151
|
Johannes L, Wunder C, Shafaq-Zadah M. Glycolipids and Lectins in Endocytic Uptake Processes. J Mol Biol 2016; 428:S0022-2836(16)30453-3. [PMID: 27984039 DOI: 10.1016/j.jmb.2016.10.027] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 10/24/2016] [Accepted: 10/24/2016] [Indexed: 01/04/2023]
Abstract
A host of endocytic processes has been described at the plasma membrane of eukaryotic cells. Their categorization has most commonly referenced cytosolic machinery, of which the clathrin coat has occupied a preponderant position. In what concerns intra-membrane constituents, the focus of interest has been on phosphatidylinositol lipids and their capacity to orchestrate endocytic events on the cytosolic leaflet of the membrane. The contribution of extracellular determinants to the construction of endocytic pits has received much less attention, depite the fact that (glyco)sphingolipids are exoplasmic leaflet fabric of membrane domains, termed rafts, whose contributions to predominantly clathrin-independent internalization processes is well recognized. Furthermore, sugar modifications on extracellular domains of proteins, and sugar-binding proteins, termed lectins, have also been linked to the uptake of endocytic cargoes at the plasma membrane. In this review, we first summarize these contributions by extracellular determinants to the endocytic process. We thus propose a molecular hypothesis - termed the GL-Lect hypothesis - on how GlycoLipids and Lectins drive the formation of compositional nanoenvrionments from which the endocytic uptake of glycosylated cargo proteins is operated via clathrin-independent carriers. Finally, we position this hypothesis within the global context of endocytic pathway proposals that have emerged in recent years.
Collapse
Affiliation(s)
- Ludger Johannes
- Institut Curie, PSL Research University, Chemical Biology of Membranes and Therapeutic Delivery unit, INSERM, U 1143, CNRS, UMR 3666, 26 rue d'Ulm, 75248 Paris Cedex 05, France.
| | - Christian Wunder
- Institut Curie, PSL Research University, Chemical Biology of Membranes and Therapeutic Delivery unit, INSERM, U 1143, CNRS, UMR 3666, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | - Massiullah Shafaq-Zadah
- Institut Curie, PSL Research University, Chemical Biology of Membranes and Therapeutic Delivery unit, INSERM, U 1143, CNRS, UMR 3666, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| |
Collapse
|
152
|
Goto Y, Uematsu S, Kiyono H. Epithelial glycosylation in gut homeostasis and inflammation. Nat Immunol 2016; 17:1244-1251. [PMID: 27760104 DOI: 10.1038/ni.3587] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intestinal epithelial cells apically express glycans, especially α1,2-fucosyl linkages, which work as a biological interface for the host-microbe interaction. Emerging studies have shown that epithelial α1,2-fucosylation is regulated by microbes and by group 3 innate lymphoid cells (ILC3s). Dysregulation of the gene (FUT2) encoding fucosyltransferase 2, an enzyme governing epithelial α1,2-fucosylation, is associated with various human disorders, including infection and chronic inflammatory diseases. This suggests a critical role for an interaction between microbes, epithelial cells and ILC3s mediated via glycan residues. In this Review, using α1,2-fucose and Fut2 gene expression as an example, we describe how epithelial glycosylation is controlled by immune cells and luminal microbes. We also address the pathophysiological contribution of epithelial α1,2-fucosylation to pathogenic and commensal microbes as well as the potential of α1,2-fucose and its regulatory pathway as previously unexploited targets in the development of new therapeutic approaches for human diseases.
