151
|
Payton SG, Haska CL, Flatley RM, Ge Y, Matherly LH. Effects of 5' untranslated region diversity on the posttranscriptional regulation of the human reduced folate carrier. ACTA ACUST UNITED AC 2007; 1769:131-8. [PMID: 17306382 PMCID: PMC1963461 DOI: 10.1016/j.bbaexp.2006.12.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Revised: 12/14/2006] [Accepted: 12/27/2006] [Indexed: 10/23/2022]
Abstract
The human RFC (hRFC) gene is regulated by five major 5' non-coding exons, characterized by alternate transcription start sites and splice forms. The result is up to 14 hRFC transcripts for which different 5' untranslated regions (UTRs) are fused to a common coding sequence. By in vitro translation assays with hRFC constructs corresponding to the major transcript forms, most of the forms were translated poorly. Upon expression of the 5'UTR-hRFC constructs in hRFC-null HeLa cells, a range of steady state hRFC proteins and transcripts were detected that reflected relative transcript stabilities and, to a lesser extent, translation efficiencies. Transcripts including 5' UTRs derived from non-coding exon A encoded a modified hRFC protein translated from an upstream initiation site. When this modified hRFC protein was expressed in hRFC-null K562 cells, there were only minor differences in surface targeting, stability, or transport function from wild type hRFC. Our results demonstrate an important role for posttranscriptional determinants of cellular hRFC levels and activity.
Collapse
Affiliation(s)
- Scott G. Payton
- Department of Pharmacology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan 48201
| | - Christina L. Haska
- Developmental Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan 48201
| | - Robin M. Flatley
- Developmental Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan 48201
| | - Yubin Ge
- Department of Pharmacology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan 48201
- Developmental Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan 48201
| | - Larry H. Matherly
- Department of Pharmacology, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan 48201
- Developmental Therapeutics Program, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan 48201
- Address Correspondence to: Larry H. Matherly, Ph.D., Developmental Therapeutics Program, Karmanos Cancer Institute, 110 E. Warren Ave., Detroit, MI 48201, Tel. 313 833-0715 (Ext. 2407), Fax. 313 832-7294, E-mail:
| |
Collapse
|
152
|
Sokac AM, Schietroma C, Gundersen CB, Bement WM. Myosin-1c couples assembling actin to membranes to drive compensatory endocytosis. Dev Cell 2007; 11:629-40. [PMID: 17084356 PMCID: PMC2826358 DOI: 10.1016/j.devcel.2006.09.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2004] [Revised: 07/31/2006] [Accepted: 09/05/2006] [Indexed: 10/23/2022]
Abstract
Compensatory endocytosis follows regulated exocytosis in cells ranging from eggs to neurons, but the means by which it is accomplished are unclear. In Xenopus eggs, compensatory endocytosis is driven by dynamic coats of assembling actin that surround and compress exocytosing cortical granules (CGs). We have identified Xenopus laevis myosin-1c (XlMyo1c) as a myosin that is upregulated by polyadenylation during meiotic maturation, the developmental interval that prepares eggs for fertilization and regulated CG exocytosis. Upon calcium-induced exocytosis, XlMyo1c is recruited to exocytosing CG membranes where actin coats then assemble. When XlMyo1c function is disrupted, actin coats assemble, but dynamic actin filaments are uncoupled from the exocytosing CG membranes such that coats do not compress, and compensatory endocytosis fails. Remarkably, there is also an increase in polymerized actin at membranes throughout the cell. We conclude that XlMyo1c couples polymerizing actin to membranes and so mediates force production during compensatory endocytosis.
Collapse
Affiliation(s)
- Anna M. Sokac
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, Wisconsin 53706
- Department of Zoology, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Cataldo Schietroma
- Department of Molecular and Medical Pharmacology, David Geffen UCLA School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| | - Cameron B. Gundersen
- Department of Molecular and Medical Pharmacology, David Geffen UCLA School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| | - William M. Bement
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, Wisconsin 53706
- Department of Zoology, University of Wisconsin-Madison, Madison, Wisconsin 53706
- Correspondence:
| |
Collapse
|
153
|
Goldstrohm AC, Seay DJ, Hook BA, Wickens M. PUF Protein-mediated Deadenylation Is Catalyzed by Ccr4p. J Biol Chem 2007; 282:109-14. [PMID: 17090538 DOI: 10.1074/jbc.m609413200] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
PUF proteins control gene expression by binding to the 3'-untranslated regions of specific mRNAs and triggering mRNA decay or translational repression. Here we focus on the mechanism of PUF-mediated regulation. The yeast PUF protein, Mpt5p, regulates HO mRNA and stimulates removal of its poly(A) tail (i.e. deadenylation). Mpt5p repression in vivo is dependent on POP2, a component of the cytoplasmic Ccr4p-Pop2p-Not complex that deadenylates mRNAs. In this study, we elucidate the individual roles of the Ccr4p and Pop2p deadenylases in Mpt5p-regulated deadenylation. Both in vivo and in vitro, Pop2p and Ccr4p proteins are required for Mpt5p-regulated deadenylation of HO. However, the requirements for the two proteins differ dramatically: the enzymatic activity of Ccr4p is essential, whereas that of Pop2p is dispensable. We conclude that Pop2p is a bridge through which the PUF protein recruits the Ccr4p enzyme to the target mRNA, thereby stimulating deadenylation. Our data suggest that PUF proteins may enhance mRNA degradation and repress expression by both deadenylation-dependent and -independent mechanisms, using the same Pop2p bridge to recruit a multifunctional Pop2p complex to the mRNA.
Collapse
Affiliation(s)
- Aaron C Goldstrohm
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
154
|
Piri N, Mendoza E, Shih J, Yamashita CK, Akhmedov NB, Farber DB. Translational regulation of the rod photoreceptor cGMP-phosphodiesterase: the role of the 5'- and 3'-untranslated regions. Exp Eye Res 2006; 83:841-8. [PMID: 16765946 DOI: 10.1016/j.exer.2006.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Revised: 03/21/2006] [Accepted: 04/14/2006] [Indexed: 11/29/2022]
Abstract
We have established earlier that rod photoreceptor cGMP-phosphodiesterase (PDE6) alpha and beta subunits are equally represented in the retina at the protein level and have similar turnover rates. mRNA quantification revealed five PDE6beta messages for every PDE6alpha transcript pointing at post-transcriptional regulation of PDE6alpha and PDE6beta expression. Indeed, the wild-type PDE6alpha mRNA was translated 5-fold more efficiently than that of PDE6beta. The coding regions of these subunits had a major contribution in this process. Here, we extend our study of translational regulation of PDE6 subunits and present a detailed analysis of the role of PDE6alpha and PDE6beta 5'- and 3'-UTRs (untranslated regions) in this process. We showed that both the short and long PDE6beta 5'-UTRs lead to more efficient protein synthesis than the PDE6alpha 5'-UTR. The 3'-UTRs of PDE6alpha and PDE6beta stimulated translation by approximately 2- and 3-fold, respectively. However, the positive effect of the PDE6alpha or PDE6beta 3'-UTRs was not observed when these regions were placed in constructs containing the 5'-UTR of the corresponding PDE6 subunit. Furthermore, it appears that PDE6alpha 5'- and 3'-UTRs may be involved in a base pairing interaction that reduces the efficiency of protein synthesis. Finally, using progressive deletion analysis of the PDE6alpha 5'-UTR, we have identified several regions that have significant contribution in regulation of protein synthesis. Based on these and earlier published data, it can be stated that an equimolar level of PDE6alpha and PDE6beta synthesized from different amounts of mRNA (ratio of PDE6alpha to PDE6beta mRNA in the retina is 1:5) is achieved as a result of combinatorial effects of 5'-UTRs and coding regions of PDE6alpha and PDE6beta mRNAs on translational regulation.
Collapse
Affiliation(s)
- Natik Piri
- Jules Stein Eye Institute, UCLA, 100 Stein Plaza, Los Angeles, CA 90095, USA.
| | | | | | | | | | | |
Collapse
|
155
|
Novak G, Tallerico T. Nogo A, B and C expression in schizophrenia, depression and bipolar frontal cortex, and correlation of Nogo expression with CAA/TATC polymorphism in 3′-UTR. Brain Res 2006; 1120:161-71. [PMID: 17022955 DOI: 10.1016/j.brainres.2006.08.071] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Revised: 08/16/2006] [Accepted: 08/18/2006] [Indexed: 11/16/2022]
Abstract
Schizophrenia may result from altered gene expression leading to abnormal neurodevelopment. In a search for genes with altered expression in schizophrenia, our previous work on human frontal cerebral cortex found the mRNA of Nogo, a myelin-associated protein which inhibits the outgrowth of neurites and nerve terminals, to be overexpressed in schizophrenia. Because those earlier results did not examine tissues for the separate Nogo A, B and C isoforms from age- and sex-matched individuals, we repeated the study for all three isoforms, using a new set of tissues from matched individuals, and using the more accurate method of quantitative real-time PCR (polymerase chain reaction). We found Nogo C to be overexpressed by 26% in the schizophrenia tissues, which is in accordance with our earlier results. The expression of Nogo B was statistically significantly reduced by 17% in the frontal cortices from individuals who had been diagnosed as having had severe depression. Furthermore, we show that there is a direct correlation between the expression of Nogo A and C and the presence of alleles with a CAA insert, irrespective of disease status. While upregulation of Nogo C expression may play a role in schizophrenia, altered Nogo B may contribute to the clinical condition of depression. Nogo A showed a statistically non-significant increase in expression in schizophrenia.
Collapse
Affiliation(s)
- Gabriela Novak
- Department of Pharmacology, Medical Sciences Building 4344, University of Toronto, 1 King's College Circle, Toronto, Canada M5S 1A8
| | | |
Collapse
|
156
|
Abstract
The study of in vitro maturation (IVM) of rhesus monkey oocytes has important implications for biomedical research and human infertility treatment. In vitro-matured rhesus monkey oocytes show much less developmental potential than IVM oocytes of other species. Since about 1980 when rhesus monkey IVM, in vitro fertilization (IVF) and in vitro embryo culture (IVC) systems were established, numerous efforts have been made to improve the developmental competence of oocytes and to understand the mechanisms regulating oocyte maturation. This review describes recent progress in this area, particularly the effects of factors such as steroid hormones, energy substrates, amino acids, ovarian follicle status, maternal age and breeding season on the developmental competence, gene expression patterns and genome integrity of rhesus IVM oocytes.
