151
|
Chen C, Tian J, Zhou J, Ni X, Lei J, Wang X. Bacterial growth, morphology, and cell component changes in Herbaspirillum
sp. WT00C exposed to high concentration of selenate. J Basic Microbiol 2020; 60:304-321. [DOI: 10.1002/jobm.201900586] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/29/2019] [Accepted: 12/08/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Changmei Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Faculty of Life Science; Hubei University; Wuhan China
| | - Jinbao Tian
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Faculty of Life Science; Hubei University; Wuhan China
| | - Jiahui Zhou
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Faculty of Life Science; Hubei University; Wuhan China
| | - Xuechen Ni
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Faculty of Life Science; Hubei University; Wuhan China
| | - Jia Lei
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Faculty of Life Science; Hubei University; Wuhan China
| | - Xingguo Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Faculty of Life Science; Hubei University; Wuhan China
| |
Collapse
|
152
|
Costa LC, Luz LM, Nascimento VL, Araujo FF, Santos MNS, França CDFM, Silva TP, Fugate KK, Finger FL. Selenium-Ethylene Interplay in Postharvest Life of Cut Flowers. FRONTIERS IN PLANT SCIENCE 2020; 11:584698. [PMID: 33391299 PMCID: PMC7773724 DOI: 10.3389/fpls.2020.584698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/26/2020] [Indexed: 05/18/2023]
Abstract
Selenium (Se) is considered a beneficial element in higher plants when provided at low concentrations. Recently, studies have unveiled the interactions between Se and ethylene metabolism throughout plant growth and development. However, despite the evidence that Se may provide longer shelf life in ethylene-sensitive flowers, its primary action on ethylene biosynthesis and cause-effect responses are still understated. In the present review, we discuss the likely action of Se on ethylene biosynthesis and its consequence on postharvest physiology of cut flowers. By combining Se chemical properties with a dissection of ethylene metabolism, we further highlighted both the potential use of Se solutions and their downstream responses. We believe that this report will provide the foundation for the hypothesis that Se plays a key role in the postharvest longevity of ethylene-sensitive flowers.
Collapse
Affiliation(s)
- Lucas C. Costa
- Departamento de Fitotecnia, Universidade Federal de Viçosa, Viçosa, Brazil
- *Correspondence: Lucas C. Costa,
| | - Luana M. Luz
- Laboratório de Genética e Biotecnologia – Campus Capanema, Universidade Federal Rural da Amazônia, Capanema, Brazil
| | - Vitor L. Nascimento
- Setor de Fisiologia Vegetal – Departamento de Biologia, Universidade Federal de Lavras, Lavras, Brazil
| | - Fernanda F. Araujo
- Departamento de Fitotecnia, Universidade Federal de Viçosa, Viçosa, Brazil
| | | | - Christiane de F. M. França
- Departamento de Tecnologia Agroindustrial e Socioeconomia Rural, Universidade Federal de São Carlos, Araras, Brazil
| | - Tania P. Silva
- Instituto de Ciências Agrárias, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Unaí, Brazil
| | - Karen K. Fugate
- USDA-ARS, Edward T. Schafer Agricultural Research Center, Fargo, ND, United States
| | - Fernando L. Finger
- Departamento de Fitotecnia, Universidade Federal de Viçosa, Viçosa, Brazil
| |
Collapse
|
153
|
Ji Y, Wang YT. Kinetic modeling of selenium reduction by a defined co-culture in batch reactors. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
154
|
Extreme Environments and High-Level Bacterial Tellurite Resistance. Microorganisms 2019; 7:microorganisms7120601. [PMID: 31766694 PMCID: PMC6955997 DOI: 10.3390/microorganisms7120601] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 01/10/2023] Open
Abstract
Bacteria have long been known to possess resistance to the highly toxic oxyanion tellurite, most commonly though reduction to elemental tellurium. However, the majority of research has focused on the impact of this compound on microbes, namely E. coli, which have a very low level of resistance. Very little has been done regarding bacteria on the other end of the spectrum, with three to four orders of magnitude greater resistance than E. coli. With more focus on ecologically-friendly methods of pollutant removal, the use of bacteria for tellurite remediation, and possibly recovery, further highlights the importance of better understanding the effect on microbes, and approaches for resistance/reduction. The goal of this review is to compile current research on bacterial tellurite resistance, with a focus on high-level resistance by bacteria inhabiting extreme environments.
Collapse
|
155
|
Tymoshok NO, Kharchuk MS, Kaplunenko VG, Bityutskyy VS, Tsekhmistrenko SI, Tsekhmistrenko OS, Spivak MY, Melnichenko ОМ. Evaluation of effects of selenium nanoparticles on Bacillus subtilis. REGULATORY MECHANISMS IN BIOSYSTEMS 2019. [DOI: 10.15421/021980] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The present study was performed to characterize of selenium nanoparticles (Nano-Se) which were synthesized by pulsed laser ablation in liquids to obtain the aqueous selenium citrate solution. The study was conducted using bacteriological and electronic-microscopic methods. Transmission electron microscopy (TEM) and spectroscopy analyses demonstrated that nano-selenium particles obtained by the method of selenium ablation had the size of 4–8 nm. UV-Visible Spectrum colloidal solution Nano-Se exhibited absorption maxima at 210 nm. To clarify some effects of the action of Nano-Se on Bacillus subtilis, we investigated the interaction of Nano-Se with B. subtilis IMV B-7392 before and after incubation with Nano-Se, examining TEM images. It has been shown that exposure to B. subtilis IMV B-7392 in the presence of Nano-Se is accompanied by the rapid uptake of Nano-Se by bacterial culture. TEM analysis found that the electron-dense Nano-Se particles were located in the intracellular spaces of B. subtilis IMV B-7392. That does not lead to changes in cultural and morphological characteristics of B. subtilis IMV B-7392. Using TEM, it has been shown that penetration of nanoparticles in the internal compartments is accompanied with transient porosity of the cell membrane of B. subtilis IMV B-7392 without rupturing it. The effective concentration of Nano-Se 0.2 × 10–3 mg/mL was found to increase the yield of biologically active substances of B. subtilis. In order to create probiotic nano-selenium containing products, the nutrient medium of B. subtilis IMV B-7392 was enriched with Nano-Se at 0.2 × 10–3 mg/mL. It was found that particles Nano-Se are non-toxic to the culture and did not exhibit bactericidal or bacteriostatic effects. The experimentally demonstrated ability of B. subtilis to absorb selenium nanoparticles has opened up the possibility of using Nano-Se as suitable drug carriers.
Collapse
|
156
|
Dereven’kov IA, Makarov SV. Catalytic effect of tetrasulfonated cobalt phthalocyanine on selenite reduction by dithionite. REACTION KINETICS MECHANISMS AND CATALYSIS 2019. [DOI: 10.1007/s11144-019-01687-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
157
|
Methyl Selenol as a Precursor in Selenite Reduction to Se/S Species by Methane-Oxidizing Bacteria. Appl Environ Microbiol 2019; 85:AEM.01379-19. [PMID: 31519658 PMCID: PMC6821961 DOI: 10.1128/aem.01379-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/09/2019] [Indexed: 11/30/2022] Open
Abstract
Aerobic methane-oxidizing bacteria are ubiquitous in the environment. Two well-characterized strains, Mc. capsulatus (Bath) and Methylosinus trichosporium OB3b, representing gamma- and alphaproteobacterial methanotrophs, respectively, can convert selenite, an environmental pollutant, to volatile selenium compounds and selenium-containing particulates. Both conversions can be harnessed for the bioremediation of selenium pollution using biological or fossil methane as the feedstock, and these organisms could be used to produce selenium-containing particles for food and biotechnological applications. Using an extensive suite of techniques, we identified precursors of selenium nanoparticle formation and also found that these nanoparticles are made up of eight-membered mixed selenium and sulfur rings. A wide range of microorganisms have been shown to transform selenium-containing oxyanions to reduced forms of the element, particularly selenium-containing nanoparticles. Such reactions are promising for the detoxification of environmental contamination and the production of valuable selenium-containing products, such as nanoparticles for application in biotechnology. It has previously been shown that aerobic methane-oxidizing bacteria, including Methylococcus capsulatus (Bath), are able to perform the methane-driven conversion of selenite (SeO32−) to selenium-containing nanoparticles and methylated selenium species. Here, the biotransformation of selenite by Mc. capsulatus (Bath) has been studied in detail via a range of imaging, chromatographic, and spectroscopic techniques. The results indicate that the nanoparticles are produced extracellularly and have a composition distinct from that of nanoparticles previously observed from other organisms. The spectroscopic data from the methanotroph-derived nanoparticles are best accounted for by a bulk structure composed primarily of octameric rings in the form Se8 −xSx with an outer coat of cell-derived biomacromolecules. Among a range of volatile methylated selenium and selenium-sulfur species detected, methyl selenol (CH3SeH) was found only when selenite was the starting material, although selenium nanoparticles (both biogenic and chemically produced) could be transformed into other methylated selenium species. This result is consistent with methyl selenol being an intermediate in the methanotroph-mediated biotransformation of selenium to all the methylated and particulate products observed. IMPORTANCE Aerobic methane-oxidizing bacteria are ubiquitous in the environment. Two well-characterized strains, Mc. capsulatus (Bath) and Methylosinus trichosporium OB3b, representing gamma- and alphaproteobacterial methanotrophs, respectively, can convert selenite, an environmental pollutant, to volatile selenium compounds and selenium-containing particulates. Both conversions can be harnessed for the bioremediation of selenium pollution using biological or fossil methane as the feedstock, and these organisms could be used to produce selenium-containing particles for food and biotechnological applications. Using an extensive suite of techniques, we identified precursors of selenium nanoparticle formation and also found that these nanoparticles are made up of eight-membered mixed selenium and sulfur rings.
Collapse
|
158
|
Ruiz-Fresneda MA, Gomez-Bolivar J, Delgado-Martin J, Abad-Ortega MDM, Guerra-Tschuschke I, Merroun ML. The Bioreduction of Selenite under Anaerobic and Alkaline Conditions Analogous to Those Expected for a Deep Geological Repository System. Molecules 2019; 24:molecules24213868. [PMID: 31717840 PMCID: PMC6865132 DOI: 10.3390/molecules24213868] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 12/23/2022] Open
Abstract
The environmental conditions for the planned geological disposal of radioactive waste —including hyper-alkaline pH, radiation or anoxia—are expected to be extremely harsh for microbial activity. However, it is thought that microbial communities will develop in these repositories, and this would have implications for geodisposal integrity and the control of radionuclide migration through the surrounding environment. Nuclear waste contains radioactive isotopes of selenium (Se) such as 79Se, which has been identified as one of the main radionuclides in a geodisposal system. Here, we use the bacterial species Stenotrophomonas bentonitica, isolated from bentonites serving as an artificial barrier reference material in repositories, to study the reduction of selenite (SeIV) under simulated geodisposal conditions. This bacterium is able to reduce toxic SeIV anaerobically from a neutral to alkaline initial pH (up to pH 10), thereby producing elemental selenium (Se0) nanospheres and nanowires. A transformation process from amorphous Se (a-Se) nanospheres to trigonal Se (t-Se) nanowires, through the formation of monoclinic Se (m-Se) aggregates as an intermediate step, is proposed. The lesser solubility of Se0 and t-Se makes S. bentonitica a potential candidate to positively influence the security of a geodisposal system, most probably with lower efficiency rates than those obtained aerobically.
Collapse
Affiliation(s)
- Miguel Angel Ruiz-Fresneda
- Department of Microbiology, University of Granada, 18071 Granada, Spain; (J.G.-B.); (J.D.-M.); (M.L.M.)
