151
|
Leuzinger H, Ziegler U, Schraner EM, Fraefel C, Glauser DL, Heid I, Ackermann M, Mueller M, Wild P. Herpes simplex virus 1 envelopment follows two diverse pathways. J Virol 2005; 79:13047-59. [PMID: 16189007 PMCID: PMC1235821 DOI: 10.1128/jvi.79.20.13047-13059.2005] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpesvirus envelopment is assumed to follow an uneconomical pathway including primary envelopment at the inner nuclear membrane, de-envelopment at the outer nuclear membrane, and reenvelopment at the trans-Golgi network. In contrast to the hypothesis of de-envelopment by fusion of the primary envelope with the outer nuclear membrane, virions were demonstrated to be transported from the perinuclear space to rough endoplasmic reticulum (RER) cisternae. Here we show by high-resolution microscopy that herpes simplex virus 1 envelopment follows two diverse pathways. First, nuclear envelopment includes budding of capsids at the inner nuclear membrane into the perinuclear space whereby tegument and a thick electron dense envelope are acquired. The substance responsible for the dense envelope is speculated to enable intraluminal transportation of virions via RER into Golgi cisternae. Within Golgi cisternae, virions are packaged into transport vacuoles containing one or several virions. Second, for cytoplasmic envelopment, capsids gain direct access from the nucleus to the cytoplasm via impaired nuclear pores. Cytoplasmic capsids could bud at the outer nuclear membrane, at membranes of RER, Golgi cisternae, and large vacuoles, and at banana-shaped membranous entities that were found to continue into Golgi membranes. Envelopes originating by budding at the outer nuclear membrane and RER membrane also acquire a dense substance. Budding at Golgi stacks, designated wrapping, results in single virions within small vacuoles that contain electron-dense substances between envelope and vacuolar membranes.
Collapse
Affiliation(s)
- Helene Leuzinger
- Electron Microscopy, Institutes of Veterinary Anatomy and of Virology, Zürich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
152
|
Simpson-Holley M, Colgrove RC, Nalepa G, Harper JW, Knipe DM. Identification and functional evaluation of cellular and viral factors involved in the alteration of nuclear architecture during herpes simplex virus 1 infection. J Virol 2005; 79:12840-51. [PMID: 16188986 PMCID: PMC1235858 DOI: 10.1128/jvi.79.20.12840-12851.2005] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Herpes simplex virus 1 (HSV-1) replicates in the nucleus of host cells and radically alters nuclear architecture as part of its replication process. Replication compartments (RCs) form, and host chromatin is marginalized. Chromatin is later dispersed, and RCs spread past it to reach the nuclear edge. Using a lamin A-green fluorescent protein fusion, we provide direct evidence that the nuclear lamina is disrupted during HSV-1 infection and that the UL31 and UL34 proteins are required for this. We show nuclear expansion from 8 h to 24 h postinfection and place chromatin rearrangement and disruption of the lamina in the context of this global change in nuclear architecture. We show HSV-1-induced disruption of the localization of Cdc14B, a cellular protein and component of a putative nucleoskeleton. We also show that UL31 and UL34 are required for nuclear expansion. Studies with inhibitors of globular actin (G-actin) indicate that G-actin plays an essential role in nuclear expansion and chromatin dispersal but not in lamina alterations induced by HSV-1 infection. From analyses of HSV infections under various conditions, we conclude that nuclear expansion and chromatin dispersal are dispensable for optimal replication, while lamina rearrangement is associated with efficient replication.
Collapse
Affiliation(s)
- Martha Simpson-Holley
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, 02115, USA
| | | | | | | | | |
Collapse
|
153
|
Schaap A, Fortin JF, Sommer M, Zerboni L, Stamatis S, Ku CC, Nolan GP, Arvin AM. T-cell tropism and the role of ORF66 protein in pathogenesis of varicella-zoster virus infection. J Virol 2005; 79:12921-33. [PMID: 16188994 PMCID: PMC1235817 DOI: 10.1128/jvi.79.20.12921-12933.2005] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The pathogenesis of varicella-zoster virus (VZV) involves a cell-associated viremia during which infectious virus is carried from sites of respiratory mucosal inoculation to the skin. We now demonstrate that VZV infection of T cells is associated with robust virion production and modulation of the apoptosis and interferon pathways within these cells. The VZV serine/threonine protein kinase encoded by ORF66 is essential for the efficient replication of VZV in T cells. Preventing ORF66 protein expression by stop codon insertion (pOka66S) impaired the growth of the parent Oka (pOka) strain in T cells in SCID-hu T-cell xenografts in vivo and reduced formation of VZV virions. The lack of ORF66 protein also increased the susceptibility of infected T cells to apoptosis and reduced the capacity of the virus to interfere with induction of the interferon (IFN) signaling pathway following exposure to IFN-gamma. However, preventing ORF66 protein expression only slightly reduced growth in melanoma cells in culture and did not diminish virion formation in these cells. The pOka66S virus showed only a slight defect in growth in SCID-hu skin implants compared with intact pOka. These observations suggest that the ORF66 kinase plays a unique role during infection of T cells and supports VZV T-cell tropism by contributing to immune evasion and enhancing survival of infected T cells.
Collapse
Affiliation(s)
- Anne Schaap
- Department of Pediatrics, Stanford University School of Medicine, CA 94305-5208, USA.
| | | | | | | | | | | | | | | |
Collapse
|
154
|
Krishnan HH, Sharma-Walia N, Zeng L, Gao SJ, Chandran B. Envelope glycoprotein gB of Kaposi's sarcoma-associated herpesvirus is essential for egress from infected cells. J Virol 2005; 79:10952-67. [PMID: 16103147 PMCID: PMC1193577 DOI: 10.1128/jvi.79.17.10952-10967.2005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) envelope glycoprotein gB interacts with cell surface heparan sulfate (HS) and alpha3beta1 integrin and plays roles in the initial binding and entry into the target cells and in the induction of preexisting host cell signal pathways. To define gB function further, using a bacterial artificial chromosome (BAC) system carrying the KSHV genome (BAC36wt-KSHV), we constructed a recombinant virus genome with the gB open reading frame (ORF) deleted by replacing a 2-kb gB ORF with a 1.3-kb Kan(r) gene. Stable 293T cells carrying BAC36wt-KSHV and DeltagBBAC36-KSHV genomes were generated. Transcript analyses and immunoprecipitation reactions confirmed the absence of gB in the 293T-DeltagBBAC36 cells. When monolayers of 293T-BAC36wt and 293T-DeltagBBAC36 cells were induced with tetradecanoylphorbol-13-acetate, infectious virus was detected only from the 293T-BAC36wt cell supernatants. No significant amount of DNase I-resistant viral DNA was detected in the supernatants of 293T-DeltagBBAC36 cells. BAC36wt-KSHV infected the target cells, and in contrast, no viral DNA and transcripts could be detected in cells infected with DeltagBBAC36-KSHV. Electron microscopy of 293T-DeltagBBAC36 cells revealed capsids in the nuclei, cytoplasmic vesicles with core-containing capsids, and occasional enveloped virions in the cytoplasm. However, enveloped virus particles were observed in the extracellular compartments of 293T-BAC36wt cells only and not in 293T-DeltagBBAC36 cells. Transfection of 293T-DeltagBBAC36 cells with plasmid expressing full-length gB restored the recovery of infectious KSHV in the supernatant. These results suggest that, besides its role in virus binding and entry into the target cells, KSHV gB also plays a role in the maturation and egress of virus from the infected cells.
Collapse
Affiliation(s)
- Harinivas H Krishnan
- Department of Microbiology, Molecular Genetics and Immunology, The University of Kansas Medical Center, Kansas City, USA
| | | | | | | | | |
Collapse
|
155
|
Wang HC, Kao YC, Chang TJ, Wong ML. Inhibition of lytic infection of pseudorabies virus by arginine depletion. Biochem Biophys Res Commun 2005; 334:631-7. [PMID: 16009339 DOI: 10.1016/j.bbrc.2005.06.139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Accepted: 06/22/2005] [Indexed: 11/30/2022]
Abstract
Pseudorabies virus (PRV) is a member of Alphahepesviruses; it is an enveloped virus with a double-stranded DNA genome. Polyamines (such as spermine and spermidine) are ubiquitous in animal cells and participate in cellular proliferation and differentiation. Previous results of our laboratory showed that the PRV can accomplish lytic infection either in the presence of exogenous spermine (or spermidine) or depletion of cellular polyamines. The amino acid arginine is a precursor of polyamine biosynthesis. In this work, we investigated the role of arginine in PRV infection. It was found that the plaque formation of PRV was inhibited by arginase (enzyme catalyzing the conversion of arginine into ornithine and urea) treatment whereas this inhibition can be reversed by exogenous arginine, suggesting that arginine is essential for PRV proliferation. Western blotting was conducted to study the effect of arginine depletion on the levels of structural proteins of PRV in virus-infected cells. Four PRV structural proteins (gB, gE, UL47, and UL48) were chosen for examination, and results revealed that the levels of viral proteins were obviously reduced in long time arginase treatment. However, the overall protein synthesis machinery was apparently not influenced by arginase treatment either in mock or PRV-infected cells. Analyzing with native gel, we found that arginase treatment affected the mobility of PRV structural proteins, suggesting the conformational change of viral proteins by arginine depletion. Heat shock proteins, acting as molecular chaperons, participate in protein folding and translocation. Our results demonstrated that long time arginase treatment could reduce the expression of cellular heat shock proteins 70 (hsc70 and hsp70), and transcriptional suppression of heat shock protein 70 gene promoter was one of the mechanisms involved in this reduced expression.
Collapse
Affiliation(s)
- Hsien-Chi Wang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, Taichung 402, Taiwan
| | | | | | | |
Collapse
|
156
|
Turcotte S, Letellier J, Lippé R. Herpes simplex virus type 1 capsids transit by the trans-Golgi network, where viral glycoproteins accumulate independently of capsid egress. J Virol 2005; 79:8847-60. [PMID: 15994778 PMCID: PMC1168770 DOI: 10.1128/jvi.79.14.8847-8860.2005] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Egress of herpes capsids from the nucleus to the plasma membrane is a complex multistep transport event that is poorly understood. The current model proposes an initial envelopment at the inner nuclear membrane of capsids newly assembled in the nucleus. The capsids are then released in cytosol by fusion with the outer nuclear membrane. They are finally reenveloped at a downstream organelle before traveling to the plasma membrane for their extracellular release. Although the trans-Golgi network (TGN) is often cited as a potential site of reenvelopment, other organelles have also been proposed, including the Golgi, endoplasmic reticulum-Golgi intermediate compartment, aggresomes, tegusomes, and early or late endosomes. To clarify this important issue, we followed herpes simplex virus type 1 egress by immunofluorescence under conditions that slowed intracellular transport and promoted the accumulation of the otherwise transient reenvelopment intermediate. The data show that the capsids transit by the TGN and point to this compartment as the main reenvelopment site, although a contribution by endosomes cannot formally be excluded. Given that viral glycoproteins are expected to accumulate where capsids acquire their envelope, we examined this prediction and found that all tested could indeed be detected at the TGN. Moreover, this accumulation occurred independently of capsid egress. Surprisingly, capsids were often found immediately adjacent to the viral glycoproteins at the TGN.