Collapse
Affiliation(s)
- P Zheng
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Building 50, Rm 3132, 9000 Rockville Pike, Bethesda, MD 20892-8028, USA.
| |
Collapse
|
157
|
Zhang Y, Li W, Vore M. Translational regulation of rat multidrug resistance-associated protein 2 expression is mediated by upstream open reading frames in the 5' untranslated region. Mol Pharmacol 2006; 71:377-83. [PMID: 17065236 DOI: 10.1124/mol.106.029793] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Multidrug resistance-associated protein 2 (Mrp2/Abcc2), an organic anion transporter present in the apical membrane of hepatocytes, renal epithelial cells, and enterocytes, is postulated to undergo translational regulation. Transcription of rat hepatic Mrp2 mRNA is initiated at multiple sites (-213, -163, -132, and -98 nucleotides relative to the Mrp2 ATG) and contains potential upstream open reading frames (uORFs) in the 5' untranslated region (UTR) starting at -213, -149 and -109 nucleotides. Ribonuclease protection assays demonstrated that transcription of the Mrp2 gene at the various initiation sites was tissue-specific, with the major initiation site in the liver and kidney being -98 and -132 nucleotides, respectively. In the jejunum, the primary and secondary initiation sites were -98 and -132 nucleotides, respectively, with the converse true in the ileum. The relative abundance of these Mrp2 transcripts expressed in tissues varied with age from birth to the adult. HepG2 transient expression assays and in vitro translation assays in which the 5'UTRs were fused with a luciferase reporter showed that the 5'UTR without any uORF (-98 nucleotide) expressed maximal luciferase activity compared with those with one (-132 nucleotides), two (-163 nucleotides), or three (-213 nucleotides) uORFs. Disruption of the uORF by site-directed mutagenesis at nucleotide -109 enhanced luciferase activity 2- to 3-fold, whereas disruption of the uORF at nucleotide -149 had little effect. We conclude that among the uORFs in the Mrp2 5'UTR, the uORF starting at nucleotide -109 probably plays an important role in the regulation of Mrp2 protein expression.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Graduate Center for Toxicology, University of Kentucky, Lexington, KY 40536-0305, USA
| | | | | |
Collapse
|
158
|
Tehrani AM, Hwang SK, Kim TH, Cho CS, Hua J, Nah WS, Kwon JT, Kim JS, Chang SH, Yu KN, Park SJ, Bhandari DR, Lee KH, An GH, Beck GR, Cho MH. Aerosol delivery of Akt controls protein translation in the lungs of dual luciferase reporter mice. Gene Ther 2006; 14:451-8. [PMID: 17051249 DOI: 10.1038/sj.gt.3302879] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Lung cancer has emerged as a leading cause of cancer death in the world; however, most of the current conventional therapies are not sufficiently effective in altering the progression of disease. Therefore, development of novel treatment approaches is needed. Although several genes and methods have been used for cancer gene therapy, a number of problems such as specificity, efficacy and toxicity reduce their application. This has led to re-emergence of aerosol gene delivery as a noninvasive method for lung cancer treatment. In this study, nano-sized glucosylated polyethyleneimine (GPEI) was used as a gene delivery carrier to investigate the effects of Akt wild type (WT) and kinase deficient (KD) on Akt-related signaling pathways and protein translation in the lungs of CMV- LucR-cMyc-IRES-LucF dual reporter mice. These mice are a powerful tool for the discrimination between cap-dependent/-independent protein translation. Aerosols containing self-assembled nano-sized GPEI/Akt WT or GPEI/Akt KD were delivered into the lungs of reporter mice through nose-only-inhalation-chamber with the aid of nebulizer. Aerosol delivery of Akt WT caused the increase of protein expression levels of Akt-related signals, whereas aerosol delivery of Akt KD did not. Furthermore, dual luciferase activity assay showed that aerosol delivery of Akt WT enhanced cap-dependent protein translation, whereas a reduction in cap-dependent protein translation by Akt KD was observed. Our results clearly showed that targeting Akt may be a good strategy for prevention as well as treatment of lung cancer. These studies suggest that our aerosol delivery is compatible for in vivo gene delivery which could be used as a noninvasive gene therapy in the future.
Collapse
Affiliation(s)
- A M Tehrani
- Laboratory of Toxicology, College of Veterinary Medicine and BK21 Program for Veterinary Science, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Candeias MM, Powell DJ, Roubalova E, Apcher S, Bourougaa K, Vojtesek B, Bruzzoni-Giovanelli H, Fåhraeus R. Expression of p53 and p53/47 are controlled by alternative mechanisms of messenger RNA translation initiation. Oncogene 2006; 25:6936-47. [PMID: 16983332 DOI: 10.1038/sj.onc.1209996] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
P53 controls the growth and survival of cells by acting in response to a multitude of cellular stresses. It is, however, not yet fully understood how different p53 activation pathways result in either cell cycle arrest or apoptosis. We and others have described an N-terminally truncated p53 protein (p53/47) originating from a second translation initiation site in the p53 messenger RNA (mRNA), which can interact with p53 and impose altered stability and transactivation properties to p53 complexes. Here we show that cap-dependent and cap-independent mechanisms of initiation govern the translation of the p53 mRNA. Changes in synthesis of full-length p53 or p53/47 are regulated through distinct cell stress-induced pathways acting through separate regions of the p53 mRNA. We also show that some cytotoxic drugs require the presence of full-length p53 to induce apoptosis, whereas for others p53/47 is sufficient. This indicates that by harbouring alternative translation initiation sites, the p53 mRNA gives rise to different levels of the p53 isoforms which help to orchestrate the cell biological outcome of p53 activation in response to different types of cell stress. This sheds new light into the way p53 can integrate and differentiate a large multiplicity of changes in the cellular environment.
Collapse
Affiliation(s)
- M M Candeias
- Inserm U716, Institut de Génétique Moléculaire, Hôpital St Louis, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
160
|
Coldwell MJ, Morley SJ. Specific isoforms of translation initiation factor 4GI show differences in translational activity. Mol Cell Biol 2006; 26:8448-60. [PMID: 16982693 PMCID: PMC1636793 DOI: 10.1128/mcb.01248-06] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The eukaryotic initiation factor (eIF) 4GI gene locus (eIF4GI) contains three identified promoters, generating alternately spliced mRNAs, yielding a total of five eIF4GI protein isoforms. Although eIF4GI plays a critical role in mRNA recruitment to the ribosomes, little is known about the functions of the different isoforms, their partner binding capacities, or the role of the homolog, eIF4GII, in translation initiation. To directly address this, we have used short interfering RNAs (siRNAs) expressed from DNA vectors to silence the expression of eIF4GI in HeLa cells. Here we show that reduced levels of specific mRNA and eIF4GI isoforms in HeLa cells promoted aberrant morphology and a partial inhibition of translation. The latter reflected dephosphorylation of 4E-BP1 and decreased eIF4F complex levels, with no change in eIF2alpha phosphorylation. Expression of siRNA-resistant Myc-tagged eIF4GI isoforms has allowed us to show that the different isoforms exhibit significant differences in their ability to restore translation rates. Here we quantify the efficiency of eIF4GI promoter usage in mammalian cells and demonstrate that even though the longest isoform of eIF4GI (eIF4GIf) was relatively poorly expressed when reintroduced, it was more efficient at promoting the translation of cellular mRNAs than the more highly expressed shorter isoforms used in previous functional studies.
Collapse
Affiliation(s)
- Mark J Coldwell
- Department of Biochemistry, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, United Kingdom
| | | |
Collapse
|
161
|
Chang TH, Huang HD, Chuang TN, Shien DM, Horng JT. RNAMST: efficient and flexible approach for identifying RNA structural homologs. Nucleic Acids Res 2006; 34:W423-8. [PMID: 16845040 PMCID: PMC1538813 DOI: 10.1093/nar/gkl231] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
RNA molecules fold into characteristic secondary structures for their diverse functional activities such as post-translational regulation of gene expression. Searching homologs of a pre-defined RNA structural motif, which may be a known functional element or a putative RNA structural motif, can provide useful information for deciphering RNA regulatory mechanisms. Since searching for the RNA structural homologs among the numerous RNA sequences is extremely time-consuming, this work develops a data preprocessing strategy to enhance the search efficiency and presents RNAMST, which is an efficient and flexible web server for rapidly identifying homologs of a pre-defined RNA structural motif among numerous RNA sequences. Intuitive user interface are provided on the web server to facilitate the predictive analysis. By comparing the proposed web server to other tools developed previously, RNAMST performs remarkably more efficiently and provides more effective and flexible functions. RNAMST is now available on the web at .
Collapse
Affiliation(s)
- Tzu-Hao Chang
- Department of Computer Science and Information Engineering, National Central UniversityChung-Li 320, Taiwan
| | - Hsien-Da Huang
- Department of Biological Science and Technology, National Chiao Tung UniversityHsin-Chu 300, Taiwan
- Institute of Bioinformatics, National Chiao Tung UniversityHsin-Chu 300, Taiwan
- Core Facility for Structural Bioinformatics, National Chiao Tung UniversityHsin-Chu 300, Taiwan
- To whom correspondence should be addressed. Tel: +886 3 5712121 (ext. 56952); Fax: +886 3 5729288;
| | - Tzu-Neng Chuang
- Department of Computer Science and Information Engineering, National Central UniversityChung-Li 320, Taiwan
- Department of Electronic Engineering, Ching-Yun UniversityChung-Li 320, Taiwan
| | - Dray-Ming Shien
- Department of Computer Science and Information Engineering, National Central UniversityChung-Li 320, Taiwan
- Department of Electronic Engineering, Chin Min Institute of TechnologyMiao-Li, Taiwan
| | - Jorng-Tzong Horng
- Department of Computer Science and Information Engineering, National Central UniversityChung-Li 320, Taiwan
- Department of Life Science, National Central UniversityChung-Li 320, Taiwan
- Correspondence may also be addressed to Jorng-Tzong Horng. Fax: +886 3 4222681;
| |
Collapse
|
162
|
Turner JD, Schote AB, Macedo JA, Pelascini LPL, Muller CP. Tissue specific glucocorticoid receptor expression, a role for alternative first exon usage? Biochem Pharmacol 2006; 72:1529-37. [PMID: 16930562 DOI: 10.1016/j.bcp.2006.07.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Revised: 07/04/2006] [Accepted: 07/11/2006] [Indexed: 01/28/2023]
Abstract
The CpG island upstream of the GR is highly structured and conserved at least in all the animal species that have been investigated. Sequence alignment of these CpG islands shows inter-species homology ranging from 64 to 99%. This 3.1kb CpG rich region upstream of the GR exon 2 encodes 5' untranslated mRNA regions. These CpG rich regions are organised into multiple first exons and, as we and others have postulated, each with its own promoter region. Alternative mRNA transcript variants are obtained by the splicing of these alternative first exons to a common acceptor site in the second exon of the GR. Exon 2 contains an in-frame stop codon immediately upstream of the ATG start codon to ensure that this 5' heterogeneity remains untranslated, and that the sequence and structure of the GR is unaffected. Tissue specific differential usage of exon 1s has been observed in a range of human tissues, and to a lesser extent in the rat and mouse. The GR expression level is tightly controlled within each tissue or cell type at baseline and upon stimulation. We suggest that no single promoter region may be capable of containing all the necessary promoter elements and yet preserve the necessary proximity to the transcription initiation site to produce such a plethora of responses. Thus we further suggest that alternative first exons each under the control of specific transcription factors control both the tissue specific GR expression and are involved in the tissue specific GR transcriptional response to stimulation. Spreading the necessary promoter elements over multiple promoter regions, each with an associated alternative transcription initiation site would appear to vastly increase the capacity for transcriptional control of GR.