- Correspondence:
| | - Jaime Gomez-Bolivar
- Department of Microbiology, University of Granada, 18071 Granada, Spain; (J.G.-B.); (J.D.-M.); (M.L.M.)
| | - Josemaria Delgado-Martin
- Department of Microbiology, University of Granada, 18071 Granada, Spain; (J.G.-B.); (J.D.-M.); (M.L.M.)
| | - Maria del Mar Abad-Ortega
- Centro de Instrumentación Científica (CIC), University of Granada, 18071 Granada, Spain; (M.d.M.A.-O.); (I.G.-T.)
| | - Isabel Guerra-Tschuschke
- Centro de Instrumentación Científica (CIC), University of Granada, 18071 Granada, Spain; (M.d.M.A.-O.); (I.G.-T.)
| | - Mohamed Larbi Merroun
- Department of Microbiology, University of Granada, 18071 Granada, Spain; (J.G.-B.); (J.D.-M.); (M.L.M.)
| |
Collapse
|
159
|
Varlamova EG, Maltseva VN. Micronutrient Selenium: Uniqueness and Vital Functions. Biophysics (Nagoya-shi) 2019. [DOI: 10.1134/s0006350919040213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
160
|
Lusa M, Help H, Honkanen AP, Knuutinen J, Parkkonen J, Kalasová D, Bomberg M. The reduction of selenium(IV) by boreal Pseudomonas sp. strain T5-6-I - Effects on selenium(IV) uptake in Brassica oleracea. ENVIRONMENTAL RESEARCH 2019; 177:108642. [PMID: 31430668 DOI: 10.1016/j.envres.2019.108642] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 06/10/2023]
Abstract
Selenium (Se) is an essential micronutrient but toxic when taken in excessive amounts. Therefore, understanding the metabolic processes related to selenium uptake and bacteria-plant interactions coupled with selenium metabolism are of high importance. We cultivated Brassica oleracea with the previously isolated heterotrophic aerobic Se(IV)-reducing Pseudomonas sp. T5-6-I strain to better understand the phenomena of bacteria-mediated Se(IV) reduction on selenium availability to the plants. B. oleracea grown on Murashige and Skoog medium (MS-salt agar) with and without of Pseudomonas sp. were amended with Se(IV)/75Se(IV), and selenium transfer into plants was studied using autoradiography and gamma spectroscopy. XANES was in addition used to study the speciation of selenium in the B. oleracea plants. In addition, the effects of Se(IV) on the protein expression in B. oleracea was studied using HPLC-SEC. TEM and confocal microscopy were used to follow the bacterial/Se-aggregate accumulation in plants and the effects of bacterial inoculation on root-hair growth. In the tests using 75Se(IV) on average 130% more selenium was translocated to the B. oleracea plants grown with Pseudomonas sp. compared to the plants grown with selenium, but without Pseudomonas sp.. In addition, these bacteria notably increased root hair density. Changes in the protein expression of B. oleracea were observed on the ∼30-58 kDa regions in the Se(IV) treated samples, probably connected e.g. to the oxidative stress induced by Se(IV) or expression of proteins connected to the Se(IV) metabolism. Based on the XANES measurements, selenium appears to accumulate in B. oleracea mainly in organic C-Se-H and C-Se-C bonds with and without bacteria inoculation. We conclude that the Pseudomonas sp. T5-6-I strain seems to contribute positively to the selenium accumulation in plants, establishing the high potential of Se0-producing bacteria in the use of phytoremediation and biofortification of selenium.
Collapse
Affiliation(s)
- Merja Lusa
- Department of Chemistry, Radiochemistry, Faculty of Science, University of Helsinki, Finland.
| | - Hanna Help
- Department of Physics, X-Ray Laboratory, Faculty of Science, University of Helsinki, Finland
| | - Ari-Pekka Honkanen
- Department of Physics, X-Ray Laboratory, Faculty of Science, University of Helsinki, Finland
| | - Jenna Knuutinen
- Department of Chemistry, Radiochemistry, Faculty of Science, University of Helsinki, Finland
| | | | - Dominika Kalasová
- CEITEC - Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Malin Bomberg
- Material Recycling and Geotechnology, VTT, Technical Research Center of Finland, Espoo, Finland
| |
Collapse
|
161
|
Fan J, Zhao G, Sun J, Hu Y, Wang T. Effect of humic acid on Se and Fe transformations in soil during waterlogged incubation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 684:476-485. [PMID: 31154220 DOI: 10.1016/j.scitotenv.2019.05.246] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/17/2019] [Accepted: 05/17/2019] [Indexed: 06/09/2023]
Abstract
Humic acid (HA) serves as electron donor and acceptor in the biogeochemical cycle of Fe and Se in soil. In anoxic condition, a series of redox reactions occur, including reductive dissolution of Fe oxides, decomposition of organic matters, and transformation of trace elements. Thus, this study demonstrates the effect of HA on Se and Fe transformations in soil during waterlogged incubation. Soils were incubated under anoxic condition for 56 days, and pH, redox potential (Eh), and Fe and Se concentrations were measured at specific reaction times (days 2, 4, 8, 15, 28, and 56 of incubation). Moreover, sequential extraction and X-ray photoelectron spectroscopy (XPS) were used to obtain Se and Fe transformations, respectively. High resolution transmission electron microscopy (HR-TEM) was used to observe the morphology properties of soil. Results indicated that 4% HA addition decreased the pH and inhibited Eh decline continuously, and HA addition inhibited the Fe and Se release from soil. The Se concentration in soil solution without and with 4% HA addition at the day 15 of incubation were 1.05 mg L-1 and 0.30 mg L-1, respectively. Moreover, the residual Se fraction in soil with HA addition was evidently more than that in soil without HA addition. XPS of Se3d and Fe2p revealed that the binding energy of the main peak shifted to low values and the peak shape varied with the increase in HA addition. XPS2p3/2 and HR-TEM data indicated that the surface structure of Fe oxides in soil varied with the variations in anoxic incubation time and HA addition amount. HA addition would negatively influence Se and Fe release in soil solution and then reduce their bioavailability. This study aids in understanding the environmental behavior changes of Se and Fe when high HA concentrations enter the soils, especially wetland or paddy soil.
Collapse
Affiliation(s)
- Jianxin Fan
- Chongqing Engineering Laboratory of Environmental Hydraulic Engineering, Chongqing Jiaotong University, Chongqing 400074, China; College of Resources and Environment, Southwest University, Chongqing 400715, China.
| | - Guoliang Zhao
- Chongqing Engineering Laboratory of Environmental Hydraulic Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Jiaoxia Sun
- Chongqing Engineering Laboratory of Environmental Hydraulic Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Ying Hu
- Chongqing Engineering Laboratory of Environmental Hydraulic Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Tujin Wang
- Chongqing Engineering Laboratory of Environmental Hydraulic Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| |
Collapse
|
162
|
Fungal formation of selenium and tellurium nanoparticles. Appl Microbiol Biotechnol 2019; 103:7241-7259. [PMID: 31324941 PMCID: PMC6691031 DOI: 10.1007/s00253-019-09995-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/17/2019] [Accepted: 06/17/2019] [Indexed: 11/24/2022]
Abstract
The fungi Aureobasidium pullulans, Mortierella humilis, Trichoderma harzianum and Phoma glomerata were used to investigate the formation of selenium- and tellurium-containing nanoparticles during growth on selenium- and tellurium-containing media. Most organisms were able to grow on both selenium- and tellurium-containing media at concentrations of 1 mM resulting in extensive precipitation of elemental selenium and tellurium on fungal surfaces as observed by the red and black colour changes. Red or black deposits were confirmed as elemental selenium and tellurium, respectively. Selenium oxide and tellurium oxide were also found after growth of Trichoderma harzianum with 1 mM selenite and tellurite as well as the formation of elemental selenium and tellurium. The hyphal matrix provided nucleation sites for metalloid deposition with extracellular protein and extracellular polymeric substances localizing the resultant Se or Te nanoparticles. These findings are relevant to remedial treatments for selenium and tellurium and to novel approaches for selenium and tellurium biorecovery.
Collapse
|
163
|
Cai M, Hu C, Wang X, Zhao Y, Jia W, Sun X, Elyamine AM, Zhao X. Selenium induces changes of rhizosphere bacterial characteristics and enzyme activities affecting chromium/selenium uptake by pak choi (Brassica campestris L. ssp. Chinensis Makino) in chromium contaminated soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 249:716-727. [PMID: 30933769 DOI: 10.1016/j.envpol.2019.03.079] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/19/2019] [Accepted: 03/19/2019] [Indexed: 06/09/2023]
Abstract
Understanding the chemical response and characteristics of bacterial communities in soil is critical to evaluate the effects of selenium (Se) supplement on plant growth and chromium (Cr)/Se uptake in Cr contaminated soil. The rhizosphere soil characteristics of pak choi (Brassica campestris L. ssp. Chinensis Makino) were investigated in soil contaminated with different levels and forms of Cr when supplemented with Se. Although inhibition of plant growth caused by Cr stress was not completely alleviated by Se, Cr content in plant tissues decreased in Cr(VI)120Se5 treatment (Cr(VI): 120 mg kg-1 soil; Se: 5 mg kg-1 soil) and its bioavailability in soil decreased in Cr(III)200Se5 (Cr(III): 200 mg kg-1 soil; Se: 5 mg kg-1 soil) treatment. Moreover, antagonism of Cr and Se on soil enzyme activities and bacterial communities were revealed. Notably, results of Cr(VI) reduction and Se metabolism functional profiles confirmed that bacterial communities play a critical role in regulating Cr/Se bioavailability. Additionally, the increases of Se bioavailability in Cr contaminated soil were ascribed to oxidation of Cr(VI) and reduction of Se reductases proportions, as well as the enhancing of pH in soil. These findings reveal that Se has the potential capacity to sustain the stability of microdomain in Cr contaminated soil.
Collapse
Affiliation(s)
- Miaomiao Cai
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture / Hubei Provincial Engineering Laboratory for New Fertilizers / Research Center of Trace Elements, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chengxiao Hu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture / Hubei Provincial Engineering Laboratory for New Fertilizers / Research Center of Trace Elements, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xu Wang
- Key Laboratory of Testing and Evaluation for Agro-product Safety and Quality, Ministry of Agriculture, Guangzhou, 510640, China
| | - Yuanyuan Zhao
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture / Hubei Provincial Engineering Laboratory for New Fertilizers / Research Center of Trace Elements, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wei Jia
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture / Hubei Provincial Engineering Laboratory for New Fertilizers / Research Center of Trace Elements, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuecheng Sun
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture / Hubei Provincial Engineering Laboratory for New Fertilizers / Research Center of Trace Elements, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ali Mohamed Elyamine
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture / Hubei Provincial Engineering Laboratory for New Fertilizers / Research Center of Trace Elements, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaohu Zhao
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture / Hubei Provincial Engineering Laboratory for New Fertilizers / Research Center of Trace Elements, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
164
|
Lavy A, McGrath DG, Matheus Carnevali PB, Wan J, Dong W, Tokunaga TK, Thomas BC, Williams KH, Hubbard SS, Banfield JF. Microbial communities across a hillslope-riparian transect shaped by proximity to the stream, groundwater table, and weathered bedrock. Ecol Evol 2019; 9:6869-6900. [PMID: 31380022 PMCID: PMC6662431 DOI: 10.1002/ece3.5254] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 01/01/2023] Open
Abstract
Watersheds are important suppliers of freshwater for human societies. Within mountainous watersheds, microbial communities impact water chemistry and element fluxes as water from precipitation events discharge through soils and underlying weathered rock, yet there is limited information regarding the structure and function of these communities. Within the East River, CO watershed, we conducted a depth-resolved, hillslope to riparian zone transect study to identify factors that control how microorganisms are distributed and their functions. Metagenomic and geochemical analyses indicate that distance from the East River and proximity to groundwater and underlying weathered shale strongly impact microbial community structure and metabolic potential. Riparian zone microbial communities are compositionally distinct, from the phylum down to the species level, from all hillslope communities. Bacteria from phyla lacking isolated representatives consistently increase in abundance with increasing depth, but only in the riparian zone saturated sediments we found Candidate Phyla Radiation bacteria. Riparian zone microbial communities are functionally differentiated from hillslope communities based on their capacities for carbon and nitrogen fixation and sulfate reduction. Selenium reduction is prominent at depth in weathered shale and saturated riparian zone sediments and could impact water quality. We anticipate that the drivers of community composition and metabolic potential identified throughout the studied transect will predict patterns across the larger watershed hillslope system.
