151
|
Nguyen Tran MT, Mohd Khalid MKN, Wang Q, Walker JKR, Lidgerwood GE, Dilworth KL, Lisowski L, Pébay A, Hewitt AW. Engineering domain-inlaid SaCas9 adenine base editors with reduced RNA off-targets and increased on-target DNA editing. Nat Commun 2020; 11:4871. [PMID: 32978399 PMCID: PMC7519688 DOI: 10.1038/s41467-020-18715-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/10/2020] [Indexed: 12/31/2022] Open
Abstract
Precision genome engineering has dramatically advanced with the development of CRISPR/Cas base editing systems that include cytosine base editors and adenine base editors (ABEs). Herein, we compare the editing profile of circularly permuted and domain-inlaid Cas9 base editors, and find that on-target editing is largely maintained following their intradomain insertion, but that structural permutation of the ABE can affect differing RNA off-target events. With this insight, structure-guided design was used to engineer an SaCas9 ABE variant (microABE I744) that has dramatically improved on-target editing efficiency and a reduced RNA-off target footprint compared to current N-terminal linked SaCas9 ABE variants. This represents one of the smallest AAV-deliverable Cas9-ABEs available, which has been optimized for robust on-target activity and RNA-fidelity based upon its stereochemistry. Off-target effects and the feasibility for AAV-mediated delivery are the major barriers impeding the clinical in vivo application of base editors. Here, the authors report the small size AAV-deliverable Cas9-ABE variant that has improved on-target editing efficiency and reduced RNA-off target footprint.
Collapse
Affiliation(s)
- Minh Thuan Nguyen Tran
- Menzies Institute for Medical Research, School of Medicine, University of Tasmania, Tasmania, Australia.
| | | | - Qi Wang
- Menzies Institute for Medical Research, School of Medicine, University of Tasmania, Tasmania, Australia
| | - Jacqueline K R Walker
- Menzies Institute for Medical Research, School of Medicine, University of Tasmania, Tasmania, Australia
| | - Grace E Lidgerwood
- Department of Surgery, The University of Melbourne, Victoria, Australia.,Department of Anatomy and Neuroscience, The University of Melbourne, Victoria, Australia
| | - Kimberley L Dilworth
- Translational Vectorology Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| | - Leszek Lisowski
- Translational Vectorology Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia.,Military Institute of Hygiene and Epidemiology, The Biological Threats Identification and Countermeasure Centre, Puławy, Poland
| | - Alice Pébay
- Department of Surgery, The University of Melbourne, Victoria, Australia.,Department of Anatomy and Neuroscience, The University of Melbourne, Victoria, Australia
| | - Alex W Hewitt
- Menzies Institute for Medical Research, School of Medicine, University of Tasmania, Tasmania, Australia.,Centre for Eye Research Australia, The University of Melbourne, Victoria, Australia
| |
Collapse
|
152
|
Nicolás-Ávila JA, Lechuga-Vieco AV, Esteban-Martínez L, Sánchez-Díaz M, Díaz-García E, Santiago DJ, Rubio-Ponce A, Li JL, Balachander A, Quintana JA, Martínez-de-Mena R, Castejón-Vega B, Pun-García A, Través PG, Bonzón-Kulichenko E, García-Marqués F, Cussó L, A-González N, González-Guerra A, Roche-Molina M, Martin-Salamanca S, Crainiciuc G, Guzmán G, Larrazabal J, Herrero-Galán E, Alegre-Cebollada J, Lemke G, Rothlin CV, Jimenez-Borreguero LJ, Reyes G, Castrillo A, Desco M, Muñoz-Cánoves P, Ibáñez B, Torres M, Ng LG, Priori SG, Bueno H, Vázquez J, Cordero MD, Bernal JA, Enríquez JA, Hidalgo A. A Network of Macrophages Supports Mitochondrial Homeostasis in the Heart. Cell 2020; 183:94-109.e23. [PMID: 32937105 DOI: 10.1016/j.cell.2020.08.031] [Citation(s) in RCA: 466] [Impact Index Per Article: 93.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 06/22/2020] [Accepted: 08/17/2020] [Indexed: 12/18/2022]
Abstract
Cardiomyocytes are subjected to the intense mechanical stress and metabolic demands of the beating heart. It is unclear whether these cells, which are long-lived and rarely renew, manage to preserve homeostasis on their own. While analyzing macrophages lodged within the healthy myocardium, we discovered that they actively took up material, including mitochondria, derived from cardiomyocytes. Cardiomyocytes ejected dysfunctional mitochondria and other cargo in dedicated membranous particles reminiscent of neural exophers, through a process driven by the cardiomyocyte's autophagy machinery that was enhanced during cardiac stress. Depletion of cardiac macrophages or deficiency in the phagocytic receptor Mertk resulted in defective elimination of mitochondria from the myocardial tissue, activation of the inflammasome, impaired autophagy, accumulation of anomalous mitochondria in cardiomyocytes, metabolic alterations, and ventricular dysfunction. Thus, we identify an immune-parenchymal pair in the murine heart that enables transfer of unfit material to preserve metabolic stability and organ function. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- José A Nicolás-Ávila
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
| | - Ana V Lechuga-Vieco
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain; CIBER de enfermedades respiratorias (CIBERES), Madrid 28029, Spain
| | | | - María Sánchez-Díaz
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
| | - Elena Díaz-García
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
| | - Demetrio J Santiago
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
| | - Andrea Rubio-Ponce
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
| | - Jackson LiangYao Li
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain; Singapore Immunology Nework (SIgN), A(∗)STAR, Biopolis, Singapore 138648, Singapore
| | - Akhila Balachander
- Singapore Immunology Nework (SIgN), A(∗)STAR, Biopolis, Singapore 138648, Singapore
| | - Juan A Quintana
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
| | | | | | - Andrés Pun-García
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
| | - Paqui G Través
- Molecular Neurobiology Laboratory, the Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Elena Bonzón-Kulichenko
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain; CIBER de enfermedades cardiovasculares (CIBERCV), Madrid 28029, Spain
| | | | - Lorena Cussó
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain; Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid 28911, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid 28009, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid 28029, Spain
| | - Noelia A-González
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain; Institute of Immunology, University of Muenster, Muenster 48149, Germany
| | | | - Marta Roche-Molina
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
| | | | - Georgiana Crainiciuc
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
| | - Gabriela Guzmán
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain; Hospital Universitario La Paz, IdIPaz, Madrid 28046, Spain
| | - Jagoba Larrazabal
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
| | - Elías Herrero-Galán
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
| | | | - Greg Lemke
- Molecular Neurobiology Laboratory, the Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Carla V Rothlin
- Departments of Immunobiology and Pharmacology, Yale University, New Haven, CT 06520, USA
| | - Luis Jesús Jimenez-Borreguero
- CIBER de enfermedades cardiovasculares (CIBERCV), Madrid 28029, Spain; Hospital Universitario de La Princesa, Madrid 28006, Spain
| | | | - Antonio Castrillo
- Instituto Investigaciones Biomédicas "Alberto Sols," CSIC-UAM, Madrid 28029, Spain; Unidad de Biomedicina IIBM-Universidad de las Palmas de Gran Canaria (ULPGC) (Unidad Asociada al CSIC), Las Palmas 35001, Spain; Instituto Universitario de Investigaciónes Biomédicas y Sanitarias, ULPGC, Las Palmas 35016, Spain
| | - Manuel Desco
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain; Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Madrid 28911, Spain
| | - Pura Muñoz-Cánoves
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain; Department of Experimental & Health Sciences, Universitat Pompeu Fabra, CIBERNED, Barcelona 08003, Spain; ICREA, Barcelona 08908, Spain
| | - Borja Ibáñez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain; CIBER de enfermedades cardiovasculares (CIBERCV), Madrid 28029, Spain; IIS- Fundación Jiménez Díaz Hospital, Madrid 28040, Spain
| | - Miguel Torres
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
| | - Lai Guan Ng
- Singapore Immunology Nework (SIgN), A(∗)STAR, Biopolis, Singapore 138648, Singapore
| | - Silvia G Priori
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain; Molecular Cardiology, ICS-Maugeri IRCCS, Pavia 27100, Italy; Department of Molecular Medicine, University of Pavia, Pavia 2700, Italy
| | - Héctor Bueno
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain; CIBER de enfermedades cardiovasculares (CIBERCV), Madrid 28029, Spain
| | - Jesús Vázquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain; CIBER de enfermedades cardiovasculares (CIBERCV), Madrid 28029, Spain
| | - Mario D Cordero
- Oral Medicine Department, University of Sevilla, Seville 41009, Spain; Cátedra de Reproducción y Genética Humana del Instituto para el Estudio de la Biología de la Reproducción Humana (INEBIR) y la Universidad Europea del Atlántico (UNEATLANTICO), Seville 41009, Spain; Fundación Universitaria Iberoamericana (FUNIBER), Barcelona 08005, Spain
| | - Juan A Bernal
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
| | - José A Enríquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain; CIBER de fragilidad y envejecimiento saludable (CIBERFES), Madrid 28029, Spain.
| | - Andrés Hidalgo
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain.
| |
Collapse
|
153
|
Hakim CH, Clément N, Wasala LP, Yang HT, Yue Y, Zhang K, Kodippili K, Adamson-Small L, Pan X, Schneider JS, Yang NN, Chamberlain JS, Byrne BJ, Duan D. Micro-dystrophin AAV Vectors Made by Transient Transfection and Herpesvirus System Are Equally Potent in Treating mdx Mouse Muscle Disease. Mol Ther Methods Clin Dev 2020; 18:664-678. [PMID: 32775499 PMCID: PMC7403893 DOI: 10.1016/j.omtm.2020.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/06/2020] [Indexed: 12/26/2022]
Abstract
Vector production scale-up is a major barrier in systemic adeno-associated virus (AAV) gene therapy. Many scalable manufacturing methods have been developed. However, the potency of the vectors generated by these methods has rarely been compared with vectors made by transient transfection (TT), the most commonly used method in preclinical studies. In this study, we blindly compared therapeutic efficacy of an AAV9 micro-dystrophin vector generated by the TT method and scalable herpes simplex virus (HSV) system in a Duchenne muscular dystrophy mouse model. AAV was injected intravenously at 5 × 1014 (high), 5 × 1013 (medium), or 5 × 1012 (low) viral genomes (vg)/kg. Comparable levels of micro-dystrophin expression were observed at each dose in a dose-dependent manner irrespective of the manufacturing method. Vector biodistribution was similar in mice injected with either the TT or the HSV method AAV. Evaluation of muscle degeneration/regeneration showed equivalent protection by vectors made by either method in a dose-dependent manner. Muscle function was similarly improved in a dose-dependent manner irrespective of the vector production method. No apparent toxicity was observed in any mouse. Collectively, our results suggest that the biological potency of the AAV micro-dystrophin vector made by the scalable HSV method is comparable to that made by the TT method.
Collapse
Affiliation(s)
- Chady H. Hakim
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA
- National Center for Advancing Translational Sciences, NIH, Bethesda, MD, USA
| | - Nathalie Clément
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL, USA
| | - Lakmini P. Wasala
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Hsiao T. Yang
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Yongping Yue
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Keqing Zhang
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Kasun Kodippili
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Laura Adamson-Small
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL, USA
| | - Xiufang Pan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA
| | | | - N. Nora Yang
- National Center for Advancing Translational Sciences, NIH, Bethesda, MD, USA
| | - Jeffrey S. Chamberlain
- Department of Neurology, Wellstone Muscular Dystrophy Specialized Research Center, University of Washington School of Medicine, Seattle, WA, USA
| | - Barry J. Byrne
- Department of Pediatrics, Powell Gene Therapy Center, University of Florida, Gainesville, FL, USA
| | - Dongsheng Duan
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, Columbia, MO, USA
- Department of Neurology, School of Medicine, University of Missouri, Columbia, MO, USA
- Department of Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
- Department of Biomedical, Biological & Chemical Engineering, College of Engineering, University of Missouri, Columbia, MO, USA
| |
Collapse
|
154
|
Li ZQ, Shen H, Shu KX, Li JJ, Tang Y, Su JJ, Yan J, Yang J, Wang ZQ, Qiu Y, Yang Y, Liu Y, Zhou Y. Transplantation of a Novel Recombinant Adeno-Associated Virus (pAAV-HE1B19K-TE1A) Demonstrates Higher Anti-Tumor Effects in Tumor Cells. Ann Transplant 2020; 25:e925013. [PMID: 32883945 PMCID: PMC7493455 DOI: 10.12659/aot.925013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Oncolytic viruses (OVs) can specifically infect and kill tumor cells. Adeno-associated virus (AAV) is a widely-studied OV. This study aimed to construct a tumor-targeted recombinant AAV using genetic engineering technology. MATERIAL AND METHODS The transgene plasmid pAAV-HE1B19K-TE1A was constructed with 4 genes (hTERT, E1A, HKII, and E1B19K) and co-transfected with pAAV-RC and pHelper to tumor cells (HepG2, A549, BGC-803) and normal cells (HUVEC). rAAV was verified with fluorescence microscopy. Quantitative PCR (qPCR) assay was used to test the titer of rAAV in each cell line. Apoptosis was analyzed using qPCR and Western blot assay. MTT was used to detect the effect of rAAV on cell viability. RESULTS The pAAV-HE1B19K-TE1A transgene plasmid was successfully structured. pAAV-HE1B19K-TE1A was highly expressed in all tumor cells. The titers of pAAV-HE1B19K-TE1A in HepG2, A549, and BGC-803 were 7.4×10⁷, 1.4×10⁸, and 1.1×10⁸ gc/μl, respectively. pAAV-HE1B19K-TE1A significantly decreased cell viability of tumor cells compared to that in HUVEC (p<0.05). pAAV-HE1B19K-TE1A remarkably triggered cleaved caspase 3 (C-caspase 3) activity in tumor cells compared to that in untransfected tumor cells (p<0.05). pAAV-HE1B19K-TE1A significantly induced release of cytochrome C (Cyto C) in tumor cells compared to that in untransfected tumor cells (p<0.05). pAAV-HE1B19K-TE1A demonstrated no toxicity to vital tissues of animals. CONCLUSIONS Tumor-targeted rAAV was successfully produced using the Helper-free system with recombinant plasmid, demonstrating high efficacy in decreasing viability of tumor cells without adverse effects on normal cells.