Collapse
Affiliation(s)
- Sophie Turcotte
- Department of Pathology and Cell Biology, University of Montreal, P.O. Box 6128, Succursale Centre-Ville Montreal, Quebec, Canada H3C 3J7
| | | | | |
Collapse
|
157
|
Frampton AR, Goins WF, Nakano K, Burton EA, Glorioso JC. HSV trafficking and development of gene therapy vectors with applications in the nervous system. Gene Ther 2005; 12:891-901. [PMID: 15908995 DOI: 10.1038/sj.gt.3302545] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Herpes simplex virus type 1 (HSV-1) is a neurotropic double-stranded DNA virus that causes cold sores, keratitis, and rarely encephalitis in humans. Nonpathogenic HSV-1 gene transfer vectors have been generated by elimination of viral functions necessary for replication. The life cycle of the native virus includes replication in epithelial cells at the site of initial inoculation followed by retrograde axonal transport to the nuclei of sensory neurons innervating the area of cutaneous primary infection. In this review, we summarize the current understanding of the molecular basis for HSV cell entry, nuclear transport of the genome, virion egress following replication, and retrograde and anterograde axonal transport in neurons. We discuss how each of these properties has been exploited or modified to allow the generation of gene transfer vectors with particular utility for neurological applications. Recent advances in engineering virus entry have provided proof of principle that vector targeting is possible. Furthermore, significant and potentially therapeutic modifications to the pathological responses to various noxious insults have been demonstrated in models of peripheral nerve disease. These applications exploit the natural axonal transport mechanism of HSV, allowing transgene expression in the cell nucleus within the inaccessible trigeminal ganglion or dorsal root ganglion, following the noninvasive procedure of subcutaneous vector inoculation. These findings demonstrate the importance of understanding basic virology in the design of vector systems and the powerful approach of exploiting favorable properties of the parent virus in the generation of gene transfer vectors.
Collapse
Affiliation(s)
- A R Frampton
- Department of Molecular Genetics and Biochemistry, School of Medicine, University of Pittsburgh, PA 15261, USA
| | | | | | | | | |
Collapse
|
158
|
Yuan GP, Cheng AC, Wang MS, Liu F, Han XY, Liao YH, Xu C. Electron microscopic studies of the morphogenesis of duck enteritis virus. Avian Dis 2005; 49:50-5. [PMID: 15839412 DOI: 10.1637/7237-071004r] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The morphogenesis of duck enteritis virus (DEV) and distribution in vivo were observed by electron microscopy after ducks were infected experimentally with DEV virulent strain. The investigation showed that a few typical herpesvirus virions and nucleocapsids were first observed in the spleen, thymus, and bursa of Fabricius (BF), and many nucleocapsids, mature viruses, and viral inclusion bodies could be found in the nucleus and cytoplasm of infected liver, small intestine, spleen, thymus, and BF when the ducks died. Nucleocapsids assembled both in nucleus and cytoplasm and could be divided into four different types according to their structures. Typical herpesvirus, light particles (L-particles), and virions without tegument could be observed at the same time. With the replication, assembly, and maturation of the viruses, intracytoplasmic and intranuclear inclusion bodies, electron-density particles, microtubules, hollow tubes, and coated electron-density bodies were observed in infected cells.
Collapse
Affiliation(s)
- Gui-ping Yuan
- Sichuan Key Laboratory of Animal Disease and Human Health, Avian Disease Research Center, Department of Animal Science and Veterinary Medicine, Sichuan Agricultural University, Yaan, Sichuan, 625014, China
| | | | | | | | | | | | | |
Collapse
|
159
|
Schumacher D, Tischer BK, Trapp S, Osterrieder N. The protein encoded by the US3 orthologue of Marek's disease virus is required for efficient de-envelopment of perinuclear virions and involved in actin stress fiber breakdown. J Virol 2005; 79:3987-97. [PMID: 15767401 PMCID: PMC1061555 DOI: 10.1128/jvi.79.7.3987-3997.2005] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Marek's disease virus (MDV) encodes a protein exhibiting high amino acid similarity to the US3 protein of herpes simplex virus type 1 and the gene 66 product of varicella-zoster virus. The MDV US3 orthologue was replaced with a kanamycin resistance gene in the infectious bacterial artificial chromosome clone BAC20. After transfection of US3-negative BAC20 DNA (20DeltaUS3), the resulting recombinant 20DeltaUS3 virus exhibited markedly reduced growth kinetics. Virus titers on chicken embryo cells were reduced by approximately 10-fold, and plaque sizes were significantly smaller (65% reduction) compared to parental BAC20 virus. The defect of the US3-negative MDV was completely restored in a revertant virus (20US3*) expressing a US3 protein with a carboxy-terminal FLAG tag. Electron microscopical studies revealed that the defect of the 20DeltaUS3 mutant to efficiently spread from cell to cell was concomitant with an accumulation in the perinuclear space of primarily enveloped virions in characteristic vesicles containing several virus particles, which resulted in reduced numbers of particles in the cytoplasm. The formation of these vesicles was not observed in cells infected with either parental BAC20 virus or the 20US3* revertant virus. The role of the MDV US3 protein in actin stress fiber breakdown was investigated by visualizing actin with phalloidin-Alexa 488 after infection or transfection of a US3 expression plasmid. Addition of the actin-depolymerizing drug cytochalasin D to cells transfected or infected with BAC20 resulted in complete inhibition of plaque formation with as little as 50 nM of the drug, while concentrations of nocodazole as high as 50 microM only had a relatively minor effect on MDV plaque formation. The results indicated that the MDV US3 serine-threonine protein kinase is transiently involved in MDV-mediated stress fiber breakdown and that polymerization of actin, but not microtubules, plays an important role in MDV cell-to-cell spread.
Collapse
Affiliation(s)
- Daniel Schumacher
- Department of Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
160
|
Liang L, Baines JD. Identification of an essential domain in the herpes simplex virus 1 UL34 protein that is necessary and sufficient to interact with UL31 protein. J Virol 2005; 79:3797-806. [PMID: 15731273 PMCID: PMC1075724 DOI: 10.1128/jvi.79.6.3797-3806.2005] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Previous results have indicated that the herpes simplex virus 1 UL31 and UL34 proteins interact and form a complex at the inner nuclear membranes of infected cells, where both play important roles in the envelopment of nucleocapsids at the inner nuclear membrane. In the work described here, mapping studies using glutathione S-transferase pull-down assays indicated that amino acids 137 to 181 of the UL34 protein are sufficient to mediate an interaction with the UL31 protein. A recombinant virus (v3480) lacking UL34 codons 138 to 181 was constructed. Similar to a UL34 null virus, v3480 failed to replicate on Vero cells and grew to a limited extent on rabbit skin cells. A UL34-expressing cell line restored v3480 growth and plaque formation. Similar to the localization of UL31 protein in cells infected with a UL34 null virus, the UL31 protein was present in the nuclei of Hep2 cells infected with v3480. Hep2 cells infected with v3480 contained the UL34 protein in the cytoplasm, the nucleus, and the nuclear membrane, and this was noted to be similar to the appearance of cells infected with a UL31 null virus. In transient expression assays, the interaction between UL34 amino acids 137 to 181 and the UL31 protein was sufficiently robust to target green fluorescent protein and emerin to intranuclear sites that contained the UL31 protein. These data indicate that amino acids 137 to 181 of the UL34 protein are (i) sufficient to mediate interactions with the UL31 protein in vitro and in vivo, (ii) necessary for the colocalization of UL31 and UL34 in infected cells, and (iii) essential for normal viral replication.
Collapse
Affiliation(s)
- Li Liang
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | | |
Collapse
|
161
|
Klupp BG, Granzow H, Klopfleisch R, Fuchs W, Kopp M, Lenk M, Mettenleiter TC. Functional analysis of the pseudorabies virus UL51 protein. J Virol 2005; 79:3831-40. [PMID: 15731276 PMCID: PMC1075737 DOI: 10.1128/jvi.79.6.3831-3840.2005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Homologs of the UL51 protein of herpes simplex virus have been identified in all herpesvirus subfamilies, but until now, no function has been assigned to any of them. To investigate function of the UL51 gene product of the alphaherpesvirus pseudorabies virus (PrV), we isolated and analyzed a mutant lacking the major part of the open reading frame, PrV-DeltaUL51F, and a rescuant. One-step growth analysis of PrV-DeltaUL51F revealed only slightly reduced titers, but plaque size was notably diminished and reached only approximately 30% the plaque size of wild-type PrV. Ultrastructurally, intracytoplasmic capsids were found in large numbers either without envelope or in different stages of envelopment, indicating that secondary envelopment in the cytoplasm was less efficient. However, neuroinvasion in the mouse trigeminal pathway after intranasal infection was only slightly delayed. A PrV UL11 mutant also showed a defect in secondary envelopment (M. Kopp, H. Granzow, W. Fuchs, B. G. Klupp, E. Mundt, A. Karger, and T. C. Mettenleiter, J. Virol. 77:5339-5351, 2003). Since both proteins are part of the viral tegument and are predicted to be membrane associated, they may serve similar, possibly redundant functions during viral morphogenesis. Therefore, we also isolated a mutant simultaneously lacking UL51 and UL11. This mutant exhibited further reduced plaque size compared to the single-deletion mutants, but viral titers were comparable to those for the UL11 mutant. In electron microscopic analyses, the observed defect in secondary envelopment was similar to that found in the UL11 single-deletion mutant. In conclusion, both conserved tegument proteins, either singly or in combination, are involved in virion morphogenesis in the cytoplasm but are not essential for viral replication in vitro and in vivo.
Collapse
Affiliation(s)
- Barbara G Klupp
- Institute of Molecular Biology, Friedrich-Loeffler-Institut, Boddenblick 5A, Greifswald-Insel Riems D-17493, Germany
| | | | | | | | | | | | | |
Collapse
|
162
|
Abstract
Herpesviruses infect cells by fusion of the viral envelope with cellular membranes, primarily the plasma membrane. During this process structural components of the mature virion are lost from the invading nucleocapsid, which then travels along microtubules to the nuclear pore. We examined the penetration process by immunoelectron microscopy and analyzed which of the major tegument proteins remained associated with the incoming capsid. We show that the UL36, UL37, and US3 proteins were present at intracytoplasmic capsids after penetration, whereas the UL11, UL47, UL48, and UL49 tegument proteins were lost. Thus, the three capsid-associated tegument proteins are prime candidates for viral proteins that interact with cellular motor proteins for transport of nucleocapsids to the nucleus.
Collapse
Affiliation(s)
- Harald Granzow
- Friedrich-Loeffler-Institut, Boddenblick 5A, 17493 Greifswald-Insel Riems, Germany.
| | | | | |
Collapse
|
163
|
Abstract
Herpes virions are complex particles that consist of more than 30 different virally encoded proteins. The molecular basis of how this complicated structure is assembled is only recently beginning to emerge. After replication in the host cell nucleus viral DNA is incorporated into preformed capsids, which leave the nucleus by a first budding event at the inner nuclear membrane resulting in the formation of primary enveloped virions in the perinuclear space. The primary envelope then fuses with the outer leaflet of the nuclear membrane thereby releasing nucleocapsids into the cytoplasm. Final envelopment, including the acquisition of more than 15 tegument and more than 10 envelope (glyco) proteins occurs by budding into Golgi-derived vesicles. Mature virions are released after fusion of the vesicle membrane with the plasma membrane of the cell. Thus, herpesvirus morphogenesis requires two different budding steps, which are distinct not only in the subcellular compartments in which they occur but also by the viral proteins involved. This review summarizes recent advances in our understanding of the two herpesvirus budding events.
