand Genomic Sci 2014; 9:562-73. [PMID: 25197444 PMCID: PMC4148955 DOI: 10.4056/sigs.3899418] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Anabaena variabilis ATCC 29413 is a filamentous, heterocyst-forming cyanobacterium that has served as a model organism, with an extensive literature extending over 40 years. The strain has three distinct nitrogenases that function under different environmental conditions and is capable of photoautotrophic growth in the light and true heterotrophic growth in the dark using fructose as both carbon and energy source. While this strain was first isolated in 1964 in Mississippi and named Anabaena flos-aquae MSU A-37, it clusters phylogenetically with cyanobacteria of the genus Nostoc. The strain is a moderate thermophile, growing well at approximately 40(°) C. Here we provide some additional characteristics of the strain, and an analysis of the complete genome sequence.
Collapse
Affiliation(s)
- Teresa Thiel
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO
| | - Brenda S Pratte
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO
| | - Jinshun Zhong
- Department of Biology, University of Missouri-St. Louis, St. Louis, MO
| | | | - Alex Copeland
- DOE Joint Genome Institute, Walnut Creek, CA ; Lawrence Berkeley National Laboratory, Berkeley, CA
| | - Susan Lucas
- Lawrence Livermore National Laboratory, Livermore, CA
| | - Cliff Han
- Los Alamos National Laboratory, Los Alamos, NM
| | - Sam Pitluck
- DOE Joint Genome Institute, Walnut Creek, CA ; Lawrence Berkeley National Laboratory, Berkeley, CA
| | | | - Nikos C Kyrpides
- DOE Joint Genome Institute, Walnut Creek, CA ; Lawrence Berkeley National Laboratory, Berkeley, CA
| | - Tanja Woyke
- DOE Joint Genome Institute, Walnut Creek, CA ; Lawrence Berkeley National Laboratory, Berkeley, CA
| |
Collapse
|
163
|
Cluster of genes that encode positive and negative elements influencing filament length in a heterocyst-forming cyanobacterium. J Bacteriol 2013; 195:3957-66. [PMID: 23813733 DOI: 10.1128/jb.00181-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The filamentous, heterocyst-forming cyanobacteria perform oxygenic photosynthesis in vegetative cells and nitrogen fixation in heterocysts, and their filaments can be hundreds of cells long. In the model heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120, the genes in the fraC-fraD-fraE operon are required for filament integrity mainly under conditions of nitrogen deprivation. The fraC operon transcript partially overlaps gene all2395, which lies in the opposite DNA strand and ends 1 bp beyond fraE. Gene all2395 produces transcripts of 1.35 kb (major transcript) and 2.2 kb (minor transcript) that overlap fraE and whose expression is dependent on the N-control transcription factor NtcA. Insertion of a gene cassette containing transcriptional terminators between fraE and all2395 prevented production of the antisense RNAs and resulted in an increased length of the cyanobacterial filaments. Deletion of all2395 resulted in a larger increase of filament length and in impaired growth, mainly under N2-fixing conditions and specifically on solid medium. We denote all2395 the fraF gene, which encodes a protein restricting filament length. A FraF-green fluorescent protein (GFP) fusion protein accumulated significantly in heterocysts. Similar to some heterocyst differentiation-related proteins such as HglK, HetL, and PatL, FraF is a pentapeptide repeat protein. We conclude that the fraC-fraD-fraE←fraF gene cluster (where the arrow indicates a change in orientation), in which cis antisense RNAs are produced, regulates morphology by encoding proteins that influence positively (FraC, FraD, FraE) or negatively (FraF) the length of the filament mainly under conditions of nitrogen deprivation. This gene cluster is often conserved in heterocyst-forming cyanobacteria.
Collapse
|
164
|
Tao Y, Li W, Xue B, Zhong J, Yao S, Wu Q. Different effects of copper (II), cadmium (II) and phosphate on the sorption of phenanthrene on the biomass of cyanobacteria. JOURNAL OF HAZARDOUS MATERIALS 2013; 261:21-28. [PMID: 23911825 DOI: 10.1016/j.jhazmat.2013.06.062] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 06/15/2013] [Accepted: 06/21/2013] [Indexed: 06/02/2023]
Abstract
Due to the large surface area and high organic carbon content of cyanobacteria, organic contaminants can be readily sorbed on cyanobacteria during algal blooms, and then be transferred to the food web. This process is likely to be affected by the coexisting metals and nutrients, however, the possible impacts remain unclear. Effects of Cu(2+), Cd(2+), and phosphate on the sorption of phenanthrene on cyanobacterial biomass collected from an algal bloom were therefore studied. Continuous decrease in phenanthrene sorption was observed in the presence of low concentrations of Cu(2+), and Cd(2+) (<0.04 mmol L(-1)), because Cu(2+) and Cd(2+) were coadsorbed with phenanthrene on the surface of cyanobacteria as suggested by scanning electron microscopy-energy dispersive X-ray (SEM-EDX) and Fourier transform infrared (FTIR) analyses. Phenanthrene sorption began to increase with the further increase in Cu(2+) concentration, but remained lower than that in the absence of Cu(2+). This increase in sorption was ascribed to the cation-π interaction between Cu(2+) and phenanthrene, as suggested by the enhanced ultraviolet absorbance at 251 nm. In contrast, sorption rebounding of phenanthrene did not occur in the presence of higher concentrations of Cd(2+). The different effects of Cu(2+) and Cd(2+) on phenanthrene sorption were attributed to that Cd(2+) required much more energy than Cu(2+) to form cation-π complexes with phenanthrene in the solutions. Phenanthrene sorption decreased continuously with the increase in phosphate concentration. Phosphate blocked the binding sites, modified the cell morphology, and increased the negative charge as well as the hydrophilicity of the cyanobacterial surface, thereby suppressing phenanthrene sorption. This study indicates that sorption of aromatic organic compounds by cyanobacteria could be significantly alerted by concentrations and properties of the coexisting transition metals and phosphates, which may subsequently affect their transfer to the food web in eutrophic waters.
