151
|
Guan Y, Mizoguchi M, Yoshimoto K, Hata N, Shono T, Suzuki SO, Araki Y, Kuga D, Nakamizo A, Amano T, Ma X, Hayashi K, Sasaki T. MiRNA-196 is upregulated in glioblastoma but not in anaplastic astrocytoma and has prognostic significance. Clin Cancer Res 2010; 16:4289-97. [PMID: 20601442 DOI: 10.1158/1078-0432.ccr-10-0207] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
PURPOSE MicroRNAs (miRNA) are short noncoding RNAs that can play critical roles in diverse biological processes. They are implicated in tumorigenesis and function both as tumor suppressors and as oncogenes. The clinical significance of miRNA expression profiles in malignant gliomas remains unclear. EXPERIMENTAL DESIGN In this study, we examined the expression levels of 365 mature human miRNAs in 12 malignant gliomas, including 8 glioblastomas and 4 anaplastic astrocytomas, using TaqMan real-time quantitative PCR arrays. A validation study was done to corroborate a subset of the results, including expression levels of miR-196a, -196b, -21, and -15b, by analyzing 92 malignant gliomas by conventional real-time PCR. We modeled the relationship between the expression levels of these miRNAs and the survival rate of 39 glioblastoma patients by Kaplan-Meier method and multivariate analysis. RESULTS Expression profiles in glioblastomas and anaplastic astrocytomas suggested that 16 miRNAs were candidate markers associated with the malignant progression of gliomas. Among them, miR-196a showed the most significant difference (P = 0.0038), with miR-196b also having a high significance (P = 0.0371). Both miRNAs showed increased expression levels in glioblastomas relative to both anaplastic astrocytomas and normal brains in the validation study. Furthermore, patients with high miR-196 expression levels showed significantly poorer survival by the Kaplan-Meier method (P = 0.0073). Multivariate analysis showed that miR-196 expression levels were an independent predictor of overall survival in all 39 glioblastoma patients (P = 0.021; hazard ratio, 2.81). CONCLUSIONS Our results suggest that miR-196 may play a role in the malignant progression of gliomas and may be a prognostic predictor in glioblastomas.
Collapse
Affiliation(s)
- Yanlei Guan
- Department of Neurosurgery and Neuropathology, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
152
|
Mallanna SK, Rizzino A. Emerging roles of microRNAs in the control of embryonic stem cells and the generation of induced pluripotent stem cells. Dev Biol 2010; 344:16-25. [PMID: 20478297 PMCID: PMC2935203 DOI: 10.1016/j.ydbio.2010.05.014] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 05/10/2010] [Accepted: 05/10/2010] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) have emerged as critical regulators of gene expression. These small, non-coding RNAs are believed to regulate more than a third of all protein coding genes, and they have been implicated in the control of virtually all biological processes, including the biology of stem cells. The essential roles of miRNAs in the control of pluripotent stem cells were clearly established by the finding that embryonic stem (ES) cells lacking proteins required for miRNA biogenesis exhibit defects in proliferation and differentiation. Subsequently, the function of numerous miRNAs has been shown to control the fate of ES cells and to directly influence critical gene regulatory networks controlled by pluripotency factors Sox2, Oct4, and Nanog. Moreover, a growing list of tissue-specific miRNAs, which are silenced or not processed fully in ES cells, has been found to promote differentiation upon their expression and proper processing. The importance of miRNAs for ES cells is further indicated by the exciting discovery that specific miRNA mimics or miRNA inhibitors promote the reprogramming of somatic cells into induced pluripotent stem (iPS) cells. Although some progress has been made during the past two years in our understanding of the contribution of specific miRNAs during reprogramming, further progress is needed since it is highly likely that miRNAs play even wider roles in the generation of iPS cells than currently appreciated. This review examines recent developments related to the roles of miRNAs in the biology of pluripotent stem cells. In addition, we posit that more than a dozen additional miRNAs are excellent candidates for influencing the generation of iPS cells as well as for providing new insights into the process of reprogramming.
