151
|
Actin isoforms in neuronal development and function. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 301:157-213. [PMID: 23317819 DOI: 10.1016/b978-0-12-407704-1.00004-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The actin cytoskeleton contributes directly or indirectly to nearly every aspect of neuronal development and function. This diversity of functions is often attributed to actin regulatory proteins, although how the composition of the actin cytoskeleton itself may influence its function is often overlooked. In neurons, the actin cytoskeleton is composed of two distinct isoforms, β- and γ-actin. Functions for β-actin have been investigated in axon guidance, synaptogenesis, and disease. Insight from loss-of-function in vivo studies has also revealed novel roles for β-actin in select brain structures and behaviors. Conversely, very little is known regarding functions of γ-actin in neurons. The dysregulation or mutation of both β- and γ-actin has been implicated in multiple human neurological disorders, however, demonstrating the critical importance of these still poorly understood proteins. This chapter highlights what is currently known regarding potential distinct functions for β- and γ-actin in neurons as well as the significant areas that remain unexplored.
Collapse
|
152
|
Swanger SA, Bassell GJ. Dendritic protein synthesis in the normal and diseased brain. Neuroscience 2012; 232:106-27. [PMID: 23262237 DOI: 10.1016/j.neuroscience.2012.12.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 11/21/2012] [Accepted: 12/01/2012] [Indexed: 01/25/2023]
Abstract
Synaptic activity is a spatially limited process that requires a precise, yet dynamic, complement of proteins within the synaptic micro-domain. The maintenance and regulation of these synaptic proteins is regulated, in part, by local mRNA translation in dendrites. Protein synthesis within the postsynaptic compartment allows neurons tight spatial and temporal control of synaptic protein expression, which is critical for proper functioning of synapses and neural circuits. In this review, we discuss the identity of proteins synthesized within dendrites, the receptor-mediated mechanisms regulating their synthesis, and the possible roles for these locally synthesized proteins. We also explore how our current understanding of dendritic protein synthesis in the hippocampus can be applied to new brain regions and to understanding the pathological mechanisms underlying varied neurological diseases.
Collapse
Affiliation(s)
- S A Swanger
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - G J Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
153
|
Abstract
mRNA localization is a crucial mechanism for post-transcriptional control of gene expression used in numerous cellular contexts to generate asymmetric enrichment of an encoded protein. This process has emerged as a fundamental regulatory mechanism that operates in a wide range of organisms to control an array of cellular processes. Recently, significant advances have been made in our understanding of the mechanisms that regulate several steps in the mRNA localization pathway. Here we discuss the progress made in understanding localization element recognition, paying particular attention to the role of RNA structure. We also consider the function of mRNP granules in mRNA transport, as well as new results pointing to roles for the endocytic pathway in mRNA localization.
Collapse
Affiliation(s)
- Catherine A Pratt
- Department of Molecular Biology, Cell Biology & Biochemistry, Brown University, Providence, RI, USA
| | | |
Collapse
|
154
|
Tolino M, Köhrmann M, Kiebler MA. RNA-binding proteins involved in RNA localization and their implications in neuronal diseases. Eur J Neurosci 2012; 35:1818-36. [PMID: 22708593 DOI: 10.1111/j.1460-9568.2012.08160.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Very often, developmental abnormalities or subtle disturbances of neuronal function may yield brain diseases even if they become obvious only late in life. It is therefore our intention to highlight fundamental mechanisms of neuronal cell biology with a special emphasis on dendritic mRNA localization including local protein synthesis at the activated synapse. Furthermore, we would like to point out possible links to neuronal or synaptic dysfunction. In particular, we will focus on a series of well-known RNA-binding proteins that are involved in these processes and outline how their dysfunction might yield neurodevelopmental, neurodegenerative or neuropsychiatric disorders. We are convinced that increasing our understanding of RNA biology in general and the mechanisms underlying mRNA transport and subsequent translation at the synapse will ultimately generate important novel RNA-based tools in the near future that will allow us to hopefully treat some of these devastating diseases.
Collapse
Affiliation(s)
- Marco Tolino
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | | | | |
Collapse
|
155
|
Katz ZB, Wells AL, Park HY, Wu B, Shenoy SM, Singer RH. β-Actin mRNA compartmentalization enhances focal adhesion stability and directs cell migration. Genes Dev 2012; 26:1885-90. [PMID: 22948660 DOI: 10.1101/gad.190413.112] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Directed cell motility is at the basis of biological phenomena such as development, wound healing, and metastasis. It has been shown that substrate attachments mediate motility by coupling the cell's cytoskeleton with force generation. However, it has been unclear how the persistence of cell directionality is facilitated. We show that mRNA localization plays an important role in this process, but the mechanism of action is still unknown. In this study, we show that the zipcode-binding protein 1 transports β-actin mRNA to the focal adhesion compartment, where it dwells for minutes, suggesting a means for associating its localization with motility through the formation of stable connections between adhesions and newly synthesized actin filaments. In order to demonstrate this, we developed an approach for assessing the functional consequences of β-actin mRNA and protein localization by tethering the mRNA to a specific location-in this case, the focal adhesion complex. This approach will have a significant impact on cell biology because it is now possible to forcibly direct any mRNA and its cognate protein to specific locations in the cell. This will reveal the importance of localized protein translation on various cellular processes.
Collapse
Affiliation(s)
- Zachary B Katz
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | |
Collapse
|
156
|
Medioni C, Mowry K, Besse F. Principles and roles of mRNA localization in animal development. Development 2012; 139:3263-76. [PMID: 22912410 DOI: 10.1242/dev.078626] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Intracellular targeting of mRNAs has long been recognized as a means to produce proteins locally, but has only recently emerged as a prevalent mechanism used by a wide variety of polarized cell types. Localization of mRNA molecules within the cytoplasm provides a basis for cell polarization, thus underlying developmental processes such as asymmetric cell division, cell migration, neuronal maturation and embryonic patterning. In this review, we describe and discuss recent advances in our understanding of both the regulation and functions of RNA localization during animal development.
Collapse
Affiliation(s)
- Caroline Medioni
- Institute of Biology Valrose, University of Nice-Sophia Antipolis/UMR7277 CNRS/UMR1091 INSERM, Parc Valrose, 06108 Nice Cedex 2, France
| | | | | |
Collapse
|
157
|
Insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs): post-transcriptional drivers of cancer progression? Cell Mol Life Sci 2012; 70:2657-75. [PMID: 23069990 PMCID: PMC3708292 DOI: 10.1007/s00018-012-1186-z] [Citation(s) in RCA: 530] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 09/28/2012] [Accepted: 10/01/2012] [Indexed: 12/21/2022]
Abstract
The insulin-like growth factor-2 mRNA-binding proteins 1, 2, and 3 (IGF2BP1, IGF2BP2, IGF2BP3) belong to a conserved family of RNA-binding, oncofetal proteins. Several studies have shown that these proteins act in various important aspects of cell function, such as cell polarization, migration, morphology, metabolism, proliferation and differentiation. In this review, we discuss the IGF2BP family’s role in cancer biology and how this correlates with their proposed functions during embryogenesis. IGF2BPs are mainly expressed in the embryo, in contrast with comparatively lower or negotiable levels in adult tissues. IGF2BP1 and IGF2BP3 have been found to be re-expressed in several aggressive cancer types. Control of IGF2BPs’ expression is not well understood; however, let-7 microRNAs, β-catenin (CTNNB1) and MYC have been proposed to be involved in their regulation. In contrast to many other RNA-binding proteins, IGF2BPs are almost exclusively observed in the cytoplasm where they associate with target mRNAs in cytoplasmic ribonucleoprotein complexes (mRNPs). During development, IGF2BPs are required for proper nerve cell migration and morphological development, presumably involving the control of cytoskeletal remodeling and dynamics, respectively. Likewise, IGF2BPs modulate cell polarization, adhesion and migration in tumor-derived cells. Moreover, they are highly associated with cancer metastasis and the expression of oncogenic factors (KRAS, MYC and MDR1). However, a pro-metastatic role of IGF2BPs remains controversial due to the lack of ‘classical’ in vivo studies. Nonetheless, IGF2BPs could provide valuable targets in cancer treatment with many of their in vivo roles to be fully elucidated.