Collapse
Affiliation(s)
- Adi Lavy
- Earth and Planetary ScienceUniversity of CaliforniaBerkeleyCalifornia
- Earth and Environmental SciencesLawrence Berkeley National LabBerkeleyCalifornia
| | | | | | - Jiamin Wan
- Earth and Environmental SciencesLawrence Berkeley National LabBerkeleyCalifornia
| | - Wenming Dong
- Earth and Environmental SciencesLawrence Berkeley National LabBerkeleyCalifornia
| | - Tetsu K. Tokunaga
- Earth and Environmental SciencesLawrence Berkeley National LabBerkeleyCalifornia
| | - Brian C. Thomas
- Earth and Planetary ScienceUniversity of CaliforniaBerkeleyCalifornia
| | - Kenneth H. Williams
- Earth and Environmental SciencesLawrence Berkeley National LabBerkeleyCalifornia
| | - Susan S. Hubbard
- Earth and Environmental SciencesLawrence Berkeley National LabBerkeleyCalifornia
| | | |
Collapse
|
165
|
Xiao X, Cheng Y, Song D, Li X, Hu Y, Lu Z, Wang F, Wang Y. Selenium-enriched Bacillus paralicheniformis SR14 attenuates H 2O 2-induced oxidative damage in porcine jejunum epithelial cells via the MAPK pathway. Appl Microbiol Biotechnol 2019; 103:6231-6243. [PMID: 31147754 DOI: 10.1007/s00253-019-09922-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/01/2019] [Accepted: 05/15/2019] [Indexed: 02/05/2023]
Abstract
Oxidative stress plays a detrimental role in gastrointestinal disorders. Although selenium-enriched probiotics have been shown to strengthen oxidation resistance and innate immunity, the potential mechanism remains unclear. Here, we focused on the biological function of our material, selenium-enriched Bacillus paralicheniformis SR14 (Se-BP), and investigated the antioxidative effects of Se-BP and its underlying molecular mechanism in porcine jejunum epithelial cells. First, we prepared Se-BP and quantified for its selenium and bacterial contents. Then, in vitro free radical scavenging activity was measured to evaluate the potential antioxidant effect of Se-BP. Third, to induce an appropriate oxidative stress model, we adopted different concentrations of H2O2 and determined the most suitable concentration by a methyl thiazolyl tetrazolium (MTT) assay. Regarding treatment with Se-BP and H2O2, we found that Se-BP increased cell viability and prevented lactate dehydrogenase release when administered prior to H2O2 exposure. Additionally, Se-BP markedly suppressed reactive oxygen species and malondialdehyde production in cells and effectively attenuated apoptosis. Compared with incubation with H2O2 alone, treatment with Se-BP significantly promoted phosphorylation of ERK and p38 MAPK signaling molecules. When administered with ERK and p38 MAPK inhibitors, Se-BP did not alleviate the decrease in cell viability. Our results suggest that Se-BP prevents H2O2-induced cell damage by activating the ERK/p38 MAPK signaling pathways.
Collapse
Affiliation(s)
- Xiao Xiao
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Zhejiang University, Hangzhou, 310058, China
| | - Yuanzhi Cheng
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Zhejiang University, Hangzhou, 310058, China
| | - Deguang Song
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoxiao Li
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Zhejiang University, Hangzhou, 310058, China
| | - Yuhan Hu
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Zhejiang University, Hangzhou, 310058, China
| | - Zeqing Lu
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Zhejiang University, Hangzhou, 310058, China
| | - Fengqin Wang
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Zhejiang University, Hangzhou, 310058, China
| | - Yizhen Wang
- National Engineering Laboratory of Biological Feed Safety and Pollution Prevention and Control, Zhejiang University, Hangzhou, 310058, China. .,Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
166
|
Tian LJ, Min Y, Li WW, Chen JJ, Zhou NQ, Zhu TT, Li DB, Ma JY, An PF, Zheng LR, Huang H, Liu YZ, Yu HQ. Substrate Metabolism-Driven Assembly of High-Quality CdS xSe 1- x Quantum Dots in Escherichia coli: Molecular Mechanisms and Bioimaging Application. ACS NANO 2019; 13:5841-5851. [PMID: 30969107 DOI: 10.1021/acsnano.9b01581] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Biosynthesis offers opportunities for cost-effective and sustainable production of semiconductor quantum dots (QDs), but is currently restricted by poor controllability on the synthesis process, resulting from limited knowledge on the assembly mechanisms and the lack of effective control strategies. In this work, we provide molecular-level insights into the formation mechanism of biogenic QDs (Bio-QDs) and its connection with the cellular substrate metabolism in Escherichia coli. Strengthening the substrate metabolism for producing more reducing power was found to stimulate the production of several reduced thiol-containing proteins (including glutaredoxin and thioredoxin) that play key roles in Bio-QDs assembly. This effectively diverted the transformation route of the selenium (Se) and cadmium (Cd) metabolic from Cd3(PO4)2 formation to CdS xSe1- x QDs assembly, yielding fine-sized (2.0 ± 0.4 nm), high-quality Bio-QDs with quantum yield (5.2%) and fluorescence lifetime (99.19 ns) far exceeding the existing counterparts. The underlying mechanisms of Bio-QDs crystallization and development were elucidated by density functional theory calculations and molecular dynamics simulation. The resulting Bio-QDs were successfully used for bioimaging of cancer cells and tumor tissue of mice without extra modification. Our work provides fundamental knowledge on the Bio-QDs assembly mechanisms and proposes an effective, facile regulation strategy, which may inspire advances in controlled synthesis and practical applications of Bio-QDs as well as other bionanomaterials.
Collapse
Affiliation(s)
- Li-Jiao Tian
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry , University of Science and Technology of China , Hefei 230026 , China
| | - Yuan Min
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry , University of Science and Technology of China , Hefei 230026 , China
| | - Wen-Wei Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry , University of Science and Technology of China , Hefei 230026 , China
| | - Jie-Jie Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry , University of Science and Technology of China , Hefei 230026 , China
| | - Nan-Qing Zhou
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry , University of Science and Technology of China , Hefei 230026 , China
| | - Ting-Ting Zhu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry , University of Science and Technology of China , Hefei 230026 , China
| | - Dao-Bo Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry , University of Science and Technology of China , Hefei 230026 , China
| | - Jing-Yuan Ma
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics , Chinese Academy of Sciences , Shanghai 201204 , China
| | - Peng-Fei An
- Beijing Synchrotron Radiation Laboratory, Institute of High Energy Physics , Chinese Academy of Science , Beijing 100049 , China
| | - Li-Rong Zheng
- Beijing Synchrotron Radiation Laboratory, Institute of High Energy Physics , Chinese Academy of Science , Beijing 100049 , China
| | - Hai Huang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry , University of Science and Technology of China , Hefei 230026 , China
| | - Yang-Zhong Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry , University of Science and Technology of China , Hefei 230026 , China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry , University of Science and Technology of China , Hefei 230026 , China
| |
Collapse
|
167
|
Zhang Y, Kuroda M, Arai S, Kato F, Inoue D, Ike M. Biological treatment of selenate-containing saline wastewater by activated sludge under oxygen-limiting conditions. WATER RESEARCH 2019; 154:327-335. [PMID: 30818098 DOI: 10.1016/j.watres.2019.01.059] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
Selenium often coincides with high salinity in certain industrial wastewaters, which can be a limitation in the practical application of biological treatment. However, there are no studies on the biological treatment of selenate-containing saline wastewater. A sequencing batch reactor inoculated with activated sludge was applied to treat selenate in the presence of 3% (w/v) NaCl. Start-up of the sequencing batch reactor with a 7-day cycle duration and excessive acetate as the sole carbon source succeeded in removing above 98% and 72% soluble and solid selenium, respectively, under oxygen-limiting conditions. Further selenium removal experiments with a shorter cycle duration of 3 days and a stepwise decrease of acetate addition achieved soluble and total selenium removal efficiencies in most batches above 96% and 80%, respectively. Mass balance analysis revealed that selenate was converted into elemental selenium, most of which was accumulated in the sludge. Microscopic analyses also found that elemental selenium particles were primarily present as approximately 2 μm large rods, with some extremely large particles above 10 μm. Although the bacterial populations responsible for selenium removal, especially selenate reduction, could not be identified by microbial community analysis, this study reported for the first time that selenate could be biologically treated in the presence of considerable salinity, offering implications for the practical treatment of selenium in certain industrial wastewaters.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masashi Kuroda
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shunsuke Arai
- Nippon Steel & Sumitomo Metal Corporation, 20-1 Shintomi, Futtu, Chiba, 293-8511, Japan
| | - Fumitaka Kato
- Nippon Steel & Sumitomo Metal Corporation, 20-1 Shintomi, Futtu, Chiba, 293-8511, Japan
| | - Daisuke Inoue
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Michihiko Ike
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
168
|
Goff J, Terry L, Mal J, Schilling K, Pallud C, Yee N. Role of extracellular reactive sulfur metabolites on microbial Se(0) dissolution. GEOBIOLOGY 2019; 17:320-329. [PMID: 30592130 DOI: 10.1111/gbi.12328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 06/09/2023]
Abstract
The dissolution of elemental selenium [Se(0)] during chemical weathering is an important step in the global selenium cycle. While microorganisms have been shown to play a key role in selenium dissolution in soils, the mechanisms of microbial selenium solubilization are poorly understood. In this study, we isolated a Bacillus species, designated as strain JG17, that exhibited the ability to dissolve Se(0) under oxic conditions and neutral pH. Growth of JG17 in a defined medium resulted in the production and accumulation of extracellular compounds that mediated Se(0) dissolution. Analysis of the spent medium revealed the presence of extracellular sulfite, sulfide, and thiosulfate. Abiotic Se(0) dissolution experiments with concentrations of sulfite, sulfide, and thiosulfate relevant to our system showed similar extents of selenium solubilization as the spent medium. Together, these results indicate that the solubilization of Se(0) by JG17 occurs via the release of extracellular inorganic sulfur compounds followed by chemical dissolution of Se(0) by the reactive sulfur metabolites. Our findings suggest that the production of reactive sulfur metabolites by soil microorganisms and the formation of soluble selenosulfur complexes can promote selenium mobilization during chemical weathering.