Collapse
Affiliation(s)
- Yuqiang Tao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | | | | | | | | | | |
Collapse
|
165
|
Loughlin P, Lin Y, Chen M. Chlorophyll d and Acaryochloris marina: current status. PHOTOSYNTHESIS RESEARCH 2013; 116:277-93. [PMID: 23615924 DOI: 10.1007/s11120-013-9829-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 04/14/2013] [Indexed: 05/03/2023]
Abstract
The discovery of the chlorophyll d-containing cyanobacterium Acaryochloris marina in 1996 precipitated a shift in our understanding of oxygenic photosynthesis. The presence of the red-shifted chlorophyll d in the reaction centre of the photosystems of Acaryochloris has opened up new avenues of research on photosystem energetics and challenged the unique status of chlorophyll a in oxygenic photosynthesis. In this review, we detail the chemistry and role of chlorophyll d in photosynthesis and summarise the unique adaptations that have allowed the proliferation of Acaryochloris in diverse ecological niches around the world.
Collapse
Affiliation(s)
- Patrick Loughlin
- School of Biological Sciences (A08), University of Sydney, Sydney, NSW, 2006, Australia
| | | | | |
Collapse
|
166
|
Di Rienzi SC, Sharon I, Wrighton KC, Koren O, Hug LA, Thomas BC, Goodrich JK, Bell JT, Spector TD, Banfield JF, Ley RE. The human gut and groundwater harbor non-photosynthetic bacteria belonging to a new candidate phylum sibling to Cyanobacteria. eLife 2013; 2:e01102. [PMID: 24137540 PMCID: PMC3787301 DOI: 10.7554/elife.01102] [Citation(s) in RCA: 267] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 08/22/2013] [Indexed: 12/21/2022] Open
Abstract
Cyanobacteria were responsible for the oxygenation of the ancient atmosphere; however, the evolution of this phylum is enigmatic, as relatives have not been characterized. Here we use whole genome reconstruction of human fecal and subsurface aquifer metagenomic samples to obtain complete genomes for members of a new candidate phylum sibling to Cyanobacteria, for which we propose the designation 'Melainabacteria'. Metabolic analysis suggests that the ancestors to both lineages were non-photosynthetic, anaerobic, motile, and obligately fermentative. Cyanobacterial light sensing may have been facilitated by regulators present in the ancestor of these lineages. The subsurface organism has the capacity for nitrogen fixation using a nitrogenase distinct from that in Cyanobacteria, suggesting nitrogen fixation evolved separately in the two lineages. We hypothesize that Cyanobacteria split from Melainabacteria prior or due to the acquisition of oxygenic photosynthesis. Melainabacteria remained in anoxic zones and differentiated by niche adaptation, including for symbiosis in the mammalian gut. DOI:http://dx.doi.org/10.7554/eLife.01102.001.
Collapse
Affiliation(s)
- Sara C Di Rienzi
- Department of Microbiology, Cornell University, Ithaca, United States
| | - Itai Sharon
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, United States
| | - Kelly C Wrighton
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, United States
| | - Omry Koren
- Department of Microbiology, Cornell University, Ithaca, United States
| | - Laura A Hug
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, United States
| | - Brian C Thomas
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, United States
| | - Julia K Goodrich
- Department of Microbiology, Cornell University, Ithaca, United States
| | - Jordana T Bell
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, United Kingdom
| | - Timothy D Spector
- Department of Twin Research and Genetic Epidemiology, King’s College London, London, United Kingdom
| | - Jillian F Banfield
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, United States
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, United States
| | - Ruth E Ley
- Department of Microbiology, Cornell University, Ithaca, United States
| |
Collapse
|
167
|
The sll1951 gene encodes the surface layer protein of Synechocystis sp. strain PCC 6803. J Bacteriol 2013; 195:5370-80. [PMID: 24078613 DOI: 10.1128/jb.00615-13] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Sll1951 is the surface layer (S-layer) protein of the cyanobacterium Synechocystis sp. strain PCC 6803. This large, hemolysin-like protein was found in the supernatant of a strain that was deficient in S-layer attachment. An sll1951 deletion mutation was introduced into Synechocystis and was easily segregated to homozygosity under laboratory conditions. By thin-section and negative-stain transmission electron microscopy, a ~30-nm-wide S-layer lattice covering the cell surface was readily visible in wild-type cells but was absent in the Δsll1951 strain. Instead, the Δsll1951 strain displayed a smooth lipopolysaccharide surface as its most peripheral layer. In the presence of chaotropic agents, the wild type released a large (>150-kDa) protein into the medium that was identified as Sll1951 by mass spectrometry of trypsin fragments; this protein was missing in the Δsll1951 strain. In addition, Sll1951 was prominent in crude extracts of the wild type, indicating that it is an abundant protein. The carotenoid composition of the cell wall fraction of the Δsll1951 strain was similar to that of the wild type, suggesting that the S-layer does not contribute to carotenoid binding. Although the photoautotrophic growth rate of the Δsll1951 strain was similar to that of the wild-type strain, the viability of the Δsll1951 strain was reduced upon exposure to lysozyme treatment and hypo-osmotic stress, indicating a contribution of the S-layer to the integrity of the Synechocystis cell wall. This work identifies the S-layer protein in Synechocystis and shows that, at least under laboratory conditions, this very abundant, large protein has a supportive but not a critical role in the function of the cyanobacterium.