Collapse
|
158
|
Xing L, Bassell GJ. mRNA localization: an orchestration of assembly, traffic and synthesis. Traffic 2012; 14:2-14. [PMID: 22913533 DOI: 10.1111/tra.12004] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 08/20/2012] [Accepted: 08/22/2012] [Indexed: 12/14/2022]
Abstract
Asymmetrical mRNA localization and subsequent local translation provide efficient mechanisms for protein sorting in polarized cells. Defects in mRNA localization have been linked to developmental abnormalities and neurological diseases. Thus, it is critical to understand the machineries mediating and mechanisms underlying the asymmetrical distribution of mRNA and its regulation. The goal of this review is to summarize recent advances in the understanding of mRNA transport and localization, including the assembly and sorting of transport messenger ribonucleic protein (mRNP) granules, molecular mechanisms of active mRNP transport, cytoskeletal interactions and regulation of these events by extracellular signals.
Collapse
Affiliation(s)
- Lei Xing
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | |
Collapse
|
159
|
Hollingworth D, Candel AM, Nicastro G, Martin SR, Briata P, Gherzi R, Ramos A. KH domains with impaired nucleic acid binding as a tool for functional analysis. Nucleic Acids Res 2012; 40:6873-86. [PMID: 22547390 PMCID: PMC3413153 DOI: 10.1093/nar/gks368] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 04/05/2012] [Accepted: 04/11/2012] [Indexed: 02/07/2023] Open
Abstract
In eukaryotes, RNA-binding proteins that contain multiple K homology (KH) domains play a key role in coordinating the different steps of RNA synthesis, metabolism and localization. Understanding how the different KH modules participate in the recognition of the RNA targets is necessary to dissect the way these proteins operate. We have designed a KH mutant with impaired RNA-binding capability for general use in exploring the role of individual KH domains in the combinatorial functional recognition of RNA targets. A double mutation in the hallmark GxxG loop (GxxG-to-GDDG) impairs nucleic acid binding without compromising the stability of the domain. We analysed the impact of the GDDG mutations in individual KH domains on the functional properties of KSRP as a prototype of multiple KH domain-containing proteins. We show how the GDDG mutant can be used to directly link biophysical information on the sequence specificity of the different KH domains of KSRP and their role in mRNA recognition and decay. This work defines a general molecular biology tool for the investigation of the function of individual KH domains in nucleic acid binding proteins.
Collapse
Affiliation(s)
- David Hollingworth
- Molecular Structure Division, Physical Biochemistry Division, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK and Gene Expression Regulation Laboratory, IRCCS AOU San Martino – IST, Largo R. Benzi 10, Genova, Italy
| | - Adela M. Candel
- Molecular Structure Division, Physical Biochemistry Division, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK and Gene Expression Regulation Laboratory, IRCCS AOU San Martino – IST, Largo R. Benzi 10, Genova, Italy
| | - Giuseppe Nicastro
- Molecular Structure Division, Physical Biochemistry Division, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK and Gene Expression Regulation Laboratory, IRCCS AOU San Martino – IST, Largo R. Benzi 10, Genova, Italy
| | - Stephen R. Martin
- Molecular Structure Division, Physical Biochemistry Division, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK and Gene Expression Regulation Laboratory, IRCCS AOU San Martino – IST, Largo R. Benzi 10, Genova, Italy
| | - Paola Briata
- Molecular Structure Division, Physical Biochemistry Division, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK and Gene Expression Regulation Laboratory, IRCCS AOU San Martino – IST, Largo R. Benzi 10, Genova, Italy
| | - Roberto Gherzi
- Molecular Structure Division, Physical Biochemistry Division, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK and Gene Expression Regulation Laboratory, IRCCS AOU San Martino – IST, Largo R. Benzi 10, Genova, Italy
| | - Andres Ramos
- Molecular Structure Division, Physical Biochemistry Division, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK and Gene Expression Regulation Laboratory, IRCCS AOU San Martino – IST, Largo R. Benzi 10, Genova, Italy
| |
Collapse
|
160
|
Gonsalvez GB, Long RM. Spatial regulation of translation through RNA localization. F1000 BIOLOGY REPORTS 2012; 4:16. [PMID: 22912650 PMCID: PMC3412389 DOI: 10.3410/b4-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RNA localization is a mechanism to post-transcriptionally regulate gene
expression. Eukaryotic organisms ranging from fungi to mammals localize mRNAs to
spatially restrict synthesis of specific proteins to distinct regions of the
cytoplasm. In this review, we provide a general summary of RNA localization
pathways in Saccharomyces cerevisiae, Xenopus,
Drosophila and mammalian neurons.
Collapse
Affiliation(s)
- Graydon B. Gonsalvez
- Department of Cellular Biology and
Anatomy, Georgia Health Sciences UniversityC2915D,
1459 Laney Walker Blvd., Augusta, GA
30912USA
| | - Roy M. Long
- Department of Microbiology, Immunology
& Molecular Genetics, Medical College of
Wisconsin8701 Watertown Plank Rd., Milwaukee, WI
53226USA
| |
Collapse
|
161
|
Hwang YS, Xianglan Z, Park KK, Chung WY. Functional invadopodia formation through stabilization of the PDPN transcript by IMP-3 and cancer-stromal crosstalk for PDPN expression. Carcinogenesis 2012; 33:2135-46. [PMID: 22859271 DOI: 10.1093/carcin/bgs258] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We previously reported that insulin-like growth factor-II mRNA-binding protein-3 (IMP-3) depletion (IMP-3(Δ)) was shown to inhibit invadopodia formation and extracellular matrix degradation capacity in oral squamous cell carcinoma (OSCC) cells. In this study, we found that IMP-3(Δ) cells significantly downregulated the podoplanin (PDPN) level, which resulted in a loss of extracellular matrix degradation activity, although invadopodia was still thriving. From RNA in situ hybridization using a digoxigenin-labeled 3'UTR recognition probe of PDPN and reporter assay with 3'UTR of the PDPN gene cloned downstream from the luciferase reporter gene, we revealed that IMP-3 depletion was shown to be downregulated, which most probably lowered PDPN gene expression by reducing mRNA stabilization. In a xenograft model, PDPN depletion was the cause of a decrease in tumor volume and regional infiltration into nearby stroma. Taken together, transforming growth factor beta 1 increased PDPN expression, which potentiated cancer invasion through increased invadopodia formation and extracellular matrix degradation in the low invasive OSCC cell line. Reciprocally, interleukin-1 beta secreted by OSCC cells, stimulated transforming growth factor beta 1 secretion from stromal fibroblasts to induce PDPN expression in OSCC cells. In addition, a retrospective investigation of OSCC patients found that IMP-3 and PDPN expression significantly correlated with lymph node metastasis of OSCC patients. Moreover, co-expression of IMP-3 and PDPN were frequently detected both in primary and lymph nodes metastatic OSCC cells using immunohistochemical dual staining. Thus, the IMP-3-PDPN axis may be a sensitive target molecule in anti-invadopodia therapy for the treatment of metastatic cancers.
Collapse
Affiliation(s)
- Young Sun Hwang
- Oral Cancer Research Institute, Yonsei University College of Dentistry, Republic of Korea.
| | | | | | | |
Collapse
|
162
|
Manieri NA, Drylewicz MR, Miyoshi H, Stappenbeck TS. Igf2bp1 is required for full induction of Ptgs2 mRNA in colonic mesenchymal stem cells in mice. Gastroenterology 2012; 143:110-21.e10. [PMID: 22465430 PMCID: PMC3383944 DOI: 10.1053/j.gastro.2012.03.037] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 03/16/2012] [Accepted: 03/20/2012] [Indexed: 12/29/2022]
Abstract
BACKGROUND & AIMS Prostaglandin-endoperoxide synthase (Ptgs)2 is an enzyme involved in prostaglandin production during the response to mucosal damage. Its expression is regulated, in part, by messenger RNA (mRNA)-binding proteins that control the stability of Ptgs2 mRNA. We used a precise system of colonic injury and repair to identify Ptgs2 mRNA-binding proteins. METHODS We used endoscopy-guided mucosal excision to create focal injury sites in colons of mice. Wound beds from wild-type, Ptgs2(-/-), Ptgs2(+/-), and Myd88(-/-) mice were analyzed at 2-day intervals after injury for aspects of repair and Ptgs2 expression. We used cultured colonic mesenchymal stem cells (cMSCs) that express Ptgs2 to identify and analyze molecules that regulate Ptgs2 expression. RESULTS Ptgs2(-/-) mice had defects in wound repair, validating the biopsy technique as a system to study the regulation of Ptgs2. Ptgs2(+/-) mice had similar defects in wound healing, so full induction of Ptgs2 is required for wound repair. In wild-type mice, levels of Ptgs2 mRNA increased significantly in the wound bed 2 and 4 days after injury; the highest levels of Ptgs2 were observed in cMSCs. In a functional short hairpin RNA knockdown screen, we identified Igf2bp1, a VICKZ (Vg1 RNA binding protein, Insulin-like growth factor II mRNA binding protein 1, Coding region determinant-binding protein, KH domain containing protein overexpressed in cancer, and Zipcode-binding protein-1) mRNA-binding protein, as a regulator of Ptgs2 expression in cMSCs. Igf2bp1 also interacted physically with Ptgs2 mRNA. Igf2bp1 expression was induced exclusively in wound-bed cMSCs, and full induction of Ptgs2 and Igf2bp1 during repair required Myd88. CONCLUSIONS We identified Igf2bp1 as a regulator of Ptgs2 mRNA in mice. Igf2bp1 is required for full induction of Ptgs2 mRNA in cMSCs.