Collapse
Affiliation(s)
- Jennifer Goff
- School of Biological and Environmental Sciences, Rutgers University, New Brunswick, New Jersey
| | - Lee Terry
- Department of Earth and Planetary Sciences, Rutgers University, Piscataway, New Jersey
| | - Joyabrata Mal
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California
| | | | - Céline Pallud
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, California
| | - Nathan Yee
- School of Biological and Environmental Sciences, Rutgers University, New Brunswick, New Jersey
- Department of Earth and Planetary Sciences, Rutgers University, Piscataway, New Jersey
| |
Collapse
|
169
|
Selenium reduction by a defined co-culture of Shigella fergusonii strain TB42616 and Pantoea vagans strain EWB32213-2. Bioprocess Biosyst Eng 2019; 42:1343-1351. [DOI: 10.1007/s00449-019-02134-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/21/2019] [Indexed: 10/26/2022]
|
170
|
Nguyen VK, Nguyen TH, Ha MG, Kang HY. Kinetics of microbial selenite reduction by novel bacteria isolated from activated sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 236:746-754. [PMID: 30772731 DOI: 10.1016/j.jenvman.2019.02.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 01/19/2019] [Accepted: 02/02/2019] [Indexed: 06/09/2023]
Abstract
A total of three bacteria isolated from activated sludge of a wastewater treatment plant were found to reduce selenite to elemental selenium nanoparticles as both amorphous nanospheres and monoclinic nanocrystals. The three isolated strains, which are potential candidates for bioremediation of selenite-contaminated water sources, were designated as Citrobacter sp. NVK-2, Providencia sp. NVK-2A, and Citrobacter sp. NVK-6 based on 16S rRNA sequencing. Despite belonging to the same genus, the kinetics of selenite reduction by strain NVK-2 (Vmax = 58.82 μM h-1, Km = 3737.12 μM) completely differed from that of strain NVK-6 (Vmax = 19.23 μM h-1, Km = 1300.17 μM). The selenite reduction rate by strain NVK-2A (Vmax = 9.26 μM h-1, Km = 3044.73 μM) was the slowest among the investigated microorganisms. The microbial selenite reduction rates according to various organic sources indicated that simple organic sources such as acetate and lactate were better than more complex organic sources such as propionate, butyrate, and glucose for selenite removal. Interestingly, the selenite reduction rate was significantly enhanced when the organic source was strategically divided into small portions and consecutively supplied to the culture.
Collapse
Affiliation(s)
- Van Khanh Nguyen
- Department of Microbiology, Pusan National University, Busan 46241, Republic of Korea.
| | - Trung Hau Nguyen
- Department of Biotechnology, Pukyong National University, Busan 48513, Republic of Korea
| | - Myung-Gyu Ha
- Korea Basic Science Institute, Busan Center, Busan 46742, Republic of Korea
| | - Ho Young Kang
- Department of Microbiology, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
171
|
Lazareva EV, Myagkaya IN, Kirichenko IS, Gustaytis MA, Zhmodik SM. Interaction of natural organic matter with acid mine drainage: In-situ accumulation of elements. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 660:468-483. [PMID: 30640114 DOI: 10.1016/j.scitotenv.2018.12.467] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/30/2018] [Accepted: 12/30/2018] [Indexed: 06/09/2023]
Abstract
Natural organic matter (NOM) within the dispersion train of Novo-Ursk tailings (Salair Ridge, Kemerovo region, Russia) is composed of remnant sedge peat mounds and is located either on the surface or is buried under cyanide wastes. The organic material interacts with AMD and with the wastes, which leaves imprint on its composition. This interaction produces geochemical anomalies (g/t: 1582 Cu, 41,300 Zn, 6060 Se, 11,700 Hg, 114-155 Au, 534 Ag, 416 I). The contents of elements depend on Fe in three groups of NOM samples that contain <10 wt% Fe (group I), 10-22 wt% Fe (group II), and >22 wt% Fe (group III). NOM with higher Fe enrichment contains less Cu, Zn, Se, Hg, Ag and I, as well as Cd, Ba, Sr and Rb, Y, Zr, Nb, Mo, Sn, Sb, and Te but more As. Yet, gold may reach high concentrations in NOM with any Fe contents. Accumulation of elements by NOM during its prolonged interaction with wastes and AMD is maintained by physical, chemical, biochemical, and mineralogical processes. They are, respectively, migration of waters controlled by permeability of material in the dispersion train depending on its grain sizes and by AMD flow direction; oxidative dissolution of sulfides, complexing, and adsorption on organic matter and Fe(III) hydroxides; microbial mediation; and secondary mineralization. The chemistry of waters interacting with NOM at the time of its deposition can be reconstructed with regard to several factors, including microbial mediation. Namely, local geochemical anomalies with ultrahigh element concentrations may arise because microorganisms can immobilize Hg to make it less toxic; sulfate-reducing bacteria can maintain precipitation of Zn, Cu, and Cd sulfides; microbial activity can mediate redistribution of elements between clastic and organic materials, etc. The inferred inheritance of AMD geochemical signatures by NOM has implications for the conditions and mechanisms of element accumulation.
Collapse
Affiliation(s)
- E V Lazareva
- V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, Koptyuga Ave. 3, Novosibirsk 630090, Russia
| | - I N Myagkaya
- V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, Koptyuga Ave. 3, Novosibirsk 630090, Russia.
| | - I S Kirichenko
- V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, Koptyuga Ave. 3, Novosibirsk 630090, Russia
| | - M A Gustaytis
- V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, Koptyuga Ave. 3, Novosibirsk 630090, Russia
| | - S M Zhmodik
- V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, Koptyuga Ave. 3, Novosibirsk 630090, Russia
| |
Collapse
|
172
|
Ullah H, Liu G, Yousaf B, Ali MU, Irshad S, Abbas Q, Ahmad R. A comprehensive review on environmental transformation of selenium: recent advances and research perspectives. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2019; 41:1003-1035. [PMID: 30267320 DOI: 10.1007/s10653-018-0195-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 09/21/2018] [Indexed: 05/09/2023]
Abstract
Selenium (Se) is an important micronutrient and essential trace element for both humans and animals, which exist in the environment ubiquitously. Selenium deficiency is an important issue worldwide, with various reported cases of its deficiency. Low selenium contents in some specific terrestrial environments have resulted in its deficiency in humans. However, high levels of selenium in the geochemical environment may have harmful influences and can cause a severe toxicity to living things. Due to its extremely narrow deficiency and toxicity limits, selenium is becoming a serious matter of discussion for the scientists who deals with selenium-related environmental and health issues. Based on available relevant literature, this review provides a comprehensive data about Se sources, levels, production and factors affecting selenium bioavailability/speciation in soil, characteristics of Se, biogeochemical cycling, deficiency and toxicity, and its environmental transformation to know the Se distribution in the environment. Further research should focus on thoroughly understanding the concentration, speciation, Se cycling in the environment and food chain to effectively utilize Se resources, remediate Se deficiency/toxicity, and evaluate the Se states and eco-effects on human health.
Collapse
Affiliation(s)
- Habib Ullah
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Guijian Liu
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, People's Republic of China.
| | - Balal Yousaf
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Muhammad Ubaid Ali
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Samina Irshad
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Qumber Abbas
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Rafay Ahmad
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| |
Collapse
|
173
|
Wadgaonkar SL, Nancharaiah YV, Jacob C, Esposito G, Lens PNL. Microbial transformation of Se oxyanions in cultures of Delftia lacustris grown under aerobic conditions. J Microbiol 2019; 57:362-371. [PMID: 30900147 DOI: 10.1007/s12275-019-8427-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/20/2018] [Accepted: 11/26/2018] [Indexed: 12/29/2022]
Abstract
Delftia lacustris is reported for the first time as a selenate and selenite reducing bacterium, capable of tolerating and growing in the presence of ≥ 100 mM selenate and 25 mM selenite. The selenate reduction profiles of D. lacustris were investigated by varying selenate concentration, inoculum size, concentration and source of organic electron donor in minimal salt medium. Interestingly, the bacterium was able to reduce both selenate and selenite under aerobic conditions. Although considerable removal of selenate was observed at all concentrations investigated, D. lacustris was able to completely reduce 0.1 mM selenate within 96 h using lactate as the carbon source. Around 62.2% unaccounted selenium (unidentified organo-selenium compounds), 10.9% elemental selenium and 26.9% selenite were determined in the medium after complete reduction of selenate. Studies of the enzymatic activity of the cell fractions show that the selenite/selenate reducing enzymes were intracellular and independent of NADPH availability. D. lacustris shows an unique metabolism of selenium oxyanions to form elemental selenium and possibly also selenium ester compounds, thus a potential candidate for the remediation of selenium-contaminated wastewaters in aerobic environments. This novel finding will advance the field of bioremediation of selenium-contaminated sites and selenium bio-recovery and the production of potentially beneficial organic and inorganic reactive selenium species.
Collapse
Affiliation(s)
| | - Yarlagadda V Nancharaiah
- Biofouling and Biofilm Processes Section of Water and Steam Chemistry Division, Bhabha Atomic Research Centre, 603 102, Kalpakkam, Tamil Nadu, India
- Homi Bhabha National Institute, Anushakti Nagar Complex, Mumbai, 400 094, India
| | - Claus Jacob
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, Campus B2, Saarland, Germany
| | - Giovanni Esposito
- Department of Civil, Architectural and Environmental Engineering, University of Napoli "Federico II", 80125, Napoli, Italy
| | - Piet N L Lens
- UNESCO IHE Institute for water Education, Delft, DA 2601, The Netherlands
- National University of Ireland Galway, Galway, H91 TK33, Ireland
| |
Collapse
|
174
|
Wang D, Xia X, Wu S, Zheng S, Wang G. The essentialness of glutathione reductase GorA for biosynthesis of Se(0)-nanoparticles and GSH for CdSe quantum dot formation in Pseudomonas stutzeri TS44. JOURNAL OF HAZARDOUS MATERIALS 2019; 366:301-310. [PMID: 30530022 DOI: 10.1016/j.jhazmat.2018.11.092] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 10/21/2018] [Accepted: 11/22/2018] [Indexed: 05/22/2023]
Abstract
Pseudomonas stutzeri TS44 was able to aerobically reduce Se(IV) into SeNPs and transform Se(IV)/Cd(II) mixture into CdSe-QDs. The SeNPs and CdSe-QDs were systematically characterized by surface feature analyses, and the molecular mechanisms of SeNPs and CdSe-QD formation in P. stutzeri TS44 were characterized in detail. In vivo, under 2.5 mmol/L Se(IV) exposure, GorA was essential for catalyzing of Se(IV) reduction rate decreased by 67% when the glutathione reductase gene gorA was disrupted, but it was not decreased in the glutathione synthesis rate-limiting gene gshA mutated strain compared to the wild type. The complemented strains restored the phenotypes. While under low amount of Se(IV) (0.5 mmol/L), GSH played an important role for Se(IV) reduction. In vitro, GorA catalyzed Se(IV) reduction with NADPH as the electron donor (Vmax of 3.947 ± 0.1061 μmol/min/mg protein under pH 7.0 and 28℃). In addition, CdSe-QDs were successfully synthesized by a one-step method in which Se(IV) and Cd(II) were added to bacterial culture simultaneously. GSH rather than GorA is necessary for CdSe-QD formation in vivo and in vitro. In conclusion, the results provide new findings showing that GorA functions as a selenite reductase under high amount Se(IV) and GSH is essential for bacterial CdSe-QD synthesis.