Collapse
Affiliation(s)
- Zhuo-Qing Li
- Chongqing Gaosheng Pharma Co., Ltd., Chongqing, China (mainland)
| | - Hong Shen
- Chongqing HYGEIA Cancer Hospital, Chongqing, China (mainland)
| | - Kun-Xian Shu
- Chongqing Key Laboratory on Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China (mainland)
| | - Jian-Jun Li
- Chongqing Gaosheng Pharma Co., Ltd., Chongqing, China (mainland)
| | - Yin Tang
- Chongqing Western Biomedical Technology Co., Ltd., Chongqing, China (mainland)
| | - Jing-Jing Su
- Chongqing Western Biomedical Technology Co., Ltd., Chongqing, China (mainland)
| | - Jun Yan
- Chongqing Gaosheng Pharma Co., Ltd., Chongqing, China (mainland)
| | - Jie Yang
- Chongqing Key Laboratory on Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China (mainland)
| | - Ze-Qing Wang
- Chongqing Gaosheng Pharma Co., Ltd., Chongqing, China (mainland)
| | - Yan Qiu
- Chongqing Western Biomedical Technology Co., Ltd., Chongqing, China (mainland)
| | - Yong Yang
- Chongqing Gaosheng Pharma Co., Ltd., Chongqing, China (mainland)
| | - Yang Liu
- Chongqing Western Biomedical Technology Co., Ltd., Chongqing, China (mainland)
| | - Yong Zhou
- Chongqing Western Biopharma Technology Co., Ltd., Chongqing, China (mainland)
| |
Collapse
|
155
|
Yelamanchili D, Liu J, Gotto AM, Hurley AE, Lagor WR, Gillard BK, Davidson WS, Pownall HJ, Rosales C. Highly conserved amino acid residues in apolipoprotein A1 discordantly induce high density lipoprotein assembly in vitro and in vivo. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158794. [PMID: 32810603 DOI: 10.1016/j.bbalip.2020.158794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Apolipoprotein A1 (APOA1) is essential to reverse cholesterol transport, a physiologically important process that protects against atherosclerotic cardiovascular disease. APOA1 is a 28 kDa protein comprising multiple lipid-binding amphiphatic helices initialized by proline residues, which are conserved across multiple species. We tested the hypothesis that the evolutionarily conserved residues are essential to high density lipoprotein (HDL) function. APPROACH We used biophysical and physiological assays of the function of APOA1P➔A variants, i.e., rHDL formation via dimyristoylphosphatidylcholine (DMPC) microsolubilization, activation of lecithin: cholesterol acyltransferase, cholesterol efflux from human monocyte-derived macrophages (THP-1) to each variant, and comparison of the size and composition of HDL from APOA1-/- mice receiving adeno-associated virus delivery of each human variant. RESULTS Differences in microsolubilization were profound and showed that conserved prolines, especially those in the C-terminus of APOA1, are essential to efficient rHDL formation. In contrast, P➔A substitutions produced small changes (-25 to +25%) in rates of cholesterol efflux and no differences in the rates of LCAT activation. The HDL particles formed following ectopic expression of each variant in APOA1-/- mice were smaller and more heterogeneous than those from control animals. CONCLUSION Studies of DMPC microsolubilization show that proline residues are essential to the optimal interaction of APOA1 with membranes, the initial step in cholesterol efflux and HDL production. In contrast, P➔A substitutions modestly reduce the cholesterol efflux capacity of APOA1, have no effect on LCAT activation, but according to the profound reduction in the size of HDL formed in vivo, P➔A substitutions alter HDL biogenesis, thereby implicating other cellular and in vivo processes as determinants of HDL metabolism and function.
Collapse
Affiliation(s)
- Dedipya Yelamanchili
- Center for Bioenergetics, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030, USA.
| | - Jing Liu
- Center for Bioenergetics, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030, USA; Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Antonio M Gotto
- Center for Bioenergetics, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030, USA; Weill Cornell Medicine, 1305 York Avenue, New York, NY 10065, USA.
| | - Ayrea E Hurley
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | - Willam R Lagor
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | - Baiba K Gillard
- Center for Bioenergetics, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030, USA; Weill Cornell Medicine, 1305 York Avenue, New York, NY 10065, USA.
| | - W Sean Davidson
- Department of Pathology and Laboratory Medicine, University of Cincinnati, Cincinnati, OH 45237, USA.
| | - Henry J Pownall
- Center for Bioenergetics, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030, USA; Weill Cornell Medicine, 1305 York Avenue, New York, NY 10065, USA.
| | - Corina Rosales
- Center for Bioenergetics, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030, USA; Weill Cornell Medicine, 1305 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
156
|
Sun K, Lin H, Tang Y, Xiang S, Xue J, Yin W, Tan J, Peng H, Alexander PG, Tuan RS, Wang B. Injectable BMP-2 gene-activated scaffold for the repair of cranial bone defect in mice. Stem Cells Transl Med 2020; 9:1631-1642. [PMID: 32785966 PMCID: PMC7695643 DOI: 10.1002/sctm.19-0315] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 06/22/2020] [Accepted: 07/05/2020] [Indexed: 12/20/2022] Open
Abstract
Tissue engineering using adult human mesenchymal stem cells (MSCs) seeded within biomaterial scaffolds has shown the potential to enhance bone healing. Recently, we have developed an injectable, biodegradable methacrylated gelatin‐based hydrogel, which was especially effective in producing scaffolds in situ and allowed the delivery of high viable stem cells and gene vehicles. The well‐demonstrated benefits of recombinant adeno‐associated viral (rAAV) vector, including long‐term gene transfer efficiency and relative safety, combination of gene and cell therapies has been developed in both basic and translational research to support future bone tissue regeneration clinical trials. In this study, we have critically assessed the applicability of single‐step visible light (VL) photocrosslinking fabrication of gelatin scaffold to deliver rAAV encoding human bone morphogenetic protein‐2 (BMP‐2) gene to address the need for sustained BMP‐2 presence localized within scaffolds for the repair of cranial bone defect in mouse model. In this method, rAAV‐BMP‐2 and human bone marrow‐derived MSCs (hBMSCs) were simultaneously included into gelatin scaffolds during scaffold formation by VL illumination. We demonstrated that the subsequent release of rAAV‐BMP‐2 constructs from the scaffold matrix, which resulted in efficient in situ expression of BMP‐2 gene by hBMSCs seeded within the scaffolds, and thus induced their osteogenic differentiation without the supplement of exogenous BMP‐2. The reparative capacity of this novel stem cell‐seeded and gene‐activated scaffolds was further confirmed in the cranial defect in the severe combined immunodeficiency mice, revealed by imaging, histology, and immunohistochemistry at 6 weeks after cranial defect treatment.
Collapse
Affiliation(s)
- Kai Sun
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Hang Lin
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ying Tang
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Shiqi Xiang
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jingwen Xue
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Weifeng Yin
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jian Tan
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | | | - Peter G Alexander
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Rocky S Tuan
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Bing Wang
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
157
|
Bastola P, Song L, Gilger BC, Hirsch ML. Adeno-Associated Virus Mediated Gene Therapy for Corneal Diseases. Pharmaceutics 2020; 12:pharmaceutics12080767. [PMID: 32823625 PMCID: PMC7464341 DOI: 10.3390/pharmaceutics12080767] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/14/2022] Open
Abstract
According to the World Health Organization, corneal diseases are the fourth leading cause of blindness worldwide accounting for 5.1% of all ocular deficiencies. Current therapies for corneal diseases, which include eye drops, oral medications, corrective surgeries, and corneal transplantation are largely inadequate, have undesirable side effects including blindness, and can require life-long applications. Adeno-associated virus (AAV) mediated gene therapy is an optimistic strategy that involves the delivery of genetic material to target human diseases through gene augmentation, gene deletion, and/or gene editing. With two therapies already approved by the United States Food and Drug Administration and 200 ongoing clinical trials, recombinant AAV (rAAV) has emerged as the in vivo viral vector-of-choice to deliver genetic material to target human diseases. Likewise, the relative ease of applications through targeted delivery and its compartmental nature makes the cornea an enticing tissue for AAV mediated gene therapy applications. This current review seeks to summarize the development of AAV gene therapy, highlight preclinical efficacy studies, and discuss potential applications and challenges of this technology for targeting corneal diseases.
Collapse
Affiliation(s)
- Prabhakar Bastola
- Ophthalmology, University of North Carolina, Chapel Hill, NC 27599, USA; (P.B.); (L.S.); (B.C.G.)
- Gene Therapy Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Liujiang Song
- Ophthalmology, University of North Carolina, Chapel Hill, NC 27599, USA; (P.B.); (L.S.); (B.C.G.)
- Gene Therapy Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Brian C. Gilger
- Ophthalmology, University of North Carolina, Chapel Hill, NC 27599, USA; (P.B.); (L.S.); (B.C.G.)
- Clinical Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Matthew L. Hirsch
- Ophthalmology, University of North Carolina, Chapel Hill, NC 27599, USA; (P.B.); (L.S.); (B.C.G.)
- Gene Therapy Center, University of North Carolina, Chapel Hill, NC 27599, USA
- Correspondence: ; Tel.: +1-919-966-0696
| |
Collapse
|
158
|
Rittiner JE, Moncalvo M, Chiba-Falek O, Kantor B. Gene-Editing Technologies Paired With Viral Vectors for Translational Research Into Neurodegenerative Diseases. Front Mol Neurosci 2020; 13:148. [PMID: 32903507 PMCID: PMC7437156 DOI: 10.3389/fnmol.2020.00148] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 07/16/2020] [Indexed: 12/20/2022] Open
Abstract
Diseases of the central nervous system (CNS) have historically been among the most difficult to treat using conventional pharmacological approaches. This is due to a confluence of factors, including the limited regenerative capacity and overall complexity of the brain, problems associated with repeated drug administration, and difficulties delivering drugs across the blood-brain barrier (BBB). Viral-mediated gene transfer represents an attractive alternative for the delivery of therapeutic cargo to the nervous system. Crucially, it usually requires only a single injection, whether that be a gene replacement strategy for an inherited disorder or the delivery of a genome- or epigenome-modifying construct for treatment of CNS diseases and disorders. It is thus understandable that considerable effort has been put towards the development of improved vector systems for gene transfer into the CNS. Different viral vectors are of course tailored to their specific applications, but they generally should share several key properties. The ideal viral vector incorporates a high-packaging capacity, efficient gene transfer paired with robust and sustained expression, lack of oncogenicity, toxicity and pathogenicity, and scalable manufacturing for clinical applications. In this review, we will devote attention to viral vectors derived from human immunodeficiency virus type 1 (lentiviral vectors; LVs) and adeno-associated virus (AAVs). The high interest in these viral delivery systems vectors is due to: (i) robust delivery and long-lasting expression; (ii) efficient transduction into postmitotic cells, including the brain; (iii) low immunogenicity and toxicity; and (iv) compatibility with advanced manufacturing techniques. Here, we will outline basic aspects of LV and AAV biology, particularly focusing on approaches and techniques aiming to enhance viral safety. We will also allocate a significant portion of this review to the development and use of LVs and AAVs for delivery into the CNS, with a focus on the genome and epigenome-editing tools based on clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas 9) and the development of novel strategies for the treatment of neurodegenerative diseases (NDDs).
Collapse
Affiliation(s)
- Joseph Edward Rittiner
- Department of Neurobiology, Duke University Medical Center, Durham, NC, United States
- Viral Vector Core, Duke University Medical Center, Durham, NC, United States
- Duke Center for Advanced Genomic Technologies, Durham, NC, United States
| | - Malik Moncalvo
- Department of Neurobiology, Duke University Medical Center, Durham, NC, United States
- Viral Vector Core, Duke University Medical Center, Durham, NC, United States
- Duke Center for Advanced Genomic Technologies, Durham, NC, United States
| | - Ornit Chiba-Falek
- Department of Neurology, Division of Translational Brain Sciences, Duke University Medical Center, Durham, NC, United States
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC, United States
| | - Boris Kantor
- Department of Neurobiology, Duke University Medical Center, Durham, NC, United States
- Viral Vector Core, Duke University Medical Center, Durham, NC, United States
- Duke Center for Advanced Genomic Technologies, Durham, NC, United States
| |
Collapse
|
159
|
Lane A, Jovanovic K, Shortall C, Ottaviani D, Panes AB, Schwarz N, Guarascio R, Hayes MJ, Palfi A, Chadderton N, Farrar GJ, Hardcastle AJ, Cheetham ME. Modeling and Rescue of RP2 Retinitis Pigmentosa Using iPSC-Derived Retinal Organoids. Stem Cell Reports 2020; 15:67-79. [PMID: 32531192 PMCID: PMC7363745 DOI: 10.1016/j.stemcr.2020.05.007] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/13/2020] [Accepted: 05/13/2020] [Indexed: 12/18/2022] Open
Abstract
RP2 mutations cause a severe form of X-linked retinitis pigmentosa (XLRP). The mechanism of RP2-associated retinal degeneration in humans is unclear, and animal models of RP2 XLRP do not recapitulate this severe phenotype. Here, we developed gene-edited isogenic RP2 knockout (RP2 KO) induced pluripotent stem cells (iPSCs) and RP2 patient-derived iPSC to produce 3D retinal organoids as a human retinal disease model. Strikingly, the RP2 KO and RP2 patient-derived organoids showed a peak in rod photoreceptor cell death at day 150 (D150) with subsequent thinning of the organoid outer nuclear layer (ONL) by D180 of culture. Adeno-associated virus-mediated gene augmentation with human RP2 rescued the degeneration phenotype of the RP2 KO organoids, to prevent ONL thinning and restore rhodopsin expression. Notably, these data show that 3D retinal organoids can be used to model photoreceptor degeneration and test potential therapies to prevent photoreceptor cell death.
Collapse
Affiliation(s)
| | | | - Ciara Shortall
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | | | | | | | | | | | - Arpad Palfi
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Naomi Chadderton
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - G Jane Farrar
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland.
| | | | | |
Collapse
|
160
|
Xu J, DeVries SH, Zhu Y. Quantification of Adeno-Associated Virus with Safe Nucleic Acid Dyes. Hum Gene Ther 2020; 31:1086-1099. [PMID: 32368927 DOI: 10.1089/hum.2020.063] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Adeno-associated virus (AAV) is the most commonly used viral vector for both biological and gene therapeutic applications. Although many methods have been developed to measure quantity attributes of AAV, they are often technically challenging and time-consuming. Here, we report a method to titer AAV with GelGreen® dye, a safe green fluorescence nucleic acid dye recently engineered by Biotium company (Fremont, CA). This method, hereinafter referred to as GelGreen method, provides a fast (∼30 min) and reliable strategy for AAV titration. To validate GelGreen method, we measured genome titer of an AAV reference material AAV8RSM and compared our titration results with those determined by Reference Material Working Group (ARMWG). We showed that GelGreen results and capsid enzyme-linked immunosorbent assay results are comparable with each other. We also showed that GelRed® dye, a red fluorescence dye from Biotium, can be used to directly "visualize" AAV genome titer on a conventional gel imager, presenting an especially direct approach to estimate viral quantity. Finally, we showed that GelGreen and GelRed dyes can also be used to quantify self-complementary AAV (scAAV) and crudely purified AAV samples. In summary, we described a technique to titer AAV by using new generation of safe DNA dyes. This technique is simple, safe, reliable, and cost efficient. It has potential to be broadly applied for quantifying and normalizing AAV viral vectors.