Collapse
|
168
|
Exploring the size limit of protein diffusion through the periplasm in cyanobacterium Anabaena sp. PCC 7120 using the 13 kDa iLOV fluorescent protein. Res Microbiol 2013; 164:710-7. [DOI: 10.1016/j.resmic.2013.05.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Accepted: 05/24/2013] [Indexed: 01/16/2023]
|
169
|
|
170
|
Exopolysaccharides protect Synechocystis against the deleterious effects of titanium dioxide nanoparticles in natural and artificial waters. J Colloid Interface Sci 2013; 405:35-43. [PMID: 23777864 DOI: 10.1016/j.jcis.2013.05.061] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 04/29/2013] [Accepted: 05/04/2013] [Indexed: 12/25/2022]
Abstract
We have studied the effect of TiO2 nanoparticles (NPs) on the model cyanobacteria Synechocystis PCC6803. We used well-characterized NPs suspensions in artificial and natural (Seine River, France) waters. We report that NPs trigger direct (cell killing) and indirect (cell sedimentation precluding the capture of light, which is crucial to photosynthesis) deleterious effects. Both toxic effects increase with NPs concentration and are exacerbated by the presence of UVAs that increase the production of Reactive Oxygen Species (hydroxyl and superoxide radicals) by TiO2 NPs. Furthermore, we compared the responses of the wild-type strain of Synechocystis, which possesses abundant exopolysaccharides surrounding the cells, to that of an EPS-depleted mutant. We show, for the first time, that the exopolysaccharides play a crucial role in Synechocystis protection against cell killing caused by TiO2 NPs.
Collapse
|
171
|
Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes. Nat Biotechnol 2013; 31:533-8. [PMID: 23707974 DOI: 10.1038/nbt.2579] [Citation(s) in RCA: 830] [Impact Index Per Article: 75.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 04/10/2013] [Indexed: 12/11/2022]
Abstract
Reference genomes are required to understand the diverse roles of microorganisms in ecology, evolution, human and animal health, but most species remain uncultured. Here we present a sequence composition-independent approach to recover high-quality microbial genomes from deeply sequenced metagenomes. Multiple metagenomes of the same community, which differ in relative population abundances, were used to assemble 31 bacterial genomes, including rare (<1% relative abundance) species, from an activated sludge bioreactor. Twelve genomes were assembled into complete or near-complete chromosomes. Four belong to the candidate bacterial phylum TM7 and represent the most complete genomes for this phylum to date (relative abundances, 0.06-1.58%). Reanalysis of published metagenomes reveals that differential coverage binning facilitates recovery of more complete and higher fidelity genome bins than other currently used methods, which are primarily based on sequence composition. This approach will be an important addition to the standard metagenome toolbox and greatly improve access to genomes of uncultured microorganisms.
Collapse
|
172
|
Lehner J, Berendt S, Dörsam B, Pérez R, Forchhammer K, Maldener I. Prokaryotic multicellularity: a nanopore array for bacterial cell communication. FASEB J 2013; 27:2293-300. [PMID: 23444428 DOI: 10.1096/fj.12-225854] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The transition from unicellular to multicellular life, which occurred several times during evolution, requires tight interaction and communication of neighboring cells. The multicellular cyanobacterium Nostoc punctiforme ATCC 29133 forms filaments of hundreds of interacting cells exchanging metabolites and signal molecules and is able to differentiate specialized cells in response to environmental stimuli. Mutation of cell wall amidase AmiC2 leads to a severe phenotype with formation of aberrant septa in the distorted filaments, which completely lack cell communication and potential for cell differentiation. Here we demonstrate the function of the amidase AmiC2 in formation of cell-joining structures. The AmiC2 protein localizes to the young septum between cells and shows bona fide amidase activity in vivo and in vitro. Vancomycin staining identified the overall septum morphology in living cells. By electron microscopy of isolated peptidoglycan sacculi, the submicroscopic structure of the cell junctions could be visualized, revealing a novel function for a cell wall amidase: AmiC2 drills holes into the cross-walls, forming an array of ~155 nanopores with a diameter of ~20 nm each. These nanopores seem to constitute a framework for cell-joining proteins, penetrating the cell wall. The entire array of junctional nanopores appears as a novel bacterial organelle, establishing multicellularity in a filamentous prokaryote.
Collapse
Affiliation(s)
- Josef Lehner
- Department of Microbiology/Organismic Interactions, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
173
|
Hahn A, Stevanovic M, Mirus O, Schleiff E. The TolC-like protein HgdD of the cyanobacterium Anabaena sp. PCC 7120 is involved in secondary metabolite export and antibiotic resistance. J Biol Chem 2012; 287:41126-38. [PMID: 23071120 DOI: 10.1074/jbc.m112.396010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The role of TolC has largely been explored in proteobacteria, where it functions as a metabolite and protein exporter. In contrast, little research has been carried out on the function of cyanobacterial homologues, and as a consequence, not much is known about the mechanism of cyanobacterial antibiotic uptake and metabolite secretion in general. It has been suggested that the TolC-like homologue of the filamentous, heterocyst-forming cyanobacterium Anabaena sp. PCC 7120, termed heterocyst glycolipid deposition protein D (HgdD), is involved in both protein and lipid secretion. To describe its function in secondary metabolite secretion, we established a system to measure the uptake of antibiotics based on the fluorescent molecule ethidium bromide. We analyzed the rate of porin-dependent metabolite uptake and confirmed the functional relation between detoxification and the action of HgdD. Moreover, we identified two major facilitator superfamily proteins that are involved in this process. It appears that anaOmp85 (Alr2269) is not required for insertion or assembly of HgdD, because an alr2269 mutant does not exhibit a phenotype similar to the hgdD mutant. Thus, we could assign components of the metabolite efflux system and describe parameters of detoxification by Anabaena sp. PCC 7120.