Collapse
Affiliation(s)
- Dan Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xian Xia
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Shijuan Wu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Shixue Zheng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Gejiao Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
175
|
Respiratory Selenite Reductase from Bacillus selenitireducens Strain MLS10. J Bacteriol 2019; 201:JB.00614-18. [PMID: 30642986 DOI: 10.1128/jb.00614-18] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/03/2019] [Indexed: 11/20/2022] Open
Abstract
The putative respiratory selenite [Se(IV)] reductase (Srr) from Bacillus selenitireducens MLS10 has been identified through a polyphasic approach involving genomics, proteomics, and enzymology. Nondenaturing gel assays were used to identify Srr in cell fractions, and the active band was shown to contain a single protein of 80 kDa. The protein was identified through liquid chromatography-tandem mass spectrometry (LC-MS/MS) as a homolog of the catalytic subunit of polysulfide reductase (PsrA). It was found to be encoded as part of an operon that contains six genes that we designated srrE, srrA, srrB, srrC, srrD, and srrF SrrA is the catalytic subunit (80 kDa), with a twin-arginine translocation (TAT) leader sequence indicative of a periplasmic protein and one putative 4Fe-4S binding site. SrrB is a small subunit (17 kDa) with four putative 4Fe-4S binding sites, SrrC (43 kDa) is an anchoring subunit, and SrrD (24 kDa) is a chaperon protein. Both SrrE (38 kDa) and SrrF (45 kDa) were annotated as rhodanese domain-containing proteins. Phylogenetic analysis revealed that SrrA belonged to the PsrA/PhsA clade but that it did not define a distinct subgroup, based on the putative homologs that were subsequently identified from other known selenite-respiring bacteria (e.g., Desulfurispirillum indicum and Pyrobaculum aerophilum). The enzyme appeared to be specific for Se(IV), showing no activity with selenate, arsenate, or thiosulfate, with a Km of 145 ± 53 μM, a V max of 23 ± 2.5 μM min-1, and a k cat of 23 ± 2.68 s-1 These results further our understanding of the mechanisms of selenium biotransformation and its biogeochemical cycle.IMPORTANCE Selenium is an essential element for life, with Se(IV) reduction a key step in its biogeochemical cycle. This report identifies for the first time a dissimilatory Se(IV) reductase, Srr, from a known selenite-respiring bacterium, the haloalkalophilic Bacillus selenitireducens strain MLS10. The work extends the versatility of the complex iron-sulfur molybdoenzyme (CISM) superfamily in electron transfer involving chalcogen substrates with different redox potentials. Further, it underscores the importance of biochemical and enzymological approaches in establishing the functionality of these enzymes.
Collapse
|
176
|
Zhang J, Wang Y, Shao Z, Li J, Zan S, Zhou S, Yang R. Two selenium tolerant Lysinibacillus sp. strains are capable of reducing selenite to elemental Se efficiently under aerobic conditions. J Environ Sci (China) 2019; 77:238-249. [PMID: 30573088 DOI: 10.1016/j.jes.2018.08.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 07/31/2018] [Accepted: 08/03/2018] [Indexed: 06/09/2023]
Abstract
Microbes play important roles in the transport and transformation of selenium (Se) in the environment, thereby influencing plant resistance to Se and Se accumulation in plant. The objectives are to characterize the bacteria with high Se tolerance and reduction capacity and explore the significance of microbial origins on their Se tolerance, reduction rate and efficiency. Two bacterial strains were isolated from a naturally occurred Se-rich soil at tea orchard in southern Anhui Province, China. The reduction kinetics of selenite was investigated and the reducing product was characterized using scanning electron microscopy and transmission electron microscopy-energy dispersive spectroscopy. The bacteria were identified as Lysinibacillus xylanilyticus and Lysinibacillus macrolides, respectively, using morphological, physiological and molecular methods. The results showed that the minimal inhibitory concentrations (MICs) of selenite for L. xylanilyticus and L. macrolides were 120 and 220 mmol/L, respectively, while MICs of selenate for L. xylanilyticus and L. macrolides were 800 and 700 mmol/L, respectively. Both strains aerobically reduced selenite with an initial concentration of 1.0 mmol/L to elemental Se nanoparticles (SeNPs) completely within 36 hr. Biogenic SeNPs were observed both inside and outside the cells suggesting either an intra- or extracellular reduction process. Our study implied that the microbes from Se-rich environments were more tolerant to Se and generally quicker and more efficient than those from Se-free habitats in the reduction of Se oxyanions. The bacterial strains with high Se reduction capacity and the biological synthesized SeNPs would have potential applications in agriculture, food, environment and medicine.
Collapse
Affiliation(s)
- Ju Zhang
- College of Environmental Science and Engineering, Anhui Normal University, Wuhu 241002, China
| | - Yue Wang
- College of Environmental Science and Engineering, Anhui Normal University, Wuhu 241002, China
| | - Zongyuan Shao
- College of Environmental Science and Engineering, Anhui Normal University, Wuhu 241002, China
| | - Jing Li
- College of Environmental Science and Engineering, Anhui Normal University, Wuhu 241002, China
| | - Shuting Zan
- College of Environmental Science and Engineering, Anhui Normal University, Wuhu 241002, China; Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, Anhui Normal University, Wuhu 241002, China
| | - Shoubiao Zhou
- College of Environmental Science and Engineering, Anhui Normal University, Wuhu 241002, China; Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, Anhui Normal University, Wuhu 241002, China; Institute of Functional Food, Anhui Normal University, Wuhu 241002, China
| | - Ruyi Yang
- College of Environmental Science and Engineering, Anhui Normal University, Wuhu 241002, China; Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, Anhui Normal University, Wuhu 241002, China; Institute of Functional Food, Anhui Normal University, Wuhu 241002, China.
| |
Collapse
|
177
|
Zhou C, Huang JC, Liu F, He S, Zhou W. Selenium removal and biotransformation in a floating-leaved macrophyte system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 245:941-949. [PMID: 30682750 DOI: 10.1016/j.envpol.2018.11.096] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/26/2018] [Accepted: 11/28/2018] [Indexed: 06/09/2023]
Abstract
Selenium (Se) is an essential micronutrient for animals with a relatively narrow margin between essentiality and toxicity. To evaluate Se removal efficiency by a constructed wetland treatment system and its potential eco-risk, a floating-leaved macrophyte system was constructed, consisting of three main trophic levels. Over 21-d treatment, water Se concentration was gradually reduced by 40.40%, while 24.03% and 74.41% of the removed Se were found in the plant Nymphoides sp. and sediment, respectively. Among plant tissues, roots accumulated the highest Se level, although the greatest total Se was found in stems, followed by leaves, roots and rhizomes. X-ray absorption spectroscopy revealed that 82.65% of the absorbed selenite by the plants was biotransformed to other forms, as organo-Se species accounted for 45.38% of the Se retained in the sediment, which was primarily responsible for the entry of Se into the detritus food chain. The proportion of organo-Se compounds increased with trophic levels from sediments to fish, indicating, instead of direct uptake of selenite, the food chain transfer and biotransformation of Se may serve as a key exposure route for Se in aquatic organisms. When exposed to organo-Se compounds, i.e., SeCys and SeMet, the plants, shrimp and fish tended to accumulate more Se. However, the greater trophic transfer factor was obtained for selenate, leading to higher Se levels accumulated in fish. Overall, in addition to key mechanisms involved in Se removal, our research also provides a much better understanding of the potential eco-risk that may be posed by the floating-leaved plant system for bioremediation of Se via food chain transfer and biotransformation, paving the way for a low eco-toxic treatment system for Se remediation.
Collapse
Affiliation(s)
- Chuanqi Zhou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Jung-Chen Huang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| | - Fang Liu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Weili Zhou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| |
Collapse
|
178
|
Molaey R, Bayrakdar A, Sürmeli RÖ, Çalli B. Anaerobic digestion of chicken manure: Influence of trace element supplementation. Eng Life Sci 2018; 19:143-150. [PMID: 32624996 DOI: 10.1002/elsc.201700201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 09/27/2018] [Accepted: 12/05/2018] [Indexed: 11/07/2022] Open
Abstract
In this study, anaerobic digestion of nitrogen-rich chicken (egg-laying hen) manure at different trace element (TE) mix doses and different total ammonia nitrogen (TAN) concentrations was investigated in batch digestion experiments. With respect to nonsupplemented TE sets, addition of TE mixture containing 1 mg/L Ni, 1 mg/L Co, 0.2 mg/L Mo, 0.2 mg/L Se, 0.2 mg/L W, and 5 mg/L Fe at TAN concentrations of 3000 mg/L and 4000 mg/L, cumulative CH4 production and CH4 production rate improved by 7-8% and 5-6%, respectively. The results revealed that at a very high TAN concentration of 6000 mg/L, the effect of TE addition was significantly high and the cumulative CH4 production and production rate were increased by 20 and 39.5%, respectively. Therefore, it is concluded that at elevated TAN concentrations the CH4 production that was stimulated by TE supplementation was presumably occurred through syntrophic acetate oxidation.
Collapse
Affiliation(s)
- Rahim Molaey
- Environmental Engineering Department Marmara University Istanbul Turkey.,Technology of Organic Substances Department Kabul Polytechnic University Kabul Afghanistan
| | - Alper Bayrakdar
- Environmental Engineering Department Marmara University Istanbul Turkey.,Environmental Engineering Department Necmettin Erbakan University Konya Turkey
| | - Recep Önder Sürmeli
- Environmental Engineering Department Marmara University Istanbul Turkey.,Environmental Engineering Department Bartın University Bartın Turkey
| | - Bariş Çalli
- Environmental Engineering Department Marmara University Istanbul Turkey
| |
Collapse
|
179
|
|
180
|
Zhang Z, Adedeji I, Chen G, Tang Y. Chemical-Free Recovery of Elemental Selenium from Selenate-Contaminated Water by a System Combining a Biological Reactor, a Bacterium-Nanoparticle Separator, and a Tangential Flow Filter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:13231-13238. [PMID: 30335990 DOI: 10.1021/acs.est.8b04544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Biological selenate (SeO42-) reduction to elemental selenium nanoparticles (SeNPs) has been intensively studied but little practiced because of the additional cost associated with separation of SeNPs from water. Recovery of the SeNPs as a valuable resource has been researched to make the approach more competitive. Separation of the intracellular SeNPs from the biomass usually requires the addition of chemicals. In this research, a novel approach that combined a biological reactor, a bacterium-SeNP separator, and a tangential flow ultrafiltration module (TFU) was investigated to biologically reduce selenate and separate the SeNPs, biomass, and water from each other. This approach efficiently removed and recovered selenium while eliminating the use of chemicals for separation. The three units in the approach worked in synergism to achieve the separation and recovery. The TFU module retained the biomass in the system, which increased the biomass retention time and allowed for more biomass decay through which intracellular SeNPs could be released and recovered. SeNP aggregates were separated from bacterial aggregates due to their different interactions with a tilted polyethylene sheet in the bacterium-SeNP separator. SeNP aggregates stayed on the polyethylene sheet while bacterial aggregates settled down to the bottom of the separator.