Collapse
Affiliation(s)
- Yoshiyuki Goto
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan
- International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Satoshi Uematsu
- International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Mucosal Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiroshi Kiyono
- International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan
- Division of Mucosal Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
153
|
Weinstein AM, Storkus WJ. Biosynthesis and Functional Significance of Peripheral Node Addressin in Cancer-Associated TLO. Front Immunol 2016; 7:301. [PMID: 27555845 PMCID: PMC4977569 DOI: 10.3389/fimmu.2016.00301] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 07/26/2016] [Indexed: 12/16/2022] Open
Abstract
Peripheral node addressin (PNAd) marks high endothelial venules (HEV), which are crucial for the recruitment of lymphocytes into lymphoid organs in non-mucosal tissue sites. PNAd is a sulfated and fucosylated glycoprotein recognized by the prototypic monoclonal antibody, MECA-79. PNAd is the ligand for L-selectin, which is expressed on the surface of naive and central memory T cells, where it mediates leukocyte rolling on vascular endothelial surfaces. Although PNAd was first identified in the HEV of peripheral lymph nodes, recent work suggests a critical role for PNAd in the context of chronic inflammatory diseases, where it can be used as a marker for the formation of tertiary lymphoid organs (TLOs). TLO form in tissues impacted by sustained inflammation, such as the tumor microenvironment where they function as local sites of adaptive immune cell priming. This allows for specific B- and T-cell responses to be initiated or reactivated in inflamed tissues without dependency on secondary lymphoid organs. Recent studies of cancer in mice and humans have identified PNAd as a biomarker of improved disease prognosis. Blockade of PNAd or its ligand, L-selectin, can abrogate protective antitumor immunity in murine models. This review examines pathways regulating PNAd biosynthesis by the endothelial cells integral to HEV and the formation and maintenance of lymphoid structures throughout the body, particularly in the setting of cancer.
Collapse
Affiliation(s)
- Aliyah M Weinstein
- Department of Immunology, University of Pittsburgh School of Medicine , Pittsburgh, PA , USA
| | - Walter J Storkus
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA
| |
Collapse
|
154
|
Abstract
A number of mechanisms ensure that the intestine is protected from pathogens and also against our own intestinal microbiota. The outermost of these is the secreted mucus, which entraps bacteria and prevents their translocation into the tissue. Mucus contains many immunomodulatory molecules and is largely produced by the goblet cells. These cells are highly responsive to the signals they receive from the immune system and are also able to deliver antigens from the lumen to dendritic cells in the lamina propria. In this Review, we will give a basic overview of mucus, mucins and goblet cells, and explain how each of these contributes to immune regulation in the intestine.
Collapse
Affiliation(s)
- Malin E V Johansson
- Department of Medical Biochemistry, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Gunnar C Hansson
- Department of Medical Biochemistry, University of Gothenburg, 405 30 Gothenburg, Sweden
| |
Collapse
|
155
|
Zhang Y, Roth TL, Gray EE, Chen H, Rodda LB, Liang Y, Ventura P, Villeda S, Crocker PR, Cyster JG. Migratory and adhesive cues controlling innate-like lymphocyte surveillance of the pathogen-exposed surface of the lymph node. eLife 2016; 5. [PMID: 27487469 PMCID: PMC5017864 DOI: 10.7554/elife.18156] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 07/30/2016] [Indexed: 12/19/2022] Open
Abstract
Lymph nodes (LNs) contain innate-like lymphocytes that survey the subcapsular sinus (SCS) and associated macrophages for pathogen entry. The factors promoting this surveillance behavior have not been defined. Here, we report that IL7RhiCcr6+ lymphocytes in mouse LNs rapidly produce IL17 upon bacterial and fungal challenge. We show that these innate-like lymphocytes are mostly LN resident. Ccr6 is required for their accumulation near the SCS and for efficient IL17 induction. Migration into the SCS intrinsically requires S1pr1, whereas movement from the sinus into the parenchyma involves the integrin LFA1 and its ligand ICAM1. CD169, a sialic acid-binding lectin, helps retain the cells within the sinus, preventing their loss in lymph flow. These findings establish a role for Ccr6 in augmenting innate-like lymphocyte responses