Collapse
Affiliation(s)
- Thomas C Mettenleiter
- Friedrich-Loeffler-Institut, Institute of Molecular Biology, Boddenblick 5A, D-17493 Greifswald-Insel Riems, Germany.
| |
Collapse
|
164
|
Klupp BG, Böttcher S, Granzow H, Kopp M, Mettenleiter TC. Complex formation between the UL16 and UL21 tegument proteins of pseudorabies virus. J Virol 2005; 79:1510-22. [PMID: 15650177 PMCID: PMC544144 DOI: 10.1128/jvi.79.3.1510-1522.2005] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The products of the UL16 and UL21 genes represent tegument proteins which are conserved throughout the mammalian herpesviruses. To identify and functionally characterize the respective proteins in the alphaherpesvirus pseudorabies virus, monospecific antisera against bacterially expressed fusion proteins were generated. In immunoblots the UL16 antiserum detected a ca. 40-kDa protein in infected cells and purified virion preparations, whereas the anti-UL21 serum recognized a protein of approximately 60 kDa. Interestingly, in immunoprecipitations using either antiserum, both proteins were coprecipitated, demonstrating the formation of a physical complex. To investigate protein function, viruses lacking either UL16, UL21, or both were constructed. Mutant viruses could be propagated on noncomplementing cells, indicating that these proteins, either alone or in combination, are not required for viral replication in cell culture. However, plaque sizes and viral titers were reduced. Electron microscopy showed only slight alterations in cytoplasmic virion morphogenesis, whereas intranuclear maturation stages were not affected. Similar results were obtained with a triple mutant simultaneously lacking the three conserved tegument proteins UL11, UL16, and UL21. In summary, our results uncover a novel interaction between conserved herpesvirus tegument proteins that increases the complexity of the intricate network of protein-protein interactions involved in herpesvirus morphogenesis.
Collapse
Affiliation(s)
- Barbara G Klupp
- Institute of Molecular Biology, Friedrich-Loeffler-Institut, Boddenblick 5A, D-17493 Greifswald-Insel Riems, Germany
| | | | | | | | | |
Collapse
|
165
|
Novoa RR, Calderita G, Arranz R, Fontana J, Granzow H, Risco C. Virus factories: associations of cell organelles for viral replication and morphogenesis. Biol Cell 2005; 97:147-72. [PMID: 15656780 PMCID: PMC7161905 DOI: 10.1042/bc20040058] [Citation(s) in RCA: 349] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2004] [Accepted: 07/06/2004] [Indexed: 12/13/2022]
Abstract
Genome replication and assembly of viruses often takes place in specific intracellular compartments where viral components concentrate, thereby increasing the efficiency of the processes. For a number of viruses the formation of 'factories' has been described, which consist of perinuclear or cytoplasmic foci that mostly exclude host proteins and organelles but recruit specific cell organelles, building a unique structure. The formation of the viral factory involves a number of complex interactions and signalling events between viral and cell factors. Mitochondria, cytoplasmic membranes and cytoskeletal components frequently participate in the formation of viral factories, supplying basic and common needs for key steps in the viral replication cycle.
Collapse
Affiliation(s)
- Reyes R Novoa
- Centro Nacional de Biotecnología, CSIC, Campus Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
166
|
Wild P, Engels M, Senn C, Tobler K, Ziegler U, Schraner EM, Loepfe E, Ackermann M, Mueller M, Walther P. Impairment of nuclear pores in bovine herpesvirus 1-infected MDBK cells. J Virol 2005; 79:1071-83. [PMID: 15613336 PMCID: PMC538577 DOI: 10.1128/jvi.79.2.1071-1083.2005] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpesvirus capsids originating in the nucleus overcome the nucleocytoplasmic barrier by budding at the inner nuclear membrane. The fate of the resulting virions is still under debate. The fact that capsids approach Golgi membranes from the cytoplasmic side led to the theory of fusion between the viral envelope and the outer nuclear membrane, resulting in the release of capsids into the cytoplasm. We recently discovered a continuum from the perinuclear space to the Golgi complex implying (i) intracisternal viral transportation from the perinuclear space directly into Golgi cisternae and (ii) the existence of an alternative pathway of capsids from the nucleus to the cytoplasm. Here, we analyzed the nuclear surface by high-resolution microscopy. Confocal microscopy of MDBK cells infected with recombinant bovine herpesvirus 1 expressing green fluorescent protein fused to VP26 (a minor capsid protein) revealed distortions of the nuclear surface in the course of viral multiplication. High-resolution scanning and transmission electron microscopy proved the distortions to be related to enlargement of nuclear pores through which nuclear content including capsids protrudes into the cytoplasm, suggesting that capsids use impaired nuclear pores as gateways to gain access to the cytoplasmic matrix. Close examination of Golgi membranes, rough endoplasmic reticulum, and outer nuclear membrane yielded capsid-membrane interaction of high identity to the budding process at the inner nuclear membrane. These observations signify the ability of capsids to induce budding at any cell membrane, provided the fusion machinery is present and/or budding is not suppressed by viral proteins.
Collapse
Affiliation(s)
- Peter Wild
- Electron Microscopy Institute of Veterinary Anatomy, Winterthurerstrasse 266a, CH-8057 Zürich, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Hayashi S, Takashima Y, Otsuka H. Pseudorabies Virus Propagated in Rabbit Kidney-Derived RK13 Cells is Neutralized by Natural IgM Antibodies in Normal Swine Serum which Specifically Lyse Host Cells. J Vet Med Sci 2005; 67:229-34. [PMID: 15805723 DOI: 10.1292/jvms.67.229] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pseudorabies virus (PRV) propagated in rabbit kidney-derived RK-13 cells (PRV-RK) was neutralized by serum obtained from specific pathogen-free pigs through the activation of complement. The virus-neutralizing activity of swine serum was lost after treatment with ethylene glycol-bis-aminoethylether-N,N,N',N'-tetraacetic acid (EGTA) or ethylenediaminetetraacetic acid (EDTA). Anti-C1q and anti-IgM antibodies also inhibited virus-neutralizing activity. Though IgG-depleted swine serum neutralized PRV, IgM and IgG-free swine serum lost virus-neutralizing activity. Pre-incubation of swine serum with RK-13 cells, but not with swine kidney-derived CPK cells, at 4 degrees C eliminated the virus-neutralizing activity to PRV-RK. Results indicated that swine serum contained natural IgM against an antigen(s) on the RK-13 cell surface and that this surface antigen was integrated into the PRV envelope during the budding process. Thus the natural IgM in swine serum reacted with the RK-13 antigen on the viral envelope, activated the complement cascade and neutralized the PRV-RK.
Collapse
Affiliation(s)
- Sunao Hayashi
- Department of Global Animal Resource Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Tokyo 113-8657, Japan
| | | | | |
Collapse
|
168
|
Crump CM, Bruun B, Bell S, Pomeranz LE, Minson T, Browne HM. Alphaherpesvirus glycoprotein M causes the relocalization of plasma membrane proteins. J Gen Virol 2004; 85:3517-3527. [PMID: 15557225 DOI: 10.1099/vir.0.80361-0] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Herpesvirus glycoprotein M (gM) is a multiple-spanning integral membrane protein found within the envelope of mature herpesviruses and is conserved throughout the Herpesviridae. gM is defined as a non-essential glycoprotein in alphaherpesviruses and has been proposed as playing a role in controlling final envelopment in a late secretory-pathway compartment such as the trans-Golgi network (TGN). Additionally, gM proteins have been shown to inhibit cell-cell fusion in transfection-based assays by an as yet unclear mechanism. Here, the effect of pseudorabies virus (PRV) gM and the herpes simplex virus type 1 (HSV-1) gM/UL49A complex on the fusion events caused by the HSV-1 glycoproteins gB, gD, gH and gL was investigated. Fusion of cells expressing HSV-1 gB, gD, gH and gL was efficiently inhibited by both PRV gM and HSV-1 gM/UL49A. Furthermore, expression of PRV gM or HSV-1 gM/UL49A, which are themselves localized to the TGN, caused both gD and gH/L to be relocalized from the plasma membrane to a juxtanuclear compartment, suggesting that fusion inhibition is caused by the removal of 'fusion' proteins from the cell surface. The ability of gM to cause the relocalization of plasma membrane proteins was not restricted to HSV-1 glycoproteins, as other viral and non-viral proteins were also affected. These data suggest that herpesvirus gM (gM/N) can alter the membrane trafficking itineraries of a broad range of proteins and this may have multiple functions.
Collapse
Affiliation(s)
- Colin M Crump
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Birgitte Bruun
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Susanne Bell
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Lisa E Pomeranz
- Princeton University, 301 Schultz Laboratory, Washington Road, Princeton, NJ 08544, USA
| | - Tony Minson
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Helena M Browne
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| |
Collapse
|
169
|
Foster TP, Melancon JM, Olivier TL, Kousoulas KG. Herpes simplex virus type 1 glycoprotein K and the UL20 protein are interdependent for intracellular trafficking and trans-Golgi network localization. J Virol 2004; 78:13262-77. [PMID: 15542677 PMCID: PMC525009 DOI: 10.1128/jvi.78.23.13262-13277.2004] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Final envelopment of the cytoplasmic herpes simplex virus type 1 (HSV-1) nucleocapsid is thought to occur by budding into trans-Golgi network (TGN)-derived membranes. The highly membrane-associated proteins UL20p and glycoprotein K (gK) are required for cytoplasmic envelopment at the TGN and virion transport from the TGN to extracellular spaces. Furthermore, the UL20 protein is required for intracellular transport and cell surface expression of gK. Independently expressed gK or UL20p via transient expression in Vero cells failed to be transported from the endoplasmic reticulum (ER). Similarly, infection of Vero cells with either gK-null or UL20-null viruses resulted in ER entrapment of UL20p or gK, respectively. In HSV-1 wild-type virus infections and to a lesser extent in transient gK and UL20p coexpression experiments, both gK and UL20p localized to the Golgi apparatus. In wild-type, but not UL20-null, viral infections, gK was readily detected on cell surfaces. In contrast, transiently coexpressed gK and UL20p predominantly localized to the TGN and were not readily detected on cell surfaces. However, TGN-localized gK and UL20p originated from endocytosed gK and UL20p expressed at cell surfaces. Retention of UL20p to the ER through the addition of an ER retention motif forced total ER retention of gK, indicating that transport of gK is absolutely dependent on UL20p transport. In all experiments, gK and UL20p colocalized at intracellular sites, including the ER, Golgi, and TGN. These results are consistent with the hypothesis that gK and UL20p directly interact and that this interaction facilitates their TGN localization, an important prerequisite for cytoplasmic virion envelopment and egress.