Collapse
Affiliation(s)
- Zhiming Zhang
- Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering , Florida State University , 2525 Pottsdamer Street , Tallahassee , Florida 32310 , United States
| | - Itunu Adedeji
- Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering , Florida State University , 2525 Pottsdamer Street , Tallahassee , Florida 32310 , United States
| | - Gang Chen
- Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering , Florida State University , 2525 Pottsdamer Street , Tallahassee , Florida 32310 , United States
| | - Youneng Tang
- Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering , Florida State University , 2525 Pottsdamer Street , Tallahassee , Florida 32310 , United States
| |
Collapse
|
181
|
Tan LC, Nancharaiah YV, Lu S, van Hullebusch ED, Gerlach R, Lens PNL. Biological treatment of selenium-laden wastewater containing nitrate and sulfate in an upflow anaerobic sludge bed reactor at pH 5.0. CHEMOSPHERE 2018; 211:684-693. [PMID: 30098564 DOI: 10.1016/j.chemosphere.2018.07.079] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 05/03/2018] [Accepted: 07/15/2018] [Indexed: 06/08/2023]
Abstract
This study investigated the removal of selenate (SeO42-), sulfate (SO42-) and nitrate (NO3-) at different influent pH values ranging from 7.0 to 5.0 and 20 °C in an upflow anaerobic sludge blanket (UASB) reactor using lactate as an electron donor. At pH 5.0, the UASB reactor showed a 20-30% decrease in reactor performance compared to operation at pH 5.5 to 7.0, reaching removal efficiencies of 79%, 15%, 43% and 61% for NO3-, SO42-, Setotal and Sediss, respectively. However, the reactor stability was an issue upon lowering the pH to 5.0 and further experiments are recommended. The sludge formed during low pH operation had a fluffy, floc-like appearance with filamentous structure, possibly due to the low polysaccharide (PS) to protein (PN) ratio (0.01 PS/PN) in the soluble extracellular polymeric substances (EPS) matrix of the biomass. Scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX) analysis of the sludge confirmed Se oxyanion reduction and deposition of Se0 particles inside the biomass. Microbial community analysis using Illumina MiSeq sequencing revealed that the families of Campylobacteraceae and Desulfomicrobiaceae were the dominant phylotypes throughout the reactor operation at approximately 23% and 10% relative abundance, respectively. Furthermore, approximately 10% relative abundance of both Geobacteraceae and Spirochaetaceae was observed in the granular sludge during the pH 5.0 operation. Overall, this study demonstrated the feasibility of UASB operation at pH values ranging from 7.0 to 5.0 for removing Se and other oxyanions from wastewaters.
Collapse
Affiliation(s)
- Lea Chua Tan
- UNESCO-IHE Institute for Water Education, Westvest 7, 2611 AX Delft, The Netherlands.
| | - Yarlagadda V Nancharaiah
- Biofouling and Biofilm Process Section, Water and Steam Chemistry Division, Bhabha Atomic Research Centre, Kalpakkam 603102, Tamil Nadu, India
| | - Shipeng Lu
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, USA
| | - Eric D van Hullebusch
- UNESCO-IHE Institute for Water Education, Westvest 7, 2611 AX Delft, The Netherlands; Université Paris-Est, Laboratoire Géomatériaux et Environnement (EA 4508), UPEM, 77454 Marne-la-Vallée, France
| | - Robin Gerlach
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717, USA
| | - Piet N L Lens
- UNESCO-IHE Institute for Water Education, Westvest 7, 2611 AX Delft, The Netherlands; Department of Chemistry and Bioengineering, Tampere University of Technology, P.O. Box 541, Tampere, Finland
| |
Collapse
|
182
|
Complete Genome Sequence of Bacillus cereus CC-1, A Novel Marine Selenate/Selenite Reducing Bacterium Producing Metallic Selenides Nanomaterials. Curr Microbiol 2018; 76:78-85. [PMID: 30343326 DOI: 10.1007/s00284-018-1587-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 10/15/2018] [Indexed: 10/28/2022]
Abstract
Metallic selenides nanomaterials are widely used in many fields, especially for photothermal therapy and thermoelectric devices. However, the traditional chemogenic methods are energy-intensive and environmentally unfriendly. In this study, the first complete genome data of a metallic selenides producing bacterium Bacillus cereus CC-1 was reported. This strain can not only reduce selenite and selenate into elemental selenium nanoparticles (SeNPs), but also synthesize several metallic selenides nanoparticles when adding metal ions (Pb2+, Ag+ and Bi3+) and selenite simultaneously. The size of the genome is 5,308,319 bp with 36.07% G+C content. Several putative genes responsible for heavy metal resistance, salt resistance, and selenate reduction were found. This genome data provide fundamental information, which support the use of this strain for the production of biocompatible photothermal and thermoelectric nanomaterials under mild conditions.
Collapse
|
183
|
Tan Y, Wang Y, Wang Y, Xu D, Huang Y, Wang D, Wang G, Rensing C, Zheng S. Novel mechanisms of selenate and selenite reduction in the obligate aerobic bacterium Comamonas testosteroni S44. JOURNAL OF HAZARDOUS MATERIALS 2018; 359:129-138. [PMID: 30014908 DOI: 10.1016/j.jhazmat.2018.07.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 07/02/2018] [Accepted: 07/03/2018] [Indexed: 06/08/2023]
Abstract
Selenium oxyanion reduction is an effective detoxification or/and assimilation processes in organisms, but little is known the mechanisms in aerobic bacteria. Aerobic Comamonas testosteroni S44 reduces Se(VI)/Se(IV) to less-toxic elemental selenium nanoparticles (SeNPs). For Se(VI) reduction, sulfate and Se(VI) reduction displayed a competitive relationship. When essential sulfate reducing genes were respectively disrupted, Se(VI) was not reduced to red-colored SeNPs. Consequently, Se(VI) reduction was catalyzed by enzymes of the sulfate reducing pathway. For Se(IV) reduction, one of the potential periplasm molybdenum oxidoreductase named SerT was screened and further used to analyze Se(IV) reduction. Compared to the wild type and the complemented mutant strain, the ability of Se(IV) reduction was reduced 75% in the deletion mutant ΔserT. Moreover, the Se(IV) reduction rate was significantly enhanced when the gene serT was overexpressed in Escherichia coli W3110. In addition, Se(IV) was reduced to SeNPs by the purified SerT with the presence of NADPH as the electron donor in vitro, showing a Vmax of 61 nmol/min·mg and a Km of 180 μmol/L. A model of Se(VI)/Se(IV) reduction was generated in aerobic C. testosteroni S44. This work provides new insights into the molecular mechanisms of Se(VI)/Se(IV) reduction activities in aerobic bacteria.
Collapse
Affiliation(s)
- Yuanqing Tan
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Yuantao Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Yu Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Ding Xu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Yeting Huang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Dan Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Gejiao Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Christopher Rensing
- Institute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture & Forestry University, Fuzhou, Fujian 350002, PR China
| | - Shixue Zheng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, PR China.
| |
Collapse
|
184
|
Wang Y, Shu X, Zhou Q, Fan T, Wang T, Chen X, Li M, Ma Y, Ni J, Hou J, Zhao W, Li R, Huang S, Wu L. Selenite Reduction and the Biogenesis of Selenium Nanoparticles by Alcaligenesfaecalis Se03 Isolated from the Gut of Monochamus alternatus (Coleoptera: Cerambycidae). Int J Mol Sci 2018; 19:ijms19092799. [PMID: 30227664 PMCID: PMC6164237 DOI: 10.3390/ijms19092799] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 09/14/2018] [Accepted: 09/14/2018] [Indexed: 02/05/2023] Open
Abstract
In this study, a bacterial strain exhibiting high selenite (Na2SeO3) tolerance and reduction capacity was isolated from the gut of Monochamus alternatus larvae and identified as Alcaligenes faecalis Se03. The isolate exhibited extreme tolerance to selenite (up to 120 mM) when grown aerobically. In the liquid culture medium, it was capable of reducing nearly 100% of 1.0 and 5.0 mM Na2SeO3 within 24 and 42 h, respectively, leading to the formation of selenium nanoparticles (SeNPs). Electron microscopy and energy dispersive X-ray analysis demonstrated that A. faecalis Se03 produced spherical electron-dense SeNPs with an average hydrodynamic diameter of 273.8 ± 16.9 nm, localized mainly in the extracellular space. In vitro selenite reduction activity and real-time PCR indicated that proteins such as sulfite reductase and thioredoxin reductase present in the cytoplasm were likely to be involved in selenite reduction and the SeNPs synthesis process in the presence of NADPH or NADH as electron donors. Finally, using Fourier-transform infrared spectrometry, protein and lipid residues were detected on the surface of the biogenic SeNPs. Based on these observations, A. faecalis Se03 has the potential to be an eco-friendly candidate for the bioremediation of selenium-contaminated soil/water and a bacterial catalyst for the biogenesis of SeNPs.
Collapse
Affiliation(s)
- Yuting Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China.
- The Sericultural Research Institute, Anhui Academy of Agricultural Science, Hefei 230061, China.
| | - Xian Shu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China.
| | - Qing Zhou
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China.
| | - Tao Fan
- The Sericultural Research Institute, Anhui Academy of Agricultural Science, Hefei 230061, China.
| | - Taichu Wang
- The Sericultural Research Institute, Anhui Academy of Agricultural Science, Hefei 230061, China.
| | - Xue Chen
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China.
| | - Minghao Li
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China.
- Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
| | - Yuhan Ma
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
- Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
| | - Jun Ni
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
- Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
| | - Jinyan Hou
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
- Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
| | - Weiwei Zhao
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
| | - Ruixue Li
- The Sericultural Research Institute, Anhui Academy of Agricultural Science, Hefei 230061, China.
| | - Shengwei Huang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
- Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
| | - Lifang Wu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
- The Sericultural Research Institute, Anhui Academy of Agricultural Science, Hefei 230061, China.
- Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
| |
Collapse
|
185
|
Persistent Bacterial and Fungal Community Shifts Exhibited in Selenium-Contaminated Reclaimed Mine Soils. Appl Environ Microbiol 2018; 84:AEM.01394-18. [PMID: 29915105 PMCID: PMC6070768 DOI: 10.1128/aem.01394-18] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 11/20/2022] Open
Abstract
Mining and other industrial activities worldwide have resulted in Se-enriched surface soils, which pose risks to human and environmental health. Although not well studied, microbial activity can alter Se bioavailability and distribution, even in oxic environments. We used high-throughput sequencing to profile bacterial and fungal communities inhabiting mine soils in southeastern Idaho, comparing mined and unmined locations within two reclaimed phosphate mine areas containing various Se concentrations. The goal was to determine whether microbial communities differed in (i) different mines, (ii) mined areas compared to unmined areas, and (iii) various soil Se concentrations. Though reclamation occurred 20 to 30 years ago, microbial community structures in mined soils were significantly altered compared to unmined soils, suggesting persistent mining-related impacts on soil processes. Additionally, operational taxonomic unit with a 97% sequence similarity cutoff (OTU0.03) richness and diversity were significantly diminished with increasing Se, though not with other geochemical parameters, suggesting that Se contamination shapes communities in favor of Se-tolerant microorganisms. Two bacterial phyla, Actinobacteria and Gemmatimonadetes, were enriched in high-Se soils, while for fungi, Ascomycota dominated all soils regardless of Se concentration. Combining diversity analyses and taxonomic patterns enables us to move toward connecting physiological function of microbial groups to Se biogeochemical cycling in oxic soil environments.IMPORTANCE Selenium contamination in natural environments is of great concern globally, and microbial processes are known to mediate Se transformations. Such transformations alter Se mobility, bioavailability, and toxicity, which can amplify or mitigate Se pollution. To date, nearly all studies investigating Se-microbe interactions have used culture-based approaches with anaerobic bacteria despite growing knowledge that (i) aerobic Se transformations can occur, (ii) such transformations can be mediated by microorganisms other than bacteria, and (iii) microbial community dynamics, rather than individual organismal activities, are important for metal(loid) cycling in natural environments. We examined bacterial and fungal communities in Se-contaminated reclaimed mine soils and found significant declines in diversity at high Se concentrations. Additionally, we identified specific taxonomic groups that tolerate excess Se and may be useful for bioremediation purposes. These patterns were similar across mines of different ages, suggesting that microbial community impacts may persist long after physicochemical parameters indicate complete site recovery.