Collapse
Affiliation(s)
- Sunil K. Mallanna
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, Nebraska 68198-6805
| | - Angie Rizzino
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, Nebraska 68198-6805
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, Nebraska 68198-6805
| |
Collapse
|
153
|
Abstract
Embryonic stem cells and induced pluripotent stem cells are characterized by their ability to self-renew and differentiate into any cell type. The molecular mechanism behind this process is a complex interplay between the transcriptional factors with epigenetic regulators and signaling pathways. miRNAs are an integral part of this regulatory network, with essential roles in pluripotent maintenance, proliferation and differentiation. miRNAs are a class of small noncoding RNAs that target protein-encoding mRNA to inhibit translation and protein synthesis. Discovered close to 20 years ago, miRNAs have rapidly emerged as key regulatory molecules in several critical cellular processes across species. Recent studies have begun to clarify the specific role of miRNA in regulatory circuitries that control self-renewal and pluripotency of both embryonic stem cells and induced pluripotent stem cells. These advances suggest a critical role for miRNAs in the process of reprogramming somatic cells to pluripotent cells.
Collapse
Affiliation(s)
- Uma Lakshmipathy
- WM Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, NJ 08854, USA.
| | | | | |
Collapse
|
154
|
Smith B, Treadwell J, Zhang D, Ly D, McKinnell I, Walker PR, Sikorska M. Large-scale expression analysis reveals distinct microRNA profiles at different stages of human neurodevelopment. PLoS One 2010; 5:e11109. [PMID: 20559549 PMCID: PMC2886071 DOI: 10.1371/journal.pone.0011109] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Accepted: 05/19/2010] [Indexed: 11/25/2022] Open
Abstract
Background MicroRNAs (miRNAs) are short non-coding RNAs predicted to regulate one third of protein coding genes via mRNA targeting. In conjunction with key transcription factors, such as the repressor REST (RE1 silencing transcription factor), miRNAs play crucial roles in neurogenesis, which requires a highly orchestrated program of gene expression to ensure the appropriate development and function of diverse neural cell types. Whilst previous studies have highlighted select groups of miRNAs during neural development, there remains a need for amenable models in which miRNA expression and function can be analyzed over the duration of neurogenesis. Principal Findings We performed large-scale expression profiling of miRNAs in human NTera2/D1 (NT2) cells during retinoic acid (RA)-induced transition from progenitors to fully differentiated neural phenotypes. Our results revealed dynamic changes of miRNA patterns, resulting in distinct miRNA subsets that could be linked to specific neurodevelopmental stages. Moreover, the cell-type specific miRNA subsets were very similar in NT2-derived differentiated cells and human primary neurons and astrocytes. Further analysis identified miRNAs as putative regulators of REST, as well as candidate miRNAs targeted by REST. Finally, we confirmed the existence of two predicted miRNAs; pred-MIR191 and pred-MIR222 associated with SLAIN1 and FOXP2, respectively, and provided some evidence of their potential co-regulation. Conclusions In the present study, we demonstrate that regulation of miRNAs occurs in precise patterns indicative of their roles in cell fate commitment, progenitor expansion and differentiation into neurons and glia. Furthermore, the similarity between our NT2 system and primary human cells suggests their roles in molecular pathways critical for human in vivo neurogenesis.
Collapse
Affiliation(s)
- Brandon Smith
- Institute for Biological Sciences, National Research Council Canada, Ottawa, Canada.