Collapse
Affiliation(s)
- Alexander Hahn
- Department of Biosciences, Center of Membrane Proteomics, Cluster of Excellence Frankfurt, Goethe University, 60438 Frankfurt, Germany
| | | | | | | |
Collapse
|
174
|
Fujii M, Sato Y, Ito H, Masago Y, Omura T. Monosaccharide composition of the outer membrane lipopolysaccharide and O-chain from the freshwater cyanobacterium Microcystis aeruginosa NIES-87. J Appl Microbiol 2012; 113:896-903. [PMID: 22817604 DOI: 10.1111/j.1365-2672.2012.05405.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 06/13/2012] [Accepted: 07/12/2012] [Indexed: 11/29/2022]
Abstract
AIMS Bacterial lipopolysaccharide (LPS) protruding from the outermost layer of the outer membrane is expected to play an important role in cell physiology by interacting with molecules in the extracellular milieu; however, the structural and functional characteristics of these components in cyanobacteria remain largely unknown. We isolated water-soluble fractions of LPS and O-chain from the bloom-forming freshwater cyanobacterium Microcystis aeruginosa NIES-87 and identified their monosaccharide compositions. METHODS AND RESULTS SDS-PAGE followed by silver staining demonstrated that the isolated total LPS was the smooth type with different numbers of repeating sugar units in the O-chain region. GC/MS analysis after acid hydrolysis, reduction and acetylation treatments indicated that the neutral monosaccharide components of the total LPS include glucose, rhamnose, mannose, galactose and xylose (in decreasing order of weight percentage), while only glucose was detected in the purified O-chain fraction. MALDI-TOF MS analysis suggested that the O-chain fraction is composed of repeating glucose and methylated glucose disaccharide units. CONCLUSIONS Our results indicate that the monosaccharide composition of M. aeruginosa O-chain is relatively simple. SIGNIFICANCE AND IMPACT OF THE STUDY Although further studies are necessary, these findings provide fundamental information for understanding the structural and functional properties of cyanobacterial LPS and O-chain.
Collapse
Affiliation(s)
- M Fujii
- Department of Civil Engineering, Tokyo Institute of Technology, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
175
|
Effects of UV-B radiation and periodic desiccation on the morphogenesis of the edible terrestrial cyanobacterium Nostoc flagelliforme. Appl Environ Microbiol 2012; 78:7075-81. [PMID: 22865081 DOI: 10.1128/aem.01427-12] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The terrestrial cyanobacterium Nostoc flagelliforme Berk. et M. A. Curtis has been a popular food and herbal ingredient for hundreds of years. To meet great market demand and protect the local ecosystem, for decades researchers have tried to cultivate N. flagelliforme but have failed to get macroscopic filamentous thalli. In this study, single trichomes with 50 to 200 vegetative cells were induced from free-living cells by low light and used to investigate the morphogenesis of N. flagelliforme under low UV-B radiation and periodic desiccation. Low-fluence-rate UV-B (0.1 W m(-2)) did not inhibit trichome growth; however, it significantly increased the synthesis of extracellular polysaccharides and mycosporine-like amino acids and promoted sheath formation outside the trichomes. Under low UV-B radiation, single trichomes developed into filamentous thalli more than 1 cm long after 28 days of cultivation, most of which grew separately in liquid BG11 medium. With periodic desiccation treatment, the single trichomes formed flat or banded thalli that grew up to 2 cm long after 3 months on solid BG11 medium. When trichomes were cultivated on solid BG11 medium with alternate treatments of low UV-B and periodic desiccation, dark and scraggly filamentous thalli that grew up to about 3 cm in length after 40 days were obtained. In addition, the cultivation of trichomes on nitrogen-deficient solid BG11 medium (BG11(0)) suggested that nitrogen availability could affect the color and lubricity of newly developed thalli. This study provides promising techniques for artificial cultivation of N. flagelliforme in the future.
Collapse
|
176
|
Tao Y, Xue B, Zhong J, Yao S, Wu Q. Influences of pH, heavy metals and phosphate and their co-influences on the sorption of pentachlorophenol on cyanobacterial biomass. WATER RESEARCH 2012; 46:3585-3594. [PMID: 22542025 DOI: 10.1016/j.watres.2012.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 03/13/2012] [Accepted: 04/02/2012] [Indexed: 05/31/2023]
Abstract
Influences of pH, two types of ions of transition metals (Cu²⁺, Cd²⁺), Na₃PO₄ and their co-influences on the sorption of pentachlorophenol (PCP) on cyanobacterial biomass derived from natural bloom were studied. Sorption of PCP significantly decreases with pH in the range of 3.25-9.00. Although sorption coefficient of ionized PCP is 8.51 times lower than that of neutral species, it is the dominant species at environmentally relevant pH and contributes more to the total sorption of PCP. In the presence of low concentration of Cu²⁺ (≤ 40 μmol L⁻¹), sorption of PCP was much lower than that of the blank. However, it increased gradually with Cu²⁺, and overpassed the blank when concentration of Cu²⁺ was higher than 50 μmol L⁻¹. Compared with the sole influence of pH, coexisted Cu²⁺ inhibited the sorption of PCP at pH of 3.25 and 4.35, but enhanced it in the pH range of 5.00-9.00. In the presence of Cd²⁺, sorption of PCP first increased then decreased rapidly and finally increased slightly again with Cd²⁺. Except for at pH of 9.00, sorption of PCP at other pH in the presence of Cd²⁺ was much lower than that solely affected by pH. In the presence of Na₃PO₄, sorption of PCP increased rapidly then maintained with Na₃PO₄. Under the influence of both Na₃PO₄ and pH, sorption of PCP at pH from 3.25 to 5.00 was lower than that solely affected by pH, while it increased with pH in the range of 5.00-9.00 and was higher than that solely affected by pH in the range of 6.00-9.00. Ion pairs of pentachlorophenolate-metal facilitated the sorption of PCP, which was largely dependent on pH illustrated by UV-visible and FTIR spectra. Speciations of metals and PCP and the stability constants of ion pairs of pentachlorophenolate-metal greatly affected the sorption. Ionic strength also played an important role for the sorption of PCP.