Collapse
|
186
|
He Y, Xiang Y, Zhou Y, Yang Y, Zhang J, Huang H, Shang C, Luo L, Gao J, Tang L. Selenium contamination, consequences and remediation techniques in water and soils: A review. ENVIRONMENTAL RESEARCH 2018; 164:288-301. [PMID: 29554620 DOI: 10.1016/j.envres.2018.02.037] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/04/2018] [Accepted: 02/26/2018] [Indexed: 05/21/2023]
Abstract
Selenium (Se) contamination in surface and ground water in numerous river basins has become a critical problem worldwide in recent years. The exposure to Se, either direct consumption of Se or indirectly may be fatal to the human health because of its toxicity. The review begins with an introduction of Se chemistry, distribution and health threats, which are essential to the remediation techniques. Then, the review provides the recent and common removal techniques for Se, including reduction techniques, phytoremediation, bioremediation, coagulation-flocculation, electrocoagulation (EC), electrochemical methods, adsorption, coprecipitation, electrokinetics, membrance technology, and chemical precipitation. Removal techniques concentrate on the advantages, drawbacks and the recent achievements of each technique. The review also takes an overall consideration of experimental conditions, comparison criteria and economic aspects.
Collapse
Affiliation(s)
- Yangzhuo He
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| | - Yujia Xiang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China.
| | - Yuan Yang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| | - Jiachao Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China.
| | - Hongli Huang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| | - Cui Shang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| | - Lin Luo
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| | - Jun Gao
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China
| |
Collapse
|
187
|
Kora AJ. Bacillus cereus, selenite-reducing bacterium from contaminated lake of an industrial area: a renewable nanofactory for the synthesis of selenium nanoparticles. BIORESOUR BIOPROCESS 2018. [DOI: 10.1186/s40643-018-0217-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
188
|
Tobe R, Mihara H. Delivery of selenium to selenophosphate synthetase for selenoprotein biosynthesis. Biochim Biophys Acta Gen Subj 2018; 1862:2433-2440. [PMID: 29859962 DOI: 10.1016/j.bbagen.2018.05.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 11/16/2022]
Abstract
BACKGROUND Selenophosphate, the key selenium donor for the synthesis of selenoprotein and selenium-modified tRNA, is produced by selenophosphate synthetase (SPS) from ATP, selenide, and H2O. Although free selenide can be used as the in vitro selenium substrate for selenophosphate synthesis, the precise physiological system that donates in vivo selenium substrate to SPS has not yet been characterized completely. SCOPE OF REVIEW In this review, we discuss selenium metabolism with respect to the delivery of selenium to SPS in selenoprotein biosynthesis. MAJOR CONCLUSIONS Glutathione, selenocysteine lyase, cysteine desulfurase, and selenium-binding proteins are the candidates of selenium delivery system to SPS. The thioredoxin system is also implicated in the selenium delivery to SPS in Escherichia coli. GENERAL SIGNIFICANCE Selenium delivered via a protein-bound selenopersulfide intermediate emerges as a central element not only in achieving specific selenoprotein biosynthesis but also in preventing the occurrence of toxic free selenide in the cell. This article is part of a Special Issue entitled "Selenium research in biochemistry and biophysics - 200 year anniversary".
Collapse
Affiliation(s)
- Ryuta Tobe
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Hisaaki Mihara
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan.
| |
Collapse
|
189
|
Pereira AG, Gerolis LGL, Gonçalves LS, Pedrosa TA, Neves MJ. Selenized
Saccharomyces cerevisiae
cells are a green dispenser of nanoparticles. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aab524] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
190
|
Nancharaiah YV, Sarvajith M, Lens PNL. Selenite reduction and ammoniacal nitrogen removal in an aerobic granular sludge sequencing batch reactor. WATER RESEARCH 2018; 131:131-141. [PMID: 29278787 DOI: 10.1016/j.watres.2017.12.028] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 12/12/2017] [Accepted: 12/13/2017] [Indexed: 06/07/2023]
Abstract
Simultaneous removal of selenite and ammonium by aerobic granular sludge was investigated to develop an improved biological treatment process for selenium rich wastewaters. Aerobic granules not previously exposed to selenite were able to remove selenite by converting it to elemental selenium (Se(0)) and simultaneously remove ammonium under different conditions in batch experiments. To achieve sustainable selenite and ammonium removal, an aerobic granular sludge reactor was operated in fill-and-draw mode with a cycle of anaerobic (8 h) and aeration (15 h) phases. Almost complete removal of different initial concentrations of selenite up to 100 μM was achieved in the anaerobic phase. Ammonium removal was severely inhibited when the granules were initially exposed to 1.27 mg L-1 selenite, but ammonium and total nitrogen removal efficiencies gradually improved to 100 and 98%, respectively, under selenite-reducing conditions. Selenite loading shifted ammonium removal occurring mainly during the anaerobic phase to both the anaerobic and aeration phases. Selenite was removed from the aqueous phase by converting it to nanoparticulate Se(0), which was entrapped in the granular sludge. Scanning electron microscop-energy dispersive X-ray spectroscopy and X-ray diffraction analysis confirmed the formation of Se(0) nanospheres and their retention in the granular sludge. The effluent Se ranged from 0.02 to 0.25 mg Se L-1, while treating up to 12.7 mg L-1 selenite, which is lower as compared to previous studies on selenite removal using activated sludge or anaerobic granular sludge. This study shows that aerobic granular sludge reactors are not only capable of removing toxic selenite, but offer improved treatment of Se-rich wastewaters.
Collapse
Affiliation(s)
- Y V Nancharaiah
- Biofouling and Biofilm Processes, Water and Steam Chemistry Division, Bhabha Atomic Research Centre, Kalpakkam, 603102, Tamil Nadu, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400 094, India.
| | - M Sarvajith
- Biofouling and Biofilm Processes, Water and Steam Chemistry Division, Bhabha Atomic Research Centre, Kalpakkam, 603102, Tamil Nadu, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400 094, India
| | - P N L Lens
- UNESCO-IHE Institute for Water Education, Westvest 7, 2611 AX, Delft, The Netherlands; Department of Microbiology, National University of Ireland, University Road, Galway, H91 TK33, Ireland
| |
Collapse
|
191
|
Jahan MI, Tobe R, Mihara H. Characterization of a Novel Porin-Like Protein, ExtI, from Geobacter sulfurreducens and Its Implication in the Reduction of Selenite and Tellurite. Int J Mol Sci 2018. [PMID: 29534491 PMCID: PMC5877670 DOI: 10.3390/ijms19030809] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The extI gene in Geobacter sulfurreducens encodes a putative outer membrane channel porin, which resides within a cluster of extHIJKLMNOPQS genes. This cluster is highly conserved across the Geobacteraceae and includes multiple putative c-type cytochromes. In silico analyses of the ExtI sequence, together with Western blot analysis and proteinase protection assays, showed that it is an outer membrane protein. The expression level of ExtI did not respond to changes in osmolality and phosphate starvation. An extI-deficient mutant did not show any significant impact on fumarate or Fe(III) citrate reduction or sensitivity to β-lactam antibiotics, as compared with those of the wild-type strain. However, extI deficiency resulted in a decreased ability to reduce selenite and tellurite. Heme staining analysis revealed that extI deficiency affects certain heme-containing proteins in the outer and inner membranes, which may cause a decrease in the ability to reduce selenite and tellurite. Based on these observations, we discuss possible roles for ExtI in selenite and tellurite reduction in G. sulfurreducens.
Collapse
Affiliation(s)
- Mst Ishrat Jahan
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan.
| | - Ryuta Tobe
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan.
| | - Hisaaki Mihara
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan.
| |
Collapse
|
192
|
Wilkin RT, Lee TR, Beak DG, Anderson R, Burns B. Groundwater co-contaminant behavior of arsenic and selenium at a lead and zinc smelting facility. APPLIED GEOCHEMISTRY : JOURNAL OF THE INTERNATIONAL ASSOCIATION OF GEOCHEMISTRY AND COSMOCHEMISTRY 2018; 89:255-264. [PMID: 32489230 PMCID: PMC7265695 DOI: 10.1016/j.apgeochem.2017.12.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Co-contaminant behavior of arsenic (As) and selenium (Se) in groundwater is examined in this study at a former lead and zinc smelting facility. We collected water quality data, including concentrations of trace metals, major ions, and metalloid speciation, over a 15-year period to document long-term trends and relationships between As, Se, geochemical parameters, and other redox-sensitive trace metals. Concentrations of dissolved As and Se were negatively correlated (Kendall's Tau B correlation coefficient, r = -0.72) and showed a distinctive L-shaped relationship. High-concentration arsenic wells (>5 mg L-1) were characterized by intermediate oxidation-reduction conditions (75 < Eh < 275 mV), near-neutral pH (6.1-7.9), low Ca/Na ratios, elevated Fe and Mn concentrations, and high proportions of As(III) relative to total dissolved As. High-concentration Se wells (>500 μg L-1) were characterized by more positive Eh (305-500 mV), low Fe concentrations, and high proportions of As(V). Batch micocosm experiments showed that aquifer solids contain mineral surfaces and/or microbial communities capable of removing selenate from groundwater. Electron microprobe and Se K-edge X-ray absorption near-edge spectroscopic analyses demonstrated that Se was predominantly associated with elemental Se in the reduced aquifer solids. Factor analysis revealed three discernible groupings of trace metals. Group I includes U, Se, and nitrate-N, all of which are mobile under oxygenated to moderately oxygenated conditions. Group II includes elements that are mobile under Fe(III)-reducing conditions: Fe, total dissolved As, As(III), and ammonium-N. Group III elements (Mo, Sb, and V) showed mobility across the entire range of redox conditions encountered in site groundwater; As(V) clustered with this group of elements. Geochemical modeling suggests that As and Se species were in a state of disequilibrium with respect to measured parameters indicative of redox conditions, although predicted patterns of redox-controlled mobility and attenuation were confirmed. This analysis is important to better understand groundwater contaminant behavior in response to redox conditions ranging from oxic/suboxic to Fe(III)-reducing, but excluding sulfate-reducing conditions.
Collapse
Affiliation(s)
- Richard T Wilkin
- U.S. Environmental Protection Agency, National Risk Management Research Laboratory, Groundwater, Watershed, and Ecosystem Restoration Division, 919 Kerr Research Drive, Ada, OK 74820, United States
| | - Tony R Lee
- U.S. Environmental Protection Agency, National Risk Management Research Laboratory, Groundwater, Watershed, and Ecosystem Restoration Division, 919 Kerr Research Drive, Ada, OK 74820, United States
| | - Douglas G Beak
- U.S. Environmental Protection Agency, National Risk Management Research Laboratory, Groundwater, Watershed, and Ecosystem Restoration Division, 919 Kerr Research Drive, Ada, OK 74820, United States
| | - Robert Anderson
- Hydrometrics Inc., 3020 Bozeman Avenue, Helena, MT 59601, United States
| | - Betsy Burns
- U.S. Environmental Protection Agency, Region 8, 10 West 15th Street, Suite 3200, Helena, MT 59626, United States
| |
Collapse
|
193
|
Zhao Y, Sun Q, Zhang X, Baeyens J, Su H. Self-assembled selenium nanoparticles and their application in the rapid diagnostic detection of small cell lung cancer biomarkers. SOFT MATTER 2018; 14:481-489. [PMID: 29177363 DOI: 10.1039/c7sm01687e] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
By coupling molecular imprinting, chitosan biosorption and TiO2 photocatalysis, selenium nanoparticles (Se NPs) were self-assembled in a controlled manner on the molecular imprinting sites of zeolite-chitosan-TiO2 microspheres. Se NPs with different sizes and areal densities were individually synthesized by controlling the rapid adsorption of molecular-imprinted nanocomposites and photocatalytic reaction of TiO2 nanoparticles. In order to improve the sensitivity and specificity of rapid diagnostic detection, Se NPs were self-assembled again into high-order and spherically stable structures with an average size of 80 nm by well-defined monomer units, after separation from zeolite-chitosan-TiO2 microspheres with a stabilizer of 0.3% (v/v) bovine serum albumin. Due to their biological activity, spherical-shaped Se NPs were used for dot-blot immunoassays with multiple native antigens for rapid serodiagnosis of human lung cancer. The sensitivity of the dot immunoassays for detecting progastrin-releasing peptide (ProGRP) was 75 pg mL-1. The detection time of colloidal Se dot immunoassays for ProGRP was only 5 min. No positive results were observed with other commonly potential interfering substances, including carcinoembryonic antigen, α-fetoprotein antigen and BSA. The research presents a simple and green method for the reuse of SeO32- and the controlled synthesis of Se NPs for biological and medical applications by bioaffinity adsorption and photoreduction.