Collapse
|
163
|
Abstract
The oncofetal RNA-binding protein IGF2BP1 (IGF2 mRNA binding protein 1) controls the cytoplasmic fate of specific target mRNAs including ACTB and CD44. During neural development, IGF2BPs promote neurite protrusion and the migration of neuronal crest cells. In tumor-derived cells, IGF2BP1 enhances the formation of lamellipodia and invadopodia. Accordingly, the de novo synthesis of IGF2BP1 observed in primary malignancies was reported to correlate with increased metastasis and an overall poor prognosis. However, if and how the protein enhances metastasis remains controversial. In recent studies, we reveal that IGF2BP1 promotes the directed migration of tumor-derived cells in vitro by controlling the expression of MAPK4 and PTEN. The IGF2BP1-facilitated inhibition of MAPK4 mRNA translation interferes with MK5-directed phosphorylation of the heat shock protein 27 (HSP27). This limits G-actin sequestering by phosphorylated HSP27, enhances cell adhesion and elevates the velocity of tumor cell migration. Concomitantly, IGF2BP1 promotes the expression of PTEN by interfering with PTEN mRNA turnover. This results in a shift of cellular PtdIns(3,4,5)P3/PtdIns(4,5)P2 ratios and enhances RAC1-dependent cell polarization which finally promotes the directionality of tumor cell migration. These findings identify IGF2BP1 as a potent oncogenic factor that regulates the adhesion, migration and invasiveness of tumor cells by modulating intracellular signaling.
Collapse
Affiliation(s)
- Nadine Stöhr
- Section for Molecular Cell Biology, Institute of Molecular Medicine, Martin Luther University of Halle, Halle, Germany
| | | |
Collapse
|
164
|
Joseph R, Srivastava OP, Pfister RR. Downregulation of β-actin gene and human antigen R in human keratoconus. Invest Ophthalmol Vis Sci 2012; 53:4032-41. [PMID: 22562506 DOI: 10.1167/iovs.11-9062] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The purpose of this study was to determine the expression levels and regulation of β-actin in the stroma of keratoconus (KC) and normal corneas. METHODS A total of 15 different human corneas from both KC and normal individuals were used for this study. Additionally, 3 Fuch's dystrophic corneas were also used. The β-actin gene expression was analyzed at the transcriptional and translational levels in the epithelium and stroma of the KC and normal corneas. The human antigen R (HuR) gene expression was analyzed by real-time PCR in the stroma of five KC and five normal corneas. The keratocytes from three normal and three KC corneas were cultured in the presence of serum, and the expression levels of β-actin and human antigen R (HuR) were analyzed by using confocal imaging in both normal and KC fibroblasts. RESULTS The expression of the β-actin gene was downregulated in the stroma of the six KC corneas but not in the stroma of six normal and Fuchs' dystrophic corneas. Immunofluorescence detection of β-actin showed that it was absent in the KC fibroblast. The real-time PCR analysis of the HuR gene showed a relative 4.7-fold lower expression in KC corneas relative to the normal corneas, which was further confirmed by the immunofluorescence detection of HuR in fibroblasts of KC corneas. CONCLUSIONS Although ubiquitous β-actins are essential for cell survival during early embryogenesis, the effects on various stages of development are not well understood. Our results show that β-actin is downregulated in the corneal stroma of patients with KC, which may be related to reduced levels of a stabilizing factor (HuR) for β-actin mRNA. We propose that loss of β-actin in the corneal stroma might be a triggering factor in the development of KC.
Collapse
Affiliation(s)
- Roy Joseph
- Department of Vision Sciences, University of Alabama at Birmingham, Birmingham, Alabama 35294-4390, USA
| | | | | |
Collapse
|
165
|
McDermott SM, Meignin C, Rappsilber J, Davis I. Drosophila Syncrip binds the gurken mRNA localisation signal and regulates localised transcripts during axis specification. Biol Open 2012; 1:488-97. [PMID: 23213441 PMCID: PMC3507208 DOI: 10.1242/bio.2012885] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
In the Drosophila oocyte, mRNA transport and localised translation play a fundamental role in axis determination and germline formation of the future embryo. gurken mRNA encodes a secreted TGF-α signal that specifies dorsal structures, and is localised to the dorso-anterior corner of the oocyte via a cis-acting 64 nucleotide gurken localisation signal. Using GRNA chromatography, we characterised the biochemical composition of the ribonucleoprotein complexes that form around the gurken mRNA localisation signal in the oocyte. We identified a number of the factors already known to be involved in gurken localisation and translational regulation, such as Squid and Imp, in addition to a number of factors with known links to mRNA localisation, such as Me31B and Exu. We also identified previously uncharacterised Drosophila proteins, including the fly homologue of mammalian SYNCRIP/hnRNPQ, a component of RNA transport granules in the dendrites of mammalian hippocampal neurons. We show that Drosophila Syncrip binds specifically to gurken and oskar, but not bicoid transcripts. The loss-of-function and overexpression phenotypes of syncrip in Drosophila egg chambers show that the protein is required for correct grk and osk mRNA localisation and translational regulation. We conclude that Drosophila Syncrip is a new factor required for localisation and translational regulation of oskar and gurken mRNA in the oocyte. We propose that Syncrip/SYNCRIP is part of a conserved complex associated with localised transcripts and required for their correct translational regulation in flies and mammals.
Collapse
Affiliation(s)
- Suzanne M McDermott
- Department of Biochemistry, University of Oxford , South Parks Road, Oxford OX1 3QU , UK ; Present address: Seattle Biomedical Research Institute, 307 Westlake Avenue N, Suite 500, Seattle, WA 98109-5219, USA
| | | | | | | |
Collapse
|
166
|
Abstract
In primary neurons, the oncofetal RNA-binding protein IGF2BP1 (IGF2 mRNA-binding protein 1) controls spatially restricted β-actin (ACTB) mRNA translation and modulates growth cone guidance. In cultured tumor-derived cells, IGF2BP1 was shown to regulate the formation of lamellipodia and invadopodia. However, how and via which target mRNAs IGF2BP1 controls the motility of tumor-derived cells has remained elusive. In this study, we reveal that IGF2BP1 promotes the velocity and directionality of tumor-derived cell migration by determining the cytoplasmic fate of two novel target mRNAs: MAPK4 and PTEN. Inhibition of MAPK4 mRNA translation by IGF2BP1 antagonizes MK5 activation and prevents phosphorylation of HSP27, which sequesters actin monomers available for F-actin polymerization. Consequently, HSP27-ACTB association is reduced, mobilizing cellular G-actin for polymerization in order to promote the velocity of cell migration. At the same time, stabilization of the PTEN mRNA by IGF2BP1 enhances PTEN expression and antagonizes PIP(3)-directed signaling. This enforces the directionality of cell migration in a RAC1-dependent manner by preventing additional lamellipodia from forming and sustaining cell polarization intrinsically. IGF2BP1 thus promotes the velocity and persistence of tumor cell migration by controlling the expression of signaling proteins. This fine-tunes and connects intracellular signaling networks in order to enhance actin dynamics and cell polarization.
Collapse
|
167
|
Abstract
RNA-binding proteins (RBPs) exert many roles in the post-transcriptional regulation of gene expression in eukaryotic cells. However, our understanding of how they recognize their target RNAs in vivo remains limited. In the January 1, 2012, issue of Genes & Development, Patel and colleagues (p. 43-53) provide detailed mechanistic insights into how one of the best-studied RBPs, zipcode-binding protein 1 (ZBP1), recognizes a bipartite RNA sequence element within the β-actin mRNA.