Collapse
Affiliation(s)
- Yuqiang Tao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | | | | | | | | |
Collapse
|
177
|
Hudek L, Rai S, Michalczyk A, Rai LC, Neilan BA, Ackland ML. Physiological metal uptake by Nostoc punctiforme. Biometals 2012; 25:893-903. [DOI: 10.1007/s10534-012-9556-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 05/01/2012] [Indexed: 10/28/2022]
|
178
|
Structure, regulation, and evolution of the plastid division machinery. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 291:115-53. [PMID: 22017975 DOI: 10.1016/b978-0-12-386035-4.00004-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Plastids have evolved from a cyanobacterial endosymbiont, and their continuity is maintained by the plastid division and segregation which is regulated by the eukaryotic host cell. Plastids divide by constriction of the inner- and outer-envelope membranes. Recent studies revealed that this constriction is performed by a large protein and glucan complex at the division site that spans the two envelope membranes. The division complex has retained certain components of the cyanobacterial division complex along with components developed by the host cell. Based on the information on the division complex at the molecular level, we are beginning to understand how the division complex has evolved and how it is assembled, constricted, and regulated in the host cell. This chapter reviews the current understanding of the plastid division machinery and some of the questions that will be addressed in the near future.
Collapse
|
179
|
Schirhagl R, Hall EW, Fuereder I, Zare RN. Separation of bacteria with imprinted polymeric films. Analyst 2012; 137:1495-9. [DOI: 10.1039/c2an15927a] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
180
|
Mackiewicz P, Bodył A, Gagat P. Possible import routes of proteins into the cyanobacterial endosymbionts/plastids of Paulinella chromatophora. Theory Biosci 2011; 131:1-18. [PMID: 22209953 PMCID: PMC3334493 DOI: 10.1007/s12064-011-0147-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 12/13/2011] [Indexed: 01/13/2023]
Abstract
The rhizarian amoeba Paulinella chromatophora harbors two photosynthetically active and deeply integrated cyanobacterial endosymbionts acquired ~60 million years ago. Recent genomic analyses of P. chromatophora have revealed the loss of many essential genes from the endosymbiont's genome, and have identified more than 30 genes that have been transferred to the host cell's nucleus through endosymbiotic gene transfer (EGT). This indicates that, similar to classical primary plastids, Paulinella endosymbionts have evolved a transport system to import their nuclear-encoded proteins. To deduce how these proteins are transported, we searched for potential targeting signals in genes for 10 EGT-derived proteins. Our analyses indicate that five proteins carry potential signal peptides, implying they are targeted via the host endomembrane system. One sequence encodes a mitochondrial-like transit peptide, which suggests an import pathway involving a channel protein residing in the outer membrane of the endosymbiont. No N-terminal targeting signals were identified in the four other genes, but their encoded proteins could utilize non-classical targeting signals contained internally or in C-terminal regions. Several amino acids more often found in the Paulinella EGT-derived proteins than in their ancestral set (proteins still encoded in the endosymbiont genome) could constitute such signals. Characteristic features of the EGT-derived proteins are low molecular weight and nearly neutral charge, which both could be adaptations to enhance passage through the peptidoglycan wall present in the intermembrane space of the endosymbiont's envelope. Our results suggest that Paulinella endosymbionts/plastids have evolved several different import routes, as has been shown in classical primary plastids.
Collapse
Affiliation(s)
- Paweł Mackiewicz
- Department of Genomics, Faculty of Biotechnology, University of Wrocław, ul. Przybyszewskiego 63/77, 51-148 Wrocław, Poland.
| | | | | |
Collapse
|
181
|
Parsiegla G, Shrestha B, Carrière F, Vertes A. Direct Analysis of Phycobilisomal Antenna Proteins and Metabolites in Small Cyanobacterial Populations by Laser Ablation Electrospray Ionization Mass Spectrometry. Anal Chem 2011; 84:34-8. [DOI: 10.1021/ac202831w] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Goetz Parsiegla
- CNRS, Aix-Marseille Université, Enzymologie Interfaciale et Physiologie
de la Lipolyse, UPR 9025, Marseille, France
| | - Bindesh Shrestha
- Department of Chemistry, W. M.
Keck Institute for Proteomics Technology and Applications, George Washington University, Washington, D.C. 20052,
United States
| | - Frédéric Carrière
- CNRS, Aix-Marseille Université, Enzymologie Interfaciale et Physiologie
de la Lipolyse, UPR 9025, Marseille, France
| | - Akos Vertes
- Department of Chemistry, W. M.
Keck Institute for Proteomics Technology and Applications, George Washington University, Washington, D.C. 20052,
United States
| |
Collapse
|
182
|
Exopolysaccharide-producing cyanobacteria in heavy metal removal from water: molecular basis and practical applicability of the biosorption process. Appl Microbiol Biotechnol 2011; 92:697-708. [DOI: 10.1007/s00253-011-3601-z] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 09/05/2011] [Accepted: 09/20/2011] [Indexed: 10/17/2022]
|
183
|
Barnett JP, Robinson C, Scanlan DJ, Blindauer CA. The Tat protein export pathway and its role in cyanobacterial metalloprotein biosynthesis. FEMS Microbiol Lett 2011; 325:1-9. [PMID: 22092855 DOI: 10.1111/j.1574-6968.2011.02391.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 08/11/2011] [Accepted: 08/16/2011] [Indexed: 11/27/2022] Open
Abstract
The Tat pathway is a common protein translocation system that is found in the bacterial cytoplasmic membrane, as well as in the cyanobacterial and plant thylakoid membranes. It is unusual in that the Tat pathway transports fully folded, often metal cofactor-containing proteins across these membranes. In bacteria, the Tat pathway plays an important role in the biosynthesis of noncytoplasmic metalloproteins. By compartmentalizing protein folding to the cytoplasm, the potentially aberrant binding of non-native metal ions to periplasmic proteins is avoided. To date, most of our understanding of Tat function has been obtained from studies using Escherichia coli as a model organism but cyanobacteria have an extra layer of complexity with proteins targeted to both the cytoplasmic and thylakoid membranes. We examine our current understanding of the Tat pathway in cyanobacteria and its role in metalloprotein biosynthesis.