| | | | | | | | | | | | | |
Collapse
|
155
|
Palmer RD, Murray MJ, Saini HK, van Dongen S, Abreu-Goodger C, Muralidhar B, Pett MR, Thornton CM, Nicholson JC, Enright AJ, Coleman N, Children's Cancer and Leukaemia Group. Malignant germ cell tumors display common microRNA profiles resulting in global changes in expression of messenger RNA targets. Cancer Res 2010; 70:2911-23. [PMID: 20332240 PMCID: PMC3000593 DOI: 10.1158/0008-5472.can-09-3301] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Despite their extensive clinical and pathologic heterogeneity, all malignant germ cell tumors (GCT) are thought to originate from primordial germ cells. However, no common biological abnormalities have been identified to date. We profiled 615 microRNAs (miRNA) in pediatric malignant GCTs, controls, and GCT cell lines (48 samples in total) and re-analyzed available miRNA expression data in adult gonadal malignant GCTs. We applied the bioinformatic algorithm Sylamer to identify miRNAs that are of biological importance by inducing global shifts in mRNA levels. The most significant differentially expressed miRNAs in malignant GCTs were all from the miR-371-373 and miR-302 clusters (adjusted P < 0.00005), which were overexpressed regardless of histologic subtype [yolk sac tumor (YST)/seminoma/embryonal carcinoma (EC)], site (gonadal/extragonadal), or patient age (pediatric/adult). Sylamer revealed that the hexamer GCACTT, complementary to the 2- to 7-nucleotide miRNA seed AAGUGC shared by six members of the miR-371-373 and miR-302 clusters, was the only sequence significantly enriched in the 3'-untranslated region of mRNAs downregulated in pediatric malignant GCTs (as a group), YSTs and ECs, and in adult YSTs (all versus nonmalignant tissue controls; P < 0.05). For the pediatric samples, downregulated genes containing the 3'-untranslated region GCACTT showed significant overrepresentation of Gene Ontology terms related to cancer-associated processes, whereas for downregulated genes lacking GCACTT, Gene Ontology terms generally represented metabolic processes only, with few genes per term (adjusted P < 0.05). We conclude that the miR-371-373 and miR-302 clusters are universally overexpressed in malignant GCTs and coordinately downregulate mRNAs involved in biologically significant pathways.
Collapse
Affiliation(s)
- Roger D Palmer
- Medical Research Council Cancer Cell Unit, Hills Road, Cambridge CB2 0XZ, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Fujino T, Nomura K, Ishikawa Y, Makino H, Umezawa A, Aburatani H, Nagasaki K, Nakamura T. Function of EWS-POU5F1 in sarcomagenesis and tumor cell maintenance. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 176:1973-82. [PMID: 20203285 DOI: 10.2353/ajpath.2010.090486] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
POU5F1 is a transcription factor essential for the self-renewal activity and pluripotency of embryonic stem cells and germ cells. We have previously reported that POU5F1 is fused to EWSR1 in a case of undifferentiated sarcoma with chromosomal translocation t(6;22)(p21;q12). In addition, the EWS-POU5F1 chimeras have been recently identified in human neoplasms of the skin and salivary glands. To clarify the roles of the EWS-POU5F1 chimera in tumorigenesis and tumor cell maintenance, we used small-interfering RNA-mediated gene silencing. Knockdown of EWS-POU5F1 in the t(6;22) sarcoma-derived GBS6 cell line resulted in a significant decrease of cell proliferation because of G1 cell cycle arrest associated with p27(Kip1) up-regulation. Moreover, senescence-like morphological changes accompanied by actin polymerization were observed. In contrast, EWS-POU5F1 down-regulation markedly increased the cell migration and invasion as well as activation of metalloproteinase 2 and metalloproteinase 14. The results indicate that the proliferative activity of cancer cells and cell motility are discrete processes in multistep carcinogenesis. These findings reveal the functional role of the sarcoma-related chimeric protein as well as POU5F1 in the development and progression of human neoplasms.