Collapse
Affiliation(s)
- Jonathan D Turner
- Institute of Immunology, Laboratoire National de Santé, 20A rue Auguste Lumière, L-1950 Luxembourg, Grand Duchy of Luxembourg
| | | | | | | | | |
Collapse
|
163
|
Chaudhry Y, Nayak A, Bordeleau ME, Tanaka J, Pelletier J, Belsham GJ, Roberts LO, Goodfellow IG. Caliciviruses differ in their functional requirements for eIF4F components. J Biol Chem 2006; 281:25315-25. [PMID: 16835235 DOI: 10.1074/jbc.m602230200] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two classes of viruses, namely members of the Potyviridae and Caliciviridae, use a novel mechanism for the initiation of protein synthesis that involves the interaction of translation initiation factors with a viral protein covalently linked to the viral RNA, known as VPg. The calicivirus VPg proteins can interact directly with the initiation factors eIF4E and eIF3. Translation initiation on feline calicivirus (FCV) RNA requires eIF4E because it is inhibited by recombinant 4E-BP1. However, to date, there have been no functional studies carried out with respect to norovirus translation initiation, because of a lack of a suitable source of VPg-linked viral RNA. We have now used the recently identified murine norovirus (MNV) as a model system for norovirus translation and have extended our previous studies with FCV RNA to examine the role of the other eIF4F components in translation initiation. We now demonstrate that, as with FCV, MNV VPg interacts directly with eIF4E, although, unlike FCV RNA, translation of MNV RNA is not sensitive to 4E-BP1, eIF4E depletion, or foot-and-mouth disease virus Lb protease-mediated cleavage of eIF4G. We also demonstrate that both FCV and MNV RNA translation require the RNA helicase component of the eIF4F complex, namely eIF4A, because translation was sensitive (albeit to different degrees) to a dominant negative form and to a small molecule inhibitor of eIF4A (hippuristanol). These results suggest that calicivirus RNAs differ with respect to their requirements for the components of the eIF4F translation initiation complex.
Collapse
Affiliation(s)
- Yasmin Chaudhry
- Department of Virology, Faculty of Medicine, Imperial College London, St. Mary's Campus, Norfolk Place, London W2 1PG, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
164
|
Abstract
Vertebrate development is directed by maternally inherited messenger RNAs that are synthesized during the very long period of oogenesis. These dormant mRNAs usually contain short poly(A) tails and are stored as mRNA ribonucleoproteins that preclude ribosomal recruitment. In Xenopus laevis oocytes treated with the meiosis-inducing hormone progesterone, their poly(A) tails are elongated, and the mRNAs are mobilized into polysomes. This cytoplasmic polyadenylation is directed by cis-acting elements located in the 3' untranslated region of the mRNAs. However, the cytoplasmic polyadenylation of all the maternal mRNAs does not take place at once, but rather the translational activation of specific mRNAs is regulated in a sequential manner during meiosis and early development. This chapter describes the use of microinjected reporter mRNAs and radiolabeled RNAs into Xenopus oocytes to study the mRNA translational control by cytoplasmic polyadenylation. Cyclin B1 mRNA is used to illustrate the methods described.
Collapse
Affiliation(s)
- Maria Piqué
- Centre de Regulació Genòmica, Program of Gene Expression, Barcelona, Spain
| | | | | |
Collapse
|
165
|
Nyberg MT, Stoevring B, Behr ER, Ravn LS, McKenna WJ, Christiansen M. The variation of the sarcolipin gene (SLN) in atrial fibrillation, long QT syndrome and sudden arrhythmic death syndrome. Clin Chim Acta 2006; 375:87-91. [PMID: 17010328 DOI: 10.1016/j.cca.2006.06.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Revised: 06/12/2006] [Accepted: 06/13/2006] [Indexed: 10/24/2022]
Abstract
BACKGROUND Mutations in genes responsible for the cardiac action potential and control of intracellular Ca(2+)-distribution are associated with cardiac arrhythmia and sudden death. Sarcolipin is a 31-amino acid protein that inhibits the sarcoplasmic reticulum Ca(2+) ATPase pump (SERCA2). The sarcolipin gene, SLN, is expressed in the heart and a candidate gene for cardiomyopathy as well as atrial fibrillation (AF), long QT syndrome (LQTS) or sudden arrhythmic death syndrome (SADS). We examined the genetic variation of SLN in patients with the arrhythmic disorders AF, LQTS and SADS. METHODS We screened the coding region of SLN for mutations using single strand conformation polymorphism/heteroduplex analysis on PCR-amplified genomic DNA from 95 unrelated LQTS patients, 59 SADS cases and 147 patients with atrial fibrillation (AF) and 92 controls. Aberrant conformers were sequenced. RESULTS No mutations or polymorphisms were found in the coding sequence. A G>C transition in the highly conserved position +1 of the 3'untranslated region (3'UTR) was found in two SADS cases. A polymorphism, a G>C transition at position -65 in the 5'untranslated region (5'UTR), was found with a G allele frequency of 0.48. A borderline significant difference in genotype distribution of the latter polymorphism was found between the AF group and controls. CONCLUSION Mutations in the coding region of SLN are not frequently involved in LQTS, SADS or AF. Whether the described 3'- and 5'UTR variants have functional significance must await further studies.
Collapse
Affiliation(s)
- Mia Titine Nyberg
- Department of Clinical Biochemistry, Statens Serum Institut, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
166
|
Jeske M, Meyer S, Temme C, Freudenreich D, Wahle E. Rapid ATP-dependent deadenylation of nanos mRNA in a cell-free system from Drosophila embryos. J Biol Chem 2006; 281:25124-33. [PMID: 16793774 DOI: 10.1074/jbc.m604802200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Shortening of the poly(A) tail (deadenylation) is the first and often rate-limiting step in the degradation pathway of most eukaryotic mRNAs and is also used as a means of translational repression, in particular in early embryonic development. The nanos mRNA is translationally repressed by the protein Smaug in Drosophila embryos. The RNA has a short poly(A) tail at steady state and decays gradually during the first 2-3 h of development. Smaug has recently also been implicated in mRNA deadenylation. To study the mechanism of sequence-dependent deadenylation, we have developed a cell-free system from Drosophila embryos that displays rapid deadenylation of nanos mRNA. The Smaug response elements contained in the nanos 3'-untranslated region are necessary and sufficient to induce deadenylation; thus, Smaug is likely to be involved. Unexpectedly, deadenylation requires the presence of an ATP regenerating system. The activity can be pelleted by ultracentrifugation, and both the Smaug protein and the CCR4.NOT complex, a known deadenylase, are enriched in the active fraction. The same extracts show pronounced translational repression mediated by the Smaug response elements. RNAs lacking a poly(A) tail are poorly translated in the extract; therefore, SRE-dependent deadenylation contributes to translational repression. However, repression is strong even with RNAs either bearing a poly(A) tract that cannot be removed or lacking poly(A) altogether; thus, an additional aspect of translational repression functions independently of deadenylation.
Collapse
Affiliation(s)
- Mandy Jeske
- Institute of Biochemistry, University of Halle, Kurt-Mothes-Strasse 3, 06120 Halle, Germany
| | | | | | | | | |
Collapse
|
167
|
Abstract
The targeting of messenger RNAs (mRNAs) to specific subcellular sites for local translation plays an important role in diverse cellular and developmental processes in eukaryotes, including axis formation, cell fate determination, spindle pole regulation, cell motility, and neuronal synaptic plasticity. Recently, a new conserved class of Lsm proteins, the Scd6 family, has been implicated in controlling mRNA function. Depletion or mutation of members of the Scd6 family, Caenorhabditis elegans CAR-1 and Drosophila melanogaster trailer hitch, lead to a variety of developmental phenotypes, which in some cases can be linked to alterations in the endoplasmic reticulum (ER). Scd6/Lsm proteins are RNA binding proteins and are found in RNP complexes associated with translational control of mRNAs, and these complexes can colocalize with the ER. These findings raise the possibility that localization and translational regulation of mRNAs at the ER plays a role in controlling the organization of this organelle.
Collapse
Affiliation(s)
- Carolyn J Decker
- Department of Molecular and Cellular Biology and Howard Hughes Medical Institute, University of Arizona, Tucson, 85721, USA
| | | |
Collapse
|
168
|
Abstract
General anesthesia, at a minimum, provides amnesia and unresponsiveness. Although anesthetics have many modulatory effects on neuronal ionophore protein complexes, it is not clear that the resulting electrophysiologic changes are the sole mechanisms of clinical anesthetic action. Cells respond to environmental changes in several ways, including alterations in DNA transcription leading to changes in the cell's proteins. We sought to expose the changes in global genomic expression, seeking potential targets involved in the processes of anesthetic-induced amnesia, and persistent long-term side effects of general anesthesia, including nausea and postoperative cognitive decline. Using Affymetrix GeneChips, we surveyed changes in expression across the entire expressed genome of Sprague-Dawley rat (n = 10 baseline, n = 6 isoflurane) basolateral amygdala 6 h after exposure to 15 min of 2% (1.4 MAC) isoflurane. Isoflurane administration was associated with altered expression in 269 unique genes possessing functional annotation. Affected genes were related to DNA transcription, protein synthesis, metabolism, signaling cascades, cytoskeletal structural proteins, and neural-specific proteins, among others. Even brief exposure to isoflurane leads to widespread changes in the genetic control in the amygdala 6 h after exposure. Gene expression is a dynamic process that may explain some long-term effects of anesthesia and that has the potential to modulate some of those effects using specific molecular therapeutics.