to lymph-borne pathogens, and they define requirements for cell movement between parenchyma and SCS in what we speculate is a program of immune surveillance that helps achieve LN barrier immunity. DOI:http://dx.doi.org/10.7554/eLife.18156.001 The lymphatic system is a network of vessels and a vital part of our immune system. Amongst other things, the lymphatic system carries microbes that have entered the body – for example via to a cut or mosquito bite – to small, oval-shaped organs called lymph nodes. The lymph nodes are packed with immune cells that can be activated to help fight off infections, however certain microbes actually replicate inside the lymph nodes themselves. Lymph nodes protect themselves from these infections by having some pre-armed immune cells that are ready to respond rapidly as soon as an invading microbe is detected. These cells, referred to as innate-like lymphocytes, position themselves at the exposed surfaces of the lymph node – the locations where microbes are most likely to enter the organ. However, it was not known which cues caused these immune cells to assemble and remain at these locations. Zhang et al. now reveal that a signaling molecule called CCL20 attracts the innate-like lymphocytes to the lymph node’s exposed surfaces, while a protein known as CD169 helps to securely attach the innate-like lymphocytes in place. Further experiments then confirmed that positioning the innate-like lymphocytes at this location made mice more able to fight off the disease-causing bacterium Staphyloccus aureus. Unexpectedly, Zhang et al. also found that innate-like lymphocytes can move from the surfaces of lymph node through to the underlying tissue. This unusual migratory behavior might allow the lymphocytes to search a larger area for the infectious microbes, though further studies are needed to test this hypothesis. Future studies are also likely to focus on elucidating how the innate-like lymphocytes recognize different types of invaders, and how their activity keeps the lymph nodes healthy. DOI:http://dx.doi.org/10.7554/eLife.18156.002
Collapse
Affiliation(s)
- Yang Zhang
- Department of Microbiology and Immunology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | - Theodore L Roth
- Department of Microbiology and Immunology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | - Elizabeth E Gray
- Department of Microbiology and Immunology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | - Hsin Chen
- Department of Microbiology and Immunology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | - Lauren B Rodda
- Department of Microbiology and Immunology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | - Yin Liang
- Department of Microbiology and Immunology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | - Patrick Ventura
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, United States
| | - Saul Villeda
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, United States
| | - Paul R Crocker
- Division of Cell Signalling and Immunology, University of Dundee, Dundee, United Kingdom.,College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Jason G Cyster
- Department of Microbiology and Immunology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
156
|
Kao CF, Chen HW, Chen HC, Yang JH, Huang MC, Chiu YH, Lin SK, Lee YC, Liu CM, Chuang LC, Chen CH, Wu JY, Lu RB, Kuo PH. Identification of Susceptible Loci and Enriched Pathways for Bipolar II Disorder Using Genome-Wide Association Studies. Int J Neuropsychopharmacol 2016; 19:pyw064. [PMID: 27450446 PMCID: PMC5203756 DOI: 10.1093/ijnp/pyw064] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 07/11/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND This study aimed to identify susceptible loci and enriched pathways for bipolar disorder subtype II. METHODS We conducted a genome-wide association scan in discovery samples with 189 bipolar disorder subtype II patients and 1773 controls, and replication samples with 283 bipolar disorder subtype II patients and 500 controls in a Taiwanese Han population using Affymetrix Axiom Genome-Wide CHB1 Array. We performed single-marker and gene-based association analyses, as well as calculated polygeneic risk scores for bipolar disorder subtype II. Pathway enrichment analyses were employed to reveal significant biological pathways. RESULTS Seven markers were found to be associated with bipolar disorder subtype II in meta-analysis combining both discovery and replication samples (P<5.0×10-6), including markers in or close to MYO16, HSP90AB3P, noncoding gene LOC100507632, and markers in chromosomes 4 and 10. A novel locus, ETF1, was associated with