Collapse
Affiliation(s)
- Jian Xu
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Steven H DeVries
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Yongling Zhu
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
161
|
Ramzy A, Tudurí E, Glavas MM, Baker RK, Mojibian M, Fox JK, O'Dwyer SM, Dai D, Hu X, Denroche HC, Edeer N, Gray SL, Verchere CB, Johnson JD, Kieffer TJ. AAV8 Ins1-Cre can produce efficient β-cell recombination but requires consideration of off-target effects. Sci Rep 2020; 10:10518. [PMID: 32601405 PMCID: PMC7324556 DOI: 10.1038/s41598-020-67136-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/03/2020] [Indexed: 12/11/2022] Open
Abstract
In vivo genetic manipulation is used to study the impact of gene deletion or re-expression on β-cell function and organism physiology. Cre-LoxP is a system wherein LoxP sites flanking a gene are recognized by Cre recombinase. Cre transgenic mice are the most prevalent technology used to deliver Cre but many models have caveats of off-target recombination, impaired β-cell function, and high cost of animal production. Inducible estrogen receptor conjugated Cre models face leaky recombination and confounding effects of tamoxifen. As an alternative, we characterize an adeno associated virus (AAV) with a rat insulin 1 promoter driving Cre recombinase (AAV8 Ins1-Cre) that is economical and rapid to implement, and has limited caveats. Intraperitoneal AAV8 Ins1-Cre produced efficient β-cell recombination, alongside some hepatic, exocrine pancreas, α-cell, δ-cell, and hypothalamic recombination. Delivery of lower doses via the pancreatic duct retained good rates of β-cell recombination and limited rates of off-target recombination. Unlike inducible Cre in transgenic mice, AAV8 Ins1-Cre required no tamoxifen and premature recombination was avoided. We demonstrate the utility of this technology by inducing hyperglycemia in inducible insulin knockout mice (Ins1−/−;Ins2f/f). AAV-mediated expression of Cre in β-cells provides an effective alternative to transgenic approaches for inducible knockout studies.
Collapse
Affiliation(s)
- Adam Ramzy
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Eva Tudurí
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada.,Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain.,Instituto de Investigación, Desarrollo e innovación en Biotecnología Sanitaria de Elche (IDiBE), Elche, Spain
| | - Maria M Glavas
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Robert K Baker
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Majid Mojibian
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jessica K Fox
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Shannon M O'Dwyer
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Derek Dai
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Xiaoke Hu
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Heather C Denroche
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nazde Edeer
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sarah L Gray
- Northern Medical Program, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Cameron B Verchere
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - James D Johnson
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Timothy J Kieffer
- Department of Cellular and Physiological Sciences, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada. .,Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
162
|
Meier AF, Fraefel C, Seyffert M. The Interplay between Adeno-Associated Virus and its Helper Viruses. Viruses 2020; 12:E662. [PMID: 32575422 PMCID: PMC7354565 DOI: 10.3390/v12060662] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/15/2020] [Accepted: 06/18/2020] [Indexed: 12/14/2022] Open
Abstract
The adeno-associated virus (AAV) is a small, nonpathogenic parvovirus, which depends on helper factors to replicate. Those helper factors can be provided by coinfecting helper viruses such as adenoviruses, herpesviruses, or papillomaviruses. We review the basic biology of AAV and its most-studied helper viruses, adenovirus type 5 (AdV5) and herpes simplex virus type 1 (HSV-1). We further outline the direct and indirect interactions of AAV with those and additional helper viruses.
Collapse
Affiliation(s)
| | | | - Michael Seyffert
- Institute of Virology, University of Zurich, CH-8057 Zurich, Switzerland; (A.F.M.); (C.F.)
| |
Collapse
|
163
|
Kiss S, Grishanin R, Nguyen A, Rosario R, Greengard JS, Nieves J, Gelfman CM, Gasmi M. Analysis of Aflibercept Expression in NHPs following Intravitreal Administration of ADVM-022, a Potential Gene Therapy for nAMD. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 18:345-353. [PMID: 32671137 PMCID: PMC7341454 DOI: 10.1016/j.omtm.2020.06.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/08/2020] [Indexed: 12/21/2022]
Abstract
Several standard-of-care therapies for the treatment of retinal disease, including aflibercept, inhibit vascular endothelial growth factor (VEGFA). The main shortcoming of these therapies is potential undertreatment due to a lack of compliance resulting from the need for repeated injections. Gene therapy may provide sustained levels of anti-VEGFA proteins in the retina following a single injection. In this nonhuman primate study, we explored whether ADVM-022, a recombinant adeno-associated virus (AAV) vector designed to express aflibercept, could induce anti-VEGFA protein levels comparable with those observed following a single-bolus intravitreal (IVT) injection of the standard-of-care aflibercept recombinant protein. The results demonstrated that intraocular levels of aflibercept measured at 56 days after a single IVT injection of ADVM-022 were equivalent to those in the aflibercept recombinant protein-injected animals measured 21–32 days post-administration. ADVM-022-injected animals exhibited signs of an initial self-limiting inflammatory response, but overall all doses were well tolerated. ADVM-022 administration did not result in systemic exposure to aflibercept at any dose evaluated. These results demonstrated that a single IVT injection of ADVM-022 resulted in safe and efficacious aflibercept levels in the therapeutic range, suggesting the potential of a gene therapy approach for long-term treatment of retinal disease with anti-VEGF therapy.
Collapse
Affiliation(s)
- Szilárd Kiss
- Weill Cornell Medical College, New York, NY, USA
| | | | | | | | | | | | | | - Mehdi Gasmi
- Adverum Biotechnologies, Menlo Park, CA, USA
| |
Collapse
|
164
|
Zhao H, Lee KJ, Daris M, Lin Y, Wolfe T, Sheng J, Plewa C, Wang S, Meisen WH. Creation of a High-Yield AAV Vector Production Platform in Suspension Cells Using a Design-of-Experiment Approach. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 18:312-320. [PMID: 32671134 PMCID: PMC7334306 DOI: 10.1016/j.omtm.2020.06.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/29/2020] [Indexed: 12/26/2022]
Abstract
Recombinant adeno-associated virus (rAAV) vectors are a leading gene delivery platform, but vector manufacturing remains a challenge. New methods are needed to increase rAAV yields and reduce costs. Past efforts to improve rAAV production have focused on optimizing a single variable at a time, but this approach does not account for the interactions of multiple factors that contribute to vector generation. Here, we utilized a design-of-experiment (DOE) methodology to optimize rAAV production in a HEK293T suspension cell system. We simultaneously varied the transgene, packaging, and helper plasmid ratios, the total DNA concentration, and the cell density to systematically evaluate the impact of each variable across 52 conditions. The results revealed a unique set of parameters with a lower concentration of transgene plasmid, a higher concentration of packaging plasmid, and a higher cell density than previously described protocols. Using this DOE-optimized protocol, we achieved unpurified yields approaching 3 × 1014 viral genomes (VGs)/L of cell culture. Additionally, we incorporated polyethylene glycol (PEG)-based virus precipitation, pH-mediated protein removal, and affinity chromatography to our downstream processing, enabling average purified yields of >1 × 1014 VGs/L for rAAV-EGFPs across 13 serotypes and capsid variants.
Collapse
Affiliation(s)
- Huiren Zhao
- Genome Analysis Unit, Amgen Research, South San Francisco, CA, USA
| | - Ki-Jeong Lee
- Genome Analysis Unit, Amgen Research, South San Francisco, CA, USA
| | - Mark Daris
- Genome Analysis Unit, Amgen Research, South San Francisco, CA, USA
| | - Yun Lin
- Genome Analysis Unit, Amgen Research, South San Francisco, CA, USA
| | - Thomas Wolfe
- Genome Analysis Unit, Amgen Research, South San Francisco, CA, USA
| | - Jackie Sheng
- Genome Analysis Unit, Amgen Research, South San Francisco, CA, USA
| | - Cherylene Plewa
- Genome Analysis Unit, Amgen Research, South San Francisco, CA, USA
| | - Songli Wang
- Genome Analysis Unit, Amgen Research, South San Francisco, CA, USA
| | - W Hans Meisen
- Genome Analysis Unit, Amgen Research, South San Francisco, CA, USA
| |
Collapse
|
165
|
Li A, Tanner MR, Lee CM, Hurley AE, De Giorgi M, Jarrett KE, Davis TH, Doerfler AM, Bao G, Beeton C, Lagor WR. AAV-CRISPR Gene Editing Is Negated by Pre-existing Immunity to Cas9. Mol Ther 2020; 28:1432-1441. [PMID: 32348718 PMCID: PMC7264438 DOI: 10.1016/j.ymthe.2020.04.017] [Citation(s) in RCA: 149] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/03/2020] [Accepted: 04/15/2020] [Indexed: 02/07/2023] Open
Abstract
Adeno-associated viral (AAV) vectors are a leading candidate for the delivery of CRISPR-Cas9 for therapeutic genome editing in vivo. However, AAV-based delivery involves persistent expression of the Cas9 nuclease, a bacterial protein. Recent studies indicate a high prevalence of neutralizing antibodies and T cells specific to the commonly used Cas9 orthologs from Streptococcus pyogenes (SpCas9) and Staphylococcus aureus (SaCas9) in humans. We tested in a mouse model whether pre-existing immunity to SaCas9 would pose a barrier to liver genome editing with AAV packaging CRISPR-Cas9. Although efficient genome editing occurred in mouse liver with pre-existing SaCas9 immunity, this was accompanied by an increased proportion of CD8+ T cells in the liver. This cytotoxic T cell response was characterized by hepatocyte apoptosis, loss of recombinant AAV genomes, and complete elimination of genome-edited cells, and was followed by compensatory liver regeneration. Our results raise important efficacy and safety concerns for CRISPR-Cas9-based in vivo genome editing in the liver.
Collapse
Affiliation(s)
- Ang Li
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Mark R Tanner
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ciaran M Lee
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Ayrea E Hurley
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Marco De Giorgi
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kelsey E Jarrett
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Timothy H Davis
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Alexandria M Doerfler
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gang Bao
- Department of Bioengineering, Rice University, Houston, TX 77030, USA.
| | - Christine Beeton
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA.
| | - William R Lagor
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
166
|
Dogbevia G, Grasshoff H, Othman A, Penno A, Schwaninger M. Brain endothelial specific gene therapy improves experimental Sandhoff disease. J Cereb Blood Flow Metab 2020; 40:1338-1350. [PMID: 31357902 PMCID: PMC7238384 DOI: 10.1177/0271678x19865917] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In Tay-Sachs and Sandhoff disease, a deficiency of the lysosomal enzyme β-hexosaminidase causes GM2 and other gangliosides to accumulate in neurons and triggers neurodegeneration. Although the pathology centers on neurons, β-hexosaminidase is mainly expressed outside of neurons, suggesting that gene therapy of these diseases should target non-neuronal cells to reconstitute physiological conditions. Here, we tested in Hexb-/- mice, a model of Sandhoff disease, to determine whether endothelial expression of the genes for human β-hexosaminidase subunit A and B (HEXA, HEXB) is able to reduce disease symptoms and prolong survival of the affected mice. The brain endothelial selective vectors AAV-BR1-CAG-HEXA and AAV-BR1-CAG-HEXB transduced brain endothelial cells, which subsequently released β-hexosaminidase enzyme. In vivo intravenous administration of the gene vectors to adult and neonatal mice prolonged survival. They improved neurological function and reduced accumulation of the ganglioside GM2 and the glycolipid GA2 as well as astrocytic activation. Overall, the data demonstrate that endothelial cells are a suitable target for intravenous gene therapy of GM2 gangliosidoses and possibly other lysosomal storage disorders.
Collapse
Affiliation(s)
- Godwin Dogbevia
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany.,Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, Canada
| | - Hanna Grasshoff
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Alaa Othman
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| | - Anke Penno
- Department of Cell Biology of Lipids, LIMES Institute, University of Bonn, Bonn, Germany
| | - Markus Schwaninger
- Institute for Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Lübeck, Germany
| |
Collapse
|
167
|
Cabanes-Creus M, Westhaus A, Navarro RG, Baltazar G, Zhu E, Amaya AK, Liao SHY, Scott S, Sallard E, Dilworth KL, Rybicki A, Drouyer M, Hallwirth CV, Bennett A, Santilli G, Thrasher AJ, Agbandje-McKenna M, Alexander IE, Lisowski L. Attenuation of Heparan Sulfate Proteoglycan Binding Enhances In Vivo Transduction of Human Primary Hepatocytes with AAV2. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 17:1139-1154. [PMID: 32490035 PMCID: PMC7260615 DOI: 10.1016/j.omtm.2020.05.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 05/07/2020] [Indexed: 12/19/2022]
Abstract
Use of the prototypical adeno-associated virus type 2 (AAV2) capsid delivered unexpectedly modest efficacy in an early liver-targeted gene therapy trial for hemophilia B. This result is consistent with subsequent data generated in chimeric mouse-human livers showing that the AAV2 capsid transduces primary human hepatocytes in vivo with low efficiency. In contrast, novel variants generated by directed evolution in the same model, such as AAV-NP59, transduce primary human hepatocytes with high efficiency. While these empirical data have immense translational implications, the mechanisms underpinning this enhanced AAV capsid transduction performance in primary human hepatocytes are yet to be fully elucidated. Remarkably, AAV-NP59 differs from the prototypical AAV2 capsid by only 11 aa and can serve as a tool to study the correlation between capsid sequence/structure and vector function. Using two orthogonal vectorological approaches, we have determined that just 2 of the 11 changes present in AAV-NP59 (T503A and N596D) account for the enhanced transduction performance of this capsid variant in primary human hepatocytes in vivo, an effect that we have associated with attenuation of heparan sulfate proteoglycan (HSPG) binding affinity. In support of this hypothesis, we have identified, using directed evolution, two additional single amino acid substitution AAV2 variants, N496D and N582S, which are highly functional in vivo. Both substitution mutations reduce AAV2's affinity for HSPG. Finally, we have modulated the ability of AAV8, a highly murine-hepatotropic serotype, to interact with HSPG. The results support our hypothesis that enhanced HSPG binding can negatively affect the in vivo function of otherwise strongly hepatotropic variants and that modulation of the interaction with HSPG is critical to ensure maximum efficiency in vivo. The insights gained through this study can have powerful implications for studies into AAV biology and capsid development for preclinical and clinical applications targeting liver and other organs.