Collapse
Affiliation(s)
- James P Barnett
- Department of Chemistry, University of Warwick, Coventry, UK.
| | | | | | | |
Collapse
|
184
|
Wilk L, Strauss M, Rudolf M, Nicolaisen K, Flores E, Kühlbrandt W, Schleiff E. Outer membrane continuity and septosome formation between vegetative cells in the filaments of Anabaena sp. PCC 7120. Cell Microbiol 2011; 13:1744-54. [DOI: 10.1111/j.1462-5822.2011.01655.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
185
|
Quintana N, Van der Kooy F, Van de Rhee MD, Voshol GP, Verpoorte R. Renewable energy from Cyanobacteria: energy production optimization by metabolic pathway engineering. Appl Microbiol Biotechnol 2011; 91:471-90. [PMID: 21691792 PMCID: PMC3136707 DOI: 10.1007/s00253-011-3394-0] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 05/13/2011] [Accepted: 05/14/2011] [Indexed: 01/05/2023]
Abstract
The need to develop and improve sustainable energy resources is of eminent importance due to the finite nature of our fossil fuels. This review paper deals with a third generation renewable energy resource which does not compete with our food resources, cyanobacteria. We discuss the current state of the art in developing different types of bioenergy (ethanol, biodiesel, hydrogen, etc.) from cyanobacteria. The major important biochemical pathways in cyanobacteria are highlighted, and the possibility to influence these pathways to improve the production of specific types of energy forms the major part of this review.
Collapse
Affiliation(s)
- Naira Quintana
- Division of Pharmacognosy, Section of Metabolomics, Institute of Biology, Leiden University, PO Box 9502, 2300RA Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|
186
|
Thompson AW, Huang K, Saito MA, Chisholm SW. Transcriptome response of high- and low-light-adapted Prochlorococcus strains to changing iron availability. ISME JOURNAL 2011; 5:1580-94. [PMID: 21562599 DOI: 10.1038/ismej.2011.49] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Prochlorococcus contributes significantly to ocean primary productivity. The link between primary productivity and iron in specific ocean regions is well established and iron limitation of Prochlorococcus cell division rates in these regions has been shown. However, the extent of ecotypic variation in iron metabolism among Prochlorococcus and the molecular basis for differences is not understood. Here, we examine the growth and transcriptional response of Prochlorococcus strains, MED4 and MIT9313, to changing iron concentrations. During steady state, MIT9313 sustains growth at an order-of-magnitude lower iron concentration than MED4. To explore this difference, we measured the whole-genome transcriptional response of each strain to abrupt iron starvation and rescue. Only four of the 1159 orthologs of MED4 and MIT9313 were differentially expressed in response to iron in both strains. However, in each strain, the expression of over a hundred additional genes changed, many of which are in labile genomic regions, suggesting a role for lateral gene transfer in establishing diversity of iron metabolism among Prochlorococcus. Furthermore, we found that MED4 lacks three genes near the iron-deficiency-induced gene (idiA) that are present and induced by iron stress in MIT9313. These genes are interesting targets for studying the adaptation of natural Prochlorococcus assemblages to local iron conditions as they show more diversity than other genomic regions in environmental metagenomic databases.
Collapse
Affiliation(s)
- Anne W Thompson
- MIT Department of Civil and Environmental Engineering, Cambridge, MA02139, USA
| | | | | | | |
Collapse
|
187
|
Sheng J, Vannela R, Rittmann BE. Evaluation of cell-disruption effects of pulsed-electric-field treatment of Synechocystis PCC 6803. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:3795-802. [PMID: 21428280 DOI: 10.1021/es103339x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In order to use Synechocystis PCC 6803 as feedstock of nonpetroleum-based diesel fuel, pulsed electric field (PEF) technology was used for cell disruption prior to extraction of intracellular lipids. Severe cell disruption was evident after PEF treatment, especially with treatment intensity (TI) > 35 kWh/m(3). Temperature increase during the treatment brought about most of the destruction of autofluorescence compounds, as well as a fraction of inactivation and the destruction of the plasma and thylakoid membranes. However, the forces associated with the pulsing electric field caused significant damage to the plasma membrane, cell wall, and thylakoid membrane, and it even led to complete disruption of some cells into fragments, which resulted in biomass loss. Treatment by PEF enhanced the potential for the low-toxicity solvent isopropanol to access lipid molecules during subsequent solvent extraction, leading to lower usage of isopropanol for the same extraction efficiency. Thus, PEF shows promise for lowering the costs and environmental effects of the lipid-extraction step.
Collapse
Affiliation(s)
- Jie Sheng
- Center for Environmental Biotechnology, the Biodesign Institute, Arizona State University , Tempe, Arizona 85281-5701, United States.
| | | | | |
Collapse
|
188
|
Abstract
To avoid costly biomass recovery in photosynthetic microbial biofuel production, we genetically modified cyanobacteria to produce and secrete fatty acids. Starting with introducing an acyl-acyl carrier protein thioesterase gene, we made six successive generations of genetic modifications of cyanobacterium Synechocystis sp. PCC6803 wild type (SD100). The fatty acid secretion yield was increased to 197 ± 14 mg/L of culture in one improved strain at a cell density of 1.0 × 10(9) cells/mL by adding codon-optimized thioesterase genes and weakening polar cell wall layers. Although these strains exhibited damaged cell membranes at low cell densities, they grew more rapidly at high cell densities in late exponential and stationary phase and exhibited less cell damage than cells in wild-type cultures. Our results suggest that fatty acid secreting cyanobacteria are a promising technology for renewable biofuel production.