Collapse
Affiliation(s)
- Michael Doyle
- Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
| | | |
Collapse
|
168
|
Cheever TR, Li B, Ervasti JM. Restricted morphological and behavioral abnormalities following ablation of β-actin in the brain. PLoS One 2012; 7:e32970. [PMID: 22403730 PMCID: PMC3293915 DOI: 10.1371/journal.pone.0032970] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 02/08/2012] [Indexed: 01/12/2023] Open
Abstract
The local translation of β-actin is one mechanism proposed to regulate spatially-restricted actin polymerization crucial for nearly all aspects of neuronal development and function. However, the physiological significance of localized β-actin translation in neurons has not yet been demonstrated in vivo. To investigate the role of β-actin in the mammalian central nervous system (CNS), we characterized brain structure and function in a CNS-specific β-actin knock-out mouse (CNS-ActbKO). β-actin was rapidly ablated in the embryonic mouse brain, but total actin levels were maintained through upregulation of other actin isoforms during development. CNS-ActbKO mice exhibited partial perinatal lethality while survivors presented with surprisingly restricted histological abnormalities localized to the hippocampus and cerebellum. These tissue morphology defects correlated with profound hyperactivity as well as cognitive and maternal behavior impairments. Finally, we also identified localized defects in axonal crossing of the corpus callosum in CNS-ActbKO mice. These restricted defects occurred despite the fact that primary neurons lacking β-actin in culture were morphologically normal. Altogether, we identified novel roles for β-actin in promoting complex CNS tissue architecture while also demonstrating that distinct functions for the ubiquitously expressed β-actin are surprisingly restricted in vivo.
Collapse
Affiliation(s)
| | | | - James M. Ervasti
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
169
|
Pratt T, Davey JW, Nowakowski TJ, Raasumaa C, Rawlik K, McBride D, Clinton M, Mason JO, Price DJ. The expression and activity of β-catenin in the thalamus and its projections to the cerebral cortex in the mouse embryo. BMC Neurosci 2012; 13:20. [PMID: 22360971 PMCID: PMC3347985 DOI: 10.1186/1471-2202-13-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 02/23/2012] [Indexed: 11/10/2022] Open
Abstract
Background The mammalian thalamus relays sensory information from the periphery to the cerebral cortex for cognitive processing via the thalamocortical tract. The thalamocortical tract forms during embryonic development controlled by mechanisms that are not fully understood. β-catenin is a nuclear and cytosolic protein that transduces signals from secreted signaling molecules to regulate both cell motility via the cytoskeleton and gene expression in the nucleus. In this study we tested whether β-catenin is likely to play a role in thalamocortical connectivity by examining its expression and activity in developing thalamic neurons and their axons. Results At embryonic day (E)15.5, the time when thalamocortical axonal projections are forming, we found that the thalamus is a site of particularly high β-catenin mRNA and protein expression. As well as being expressed at high levels in thalamic cell bodies, β-catenin protein is enriched in the axons and growth cones of thalamic axons and its growth cone concentration is sensitive to Netrin-1. Using mice carrying the β-catenin reporter BAT-gal we find high levels of reporter activity in the thalamus. Further, Netrin-1 induces BAT-gal reporter expression and upregulates levels of endogenous transcripts encoding β-actin and L1 proteins in cultured thalamic cells. We found that β-catenin mRNA is enriched in thalamic axons and its 3'UTR is phylogenetically conserved and is able to direct heterologous mRNAs along the thalamic axon, where they can be translated. Conclusion We provide evidence that β-catenin protein is likely to be an important player in thalamocortcial development. It is abundant both in the nucleus and in the growth cones of post-mitotic thalamic cells during the development of thalamocortical connectivity and β-catenin mRNA is targeted to thalamic axons and growth cones where it could potentially be translated. β-catenin is involved in transducing the Netrin-1 signal to thalamic cells suggesting a mechanism by which Netrin-1 guides thalamocortical development.
Collapse
Affiliation(s)
- Thomas Pratt
- Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, Scotland, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
170
|
Bolukbasi MF, Mizrak A, Ozdener GB, Madlener S, Ströbel T, Erkan EP, Fan JB, Breakefield XO, Saydam O. miR-1289 and "Zipcode"-like Sequence Enrich mRNAs in Microvesicles. MOLECULAR THERAPY. NUCLEIC ACIDS 2012; 1:e10. [PMID: 23344721 PMCID: PMC3381601 DOI: 10.1038/mtna.2011.2] [Citation(s) in RCA: 210] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Despite intensive studies, the molecular mechanisms by which the genetic materials are uploaded into microvesicles (MVs) are still unknown. This is the first study describing a zipcode-like 25 nucleotide (nt) sequence in the 3′-untranslated region (3′UTR) of mRNAs, with variants of this sequence present in many mRNAs enriched in MVs, as compared to their glioblastoma cells of origin. When this sequence was incorporated into the 3′UTR of a reporter message and expressed in a different cell type, it led to enrichment of the reporter mRNA in MVs. Critical features of this sequence are both a CUGCC core presented on a stem-loop structure and a miRNA-binding site, with increased levels of the corresponding miRNA in cells further increasing levels of mRNAs in MVs.
Collapse
Affiliation(s)
- Mehmet Fatih Bolukbasi
- Department of Neurology and Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Shahbabian K, Chartrand P. Control of cytoplasmic mRNA localization. Cell Mol Life Sci 2012; 69:535-52. [PMID: 21984598 PMCID: PMC11115051 DOI: 10.1007/s00018-011-0814-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 08/09/2011] [Accepted: 09/01/2011] [Indexed: 12/17/2022]
Abstract
mRNA localization is a mechanism used by various organisms to control the spatial and temporal production of proteins. This process is a highly regulated event that requires multiple cis- and trans-acting elements that mediate the accurate localization of target mRNAs. The intrinsic nature of localization elements, together with their interaction with different RNA-binding proteins, establishes control mechanisms that can oversee the transcript from its birth in the nucleus to its specific final destination. In this review, we aim to summarize the different mechanisms of mRNA localization, with a particular focus on the various control mechanisms that affect the localization of mRNAs in the cytoplasm.
Collapse
Affiliation(s)
- Karen Shahbabian
- Department of Biochemistry, Université de Montréal, 2900 Edouard-Montpetit, Montréal, Qc Canada
| | - Pascal Chartrand
- Department of Biochemistry, Université de Montréal, 2900 Edouard-Montpetit, Montréal, Qc Canada
| |
Collapse
|
172
|
Deregulated mTOR-mediated translation in intellectual disability. Prog Neurobiol 2012; 96:268-82. [DOI: 10.1016/j.pneurobio.2012.01.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Revised: 01/02/2012] [Accepted: 01/12/2012] [Indexed: 02/04/2023]
|
173
|
Lapidus KAB, Nwokafor C, Scott D, Baroni TE, Tenenbaum SA, Hiroi N, Singer RH, Czaplinski K. Transgenic expression of ZBP1 in neurons suppresses cocaine-associated conditioning. Learn Mem 2012; 19:35-42. [PMID: 22240322 DOI: 10.1101/lm.024471.111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
To directly address whether regulating mRNA localization can influence animal behavior, we created transgenic mice that conditionally express Zipcode Binding Protein 1 (ZBP1) in a subset of neurons in the brain. ZBP1 is an RNA-binding protein that regulates the localization, as well as translation and stability of target mRNAs in the cytoplasm. We took advantage of the absence of ZBP1 expression in the mature brain to examine the effect of expressing ZBP1 on animal behavior. We constructed a transgene conditionally expressing a GFP-ZBP1 fusion protein in a subset of forebrain neurons and compared cocaine-cued place conditioning in these mice versus noninduced littermates. Transgenic ZBP1 expression resulted in impaired place conditioning relative to nonexpressing littermates, and acutely repressing expression of the transgene restored normal cocaine conditioning. To gain insight into the molecular changes that accounted for this change in behavior, we identified mRNAs that specifically immunoprecipitated with transgenic ZBP1 protein from the brains of these mice. These data suggest that RNA-binding proteins can be used as a tool to identify the post-transcriptional regulation of gene expression in the establishment and function of neural circuits involved in addiction behaviors.