Collapse
Affiliation(s)
- Timothy P Foster
- Division of Biotechnology and Molecular Medicine, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | | | | |
Collapse
|
170
|
Fuchs W, Klupp BG, Granzow H, Mettenleiter TC. Essential function of the pseudorabies virus UL36 gene product is independent of its interaction with the UL37 protein. J Virol 2004; 78:11879-89. [PMID: 15479829 PMCID: PMC523282 DOI: 10.1128/jvi.78.21.11879-11889.2004] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The large tegument protein encoded by the UL36 gene of pseudorabies virus (PrV) physically interacts with the product of the adjacent UL37 gene (B. G. Klupp, W. Fuchs, H. Granzow, R. Nixdorf, and T. C. Mettenleiter, J. Virol. 76:3065-3071, 2002). To analyze UL36 function, two PrV recombinants were generated by mutagenesis of an infectious PrV full-length clone in Escherichia coli: PrV-DeltaUL36F exhibited a deletion of virtually the complete UL36 coding region, whereas PrV-UL36BSF contained two in-frame deletions of 238 codons spanning the predicted UL37 binding domain. Coimmunoprecipitation experiments confirmed that the mutated gene product of PrV-UL36BSF did not interact with the UL37 protein. Like the previously described PrV-DeltaUL37 (B. G. Klupp, H. Granzow, and T. C. Mettenleiter, J. Virol. 75:8927-8936, 2001) but in contrast to PrV-DeltaUL36F, PrV-UL36BSF was able to replicate in rabbit kidney (RK13) cells, although maximum virus titers were reduced ca. 50-fold and plaque diameters were reduced by ca. 45% compared to wild-type PrV. PrV-DeltaUL36F was able to productively replicate after repair of the deleted gene or in a trans-complementing cell line. Electron microscopy of infected RK13 cells revealed that PrV-UL36BSF and phenotypically complemented PrV-DeltaUL36F were capable of nucleocapsid formation and egress from the nucleus by primary envelopment and deenvelopment at the nuclear membrane. However, reenvelopment of nucleocapsids in the cytoplasm was blocked. Only virus-like particles without capsids were released efficiently from cells. Interestingly, cytoplasmic nucleocapsids of PrV-UL36BSF but not of PrV-DeltaUL36F were found in large ordered structures similar to those which had previously been observed with PrV-DeltaUL37. In summary, our results demonstrate that the interaction between the UL36 and UL37 proteins is important but not strictly essential for the formation of secondary enveloped, infectious PrV particles. Furthermore, UL36 possesses an essential function during virus replication which is independent of its ability to bind the UL37 protein.
Collapse
Affiliation(s)
- Walter Fuchs
- Institute of Molecular Biology, Friedrich-Loeffler-Institut, Boddenblick 5A, D-17493 Greifswald-Insel Riems, Germany
| | | | | | | |
Collapse
|
171
|
Wisner TW, Johnson DC. Redistribution of cellular and herpes simplex virus proteins from the trans-golgi network to cell junctions without enveloped capsids. J Virol 2004; 78:11519-35. [PMID: 15479793 PMCID: PMC523281 DOI: 10.1128/jvi.78.21.11519-11535.2004] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2004] [Accepted: 06/16/2004] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus (HSV) and other alphaherpesviruses assemble enveloped virions in the trans-Golgi network (TGN) or endosomes. Enveloped particles are formed when capsids bud into TGN/endosomes and virus particles are subsequently ferried to the plasma membrane in TGN-derived vesicles. Little is known about the last stages of virus egress from the TGN/endosomes to cell surfaces except that the HSV directs transport of nascent virions to specific cell surface domains, i.e., epithelial cell junctions. Previously, we showed that HSV glycoprotein gE/gI accumulates extensively in the TGN at early times after infection and also when expressed without other viral proteins. At late times of infection, gE/gI and a cellular membrane protein, TGN46, were redistributed from the TGN to epithelial cell junctions. We show here that gE/gI and a second glycoprotein, gB, TGN46, and another cellular protein, carboxypeptidase D, all moved to cell junctions after infection with an HSV mutant unable to produce cytoplasmic capsids. This redistribution did not involve L particles. In contrast to TGN membrane proteins, several cellular proteins that normally adhere to the cytoplasmic face of TGN, Golgi, and endosomal membranes remained primarily dispersed throughout the cytoplasm. Therefore, cellular and viral membrane TGN proteins move to cell junctions at late times of HSV infection when the production of enveloped particles is blocked. This is consistent with the hypothesis that there are late HSV proteins that reorganize or redistribute TGN/endosomal compartments to promote virus egress and cell-to-cell spread.
Collapse
Affiliation(s)
- Todd W Wisner
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Mail code L-220, 3181 SW Sam Jackson Park Rd., Portland, OR 97239, USA
| | | |
Collapse
|
172
|
Kopp M, Granzow H, Fuchs W, Klupp B, Mettenleiter TC. Simultaneous deletion of pseudorabies virus tegument protein UL11 and glycoprotein M severely impairs secondary envelopment. J Virol 2004; 78:3024-34. [PMID: 14990721 PMCID: PMC353770 DOI: 10.1128/jvi.78.6.3024-3034.2004] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The pseudorabies virus (PrV) proteins UL11, glycoprotein E (gE), and gM are involved in secondary envelopment of tegumented nucleocapsids in the cytoplasm. To assess the relative contributions of these proteins to the envelopment process, virus mutants with deletions of either UL11, gM, or gE as well as two newly constructed mutant viruses with simultaneous deletions of UL11 and gE or of UL11 and gM were analyzed in cell culture for their growth phenotype. We show here that simultaneous deletion of UL11 and gE reduced plaque size in an additive manner over the reduction observed by deletion of only UL11 or gE. However, one-step growth was not further impaired beyond the level of the UL11 deletion mutant. Moreover, in electron microscopic analyses PrV-DeltaUL11/gE exhibited a phenotype similar to that of the UL11 mutant virus. In contrast, plaque formation was virtually abolished by the simultaneous absence of UL11 and gM, and one-step growth was significantly reduced. Electron microscopy showed the presence of huge intracytoplasmic inclusions in PrV-DeltaUL11/gM-infected cells, with a size reaching 3 micro m and containing nucleocapsids embedded in tegument. We hypothesize that UL11 and gM are involved in different steps during secondary envelopment and that simultaneous deletion of both interrupts both processes, resulting in the observed drastic impairment of secondary envelopment.
Collapse
Affiliation(s)
- Martina Kopp
- Institutes of Molecular Biology. Infectology, Friedrich-Loeffler-Institutes, Federal Research Centre for Virus Diseases of Animals, D-17493 Greifswald-Insel Riems, Germany
| | | | | | | | | |
Collapse
|
173
|
Jones TR, Lee SW. An acidic cluster of human cytomegalovirus UL99 tegument protein is required for trafficking and function. J Virol 2004; 78:1488-502. [PMID: 14722304 PMCID: PMC321399 DOI: 10.1128/jvi.78.3.1488-1502.2004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The human cytomegalovirus (HCMV) virion is comprised of a linear double-stranded DNA genome, proteinaceous capsid and tegument, and a lipid envelope containing virus-encoded glycoproteins. Of these components, the tegument is the least well defined in terms of both protein content and function. Several of the major tegument proteins are phosphoproteins (pp), including pp150, pp71, pp65, and pp28. pp28, encoded by the UL99 open reading frame (ORF), traffics to vacuole-like cytoplasmic structures and was shown recently to be essential for envelopment. To elucidate the UL99 amino acid sequences necessary for its trafficking and function in the HCMV replication cycle, two types of viral mutants were analyzed. Using a series of recombinant viruses expressing various UL99-green fluorescent protein fusions, we demonstrate that myristoylation at glycine 2 and an acidic cluster (AC; amino acids 44 to 57) are required for the punctate perinuclear and cytoplasmic (vacuole-like) localization observed for wild-type pp28. A second approach involving the generation of several UL99 deletion mutants indicated that at least the C-terminal two-thirds of this ORF is nonessential for viral growth. Furthermore, the data suggest that an N-terminal region of UL99 containing the AC is required for viral growth. Regarding virion incorporation or UL99-encoded proteins, we provide evidence that suggests that a hypophosphorylated form of pp28 is incorporated, myristoylation is required, and sequences within the first 57 amino acids are sufficient.
Collapse
Affiliation(s)
- Thomas R Jones
- Infectious Disease Section, Wyeth Research, Pearl River, New York 10965, USA.
| | | |
Collapse
|
174
|
Granzow H, Klupp BG, Mettenleiter TC. The pseudorabies virus US3 protein is a component of primary and of mature virions. J Virol 2004; 78:1314-23. [PMID: 14722286 PMCID: PMC321416 DOI: 10.1128/jvi.78.3.1314-1323.2004] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2003] [Accepted: 10/20/2003] [Indexed: 01/29/2023] Open
Abstract
Herpesviruses acquire a primary envelope by budding of capsids at the inner leaflet of the nuclear membrane. They then traverse into the cytoplasm after fusion of the primary envelope with the outer leaflet of the nuclear membrane. In the alphaherpesvirus pseudorabies virus (PrV), the latter process is impaired when the US3 protein is absent. Acquisition of final tegument and envelope occurs in the cytoplasm. Besides the capsid components, only the UL31 and UL34 gene products of PrV have unequivocally been shown to be part of primary enveloped virions, whereas they lack several tegument proteins present in mature virions (reviewed by T. C. Mettenleiter, J. Virol. 76:1537-1547, 2002). Using immunoelectron microscopy, we show that the US3 protein is present in primary enveloped as well as in mature virions. It is also detectable in intracytoplasmic inclusions produced in the absence of other viral tegument components or envelope-associated glycoproteins. In particular, inclusions formed in the absence of the inner tegument protein UL37 contained the US3 protein. Thus, the US3 protein is a tegument component of both forms of enveloped alphaherpes virions. We hypothesize that US3 protein in primary virions modulates deenvelopment at the outer leaflet of the nuclear membrane and is either lost from primary virions during nuclear egress and subsequently reacquired early during tegumentation or is retained during transit of the nucleocapsid through the nuclear membrane.
Collapse
Affiliation(s)
- Harald Granzow
- Institutes of Infectology, Friedrich-Loeffler-Institutes, Federal Research Centre for Virus Diseases of Animals, D-17493 Greifswald-Insel Riems, Germany
| | | | | |
Collapse
|
175
|
Ryckman BJ, Roller RJ. Herpes simplex virus type 1 primary envelopment: UL34 protein modification and the US3-UL34 catalytic relationship. J Virol 2004; 78:399-412. [PMID: 14671121 PMCID: PMC303423 DOI: 10.1128/jvi.78.1.399-412.2004] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The herpes simplex virus type 1 (HSV-1) US3 kinase is likely important for primary envelopment of progeny nucleocapsids since it localizes to the nuclear envelope of infected cells and largely determines the phosphorylation state and localization of the necessary primary envelopment factor, the UL34 protein. In HEp-2 cells, the production of infectious US3 null progeny is delayed and decreased relative to that of the parental strain, HSV-1(F). Furthermore, the US3 kinase affects the morphology of primary envelopment such that in its absence, UL34 protein-containing enveloped virions accumulate within membrane-bound vesicles. These vesicles are most often found along the interior periphery of the nucleus and may be derived from the inner nuclear membrane. Since the US3 and UL34 proteins comprise a kinase-substrate pair, a reasonable hypothesis is that the US3 kinase influences these replication parameters by direct phosphorylation of the UL34 protein. For this report, recombinant viruses were constructed to determine the significance of UL34 protein phosphorylation and US3 catalytic activity on UL34 protein localization, single-step growth, and envelopment morphology in both HEp-2 and Vero cells. The data presented suggest that the significance of UL34 phosphorylation is cell type dependent and that efficient viral morphogenesis requires US3-mediated phosphorylation of an infected cell protein other than UL34.