bipolar disorder subtype II (P<6.0×10-3) in gene-based association tests. Results of risk evaluation demonstrated that higher genetic risk scores were able to distinguish bipolar disorder subtype II patients from healthy controls in both discovery (P=3.9×10-4~1.0×10-3) and replication samples (2.8×10-4~1.7×10-3). Genetic variance explained by chip markers for bipolar disorder subtype II was substantial in the discovery (55.1%) and replication (60.5%) samples. Moreover, pathways related to neurodevelopmental function, signal transduction, neuronal system, and cell adhesion molecules were significantly associated with bipolar disorder subtype II. CONCLUSION We reported novel susceptible loci for pure bipolar subtype II disorder that is less addressed in the literature. Future studies are needed to confirm the roles of these loci for bipolar disorder subtype II.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Ru-Band Lu
- Department of Public Health & Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan (Dr Kao, Mr Lee, and Dr Kuo); Department of Agronomy, College of Agriculture & Natural Resources, National Chung Hsing University, Taichung, Taiwan (Dr Kao); National Center for Genome Medicine, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (Mrs Chen, Dr Yang, Dr Chen, and Dr Wu); Department of Psychiatry & Center of Sleep Disorders, National Taiwan University Hospital, Taipei, Taiwan (Dr Chen); Department of Nursing, Cardinal Tien Junior College of Healthcare & Management, Yilan, Taiwan (Dr Chuang); Department of Psychiatry, School of Medicine, Taipei Medical University, Taipei, Taiwan (Drs Huang, Chiu, and Lin); Department of Psychiatry, Taipei City Psychiatric Center, Taipei, Taiwan (Dr Huang); Department of Psychiatry, Wan Fang Medical Center, Taipei, Taiwan (Dr Chiu); Department of Psychiatry, Taipei City Hospital and Psychiatric Center, Taipei, Taiwan (Dr Lin); Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan (Dr Liu); Department of Psychiatry, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan (Dr Liu); Department of Psychiatry, National Cheng Kung University and Hospital, Tainan, Taiwan (Dr Lu); Research Center for Genes, Environment and Human Health, National Taiwan University, Taipei, Taiwan (Dr Kuo).
| | - Po-Hsiu Kuo
- Department of Public Health & Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan (Dr Kao, Mr Lee, and Dr Kuo); Department of Agronomy, College of Agriculture & Natural Resources, National Chung Hsing University, Taichung, Taiwan (Dr Kao); National Center for Genome Medicine, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (Mrs Chen, Dr Yang, Dr Chen, and Dr Wu); Department of Psychiatry & Center of Sleep Disorders, National Taiwan University Hospital, Taipei, Taiwan (Dr Chen); Department of Nursing, Cardinal Tien Junior College of Healthcare & Management, Yilan, Taiwan (Dr Chuang); Department of Psychiatry, School of Medicine, Taipei Medical University, Taipei, Taiwan (Drs Huang, Chiu, and Lin); Department of Psychiatry, Taipei City Psychiatric Center, Taipei, Taiwan (Dr Huang); Department of Psychiatry, Wan Fang Medical Center, Taipei, Taiwan (Dr Chiu); Department of Psychiatry, Taipei City Hospital and Psychiatric Center, Taipei, Taiwan (Dr Lin); Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan (Dr Liu); Department of Psychiatry, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan (Dr Liu); Department of Psychiatry, National Cheng Kung University and Hospital, Tainan, Taiwan (Dr Lu); Research Center for Genes, Environment and Human Health, National Taiwan University, Taipei, Taiwan (Dr Kuo).
| |
Collapse
|
157
|
Cortez VS, Colonna M. Diversity and function of group 1 innate lymphoid cells. Immunol Lett 2016; 179:19-24. [PMID: 27394699 DOI: 10.1016/j.imlet.2016.07.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 07/05/2016] [Indexed: 12/17/2022]
Abstract
Innate lymphoid cells (ILCs) are a heterogeneous population of cells with diverse roles in immune responses. Three major groups of ILCs have been defined on the basis of similarity in their production of signature cytokines, developmental requirements, and phenotypic markers. Group 1 ILCs produce IFN-γ, express the T-box transcription factors (TF) T-bet and/or Eomesodermin (Eomes), group 2 ILCs secrete IL-5 and IL-13 and express the TF GATA-3, while group 3 ILCs produce IL-22 and IL-17 and express the TF RORgt. In this review, we will briefly overview each group in terms of phenotype, function and development and then focus more extensively on group 1 ILCs, expanding on their emerging diversity, their disparate functions and the differences between NK cells and ILC1.