Collapse
Affiliation(s)
- Marti Cabanes-Creus
- Translational Vectorology Research Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Adrian Westhaus
- Translational Vectorology Research Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia.,Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Renina Gale Navarro
- Translational Vectorology Research Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Grober Baltazar
- Translational Vectorology Research Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Erhua Zhu
- Translational Vectorology Research Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia.,Gene Therapy Research Unit, Children's Medical Research Institute & The Children's Hospital at Westmead, University of Sydney, Westmead, NSW 2145, Australia
| | - Anais K Amaya
- Gene Therapy Research Unit, Children's Medical Research Institute & The Children's Hospital at Westmead, University of Sydney, Westmead, NSW 2145, Australia
| | - Sophia H Y Liao
- Translational Vectorology Research Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Suzanne Scott
- Gene Therapy Research Unit, Children's Medical Research Institute & The Children's Hospital at Westmead, University of Sydney, Westmead, NSW 2145, Australia.,Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, NSW 2113, Australia
| | - Erwan Sallard
- Translational Vectorology Research Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Kimberley L Dilworth
- Translational Vectorology Research Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Arkadiusz Rybicki
- Translational Vectorology Research Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Matthieu Drouyer
- Translational Vectorology Research Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
| | - Claus V Hallwirth
- Gene Therapy Research Unit, Children's Medical Research Institute & The Children's Hospital at Westmead, University of Sydney, Westmead, NSW 2145, Australia
| | - Antonette Bennett
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, University of Florida, Gainesville, FL 32610, USA
| | - Giorgia Santilli
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Adrian J Thrasher
- Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Mavis Agbandje-McKenna
- Department of Biochemistry and Molecular Biology, Center for Structural Biology, University of Florida, Gainesville, FL 32610, USA
| | - Ian E Alexander
- Gene Therapy Research Unit, Children's Medical Research Institute & The Children's Hospital at Westmead, University of Sydney, Westmead, NSW 2145, Australia.,Discipline of Child and Adolescent Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Leszek Lisowski
- Translational Vectorology Research Unit, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia.,Vector and Genome Engineering Facility, Children's Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia.,Military Institute of Hygiene and Epidemiology, Biological Threats Identification and Countermeasure Center, 24-100 Puławy, Poland
| |
Collapse
|
168
|
Derman RC, Bass CE, Ferrario CR. Effects of hM4Di activation in CamKII basolateral amygdala neurons and CNO treatment on sensory-specific vs. general PIT: refining PIT circuits and considerations for using CNO. Psychopharmacology (Berl) 2020; 237:1249-1266. [PMID: 31980843 PMCID: PMC7196513 DOI: 10.1007/s00213-020-05453-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 01/05/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Pavlovian stimuli can influence instrumental behaviors via phenomena such as Pavlovian-to-instrumental transfer (PIT). PIT arises via dissociable processes as sensory-specific PIT (SS-PIT) and general PIT. The basolateral amygdala (BLA) mediates SS-PIT, but not general PIT. However, the specific BLA neuronal populations involved are unknown. AIMS To determine the contribution of glutamatergic BLA neurons to the expression of SS-PIT and to the recall of sensory-specific properties of stimulus-outcome associations. METHODS BLA neurons were transduced with virus containing either GFP or hM4Di, driven by the CamKII promoter. Rats were then tested for SS and general PIT and subsequently for expression of Pavlovian outcome devaluation effects and conditioned taste aversion following injections of vehicle or clozapine-N-oxide (CNO, the hM4Di agonist). RESULTS CNO selectively blocked SS-PIT in the hM4Di-expressing group, but not controls, without altering expression of Pavlovian outcome devaluation or sensory-specific taste aversion in either group. Unexpectedly, CNO disrupted general PIT in both groups. CONCLUSIONS CamKII BLA neurons mediate the expression of SS-PIT by enabling Pavlovian stimuli to trigger recall of the correct action-outcome associations rather than by mediating recall of the sensory-specific properties of the stimulus-outcome association. Separately, our data demonstrate that CNO alone is sufficient to disrupt affective, but not sensory-specific processes, an effect that was not due to generalized motor disruption. This non-specific effect on general PIT may be related to CNO-induced shifts in internal state. Together, these data identify BLA CamKII neurons as critical for the expression of SS-PIT and reveal important considerations for using CNO to study general affective motivation.
Collapse
Affiliation(s)
- Rifka C. Derman
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA;,Department of Behavioral Neuroscience, Oregon Health and Sciences University, Portland, OR, 97239
| | - Caroline E. Bass
- Department of Pharmacology and Toxicology, State University of New York at Buffalo, Buffalo, NY, USA
| | - Carrie R. Ferrario
- Department of Behavioral Neuroscience, Oregon Health and Sciences University, Portland, OR, 97239;,Department of Pharmacology, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
169
|
Maurer AC, Weitzman MD. Adeno-Associated Virus Genome Interactions Important for Vector Production and Transduction. Hum Gene Ther 2020; 31:499-511. [PMID: 32303138 PMCID: PMC7232694 DOI: 10.1089/hum.2020.069] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 04/16/2020] [Indexed: 12/12/2022] Open
Abstract
Recombinant adeno-associated virus has emerged as one of the most promising gene therapy delivery vectors. Development of these vectors took advantage of key features of the wild-type adeno-associated virus (AAV), enabled by basic studies of the underlying biology and requirements for transcription, replication, and packaging of the viral genome. Each step in generating and utilizing viral vectors involves numerous molecular interactions that together determine the efficiency of vector production and gene delivery. Once delivered into the cell, interactions with host proteins will determine the fate of the viral genome, and these will impact the intended goal of gene delivery. Here, we provide an overview of known interactions of the AAV genome with viral and cellular proteins involved in its amplification, packaging, and expression. Further appreciation of how the AAV genome interacts with host factors will enhance how this simple virus can be harnessed for an array of vector purposes that benefit human health.
Collapse
Affiliation(s)
- Anna C. Maurer
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Matthew D. Weitzman
- Division of Protective Immunity, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Division of Cancer Pathobiology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
170
|
Khan N, Cheemadan S, Saxena H, Bammidi S, Jayandharan GR. MicroRNA-based recombinant AAV vector assembly improves efficiency of suicide gene transfer in a murine model of lymphoma. Cancer Med 2020; 9:3188-3201. [PMID: 32108448 PMCID: PMC7196056 DOI: 10.1002/cam4.2935] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 02/01/2020] [Accepted: 02/04/2020] [Indexed: 12/12/2022] Open
Abstract
Recent success in clinical trials with recombinant Adeno-associated virus (AAV)-based gene therapy has redirected efforts in optimizing AAV assembly and production, to improve its potency. We reasoned that inclusion of a small RNA during vector assembly, which specifically alters the phosphorylation status of the packaging cells may be beneficial. We thus employed microRNAs (miR-431, miR-636) identified by their ability to bind AAV genome and also dysregulate Mitogen-activated protein kinase (MAPK) signaling during vector production, by a global transcriptome study in producer cells. A modified vector assembly protocol incorporating a plasmid encoding these microRNAs was developed. AAV2 vectors packaged in the presence of microRNA demonstrated an improved gene transfer potency by 3.7-fold, in vitro. Furthermore, AAV6 serotype vectors encoding an inducible caspase 9 suicide gene, packaged in the presence of miR-636, showed a significant tumor regression (~2.2-fold, P < .01) in a syngeneic murine model of T-cell lymphoma. Taken together, we have demonstrated a simple but effective microRNA-based approach to improve the assembly and potency of suicide gene therapy with AAV vectors.
Collapse
Affiliation(s)
- Nusrat Khan
- Department of Biological Sciences and BioengineeringIndian Institute of TechnologyKanpurUPIndia
| | - Sabna Cheemadan
- Centre for Stem Cell ResearchChristian Medical CollegeVelloreTNIndia
| | - Himanshi Saxena
- Department of Biological Sciences and BioengineeringIndian Institute of TechnologyKanpurUPIndia
| | - Sridhar Bammidi
- Department of Biological Sciences and BioengineeringIndian Institute of TechnologyKanpurUPIndia
| | - Giridhara R. Jayandharan
- Department of Biological Sciences and BioengineeringIndian Institute of TechnologyKanpurUPIndia
- Centre for Stem Cell ResearchChristian Medical CollegeVelloreTNIndia
- Department of HematologyChristian Medical CollegeVelloreTNIndia
| |
Collapse
|
171
|
Zhang L, Rossi A, Lange L, Meumann N, Koitzsch U, Christie K, Nesbit MA, Moore CBT, Hacker UT, Morgan M, Hoffmann D, Zengel J, Carette JE, Schambach A, Salvetti A, Odenthal M, Büning H. Capsid Engineering Overcomes Barriers Toward Adeno-Associated Virus Vector-Mediated Transduction of Endothelial Cells. Hum Gene Ther 2020; 30:1284-1296. [PMID: 31407607 DOI: 10.1089/hum.2019.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Endothelial cells (EC) are targets in gene therapy and regenerative medicine, but they are inefficiently transduced with adeno-associated virus (AAV) vectors of various serotypes. To identify barriers hampering efficient transduction and to develop an optimized AAV variant for EC transduction, we screened an AAV serotype 2-based peptide display library on primary human macrovascular EC. Using a new high-throughput selection and monitoring protocol, we identified a capsid variant, AAV-VEC, which outperformed the parental serotype as well as first-generation targeting vectors in EC transduction. AAV vector uptake was improved, resulting in significantly higher transgene expression levels from single-stranded vector genomes detectable within a few hours post-transduction. Notably, AAV-VEC transduced not only proliferating EC but also quiescent EC, although higher particle-per-cell ratios had to be applied. Also, induced pluripotent stem cell-derived endothelial progenitor cells, a novel tool in regenerative medicine and gene therapy, were highly susceptible toward AAV-VEC transduction. Thus, overcoming barriers by capsid engineering significantly expands the AAV tool kit for a wide range of applications targeting EC.
Collapse
Affiliation(s)
- L Zhang
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - A Rossi
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,International Center for Research in Infectiology (CIRI), INSERM U1111, CNRS UMR5308, Lyon, France
| | - L Lange
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - N Meumann
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - U Koitzsch
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - K Christie
- Biomedical Sciences Research Institute, Ulster University, Ulster, Northern Ireland
| | - M A Nesbit
- Biomedical Sciences Research Institute, Ulster University, Ulster, Northern Ireland
| | - C B T Moore
- Biomedical Sciences Research Institute, Ulster University, Ulster, Northern Ireland.,Avellino Labs USA, Menlo Park, California
| | - U T Hacker
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,1st Medical Department, University Cancer Center Leipzig, University Leipzig Medical Center, Leipzig, Germany
| | - M Morgan
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - D Hoffmann
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany
| | - J Zengel
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California
| | - J E Carette
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California
| | - A Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany.,Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - A Salvetti
- International Center for Research in Infectiology (CIRI), INSERM U1111, CNRS UMR5308, Lyon, France
| | - M Odenthal
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Institute of Pathology, University Hospital of Cologne, Cologne, Germany
| | - H Büning
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.,Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.,REBIRTH Cluster of Excellence, Hannover Medical School, Hannover, Germany.,German Center for Infection Research (DZIF), Partner Sites Bonn-Cologne and Hannover-Braunschweig, Braunschweig, Germany
| |
Collapse
|
172
|
Wu Y, Mei T, Jiang L, Han Z, Dong R, Yang T, Xu F. Development of Versatile and Flexible Sf9 Packaging Cell Line-Dependent OneBac System for Large-Scale Recombinant Adeno-Associated Virus Production. Hum Gene Ther Methods 2020; 30:172-183. [PMID: 31566024 PMCID: PMC6834060 DOI: 10.1089/hgtb.2019.123] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Recombinant adeno-associated viruses (rAAVs) are excellent vectors for gene delivery. However, current Sf9/Cap-Rep packaging cell line-dependent OneBac systems still lack versatility and flexibility for large-scale production of rAAVs. In this study, we developed an improved OneBac system that includes a novel dual-function baculovirus expression vector (BEV) termed BEV/Cap-(ITR-GOI) that carries both the AAV Cap gene and rAAV genome inverted terminal repeat (ITR) sequences flanking the gene of interest (GOI), a versatile Sf9-GFP/Rep packaging cell line that harbors silent copies of the AAV2 Rep gene that can be expressed after BEV infection, and constitutively expressed green fluorescent protein (GFP) reporter genes to facilitate cell line screening. The BEV/Cap-(ITR-GOI) construct allows flexibility to switch among different Cap gene serotypes using simple BEV reconstruction, and is stable for at least five serial passages. Furthermore, the Sf9-GFP/Rep stable cell line is versatile for production of different rAAV serotypes. The yield levels for rAAV2, rAAV8, and rAAV9 exceeded 105 vector genomes (VG) per cell, which is similar to other currently available large-scale rAAV production systems. The new Bac system-derived rAAVs have biophysical properties similar to HEK293 cell-derived rAAVs, as well as high quality and activity. In summary, the novel Sf9-GFP/Rep packaging cell line-dependent OneBac system can facilitate large-scale rAAV production and rAAV-based gene therapy.
Collapse
Affiliation(s)
- Yang Wu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Brain Research Center, Wuhan Institute of Physics and Mathematics, Center for Excellence in Brain Science and Intelligent Technology, Chinese Academy of Sciences, Wuhan, P.R. China
| | - Ting Mei
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Brain Research Center, Wuhan Institute of Physics and Mathematics, Center for Excellence in Brain Science and Intelligent Technology, Chinese Academy of Sciences, Wuhan, P.R. China
| | - Liangyu Jiang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Brain Research Center, Wuhan Institute of Physics and Mathematics, Center for Excellence in Brain Science and Intelligent Technology, Chinese Academy of Sciences, Wuhan, P.R. China
| | - Zengpeng Han
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Brain Research Center, Wuhan Institute of Physics and Mathematics, Center for Excellence in Brain Science and Intelligent Technology, Chinese Academy of Sciences, Wuhan, P.R. China
| | - Ruping Dong
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Brain Research Center, Wuhan Institute of Physics and Mathematics, Center for Excellence in Brain Science and Intelligent Technology, Chinese Academy of Sciences, Wuhan, P.R. China
| | - Tian Yang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Brain Research Center, Wuhan Institute of Physics and Mathematics, Center for Excellence in Brain Science and Intelligent Technology, Chinese Academy of Sciences, Wuhan, P.R. China
| | - Fuqiang Xu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Brain Research Center, Wuhan Institute of Physics and Mathematics, Center for Excellence in Brain Science and Intelligent Technology, Chinese Academy of Sciences, Wuhan, P.R. China
| |
Collapse
|
173
|
Suzuki T, Morimoto N, Akaike A, Osakada F. Multiplex Neural Circuit Tracing With G-Deleted Rabies Viral Vectors. Front Neural Circuits 2020; 13:77. [PMID: 31998081 PMCID: PMC6967742 DOI: 10.3389/fncir.2019.00077] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 11/14/2019] [Indexed: 12/26/2022] Open
Abstract
Neural circuits interconnect to organize large-scale networks that generate perception, cognition, memory, and behavior. Information in the nervous system is processed both through parallel, independent circuits and through intermixing circuits. Analyzing the interaction between circuits is particularly indispensable for elucidating how the brain functions. Monosynaptic circuit tracing with glycoprotein (G) gene-deleted rabies viral vectors (RVΔG) comprises a powerful approach for studying the structure and function of neural circuits. Pseudotyping of RVΔG with the foreign envelope EnvA permits expression of transgenes such as fluorescent proteins, genetically-encoded sensors, or optogenetic tools in cells expressing TVA, a cognate receptor for EnvA. Trans-complementation with rabies virus glycoproteins (RV-G) enables trans-synaptic labeling of input neurons directly connected to the starter neurons expressing both TVA and RV-G. However, it remains challenging to simultaneously map neuronal connections from multiple cell populations and their interactions between intermixing circuits solely with the EnvA/TVA-mediated RV tracing system in a single animal. To overcome this limitation, here, we multiplexed RVΔG circuit tracing by optimizing distinct viral envelopes (oEnvX) and their corresponding receptors (oTVX). Based on the EnvB/TVB and EnvE/DR46-TVB systems derived from the avian sarcoma leukosis virus (ASLV), we developed optimized TVB receptors with lower or higher affinity (oTVB-L or oTVB-H) and the chimeric envelope oEnvB, as well as an optimized TVE receptor with higher affinity (oTVE-H) and its chimeric envelope oEnvE. We demonstrated independence of RVΔG infection between the oEnvA/oTVA, oEnvB/oTVB, and oEnvE/oTVE systems and in vivo proof-of-concept for multiplex circuit tracing from two distinct classes of layer 5 neurons targeting either other cortical or subcortical areas. We also successfully labeled common input of the lateral geniculate nucleus to both cortico-cortical layer 5 neurons and inhibitory neurons of the mouse V1 with multiplex RVΔG tracing. These oEnvA/oTVA, oEnvB/oTVB, and oEnvE/oTVE systems allow for differential labeling of distinct circuits to uncover the mechanisms underlying parallel processing through independent circuits and integrated processing through interaction between circuits in the brain.