Collapse
Affiliation(s)
- Yilin Zhao
- Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, 15 BeiSanhuan East Road, ChaoYang District, Beijing, 100029, P. R. China.
| | | | | | | | | |
Collapse
|
194
|
Xia X, Wu S, Li N, Wang D, Zheng S, Wang G. Novel bacterial selenite reductase CsrF responsible for Se(IV) and Cr(VI) reduction that produces nanoparticles in Alishewanella sp. WH16-1. JOURNAL OF HAZARDOUS MATERIALS 2018; 342:499-509. [PMID: 28881274 DOI: 10.1016/j.jhazmat.2017.08.051] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 07/25/2017] [Accepted: 08/16/2017] [Indexed: 06/07/2023]
Abstract
Alishewanella sp. WH16-1 is a facultative anaerobic bacterium isolated from mining soil. Under aerobic conditions, this bacterium efficiently reduces selenite and chromate. A flavoprotein showing 37% amino acid identity to E. coli chromate reductase ChrR was identified from the genome (named CsrF). Gene mutation and complementation along with heterologous expression revealed the ability of CsrF to reduce selenite and chromate in vivo. The purified CsrF was yellow and showed an absorption spectra similar to that of FMN. The molecular weight of CsrF was 23,906 for the monomer and 47,960 for the dimer. In vitro, CsrF catalyzes the reduction of Se(IV) and Cr(VI) using NAD(P)H as cofactors with optimal condition of pH 7.0 and temperature of 30-37°C. This enzyme also catalyze the reduction of sulfate and ferric iron but not arsenate and nitrate. Using NADPH as its electron donor, the Km for the reduction of Se(IV) and Cr(VI) was 204.1±27.91 and 250.6±23.46μmol/L, respectively. Site-directed mutagenesis showed that Arg13 and Gly113 were essential for the reduction of Se(IV) and Cr(VI). The products of the reduction of Se(IV) and Cr(VI) were Se(0)- and Cr(III)-nanoparticles, respectively. To our knowledge, CsrF is a novel and well-characterized bacterial aerobic selenite reductase.
Collapse
Affiliation(s)
- Xian Xia
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Shijuan Wu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Nuohan Li
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Dan Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Shixue Zheng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Gejiao Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.
| |
Collapse
|
195
|
Wadgaonkar SL, Nancharaiah YV, Esposito G, Lens PNL. Environmental impact and bioremediation of seleniferous soils and sediments. Crit Rev Biotechnol 2018; 38:941-956. [DOI: 10.1080/07388551.2017.1420623] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
| | - Yarlagadda V. Nancharaiah
- Biofouling and Biofilm Processes Section of Water and Steam Chemistry Division, Bhabha Atomic Research Centre, Kalpakkam, Tamil Nadu, India
- Homi Bhabha National Institute, Anushakti Nagar Complex, Mumbai, Maharashtra, India
| | - Giovanni Esposito
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, FR, Italy
| | - Piet N. L. Lens
- UNESCO IHE Institute for Water Education, Delft, The Netherlands
| |
Collapse
|
196
|
Surai PF, Kochish II, Velichko OA. Nano-Se Assimilation and Action in Poultry and Other Monogastric Animals: Is Gut Microbiota an Answer? NANOSCALE RESEARCH LETTERS 2017; 12:612. [PMID: 29204909 PMCID: PMC5714942 DOI: 10.1186/s11671-017-2383-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/22/2017] [Indexed: 05/30/2023]
Abstract
Recently, a comprehensive review paper devoted to roles of nano-Se in livestock and fish nutrition has been published in the Nanoscale Research Letters. The authors described in great details an issue related to nano-Se production and its possible applications in animal industry and medicine. However, molecular mechanisms of nano-Se action were not described and the question of how nano-Se is converted into active selenoproteins is not resolved. It seems likely that the gut microbiota can convert nano-Se into selenite, H2Se or Se-phosphate with the following synthesis of selenoproteins. This possibility needs to be further studied in detail, and advantages and disadvantages of nano-Se as a source of Se in animal/poultry/fish nutrition await critical evaluations.
Collapse
Affiliation(s)
- Peter F. Surai
- Department of Microbiology and Biochemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
- Department of Hygiene and Poultry Sciences, Moscow State Academy of Veterinary Medicine and Biotechnology named after K.I. Skryabin, Moscow, 109472 Russia
- Department of Animal Nutrition, Faculty of Agricultural and Environmental Sciences, Szent Istvan University, Gödöllo, H-2103 Hungary
| | - Ivan I. Kochish
- Department of Hygiene and Poultry Sciences, Moscow State Academy of Veterinary Medicine and Biotechnology named after K.I. Skryabin, Moscow, 109472 Russia
| | - Oksana A. Velichko
- Department of Ecology and Genetics, Tyumen State University, Tyumen, 625003 Russia
| |
Collapse
|
197
|
Characterization, antioxidant property and cytoprotection of exopolysaccharide-capped elemental selenium particles synthesized by Bacillus paralicheniformis SR14. Carbohydr Polym 2017; 178:18-26. [DOI: 10.1016/j.carbpol.2017.08.124] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/28/2017] [Accepted: 08/29/2017] [Indexed: 11/23/2022]
|
198
|
Fernández-Llamosas H, Castro L, Blázquez ML, Díaz E, Carmona M. Speeding up bioproduction of selenium nanoparticles by using Vibrio natriegens as microbial factory. Sci Rep 2017; 7:16046. [PMID: 29167550 PMCID: PMC5700131 DOI: 10.1038/s41598-017-16252-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 11/10/2017] [Indexed: 11/09/2022] Open
Abstract
Selenium and selenium nanoparticles (SeNPs) are extensively used in biomedicine, electronics and some other industrial applications. The bioproduction of SeNPs is gaining interest as a green method to manufacture these biotechnologically relevant products. Several microorganisms have been used for the production of SeNPs either under aerobic or anaerobic conditions. Vibrio natriegens is a non-pathogenic fast-growing bacterium, easily cultured in different carbon sources and that has recently been engineered for easy genetic manipulation in the laboratory. Here we report that V. natriegens was able to perfectly grow aerobically in the presence of selenite concentrations up to 15 mM with a significant survival still observed at concentrations as high as 100 mM selenite. Electron microscopy and X-ray spectroscopy analyses demonstrate that V. natriegens cells growing aerobically in selenite-containing LB medium at 30 °C produced spherical electron-dense SeNPs whose size ranged from 100-400 nm. Selenite reduction just started at the beginning of the exponential growth phase and the release of SeNPs was observed after cell lysis. Remarkably, V. natriegens produced SeNPs faster than other described microorganisms that were proposed as model bioreactors for SeNPs production. Thus, the fast-growing V. natriegens bacterium becomes a suitable biocatalyst for bioremediation of selenite and for speeding-up the eco-friendly synthesis of SeNPs.
Collapse
Affiliation(s)
- Helga Fernández-Llamosas
- Environmental Biology Department, Centro de Investigaciones Biológicas-CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Laura Castro
- Department of Material Science and Metallurgical Engineering, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Av. Complutense s/n, 28040, Madrid, Spain
| | - María Luisa Blázquez
- Department of Material Science and Metallurgical Engineering, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Av. Complutense s/n, 28040, Madrid, Spain
| | - Eduardo Díaz
- Environmental Biology Department, Centro de Investigaciones Biológicas-CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Manuel Carmona
- Environmental Biology Department, Centro de Investigaciones Biológicas-CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain.
| |
Collapse
|
199
|
Zlatanović L, van der Hoek JP, Vreeburg JHG. An experimental study on the influence of water stagnation and temperature change on water quality in a full-scale domestic drinking water system. WATER RESEARCH 2017; 123:761-772. [PMID: 28732329 DOI: 10.1016/j.watres.2017.07.019] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 07/02/2017] [Accepted: 07/09/2017] [Indexed: 06/07/2023]
Abstract
The drinking water quality changes during the transport through distribution systems. Domestic drinking water systems (DDWSs), which include the plumbing between the water meter and consumer's taps, are the most critical points in which water quality may be affected. In distribution networks, the drinking water temperature and water residence time are regarded as indicators of the drinking water quality. This paper describes an experimental research on the influence of stagnation time and temperature change on drinking water quality in a full-scale DDWS. Two sets of stagnation experiments, during winter and summer months, with various stagnation intervals (up to 168 h of stagnation) were carried out. Water and biofilms were sampled at two different taps, a kitchen and a shower tap. Results from this study indicate that temperature and water stagnation affect both chemical and microbial quality in DDWSs, whereas microbial parameters in stagnant water appear to be driven by the temperature of fresh water. Biofilm formed in the shower pipe contained more total and intact cells than the kitchen pipe biofilm. Alphaproteobacteria were found to dominate in the shower biofilm (78% of all Proteobacteria), while in the kitchen tap biofilm Alphaproteobacteria, Betaproteobacteria and Gammaproteobacteria were evenly distributed.
Collapse
Affiliation(s)
- Lj Zlatanović
- Delft University of Technology, Department of Water Management, Delft, The Netherlands.
| | - J P van der Hoek
- Delft University of Technology, Department of Water Management, Delft, The Netherlands; Waternet, Strategic Centre, Amsterdam, The Netherlands.
| | - J H G Vreeburg
- Wageningen University, Sub- Department of Environmental Technology, Wageningen, The Netherlands; KWR Watercycle Research Institute, Nieuwegein, The Netherlands.
| |
Collapse
|
200
|
Luek A, Rowan DJ, Rasmussen JB. N-P Fertilization Stimulates Anaerobic Selenium Reduction in an End-Pit Lake. Sci Rep 2017; 7:10502. [PMID: 28874776 PMCID: PMC5585328 DOI: 10.1038/s41598-017-11095-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/17/2017] [Indexed: 11/16/2022] Open
Abstract
Selenium (Se), an essential micro nutrient, is toxic to aquatic life at slightly higher water concentrations. Watersheds receiving leachate from selenium rich sources require large-scale, long-term treatment to mitigate Se toxicity. We applied the principles of anaerobic bacterial bioreactors, previously successful in small scale Se mitigation, to a whole end-pit lake ecosystem. Fertilization of the lake with N and P increased primary production, creating a meromictic, anoxic layer, and enhanced the habitat for locally present, anaerobic, Se and sulfur reducing bacteria. Within two years, Se concentrations were reduced ten-fold, reaching water-quality guideline values. The successful experiment demonstrated a novel treatment of large volumes of Se-contaminated water, and introduced an inexpensive method to mitigate a persistent aquatic pollutant of global concern.
Collapse
Affiliation(s)
- Andreas Luek
- Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, T1K 3M4, Alberta, Canada.
| | - David J Rowan
- Environmental Science and Monitoring Branch, Canadian Nuclear Laboratories, 286 Plant Road, Chalk River, K0J 1J0, Ontario, Canada
| | - Joseph B Rasmussen
- Department of Biological Sciences, University of Lethbridge, 4401 University Drive, Lethbridge, T1K 3M4, Alberta, Canada
| |
Collapse
|