Collapse
Affiliation(s)
- Ira J Rampil
- Department of Anesthesiology and Neurological Surgery, State University of New York at Stony Brook, HSC University Hospital, Stony Brook, New York 11794-8480, USA.
| | | | | |
Collapse
|
169
|
Yang R, Weber DJ, Carrier F. Post-transcriptional regulation of thioredoxin by the stress inducible heterogenous ribonucleoprotein A18. Nucleic Acids Res 2006; 34:1224-36. [PMID: 16513844 PMCID: PMC1388095 DOI: 10.1093/nar/gkj519] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Thioredoxin (TRX) is a key protein of the cellular redox metabolism, which expression is increased in several tumors especially gastric tumors. Even though ultraviolet (UV) and hypoxia specifically induce TRX, the mechanisms that lead to increased TRX levels are still ill defined. Here, we show that the heterogenous ribonucleoprotein A18 (hnRNP A18) RNA Binding Domain (RBD) and the arginine, glycine (RGG) rich domain can bind TRX 3′-untranslated region (3′-UTR) independently but both domains are required for maximal binding. Immunoprecipitation (IP) of hnRNP A18-mRNAs complexes and co-localization of hnRNP A18 and TRX transcripts on ribosomal fractions confirm the interaction of hnRNP A18 with TRX transcripts in cells. Moreover, down regulation of hnRNP A18 correlates with a significant reduction of TRX protein levels. In addition, hnRNP A18 increases TRX translation and interacts with the eukaryotic Initiation Factor 4G (eIF4G), a component of the general translational machinery. Furthermore, hnRNP A18 phosphorylation by the hypoxia inducible GSK3β increases hnRNP A18 RNA binding activity in vitro and in RKO cells in response to UV radiation. These data support a regulatory role for hnRNP A18 in TRX post-transcriptional expression possibly through a kissing loop model bridging TRX 3′- and 5′-UTRs through eIF4G.
Collapse
Affiliation(s)
| | | | - France Carrier
- To whom correspondence should be addressed at Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 N. Greene St. Baltimore, MD 21201, USA. Tel: +1 410 706 5105; Fax: +1 410 706 8297;
| |
Collapse
|
170
|
Liu D, Graber JH. Quantitative comparison of EST libraries requires compensation for systematic biases in cDNA generation. BMC Bioinformatics 2006; 7:77. [PMID: 16503995 PMCID: PMC1431573 DOI: 10.1186/1471-2105-7-77] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Accepted: 02/17/2006] [Indexed: 12/28/2022] Open
Abstract
Background Publicly accessible EST libraries contain valuable information that can be utilized for studies of tissue-specific gene expression and processing of individual genes. This information is, however, confounded by multiple systematic effects arising from the procedures used to generate these libraries. Results We used alignment of ESTs against a reference set of transcripts to estimate the size distributions of the cDNA inserts and sampled mRNA transcripts in individual EST libraries and show how these measurements can be used to inform quantitative comparisons of libraries. While significant attention has been paid to the effects of normalization and substraction, we also find significant biases in transcript sampling introduced by the combined procedures of reverse transcription and selection of cDNA clones for sequencing. Using examples drawn from studies of mRNA 3'-processing (cleavage and polyadenylation), we demonstrate effects of the transcript sampling bias, and provide a method for identifying libraries that can be safely compared without bias. All data sets, supplemental data, and software are available at our supplemental web site [1]. Conclusion The biases we characterize in the transcript sampling of EST libraries represent a significant and heretofore under-appreciated source of false positive candidates for tissue-, cell type-, or developmental stage-specific activity or processing of genes. Uncorrected, quantitative comparison of dissimilar EST libraries will likely result in the identification of statistically significant, but biologically meaningless changes.
Collapse
Affiliation(s)
- Donglin Liu
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | - Joel H Graber
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| |
Collapse
|
171
|
Wang H, Iacoangeli A, Lin D, Williams K, Denman RB, Hellen CUT, Tiedge H. Dendritic BC1 RNA in translational control mechanisms. ACTA ACUST UNITED AC 2006; 171:811-21. [PMID: 16330711 PMCID: PMC1828541 DOI: 10.1083/jcb.200506006] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Translational control at the synapse is thought to be a key determinant of neuronal plasticity. How is such control implemented? We report that small untranslated BC1 RNA is a specific effector of translational control both in vitro and in vivo. BC1 RNA, expressed in neurons and germ cells, inhibits a rate-limiting step in the assembly of translation initiation complexes. A translational repression element is contained within the unique 3' domain of BC1 RNA. Interactions of this domain with eukaryotic initiation factor 4A and poly(A) binding protein mediate repression, indicating that the 3' BC1 domain targets a functional interaction between these factors. In contrast, interactions of BC1 RNA with the fragile X mental retardation protein could not be documented. Thus, BC1 RNA modulates translation-dependent processes in neurons and germs cells by directly interacting with translation initiation factors.
Collapse
Affiliation(s)
- Huidong Wang
- Department of Physiology and Pharmacology, State University of New York, Health Science Center at Brooklyn, Brooklyn, NY 11203, USA
| | | | | | | | | | | | | |
Collapse
|
172
|
Sinha H, Nicholson BP, Steinmetz LM, McCusker JH. Complex genetic interactions in a quantitative trait locus. PLoS Genet 2006; 2:e13. [PMID: 16462944 PMCID: PMC1359075 DOI: 10.1371/journal.pgen.0020013] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2005] [Accepted: 12/19/2005] [Indexed: 11/18/2022] Open
Abstract
Whether in natural populations or between two unrelated members of a species, most phenotypic variation is quantitative. To analyze such quantitative traits, one must first map the underlying quantitative trait loci. Next, and far more difficult, one must identify the quantitative trait genes (QTGs), characterize QTG interactions, and identify the phenotypically relevant polymorphisms to determine how QTGs contribute to phenotype. In this work, we analyzed three Saccharomyces cerevisiae high-temperature growth (Htg) QTGs (MKT1, END3, and RHO2). We observed a high level of genetic interactions among QTGs and strain background. Interestingly, while the MKT1 and END3 coding polymorphisms contribute to phenotype, it is the RHO2 3′UTR polymorphisms that are phenotypically relevant. Reciprocal hemizygosity analysis of the Htg QTGs in hybrids between S288c and ten unrelated S. cerevisiae strains reveals that the contributions of the Htg QTGs are not conserved in nine other hybrids, which has implications for QTG identification by marker-trait association. Our findings demonstrate the variety and complexity of QTG contributions to phenotype, the impact of genetic background, and the value of quantitative genetic studies in S. cerevisiae. Most of the differences in phenotype between unrelated members of a species are polygenic in nature. Because of their ubiquity and importance, these polygenic (or quantitative) traits have been intensively studied, and a variety of techniques have been proposed to identify and characterize quantitative trait genes (QTGs). Indeed, the main application of the recently published human HapMap project is to identify the genes responsible for diseases that are quantitative in nature. Using a well-defined Saccharomyces cerevisiae quantitative trait locus containing three QTGs (MKT1, END3, and RHO2), the authors used deletions to analyze the contributions of each gene to phenotype, singly and in combination, and found a variety of interactions. Expression analysis showed no difference in steady-state mRNA levels between alleles of the three genes. Homologous allele replacement identified the phenotypically relevant differences between alleles of each gene, which were single coding polymorphisms for two genes (MKT1 and END3) and the 3′ untranslated region of one gene (RHO2). Finally, analysis of multiple genetic backgrounds showed that the phenotypes conferred by these genetic variants were not conserved. The results show that the techniques proposed to identify QTGs, such as expression analysis and marker-trait association, have profound limitations, and that unbiased genome-wide approaches are needed to dissect quantitative traits. The results also demonstrate the complexity of the genetic interactions that affect quantitative traits and the value of the S. cerevisiae system in studying these traits.
Collapse
Affiliation(s)
- Himanshu Sinha
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Bradly P Nicholson
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | | | - John H McCusker
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
173
|
Vasudevan S, Seli E, Steitz JA. Metazoan oocyte and early embryo development program: a progression through translation regulatory cascades. Genes Dev 2006; 20:138-46. [PMID: 16418480 DOI: 10.1101/gad.1398906] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Shobha Vasudevan
- Department of Molecular Biophysics and Biochemistry, and Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | | | | |
Collapse
|
174
|
A Study of Accessible Motifs and RNA Folding Complexity. LECTURE NOTES IN COMPUTER SCIENCE 2006. [DOI: 10.1007/11732990_40] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
175
|
Miller WA, White KA. Long-distance RNA-RNA interactions in plant virus gene expression and replication. ANNUAL REVIEW OF PHYTOPATHOLOGY 2006; 44:447-67. [PMID: 16704356 PMCID: PMC1894749 DOI: 10.1146/annurev.phyto.44.070505.143353] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The vast majority of plant and animal viruses have RNA genomes. Viral gene expression and replication are controlled by cis-acting elements in the viral genome, which have been viewed conventionally as localized structures. However, recent research has altered this perception and provided compelling evidence for cooperative activity involving distantly positioned RNA elements. This chapter focuses on viral RNA elements that interact across hundreds or thousands of intervening nucleotides to control translation, genomic RNA synthesis, and subgenomic mRNA transcription. We discuss evidence supporting the existence and function of the interactions, and speculate on the regulatory roles that such long-distance interactions play in the virus life cycle. We emphasize viruses in the Tombusviridae and Luteoviridae families in which long-distance interactions are best characterized, but similar phenomena in other viruses are also discussed. Many more examples likely remain undiscovered.
Collapse
Affiliation(s)
- W Allen Miller
- Plant Pathology Department, Iowa State University, Ames, Iowa 50011, USA.
| | | |
Collapse
|
176
|
Vasudevan S, Garneau N, Tu Khounh D, Peltz SW. p38 mitogen-activated protein kinase/Hog1p regulates translation of the AU-rich-element-bearing MFA2 transcript. Mol Cell Biol 2005; 25:9753-63. [PMID: 16260593 PMCID: PMC1280266 DOI: 10.1128/mcb.25.22.9753-9763.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AU-rich-element (ARE)-mediated mRNA regulation occurs in Saccharomyces cerevisiae in response to external and internal stimuli through the p38 mitogen-activated protein kinase (MAPK)/Hog1p pathway. We demonstrate that the ARE-bearing MFA2 3' untranslated region (UTR) controls translation efficiency in a p38 MAPK/Hog1p-dependent manner in response to carbon source growth conditions. The carbon source-regulated effect on MFA2 3'-UTR-controlled translation involves the role of conserved ARE binding proteins, the ELAV/TIA-1-like Pub1p, which can interact with the cap/eIF4G complex, and the translation/mRNA stability factor poly(A) binding protein (Pab1p). Pub1p binds the MFA2 3'-UTR in a p38 MAPK/Hog1p-regulated manner in response to carbon source growth conditions. Significantly, the p38 MAPK/Hog1p is also required to modulate Pab1p in response to carbon source. We find that Pab1p can bind the MFA2 3'-UTR in a regulated manner to control MFA2 3'-UTR reporter translation. Binding of full-length Pab1p to the MFA2 3'-UTR correlates with translation repression. Importantly, Pab1p binds the MFA2 3'-UTR only in a PUB1 strain, and correlating with this requirement, Pub1p controls translation repression of MFA2 in a carbon source/Hog1p-regulated manner. These results suggest that the p38 MAPK/Hog1p pathway regulates 3'-UTR-mediated translation by modulating recruitment of Pab1p and Pub1p, which can interact with the translation machinery.