Collapse
Affiliation(s)
- Takashi Fujino
- Division of Carcinogenesis, The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | | | | | | | | | | | | | | |
Collapse
|
157
|
Lefort N, Perrier AL, Laâbi Y, Varela C, Peschanski M. Human embryonic stem cells and genomic instability. Regen Med 2010; 4:899-909. [PMID: 19903007 DOI: 10.2217/rme.09.63] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Owing to their original properties, pluripotent human embryonic stem cells (hESCs) and their progenies are highly valuable not only for regenerative medicine, but also as tools to study development and pathologies or as cellular substrates to screen and test new drugs. However, ensuring their genomic integrity is one important prerequisite for both research and therapeutic applications. Until recently, several studies about the genomic stability of cultured hESCs had described chromosomal or else large genomic alterations detectable with conventional karyotypic methods. In the past year, several laboratories have reported many small genomic alterations, in the megabase-sized range, using more sensitive karyotyping methods, showing that hESCs are prone to acquire focal genomic abnormalities in culture. As these alterations were found to be nonrandom, these findings strongly advocate for high-resolution monitoring of human pluripotent stem cell lines, especially when intended to be used for clinical applications.
Collapse
Affiliation(s)
- Nathalie Lefort
- Institute for Stem cell Therapy and Exploration of Monogenic diseases, Desbruères, 91030 Evry cedex, France.
| | | | | | | | | |
Collapse
|
158
|
Lee TH, Song SH, Kim KL, Yi JY, Shin GH, Kim JY, Kim J, Han YM, Lee SH, Lee SH, Shim SH, Suh W. Functional recapitulation of smooth muscle cells via induced pluripotent stem cells from human aortic smooth muscle cells. Circ Res 2009; 106:120-8. [PMID: 19959777 DOI: 10.1161/circresaha.109.207902] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
RATIONALE Generation of induced pluripotent stem (iPS) cells has been intensively studied by a variety of reprogramming methods, but the molecular and functional properties of the cells differentiated from iPS cells have not been well characterized. OBJECTIVE To address this issue, we generated iPS cells from human aortic vascular smooth muscle cells (HASMCs) using lentiviral transduction of defined transcription factors and differentiated these iPS cells back into smooth muscle cells (SMCs). METHODS AND RESULTS Established iPS cells were shown to possess properties equivalent to human embryonic stem cells, in terms of the cell surface markers, global mRNA and microRNA expression patterns, epigenetic status of OCT4, REX1, and NANOG promoters, and in vitro/in vivo pluripotency. The cells were differentiated into SMCs to enable a direct, comparative analysis with HASMCs, from which the iPS cells originated. We observed that iPS cell-derived SMCs were very similar to parental HASMCs in gene expression patterns, epigenetic modifications of pluripotency-related genes, and in vitro functional properties. However, the iPS cells still expressed a significant amount of lentiviral transgenes (OCT4 and LIN28) because of partial gene silencing. CONCLUSIONS Our study reports, for the first time, the generation of iPS cells from HASMCs and their differentiation into SMCs. Moreover, a parallel comparative analysis of human iPS cell-derived SMCs and parental HASMCs revealed that iPS-derived cells possessed representative molecular and in vitro functional characteristics of parental HASMCs, suggesting that iPS cells hold great promise as an autologous cell source for patient-specific cell therapy.
Collapse
Affiliation(s)
- Tae-Hee Lee
- Department of Molecular and Life Science, CHA Stem Cell Institute, Pochon CHA University, Seoul, Korea.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Qi J, Yu JY, Shcherbata HR, Mathieu J, Wang AJ, Seal S, Zhou W, Stadler BM, Bourgin D, Wang L, Nelson A, Ware C, Raymond C, Lim LP, Magnus J, Ivanovska I, Diaz R, Ball A, Cleary MA, Ruohola-Baker H. microRNAs regulate human embryonic stem cell division. Cell Cycle 2009; 8:3729-41. [PMID: 19823043 DOI: 10.4161/cc.8.22.10033] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
microRNAs (miRNAs) regulate numerous physiological processes such as cell division and differentiation in many tissue types including stem cells. To probe the role that miRNAs play in regulating processes relevant to embryonic stem cell biology, we used RNA interference to silence DICER and DROSHA, the two main miRNA processing enzymes. Consistent with a role for miRNAs in maintaining normal stem cell division and renewal, we found that perturbation of miRNA pathway function in human embryonic stem cells (hESCs) attenuates cell proliferation. Normal cell growth can be partially restored by introduction of the mature miRNAs miR-195 and miR-372. These miRNAs regulate two tumor suppressor genes, respectively: WEE1, which encodes a negative G2/M kinase modulator of the CycB/CDK complex and CDKN1A, which encodes p21, a CycE/CDK cyclin dependent kinase inhibitor that regulates the G1/S transition. We show that in wild-type hESCs, WEE 1 levels control the rate of hESC division, whereas p21 levels must be maintained at a low level for hESC division to proceed. These data support a model for hESC cell cycle control in which miRNAs regulate negative cell cycle modulators at two phases of the cell cycle to ensure proper replenishment of the stem cell population.