Collapse
Affiliation(s)
- Kyle A B Lapidus
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461-1975, USA
| | | | | | | | | | | | | | | |
Collapse
|
174
|
King ML, Messitt TJ, Mowry KL. Putting RNAs in the right place at the right time: RNA localization in the frog oocyte. Biol Cell 2012; 97:19-33. [PMID: 15601255 DOI: 10.1042/bc20040067] [Citation(s) in RCA: 243] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Localization of maternal mRNAs in many developing organisms provides the basis for both initial polarity during oogenesis and patterning during embryogenesis. Prominent examples of this phenomenon are found in Xenopus laevis, where localized maternal mRNAs generate developmental polarity along the animal/vegetal axis. Targeting of mRNA molecules to specific subcellular regions is a fundamental mechanism for spatial regulation of gene expression, and considerable progress has been made in defining the underlying molecular pathways.
Collapse
Affiliation(s)
- Mary Lou King
- Department of Cell Biology and Anatomy, University of Miami School of Medicine, 1011 NW 15th St., Miami, FL 33136, USA.
| | | | | |
Collapse
|
175
|
Abstract
beta-Actin mRNA is localized near the leading edge in several cell types where actin polymerization is actively promoting forward protrusion. The localization of the beta-actin mRNA near the leading edge is facilitated by a short sequence in the 3'UTR (untranslated region), the 'zipcode'. Localization of the mRNA at this region is important physiologically. Treatment of chicken embryo fibroblasts with antisense oligonucleotides complementary to the localization sequence (zipcode) in the 3'UTR leads to delocalization of beta-actin mRNA, alteration of cell phenotype and a decrease in cell motility. The dynamic image analysis system (DIAS) used to quantify movement of cells in the presence of sense and antisense oligonucleotides to the zipcode showed that net pathlength and average speed of antisense-treated cells were significantly lower than in sense-treated cells. This suggests that a decrease in persistence of direction of movement and not in velocity results from treatment of cells with zipcode-directed antisense oligonucleotides. We postulate that delocalization of beta-actin mRNA results in delocalization of nucleation sites and beta-actin protein from the leading edge followed by loss of cell polarity and directional movement. Hence the physiological consequences of beta-actin mRNA delocalization affect the stability of the cell phenotype.
Collapse
Affiliation(s)
- John Condeelis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | |
Collapse
|
176
|
Abstract
The highly conserved VICKZ (Vg1 RBP/Vera, IMP-1,2,3, CRD-BP, KOC, ZBP-1) family of RNA-binding proteins recognize specific cis-acting elements in a variety of different RNAs and have been implicated in cell polarity and migration, cell proliferation, and cancer. In just the last two years, the use of transgenic mice, antisense RNA, and RNAi (RNA interference) techniques have contributed to our understanding of the roles of these proteins and how they interface with many diverse processes in cells. In this article, I will review the recent advances relating to VICKZ proteins and try to suggest a framework for understanding how, in conjunction with other RNA-binding proteins, they participate in a combinatorial fashion to help determine the fate of their RNA targets and, ultimately, the function of cells in which they are expressed. Such a 'post-transcriptional operon' model, as proposed by Keene and Tenenbaum [(2002) Mol. Cell 9, 1161-1167], can explain the differential, integrated action of multiple RNA-binding proteins on mRNA targets.
Collapse
Affiliation(s)
- Joel K Yisraeli
- Department of Anatomy and Cell Biology, Hebrew University - Hadassah Medical School, POB 12272, Jerusalem, Israel 91120.
| |
Collapse
|
177
|
Abstract
Eukaryotic cells possess highly sophisticated membrane trafficking pathways that define specific membrane domains and provide a means for moving vesicles between them (Mostov, Su, and ter Beest, 2003, Nat. Cell Biol. 5, 287-293). Here, I review recent data that indicate a role for membrane trafficking in mRNA localization. Specifically, I review evidence that some localized mRNAs are anchored to specific membrane domains and/or transported on membranous organelles or vesicles to specific subcellular sites. This review is not intended as a discussion on indirect influences of membrane trafficking on mRNA localization. I will not, for example, discuss the role of membrane trafficking in the regulation of extracellular signalling events that could indirectly influence mRNA localization through polarization of the actin or microtubule cytoskeleton (for examples, see reviews by Drubin and Nelson, 1996, Cell 84, 335-344; Shulman and St Johnston, 1999, Trends Cell Biol. 9, M60-M64).
Collapse
Affiliation(s)
- Robert S Cohen
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Dr, Lawrence, KS 66045, USA.
| |
Collapse
|
178
|
Patel VL, Mitra S, Harris R, Buxbaum AR, Lionnet T, Brenowitz M, Girvin M, Levy M, Almo SC, Singer RH, Chao JA. Spatial arrangement of an RNA zipcode identifies mRNAs under post-transcriptional control. Genes Dev 2012; 26:43-53. [PMID: 22215810 PMCID: PMC3258965 DOI: 10.1101/gad.177428.111] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 11/23/2011] [Indexed: 01/02/2023]
Abstract
How RNA-binding proteins recognize specific sets of target mRNAs remains poorly understood because current approaches depend primarily on sequence information. In this study, we demonstrate that specific recognition of messenger RNAs (mRNAs) by RNA-binding proteins requires the correct spatial positioning of these sequences. We characterized both the cis-acting sequence elements and the spatial restraints that define the mode of RNA binding of the zipcode-binding protein 1 (ZBP1/IMP1/IGF2BP1) to the β-actin zipcode. The third and fourth KH (hnRNP K homology) domains of ZBP1 specifically recognize a bipartite RNA element comprised of a 5' element (CGGAC) followed by a variable 3' element (C/A-CA-C/U) that must be appropriately spaced. Remarkably, the orientation of these elements is interchangeable within target transcripts bound by ZBP1. The spatial relationship of this consensus binding site identified conserved transcripts that were verified to associate with ZBP1 in vivo. The dendritic localization of one of these transcripts, spinophilin, was found to be dependent on both ZBP1 and the RNA elements recognized by ZBP1 KH34.
Collapse
Affiliation(s)
| | - Somdeb Mitra
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Richard Harris
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | - Michael Brenowitz
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Mark Girvin
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Matthew Levy
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Steven C. Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
179
|
Sim S, Yao J, Weinberg DE, Niessen S, Yates JR, Wolin SL. The zipcode-binding protein ZBP1 influences the subcellular location of the Ro 60-kDa autoantigen and the noncoding Y3 RNA. RNA (NEW YORK, N.Y.) 2012; 18:100-10. [PMID: 22114317 PMCID: PMC3261732 DOI: 10.1261/rna.029207.111] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 10/10/2011] [Indexed: 05/31/2023]
Abstract
The Ro 60-kDa autoantigen, a ring-shaped RNA-binding protein, traffics between the nucleus and cytoplasm in vertebrate cells. In some vertebrate nuclei, Ro binds misfolded noncoding RNAs and may function in quality control. In the cytoplasm, Ro binds noncoding RNAs called Y RNAs. Y RNA binding blocks a nuclear accumulation signal, retaining Ro in the cytoplasm. Following UV irradiation, this signal becomes accessible, allowing Ro to accumulate in nuclei. To investigate how other cellular components influence the function and subcellular location of Ro, we identified several proteins that copurify with the mouse Ro protein. Here, we report that the zipcode-binding protein ZBP1 influences the subcellular localization of both Ro and the Y3 RNA. Binding of ZBP1 to the Ro/Y3 complex increases after UV irradiation and requires the Y3 RNA. Despite the lack of an identifiable CRM1-dependent export signal, nuclear export of Ro is sensitive to the CRM1 inhibitor leptomycin B. In agreement with a previous report, we find that ZBP1 export is partly dependent on CRM1. Both Ro and Y3 RNA accumulate in nuclei when ZBP1 is depleted. Our data indicate that ZBP1 may function as an adapter to export the Ro/Y3 RNA complex from nuclei.
Collapse
Affiliation(s)
- Soyeong Sim
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Jie Yao
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - David E. Weinberg
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Sherry Niessen
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - John R. Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Sandra L. Wolin
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06536, USA
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| |
Collapse
|
180
|
Abstract
Hereditary deafness is genetically heterogeneous such that mutations of many different genes can cause hearing loss. This review focuses on the evidence and implications that several of these deafness genes encode actin-interacting proteins or actin itself. There is a growing appreciation of the contribution of the actin interactome in stereocilia development, maintenance, mechanotransduction and malfunction of the auditory system.