Collapse
Affiliation(s)
- Brent J Ryckman
- Department of Microbiology, University of Iowa, Iowa City, Iowa 52246, USA
| | | |
Collapse
|
176
|
Klupp BG, Granzow H, Fuchs W, Mundt E, Mettenleiter TC. Pseudorabies virus UL3 gene codes for a nuclear protein which is dispensable for viral replication. J Virol 2004; 78:464-72. [PMID: 14671126 PMCID: PMC303397 DOI: 10.1128/jvi.78.1.464-472.2004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many of the products of the ca. 80 genes encoded by alphaherpesviruses have already been identified and, at least tentatively, functionally characterized. Among the least characterized proteins are the products of the genes homologous to herpes simplex virus UL3, which are present only in the subfamily Alphaherpesvirinae: To identify the UL3 protein of the porcine alphaherpesvirus pseudorabies virus (PrV), the complete PrV UL3 open reading frame was cloned, expressed in Escherichia coli as a glutathione S-transferase fusion protein, and used for immunization of a rabbit. In Western blots, the generated antiserum specifically detected a 34-kDa protein in PrV-infected cells, which was absent from purified virus preparations, indicating that PrV UL3 encodes a nonstructural protein. In indirect immunofluorescence analysis, the anti-UL3 serum produced predominantly nuclear staining in transfected as well as in infected cells, which was not altered in the absence of other virus-encoded nuclear proteins such as the UL31 and UL34 gene products. To investigate UL3 function, a deletion mutant, PrV-DeltaUL3F2, was constructed and characterized. This mutant replicated and formed plaques on noncomplementing cells indistinguishable from wild-type PrV, demonstrating that PrV UL3 is not required for virus propagation in cultured cells. Moreover, ultrastructural examinations revealed no impairment of capsid formation in the nucleus, nuclear egress of capsids, virion maturation in the cytoplasm, or virus release. Thus, the overall properties of PrV UL3 are similar to those described for the homologous herpes simplex virus proteins which may be indicative of a common, yet hitherto unknown, function in alphaherpesvirus replication. However, based on our studies, an involvement of the UL3 homologs in virion formation appears unlikely.
Collapse
Affiliation(s)
- Barbara G Klupp
- Institutes of Molecular Biology, Friedrich-Loeffler-Institutes, Federal Research Centre for Virus Diseases of Animals, D-17493 Greifswald-Insel Riems, Germany
| | | | | | | | | |
Collapse
|
177
|
Fuchs W, Granzow H, Mettenleiter TC. A pseudorabies virus recombinant simultaneously lacking the major tegument proteins encoded by the UL46, UL47, UL48, and UL49 genes is viable in cultured cells. J Virol 2004; 77:12891-900. [PMID: 14610211 PMCID: PMC262591 DOI: 10.1128/jvi.77.23.12891-12900.2003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The UL46, UL47, UL48, and UL49 genes, which encode major tegument proteins, are conserved in most alphaherpesvirus genomes. However, the relative importance of each of these proteins for replication of individual alphaherpesviruses appears to be different. Recently, we demonstrated that single deletions of UL47 or UL48 impair maturation and egress of pseudorabies virus (PrV) particles to different extents, whereas deletions of UL46 or UL49 have no significant effects on virus replication in cell culture (W. Fuchs, H. Granzow, B. G. Klupp, M. Kopp, and T. C. Mettenleiter, J. Virol. 76:6729-6742, 2002; M. Kopp, B. G. Klupp, H. Granzow, W. Fuchs, and T. C. Mettenleiter, J. Virol. 76:8820-8833, 2002). To test for possible functional redundancy between the four tegument proteins, a quadruple gene deletion mutant (PrV-DeltaUL46-49) was generated and characterized in vitro. Although plaque formation by this mutant was almost abolished and maximum titers were reduced more than 100-fold compared to those of parental wild-type virus, PrV-DeltaUL46-49 could be propagated and serially passaged in noncomplementing porcine and rabbit kidney cells. Electron-microscopic studies revealed that nucleocapsid formation and egress of PrV-DeltaUL46-49 from the host cell nucleus were not affected, but secondary envelopment of nucleocapsids in the cytoplasm was only rarely observed. The replication defect of PrV-DeltaUL46-49 could be fully corrected by reinsertion of the UL46-to-UL49 gene cluster. Plaque sizes and virus titers were only slightly increased after restoration of only UL47 expression, whereas repair of only UL48 resulted in a significant increase in replication capacity to the level of a UL47 deletion mutant. In conclusion, we show that none of the UL46 to UL49 tegument proteins is absolutely required for productive replication of PrV. Moreover, our data indicate that the UL47 and UL48 proteins function independently during cell-to-cell spread and virus egress.
Collapse
Affiliation(s)
- Walter Fuchs
- Institutes of Molecular Biology, Friedrich-Loeffler-Institutes, Federal Research Centre for Virus Diseases of Animals, D-17493 Greifswald-Insel Riems, Germany
| | | | | |
Collapse
|
178
|
Satpute-Krishnan P, DeGiorgis JA, Bearer EL. Fast anterograde transport of herpes simplex virus: role for the amyloid precursor protein of alzheimer's disease. Aging Cell 2003; 2:305-18. [PMID: 14677633 PMCID: PMC3622731 DOI: 10.1046/j.1474-9728.2003.00069.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Anterograde transport of herpes simplex virus (HSV) from its site of synthesis in the neuronal cell body out the neuronal process to the mucosal membrane is crucial for transmission of the virus from one person to another, yet the molecular mechanism is not known. By injecting GFP-labeled HSV into the giant axon of the squid, we reconstitute fast anterograde transport of human HSV and use this as an assay to uncover the underlying molecular mechanism. HSV travels by fast axonal transport at velocities four-fold faster (0.9 microm/sec average, 1.2 microm/sec maximal) than that of mitochondria moving in the same axon (0.2 microm/sec) and ten-fold faster than negatively charged beads (0.08 microm/sec). Transport of HSV utilizes cellular transport mechanisms because it appears to be driven from inside cellular membranes as revealed by negative stain electron microscopy and by the association of TGN46, a component of the cellular secretory pathway, with GFP-labeled viral particles. Finally, we show that amyloid precursor protein (APP), a putative receptor for the microtubule motor, kinesin, is a major component of viral particles, at least as abundant as any viral encoded protein, while another putative motor receptor, JIP 1/2, is not detected. Conventional kinesin is also associated with viral particles. This work links fast anterograde transport of the common pathogen, HSV, with the neurodegenerative Alzheimer's disease. This novel connection should prompt new ideas for treatment and prevention strategies.
Collapse
Affiliation(s)
- Prasanna Satpute-Krishnan
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI 02912, USA
- Marine Biology Laboratory, Woods Hole, MA 02543, USA
| | - Joseph A. DeGiorgis
- Marine Biology Laboratory, Woods Hole, MA 02543, USA
- National Institute of Health, NINDS, Bethesda, MD 20892, USA
| | - Elaine L. Bearer
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI 02912, USA
- Marine Biology Laboratory, Woods Hole, MA 02543, USA
| |
Collapse
|
179
|
Jensen HL, Norrild B. The morphogenesis of herpes simplex virus type 1 in infected parental mouse L fibroblasts and mutant gro29 cells. APMIS 2003; 111:1037-52. [PMID: 14629270 DOI: 10.1111/j.1600-0463.2003.apm1111106.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mutants of cell lines and viruses are important biological tools. The pathway of herpesvirus particle maturation and egress are contentious issues. The mutant gro29 line of mouse L cells is defective for egress of herpes simplex virus type 1 (HSV-1) virions, and a candidate for studies of virus-cell interactions. The properties of uninfected and HSV-1-infected L fibroblasts and gro29 cells investigated by protein assay, immunoblot, titration assay, immunofluorescence light microscopy and immunogold cryosection electron microscopy are reported. The ultrastructure of both HSV-1-infected L and gro29 cells confirmed primary envelopment of virions at the nuclear membranes followed by maturing multiple de-envelopments and re-envelopments in the endoplasmic reticulum and in the Golgi complex. The gro29 cells presented changed cytoskeleton, abolished egress of virions, and were defective in the trafficking of glycoproteins, giving rise to accumulation of viral particles and glycoproteins in the endoplasmic reticulum and the Golgi complex. The results suggest that gro29 cells harbour a causal underlying defect of the cytoskeleton in addition to the HSV-1-induced cytoskeletal changes.
Collapse
Affiliation(s)
- Helle Lone Jensen
- Institute of Molecular Pathology, University of Copenhagen, Denmark.
| | | |
Collapse
|
180
|
Grünewald K, Desai P, Winkler DC, Heymann JB, Belnap DM, Baumeister W, Steven AC. Three-Dimensional Structure of Herpes Simplex Virus from Cryo-Electron Tomography. Science 2003; 302:1396-8. [PMID: 14631040 DOI: 10.1126/science.1090284] [Citation(s) in RCA: 401] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Herpes simplex virus, a DNA virus of high complexity, consists of a nucleocapsid surrounded by the tegument-a protein compartment-and the envelope. The latter components, essential for infectivity, are pleiomorphic. Visualized in cryo-electron tomograms of isolated virions, the tegument was seen to form an asymmetric cap: On one side, the capsid closely approached the envelope; on the other side, they were separated by approximately 35 nanometers of tegument. The tegument substructure was particulate, with some short actin-like filaments. The envelope contained 600 to 750 glycoprotein spikes that varied in length, spacing, and in the angles at which they emerge from the membrane. Their distribution was nonrandom, suggesting functional clustering.
Collapse
Affiliation(s)
- Kay Grünewald
- Laboratory of Structural Biology, National Institute of Arthritis, Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
181
|
Benboudjema L, Mulvey M, Gao Y, Pimplikar SW, Mohr I. Association of the herpes simplex virus type 1 Us11 gene product with the cellular kinesin light-chain-related protein PAT1 results in the redistribution of both polypeptides. J Virol 2003; 77:9192-203. [PMID: 12915535 PMCID: PMC187382 DOI: 10.1128/jvi.77.17.9192-9203.2003] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The herpes simplex virus type 1 (HSV-1) Us11 gene encodes a multifunctional double-stranded RNA (dsRNA)-binding protein that is expressed late in infection and packaged into the tegument layer of the virus particle. As a tegument component, Us11 associates with nascent capsids after its synthesis late in the infectious cycle and is delivered into newly infected cells at times prior to the expression of viral genes. Us11 is also an abundant late protein that regulates translation through its association with host components and contains overlapping nucleolar retention and nuclear export signals, allowing its accumulation in both nucleoli and the cytosol. Thus, at various times during the viral life cycle and in different intracellular compartments, Us11 has the potential to execute discrete tasks. The analysis of these functions, however, is complicated by the fact that Us11 is not essential for viral replication in cultured cells. To discover new host targets for the Us11 protein, we searched for cellular proteins that interact with Us11 and have identified PAT1 as a Us11-binding protein according to multiple, independent experimental criteria. PAT1 binds microtubules, participates in amyloid precursor protein trafficking, and has homology to the kinesin light chain (KLC) in its carboxyl terminus. The carboxyl-terminal dsRNA-binding domain of Us11, which also contains the nucleolar retention and nuclear export signals, binds PAT1, whereas 149 residues derived from the KLC homology region of PAT1 are important for binding to Us11. Both PAT1 and Us11 colocalize within a perinuclear area in transiently transfected and HSV-1-infected cells. The 149 amino acids derived from the KLC homology region are required for colocalization of the two polypeptides. Furthermore, although PAT1 normally accumulates in the nuclear compartment, Us11 expression results in the exclusion of PAT1 from the nucleus and its accumulation in the perinuclear space. Similarly, Us11 does not accumulate in the nucleoli of infected cells that overexpress PAT1. These results establish that Us11 and PAT1 can associate, resulting in an altered subcellular distribution of both polypeptides. The association between PAT1, a cellular trafficking protein with homology to KLC, and Us11, along with a recent report demonstrating an interaction between Us11 and the ubiquitous kinesin heavy chain (R. J. Diefenbach et al., J. Virol. 76:3282-3291, 2002), suggests that these associations may be important for the intracellular movement of viral components.