Collapse
Affiliation(s)
- Shobha Vasudevan
- Department of Molecular Genetics, Microbiology and Immunology, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School and Rutgers University, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | | | | | | |
Collapse
|
177
|
Meyer IM, Miklós I. Statistical evidence for conserved, local secondary structure in the coding regions of eukaryotic mRNAs and pre-mRNAs. Nucleic Acids Res 2005; 33:6338-48. [PMID: 16275783 PMCID: PMC1278941 DOI: 10.1093/nar/gki923] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Owing to the degeneracy of the genetic code, protein-coding regions of mRNA sequences can harbour more than only amino acid information. We search the mRNA sequences of 11 human protein-coding genes for evolutionarily conserved secondary structure elements using RNA-Decoder, a comparative secondary structure prediction program that is capable of explicitly taking the known protein-coding context of the mRNA sequences into account. We detect well-defined, conserved RNA secondary structure elements in the coding regions of the mRNA sequences and show that base-paired codons strongly correlate with sparse codons. We also investigate the role of repetitive elements in the formation of secondary structure and explain the use of alternate start codons in the caveolin-1 gene by a conserved secondary structure element overlapping the nominal start codon. We discuss the functional roles of our novel findings in regulating the gene expression on mRNA level. We also investigate the role of secondary structure on the correct splicing of the human CFTR gene. We study the wild-type version of the pre-mRNA as well as 29 variants with synonymous mutations in exon 12. By comparing our predicted secondary structures to the experimentally determined splicing efficiencies, we find with weak statistical significance that pre-mRNAs with high-splicing efficiencies have different predicted secondary structures than pre-mRNAs with low-splicing efficiencies.
Collapse
Affiliation(s)
- Irmtraud M Meyer
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SD, UK.
| | | |
Collapse
|
178
|
Houshmandi SS, Olivas WM. Yeast Puf3 mutants reveal the complexity of Puf-RNA binding and identify a loop required for regulation of mRNA decay. RNA (NEW YORK, N.Y.) 2005; 11:1655-66. [PMID: 16244132 PMCID: PMC1370852 DOI: 10.1261/rna.2168505] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The eukaryotic Puf proteins regulate mRNA translation and degradation by binding the 3' untranslated regions of target mRNAs. Crystal structure analysis of a human Puf bound to RNA suggested a modular mode of binding, with specific amino acids within each of eight repeat domains contacting a single nucleotide of the target RNA. Here we study the mechanism by which the yeast Puf3p binds and stimulates the degradation of COX17 mRNA. Mutation of the predicted RNA-binding positions of Puf3p to those found in Puf5p demonstrated that a single amino acid change in Puf3p abolished detectable binding to COX17. Since this amino acid position in both Puf3p and Puf5p is predicted to contact an adenine in the respective target RNAs, the amino acid in Puf3p must play a more critical role in promoting COX17 interaction. In contrast, an amino acid change in the third repeat of Puf3p, which interacts with the only divergent nucleotide between the Puf3p and Puf5p targets, had no effect on binding COX17. These results argue that a simple set of rules cannot reliably link specific amino acid positions with target specificity. Each of these amino acid changes in Puf3p enhanced binding to the Puf5p target HO RNA, suggesting a different mode of binding to this target. Finally, we identified an outer surface loop that was dispensable for binding but was required to promote both rapid deadenylation and subsequent decapping of the COX17 mRNA, most likely as a point of protein-protein interactions.
Collapse
Affiliation(s)
- S Sean Houshmandi
- Department of Biology, University of Missouri-St. Louis, 63121-4499, USA
| | | |
Collapse
|
179
|
Winter EE, Ponting CP. Mammalian BEX, WEX and GASP genes: coding and non-coding chimaerism sustained by gene conversion events. BMC Evol Biol 2005; 5:54. [PMID: 16221301 PMCID: PMC1274310 DOI: 10.1186/1471-2148-5-54] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2005] [Accepted: 10/12/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The identification of sequence innovations in the genomes of mammals facilitates understanding of human gene function, as well as sheds light on the molecular mechanisms which underlie these changes. Although gene duplication plays a major role in genome evolution, studies regarding concerted evolution events among gene family members have been limited in scope and restricted to protein-coding regions, where high sequence similarity is easily detectable. RESULTS We describe a mammalian-specific expansion of more than 20 rapidly-evolving genes on human chromosome Xq22.1. Many of these are highly divergent in their protein-coding regions yet contain a conserved sequence motif in their 5' UTRs which appears to have been maintained by multiple events of concerted evolution. These events have led to the generation of chimaeric genes, each with a 5' UTR and a protein-coding region that possess independent evolutionary histories. We suggest that concerted evolution has occurred via gene conversion independently in different mammalian lineages, and these events have resulted in elevated G+C levels in the encompassing genomic regions. These concerted evolution events occurred within and between genes from three separate protein families ('brain-expressed X-linked' [BEX], WWbp5-like X-linked [WEX] and G-protein-coupled receptor-associated sorting protein [GASP]), which often are expressed in mammalian brains and associated with receptor mediated signalling and apoptosis. CONCLUSION Despite high protein-coding divergence among mammalian-specific genes, we identified a DNA motif common to these genes' 5' UTR exons. The motif has undergone concerted evolution events independently of its neighbouring protein-coding regions, leading to formation of evolutionary chimaeric genes. These findings have implications for the identification of non protein-coding regulatory elements and their lineage-specific evolution in mammals.
Collapse
Affiliation(s)
- Eitan E Winter
- MRC Functional Genetics Unit, University of Oxford, Department of Human Anatomy and Genetics, South Parks Road, Oxford OX1 3QX, UK
| | - Chris P Ponting
- MRC Functional Genetics Unit, University of Oxford, Department of Human Anatomy and Genetics, South Parks Road, Oxford OX1 3QX, UK
| |
Collapse
|
180
|
Takagi M, Absalon MJ, McLure KG, Kastan MB. Regulation of p53 translation and induction after DNA damage by ribosomal protein L26 and nucleolin. Cell 2005; 123:49-63. [PMID: 16213212 DOI: 10.1016/j.cell.2005.07.034] [Citation(s) in RCA: 498] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2005] [Revised: 05/31/2005] [Accepted: 07/26/2005] [Indexed: 12/31/2022]
Abstract
Increases in p53 protein levels after DNA damage have largely been attributed to an increase in the half-life of p53 protein. Here we demonstrate that increased translation of p53 mRNA is also a critical step in the induction of p53 protein in irradiated cells. Ribosomal protein L26 (RPL26) and nucleolin were found to bind to the 5' untranslated region (UTR) of p53 mRNA and to control p53 translation and induction after DNA damage. RPL26 preferentially binds to the 5'UTR after DNA damage, and its overexpression enhances association of p53 mRNA with heavier polysomes, increases the rate of p53 translation, induces G1 cell-cycle arrest, and augments irradiation-induced apoptosis. Opposite effects were seen when RPL26 expression was inhibited. In contrast, nucleolin overexpression suppresses p53 translation and induction after DNA damage, whereas nucleolin downregulation promotes p53 expression. These findings demonstrate the importance of increased translation of p53 in DNA-damage responses and suggest critical roles for RPL26 and nucleolin in affecting p53 induction.
Collapse
Affiliation(s)
- Masatoshi Takagi
- Department of Hematology-Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | |
Collapse
|
181
|
Morley SJ, Coldwell MJ, Clemens MJ. Initiation factor modifications in the preapoptotic phase. Cell Death Differ 2005; 12:571-84. [PMID: 15900314 DOI: 10.1038/sj.cdd.4401591] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Recent studies have identified several mechanistic links between the regulation of translation and the process of apoptosis. Rates of protein synthesis are controlled by a wide range of agents that induce cell death, and in many instances, the changes that occur to the translational machinery precede overt apoptosis and loss of cell viability. The two principal ways in which factors required for translational activity are modified prior to and during apoptosis involve (i) changes in protein phosphorylation and (ii) specific proteolytic cleavages. In this review, we summarise the principal targets for such regulation, with particular emphasis on polypeptide chain initiation factors eIF2 and eIF4G and the eIF4E-binding proteins. We indicate how the functions of these factors and of other proteins with which they interact may be altered as a result of activation of apoptosis and we discuss the potential significance of such changes for translational control and cell growth regulation.
Collapse
Affiliation(s)
- S J Morley
- Department of Biochemistry, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK.
| | | | | |
Collapse
|
182
|
Saxena A, de Lagarde D, Leonard H, Williamson SL, Vasudevan V, Christodoulou J, Thompson E, MacLeod P, Ravine D. Lost in translation: translational interference from a recurrent mutation in exon 1 of MECP2. J Med Genet 2005; 43:470-7. [PMID: 16155192 PMCID: PMC2593027 DOI: 10.1136/jmg.2005.036244] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND Rett syndrome (RTT) is an X linked neuro-developmental disorder affecting mostly girls. Mutations in the coding region of MECP2 are found in 80% of classic RTT patients. Until recently, the region encoding MECP2 was believed to comprise exons 2, 3, and 4 with the ATG start site located at the end of exon 2 (MeCP2_e2). METHODS Recent reports of another mRNA transcript transcribed from exon 1 (MeCP2_e1) prompted us to screen exon 1 among RNA samples from 20 females with classic or atypical RTT. RESULTS A previously reported 11 base pair deletion in exon 1 was detected in one subject with a milder phenotype. Although RNA expression for both protein isoforms was detected from the mutant allele, evaluation of MeCP2 protein in uncultured patient lymphocytes by immunocytochemistry revealed that MeCP2 protein production was restricted to only 74-76% of lymphocytes. X chromosome inactivation studies of genomic DNA revealed similar XCI ratios at the HUMARA locus (73:27 with HpaII and 74:26 with McrBC). We have demonstrated that translation but not transcription of the MeCP2_e2 isoform is ablated by the 11 nucleotide deletion, 103 nucleotides upstream of the e2 translation start site. CONCLUSIONS These findings reveal that nucleotides within the deleted sequence in the 5'-UTR of the MeCP2_e2 transcript, while not required for transcription, are essential for translation.