Collapse
Affiliation(s)
- Toshiaki Suzuki
- Laboratory of Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Nao Morimoto
- Laboratory of Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan.,Laboratory of Neural Information Processing, Institute for Advanced Research, Nagoya University, Nagoya, Japan
| | - Akinori Akaike
- Laboratory of Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Fumitaka Osakada
- Laboratory of Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan.,Laboratory of Neural Information Processing, Institute for Advanced Research, Nagoya University, Nagoya, Japan.,Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Nagoya, Japan.,PRESTO/CREST, Japan Science and Technology Agency, Saitama, Japan
| |
Collapse
|
174
|
Giamouridis D, Gao MH, Lai NC, Guo T, Miyanohara A, Blankesteijn WM, Biessen EAL, Hammond HK. Urocortin 2 Gene Transfer Improves Heart Function in Aged Mice. Mol Ther 2020; 28:180-188. [PMID: 31676153 DOI: 10.1016/j.ymthe.2019.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/30/2019] [Accepted: 10/04/2019] [Indexed: 10/25/2022] Open
Abstract
Prevalence of left ventricular (LV) systolic and diastolic dysfunction increases with aging. We previously reported that urocortin 2 (Ucn2) gene transfer increases heart function in mice with heart failure with reduced ejection fraction. Here, we test the hypotheses that (1) Ucn2 gene transfer will increase LV function in aged mice and that (2) Ucn2 gene transfer given in early life will prevent age-related LV dysfunction. Nineteen-month-old (treatment study) and 3-month-old (prevention study) mice received Ucn2 gene transfer or saline. LV function was examined 3-4 months (treatment study) or 20 months (prevention study) after Ucn2 gene transfer or saline injection. In both the treatment and prevention strategies, Ucn2 gene transfer increased ejection fraction, reduced LV volume, increased LV peak -dP/dt and peak +dP/dt, and reduced global longitudinal strain. Ucn2 gene transfer-in both treatment and prevention strategies-was associated with higher levels of LV SERCA2a protein, reduced phosphorylation of LV CaMKIIa, and reduced LV α-skeletal actin mRNA expression (reflecting reduced cardiac stress). In conclusion, Ucn2 gene transfer restores normal cardiac function in mice with age-related LV dysfunction and prevents development of LV dysfunction.
Collapse
Affiliation(s)
- Dimosthenis Giamouridis
- Department of Medicine, University of California, San Diego, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA; Department of Medicine, University of California San Diego, San Diego, CA, USA; Department of Pharmacology and Toxicology, Cardiovascular Research Institute Maastricht, Maastricht University, the Netherlands; Department of Pathology, Cardiovascular Research Institute, Maastricht University, the Netherlands
| | - Mei Hua Gao
- Department of Medicine, University of California, San Diego, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA; Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - N Chin Lai
- Department of Medicine, University of California, San Diego, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA; Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - Tracy Guo
- Department of Medicine, University of California, San Diego, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA; Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - Atsushi Miyanohara
- Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - W Matthijs Blankesteijn
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute Maastricht, Maastricht University, the Netherlands
| | - Erik A L Biessen
- Department of Pathology, Cardiovascular Research Institute, Maastricht University, the Netherlands; Institute for Molecular Cardiovascular Research, RWTH Aachen University, Aachen, Germany
| | - H Kirk Hammond
- Department of Medicine, University of California, San Diego, Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA; Department of Medicine, University of California San Diego, San Diego, CA, USA.
| |
Collapse
|
175
|
Li X, Chu G, Zhu F, Zheng Z, Wang X, Zhang G, Wang F. Epoxyeicosatrienoic acid prevents maladaptive remodeling in pressure overload by targeting calcineurin/NFAT and Smad-7. Exp Cell Res 2020; 386:111716. [PMID: 31734152 DOI: 10.1016/j.yexcr.2019.111716] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 01/24/2023]
Abstract
BACKGROUND Emerging evidence demonstrates that epoxyeicosatrienoic acids (EETs) as important active eicosanoids that regulate cardiovascular homeostasis, but the mechanisms underlying its favorable anti-hypertrophic benefits in overpressure model remain obscure. METHODS AND RESULTS Four weeks after transverse aortic constriction (TAC), TAC mice developed maladaptive cardiac hypertrophy and consequent cardiac failure. Conversely, a cardiotropic adeno-associated viral vector (AAV9) encoding CYP2J2 prevented transverse aortic constriction-induced cardiac hypertrophy with preserved ejection fraction. EET also conferred protection against phenylephrine-induced hypertrophy in H9c2 cardiomyoblasts. Further investigations indicate CYP2J2/EET exerts protection against cardiac hypertrophy through opposing the increase of intracellular Ca2+ level and Ca2+-mediated calcineurin/NFATc3 signaling. Meanwhile, extended myocardial fibrosis in TAC mice was also effectively abolished with the administration of AAV9-2J2. Intriguingly, TAC mice display activated TGF-β/Samd-3 signaling with decreased Smad-7 expression, whereas AAV9-2J2 attenuated the phosphorylation of Smad-3 without altering TGF-β expression, whilst preservation of Smad-7. Subsequently, the differentiation of cardiac fibroblasts into myofibroblasts in the presence of TGF-β1 stimulation was significantly disrupted with EET treatment, accompanied by declined Smad-3 activation and collagen production, whereas inhibition of Smad-7 with SiRNA Smad-7 substantially abrogated these effects of EET on cardiac fibroblasts. CONCLUSIONS EET has synergistic actions on cardiomyocytes and cardiac fibroblasts, preventing cardiac hypertrophy through inhibition of Ca2+-mediated calcineurin/NFATc3 signaling cascades, and ameliorating myocardial fibrosis dependent on Smad-7. This work further extends the potential mechanisms of EET, providing a novel therapeutic approach for the treatment of pathological remodeling and heart failure.
Collapse
Affiliation(s)
- Xuguang Li
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, People's Republic of China
| | - Guang Chu
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, People's Republic of China
| | - Feng Zhu
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, People's Republic of China
| | - Zhifeng Zheng
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, People's Republic of China
| | - Xiang Wang
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, People's Republic of China
| | - Guobing Zhang
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, People's Republic of China
| | - Fang Wang
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200080, People's Republic of China.
| |
Collapse
|
176
|
Preparation and Administration of Adeno-associated Virus Vectors for Corneal Gene Delivery. Methods Mol Biol 2020; 2145:77-102. [PMID: 32542602 DOI: 10.1007/978-1-0716-0599-8_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Gene delivery approaches using adeno-associated virus (AAV) vectors are currently the preferred method for human gene therapy applications and have demonstrated success in clinical trials for a diverse set of diseases including retinal blindness. To date, no clinical trials using AAV gene therapy in the anterior eye have been initiated; however, corneal gene delivery appears to be an attractive approach for treating both corneal and ocular surface diseases. Multiple preclinical studies by our lab and others have demonstrated efficient AAV vector-mediated gene delivery to the cornea for immunomodulation, anti-vascularization, and enzyme supplementation. Interestingly, the route of AAV vector administration and nuances such as administered volume influence vector tropism and transduction efficiency. In this chapter, a detailed protocol for AAV vector production and specific approaches for AAV-mediated gene transfer to the cornea via subconjunctival and intrastromal injections are described.
Collapse
|
177
|
Chen F, Lai J, Zhu Y, He M, Hou H, Wang J, Chen C, Wang DW, Tang J. Cardioprotective Effect of Decorin in Type 2 Diabetes. Front Endocrinol (Lausanne) 2020; 11:479258. [PMID: 33365011 PMCID: PMC7750479 DOI: 10.3389/fendo.2020.479258] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 10/29/2020] [Indexed: 01/14/2023] Open
Abstract
Cardiomyopathy is the leading cause of increased mortality in diabetes. In the present study, we investigated the effects of decorin (DCN) gene therapy on left ventricular function, cardiac inflammation and fibrosis in type 2 diabetes. Type 2 diabetes was induced in male Wistar rats by high fat diet (HFD, 60% of calories as fat) and STZ (20 mg/kg, intraperitoneal). Diabetic rats were divided into (n=6 for each group) the control group, the GFP-treated group and the DCN-treated group, received intravenous injection of saline solution, recombinant adeno-associated viral (rAAV)-GFP, and rAAV-DCN, respectively. We evaluated cardiac inflammation, fibrosis, left ventricular function at 6 months after gene delivery. Results turned out that rAAV-DCN treatment attenuated diabetic cardiomyopathy with improved LV function compared with control animals, which might be related to the reduced cardiac inflammation and fibrosis. These protective effects were associated with TGFβ1 pathway (ERK1/2 and smad-2) and NF-κB pathway, which may due to the decreased activation level of IGF-IR, increased expression of PKC-α and Hsp70. In conclusion, our results show that rAAV-mediated DCN therapy may be beneficial in the treatment of Diabetic Cardiomyopathy.
Collapse
Affiliation(s)
- Fuqiong Chen
- Department of Endocrinology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinsheng Lai
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanfang Zhu
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Mengying He
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huiying Hou
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jiarong Tang, ; Dao Wen Wang,
| | - Jiarong Tang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jiarong Tang, ; Dao Wen Wang,
| |
Collapse
|
178
|
Bravo-Hernandez M, Tadokoro T, Navarro MR, Platoshyn O, Kobayashi Y, Marsala S, Miyanohara A, Juhas S, Juhasova J, Skalnikova H, Tomori Z, Vanicky I, Studenovska H, Proks V, Chen P, Govea-Perez N, Ditsworth D, Ciacci JD, Gao S, Zhu W, Ahrens ET, Driscoll SP, Glenn TD, McAlonis-Downes M, Da Cruz S, Pfaff SL, Kaspar BK, Cleveland DW, Marsala M. Spinal subpial delivery of AAV9 enables widespread gene silencing and blocks motoneuron degeneration in ALS. Nat Med 2019; 26:118-130. [PMID: 31873312 DOI: 10.1038/s41591-019-0674-1] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 10/30/2019] [Indexed: 11/09/2022]
Abstract
Gene silencing with virally delivered shRNA represents a promising approach for treatment of inherited neurodegenerative disorders. In the present study we develop a subpial technique, which we show in adult animals successfully delivers adeno-associated virus (AAV) throughout the cervical, thoracic and lumbar spinal cord, as well as brain motor centers. One-time injection at cervical and lumbar levels just before disease onset in mice expressing a familial amyotrophic lateral sclerosis (ALS)-causing mutant SOD1 produces long-term suppression of motoneuron disease, including near-complete preservation of spinal α-motoneurons and muscle innervation. Treatment after disease onset potently blocks progression of disease and further α-motoneuron degeneration. A single subpial AAV9 injection in adult pigs or non-human primates using a newly designed device produces homogeneous delivery throughout the cervical spinal cord white and gray matter and brain motor centers. Thus, spinal subpial delivery in adult animals is highly effective for AAV-mediated gene delivery throughout the spinal cord and supraspinal motor centers.
Collapse
Affiliation(s)
- Mariana Bravo-Hernandez
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA
| | - Takahiro Tadokoro
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA.,Department of Anesthesiology, University of the Ryukyus, Okinawa, Japan
| | - Michael R Navarro
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA
| | - Oleksandr Platoshyn
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA
| | - Yoshiomi Kobayashi
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA
| | - Silvia Marsala
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA
| | - Atsushi Miyanohara
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA.,Vector Core Laboratory, University of California San Diego, La Jolla, CA, USA
| | - Stefan Juhas
- Institute of Animal Physiology and Genetics, AS CR v.v.i., Liběchov, Czech Republic
| | - Jana Juhasova
- Institute of Animal Physiology and Genetics, AS CR v.v.i., Liběchov, Czech Republic
| | - Helena Skalnikova
- Institute of Animal Physiology and Genetics, AS CR v.v.i., Liběchov, Czech Republic
| | - Zoltan Tomori
- Dept. of Biophysics, Institute of Experimental Physics, Slovak Academy of Sciences, Kosice, Slovakia
| | - Ivo Vanicky
- Institute of Neurobiology, Slovak Academy of Sciences, Kosice, Slovakia
| | - Hana Studenovska
- Department of Biomaterials and Bioanalogous System, Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Vladimir Proks
- Department of Biomaterials and Bioanalogous System, Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - PeiXi Chen
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA
| | - Noe Govea-Perez
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA.,Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Dara Ditsworth
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Joseph D Ciacci
- Department of Neurosurgery, University of California San Diego, La Jolla, CA, USA
| | - Shang Gao
- Department of Radiology, University of California San Diego, La Jolla, CA, USA
| | - Wenlian Zhu
- Department of Radiology, University of California San Diego, La Jolla, CA, USA
| | - Eric T Ahrens
- Department of Radiology, University of California San Diego, La Jolla, CA, USA
| | - Shawn P Driscoll
- Gene Expression Laboratory and the Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Thomas D Glenn
- Gene Expression Laboratory and the Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Melissa McAlonis-Downes
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Sandrine Da Cruz
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Samuel L Pfaff
- Gene Expression Laboratory and the Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | - Don W Cleveland
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Martin Marsala
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California San Diego, La Jolla, CA, USA. .,Institute of Neurobiology, Slovak Academy of Sciences, Kosice, Slovakia.
| |
Collapse
|
179
|
Jin Q, Qiao C, Li J, Li J, Xiao X. An engineered serum albumin-binding AAV9 capsid achieves improved liver transduction after intravenous delivery in mice. Gene Ther 2019; 27:237-244. [DOI: 10.1038/s41434-019-0107-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/29/2019] [Accepted: 10/04/2019] [Indexed: 12/14/2022]
|
180
|
Siew SM, Cunningham SC, Zhu E, Tay SS, Venuti E, Bolitho C, Alexander IE. Prevention of Cholestatic Liver Disease and Reduced Tumorigenicity in a Murine Model of PFIC Type 3 Using Hybrid AAV-piggyBac Gene Therapy. Hepatology 2019; 70:2047-2061. [PMID: 31099022 DOI: 10.1002/hep.30773] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 05/06/2019] [Indexed: 12/14/2022]
Abstract
Recombinant adeno-associated viral (rAAV) vectors are highly promising vehicles for liver-targeted gene transfer, with therapeutic efficacy demonstrated in preclinical models and clinical trials. Progressive familial intrahepatic cholestasis type 3 (PFIC3), an inherited juvenile-onset, cholestatic liver disease caused by homozygous mutation of the ABCB4 gene, may be a promising candidate for rAAV-mediated liver-targeted gene therapy. The Abcb4-/- mice model of PFIC3, with juvenile mice developing progressive cholestatic liver injury due to impaired biliary phosphatidylcholine excretion, resulted in cirrhosis and liver malignancy. Using a conventional rAAV strategy, we observed markedly blunted rAAV transduction in adult Abcb4-/- mice with established liver disease, but not in disease-free, wild-type adults or in homozygous juveniles prior to liver disease onset. However, delivery of predominantly nonintegrating rAAV vectors to juvenile mice results in loss of persistent transgene expression due to hepatocyte proliferation in the growing liver. Conclusion: A hybrid vector system, combining the high transduction efficiency of rAAV with piggyBac transposase-mediated somatic integration, was developed to facilitate stable human ABCB4 expression in vivo and to correct juvenile-onset chronic liver disease in a murine model of PFIC3. A single dose of hybrid vector at birth led to life-long restoration of bile composition, prevention of biliary cirrhosis, and a substantial reduction in tumorigenesis. This powerful hybrid rAAV-piggyBac transposon vector strategy has the capacity to mediate lifelong phenotype correction and reduce the tumorigenicity of progressive familial intrahepatic cholestasis type 3 and, with further refinement, the potential for human clinical translation.