Collapse
Affiliation(s)
- Victor S Cortez
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
158
|
Zhang Z, Li J, Zheng W, Zhao G, Zhang H, Wang X, Guo Y, Qin C, Shi Y. Peripheral Lymphoid Volume Expansion and Maintenance Are Controlled by Gut Microbiota via RALDH+ Dendritic Cells. Immunity 2016; 44:330-42. [PMID: 26885858 DOI: 10.1016/j.immuni.2016.01.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 11/05/2015] [Accepted: 01/06/2016] [Indexed: 01/09/2023]
Abstract
Lymphocyte homing to draining lymph nodes is critical for the initiation of immune responses. Secondary lymphoid organs of germ-free mice are underdeveloped. How gut commensal microbes remotely regulate cellularity and volume of secondary lymphoid organs remains unknown. We report here that, driven by commensal fungi, a wave of CD45(+)CD103(+)RALDH(+) cells migrates to the peripheral lymph nodes after birth. The arrival of these cells introduces high amounts of retinoic acid, mediates the neonatal to adult addressin switch on endothelial cells, and directs the homing of lymphocytes to both gut-associated lymphoid tissues and peripheral lymph nodes. In adult mice, a small number of these RALDH(+) cells might serve to maintain the volume of secondary lymphoid organs. Homing deficiency of these cells was associated with lymph node attrition in vitamin-A-deficient mice, suggesting a perpetual dependence on retinoic acid signaling for structural and functional maintenance of peripheral immune organs.
Collapse
Affiliation(s)
- Zongde Zhang
- Institute for Immunology, Department of Basic Medical Sciences, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jianjian Li
- Institute for Immunology, Department of Basic Medical Sciences, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wencheng Zheng
- Institute for Immunology, Department of Basic Medical Sciences, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Guang Zhao
- Institute for Immunology, Department of Basic Medical Sciences, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hong Zhang
- Institute for Immunology, Department of Basic Medical Sciences, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaofei Wang
- Institute for Immunology, Department of Basic Medical Sciences, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yaqian Guo
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100730, China
| | - Chuan Qin
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing 100730, China
| | - Yan Shi
- Institute for Immunology, Department of Basic Medical Sciences, School of Medicine, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China; Department of Microbiology, Immunology and Infectious Diseases and Snyder Institute for Chronic Diseases, University of Calgary Calgary, AB T2N 1N4, Canada.
| |
Collapse
|
159
|
Whiteford JR, De Rossi G, Woodfin A. Mutually Supportive Mechanisms of Inflammation and Vascular Remodeling. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 326:201-78. [PMID: 27572130 DOI: 10.1016/bs.ircmb.2016.05.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chronic inflammation is often accompanied by angiogenesis, the development of new blood vessels from existing ones. This vascular response is a response to chronic hypoxia and/or ischemia, but is also contributory to the progression of disorders including atherosclerosis, arthritis, and tumor growth. Proinflammatory and proangiogenic mediators and signaling pathways form a complex and interrelated network in these conditions, and many factors exert multiple effects. Inflammation drives angiogenesis by direct and indirect mechanisms, promoting endothelial proliferation, migration, and vessel sprouting, but also by mediating extracellular matrix remodeling and release of sequestered growth factors, and recruitment of proangiogenic leukocyte subsets. The role of inflammation in promoting angiogenesis is well documented, but by facilitating greater infiltration of leukocytes and plasma proteins into inflamed tissues, angiogenesis can also propagate chronic inflammation. This review examines the mutually supportive relationship between angiogenesis and inflammation, and considers how these interactions might be exploited to promote resolution of chronic inflammatory or angiogenic disorders.
Collapse
Affiliation(s)
- J R Whiteford
- William Harvey Research Institute, Barts and London School of Medicine and Dentistry, Queen Mary College, University of London, London, United Kingdom
| | - G De Rossi
- William Harvey Research Institute, Barts and London School of Medicine and Dentistry, Queen Mary College, University of London, London, United Kingdom
| | - A Woodfin
- Cardiovascular Division, King's College, University of London, London, United Kingdom.