Collapse
Affiliation(s)
- Junlin Qi
- Department of Biochemistry and Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Liu SP, Fu RH, Yu HH, Li KW, Tsai CH, Shyu WC, Lin SZ. MicroRNAs Regulation Modulated Self-Renewal and Lineage Differentiation of Stem Cells. Cell Transplant 2009; 18:1039-45. [PMID: 19523330 DOI: 10.3727/096368909x471224] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Stem cells are unique cells in the ability that can self-renew and differentiate into a wide variety of cell types, suggesting that a specific molecular control network underlies these features. To date, stem cells have been applied to many clinical therapeutic approaches. For example, hematopoietic stem cells (HSCs) and mesenchymal stem cells (MSCs) are the cells responding to ischemia or injury and engage in effective revascularization to repair within impairment regions. Transplantation of MSCs after stroke and hindlimb ischemia results in remarkable recovery through enhancing angiogenesis. MicroRNAs are a novel class of endogenous, small, noncoding RNAs that work via translational inhibition or degradation of their target mRNAs to downregulate gene expression. MicroRNAs have been strongly linked to stem cells, which have a remarkable role in development. In this study, we focused on the microRNA regulation in multiple stem cells. For example, miR-520h was upregulated and miR-129 was downregulated in HSC. MiR-103, 107, 140, 143, 638, and 663 were associated with MSCs while miR-302s and miR-136 were associated with ESCs. In NSCs, miR-92b, let-7, and miR-125 were the critical regulators. This overview of the recent advances in the aspects of molecular control of stem cell biology reveals the importance of microRNAs, which may be helpful for future work.
Collapse
Affiliation(s)
- Shih-Ping Liu
- Center for Neuropsychiatry, China Medical University and Hospital, Taichung, Taiwan
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Ru-Huei Fu
- Center for Neuropsychiatry, China Medical University and Hospital, Taichung, Taiwan
- Department of Immunology, China Medical University, Taichung, Taiwan
| | - Hsiu-Hui Yu
- Center for Neuropsychiatry, China Medical University and Hospital, Taichung, Taiwan
| | - Kuo-Wei Li
- Center for Neuropsychiatry, China Medical University and Hospital, Taichung, Taiwan
| | - Chang-Hai Tsai
- Department of Pediatrics, China Medical University Hospital, Taichung, Taiwan
- Department of Healthcare Administration, Asia University, Taichung, Taiwan
| | - Woei-Cherng Shyu
- Center for Neuropsychiatry, China Medical University and Hospital, Taichung, Taiwan
- Department of Immunology, China Medical University, Taichung, Taiwan
| | - Shinn-Zong Lin
- Center for Neuropsychiatry, China Medical University and Hospital, Taichung, Taiwan
- Department of Immunology, China Medical University, Taichung, Taiwan
- China Medical University Beigang Hospital, Yunlin, Taiwan
| |
Collapse
|
161
|
Kashyap V, Rezende NC, Scotland KB, Shaffer SM, Persson JL, Gudas LJ, Mongan NP. Regulation of stem cell pluripotency and differentiation involves a mutual regulatory circuit of the NANOG, OCT4, and SOX2 pluripotency transcription factors with polycomb repressive complexes and stem cell microRNAs. Stem Cells Dev 2009; 18:1093-108. [PMID: 19480567 PMCID: PMC3135180 DOI: 10.1089/scd.2009.0113] [Citation(s) in RCA: 335] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Accepted: 05/29/2009] [Indexed: 01/06/2023] Open
Abstract