Collapse
Affiliation(s)
- A Saxena
- Western Australian Institute for Medical Research, Centre for Medical Research, University of Western Australia, Level 2, North Block, Perth 6000, WA, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
183
|
Singh S, Bevan SC, Patil K, Newton DC, Marsden PA. Extensive variation in the 5′-UTR of Dicer mRNAs influences translational efficiency. Biochem Biophys Res Commun 2005; 335:643-50. [PMID: 16095561 DOI: 10.1016/j.bbrc.2005.07.138] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2005] [Accepted: 07/22/2005] [Indexed: 01/29/2023]
Abstract
The Dicer enzyme is a key component of the RNA interference pathway and also responsible for the processing of micro RNAs, non-coding RNA molecules which regulate the activity of mRNAs by antisense base pairing. Little is known about the structure and regulation of human Dicer mRNA. A comprehensive characterization of Dicer 5'-untranslated region (5'-UTR) RNA structure revealed important diversity within human Dicer mRNA transcripts. Three exon 1 variants were defined, some of which exhibited very restricted patterns of tissue distribution. A number of alternatively spliced 5'-leader exons were also noted, revealing the potential for complex post-transcriptional regulation. Surprisingly, this diversity all occurred within the 5'-UTR of Dicer mRNAs and did not affect the coding region. The Dicer mRNA 5'-UTR variants had profound effects on translational efficiency both in vitro and in transiently transfected cells. A number of major Dicer RNA species are inefficient substrates for the translational machinery.
Collapse
Affiliation(s)
- Sundeep Singh
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ont., Canada
| | | | | | | | | |
Collapse
|
184
|
Collier B, Gorgoni B, Loveridge C, Cooke HJ, Gray NK. The DAZL family proteins are PABP-binding proteins that regulate translation in germ cells. EMBO J 2005; 24:2656-66. [PMID: 16001084 PMCID: PMC1176464 DOI: 10.1038/sj.emboj.7600738] [Citation(s) in RCA: 174] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Accepted: 06/10/2005] [Indexed: 11/09/2022] Open
Abstract
DAZL proteins are germ-cell-specific RNA-binding proteins essential for gametogenesis. The precise molecular role of these proteins in germ-cell development remains enigmatic; however, they appear to function in the cytoplasm. In order to directly address the function of vertebrate DAZL proteins, we have used Xenopus laevis oocytes as a model system. Here we demonstrate that members of this family, including Xdazl, mouse Dazl, human DAZL, human DAZ and human BOULE, have the ability to stimulate translation and function at the level of translation initiation. We show that DAZL proteins interact with poly(A)-binding proteins (PABPs), which are critical for the initiation of translation. Mapping and tethered function experiments suggest that these interactions are physiologically important. This leads to an attractive hypothesis whereby DAZL proteins activate translationally silent mRNAs during germ cell development through the direct recruitment of PABPs.
Collapse
Affiliation(s)
- Brian Collier
- MRC Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh, Scotland, UK
| | - Barbara Gorgoni
- MRC Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh, Scotland, UK
| | - Carolyn Loveridge
- MRC Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh, Scotland, UK
| | - Howard J Cooke
- MRC Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh, Scotland, UK
| | - Nicola K Gray
- MRC Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh, Scotland, UK
- MRC Human Genetics Unit, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, Scotland, UK. Tel.: +44 131 3322471; Fax: +44 131 4678456; E-mail:
| |
Collapse
|
185
|
Piccioni F, Zappavigna V, Verrotti AC. Translational regulation during oogenesis and early development: the cap-poly(A) tail relationship. C R Biol 2005; 328:863-81. [PMID: 16286077 DOI: 10.1016/j.crvi.2005.05.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2005] [Revised: 05/10/2005] [Accepted: 05/10/2005] [Indexed: 11/30/2022]
Abstract
Metazoans rely on the regulated translation of select maternal mRNAs to control oocyte maturation and the initial stages of embryogenesis. These transcripts usually remain silent until their translation is temporally and spatially required during early development. Different translational regulatory mechanisms, varying from cytoplasmic polyadenylation to localization of maternal mRNAs, have evolved to assure coordinated initiation of development. A common feature of these mechanisms is that they share a few key trans-acting factors. Increasing evidence suggest that ubiquitous conserved mRNA-binding factors, including the eukaryotic translation initiation factor 4E (eIF4E) and the cytoplasmic polyadenylation element binding protein (CPEB), interact with cell-specific molecules to accomplish the correct level of translational activity necessary for normal development. Here we review how capping and polyadenylation of mRNAs modulate interaction with multiple regulatory factors, thus controlling translation during oogenesis and early development.
Collapse
Affiliation(s)
- Federica Piccioni
- CEINGE-Biotecnologie Avanzate, Via Comunale Margherita 482, 80145 Naples, Italy
| | | | | |
Collapse
|
186
|
Meng Z, King PH, Nabors LB, Jackson NL, Chen CY, Emanuel PD, Blume SW. The ELAV RNA-stability factor HuR binds the 5'-untranslated region of the human IGF-IR transcript and differentially represses cap-dependent and IRES-mediated translation. Nucleic Acids Res 2005; 33:2962-79. [PMID: 15914670 PMCID: PMC1140080 DOI: 10.1093/nar/gki603] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The type I insulin-like growth factor receptor (IGF-IR) is an integral component in the control of cell proliferation, differentiation and apoptosis. The IGF-IR mRNA contains an extraordinarily long (1038 nt) 5'-untranslated region (5'-UTR), and we have characterized a diverse series of proteins interacting with this RNA sequence which may provide for intricate regulation of IGF-IR gene expression at the translational level. Here, we report the purification and identification of one of these IGF-IR 5'-UTR-binding proteins as HuR, using a novel RNA crosslinking/RNase elution strategy. Because HuR has been predominantly characterized as a 3'-UTR-binding protein, enhancing mRNA stability and generally increasing gene expression, we sought to determine whether HuR might serve a different function in the context of its binding the IGF-IR 5'-UTR. We found that HuR consistently repressed translation initiation through the IGF-IR 5'-UTR. The inhibition of translation by HuR was concentration dependent, and could be reversed in trans by addition of a fragment of the IGF-IR 5'-UTR containing the HuR binding sites as a specific competitor, or abrogated by deletion of the third RNA recognition motif of HuR. We determined that HuR repressed translation initiation through the IGF-IR 5'-UTR in cells as well, and that siRNA knockdown of HuR markedly increased IGF-IR protein levels. Interestingly, we also found that HuR potently inhibited IGF-IR translation mediated through internal ribosome entry. Kinetic assays were performed to investigate the mechanism of translation repression by HuR and the dynamic interplay between HuR and the translation apparatus. We found that HuR, occupying a cap-distal position, significantly delayed translation initiation mediated by cap-dependent scanning, but was eventually displaced from its binding site, directly or indirectly, as a consequence of ribosomal scanning. However, HuR perpetually blocked the activity of the IGF-IR IRES, apparently arresting the IRES-associated translation pre-initiation complex in an inactive state. This function of HuR as a 5'-UTR-binding protein and dual-purpose translation repressor may be critical for the precise regulation of IGF-IR expression essential to normal cellular homeostasis.
Collapse
Affiliation(s)
- Zheng Meng
- Department of Biochemistry and Molecular Genetics, University of Alabama at BirminghamBirmingham, AL, USA
| | - Peter H. King
- Department of Neurology, University of Alabama at BirminghamBirmingham, AL, USA
- Birmingham Veterans Affairs Medical CenterBirmingham, AL 35294, USA
| | - L. Burt Nabors
- Department of Neurology, University of Alabama at BirminghamBirmingham, AL, USA
| | - Nateka L. Jackson
- Department of Medicine, University of Alabama at BirminghamBirmingham, AL, USA
| | - Ching-Yi Chen
- Department of Biochemistry and Molecular Genetics, University of Alabama at BirminghamBirmingham, AL, USA
| | - Peter D. Emanuel
- Department of Biochemistry and Molecular Genetics, University of Alabama at BirminghamBirmingham, AL, USA
- Department of Medicine, University of Alabama at BirminghamBirmingham, AL, USA
- Comprehensive Cancer Center, University of Alabama at BirminghamBirmingham, AL, USA
| | - Scott W. Blume
- Department of Biochemistry and Molecular Genetics, University of Alabama at BirminghamBirmingham, AL, USA
- Department of Medicine, University of Alabama at BirminghamBirmingham, AL, USA
- Comprehensive Cancer Center, University of Alabama at BirminghamBirmingham, AL, USA
- To whom correspondence should be addressed at 1824 6th Avenue South, Wallace Tumor Institute, Room 508, University of Alabama at Birmingham, Birmingham, AL 35294, USA. Tel: +1 205 975 2409; Fax: +1 205 975 6911;
| |
Collapse
|
187
|
Wang G, Guo X, Floros J. Differences in the translation efficiency and mRNA stability mediated by 5'-UTR splice variants of human SP-A1 and SP-A2 genes. Am J Physiol Lung Cell Mol Physiol 2005; 289:L497-508. [PMID: 15894557 DOI: 10.1152/ajplung.00100.2005] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Surfactant protein A (SP-A) plays an important role in host defense, modulation of inflammatory processes, and surfactant-related functions of the lung. The human SP-A (hSP-A) locus consists of two functional genes, SP-A1 and SP-A2. Several hSP-A 5'-untranslated region (UTR) splice variants for each gene have been characterized and shown to be translated in vitro and in vivo. In this report, we investigated the role of hSP-A 5'-UTR splice variants on SP-A production and molecular mechanisms involved. We used in vitro transient expression of hSP-A 5'-UTR constructs containing luciferase as the reporter gene and quantitative real-time PCR to study hSP-A 5'-UTR-mediated gene expression. We found that 1) the four (A'D', ABD, AB'D', and A'CD') 5'-UTR splice variants under study enhanced gene expression, by increasing luciferase activity from 2.5- to 19.5-fold and luciferase mRNA from 4.3- to 8.8-fold compared with the control vector that lacked hSP-A 5'-UTR; 2) all four 5'-UTR splice variants studied regulated mRNA stability. The ABD variant exhibited the lowest rate of mRNA decay compared with the other three constructs (A'D', AB'D', and A'CD'). These three constructs also exhibited significantly lower rate of mRNA decay compared with the control vector; 3) based on the indexes of translational efficiency (luciferase activity/mRNA), ABD and AB'D' exhibited higher translational efficiency compared with the control vector, whereas the translational efficiency of each A'D' and A'CD' was lower than that of the control vector. These findings indicate that the hSP-A 5'-UTR splice variants play an important role in both SP-A translation and mRNA stability.