| |
Collapse
|
160
|
Hiraoka N, Ino Y, Yamazaki-Itoh R. Tertiary Lymphoid Organs in Cancer Tissues. Front Immunol 2016; 7:244. [PMID: 27446075 PMCID: PMC4916185 DOI: 10.3389/fimmu.2016.00244] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 06/10/2016] [Indexed: 12/20/2022] Open
Abstract
Tertiary lymphoid organs (TLOs) are induced postnatally in non-lymphoid tissues such as those affected by chronic infections, autoimmune diseases, and chronic allograft rejection, and also in cancer tissues. TLOs are thought to provide important lymphocytic functional environments for both cellular and humoral immunity, similar to lymph nodes or Peyer’s patches. TLOs have a structure similar to that of lymph nodes or Peyer’s patches, including T cell zones, B cell follicles, and high endothelial venules (HEV) without encapsulation. Here, we review recent advances in our knowledge of TLOs in human solid cancers, including their location, structure, methods of evaluation, and clinicopathological impact. We also discuss the formation and/or maintenance of TLOs in cancer tissues in association with the tumor immune microenvironment, cancer invasion, and the tissue structure of the cancer stroma.
Collapse
Affiliation(s)
- Nobuyoshi Hiraoka
- Division of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan; Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan; Division of Analytical Pathology, National Cancer Center Research Institute, Tokyo, Japan
| | - Yoshinori Ino
- Division of Molecular Pathology, National Cancer Center Research Institute, Tokyo, Japan; Division of Analytical Pathology, National Cancer Center Research Institute, Tokyo, Japan
| | - Rie Yamazaki-Itoh
- Division of Molecular Pathology, National Cancer Center Research Institute , Tokyo , Japan
| |
Collapse
|
161
|
Turner JE, Spielmann G, Wadley AJ, Aldred S, Simpson RJ, Campbell JP. Exercise-induced B cell mobilisation: Preliminary evidence for an influx of immature cells into the bloodstream. Physiol Behav 2016; 164:376-82. [PMID: 27321758 DOI: 10.1016/j.physbeh.2016.06.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 06/13/2016] [Accepted: 06/16/2016] [Indexed: 12/14/2022]
Abstract
The number of peripheral blood B lymphocytes doubles during acute exercise, but the phenotypic composition of this response remains unknown. In two independent exercise studies, using complimentary phenotyping strategies, we investigated the mobilisation patterns of distinct B cell subsets. In study one, nine healthy males (mean±SD age: 22.1±3.4years) completed a continuous cycling bout at 80% V̇O2MAX for 20min. In study two, seven healthy experienced cyclists (mean±SD age: 29.9±4.7years) completed a 30min cycling trial at a workload corresponding to +5% of the individual blood lactate threshold. In study one, CD3-CD19+ B cell subsets were classified into immature (CD27-CD10+), naïve (CD27-CD10-), memory (CD27+CD38-), plasma cells/plasmablasts (CD27+CD38+) and finally, recently purported 'B1' cells (CD27+ CD43+ CD69-). In study two, CD20+ B cells were classified into immature (CD27-IgD-), naïve (CD27-IgD+), and IgM+/IgG+/IgA+ memory cells (CD27+IgD-). Total B cells exhibited a mean increase of 88% (study one) and 60% (study two) during exercise. In both studies, immature cells displayed the greatest increase, followed by memory cells, then naïve cells (study one: immature 130%>mature 105%>naïve 84%; study two: immature 110%>mature 56%>naïve 38%). Our findings show that, unlike T cells and NK cells, B cell mobilisation is not driven by effector status, and, for the first time, that B cell mobilisation during exercise is comprised of immature CD27- IgD-/CD10+ cells.
Collapse
Affiliation(s)
- J E Turner
- Department for Health, University of Bath, Bath, UK
| | - G Spielmann
- Department of Health and Human Performance, University of Houston, TX, USA; School of Kinesiology, Louisiana State University, Baton Rouge, USA
| | - A J Wadley
- Institute of Science and the Environment, University of Worcester, Worcester, UK
| | - S Aldred
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - R J Simpson
- Department of Health and Human Performance, University of Houston, TX, USA
| | - J P Campbell
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK.