Collapse
|
181
|
Abstract
Axon regeneration is a fundamental problem facing neuroscientists and clinicians. Failure of axon regeneration is caused by both extrinsic and intrinsic mechanisms. New techniques to examine gene expression such as Next Generation Sequencing of the Transcriptome (RNA-Seq) drastically increase our knowledge of both gene expression complexity (RNA isoforms) and gene expression regulation. By utilizing RNA-Seq, gene expression can now be defined at the level of isoforms, an essential step for understanding the mechanisms governing cell identity, growth and ultimately cellular responses to injury and disease.
Collapse
Affiliation(s)
- Jessica K Lerch
- The Miami Project to Cure Paralysis, The University of Miami, Miami, FL, USA
| | | | | |
Collapse
|
182
|
Hwang YS, Park KK, Cha IH, Kim J, Chung WY. Role of insulin-like growth factor-II mRNA-binding protein-3 in invadopodia formation and the growth of oral squamous cell carcinoma in athymic nude mice. Head Neck 2011; 34:1329-39. [PMID: 22052854 DOI: 10.1002/hed.21929] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2011] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The invadopodia are specialized structures that degrade the extracellular matrix (ECM) and promote cell invasion and metastasis. Understanding the forms and functions of invadopodia should facilitate the proper identification of novel targets for antiinvasive therapy. METHODS To understand the role of insulin-like growth factor-II mRNA-binding protein-3 (IMP-3) in invadopodia formation and cancer invasion, we performed IMP-3 gene silencing, invadopodia formation, ECM degradation assay, zymography, western blot, and mouse xenograft. RESULTS We demonstrate that invadopodia evidenced ECM degradation activity in oral squamous cell carcinoma (OSCC). Downregulation of IMP-3 inhibited invadopodia formation, ECM degradation, and tumor growth and invasiveness. Epidermal growth factor receptor (EGFR) signaling may perform a critical function in invadopodia formation, ECM degradation, IMP-3, and cortactin expression. CONCLUSION IMP-3 may be intimately correlated with cancer invasion through invadopodia in oral cancer. The overexpression of IMP-3 in oral cancer was predictive of a high correlation with cancer growth and invasion.
Collapse
Affiliation(s)
- Young Sun Hwang
- Oral Cancer Research Institute, Yonsei University College of Dentistry, 134, Shinchon-dong, Seodaemun-gu, Seoul, Korea.
| | | | | | | | | |
Collapse
|
183
|
Abstract
Messenger RNAs (mRNAs) contain prominent untranslated regions (UTRs) that are increasingly recognized to play roles in mRNA processing, transport, stability, and translation. 3' UTRs are believed to harbor recognition sites for a diverse set of RNA-binding proteins that regulate gene expression as well as most active microRNA target sites. Although the roles of 3' UTRs in the normal and diseased lung have not yet been studied extensively, available evidence suggests important roles for 3' UTRs in lung development, inflammation, asthma, pulmonary fibrosis, and cancer. Systematic, genome-wide approaches are beginning to catalog functional elements within 3' UTRs and identify the proteins and microRNAs that interact with these elements. Application of new data sets and experimental approaches should provide powerful insights into how 3' UTR-mediated regulatory events contribute to disease and may inspire novel therapeutic approaches.
Collapse
|
184
|
Netrin-1-induced local β-actin synthesis and growth cone guidance requires zipcode binding protein 1. J Neurosci 2011; 31:9800-13. [PMID: 21734271 DOI: 10.1523/jneurosci.0166-11.2011] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Local β-actin synthesis in growth cones of developing axons plays an important role in growth cone steering; however, the mRNA binding proteins required for this process are unknown. Here we used Zbp1/Imp1(-/)(-) mice to test the hypothesis that zipcode binding protein 1 (ZBP1) is required for the regulation of β-actin mRNA transport and local translation underlying growth cone guidance. To address the biological function of ZBP1, we developed a novel in vitro turning assay with primary cortical neuron balls having axons >1 mm in length and demonstrate that growth cones of mammalian neurons exhibit protein synthesis-dependent attraction to either netrin-1 or brain-derived neurotrophic factor (BDNF). Interestingly, this attraction is lost in Zbp1-deficient neurons. Furthermore, BDNF-stimulated β-actin mRNA localization was attenuated in Zbp1-deficient neurons, which impaired enrichment of β-actin protein in the growth cone. Finally, using a photoconvertible translation reporter, we found that ZBP1 is necessary for netrin-1 stimulated local translation of β-actin mRNA in axonal growth cones. Together, these results suggest that netrin-1- and BDNF-induced growth cone attraction required ZBP1-mediated local translation of β-actin mRNA, and therefore ZBP1 regulates protein synthesis-dependent axon guidance. Thus, mRNA binding proteins regulating local translation can control spatiotemporal protein expression in response to guidance cues and directional cell motility.
Collapse
|
185
|
Bunnell TM, Burbach BJ, Shimizu Y, Ervasti JM. β-Actin specifically controls cell growth, migration, and the G-actin pool. Mol Biol Cell 2011; 22:4047-58. [PMID: 21900491 PMCID: PMC3204067 DOI: 10.1091/mbc.e11-06-0582] [Citation(s) in RCA: 220] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Targeted deletion of Actb demonstrates that the β-actin gene, in contrast to the γ-actin gene, is an essential gene uniquely required for cell growth and migration. Cell motility and growth defects in β-actin–knockout primary cells are due to a specific role for β-actin in regulating gene expression through control of the cellular G-actin pool. Ubiquitously expressed β-actin and γ-actin isoforms play critical roles in most cellular processes; however, their unique contributions are not well understood. We generated whole-body β-actin–knockout (Actb−/−) mice and demonstrated that β-actin is required for early embryonic development. Lethality of Actb−/− embryos correlated with severe growth impairment and migration defects in β-actin–knockout primary mouse embryonic fibroblasts (MEFs) that were not observed in γ-actin–null MEFs. Migration defects were associated with reduced membrane protrusion dynamics and increased focal adhesions. We also identified migration defects upon conditional ablation of β-actin in highly motile T cells. Of great interest, ablation of β-actin altered the ratio of globular actin (G-actin) to filamentous actin in MEFs, with corresponding changes in expression of genes that regulate the cell cycle and motility. These data support an essential role for β-actin in regulating cell migration and gene expression through control of the cellular G-actin pool.
Collapse
Affiliation(s)
- Tina M Bunnell
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
186
|
Sinnamon JR, Czaplinski K. mRNA trafficking and local translation: the Yin and Yang of regulating mRNA localization in neurons. Acta Biochim Biophys Sin (Shanghai) 2011; 43:663-70. [PMID: 21749992 DOI: 10.1093/abbs/gmr058] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Localized translation and the requisite trafficking of the mRNA template play significant roles in the nervous system including the establishment of dendrites and axons, axon path-finding, and synaptic plasticity. We provide a brief review on the regulation of localizing mRNA in mammalian neurons through critical post-translational modifications of the factors involved. These examples highlight the relationship between mRNA trafficking and the translational regulation of trafficked mRNAs and provide insight into how extracellular signals target these events during signal transduction.
Collapse
Affiliation(s)
- John R Sinnamon
- Program in Neuroscience, Stony Brook University, NY 11794, USA
| | | |
Collapse
|
187
|
Partridge KA, Johannessen A, Tauler A, Pryme IF, Hesketh JE. Competition between the signal sequence and a 3'UTR localisation signal during redirection of beta-globin mRNA to the endoplasmic reticulum: implications for biotechnology. Cytotechnology 2011; 30:37-47. [PMID: 19003354 DOI: 10.1023/a:1008079901508] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Secretion of an intracellular protein from a cell factory requires as a first step the redirection of the mRNA for synthesis of the protein on the endoplasmic reticulum. The feasibility of retargeting a mRNA coding for an intracellular protein to the endoplasmic reticulum was investigated using Ltk- fibroblasts stably transfected with gene constructs in which rabbit beta-globin coding region and 5'UTR was linked to albumin signal sequence and different 3'untranslated regions. Globin transcripts with the native globin 3'untranslated region or with the 3'untranslated region of c-myc are present in free/cytoskeletal-bound polysomes. The addition of the signal sequence from rat albumin redirects both these globin transcripts to membrane-bound polysomes but the presence of the c-myc 3'UTR reduces the extent of redirection. Globin transcripts with both the signal sequence and 3'untranslated region from the albumin gene are efficiently redirected to membrane-bound polysomes. The results suggest competition between 5' and 3' localising signals. The addition of the signal sequence does not destabilise the mRNA nor affect translational efficiency. It is concluded that it is possible to retarget an mRNA to the endoplasmic reticulum while maintaining stability and translational capacity. This has important implications for the development of vectors to promote secretion of intracellular proteins from cell factories.