Collapse
Affiliation(s)
- Louisa Benboudjema
- Department of Microbiology and NYU Cancer Institute, New York University School of Medicine, New York, New York 10016, USA
| | | | | | | | | |
Collapse
|
182
|
Bjerke SL, Cowan JM, Kerr JK, Reynolds AE, Baines JD, Roller RJ. Effects of charged cluster mutations on the function of herpes simplex virus type 1 UL34 protein. J Virol 2003; 77:7601-10. [PMID: 12805460 PMCID: PMC164785 DOI: 10.1128/jvi.77.13.7601-7610.2003] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a DNA virus that acquires an envelope by budding into the inner nuclear membrane of an infected cell. Recombinant HSV-1 lacking the U(L)34 gene cannot undergo this event. U(L)34 and U(L)31, another viral protein, colocalize in an infected cell and are necessary and sufficient to target both proteins to the inner nuclear envelope. In order to define and characterize sequences of U(L)34 that are necessary for primary envelopment to occur, a library of 19 U(L)34 charged cluster mutants and a truncation mutant lacking the putative transmembrane domain (DeltaTM) were generated. Mutants in this library were analyzed in a complementation assay for their ability to function in the production of infectious virus. Seven of the mutants failed to complement a U(L)34-null virus. The remainder of the mutants complemented at or near wild-type U(L)34 levels. Failure of a mutant protein to function might be the result of incorrect subcellular localization. To address this possibility, confocal microscopy was used to determine the localization of the U(L)34 protein in charged cluster mutants and DeltaTM. In transfection-infection experiments, all of the functional U(L)34 mutants and four of the six noncomplementing mutants localized to the inner nuclear envelope in a manner indistinguishable from that of wild-type U(L)34. All of the noncomplementing U(L)34 mutants mediated proper localization of U(L)31. Charged clusters critical for U(L)34 function are dispersed throughout the protein sequence and do not correlate well with highly conserved regions of the protein. These data suggest that U(L)34 has at least one function in addition to mediating proper localization of U(L)31 in infected cells and provide further support for the role of U(L)34 in mediating proper localization of U(L)31 in infected cells.
Collapse
Affiliation(s)
- Susan L Bjerke
- Department of Microbiology, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | |
Collapse
|
183
|
Padilla JA, Nii S, Grose C. Imaging of the varicella zoster virion in the viral highways: comparison with herpes simplex viruses 1 and 2, cytomegalovirus, pseudorabies virus, and human herpes viruses 6 and 7. J Med Virol 2003; 70 Suppl 1:S103-10. [PMID: 12627497 DOI: 10.1002/jmv.10330] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Imaging by scanning electron microscopy (SEM) can provide insight into viral egress. At a low magnification level, varicella zoster virions (VZV) emerge from an infected cell surface in a distinctive pattern previously described as "viral highways." Viral highways consist of thousands of particles arranged in linear pathways across the syncytial surface. This egress pattern has not been described with other herpesviruses, but a systematic analysis has not been performed. Therefore, the characteristic arrangement of VZV egress was compared with that of six other members of the herpes virus family, including herpes simplex virus (HSV) types 1 and 2, human cytomegalovirus (CMV), pseudorabies virus (PRV), and human herpesvirus types 6 and 7 (HHV-6 and HHV-7). Only VZV-infected cells exhibited viral highways. Subsequent SEM examination of VZ virions at an ultra high-resolution revealed that more than 70% were aberrant. Further imaging of the other herpesviruses demonstrated that VZV structure was more closely related to PRV than HSV-1 or HSV-2. Finally, it is noted that the individual members of the herpesvirus family have distinguishable SEM profiles.
Collapse
Affiliation(s)
- Jorge A Padilla
- Departments of Microbiology and Pediatrics, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
184
|
Veits J, Mettenleiter TC, Fuchs W. Five unique open reading frames of infectious laryngotracheitis virus are expressed during infection but are dispensable for virus replication in cell culture. J Gen Virol 2003; 84:1415-1425. [PMID: 12771409 DOI: 10.1099/vir.0.18926-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The chicken alphaherpesvirus infectious laryngotracheitis virus (ILTV) exhibits several unique genetic features including an internal inversion of a conserved part of the unique long genome region. At one end, this inversion is preceded by a cluster of five open reading frames (ORFs) of 335-411 codons, designated ORF A to ORF E, that are not present in any other known herpesvirus genome. In this report we analysed expression of these genes and identified the corresponding viral RNA and protein products. Northern blot analyses showed 3'-coterminal transcripts of ORFs A and B, and monocistronic mRNAs of ORFs C and D. ORF E is part of a 3'-coterminal transcription unit that includes the conserved glycoprotein H and thymidine kinase genes. Monospecific antisera obtained after immunization of rabbits with bacterial fusion proteins allowed detection of the protein products of ORF A (40 kDa), ORF B (34 kDa), ORF C (38 and 30 kDa), ORF D (41 kDa) and ORF E (44 kDa) in ILTV-infected cells. For functional analyses, five virus recombinants possessing deletions within the individual ORFs and concomitant insertions of a reporter gene cassette encoding green fluorescent protein were generated. All virus mutants were replication competent in cell culture, but exhibited reduced virus titres or plaque sizes when compared to wild-type ILTV. These findings indicate that the ILTV-specific ORF A to ORF E genes might be important for virus replication in the natural host organism.
Collapse
Affiliation(s)
- Jutta Veits
- Institute of Molecular Biology, Friedrich-Loeffler-Institutes, Federal Research Centre for Virus Diseases of Animals, D-17493 Greifswald - Insel Riems, Germany
| | - Thomas C Mettenleiter
- Institute of Molecular Biology, Friedrich-Loeffler-Institutes, Federal Research Centre for Virus Diseases of Animals, D-17493 Greifswald - Insel Riems, Germany
| | - Walter Fuchs
- Institute of Molecular Biology, Friedrich-Loeffler-Institutes, Federal Research Centre for Virus Diseases of Animals, D-17493 Greifswald - Insel Riems, Germany
| |
Collapse
|
185
|
Smith GA, Enquist LW. Break ins and break outs: viral interactions with the cytoskeleton of Mammalian cells. Annu Rev Cell Dev Biol 2003; 18:135-61. [PMID: 12142276 DOI: 10.1146/annurev.cellbio.18.012502.105920] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The host cytoskeleton plays important roles in the entry, replication, and egress of viruses. An assortment of viruses hijack cellular motor proteins to move on microtubules toward the cell interior during the entry process; others reverse this transport during egress to move assembling virus particles toward the plasma membrane. Polymerization of actin filaments is sometimes used to propel viruses from cell to cell, while many viruses induce the destruction of select cytoskeletal filaments apparently to effect efficient egress. Indeed, the tactics used by any given virus to achieve its infectious life cycle are certain to involve multiple cytoskeletal interactions. Understanding these interactions, and their orchestration during viral infections, is providing unexpected insights into basic virology, viral pathogenesis, and the biology of the cytoskeleton.
Collapse
Affiliation(s)
- Gregory A Smith
- Department of Microbiology-Immunology, Northwestern University Medical School, Chicago, Illinois 60611, USA.
| | | |
Collapse
|
186
|
Alemañ N, Quiroga MI, López-Peña M, Vázquez S, Guerrero FH, Nieto JM. L-particle production during primary replication of pseudorabies virus in the nasal mucosa of swine. J Virol 2003; 77:5657-67. [PMID: 12719558 PMCID: PMC154012 DOI: 10.1128/jvi.77.10.5657-5667.2003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2002] [Accepted: 02/19/2003] [Indexed: 01/14/2023] Open
Abstract
Different tissue culture cell lines infected with a number of alphaherpesviruses produce, in addition to virions, light particles (L particles). L particles are composed of the envelope and tegument components of the virion but totally lack the proteins of the capsid and the virus genome; therefore, they are noninfectious. In this electron microscopy report, we show that L particles are produced during primary replication of the alphaherpesvirus pseudorabies virus (PRV) in the nasal mucosa of experimentally infected swine, its natural host. Although PRV infected different types of cells of the respiratory and olfactory mucosae, PRV L particles were found to be produced exclusively by epithelial cells and fibroblasts. We observed that formation of noninfectious particles occurred by budding of condensed tegument at the inner nuclear membrane and at membranes of cytoplasmic vesicles, resulting in intracisternal and intravesicular L particles, respectively. Both forms of capsidless particles were clearly distinguishable by the presence of prominent surface projections on the envelope and the higher electron density of the tegument, morphological features which were only observed in intravesicular L particles. Moreover, intravesicular but not intracisternal L particles were found to be released by exocytosis and were also identified extracellularly. Comparative analysis between PRV virion and L-particle morphogenesis indicates that both types of virus particles share a common intracellular pathway of assembly and egress but that they show different production patterns during the replication cycle of PRV.
Collapse
Affiliation(s)
- Nuria Alemañ
- Departamento de Anatomía y Producción Animal, Facultad de Veterinaria, Universidad de Santiago de Compostela, E-27002 Lugo, Spain.
| | | | | | | | | | | |
Collapse
|
187
|
Brignati MJ, Loomis JS, Wills JW, Courtney RJ. Membrane association of VP22, a herpes simplex virus type 1 tegument protein. J Virol 2003; 77:4888-98. [PMID: 12663795 PMCID: PMC152156 DOI: 10.1128/jvi.77.8.4888-4898.2003] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Tegument proteins of herpes simplex virus type 1 (HSV-1) are hypothesized to contain the functional information required for the budding or envelopment process proposed to occur at cytoplasmic compartments of the host cell. One of the most abundant tegument proteins of HSV-1 is the U(L)49 gene product, VP22, a 38-kDa protein of unknown function. To study its subcellular localization, a VP22-green fluorescent protein chimera was expressed in transfected human melanoma (A7) cells. In the absence of other HSV-1 proteins, VP22 localizes to acidic compartments of the cell that may include the trans-Golgi network (TGN), suggesting that this protein is membrane associated. Membrane pelleting and membrane flotation assays confirmed that VP22 partitions with the cellular membrane fraction. Through truncation mutagenesis, we determined that the membrane association of VP22 is a property attributed to amino acids 120 to 225 of this 301-amino-acid protein. The above results demonstrate that VP22 contains specific information required for targeting to membranes of acidic compartments of the cell which may be derived from the TGN, suggesting a potential role for VP22 during tegumentation and/or final envelopment.