| |
Collapse
|
162
|
Friedel M, André S, Goldschmidt H, Gabius HJ, Schwartz-Albiez R. Galectin-8 enhances adhesion of multiple myeloma cells to vascular endothelium and is an adverse prognostic factor. Glycobiology 2016; 26:1048-1058. [PMID: 27287437 DOI: 10.1093/glycob/cww066] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 05/24/2016] [Accepted: 05/29/2016] [Indexed: 11/13/2022] Open
Abstract
Multiple myeloma is characterized by abnormal infiltration of malignant plasma cells into bone marrow. Testing the hypothesis that bivalent galectin-8 (Gal-8) may influence homing of myeloma cells to vascular endothelium as a key prerequisite for infiltration, we analyzed the two Gal-8 splice variants (Gal-8S, Gal-8L). They differ in the length of their linker peptide connecting the two lectin domains. Both Gal-8 isoforms bind to cells of the myeloma lines Gal-8+ MOLP-8 and Gal-8- LP-1 in a glycan-inhibitable manner. Both Gal-8 isoforms led to enhanced adhesion of myeloma cells to vascular endothelium under dynamic shear stress conditions, Gal-8L (by more than 40-fold) even stronger than Gal-8S. Additional treatment of endothelial cells with tumour necrosis factor prior to the dynamic shear stress assay entailed an almost 100-fold enhanced adhesion of myeloma cells without addition of Gal-8 variants and a further 1.5-1.7-fold enhancement by addition of Gal-8 variants. We also found that elevated expression of Gal-8 in native multiple myeloma cells is an adverse prognostic factor for overall and event-free survival using patients' gene expression profile data of the total therapy 2 and 3 myeloma studies. Also, elevated concentrations of Gal-8 were detected (45%, 19/42 patients) in sera of multiple myeloma patients compared to those of healthy, age-matched donors. Both experimental and clinical data strongly point to the significance of Gal-8 for multiple myeloma development.
Collapse
Affiliation(s)
- Myriam Friedel
- Clinical Cooperation Unit Applied Tumor Immunity, Deutsches Krebsforschungszentrum, 69120 Heidelberg, Germany
| | - Sabine André
- Institut für Physiologische Chemie, Tierärztliche Fakultät, Ludwig-Maximilians-Universität München, 80539 München, Germany
| | - Hartmut Goldschmidt
- Medizinische Klinik V, Universitätsklinikum Heidelberg und Nationales Centrum für Tumorerkrankungen Heidelberg, 69120 Heidelberg, Germany
| | - Hans-Joachim Gabius
- Institut für Physiologische Chemie, Tierärztliche Fakultät, Ludwig-Maximilians-Universität München, 80539 München, Germany
| | - Reinhard Schwartz-Albiez
- Clinical Cooperation Unit Applied Tumor Immunity, Deutsches Krebsforschungszentrum, 69120 Heidelberg, Germany
| |
Collapse
|
163
|
Santra A, Yu H, Tasnima N, Muthana MM, Li Y, Zeng J, Kenyond NJ, Louie AY, Chen X. Systematic Chemoenzymatic Synthesis of O-Sulfated Sialyl Lewis x Antigens. Chem Sci 2016; 7:2827-2831. [PMID: 28138383 PMCID: PMC5269574 DOI: 10.1039/c5sc04104j] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 12/14/2015] [Indexed: 11/21/2022] Open
Abstract
O-Sulfated sialyl Lewis x antigens play important roles in nature. However, due to their structural complexity, they are not readily accessible by either chemical or enzymatic synthetic processes. Taking advantage of a bacterial sialyltransferase mutant that can catalyze the transfer of different sialic acid forms from the corresponding sugar nucleotide donors to Lewis x antigens which are fucosylated glycans as well as an efficient one-pot multienzyme (OPME) sialylation system, O-sulfated sialyl Lewis x antigens containing different sialic acid forms and O-sulfation at different locations were systematically synthesized by chemoenzymatic methods.