Collapse
|
189
|
Determining cell shape: adaptive regulation of cyanobacterial cellular differentiation and morphology. Trends Microbiol 2011; 19:278-85. [PMID: 21458273 DOI: 10.1016/j.tim.2011.03.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 02/23/2011] [Accepted: 03/02/2011] [Indexed: 02/04/2023]
Abstract
Similar to other bacteria, cyanobacteria exist in a wide-ranging diversity of shapes and sizes. However, three general shapes are observed most frequently: spherical, rod and spiral. Bacteria can also grow as filaments of cells. Some filamentous cyanobacteria have differentiated cell types that exhibit distinct morphologies: motile hormogonia, nitrogen-fixing heterocysts, and spore-like akinetes. Cyanobacterial cell shapes, which are largely controlled by the cell wall, can be regulated by developmental and/or environmental cues, although the mechanisms of regulation and the selective advantage(s) of regulating cellular shape are still being elucidated. In this review, recent insights into developmental and environmental regulation of cell shape in cyanobacteria and the relationship(s) of cell shape and differentiation to organismal fitness are discussed.
Collapse
|
190
|
Extremophiles: from abyssal to terrestrial ecosystems and possibly beyond. Naturwissenschaften 2011; 98:253-79. [DOI: 10.1007/s00114-011-0775-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 02/17/2011] [Accepted: 02/18/2011] [Indexed: 01/27/2023]
|
191
|
Chungjatupornchai W, Kamlangdee A, Fa-Aroonsawat S. Display of organophosphorus hydrolase on the cyanobacterial cell surface using synechococcus outer membrane protein a as an anchoring motif. Appl Biochem Biotechnol 2011; 164:1048-57. [PMID: 21327741 DOI: 10.1007/s12010-011-9193-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Accepted: 01/31/2011] [Indexed: 11/24/2022]
Abstract
The display of proteins to cyanobacterial cell surface is made complex by combination of Gram-positive and Gram-negative features of cyanobacterial cell wall. Here, we showed that Synechococcus outer membrane protein A (SomA) can be used as an anchoring motif for the display of organophosphorus hydrolase (OPH) on cyanobacterial cell surface. The OPH, capable of degrading a wide range of organophosphate pesticides, was fused in frame to the carboxyl-terminus of different cell-surface exposed loops of SomA. Proteinase K accessibility assay and immunostaining visualized under confocal laser scanning microscopy demonstrated that a minor fraction of OPH with 12 histidines fused in frame with the third cell-surface exposed loop of SomA (SomAL3-OPH12H) was displayed onto the outermost cell surface with a substantial fraction buried in the cell wall, whereas OPH fused in frame with the fifth cell-surface exposed loop of SomA (SomAL5-OPH) was successfully translocated across the membrane and completely displayed onto the outermost surface of Synechococcus. The successful display of the functional heterologous protein on cell surface provides a useful model for variety of applications in cyanobacteria including screening of polypeptide libraries and whole-cell biocatalysts by immobilizing enzymes.
Collapse
Affiliation(s)
- Wipa Chungjatupornchai
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakornpathom 73170, Thailand.
| | | | | |
Collapse
|
192
|
Lehner J, Zhang Y, Berendt S, Rasse TM, Forchhammer K, Maldener I. The morphogene AmiC2 is pivotal for multicellular development in the cyanobacterium Nostoc punctiforme. Mol Microbiol 2011; 79:1655-69. [DOI: 10.1111/j.1365-2958.2011.07554.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
193
|
Evidence for the Biogenic Origin of Sepiolite. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/b978-0-444-53607-5.00009-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
194
|
Williamson A, Conlan B, Hillier W, Wydrzynski T. The evolution of Photosystem II: insights into the past and future. PHOTOSYNTHESIS RESEARCH 2011; 107:71-86. [PMID: 20512415 DOI: 10.1007/s11120-010-9559-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Accepted: 05/07/2010] [Indexed: 05/29/2023]
Abstract
This article attempts to address the molecular origin of Photosystem II (PSII), the central component in oxygenic photosynthesis. It discusses the possible evolution of the relevant cofactors needed for splitting water into molecular O2 with respect to the following functional domains in PSII: the reaction center (RC), the oxygen evolving complex (OEC), and the manganese stabilizing protein (MSP). Possible ancestral sources of the relevant cofactors are considered, as are scenarios of how these components may have been brought together to produce the intermediate steps in the evolution of PSII. Most importantly, the driving forces that maintained these intermediates for continued adaptation are considered. We then apply our understanding of the evolution of PSII to the bioengineering of a water oxidizing catalyst for utilization of solar energy.
Collapse
Affiliation(s)
- Adele Williamson
- Research School of Biology, College of Medicine, Biology and Environment, The Australian National University, Canberra, ACT, 0200, Australia
| | | | | | | |
Collapse
|
195
|
Sheng J, Vannela R, Rittmann BE. Evaluation of methods to extract and quantify lipids from Synechocystis PCC 6803. BIORESOURCE TECHNOLOGY 2011; 102:1697-703. [PMID: 20739178 DOI: 10.1016/j.biortech.2010.08.007] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 07/30/2010] [Accepted: 08/02/2010] [Indexed: 05/03/2023]
Abstract
In order to use the photosynthetic cyanobacterium Synechocystis as a source of feedstock for carbon-neutral, nonpetroleum-based diesel fuel, we evaluated several solvents and solvent systems for their ability to extract lipid from wild-type Synechocystis PCC 6803. Chloroform+methanol-based Folch and Bligh & Dyer methods had the highest lipid recoveries. Less toxic solvents, such as methanol and MTBE, or direct trans-esterification of biomass (without pre-extraction step) gave only slightly lower lipid-extraction yields. Ethanol, isopropanol, butanol, hexane, acetic ester, and their combinations were not effective for lipid extraction from Synechocystis (>20% loss), even though they are widely used for non-polar lipid extraction from other feedstock, including algae. We confirmed the success of chloroform+methanol-based extraction by their penetration of the cell membrane system, higher polarity, and stronger interaction with hydrogen bonds. The less-polar solvents not only had lower lipid yield, but also extracted more non-lipid compounds that require extra purification to remove. We also characterized the fatty-acid profile of Synechocystis PCC 6803: C16:0 (∼60%), C16:1 (∼9.5%), C18:0 (∼1.2%), C18:1 (∼2%), C18:2 (∼9.8%), and C18:3 (∼16.5%).