Collapse
Affiliation(s)
- Guirong Wang
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, 17033, USA
| | | | | |
Collapse
|
188
|
Wilkie GS, Gautier P, Lawson D, Gray NK. Embryonic poly(A)-binding protein stimulates translation in germ cells. Mol Cell Biol 2005; 25:2060-71. [PMID: 15713657 PMCID: PMC549382 DOI: 10.1128/mcb.25.5.2060-2071.2005] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The function of poly(A)-binding protein 1 (PABP1) in poly(A)-mediated translation has been extensively characterized. Recently, Xenopus laevis oocytes and early embryos were shown to contain a novel poly(A)-binding protein, ePABP, which has not been described in other organisms. ePABP was identified as a protein that binds AU-rich sequences and prevents shortening of poly(A) tails. Here, we show that ePABP is also expressed in X. laevis testis, suggesting a more general role for ePABP in gametogenesis. We find that ePABP is conserved throughout vertebrates and that mouse and X. laevis cells have similar tissue-specific ePABP expression patterns. Furthermore, we directly assess the role of ePABP in translation. We show that ePABP is associated with polysomes and can activate the translation of reporter mRNAs in vivo. Despite its relative divergence from PABP1, we find that ePABP has similar functional domains and can bind to several PABP1 partners, suggesting that they may use similar mechanisms to activate translation. In addition, we find that PABP1 and ePABP can interact, suggesting that these proteins may be bound simultaneously to the same mRNA. Finally, we show that the activity of both PABP1 and ePABP increases during oocyte maturation, when many mRNAs undergo polyadenylation.
Collapse
Affiliation(s)
- Gavin S Wilkie
- MRC Human Genetics Unit, Western General Hospital, Crewe Road, EH4 2XU Edinburgh, Scotland, United Kingdom
| | | | | | | |
Collapse
|
189
|
Lahousse S, Smorowski AL, Denis C, Lantoine D, Kerckaert JP, Galiègue-Zouitina S. Structural features of hematopoiesis-specific RhoH/ARHH gene: high diversity of 5'-UTR in different hematopoietic lineages suggests a complex post-transcriptional regulation. Gene 2005; 343:55-68. [PMID: 15563831 DOI: 10.1016/j.gene.2004.08.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2004] [Revised: 08/09/2004] [Accepted: 08/19/2004] [Indexed: 10/26/2022]
Abstract
The hematopoiesis-specific RhoH gene is thought to be deregulated in B-cell non-Hodgkin's lymphoma (B-NHL), by either a chromosomal translocation or mutations, which affect its 5' regulatory region. The encoded Rho protein, always GTP-bound in vivo, was hypothesized to behave as a Rac antagonist. Extensive expression analysis allowed the detection of RhoH transcripts in all hematopoietic lineages (lymphoid, erythroid, myeloid), with a high level in lymphoid cells. To initiate investigations on the molecular mechanisms that regulate RhoH gene expression, Race-PCR and primer extension were conducted in the B-cell line Raji, which allowed (i) the establishment of RhoH complex intron/exon organization and (ii) the detection of several transcription initiation sites. In addition, a high 5' end heterogeneity of RhoH mRNAs was observed, due to alternative splicing of some 5' exons and to the use of these different transcription start sites. RT-PCR analysis led to the identification of this 5' end heterogeneity in different hematopoietic lineages. Discrepancies were particularly observed between B and T cells, due to an alternative splicing of one 5' exon (1b), which might be an important element in RhoH gene regulation. Such specific features have never been described for any Rho family member gene. They provide a molecular basis to study complex mechanisms involved in the control of RhoH expression.
Collapse
Affiliation(s)
- Sébastien Lahousse
- U. 524 Inserm, Institut de Recherches sur le Cancer de Lille, Place de Verdun, 59045 Lille cedex, France
| | | | | | | | | | | |
Collapse
|
190
|
Jones CD, Custer AW, Begun DJ. Origin and evolution of a chimeric fusion gene in Drosophila subobscura, D. madeirensis and D. guanche. Genetics 2005; 170:207-19. [PMID: 15781692 PMCID: PMC1449717 DOI: 10.1534/genetics.104.037283] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An understanding of the mutational and evolutionary mechanisms underlying the emergence of novel genes is critical to studies of phenotypic and genomic evolution. Here we describe a new example of a recently formed chimeric fusion gene that occurs in Drosophila guanche, D. madeirensis, and D. subobscura. This new gene, which we name Adh-Twain, resulted from an Adh mRNA that retrotransposed into the Gapdh-like gene, CG9010. Adh-Twain is transcribed; its 5' promoters and transcription patterns appear similar to those of CG9010. Population genetic and phylogenetic analyses suggest that the amino acid sequence of Adh-Twain evolved rapidly via directional selection shortly after it arose. Its more recent history, however, is characterized by slower evolution consistent with increasing functional constraints. We present a model for the origin of this new gene and discuss genetic and evolutionary factors affecting the evolution of new genes and functions.
Collapse
Affiliation(s)
- Corbin D Jones
- Center for Population Biology, University of California, Davis, 95616, USA.
| | | | | |
Collapse
|
191
|
Good PJ, Abler L, Herring D, Sheets MD. Xenopus embryonic poly(A) binding protein 2 (ePABP2) defines a new family of cytoplasmic poly(A) binding proteins expressed during the early stages of vertebrate development. Genesis 2005; 38:166-75. [PMID: 15083517 DOI: 10.1002/gene.20015] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We describe a new RNA binding protein from Xenopus we have named ePABP2 (embryonic poly(A) binding protein type II). Based on amino acid similarity, ePABP2 is closely related to the ubiquitously expressed nuclear PABP2 protein that directs the elongation of mRNA poly(A) tails during pre-mRNA processing. However, in contrast to known PABP2 proteins, Xenopus ePABP2 is a cytoplasmic protein that is predominantly expressed during the early stages of Xenopus development and in adult ovarian tissue. Biochemical experiments indicate ePABP2 binds poly(A) with specificity and that this binding requires the RRM domain. Mouse and human ePABP2 proteins were also identified and mouse ePABP2 expression is also confined to the earliest stages of mouse development and adult ovarian tissue. We propose that Xenopus ePABP2 is the founding member of a new class of poly(A) binding proteins expressed in vertebrate embryos. Possible roles for this protein in regulating mRNA function in early vertebrate development are discussed.
Collapse
Affiliation(s)
- Peter J Good
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, Louisiana, USA
| | | | | | | |
Collapse
|
192
|
Pickering BM, Willis AE. The implications of structured 5' untranslated regions on translation and disease. Semin Cell Dev Biol 2004; 16:39-47. [PMID: 15659338 DOI: 10.1016/j.semcdb.2004.11.006] [Citation(s) in RCA: 251] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Translational control is a key step in eukaryotic gene expression. The majority of translational control occurs at the level of initiation, thus implicating the 5' untranslated region as a major site of translational regulation. Many growth-related mRNAs have atypical 5' UTRs, which are often long and GC-rich. Such features promote formation of stable secondary structure, and many mRNAs encoding proteins involved in cell growth, proliferation and apoptosis have structured 5' UTRs, which in many cases harbour internal ribosome entry sites (IRESs) and upstream open-reading frames (uORFs). In this review we discuss how secondary structural elements in the 5' UTR can regulate translation and how mutations that perturb these secondary structural elements can have implications for disease and tumourigenesis.
Collapse
Affiliation(s)
- Becky M Pickering
- Department of Biochemistry, University of Leicester, University Rd, Leicester LE17RH, UK
| | | |
Collapse
|
193
|
Hsiao JC, Chung CS, Drillien R, Chang W. The cowpox virus host range gene, CP77, affects phosphorylation of eIF2 alpha and vaccinia viral translation in apoptotic HeLa cells. Virology 2004; 329:199-212. [PMID: 15476887 DOI: 10.1016/j.virol.2004.07.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2004] [Revised: 04/09/2004] [Accepted: 07/12/2004] [Indexed: 10/26/2022]
Abstract
Host restriction of vaccinia virus has been previously described in CHO and RK13 cells in which a cowpox virus CP77 gene rescues vaccinia virus growth at the viral protein translation level. Here we investigate the restrictive stage of vaccinia virus in HeLa cells using a vaccinia mutant virus (VV-hr) that contains a deletion of 18-kb genome sequences resulting in no growth in HeLa cells. Insertion of CP77 gene into VV-hr generated a recombinant virus (VV-36hr) that multiplied well in HeLa cells. Both viruses could enter cells, initiate viral DNA replication and intermediate gene transcription. However, translation of viral intermediate gene was only detected in cells infected with VV-36hr, indicating that CP77 relieves host restriction at the intermediate gene translation stage in HeLa cells. Caspase-2 and -3 activation was observed in HeLa cells infected with VV-hr coupled with dramatic morphological alterations and cleavage of the translation initiation factor eIF4G. Caspase activation was reduced in HeLa cells infected with VV-36hr, indicating that CP77 acts upstream of caspase activation. Enhanced phosphorylation of PKR and eIF2alpha was also observed in cells infected with VV-hr and was suppressed by CP77. Suppression of eIF4G cleavage with the caspase inhibitor ZVAD did not rescue virus translation, whereas expression of a mutant eIF2alpha protein with an alanine substitution of serine at amino acid position 51 (eIF2alphaS51A) partially restored viral translation and moderately increased virus growth in HeLa cells.
Collapse
Affiliation(s)
- Jye-Chian Hsiao
- Graduate Institute of Life Science, National Defense Medical Center, National Defense University, Taipei, Taiwan, ROC
| | | | | | | |
Collapse
|
194
|
Peng X, Mehta RG, Tonetti DA, Christov K. Identification of novel RARβ2 transcript variants with short 5′-UTRs in normal and cancerous breast epithelial cells. Oncogene 2004; 24:1296-301. [PMID: 15558014 DOI: 10.1038/sj.onc.1208284] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Functional significance of RARbeta2 as a putative tumor suppressor gene has been studied in breast cancer and other tumors. The long 5'-untranslated region (5'-UTR) of its transcript with multiple open-reading frames (uORFs) is considered as a regulatory unit for translation. Here, for the first time we identified RARbeta2 transcript variants with short 5'-UTRs in both normal and malignant breast epithelial cells. The 5'-RACE analysis of RARbeta2 mRNA in these cells demonstrated the existence of short RARbeta2 transcript variants that are identical to the sequence of known RARbeta2, but lack all the uORFs present in the full-length 5'-UTR. By RT-PCR analysis, we found that the expression of both transcripts with short and full-length 5'-UTR is mediated by retinoic acid, while cellular sensitivity is preferentially correlated to upregulation of short RARbeta2 transcript variants in response to retinoic acid. The transfection and in vitro translation assay indicated that the short 5'-UTR has no inhibitory effects on translation, while the presence of full-length 5'-UTR inhibited translation by 60%. In addition, no promoter activity was detectable in RARbeta2 full-length 5'-UTR region. Our data suggest that the RARbeta2 transcript variants with short 5'-UTR may serve as major transcripts for RARbeta2 protein translation as well as potential targets for retinoids in breast cancer prevention and therapy studies.