Coordinated transcription factor networks have emerged as the master regulatory mechanisms of stem cell pluripotency and differentiation. Many stem cell-specific transcription factors, including the pluripotency transcription factors, OCT4, NANOG, and SOX2 function in combinatorial complexes to regulate the expression of loci, which are involved in embryonic stem (ES) cell pluripotency and cellular differentiation. This review will address how these pathways form a reciprocal regulatory circuit whereby the equilibrium between stem cell self-renewal, proliferation, and differentiation is in perpetual balance. We will discuss how distinct epigenetic repressive pathways involving polycomb complexes, DNA methylation, and microRNAs cooperate to reduce transcriptional noise and to prevent stochastic and aberrant induction of differentiation. We will provide a brief overview of how these networks cooperate to modulate differentiation along hematopoietic and neuronal lineages. Finally, we will describe how aberrant functioning of components of the stem cell regulatory network may contribute to malignant transformation of adult stem cells and the establishment of a "cancer stem cell" phenotype and thereby underlie multiple types of human malignancies.
Collapse
Affiliation(s)
- Vasundhra Kashyap
- Department of Pharmacology and Graduate Programs in, Weill Cornell Medical College, New York, New York
- Pharmacology, Weill Cornell Medical College, New York, New York
| | - Naira C. Rezende
- Department of Pharmacology and Graduate Programs in, Weill Cornell Medical College, New York, New York
- Molecular and Cell Biology, Weill Cornell Medical College, New York, New York
| | - Kymora B. Scotland
- Department of Pharmacology and Graduate Programs in, Weill Cornell Medical College, New York, New York
- Tri-Institutional MD-PhD Program, Weill Cornell Medical College, New York, New York
| | - Sebastian M. Shaffer
- Department of Pharmacology and Graduate Programs in, Weill Cornell Medical College, New York, New York
- Neuroscience, Weill Cornell Medical College, New York, New York
| | - Jenny Liao Persson
- Division of Experimental Cancer Research, Department of Laboratory Medicine, Clinical Research Center; Lund University, University Hospital, Malmö, Sweden
| | - Lorraine J. Gudas
- Department of Pharmacology and Graduate Programs in, Weill Cornell Medical College, New York, New York
| | - Nigel P. Mongan
- Department of Pharmacology and Graduate Programs in, Weill Cornell Medical College, New York, New York
| |
Collapse
|
162
|
Bortolin-Cavaillé ML, Dance M, Weber M, Cavaillé J. C19MC microRNAs are processed from introns of large Pol-II, non-protein-coding transcripts. Nucleic Acids Res 2009; 37:3464-73. [PMID: 19339516 PMCID: PMC2691840 DOI: 10.1093/nar/gkp205] [Citation(s) in RCA: 195] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs are tiny RNA molecules that play important regulatory roles in a broad range of developmental, physiological or pathological processes. Despite recent progress in our understanding of miRNA processing and biological functions, little is known about the regulatory mechanisms that control their expression at the transcriptional level. C19MC is the largest human microRNA gene cluster discovered to date. This 100-kb long cluster consists of 46 tandemly repeated, primate-specific pre-miRNA genes that are flanked by Alu elements (Alus) and embedded within a ∼400- to 700-nt long repeated unit. It has been proposed that C19MC miRNA genes are transcribed by RNA polymerase III (Pol-III) initiating from A and B boxes embedded in upstream Alu repeats. Here, we show that C19MC miRNAs are intron-encoded and processed by the DGCR8-Drosha (Microprocessor) complex from a previously unidentified, non-protein-coding Pol-II (and not Pol-III) transcript which is mainly, if not exclusively, expressed in the placenta.