Collapse
Affiliation(s)
- Jie Sheng
- Center for Environmental Biotechnology, The Biodesign Institute, Arizona State University, Tempe, AZ 85287-5701, USA.
| | | | | |
Collapse
|
196
|
Inoue-Kashino N, Kashino Y, Orii H, Satoh K, Terashima I, Pakrasi HB. S4 protein Sll1252 is necessary for energy balancing in photosynthetic electron transport in Synechocystis sp. PCC 6803. Biochemistry 2010; 50:329-39. [PMID: 21141807 DOI: 10.1021/bi101077e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Sll1252 was identified as a novel protein in photosystem II complexes from Synechocystis sp. PCC 6803. To investigate the function of Sll1252, the corresponding gene, sll1252, was deleted in Synechocystis 6803. Despite the homology of Sll1252 to YlmH, which functions in the cell division machinery in Streptococcus, the growth rate and cell morphology of the mutant were not affected in normal growth medium. Instead, it seems that cells lacking this polypeptide have increased sensitivity to Cl(-) depletion. The growth and oxygen evolving activity of the mutant cells was highly suppressed compared with those of wild-type cells when Cl(-) and/or Ca(2+) was depleted from the medium. Recovery of photosystem II from photoinhibition was suppressed in the mutant. Despite the defects in photosystem II, in the light, the acceptor side of photosystem II was more reduced and the donor side of photosystem I was more oxidized compared with wild-type cells, suggesting that functional impairments were also present in cytochrome b(6)/f complexes. The amounts of cytochrome c(550) and cytochrome f were smaller in the mutant in the Ca(2+)- and Cl(-)-depleted medium. Furthermore, the amount of IsiA protein was increased in the mutant, especially in the Cl(-)-depleted medium, indicating that the mutant cells perceive environmental stress to be greater than it is. The amount of accompanying cytochrome c(550) in purified photosystem II complexes was also smaller in the mutant. Overall, the Sll1252 protein appears to be closely related to redox sensing of the plastoquinone pool to balance the photosynthetic electron flow and the ability to cope with global environmental stresses.
Collapse
|
197
|
Miyagishima SY, Kabeya Y. Chloroplast division: squeezing the photosynthetic captive. Curr Opin Microbiol 2010; 13:738-46. [PMID: 21041111 DOI: 10.1016/j.mib.2010.10.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2010] [Revised: 09/28/2010] [Accepted: 10/06/2010] [Indexed: 10/18/2022]
Abstract
Chloroplasts have evolved from a cyanobacterial endosymbiont and have been retained in eukaryotic cells for more than one billion years via chloroplast division and inheritance by daughter cells during cell division. Recent studies revealed that chloroplast division is performed by a large protein complex at the division site, encompassing both the inside and the outside of the two envelope membranes. The division complex has retained a few components of the cyanobacterial division complex to go along with other components supplied by the host cell. On the basis of the information about the division complex, we are beginning to understand how the division complex evolved, and how eukaryotic host cells regulate chloroplast division during proliferation and differentiation.
Collapse
Affiliation(s)
- Shin-Ya Miyagishima
- Initiative Research Program, Advanced Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | | |
Collapse
|
198
|
Silipo A, Molinaro A, Molteni M, Rossetti C, Parrilli M, Lanzetta R. Full Structural Characterization of an Extracellular Polysaccharide Produced by the Freshwater Cyanobacterium Oscillatoria planktothrix FP1. European J Org Chem 2010. [DOI: 10.1002/ejoc.201000749] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
199
|
Comparison of envelope-related genes in unicellular and filamentous cyanobacteria. Comp Funct Genomics 2010:25751. [PMID: 18253473 PMCID: PMC2211374 DOI: 10.1155/2007/25751] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2006] [Revised: 02/17/2007] [Accepted: 06/03/2007] [Indexed: 11/18/2022] Open
Abstract
To elucidate the evolution of cyanobacterial envelopes and the relation between gene content and environmental adaptation, cell envelope structures and components of unicellular and filamentous cyanobacteria were analyzed in comparative genomics. Hundreds of envelope biogenesis genes were divided into 5 major groups and annotated according to their conserved domains and phylogenetic profiles. Compared to unicellular species, the gene numbers of filamentous cyanobacteria expanded due to genome enlargement effect, but only few gene families amplified disproportionately, such as those encoding waaG and glycosyl transferase 2. Comparison of envelope genes among various species suggested that the significant variance of certain cyanobacterial envelope biogenesis genes should be the response to their environmental adaptation, which might be also related to the emergence of filamentous shapes with some new functions.
Collapse
|
200
|
Popper ZA, Tuohy MG. Beyond the green: understanding the evolutionary puzzle of plant and algal cell walls. PLANT PHYSIOLOGY 2010; 153:373-83. [PMID: 20421458 PMCID: PMC2879814 DOI: 10.1104/pp.110.158055] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2010] [Accepted: 04/26/2010] [Indexed: 05/18/2023]
Affiliation(s)
- Zoë A Popper
- Botany and Plant Science , School of Natural Sciences, National University of Ireland, Galway, Ireland.
| | | |
Collapse
|