Collapse
Affiliation(s)
- Xinjian Peng
- Department of Surgical Oncology, University of Illinois at Chicago, 840 South Wood Street, M/C 820, Chicago, IL 60612, USA
| | | | | | | |
Collapse
|
195
|
Abstract
Eukaryotic mRNAs are primarily degraded by removal of the 3' poly(A) tail, followed either by cleavage of the 5' cap structure (decapping) and 5'->3' exonucleolytic digestion, or by 3' to 5' degradation. mRNA decapping represents a critical step in turnover because this permits the degradation of the mRNA and is a site of numerous control inputs. Recent analyses suggest decapping of an mRNA consists of four central and related events. These include removal, or inactivation, of the poly(A) tail as an inhibitor of decapping, exit from active translation, assembly of a decapping complex on the mRNA, and sequestration of the mRNA into discrete cytoplasmic foci where decapping can occur. Each of these steps is a demonstrated, or potential, site for the regulation of mRNA decay. We discuss the decapping process in the light of these central properties, which also suggest fundamental aspects of cytoplasmic mRNA physiology that connect decapping, translation, and storage of mRNA.
Collapse
Affiliation(s)
- Jeff Coller
- Howard Hughes Medical Institute, Department of Molecular and Cellular Biology, University of Arizona, Tucson, Arizona 85721, USA.
| | | |
Collapse
|
196
|
Jackson JS, Houshmandi SS, Lopez Leban F, Olivas WM. Recruitment of the Puf3 protein to its mRNA target for regulation of mRNA decay in yeast. RNA (NEW YORK, N.Y.) 2004; 10:1625-36. [PMID: 15337848 PMCID: PMC1370648 DOI: 10.1261/rna.7270204] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2004] [Accepted: 06/24/2004] [Indexed: 05/21/2023]
Abstract
The Puf family of RNA-binding proteins regulates mRNA translation and decay via interactions with 3' untranslated regions (3' UTRs) of target mRNAs. In yeast, Puf3p binds the 3' UTR of COX17 mRNA and promotes rapid deadenylation and decay. We have investigated the sequences required for Puf3p recruitment to this 3' UTR and have identified two separate binding sites. These sites are specific for Puf3p, as they cannot bind another Puf protein, Puf5p. Both sites use a conserved UGUANAUA sequence, whereas one site contains additional sequences that enhance binding affinity. In vivo, presence of either site partially stimulates COX17 mRNA decay, but full decay regulation requires the presence of both sites. No other sequences outside the 3' UTR are required to mediate this decay regulation. The Puf repeat domain of Puf3p is sufficient not only for in vitro binding to the 3' UTR, but also in vivo stimulation of COX17 mRNA decay. These experiments indicate that the essential residues involved in mRNA decay regulation are wholly contained within this RNA-binding domain.
Collapse
Affiliation(s)
- John S Jackson
- Department of Biology, University of Missouri-St. Louis, One University Boulevard, St. Louis, MO 63121-4499, USA
| | | | | | | |
Collapse
|
197
|
Liu H, Wong L. Data mining tools for biological sequences. J Bioinform Comput Biol 2004; 1:139-67. [PMID: 15290785 DOI: 10.1142/s0219720003000216] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2002] [Revised: 04/07/2003] [Accepted: 04/07/2003] [Indexed: 11/18/2022]
Abstract
We describe a methodology, as well as some related data mining tools, for analyzing sequence data. The methodology comprises three steps: (a) generating candidate features from the sequences, (b) selecting relevant features from the candidates, and (c) integrating the selected features to build a system to recognize specific properties in sequence data. We also give relevant techniques for each of these three steps. For generating candidate features, we present various types of features based on the idea of k-grams. For selecting relevant features, we discuss signal-to-noise, t-statistics, and entropy measures, as well as a correlation-based feature selection method. For integrating selected features, we use machine learning methods, including C4.5, SVM, and Naive Bayes. We illustrate this methodology on the problem of recognizing translation initiation sites. We discuss how to generate and select features that are useful for understanding the distinction between ATG sites that are translation initiation sites and those that are not. We also discuss how to use such features to build reliable systems for recognizing translation initiation sites in DNA sequences.
Collapse
Affiliation(s)
- Huiqing Liu
- Institute for Infocomm Research, 21 Heng Mui Keng Terrace, Singapore 119613, Singapore.
| | | |
Collapse
|
198
|
Agca C, Bidwell CA, Donkin SS. Cloning of bovine pyruvate carboxylase and 5' untranslated region variants. Anim Biotechnol 2004; 15:47-66. [PMID: 15248600 DOI: 10.1081/abio-120037897] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Bovine pyruvate carboxylase (PC; EC 6.4.1.1) cDNA was cloned by reverse transcription (RT) PCR. The coding region plus 3' untranslated region (UTR) of PC mRNA is 3926 bases and encodes 1178 amino acid PC precursor protein. A 5' rapid amplification of cDNA ends protocol was used to clone the 5' end of the mRNA. Six 5'UTR variants ranging from 68 to 363 bp were cloned. Bovine PC 5'UTR (bPC5') variants contain 68 (bPC5'A), 263 (bPC5'B), 363 (bPC5'C), 89 (bPC5'D), 275 (bPC5'E), and 178 bp (bPC5'F). All variants contain a common coding sequence. An RNase protection assay and RT-PCR analysis confirms the presence of the 5'UTR variants. The abundance of PC mRNA, determined by Northern blot analysis, indicates that PC is more abundant in gluconeogenic and lipogenic tissues where all PC variants are expressed compared with tissues that do not possess the full spectrum of PC transcripts. The data suggest that bPC5'A, bPC5'B, and bPC5'F are more abundant in bovine liver than the other variants.
Collapse
Affiliation(s)
- Cansu Agca
- Department of Animal Sciences, Purdue University, West Lafayette, Indiana 47907-2054, USA
| | | | | |
Collapse
|
199
|
Lequarre AS, Traverso JM, Marchandise J, Donnay I. Poly(A) RNA Is Reduced by Half During Bovine Oocyte Maturation but Increases when Meiotic Arrest Is Maintained with CDK Inhibitors1. Biol Reprod 2004; 71:425-31. [PMID: 15056564 DOI: 10.1095/biolreprod.103.026724] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Variations in the amount of different RNA species were investigated during in vitro maturation of bovine oocytes. Total RNA content was estimated to be 2 ng before meiosis, and after meiosis resumption, no decrease was observed. Ribosomal RNA did not appear to be degraded either, whereas poly(A) RNA was reduced by half after meiosis resumption, from 53 pg to 25 pg per oocyte. Real-time polymerase chain reaction was performed on growth and differentiation factor-9 (GDF-9), on cyclin B1, and on two genes implicated in the resistance to oxidative stress, glucose-6-phosphate-dehydrogenase (G6PD) and peroxiredoxin-6 (PRDX6). When these transcripts were reverse-transcribed with hexamers, the amplification results were not different before or after in vitro maturation. But when reverse transcription was performed with oligo(dT), amplification was dramatically reduced after maturation, except for cyclin B1 mRNA, implying deadenylation without degradation of three transcripts. Although calf oocytes have a lower developmental competence, their poly(A) RNA contents were not different from that of cow oocytes, nor were they differently affected during maturation. When bovine oocytes were maintained in vitro under meiotic arrest with CDK inhibitors, their poly(A) RNA amount increased, but this rise did not change the poly(A) RNA level once maturation was achieved. The increase could not be observed under transcription inhibition and, when impeding transcription and adenylation, the poly(A) RNA decreased to a level normally observed after maturation, in spite of the maintenance of meiotic arrest. These results demonstrate the importance of adenylation and deadenylation processes during in vitro maturation of bovine oocytes.
Collapse
Affiliation(s)
- Anne Sophie Lequarre
- Unité des Sciences Vétérinaires, Institut des Sciences de la Vie, Université Catholique de Louvain, Louvain-la-Neuve B-1348, Belgium.
| | | | | | | |
Collapse
|
200
|
Orton KC, Ling J, Waskiewicz AJ, Cooper JA, Merrick WC, Korneeva NL, Rhoads RE, Sonenberg N, Traugh JA. Phosphorylation of Mnk1 by caspase-activated Pak2/gamma-PAK inhibits phosphorylation and interaction of eIF4G with Mnk. J Biol Chem 2004; 279:38649-57. [PMID: 15234964 DOI: 10.1074/jbc.m407337200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mitogen-activated protein kinase-interacting kinase 1 (Mnk1) is phosphorylated by caspase-cleaved protein kinase Pak2/gamma-PAK but not by Cdc42-activated Pak2. Phosphorylation of Mnk1 is rapid, reaching 1 mol/mol within 15 min of incubation with Pak2. A kinetic analysis of the phosphorylation of Mnk1 by Pak2 yields a K(m) of 0.6 microm and a V(max) of 14.9 pmol of (32)P/min/microg of Pak2. Two-dimensional tryptic phosphopeptide mapping of Mnk1 phosphorylated by Pak2 yields two distinct phosphopeptides. Analysis of the phosphopeptides by automated microsequencing and manual Edman degradation identified the sites in Mnk1 as Thr(22) and Ser(27). Mnk1, activated by phosphorylation with Erk2, phosphorylates the eukaryotic initiation factor (eIF) 4E and the eIF4G components of eIF4F. Phosphorylation of Mnk1 by Pak2 does not activate Mnk1, as measured with either eIF4E or eIF4F as substrate. Phosphorylation of Erk2-activated Mnk1 by Pak2 has no effect on phosphorylation of eIF4E but reduces phosphorylation of eIF4G by Mnk1 by up to 50%. Phosphorylation of Mnk1 by Pak2 inhibits binding of eIF4G peptides containing the Mnk1 binding site by up to 80%. When 293T cells are subjected to apoptotic induction by hydrogen peroxide, Mnk1 is phosphorylated at both Thr(22) and Ser(27). These results indicate a role for Pak2 in the down-regulation of translation initiation in apoptosis by phosphorylation of Mnk1.
Collapse
Affiliation(s)
- Kevin C Orton
- Department of Biochemistry, University of California, Riverside, Riverside, California 92521, USA
| | | | | | | | | | | | | | | | | |
Collapse
|