Collapse
Affiliation(s)
- Susan M Siew
- Department of Gastroenterology and James Fairfax Institute of Pediatric Nutrition, Sydney Children's Hospitals Network, Westmead, Australia
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Westmead, Australia
| | - Sharon C Cunningham
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Westmead, Australia
| | - Erhua Zhu
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Westmead, Australia
| | - Szun S Tay
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Westmead, Australia
| | - Elena Venuti
- Department of Gastroenterology and James Fairfax Institute of Pediatric Nutrition, Sydney Children's Hospitals Network, Westmead, Australia
| | - Christine Bolitho
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Westmead, Australia
| | - Ian E Alexander
- Gene Therapy Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney and Sydney Children's Hospitals Network, Westmead, Australia
- Discipline of Child and Adolescent Health, Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Westmead, Australia
| |
Collapse
|
181
|
Li X, Zhu F, Meng W, Zhang F, Hong J, Zhang G, Wang F. CYP2J2/EET reduces vulnerability to atrial fibrillation in chronic pressure overload mice. J Cell Mol Med 2019; 24:862-874. [PMID: 31749335 PMCID: PMC6933320 DOI: 10.1111/jcmm.14796] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 08/26/2019] [Accepted: 09/26/2019] [Indexed: 12/11/2022] Open
Abstract
Growing evidence has well established the protective effects of CYP2J2/EET on the cardiovascular system. The aim of the present study was to determine whether CYP2J2/EET has a preventive effect on atrial fibrillation (AF) and to investigate the underlying mechanisms. Wild‐type mice were injected with or without AAV9‐CYP2J2 before abdominal aortic constriction (AAC) operation. After 8 weeks, compared with wild‐type mice, AAC mice display higher AF inducibility and longer AF durations, which were remarkably attenuated with AAV9‐CYP2J2. Also, AAV9‐CYP2J2 reduced atrial fibrosis area and the deposit of collagen‐I/III in AAC mice, accompanied by the blockade of TGF‐β/Smad‐2/3 signalling pathways, as well as the recovery in Smad‐7 expression. In vitro, isolated atrial fibroblasts were administrated with TGF‐β1, EET, EEZE, GW9662, SiRNA Smad‐7 and pre‐MiR‐21, and EET was demonstrated to restrain the differentiation of atrial fibroblasts largely dependent on Smad‐7, due to the inhibition of EET on MiR‐21. In addition, increased inflammatory cytokines, as well as activated NF‐κB pathways induced by AAC surgery, were also significantly blunted by AAV9‐CYP2J2 treatment. These effects of CYP2J2/EET were partially blocked by GW9662, the antagonist of PPAR‐γ. In conclusion, this study revealed that CYP2J2/EET ameliorates atrial fibrosis through modulating atrial fibroblasts activation by disinhibition of MiR‐21 on Smad‐7, and attenuates atrial inflammatory response by repressing NF‐κB pathways, reducing the vulnerability to AF, and CYP2J2/EET exerts its role at least partially through PPAR‐γ activation. Our findings might provide a novel upstream therapeutic strategy for AF.
Collapse
Affiliation(s)
- Xuguang Li
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Zhu
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Weidong Meng
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Zhang
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiang Hong
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guobing Zhang
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fang Wang
- Department of Cardiology, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
182
|
Feiner RC, Teschner J, Teschner KE, Radukic MT, Baumann T, Hagen S, Hannappel Y, Biere N, Anselmetti D, Arndt KM, Müller KM. rAAV Engineering for Capsid-Protein Enzyme Insertions and Mosaicism Reveals Resilience to Mutational, Structural and Thermal Perturbations. Int J Mol Sci 2019; 20:ijms20225702. [PMID: 31739438 PMCID: PMC6887778 DOI: 10.3390/ijms20225702] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 12/22/2022] Open
Abstract
Recombinant adeno-associated viruses (rAAV) provide outstanding options for customization and superior capabilities for gene therapy. To access their full potential, facile genetic manipulation is pivotal, including capsid loop modifications. Therefore, we assessed capsid tolerance to modifications of the structural VP proteins in terms of stability and plasticity. Flexible glycine-serine linkers of increasing sizes were, at the genetic level, introduced into the 587 loop region of the VP proteins of serotype 2, the best studied AAV representative. Analyses of biological function and thermal stability with respect to genome release of viral particles revealed structural plasticity. In addition, insertion of the 29 kDa enzyme β-lactamase into the loop region was tested with a complete or a mosaic modification setting. For the mosaic approach, investigation of VP2 trans expression revealed that a Kozak sequence was required to prevent leaky scanning. Surprisingly, even the full capsid modification with β-lactamase allowed for the assembly of capsids with a concomitant increase in size. Enzyme activity assays revealed lactamase functionality for both rAAV variants, which demonstrates the structural robustness of this platform technology.
Collapse
Affiliation(s)
- Rebecca C. Feiner
- Cellular and Molecular Biotechnology, Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany; (R.C.F.); (J.T.); (K.E.T.); (M.T.R.)
| | - Julian Teschner
- Cellular and Molecular Biotechnology, Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany; (R.C.F.); (J.T.); (K.E.T.); (M.T.R.)
| | - Kathrin E. Teschner
- Cellular and Molecular Biotechnology, Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany; (R.C.F.); (J.T.); (K.E.T.); (M.T.R.)
| | - Marco T. Radukic
- Cellular and Molecular Biotechnology, Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany; (R.C.F.); (J.T.); (K.E.T.); (M.T.R.)
| | - Tobias Baumann
- Biocatalysis group, Department of Chemistry, Technische Universität Berlin, 10623 Berlin, Germany;
| | | | - Yvonne Hannappel
- Physical and Biophysical Chemistry (PCIII), Department of Chemistry, Bielefeld University, 33615 Bielefeld, Germany;
| | - Niklas Biere
- Experimental Biophysics and Applied Nanoscience, Physics Department, Bielefeld University, 33615 Bielefeld, Germany; (N.B.); (D.A.)
| | - Dario Anselmetti
- Experimental Biophysics and Applied Nanoscience, Physics Department, Bielefeld University, 33615 Bielefeld, Germany; (N.B.); (D.A.)
| | - Katja M. Arndt
- Molecular Biotechnology, Institute for Biochemistry and Biology, University of Potsdam, 14476 Potsdam, Germany;
| | - Kristian M. Müller
- Cellular and Molecular Biotechnology, Faculty of Technology, Bielefeld University, 33615 Bielefeld, Germany; (R.C.F.); (J.T.); (K.E.T.); (M.T.R.)
- Correspondence: ; Tel.: +49-521-106-6323
| |
Collapse
|
183
|
Li F, Hung SSC, Mohd Khalid MKN, Wang JH, Chrysostomou V, Wong VHY, Singh V, Wing K, Tu L, Bender JA, Pébay A, King AE, Cook AL, Wong RCB, Bui BV, Hewitt AW, Liu GS. Utility of Self-Destructing CRISPR/Cas Constructs for Targeted Gene Editing in the Retina. Hum Gene Ther 2019; 30:1349-1360. [PMID: 31373227 DOI: 10.1089/hum.2019.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Safe delivery of CRISPR/Cas endonucleases remains one of the major barriers to the widespread application of in vivo genome editing. We previously reported the utility of adeno-associated virus (AAV)-mediated CRISPR/Cas genome editing in the retina; however, with this type of viral delivery system, active endonucleases will remain in the retina for an extended period, making genotoxicity a significant consideration in clinical applications. To address this issue, we have designed a self-destructing "kamikaze" CRISPR/Cas system that disrupts the Cas enzyme itself following expression. Four guide RNAs (sgRNAs) were initially designed to target Streptococcus pyogenes Cas9 (SpCas9) and after in situ validation, the selected sgRNAs were cloned into a dual AAV vector. One construct was used to deliver SpCas9 and the other delivered sgRNAs directed against SpCas9 and the target locus (yellow fluorescent protein [YFP]), in the presence of mCherry. Both constructs were packaged into AAV2 vectors and intravitreally administered in C57BL/6 and Thy1-YFP transgenic mice. After 8 weeks, the expression of SpCas9 and the efficacy of YFP gene disruption were quantified. A reduction of SpCas9 mRNA was found in retinas treated with AAV2-mediated YFP/SpCas9 targeting CRISPR/Cas compared with those treated with YFP targeting CRISPR/Cas alone. We also show that AAV2-mediated delivery of YFP/SpCas9 targeting CRISPR/Cas significantly reduced the number of YFP fluorescent cells among mCherry-expressing cells (∼85.5% reduction compared with LacZ/SpCas9 targeting CRISPR/Cas) in the transfected retina of Thy1-YFP transgenic mice. In conclusion, our data suggest that a self-destructive "kamikaze" CRISPR/Cas system can be used as a robust tool for genome editing in the retina, without compromising on-target efficiency.
Collapse
Affiliation(s)
- Fan Li
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Guangzhou, China
| | - Sandy S C Hung
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
| | | | - Jiang-Hui Wang
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, Australia
| | - Vicki Chrysostomou
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, Australia
| | - Vickie H Y Wong
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, Australia
| | - Vikrant Singh
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Kristof Wing
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Leilei Tu
- Department of Ophthalmology, Jinan University, Guangzhou, China
| | - James A Bender
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Australia
| | - Alice Pébay
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, Australia
- Department of Anatomy and Neuroscience, University of Melbourne, Parkville, Australia
| | - Anna E King
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Australia
| | - Anthony L Cook
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Australia
| | - Raymond C B Wong
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, Australia
| | - Bang V Bui
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, Australia
| | - Alex W Hewitt
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, Australia
| | - Guei-Sheung Liu
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, Australia
- Department of Ophthalmology, Jinan University, Guangzhou, China
| |
Collapse
|
184
|
Improved Motor Nerve Regeneration by SIRT1/Hif1a-Mediated Autophagy. Cells 2019; 8:cells8111354. [PMID: 31671642 PMCID: PMC6912449 DOI: 10.3390/cells8111354] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/12/2019] [Accepted: 10/29/2019] [Indexed: 02/06/2023] Open
Abstract
Complete restoring of functional connectivity between neurons or target tissue after traumatic lesions is still an unmet medical need. Using models of nerve axotomy and compression, we investigated the effect of autophagy induction by genetic and pharmacological manipulation on motor nerve regeneration. ATG5 or NAD+-dependent deacetylase sirtuin-1 (SIRT1) overexpression on spinal motoneurons stimulates mTOR-independent autophagy and facilitates a growth-competent state improving motor axonal regeneration with better electromyographic records after nerve transection and suture. In agreement with this, using organotypic spinal cord cultures and the human cell line SH-SY5Y, we observed that the activation of SIRT1 and autophagy by NeuroHeal increased neurite outgrowth and length extension and that this was mediated by downstream HIF1a. To conclude, SIRT1/Hifα-dependent autophagy confers a more pro-regenerative phenotype to motoneurons after peripheral nerve injury. Altogether, we provide evidence showing that autophagy induction by SIRT1/Hifα activation or NeuroHeal treatment is a novel therapeutic option for improving motor nerve regeneration and functional recovery after injury.
Collapse
|
185
|
Lee D, Liu J, Junn HJ, Lee EJ, Jeong KS, Seol DW. No more helper adenovirus: production of gutless adenovirus (GLAd) free of adenovirus and replication-competent adenovirus (RCA) contaminants. Exp Mol Med 2019; 51:1-18. [PMID: 31659156 PMCID: PMC6817846 DOI: 10.1038/s12276-019-0334-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 09/13/2019] [Accepted: 09/18/2019] [Indexed: 12/13/2022] Open
Abstract
Gene therapy is emerging as an effective treatment option for various inherited genetic diseases. Gutless adenovirus (GLAd), also known as helper-dependent adenovirus (HDAd), has many notable characteristics as a gene delivery vector for this particular type of gene therapy, including broad tropism, high infectivity, a large transgene cargo capacity, and an absence of integration into the host genome. Additionally, GLAd ensures long-term transgene expression in host organisms owing to its minimal immunogenicity, since it was constructed following the deletion of all the genes from an adenovirus. However, the clinical use of GLAd for the treatment of inherited genetic diseases has been hampered by unavoidable contamination of the highly immunogenic adenovirus used as a helper for GLAd production. Here, we report the production of GLAd in the absence of a helper adenovirus, which was achieved with a helper plasmid instead. Utilizing this helper plasmid, we successfully produced large quantities of recombinant GLAd. Importantly, our helper plasmid-based system exclusively produced recombinant GLAd with no generation of helper plasmid-originating adenovirus and replication-competent adenovirus (RCA). The recombinant GLAd that was produced efficiently delivered transgenes regardless of their size and exhibited therapeutic potential for Huntington’s disease (HD) and Duchenne muscular dystrophy (DMD). Our data indicate that our helper plasmid-based GLAd production system could become a new platform for GLAd-based gene therapy. A new protocol allows for the manufacturing of a next-generation gene therapy vector without contamination of helper adenovirus and replication-competent adenovirus (RCA). Adenoviruses are often used to deliver therapeutic DNA, but their proteins can trigger immune reactions. So-called ‘gutless’ adenoviruses that lack all viral genes don’t cause the same problem but their production has traditionally relied on a helper adenovirus that remains as an unavoidable contaminant. A team led by Dai-Wu Seol from Chung-Ang University in Seoul, South Korea, has now prepared large quantities of gutless adenoviruses using helper plasmid, a circular DNA that encodes all the proteins needed for production of gutless adenoviruses but do not leave behind any contaminant adenoviruses. Gutless adenoviruse vectors made this way successfully delivered corrected copies of the faulty genes responsible for human diseseas into human cells and mice.
Collapse
Affiliation(s)
- Dongwoo Lee
- Genenmed Inc., 84 Seongsuil-ro, Seongdong-gu, Seoul, Republic of Korea
| | - Jida Liu
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea
| | - Hyun Jung Junn
- Genenmed Inc., 84 Seongsuil-ro, Seongdong-gu, Seoul, Republic of Korea
| | - Eun-Joo Lee
- Department of Veterinary Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu City, Republic of Korea
| | - Kyu-Shik Jeong
- Department of Veterinary Pathology, College of Veterinary Medicine, Kyungpook National University, Daegu City, Republic of Korea
| | - Dai-Wu Seol
- College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea.
| |
Collapse
|
186
|
Cheng CF, Ku HC, Cheng JJ, Chao SW, Li HF, Lai PF, Chang CC, Don MJ, Chen HH, Lin H. Adipocyte browning and resistance to obesity in mice is induced by expression of ATF3. Commun Biol 2019; 2:389. [PMID: 31667363 PMCID: PMC6813364 DOI: 10.1038/s42003-019-0624-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 09/13/2019] [Indexed: 02/07/2023] Open
Abstract
Billions of people have obesity-related metabolic syndromes such as diabetes and hyperlipidemia. Promoting the browning of white adipose tissue has been suggested as a potential strategy, but a drug still needs to be identified. Here, genetic deletion of activating transcription factor 3 (ATF3-/- ) in mice under a high-fat diet (HFD) resulted in obesity and insulin resistance, which was abrogated by virus-mediated ATF3 restoration. ST32da, a synthetic ATF3 inducer isolated from Salvia miltiorrhiza, promoted ATF3 expression to downregulate adipokine genes and induce adipocyte browning by suppressing the carbohydrate-responsive element-binding protein-stearoyl-CoA desaturase-1 axis. Furthermore, ST32da increased white adipose tissue browning and reduced lipogenesis in HFD-induced obese mice. The anti-obesity efficacy of oral ST32da administration was similar to that of the clinical drug orlistat. Our study identified the ATF3 inducer ST32da as a promising therapeutic drug for treating diet-induced obesity and related metabolic disorders.