Collapse
Affiliation(s)
- K A Partridge
- Intracellular Targeting Group, Rowett Research Institute, Bucksburn, Aberdeen, AB21 9SB, UK
| | | | | | | | | |
Collapse
|
188
|
Liao B, Hu Y, Brewer G. RNA-binding protein insulin-like growth factor mRNA-binding protein 3 (IMP-3) promotes cell survival via insulin-like growth factor II signaling after ionizing radiation. J Biol Chem 2011; 286:31145-52. [PMID: 21757716 DOI: 10.1074/jbc.m111.263913] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ionizing radiation (IR) induces proapoptotic gene expression programs that inhibit cell survival. These programs often involve RNA-binding proteins that associate with their mRNA targets to elicit changes in mRNA stability and/or translation. The RNA-binding protein IMP-3 is an oncofetal protein overexpressed in many human malignancies. IMP-3 abundance correlates with tumor aggressiveness and poor prognosis. As such, IMP-3 is proving to be a highly significant biomarker in surgical pathology. Among its many mRNA targets, IMP-3 binds to and promotes translation of insulin-like growth factor II (IGFII) mRNA. Our earlier studies showed that reducing IMP-3 abundance with siRNAs reduced proliferation of human K562 chronic myeloid leukemia cells because of reduced IGF-II biosynthesis. However, the role of IMP-3 in apoptosis is unknown. Here, we have used IR-induced apoptosis of K562 cells as a model to explore a role for IMP-3 in cell survival. Knockdown of IMP-3 with siRNA increased susceptibility of cells to IR-induced apoptosis and led to reduced IGF-II production. Gene reporter assays revealed that IMP-3 acts through the 5' UTR of IGFII mRNA during apoptosis to promote translation. Finally, culture of IR-treated cells with recombinant IGF-II partially reversed the effects of IMP-3 knockdown on IR-induced apoptosis. Together, these results indicate that IMP-3 acts in part through the IGF-II pathway to promote cell survival in response to IR. Thus, IMP-3 might serve as a new drug target to increase sensitivity of CML cells or other cancers to IR therapy.
Collapse
Affiliation(s)
- Baisong Liao
- Department of Molecular Genetics, Microbiology, and Immunology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | |
Collapse
|
189
|
Zipcode binding protein 1 regulates the development of dendritic arbors in hippocampal neurons. J Neurosci 2011; 31:5271-85. [PMID: 21471362 DOI: 10.1523/jneurosci.2387-10.2011] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The pattern of dendritic branching, together with the density of synapses and receptor composition, defines the electrical properties of a neuron. The development of the dendritic arbor and its additional stabilization are highly orchestrated at the molecular level and are guided by intrinsic mechanisms and extracellular information. Although protein translation is known to contribute to these processes, the role of its local component has not been fully explored. For local translation, mRNAs are transported to dendrites in their dormant form as ribonucleoparticles (RNPs). We hypothesized that disturbing spatial mRNA distribution via RNP targeting may result in severe underdevelopment of the dendritic arbor. Zipcode binding protein 1 (ZBP1) controls β-actin mRNA transport and translation in dendrites. We showed that proper cellular levels of ZBP1, its ability to engage in mRNA binding, and Src-dependent release of mRNA cargo from ZBP1 are vital for dendritic arbor development in cultured rat hippocampal neurons. Moreover, β-actin overexpression significantly alleviated the effects of ZBP1 knockdown. These results suggest that ZBP1-dependent dendritic mRNA transport contributes to proper dendritic branching.
Collapse
|
190
|
Axonal regeneration and neuronal function are preserved in motor neurons lacking ß-actin in vivo. PLoS One 2011; 6:e17768. [PMID: 21445349 PMCID: PMC3062555 DOI: 10.1371/journal.pone.0017768] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 02/14/2011] [Indexed: 12/31/2022] Open
Abstract
The proper localization of ß-actin mRNA and protein is essential for growth cone guidance and axon elongation in cultured neurons. In addition, decreased levels of ß-actin mRNA and protein have been identified in the growth cones of motor neurons cultured from a mouse model of Spinal Muscular Atrophy (SMA), suggesting that ß-actin loss-of-function at growth cones or pre-synaptic nerve terminals could contribute to the pathogenesis of this disease. However, the role of ß-actin in motor neurons in vivo and its potential relevance to disease has yet to be examined. We therefore generated motor neuron specific ß-actin knock-out mice (Actb-MNsKO) to investigate the function of ß-actin in motor neurons in vivo. Surprisingly, ß-actin was not required for motor neuron viability or neuromuscular junction maintenance. Skeletal muscle from Actb-MNsKO mice showed no histological indication of denervation and did not significantly differ from controls in several measurements of physiologic function. Finally, motor axon regeneration was unimpaired in Actb-MNsKO mice, suggesting that ß-actin is not required for motor neuron function or regeneration in vivo.
Collapse
|
191
|
Malagon F, Jensen TH. T-body formation precedes virus-like particle maturation in S. cerevisiae. RNA Biol 2011; 8:184-9. [PMID: 21358276 DOI: 10.4161/rna.8.2.14822] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
T-bodies are localized S. cerevisiae RNPs containing Ty1 retroviral components and speculated to play a role in the assembly of virus-like particles (VLPs). Mapping requirements for T-body formation, we demonstrate that ectopic expression of immature TyA1/Gag (Gag-p49), a structural component of the Ty1 capsid, is sufficient for T-body formation both under normal conditions as well as in a strain background devoid of endogenous Gag. Moreover, T-bodies are readily formed when Ty1 transposition is blocked. Thus, T-bodies represent an early stage in the Ty1 life cycle, preceding VLP maturation.
Collapse
Affiliation(s)
- Francisco Malagon
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology, Aarhus University, Aarhus C., Denmark. or
| | | |
Collapse
|
192
|
Iioka H, Loiselle D, Haystead TA, Macara IG. Efficient detection of RNA-protein interactions using tethered RNAs. Nucleic Acids Res 2011; 39:e53. [PMID: 21300640 PMCID: PMC3082893 DOI: 10.1093/nar/gkq1316] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The diverse localization of transcripts in cells suggests that there are many specific RNA–protein interactions that have yet to be identified. Progress has been limited, however, by the lack of a robust method to detect and isolate the RNA-binding proteins. Here we describe the use of an RNA aptamer, scaffolded to a tRNA, to create an affinity matrix that efficiently pulls down transcript-specific RNA-binding proteins from cell lysates. The addition of the tRNA scaffold to a Streptavidin aptamer (tRSA) increased binding efficiency by ∼10-fold. The tRSA system with an attached G-quartet sequence also could efficiently and specifically capture endogenous Fragile X Mental Retardation Protein (FMRP), which recognizes this RNA sequence. An alternative method, using biotinylated RNA, captured FMRP less efficiently than did our tRSA method. Finally we demonstrate the identification of novel RNA-binding proteins that interact with intron2 or 3′-UTR of the polarity protein Crumbs3 transcript. Proteins captured by these RNA sequences attached to the tRNA scaffold were identified by mass spectrometry. GFP-tagged versions of these proteins also showed specific interaction with either the Crb3 intron2 or 3′-UTR. Our tRSA technique should find wide application in mapping the RNA–protein interactome.
Collapse
Affiliation(s)
- Hidekazu Iioka
- Department of Microbiology, Center for Cell Signaling, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | | | | | |
Collapse
|
193
|
Szaro BG, Strong MJ. Regulation of Cytoskeletal Composition in Neurons: Transcriptional and Post-transcriptional Control in Development, Regeneration, and Disease. ADVANCES IN NEUROBIOLOGY 2011. [DOI: 10.1007/978-1-4419-6787-9_24] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
194
|
Safe Keeping the Message: mRNP Complexes Tweaking after Transcription. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 722:118-36. [DOI: 10.1007/978-1-4614-0332-6_8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2023]
|
195
|
Autoantibodies to tumor-associated antigens as biomarkers in cancer immunodiagnosis. Autoimmun Rev 2010; 10:331-5. [PMID: 21167321 DOI: 10.1016/j.autrev.2010.12.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 12/07/2010] [Indexed: 11/23/2022]
Abstract
Cancer sera contain antibodies that react with a unique group of autologous cellular antigens called tumor-associated antigens (TAAs), and therefore these autoantibodies can be considered as reporters from the immune system, to identify authentic TAAs involved in the malignant transformation. Once a TAA is identified, different approaches would be used to comprehensively characterize and validate the identified TAA/anti-TAA systems that are potential biomarkers in cancer immunodiagnosis. In this manner, several novel TAAs such as p62 and p90 have been identified in our previous studies. p62, a member of IGF-II mRNA binding proteins (IMPs), is an oncofetal protein absent in adult tissues, the presence of anti-p62 autoantibodies relates to abnormal expression of p62 in tumor cells. p90 was recently characterized as an inhibitor of the tumor suppressor PP2A (protein phosphatase 2A), and an autoantibody to p90 appears in high frequency in prostate cancer. The present review will focus on the recent advances in studies mainly associated with these two novel TAAs as biomarkers in cancer immunodiagnosis.