Collapse
Affiliation(s)
- Marie-Line Bortolin-Cavaillé
- Université de Toulouse, UPS, Laboratoire de Biologie Moléculaire Eucaryote and CNRS, LBME, F-31000 Toulouse, France
| | | | | | | |
Collapse
|
163
|
Kim KS, Kim JS, Lee MR, Jeong HS, Kim J. A study of microRNAsin silicoandin vivo: emerging regulators of embryonic stem cells. FEBS J 2009; 276:2140-9. [DOI: 10.1111/j.1742-4658.2009.06932.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
164
|
Lee NS, Kim JS, Cho WJ, Lee MR, Steiner R, Gompers A, Ling D, Zhang J, Strom P, Behlke M, Moon SH, Salvaterra PM, Jove R, Kim KS. miR-302b maintains "stemness" of human embryonal carcinoma cells by post-transcriptional regulation of Cyclin D2 expression. Biochem Biophys Res Commun 2008; 377:434-440. [PMID: 18930031 DOI: 10.1016/j.bbrc.2008.09.159] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Accepted: 09/30/2008] [Indexed: 12/28/2022]
Abstract
Embryonic stem cells (ESCs) and embryonal carcinoma cells (ECCs) possess the remarkable property of self-renewal and differentiation potency. They are model preparations for investigating the underlying mechanisms of "stemness". microRNAs are recently discovered small noncoding RNAs with a broad spectrum of functions, especially in control of development. Here, we show that miR-302b indirectly regulates expression of the pluripotent stem cell marker Oct4, and it directly regulates expression of Cyclin D2 protein, a developmental regulator during gastrulation. Using loss-of function and gain-of function approaches, we demonstrate that functional miR-302b is necessary to maintain stem cell self-renewal and inhibit neuronal differentiation of human ECCs. During retinoic acid-induced neuronal differentiation, Cyclin D2 protein but not mRNA expression is strongly increased, concurrent with the down-regulation of miR-302b and Oct4. Our results suggest that miR-302b plays an important role in maintaining the pluripotency of ECCs and probably ESCs, by post-transcriptional regulation of Cyclin D2 expression.
Collapse
Affiliation(s)
- Nan Sook Lee
- Division of Molecular Medicine, Beckman research Institute of the City of Hope, Duarte, CA, USA
| | - Jong Soo Kim
- Department of Anatomy and Cell Biology and Department of Biomedical Science, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Wha Ja Cho
- Department of Anatomy and Cell Biology and Department of Biomedical Science, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Man Ryul Lee
- Department of Anatomy and Cell Biology and Department of Biomedical Science, College of Medicine, Hanyang University, Seoul, Republic of Korea
| | - Riley Steiner
- Department of Biology and Department of Diplomacy and World Affairs, Occidental College, CA, USA
| | - Andrea Gompers
- Department of Biological Sciences, Califonia State University, Los Angeles, CA, USA
| | - Daijun Ling
- Division of Neuroscience, Beckman research Institute of the City of Hope, Duarte, CA, USA
| | - Jae Zhang
- Division of Neuroscience, Beckman research Institute of the City of Hope, Duarte, CA, USA
| | - Pl Strom
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Mark Behlke
- Integrated DNA Technologies, Inc., Coralville, IA, USA
| | - Sung-Hwan Moon
- CHA Stem Cell Institute & CHA Biotech, Pochon CHA University, Seoul, Republic of Korea
| | - Paul M Salvaterra
- Division of Neuroscience, Beckman research Institute of the City of Hope, Duarte, CA, USA
| | - Richard Jove
- Division of Molecular Medicine, Beckman research Institute of the City of Hope, Duarte, CA, USA
| | - Kye-Seong Kim
- Department of Anatomy and Cell Biology and Department of Biomedical Science, College of Medicine, Hanyang University, Seoul, Republic of Korea.
| |
Collapse
|