Collapse
MESH Headings
- 3T3-L1 Cells
- Activating Transcription Factor 3/deficiency
- Activating Transcription Factor 3/genetics
- Activating Transcription Factor 3/metabolism
- Adipocytes, Brown/metabolism
- Adipocytes, Brown/pathology
- Adipose Tissue, Brown/metabolism
- Adipose Tissue, Brown/pathology
- Adipose Tissue, White/metabolism
- Adipose Tissue, White/pathology
- Animals
- Anti-Obesity Agents/pharmacology
- Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism
- Body Temperature Regulation/physiology
- Diet, High-Fat/adverse effects
- Disease Models, Animal
- Humans
- Insulin Resistance
- Lipogenesis/drug effects
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Obesity/genetics
- Obesity/metabolism
- Obesity/prevention & control
- Orlistat/pharmacology
- Plant Extracts/pharmacology
- Plants, Medicinal/chemistry
- Salvia miltiorrhiza/chemistry
Collapse
Affiliation(s)
- Ching-Feng Cheng
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
- Department of Pediatrics, Tzu Chi University, Hualien, Taiwan
| | - Hui-Chen Ku
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taipei, Taiwan
- Ph.D. Program in Biotechnology Research and Development, Taipei Medical University, Taipei, Taiwan
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jing-Jy Cheng
- Ph.D. Program in Clinical Drug Discovery from Botanical Herbs, Taipei Medical, University, Taipei, Taiwan
- National Research Institute of Chinese Medicine, Taipei, Taiwan
| | - Shi-Wei Chao
- Ph.D. Program in Biotechnology Research and Development, Taipei Medical University, Taipei, Taiwan
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsiao-Fen Li
- Ph.D. Program in Biotechnology Research and Development, Taipei Medical University, Taipei, Taiwan
| | - Pei-Fang Lai
- Department of Emergency Medicine, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Che-Chang Chang
- Ph.D. Program in Biotechnology Research and Development, Taipei Medical University, Taipei, Taiwan
| | - Ming-Jaw Don
- National Research Institute of Chinese Medicine, Taipei, Taiwan
| | - Hsi-Hsien Chen
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Heng Lin
- Ph.D. Program in Biotechnology Research and Development, Taipei Medical University, Taipei, Taiwan
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
187
|
Zygmunt DA, Xu R, Jia Y, Ashbrook A, Menke C, Shao G, Yoon JH, Hamilton S, Pisharath H, Bolon B, Martin PT. rAAVrh74.MCK. GALGT2 Demonstrates Safety and Widespread Muscle Glycosylation after Intravenous Delivery in C57BL/6J Mice. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 15:305-319. [PMID: 31890730 PMCID: PMC6923506 DOI: 10.1016/j.omtm.2019.10.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/15/2019] [Indexed: 11/25/2022]
Abstract
rAAVrh74.MCK.GALGT2 is a surrogate gene therapy that inhibits muscular dystrophy in multiple animal models. Here, we report on a dose-response study of functional muscle GALGT2 expression as well as toxicity and biodistribution studies after systemic intravenous (i.v.) delivery of rAAVrh74.MCK.GALGT2. A dose of 4.3 × 1014vg/kg (measured with linear DNA standard) resulted in GALGT2-induced glycosylation in the majority of skeletal myofibers throughout the body and in almost all cardiomyocytes, while several lower doses also showed significant muscle glycosylation. No adverse clinical signs or treatment-dependent changes in tissue or organ pathology were noted at 1 or 3 months post-treatment. Blood cell and serum enzyme chemistry measures in treated mice were all within the normal range except for alkaline phosphatase (ALP) activity, which was elevated in serum but not in tissues. Some anti-rAAVrh74 capsid T cell responses were noted at 4 weeks post-treatment, but all such responses were not present at 12 weeks. Using intramuscular delivery, GALGT2-induced muscle glycosylation was increased in Cmah-deficient mice, which have a humanized sialoglycome, relative to wild-type mice, suggesting that use of mice may underestimate GALGT2 activity in human muscle. These data demonstrate safety and high transduction of muscles throughout the body plan with i.v. delivery of rAAVrh74.MCK.GALGT2.
Collapse
Affiliation(s)
- Deborah A Zygmunt
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, USA
| | - Rui Xu
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, USA
| | - Ying Jia
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, USA
| | - Anna Ashbrook
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, USA.,Animal Resources Core, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Chelsea Menke
- Animal Resources Core, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Guohong Shao
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, USA
| | - Jung Hae Yoon
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, USA
| | - Sonia Hamilton
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, USA
| | - Harshan Pisharath
- Animal Resource Center and Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Paul T Martin
- Center for Gene Therapy, Abigail Wexner Research Institute at Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH, USA.,Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
188
|
Rodriguez-Estevez L, Asokan P, Borrás T. Transduction optimization of AAV vectors for human gene therapy of glaucoma and their reversed cell entry characteristics. Gene Ther 2019; 27:127-142. [PMID: 31611639 PMCID: PMC7153980 DOI: 10.1038/s41434-019-0105-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 09/23/2019] [Accepted: 09/25/2019] [Indexed: 12/19/2022]
Abstract
The trabecular meshwork (TM) of the eye is responsible for maintaining physiological intraocular pressure (IOP). Dysfunction of this tissue results in elevated IOP, subsequent optic nerve damage and glaucoma, the world’s leading cause of irreversible blindness. IOP regulation by delivering candidate TM genes would offer an enormous clinical advantage to the current daily-drops/surgery treatment. Initially, we showed that a double-stranded AAV2 (scAAV2) transduced the human TM very efficiently, while its single-stranded form (ssAAV2) did not. Here, we quantified transduction and entry of single- and double-strand serotypes 1, 2.5, 5, 6, 8, and 9 in primary, single individual-derived human TM cells (HTM). scAAV2 exhibited highest transduction in all individuals, distantly followed by scAAV2.5, scAAV6, and scAAV5. Transduction of scAAV1, scAAV8, and scAAV9 was negligible. None of the ssAAV serotypes transduced, but their cell entries were significantly higher than those of their corresponding scAAV. Tyrosine scAAV2 capsid mutants increased transduction in HTM cultured cells and all TM-outflow layers of perfused postmortem human eyes. These studies provide the first serotype optimization for gene therapy of glaucoma in humans. They further reveal biological differences between the AAV forms in HTM cells, whose understanding could contribute to the development of gene therapy of glaucoma.
Collapse
Affiliation(s)
- Laura Rodriguez-Estevez
- Department of Ophthalmology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Priyadarsini Asokan
- Department of Ophthalmology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Teresa Borrás
- Department of Ophthalmology, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
189
|
Advances of adeno-associated virus applied in gene therapy to hemophilia from bench work to the clinical use. BLOOD SCIENCE 2019; 1:130-136. [PMID: 35402808 PMCID: PMC8975051 DOI: 10.1097/bs9.0000000000000030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 07/31/2019] [Indexed: 01/13/2023] Open
Abstract
Hemophilia A and B are diseases caused by a single gene deficiency and are thus suitable for gene therapy. In recent clinical research, adeno-associated virus (AAV) was employed by several teams in the treatment of hemophilia A and B, and the outcomes were encouraging. In this review, we summarized the most recent research on the mechanism and application of AAV in the treatment of hemophilia, trying to analyze the advantages of AAV gene therapy and the main challenges in its clinical use. We also summarized the clinical trials involving hemophilia, especially those employing AAV gene therapy to treat hemophilia A and B, some of which have already been completed and some that are still ongoing. From the reports of the completed clinical trials, we tried to determine the correlations among AAV dose, AAV serotype, immune response, and gene expression time. Finally, taking into account the most recent studies investigating AAV capsid modification, transgene optimization, and AAV chaperones, we summarized the direction of basic research and clinical applications of AAV in the future.
Collapse
|
190
|
Mekonnen ZA, Grubor-Bauk B, English K, Leung P, Masavuli MG, Shrestha AC, Bertolino P, Bowen DG, Lloyd AR, Gowans EJ, Wijesundara DK. Single-Dose Vaccination with a Hepatotropic Adeno-associated Virus Efficiently Localizes T Cell Immunity in the Liver with the Potential To Confer Rapid Protection against Hepatitis C Virus. J Virol 2019; 93:e00202-19. [PMID: 31292249 PMCID: PMC6744243 DOI: 10.1128/jvi.00202-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/03/2019] [Indexed: 12/31/2022] Open
Abstract
Hepatitis C virus (HCV) is a significant contributor to the global disease burden, and development of an effective vaccine is required to eliminate HCV infections worldwide. CD4+ and CD8+ T cell immunity correlates with viral clearance in primary HCV infection, and intrahepatic CD8+ tissue-resident memory T (TRM) cells provide lifelong and rapid protection against hepatotropic pathogens. Consequently, we aimed to develop a vaccine to elicit HCV-specific CD4+ and CD8+ T cells, including CD8+ TRM cells, in the liver, given that HCV primarily infects hepatocytes. To achieve this, we vaccinated wild-type BALB/c mice with a highly immunogenic cytolytic DNA vaccine encoding a model HCV (genotype 3a) nonstructural protein (NS5B) and a mutant perforin (pVAX-NS5B-PRF), as well as a recombinant adeno-associated virus (AAV) encoding NS5B (rAAV-NS5B). A novel fluorescent target array (FTA) was used to map immunodominant CD4+ T helper (TH) cell and cytotoxic CD8+ T cell epitopes of NS5B in vivo, which were subsequently used to design a KdNS5B451-459 tetramer and analyze NS5B-specific T cell responses in vaccinated mice in vivo The data showed that intradermal prime/boost vaccination with pVAX-NS5B-PRF was effective in eliciting TH and cytotoxic CD8+ T cell responses and intrahepatic CD8+ TRM cells, but a single intravenous dose of hepatotropic rAAV-NS5B was significantly more effective. As a T-cell-based vaccine against HCV should ideally result in localized T cell responses in the liver, this study describes primary observations in the context of HCV vaccination that can be used to achieve this goal.IMPORTANCE There are currently at least 71 million individuals with chronic HCV worldwide and almost two million new infections annually. Although the advent of direct-acting antivirals (DAAs) offers highly effective therapy, considerable remaining challenges argue against reliance on DAAs for HCV elimination, including high drug cost, poorly developed health infrastructure, low screening rates, and significant reinfection rates. Accordingly, development of an effective vaccine is crucial to HCV elimination. An HCV vaccine that elicits T cell immunity in the liver will be highly protective for the following reasons: (i) T cell responses against nonstructural proteins of the virus are associated with clearance of primary infection, and (ii) long-lived liver-resident T cells alone can protect against malaria infection of hepatocytes. Thus, in this study we exploit promising vaccination platforms to highlight strategies that can be used to evoke highly functional and long-lived T cell responses in the liver for protection against HCV.
Collapse
Affiliation(s)
- Zelalem A Mekonnen
- Virology Laboratory, Basil Hetzel Institute for Translational Health Research, Discipline of Surgery, University of Adelaide, Adelaide, South Australia, Australia
| | - Branka Grubor-Bauk
- Virology Laboratory, Basil Hetzel Institute for Translational Health Research, Discipline of Surgery, University of Adelaide, Adelaide, South Australia, Australia
| | - Kieran English
- Liver Immunology Group and A. W. Morrow Gastroenterology and Liver Centre, Centenary Institute, Royal Prince Alfred Hospital and University of Sydney, Newtown, NSW, Australia
| | - Preston Leung
- Viral Immunology Systems Program, The Kirby Institute, The University of New South Wales, Sydney, NSW, Australia
| | - Makutiro G Masavuli
- Virology Laboratory, Basil Hetzel Institute for Translational Health Research, Discipline of Surgery, University of Adelaide, Adelaide, South Australia, Australia
| | - Ashish C Shrestha
- Virology Laboratory, Basil Hetzel Institute for Translational Health Research, Discipline of Surgery, University of Adelaide, Adelaide, South Australia, Australia
| | - Patrick Bertolino
- Liver Immunology Group and A. W. Morrow Gastroenterology and Liver Centre, Centenary Institute, Royal Prince Alfred Hospital and University of Sydney, Newtown, NSW, Australia
| | - David G Bowen
- Liver Immunology Group and A. W. Morrow Gastroenterology and Liver Centre, Centenary Institute, Royal Prince Alfred Hospital and University of Sydney, Newtown, NSW, Australia
- Collaborative Transplantation Research Group, Bosch Institute, Royal Prince Alfred Hospital and University of Sydney, Newtown, NSW, Australia
| | - Andrew R Lloyd
- Viral Immunology Systems Program, The Kirby Institute, The University of New South Wales, Sydney, NSW, Australia
| | - Eric J Gowans
- Virology Laboratory, Basil Hetzel Institute for Translational Health Research, Discipline of Surgery, University of Adelaide, Adelaide, South Australia, Australia
| | - Danushka K Wijesundara
- Virology Laboratory, Basil Hetzel Institute for Translational Health Research, Discipline of Surgery, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
191
|
Superior human hepatocyte transduction with adeno-associated virus vector serotype 7. Gene Ther 2019; 26:504-514. [PMID: 31570819 PMCID: PMC6923567 DOI: 10.1038/s41434-019-0104-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 09/19/2019] [Accepted: 09/19/2019] [Indexed: 12/20/2022]
Abstract
Although therapeutic outcomes have been achieved in hemophilia patients after delivery of clotting factor genes to the liver using adeno-associated virus (AAV) vectors, it is well known that the pre-clinical results generated from hemophilia animal models have not been directly predictive of successful translation in humans. To address this discrepancy humanized mouse models have recently been used to predict AAV transduction efficiency for human hepatocytes. In this study we evaluated AAV vector transduction from several serotypes in human liver hepatocytes xenografted into chimeric mice. After systemic administration of AAV vectors encoding a GFP transgene in humanized mice, the liver was harvested for either immunohistochemistry staining or flow cytometry assay for AAV human hepatocyte transduction analysis. We observed that AAV7 consistently transduced human hepatocytes more efficiently than other serotypes in both immunohistochemistry assay and flow cytometry analysis. To better assess the future application of AAV7 for systemic administration in the treatment of hemophilia or other liver diseases, we analyzed the prevalence of neutralizing antibodies (NAbs) to AAV7 in sera from healthy subjects and patients with hemophilia. In the general population, the prevalence of NAbs to AAV7 was lower than that of AAV2 or AAV3B. However, a higher prevalence of AAV7 NAbs was found in patients with hemophilia. In summary, results from this study suggest that AAV7 vectors should be considered as an effective vehicle for human liver targeting in future clinical trials.