Collapse
|
196
|
Zou W, Ke J, Zhang A, Zhou M, Liao Y, Zhu J, Zhou H, Tu J, Chen H, Jin M. Proteomics analysis of differential expression of chicken brain tissue proteins in response to the neurovirulent H5N1 avian influenza virus infection. J Proteome Res 2010; 9:3789-98. [PMID: 20438121 DOI: 10.1021/pr100080x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A certain H5N1 avian influenza virus has gained the ability to cause the classic central nervous system dysfunction in poultry and migratory birds. This study presents the proteomics analysis on the change of proteins to H5N1 avian influenza virus with neurovirulence infection in chicken brain tissue. By using 2-DE, coupled with MALDI-TOF MS/MS, we identified a set of differentially expressed cellular proteins, including 18 up-regulated proteins and 13 down-regulated proteins. The most significant changes were found in cytoskeleton proteins, proteins associated with the ubiquitin-proteasome pathway, and neural signal transduction proteins. Some identified proteins such as CRMP and SEP5 were found to participate in the pathogenesis progress of Parkinson's and Huntington's diseases, which also developed encephalitis accompanied with CNS dysfunction. The obtained data can provide insight into the virus-chicken brain tissue interaction and reveal the potential mechanism of the neuropathogenesis when the host was infected by the neurovirulent avian influenza virus.
Collapse
Affiliation(s)
- Wei Zou
- State Key Laboratory of Agriculture Microbiology, Huazhong Agriculture University, Wuhan, P. R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
197
|
Abstract
Insulin-like growth factor 2 (IGF-2) mRNA-binding proteins (IMPs) are a family of posttranscriptional regulatory factors with well-understood roles in embryonic development and cancer but with poorly characterized functions in normal adult cells and tissues. We now show that IMP-2, the most ubiquitously expressed member of the family, is abundant in human and mouse adult skeletal myoblasts, where it is indispensable for cell motility and for stabilization of microtubules. To explore the functions of IMP-2, we analyzed the transcripts that were differentially regulated in IMP-2-depleted myoblasts and bound to IMP-2 in normal myoblasts. Among them were the mRNAs of PINCH-2, an important mediator of cell adhesion and motility, and MURF-3, a microtubule-stabilizing protein. By gain- and loss-of-function assays and gel shift experiments, we show that IMP-2 regulates the expression of PINCH-2 and MURF-3 proteins via direct binding to their mRNAs. Upregulation of PINCH-2 in IMP-2-depleted myoblasts is the key event responsible for their decreased motility. Our data reveal how the posttranscriptional regulation of gene expression by IMP-2 contributes to the control of adhesion structures and stable microtubules and demonstrate an important function for IMP-2 in cellular motility.
Collapse
|
198
|
Mauchi N, Ohtake Y, Irie K. Stability control of MTL1 mRNA by the RNA-binding protein Khd1p in yeast. Cell Struct Funct 2010; 35:95-105. [PMID: 20953064 DOI: 10.1247/csf.10011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Khd1p (KH-domain protein 1) is a yeast RNA-binding protein highly homologous to mammalian hnRNP K. Khd1p associates with hundreds of potential mRNA targets including a bud-localized ASH1 mRNA and mRNAs encoding membrane-associated proteins such as Mid2p and Mtl1p. While Khd1p negatively regulates gene expression of Ash1p by translational repression, Khd1p positively regulates gene expression of Mtl1p by mRNA stabilization. To investigate how Khd1p regulates the stability of MTL1 mRNA, we searched for cis-acting elements and trans-acting factors controlling MTL1 mRNA stability. Regional analysis revealed that partial deletion of the coding sequences of MTL1 mRNA restored the decreased MTL1 mRNA and protein levels in khd1Δ mutants. This region, encompassing nucleotides 532 to 1032 of the Mtl1p coding sequence, contains CNN repeats that direct Khd1p-binding. Insertion of this sequence into other mRNAs conferred mRNA instability in khd1Δ mutants. We further searched for factors involved in the destabilization of MTL1 mRNA. Mutations in CCR4 and CAF1/POP2, encoding major cytoplasmic deadenylases, or of SKI genes, which code for components of a complex involved in 3' to 5' degradation, did not restore the decreased MTL1 mRNA levels caused by khd1Δ mutation. However, mutations in DCP1 and DCP2, encoding a decapping enzyme complex, and XRN1, encoding a 5'-3' exonuclease, restored the decreased MTL1 mRNA levels. Furthermore, Khd1p colocalized with Dcp1p in processing bodies, cytoplasmic sites for mRNA degradation. Our results suggest that MTL1 mRNA bears a cis-acting element involved in destabilization by the decapping enzyme and the 5'-3' exonuclease, and Khd1p stabilizes MTL1 mRNA through binding to this element.
Collapse
Affiliation(s)
- Naoko Mauchi
- Department of Molecular Cell Biology, Graduate School of Comprehensive Human Sciences and Institute of Basic Medical Sciences, University of Tsukuba, Tennoudai, Tsukuba, Japan
| | | | | |
Collapse
|
199
|
Phosphorylation of zipcode binding protein 1 is required for brain-derived neurotrophic factor signaling of local beta-actin synthesis and growth cone turning. J Neurosci 2010; 30:9349-58. [PMID: 20631164 DOI: 10.1523/jneurosci.0499-10.2010] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The localization of specific mRNAs and their local translation in growth cones of developing axons has been shown to play an important mechanism to regulate growth cone turning responses to attractive or repulsive cues. However, the mechanism whereby local translation and growth cone turning may be controlled by specific mRNA-binding proteins is unknown. Here we demonstrate that brain-derived neurotrophic factor (BDNF) signals the Src-dependent phosphorylation of the beta-actin mRNA zipcode binding protein 1 (ZBP1), which is necessary for beta-actin synthesis and growth cone turning. We raised a phospho-specific ZBP1 antibody to Tyr396, which is a Src phosphorylation site, and immunofluorescence revealed BDNF-induced phosphorylation of ZBP1 within growth cones. The BDNF-induced increase in fluorescent signal of a green fluorescent protein translation reporter with the 3' untranslated region of beta-actin was attenuated with the Src family kinase-specific inhibitor PP2 [4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine]. Furthermore, a nonphosphorylatable mutant, ZBP1 Y396F, suppressed the BDNF-induced and protein synthesis-dependent increase in beta-actin localization in growth cones. Last, the ZBP1 Y396F mutant blocked BDNF-induced attractive growth cone turning. These results indicate that phosphorylation of ZBP1 at Tyr396 within growth cones has a critical role to regulate local protein synthesis and growth cone turning. Our findings provide new insight into how the regulated phosphorylation of mRNA-binding proteins influences local translation underlying growth cone motility and axon guidance.
Collapse
|
200
|
Abstract
Motor neurons are large, highly polarised cells with very long axons and a requirement for precise spatial and temporal gene expression. Neurodegenerative disorders characterised by selective motor neuron vulnerability include various forms of amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA). A rapid expansion in knowledge on the pathophysiology of motor neuron degeneration has occurred in recent years, largely through the identification of genes leading to familial forms of ALS and SMA. The major emerging theme is that motor neuron degeneration can result from mutation in genes that encode factors important for ribonucleoprotein biogenesis and RNA processing, including splicing regulation, transcript stabilisation, translational repression and localisation of mRNA. Complete understanding of how these pathways interact and elucidation of specialised mechanisms for mRNA targeting and processing in motor neurons are likely to produce new targets for therapy in ALS and related disorders.
Collapse
|