Collapse
Affiliation(s)
- Michael J Brignati
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | |
Collapse
|
188
|
Mettenleiter TC. Pathogenesis of neurotropic herpesviruses: role of viral glycoproteins in neuroinvasion and transneuronal spread. Virus Res 2003; 92:197-206. [PMID: 12686430 DOI: 10.1016/s0168-1702(02)00352-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Neuroinvasion by herpesviruses requires entry into nerve endings in the periphery, transport to the cell body, replication in the cell body, axonal transport to the synapse and transneuronal viral spread. Entry occurs after receptor binding by fusion of virion envelope and cellular plasma membrane followed by microtubuli-assisted transport of capsids to the nuclear pore. By transneuronal spread, the virus gains access to synaptically linked neuronal circuits. A common set of herpesvirus glycoproteins is involved in entry and direct viral cell-cell spread. However, both processes can be distinguished by involvement of additional viral components. Interestingly, transneuronal spread appears to be functionally linked to intracytoplasmic formation of mature virions. This review will focus on the importance of herpesvirus envelope glycoproteins for infection of neurons and transneuronal spread, and their influence on viral pathogenesis.
Collapse
Affiliation(s)
- Thomas C Mettenleiter
- Institute of Molecular Biology, Friedrich-Loeffler-Institutes, Federal Research Centre for Virus Diseases of Animals, D-17498 Insel Riems, Germany.
| |
Collapse
|
189
|
Veits J, Köllner B, Teifke JP, Granzow H, Mettenleiter TC, Fuchs W. Isolation and characterization of monoclonal antibodies against structural proteins of infectious laryngotracheitis virus. Avian Dis 2003; 47:330-42. [PMID: 12887192 DOI: 10.1637/0005-2086(2003)047[0330:iacoma]2.0.co;2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Thirteen infectious laryngotracheitis virus (ILTV)-specific monoclonal antibodies (MAbs) were isolated after immunization of mice with purified infectious laryngotracheitis virions. On the basis of their reactions in western blot analyses of ILTV-infected cells, the MAbs were assigned to five different virus proteins or protein groups. Two of the viral target proteins could be identified after transient expression of cloned ILTV genes in eucaryotic cells. The MAbs of group II detected a 60-kD protein that was shown to be the ILTV homologue of herpes simplex virus type 1 (HSV-1) glycoprotein (g)C. The MAbs of group I reacted with the positional homologue of HSV-1 gJ, which is encoded by the open reading frame (ORF) 5 gene within the unique short genome region of ILTV. The ORF 5 gene product of ILTV was previously described as a 60-kD glycoprotein (gp60), whereas multiple protein bands with apparent molecular masses of 85, 115, 160, and 200 kD were identified in the present study. Immunoelectron microscopy revealed that both gC and gJ of ILTV are localized in the envelope of virus particles, whereas the 15-kD protein detected by the MAbs of group III presumably represents a tegument component. Immunofluorescence analyses of infected cells demonstrated that the epitopes of the gC- and gJ-specific MAbs are conserved in all tested ILTV isolates originating from different parts of the world and that these MAbs are also suitable for in situ antigen detection in tissues of ILTV-infected chickens. The remaining ILTV-specific MAbs recognized viral proteins of 22 kD (group IV) and 38 kD (group V) that were not further characterized up to now.
Collapse
Affiliation(s)
- Jutta Veits
- Institute of Molecular Biology, Friedrich-Loeffler-Institutes, Federal Research Centre for Virus Diseases of Animals, Boddenblick 5A, D-17493 Greifswald-Insel Riems, Germany
| | | | | | | | | | | |
Collapse
|
190
|
Miranda-Saksena M, Boadle RA, Armati P, Cunningham AL. In rat dorsal root ganglion neurons, herpes simplex virus type 1 tegument forms in the cytoplasm of the cell body. J Virol 2002; 76:9934-51. [PMID: 12208970 PMCID: PMC136480 DOI: 10.1128/jvi.76.19.9934-9951.2002] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The herpes simplex virus type 1 (HSV-1) tegument is the least understood component of the virion, and the mechanism of tegument assembly and incorporation into virions during viral egress has not yet been elucidated. In the present study, the addition of tegument proteins (VP13/14, VP16, VP22, and US9) and envelope glycoproteins (gD and gH) to herpes simplex virions in the cell body of rat dorsal root ganglion neurons was examined by immunoelectron microscopy. All tegument proteins were detected diffusely spread in the nucleus within 10 to 12 h and, at these times, nucleocapsids were observed budding from the nucleus. The majority (96%) of these nucleocapsids had no detectable label for tegument and glycoproteins despite the presence of tegument proteins in the nucleus and glycoproteins adjacent to the nuclear membrane. Immunolabeling for tegument proteins and glycoproteins was found abundantly in the cytoplasm of the cell body in multiple discrete vesicular areas: on unenveloped, enveloped, or partially enveloped capsids adjacent to these vesicles and in extracellular virions. These vesicles and intracytoplasmic and extracellular virions also labeled with Golgi markers, giantin, mannosidase II, and TGN38. Treatment with brefeldin A from 2 to 24 h postinfection markedly inhibited incorporation into virions of VP22 and US9 but to a lesser degree with VP16 and VP13/14. These results suggest that, in the cell body of neurons, most tegument proteins are incorporated into unenveloped nucleocapsids prior to envelopment in the Golgi and the trans-Golgi network. These findings give further support to the deenvelopment-reenvelopment hypothesis for viral egress. Finally, the addition of tegument proteins to unenveloped nucleocapsids in the cell body allows access to these unenveloped nucleocapsids to one of two pathways: egress through the cell body or transport into the axon.
Collapse
Affiliation(s)
- Monica Miranda-Saksena
- Centre for Virus Research, Westmead Millennium Institute, Westmead Hospital and University of Sydney, Westmead, New South Wales 2145, Australia
| | | | | | | |
Collapse
|
191
|
Neubauer A, Rudolph J, Brandmüller C, Just FT, Osterrieder N. The equine herpesvirus 1 UL34 gene product is involved in an early step in virus egress and can be efficiently replaced by a UL34-GFP fusion protein. Virology 2002; 300:189-204. [PMID: 12350350 DOI: 10.1006/viro.2002.1488] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The structure and function of the equine herpesvirus type 1 (EHV-1) UL34 homologous protein were characterized. A UL34 protein-specific antiserum reacted with an M(r)28,000 protein that could not be detected in purified extracellular virions. Confocal laser scanning microscopy demonstrated that UL34 reactivity mainly concentrated at the nuclear rim, which changed into a punctuate and filamentous pattern at late times after infection. These changes in UL34 distribution were especially prominent when analyzing the distribution of a GFP-UL34 fusion protein. A UL34-negative EHV-1 was generated by mutagenesis of a recently established BAC clone of EHV-1 strain RacH (pRacH). Release of extracellular infectious virus was severely impaired after infection of Rk13 cells with HDelta34. Electron microscopy revealed a virtual absence of virus particles in the cytoplasm of infected cells, whereas nucleocapsid formation and maturation within the nucleus appeared unaffected. A UL34-GFP fusion protein with GFP linked to the C-terminus of UL34 was able to complement for the UL34 deletion in trans, while a GFP-UL34-fusion protein with GFP linked to the N-terminus of UL34 was able to only partially restore virus growth. It was concluded that the EHV-1 UL34 product is essential for an early step in virus egress, i.e., release of capsids from infected-cell nuclei.
Collapse
Affiliation(s)
- Antonie Neubauer
- Institute for Medical Microbiology, Infectious and Epidemic Diseases, Ludwig-Maximilians-Universität München, Veterinärstrasse 13, D-80539, Munich, Germany.
| | | | | | | | | |
Collapse
|
192
|
Reynolds AE, Wills EG, Roller RJ, Ryckman BJ, Baines JD. Ultrastructural localization of the herpes simplex virus type 1 UL31, UL34, and US3 proteins suggests specific roles in primary envelopment and egress of nucleocapsids. J Virol 2002; 76:8939-52. [PMID: 12163613 PMCID: PMC136992 DOI: 10.1128/jvi.76.17.8939-8952.2002] [Citation(s) in RCA: 284] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The wild-type UL31, UL34, and US3 proteins localized on nuclear membranes and perinuclear virions; the US3 protein was also on cytoplasmic membranes and extranuclear virions. The UL31 and UL34 proteins were not detected in extracellular virions. US3 deletion caused (i) virion accumulation in nuclear membrane invaginations, (ii) delayed virus production onset, and (iii) reduced peak virus titers. These data support the herpes simplex virus type 1 deenvelopment-reenvelopment model of virion egress and suggest that the US3 protein plays an important, but nonessential, role in the egress pathway.
Collapse
Affiliation(s)
- Ashley E Reynolds
- Department of Microbiology and Immunology, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | |
Collapse
|
193
|
Fuchs W, Granzow H, Klupp BG, Kopp M, Mettenleiter TC. The UL48 tegument protein of pseudorabies virus is critical for intracytoplasmic assembly of infectious virions. J Virol 2002; 76:6729-42. [PMID: 12050386 PMCID: PMC136261 DOI: 10.1128/jvi.76.13.6729-6742.2002] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The pseudorabies virus (PrV) homolog of the tegument protein encoded by the UL48 gene of herpes simplex virus type 1 (HSV-1) was identified by using a monospecific rabbit antiserum against a bacterial fusion protein. UL48-related polypeptides of 53, 55, and 57 kDa were detected in Western blots of infected cells and purified virions. Immunofluorescence studies demonstrated that the PrV UL48 protein is predominantly localized in the cytoplasm but is also found in the nuclei of infected cells. Moreover, it is a constituent of extracellular virus particles but is absent from primary enveloped perinuclear virions. In noncomplementing cells, a UL48-negative PrV mutant (PrV-DeltaUL48) exhibited delayed growth and significantly reduced plaque sizes and virus titers, deficiencies which were corrected in UL48-expressing cells. RNA analyses indicated that, like its HSV-1 homolog, the PrV UL48 protein is involved in regulation of immediate-early gene expression. However, the most salient effect of the UL48 gene deletion was a severe defect in virion morphogenesis. Late after infection, electron microscopy of cells infected with PrV-DeltaUL48 revealed retention of newly formed nucleocapsids in the cytoplasm, whereas enveloped intracytoplasmic or extracellular complete virions were only rarely observed. In contrast, capsidless particles were produced and released in great amounts. Remarkably, the intracytoplasmic capsids were labeled with antibodies against the UL36 and UL37 tegument proteins, whereas the capsidless particles were labeled with antisera directed against the UL46, UL47, and UL49 tegument proteins. These findings suggested that the UL48 protein is involved in linking capsid and future envelope-associated tegument proteins during virion formation. Thus, like its HSV-1 homolog, the UL48 protein of PrV functions in at least two different steps of the viral life cycle. The drastic inhibition of virion formation in the absence of the PrV UL48 protein indicates that it plays an important role in virion morphogenesis prior to secondary envelopment of intracytoplasmic nucleocapsids. However, the UL48 gene of PrV is not absolutely essential, and concomitant deletion of the adjacent tegument protein gene UL49 also did not abolish virus replication in cell culture.