Collapse
|
192
|
Gorbatyuk OS, Warrington KH, Gorbatyuk MS, Zolotukhin I, Lewin AS, Muzyczka N. Biodistribution of adeno-associated virus type 2 with mutations in the capsid that contribute to heparan sulfate proteoglycan binding. Virus Res 2019; 274:197771. [PMID: 31577935 DOI: 10.1016/j.virusres.2019.197771] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/25/2019] [Accepted: 09/27/2019] [Indexed: 10/25/2022]
Abstract
We compared the phenotypes of three mutant AAV2 viruses containing mutations in arginine amino acids (R585, R588 and R484) previously shown to be involved in AAV2 heparan sulfate binding. The transduction efficiencies of wild type and mutant viruses were determined in the eye, the brain and peripheral organs following subretinal, striatal and intravenous injection, respectively, in mice and rats. We found that each of the three mutants (the single mutant R585A; the double mutant R585, 588A; and the triple mutant R585, 588, 484A) had a unique phenotype compared to wt and each other. R585A was completely defective for transducing peripheral organs via intravenous injection, suggesting that R585A may be useful for targeting peripheral organs by substitution of peptide ligands in the capsid surface. In the brain, all three mutants displayed widespread transduction, with the double mutant R585, 588A displaying the greatest spread and the greatest number of transduced neurons. The double mutant was also extremely efficient for retrograde transport, while the triple mutant was almost completely defective for retrograde transport. This suggested that R484 may be directly involved in interaction with the transport machinery. Finally, the double mutant also displayed improved transduction of the eye compared to wild type and the other mutants.
Collapse
Affiliation(s)
- Oleg S Gorbatyuk
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, United States; Department of Pediatrics, College of Medicine, University of Florida, United States; UF Genetics Institute, University of Florida, United States.
| | - Kenneth H Warrington
- Department of Pediatrics, College of Medicine, University of Florida, United States; UF Genetics Institute, University of Florida, United States; Powell Gene Therapy Center, College of Medicine, University of Florida, United States.
| | - Marina S Gorbatyuk
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, United States; Powell Gene Therapy Center, College of Medicine, University of Florida, United States.
| | - Irene Zolotukhin
- Department of Pediatrics, College of Medicine, University of Florida, United States; UF Genetics Institute, University of Florida, United States; Powell Gene Therapy Center, College of Medicine, University of Florida, United States.
| | - Alfred S Lewin
- Department of Pediatrics, College of Medicine, University of Florida, United States; Powell Gene Therapy Center, College of Medicine, University of Florida, United States.
| | - Nicholas Muzyczka
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, United States; Department of Pediatrics, College of Medicine, University of Florida, United States; UF Genetics Institute, University of Florida, United States.
| |
Collapse
|
193
|
Keeler AM, Flotte TR. Recombinant Adeno-Associated Virus Gene Therapy in Light of Luxturna (and Zolgensma and Glybera): Where Are We, and How Did We Get Here? Annu Rev Virol 2019; 6:601-621. [PMID: 31283441 PMCID: PMC7123914 DOI: 10.1146/annurev-virology-092818-015530] [Citation(s) in RCA: 226] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The recent market approvals of recombinant adeno-associated virus (rAAV) gene therapies in Europe and the United States are landmark achievements in the history of modern science. These approvals are also anticipated to herald the emergence of a new class of therapies for monogenic disorders, which had hitherto been considered untreatable. These events can be viewed as stemming from the convergence of several important historical trends: the study of basic virology, the development of genomic technologies, the imperative for translational impact of National Institutes of Health-funded research, and the development of economic models for commercialization of rare disease therapies. In this review, these historical trends are described and the key developments that have enabled clinical rAAV gene therapies are discussed, along with an overview of the current state of the field and future directions.
Collapse
Affiliation(s)
- Allison M Keeler
- Horae Gene Therapy Center and Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA;
| | - Terence R Flotte
- Horae Gene Therapy Center and Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA;
| |
Collapse
|
194
|
Garikipati VNS, Verma SK, Cheng Z, Liang D, Truongcao MM, Cimini M, Yue Y, Huang G, Wang C, Benedict C, Tang Y, Mallaredy V, Ibetti J, Grisanti L, Schumacher SM, Gao E, Rajan S, Wilusz JE, Goukassian D, Houser SR, Koch WJ, Kishore R. Circular RNA CircFndc3b modulates cardiac repair after myocardial infarction via FUS/VEGF-A axis. Nat Commun 2019; 10:4317. [PMID: 31541092 PMCID: PMC6754461 DOI: 10.1038/s41467-019-11777-7] [Citation(s) in RCA: 318] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 07/30/2019] [Indexed: 02/08/2023] Open
Abstract
Circular RNAs are generated from many protein-coding genes, but their role in cardiovascular health and disease states remains unknown. Here we report identification of circRNA transcripts that are differentially expressed in post myocardial infarction (MI) mouse hearts including circFndc3b which is significantly down-regulated in the post-MI hearts. Notably, the human circFndc3b ortholog is also significantly down-regulated in cardiac tissues of ischemic cardiomyopathy patients. Overexpression of circFndc3b in cardiac endothelial cells increases vascular endothelial growth factor-A expression and enhances their angiogenic activity and reduces cardiomyocytes and endothelial cell apoptosis. Adeno-associated virus 9 -mediated cardiac overexpression of circFndc3b in post-MI hearts reduces cardiomyocyte apoptosis, enhances neovascularization and improves left ventricular functions. Mechanistically, circFndc3b interacts with the RNA binding protein Fused in Sarcoma to regulate VEGF expression and signaling. These findings highlight a physiological role for circRNAs in cardiac repair and indicate that modulation of circFndc3b expression may represent a potential strategy to promote cardiac function and remodeling after MI. Circular RNAs (circRNAs) are non-coding RNAs generated from pre-mRNAs of coding genes by the splicing machinery whose function in the heart is poorly understood. Here the authors show that AAV-mediated delivery of the circRNA circFndc3b prevents cardiomyocyte apoptosis, enhances angiogenesis, and attenuates LV dysfunction post-MI in mice by regulating FUS-VEGF-A signalling.
Collapse
Affiliation(s)
| | - Suresh Kumar Verma
- Division of Cardiovascular Diseases, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Zhongjian Cheng
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Dongming Liang
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - May M Truongcao
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Maria Cimini
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Yujia Yue
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Grace Huang
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Chunlin Wang
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Cindy Benedict
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Yan Tang
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Vandana Mallaredy
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Jessica Ibetti
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Laurel Grisanti
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Sarah M Schumacher
- Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, 44195, USA
| | - Erhe Gao
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Sudarsan Rajan
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Jeremy E Wilusz
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - David Goukassian
- Zena & Michael A. Weiner Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Steven R Houser
- Cardiovascular Research Center and Department of Physiology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Walter J Koch
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.,Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Raj Kishore
- Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA. .,Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.
| |
Collapse
|
195
|
Dudek AM, Porteus MH. AAV6 Is Superior to Clade F AAVs in Stimulating Homologous Recombination-Based Genome Editing in Human HSPCs. Mol Ther 2019; 27:1701-1705. [PMID: 31537456 DOI: 10.1016/j.ymthe.2019.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Amanda M Dudek
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Matthew H Porteus
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
196
|
Khan N, Bammidi S, Jayandharan GR. A CD33 Antigen-Targeted AAV6 Vector Expressing an Inducible Caspase-9 Suicide Gene Is Therapeutic in a Xenotransplantation Model of Acute Myeloid Leukemia. Bioconjug Chem 2019; 30:2404-2416. [PMID: 31436412 DOI: 10.1021/acs.bioconjchem.9b00511] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Current chemotherapeutic regimens for acute myeloid leukemia (AML) have been modestly effective in patients and are associated with poor long-term survival (<30% at 5 years). Viral vector-based suicide gene therapy is an attractive option, if these vectors can target the AML cells with high specificity and efficiency. In this study, we have developed a receptor-specific adeno-associated virus (AAV) based vector to target the CD33 antigen which is overexpressed in leukemic cells. A targeting peptide was rationally designed from the antigen-binding regions of a CD33 monoclonal antibody. This peptide was further expressed on the capsid of the AAV6 vector, since this serotype was most efficient among AAV1-rh10 vectors to infect the pro-monocytic, human myeloid leukemia cells (U937). AAV6-CD33 vectors expressing a suicide gene, the inducible caspase 9 (iCasp9), and its prodrug AP20187 significantly reduced (∼59%) the viability of U937 cells. To further test its efficacy and specificity in vivo, AAV6-CD33 vectors were administered into a xenotransplantation model of AML in zebrafish through systemic delivery. We observed a significant antileukemic effect with AAV6-CD33 vectors, with a markedly higher survival (100% for AAV6-CD33 vectors vs 15% for mock-treated) and a higher number of TUNEL positive apoptotic cells after systemic vector delivery. Taken together, our work demonstrates the efficacy and translational potential of CD33-targeted AAV6 vectors for cytotoxic gene therapy in AML.
Collapse
Affiliation(s)
- Nusrat Khan
- Department of Biological Sciences and Bioengineering , Indian Institute of Technology , Kanpur , 208016 , Uttar Pradesh , India
| | - Sridhar Bammidi
- Department of Biological Sciences and Bioengineering , Indian Institute of Technology , Kanpur , 208016 , Uttar Pradesh , India
| | - Giridhara R Jayandharan
- Department of Biological Sciences and Bioengineering , Indian Institute of Technology , Kanpur , 208016 , Uttar Pradesh , India
| |
Collapse
|
197
|
Stanek LM, Bu J, Shihabuddin LS. Astrocyte transduction is required for rescue of behavioral phenotypes in the YAC128 mouse model with AAV-RNAi mediated HTT lowering therapeutics. Neurobiol Dis 2019; 129:29-37. [DOI: 10.1016/j.nbd.2019.04.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/14/2019] [Accepted: 04/24/2019] [Indexed: 12/11/2022] Open
|
198
|
Mary B, Maurya S, Arumugam S, Kumar V, Jayandharan GR. Post-translational modifications in capsid proteins of recombinant adeno-associated virus (AAV) 1-rh10 serotypes. FEBS J 2019; 286:4964-4981. [PMID: 31330090 PMCID: PMC7496479 DOI: 10.1111/febs.15013] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/13/2019] [Accepted: 07/19/2019] [Indexed: 01/27/2023]
Abstract
Post‐translational modifications in viral capsids are known to fine‐tune and regulate several aspects of the infective life cycle of several viruses in the host. Recombinant viruses that are generated in a specific producer cell line are likely to inherit unique post‐translational modifications during intra‐cellular maturation of its capsid proteins. Data on such post‐translational modifications in the capsid of recombinant adeno‐associated virus serotypes (AAV1‐rh10) is limited. We have employed liquid chromatography and mass spectrometry analysis to characterize post‐translational modifications in AAV1‐rh10 capsid protein. Our analysis revealed a total of 52 post‐translational modifications in AAV2‐AAVrh10 capsids, including ubiquitination (17%), glycosylation (36%), phosphorylation (21%), SUMOylation (13%) and acetylation (11%). While AAV1 had no detectable post‐translational modification, at least four AAV serotypes had >7 post‐translational modifications in their capsid protein. About 82% of these post‐translational modifications are novel. A limited validation of AAV2 capsids by MALDI‐TOF and western blot analysis demonstrated minimal glycosylation and ubiquitination of AAV2 capsids. To further validate this, we disrupted a glycosylation site identified in AAV2 capsid (AAV2‐N253Q), which severely compromised its packaging efficiency (~ 100‐fold vs. AAV2 wild‐type vectors). In order to confirm other post‐translational modifications detected such as SUMOylation, mutagenesis of a SUMOylation site(K258Q) in AAV2 was performed. This mutant vector demonstrated reduced levels of SUMO‐1/2/3 proteins and negligible transduction, 2 weeks after ocular gene transfer. Our study underscores the heterogeneity of post‐translational modifications in AAV vectors. The data presented here, should facilitate further studies to understand the biological relevance of post‐translational modifications in AAV life cycle and the development of novel bioengineered AAV vectors for gene therapy applications. Enzymes Trypsin, EC 3.4.21.4
Collapse
Affiliation(s)
- Bertin Mary
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | - Shubham Maurya
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India
| | - Sathyathithan Arumugam
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India.,SASTRA University, Thanjavur, India
| | - Vikas Kumar
- Mass Spectrometry and Proteomics Core Facility, University of Nebraska Medical Center, Omaha, NE, USA
| | - Giridhara R Jayandharan
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur, India.,Department of Haematology and Centre for Stem Cell Research, Vellore, India
| |
Collapse
|
199
|
GluA4-Targeted AAV Vectors Deliver Genes Selectively to Interneurons while Relying on the AAV Receptor for Entry. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 14:252-260. [PMID: 31463334 PMCID: PMC6706527 DOI: 10.1016/j.omtm.2019.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/14/2019] [Indexed: 12/16/2022]
Abstract
Selective gene delivery into subtypes of interneurons remains an important challenge in vector development. Adeno-associated virus (AAV) vector particles are especially promising for intracerebral injections. For cell entry, AAV2 particles are supposed to attach to heparan-sulfate proteoglycans (HSPGs) followed by endocytosis via the AAV receptor (AAVR). Here, we assessed engineered AAV particles deficient in HSPG attachment but competent in recognizing the glutamate receptor 4 (GluA4, also known as GluRD or GRIA4) through a displayed GluA4-specific DARPin (designed ankyrin repeat protein). When injected into the mouse brain, histological evaluation revealed that in various regions, more than 90% of the transduced cells were interneurons, mainly of the parvalbumin-positive subtype. Although part of the selectivity was mediated by the DARPin, the chosen spleen focus-forming virus (SFFV) promoter had contributed as well. Further analysis revealed that the DARPin mediated selective attachment to GluA4-positive cells, whereas gene delivery required expression of AAVR. Our data suggest that cell selectivity of AAV particles can be modified rationally and efficiently through DARPins, but expression of the AAV entry receptor remains essential.
Collapse
|
200
|
Soluble Heparin Binding Epidermal Growth Factor-Like Growth Factor Is a Regulator of GALGT2 Expression and GALGT2-Dependent Muscle and Neuromuscular Phenotypes. Mol Cell Biol 2019; 39:MCB.00140-19. [PMID: 31036568 DOI: 10.1128/mcb.00140-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 04/26/2019] [Indexed: 02/08/2023] Open
Abstract
GALGT2 (also B4GALNT2) encodes a glycosyltransferase that is normally confined to the neuromuscular and myotendinous junction in adult skeletal muscle. GALGT2 overexpression in muscle can inhibit muscular dystrophy in mouse models of the disease by inducing the overexpression of surrogate muscle proteins, including utrophin, agrin, laminins, and integrins. Despite its well-documented biological properties, little is known about the endogenous regulation of muscle GALGT2 expression. Here, we demonstrate that epidermal growth factor receptor (EGFR) ligands can activate the human GALGT2 promoter. Overexpression of one such ligand, soluble heparin-binding EGF-like growth factor (sHB-EGF), also stimulated mouse muscle Galgt2 gene expression and expression of GALGT2-inducible surrogate muscle genes. Deletion analysis of the GALGT2 promoter identified a 45-bp region containing a TFAP4-binding site that was required for sHB-EGF activation. sHB-EGF increased TFAP4 binding to this site in muscle cells and increased endogenous Tfap4 gene expression. sHB-EGF also increased muscle EGFR protein expression and activated EGFR-Akt signaling. sHB-EGF expression was concentrated at the neuromuscular junction, and Hbegf deletion reduced Galgt2-dependent synaptic glycosylation. Hbegf deletion also mimicked Galgt2-dependent neuromuscular and muscular dystrophy phenotypes. These data demonstrate that sHB-EGF is an endogenous regulator of muscle Galgt2 gene expression and can mimic Galgt2-dependent muscle phenotypes.
Collapse
|