Collapse
Affiliation(s)
- Walter Fuchs
- Institute of Molecular Biology, Friedrich-Loeffler-Institutes, Federal Research Centre for Virus Diseases of Animals, Boddenblick 5A, D-17498 Insel Riems, Germany
| | | | | | | | | |
Collapse
|
194
|
Temporal Morphogenesis of Herpes Simplex Virus Type 1-Infected and Brefeldin A-Treated Human Fibroblasts. Mol Med 2002. [DOI: 10.1007/bf03402013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
195
|
Maeda K, Hayashi S, Tanioka Y, Matsumoto Y, Otsuka H. Pseudorabies virus (PRV) is protected from complement attack by cellular factors and glycoprotein C (gC). Virus Res 2002; 84:79-87. [PMID: 11900841 DOI: 10.1016/s0168-1702(01)00417-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Swine kidney derived CPK cells were resistant to swine complement attack in vitro while rabbit kidney derived RK13 cells were destroyed by swine complement. To rabbit complement, RK13 cells were resistant but CPK cells were sensitive. This phenomenon was known as homologous restriction (Proc. Natl. Acad. Sci. USA 78 (1981) 5118). The gC deletion mutant of pseudorabies virus (PRVdlgC) grown in CPK cells was resistant to swine complement while the same virus grown in RK13 cells was neutralized by swine complement. PRVdlgC grown in RK13 cells was more resistant to rabbit complement than the virus grown in CPK cells. Hence, the sensitivity of PRVdlgC to swine or rabbit complement was similar to that of the cells in which the virus was grown. It would appear that cell derived factors were present on the virion and they were protective against homologous complement but not against heterologous complement. The expression of gC rendered PRV more resistant to swine or rabbit complement, but the protective effect of gC was much less than that of cell derived factors. The best protection against complement was obtained when gC and cell derived factors were coexistent on the virion.
Collapse
Affiliation(s)
- Kohshi Maeda
- Department of Global Animal Resource Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | | | | | |
Collapse
|
196
|
Rudolph J, Seyboldt C, Granzow H, Osterrieder N. The gene 10 (UL49.5) product of equine herpesvirus 1 is necessary and sufficient for functional processing of glycoprotein M. J Virol 2002; 76:2952-63. [PMID: 11861861 PMCID: PMC135984 DOI: 10.1128/jvi.76.6.2952-2963.2002] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The functional cooperation of equine herpesvirus 1 (EHV-1) glycoprotein M (gM) and the gene 10 (UL49.5) product was analyzed. Transient-transfection experiments using gM and UL49.5 expression plasmids as well as RK13 cell lines constitutively expressing UL49.5 (RK49.5) or gM (RKgM) demonstrated that the endo-beta-N-acetylglucosaminidase H (endo H)-resistant mature form of gM was detectable only after coexpression of the two proteins. Deletion of the EHV-1 UL49.5-homologous gene 10 in strain KyA resulted in a small-plaque phenotype and up to 190-fold-reduced virus titers. The growth defects of the mutant KyA Delta 49.5 virus, which were very similar to those of a gM-negative KyA virus, could be completely compensated for by growth of the mutant virus on RK49.5 cells or by repairing the deletion of gene 10 in the revertant virus KyA Delta 49.5R. Analysis of cells infected with the UL49.5-negative EHV-1 demonstrated that gM was not transported to the trans-Golgi network in the absence of the UL49.5 product. In contrast, gM was efficiently transported and processed to the endo H-resistant mature form in KyA Delta 49.5-infected RK49.5 cells. Furthermore, radioimmunoprecipitation experiments demonstrated that gM maturation was observed only if a 10,000-M(r) protein was coprecipitated with gM in KyA- or KyA Delta 49.5R-infected cells or virions. This protein was absent in cells infected with Ky Delta 49.5 or KyA Delta gM, suggesting that it was the EHV-1 UL49.5 product. Taken together, our results demonstrate that the expression of the EHV-1 UL49.5 product is necessary and sufficient for gM processing and that it is required for efficient virus replication.
Collapse
Affiliation(s)
- Jens Rudolph
- Institute of Molecular Biology, Friedrich-Loeffler-Institutes, Federal Research Centre for Virus Diseases of Animals, D-17498 Insel Riems, Germany
| | | | | | | |
Collapse
|
197
|
Fraile-Ramos A, Pelchen-Matthews A, Kledal TN, Browne H, Schwartz TW, Marsh M. Localization of HCMV UL33 and US27 in endocytic compartments and viral membranes. Traffic 2002; 3:218-32. [PMID: 11886592 DOI: 10.1034/j.1600-0854.2002.030307.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The human cytomegalovirus genome encodes four putative seven transmembrane domain chemokine receptor-like proteins. Although important in viral pathogenesis, little is known about the properties or functions of these proteins. We previously reported that US28 is located in endocytic vesicles and undergoes constitutive endocytosis and recycling. Here we studied the cellular distributions and trafficking of two other human cytomegalovirus chemokine receptor-like proteins, UL33 and US27, in transfected and human cytomegalovirus-infected cells. Immunofluorescence staining indicated that UL33 and US27 are located at the cell surface, although the majority of both proteins was seen in intracellular organelles located in the perinuclear region of the cell. The intracellular pools of UL33 and US27 showed overlap with markers for endocytic organelles. Antibody-feeding experiments indicated that cell surface US27 undergoes endocytosis. By immunogold labeling of cryosections and electron microscopy, UL33 was seen to localize to multivesicular bodies (MVBs or multivesicular endosomes). Electron microscopy analysis of human cytomegalovirus-infected cells showed that most virus particles wrapped individually into short membrane cisternae, although virus particles were also occasionally seen within and budding into MVBs. Electron microscopy immunolocalization of viral UL33 and US27 on ultrathin cryosections of human cytomegalovirus-infected cells showed gold particles over the membranes into which virions were wrapping, in small membrane tubules and vesicles and in MVBs. Labeling of the human cytomegalovirus glycoproteins gB and gH indicated that these proteins were also present in the same membrane structures. This first electron microscopy analysis of human cytomegalovirus assembly using immunolabeling suggests that the localization of UL33, US27 and US28 to endosomes may allow these proteins to be incorporated into the viral membrane during the final stages of human cytomegalovirus assembly.
Collapse
Affiliation(s)
- Alberto Fraile-Ramos
- Department of Biochemistry and Molecular Biology, Cell Biology Unit, MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK
| | | | | | | | | | | |
Collapse
|
198
|
Theiler RN, Compton T. Distinct glycoprotein O complexes arise in a post-Golgi compartment of cytomegalovirus-infected cells. J Virol 2002; 76:2890-8. [PMID: 11861856 PMCID: PMC135985 DOI: 10.1128/jvi.76.6.2890-2898.2002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Human cytomegalovirus (CMV) glycoproteins H, L, and O (gH, gL, and gO, respectively) form a heterotrimeric disulfide-bonded complex that participates in the fusion of the viral envelope with the host cell membrane. During virus maturation, this complex undergoes a series of intracellular assembly and processing events which are not entirely defined (M. T. Huber and T. Compton, J. Virol. 73:3886-3892, 1999). Here, we demonstrate that gO does not undergo the same posttranslational processing in transfected cells as it does in infected cells. We further determined that gO is modified by O-linked glycosylation and that this terminally processed form is highly enriched in virions. However, during studies of gO processing, novel gO complexes were discovered in CMV virions. The newly identified gO complexes, including gO-gL heterodimers, were not readily detected in CMV-infected cells. Further characterization of the trafficking of gO through the secretory pathway of infected cells localized gH, gL, and gO primarily to the Golgi apparatus and trans-Golgi network, supporting the conclusion that the novel virion-associated gO complexes arise in a post-Golgi compartment of infected cells.
Collapse
Affiliation(s)
- Regan N Theiler
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison Medical School, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
199
|
Klupp BG, Fuchs W, Granzow H, Nixdorf R, Mettenleiter TC. Pseudorabies virus UL36 tegument protein physically interacts with the UL37 protein. J Virol 2002; 76:3065-71. [PMID: 11861875 PMCID: PMC135998 DOI: 10.1128/jvi.76.6.3065-3071.2002] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The UL36 open reading frame encoding the tegument protein ICP1/2 represents the largest open reading frame in the genome of herpes simplex virus type 1 (HSV-1). Polypeptides homologous to the HSV-1 UL36 protein are present in all subfamilies of HERPESVIRIDAE: We sequenced the UL36 gene of the alphaherpesvirus pseudorabies virus (PrV) and prepared a monospecific polyclonal rabbit antiserum against a bacterial glutathione S-transferase (GST)-UL36 fusion protein for identification of the protein. The antiserum detected a >300-kDa protein in PrV-infected cells and in purified virions. Interestingly, in coprecipitation analyses using radiolabeled infected-cell extracts, the anti-UL36 serum reproducibly coprecipitated the UL37 tegument protein, and antiserum directed against the UL37 protein coprecipitated the UL36 protein. This physical interaction could be verified using yeast two-hybrid analysis which demonstrated that the UL37 protein interacts with a defined region within the amino-terminal part of the UL36 protein. By use of immunogold labeling, capsids which accumulate in the cytoplasm in the absence of the UL37 protein (B. G. Klupp, H. Granzow, E. Mundt, and T. C. Mettenleiter, J. Virol. 75:8927-8936, 2001) as well as wild-type intracytoplasmic and extracellular virions were decorated by the anti-UL36 antiserum, whereas perinuclear primary enveloped virions were not. We postulate that the physical interaction of the UL36 protein, which presumably constitutes the innermost layer of the tegument (Z. Zhou, D. Chen, J. Jakana, F. J. Rixon, and W. Chiu, J. Virol. 73:3210-3218, 1999), with the UL37 protein is an important early step in tegumentation during virion morphogenesis in the cytoplasm.
Collapse
Affiliation(s)
- Barbara G Klupp
- Institute of Molecular Biology, Friedrich-Loeffler-Institutes, Federal Research Centre for Virus Diseases of Animals, D-17498 Insel Riems, Germany
| | | | | | | | | |
Collapse
|
200
|
Rudolph J, Osterrieder N. Equine herpesvirus type 1 devoid of gM and gp2 is severely impaired in virus egress but not direct cell-to-cell spread. Virology 2002; 293:356-67. [PMID: 11886256 DOI: 10.1006/viro.2001.1277] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Experiments were conducted to analyze the effects of a simultaneous deletion of glycoprotein M (gM) and glycoprotein 2 (gp2) of equine herpesvirus type 1 (EHV-1). EHV-1 strain RacH was cloned as a bacterial artificial chromosome (pRacH) by homologous recombination of a mini F plasmid into the unique short region of the genome, thereby deleting gene 71 encoding gp2. Upon transfection of the pRacH DNA into rabbit kidney RK13 cells, virus plaques were visible from day 1 after transfection. The mutant RacH virus (H Delta gp2) reconstituted from pRacH lacked gene 71 and did not express gp2 as assayed by indirect immunofluorescence analysis using gp2-specific monoclonal antibodies. The H Delta gp2 virus exhibited 10-fold reduced extracellular titers and an approximately 10% reduction in mean plaque diameters when compared to parental or gp2-revertant virus. The gM open reading frame was deleted from pRacH by recE/T mediated mutagenesis in Escherichia coli. The gM-gp2 double negative virus mutant (H Delta gp2gM) did not express either of the deleted glycoproteins as demonstrated by indirect immunofluorescence analysis. The H Delta gp2gM virus exhibited a 200-fold reduction of end-point extracellular titers when compared to parental RacH virus, which could not be compensated for by growth of the mutant virus on gM-expressing cells. After restoration of the gM open reading frame, however, growth of the mutant virus was comparable to the H Delta gp2 virus. Plaque diameters of the gM-gp2 double-negative mutant were reduced by only 16% when compared to that of parental RacH virus. From the results it was concluded that the simultaneous absence of gM and gp2 had an additive effect on egress but not secondary envelopment or cell-to-cell spread of EHV-1.
Collapse
Affiliation(s)
- Jens Rudolph
- Institute of Molecular Biology, Federal Research Centre for Virus Diseases of Animals, D-17498 Insel Riems, Germany
| | | |
Collapse
|