Collapse
Affiliation(s)
- Abhishek Santra
- Department of Chemistry, University of California, Davis One Shields Avenue, Davis, CA 95616 (USA)
| | - Hai Yu
- Department of Chemistry, University of California, Davis One Shields Avenue, Davis, CA 95616 (USA)
| | - Nova Tasnima
- Department of Chemistry, University of California, Davis One Shields Avenue, Davis, CA 95616 (USA)
| | - Musleh M Muthana
- Department of Chemistry, University of California, Davis One Shields Avenue, Davis, CA 95616 (USA)
| | - Yanhong Li
- Department of Chemistry, University of California, Davis One Shields Avenue, Davis, CA 95616 (USA)
| | - Jie Zeng
- Department of Chemistry, University of California, Davis One Shields Avenue, Davis, CA 95616 (USA) ; School of Food Science, Henan Institute of Science and Technology, Xinxiang, 453003 (China)
| | - Nicholas J Kenyond
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of California, Davis, CA 95616 (USA)
| | - Angelique Y Louie
- Department of Biomedical Engineering, University of California, Davis, CA 95616 (USA)
| | - Xi Chen
- Department of Chemistry, University of California, Davis One Shields Avenue, Davis, CA 95616 (USA)
| |
Collapse
|
164
|
Xue T, Liu P, Zhou Y, Liu K, Yang L, Moritz RL, Yan W, Xu LX. Interleukin-6 Induced "Acute" Phenotypic Microenvironment Promotes Th1 Anti-Tumor Immunity in Cryo-Thermal Therapy Revealed By Shotgun and Parallel Reaction Monitoring Proteomics. Am J Cancer Res 2016; 6:773-94. [PMID: 27162549 PMCID: PMC4860887 DOI: 10.7150/thno.14394] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 02/08/2016] [Indexed: 12/14/2022] Open
Abstract
Cryo-thermal therapy has been emerged as a promising novel therapeutic strategy for advanced breast cancer, triggering higher incidence of tumor regression and enhanced remission of metastasis than routine treatments. To better understand its anti-tumor mechanism, we utilized a spontaneous metastatic mouse model and quantitative proteomics to compare N-glycoproteome changes in 94 serum samples with and without treatment. We quantified 231 highly confident N-glycosylated proteins using iTRAQ shotgun proteomics. Among them, 53 showed significantly discriminated regulatory patterns over the time course, in which the acute phase response emerged as the most enhanced pathway. The anti-tumor feature of the acute response was further investigated using parallel reaction monitoring target proteomics and flow cytometry on 23 of the 53 significant proteins. We found that cryo-thermal therapy reset the tumor chronic inflammation to an “acute” phenotype, with up-regulation of acute phase proteins including IL-6 as a key regulator. The IL-6 mediated “acute” phenotype transformed IL-4 and Treg-promoting ICOSL expression to Th1-promoting IFN-γ and IL-12 production, augmented complement system activation and CD86+MHCII+ dendritic cells maturation and enhanced the proliferation of Th1 memory cells. In addition, we found an increased production of tumor progression and metastatic inhibitory proteins under such “acute” environment, favoring the anti-metastatic effect. Moreover, cryo-thermal on tumors induced the strongest “acute” response compared to cryo/hyperthermia alone or cryo-thermal on healthy tissues, accompanying by the most pronounced anti-tumor immunological effect. In summary, we demonstrated that cryo-thermal therapy induced, IL-6 mediated “acute” microenvironment shifted the tumor chronic microenvironment from Th2 immunosuppressive and pro-tumorigenic to Th1 immunostimulatory and tumoricidal state. Moreover, the magnitude of “acute” and “danger” signals play a key role in determining the efficacy of anti-tumor activity.
Collapse
|
165
|
Chia J, Goh G, Bard F. Short O-GalNAc glycans: regulation and role in tumor development and clinical perspectives. Biochim Biophys Acta Gen Subj 2016; 1860:1623-39. [PMID: 26968459 DOI: 10.1016/j.bbagen.2016.03.008] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/03/2016] [Accepted: 03/03/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND While the underlying causes of cancer are genetic modifications, changes in cellular states mediate cancer development. Tumor cells display markedly changed glycosylation states, of which the O-GalNAc glycans called the Tn and TF antigens are particularly common. How these antigens get over-expressed is not clear. The expression levels of glycosylation enzymes fail to explain it. SCOPE OF REVIEW We describe the regulation of O-GalNAc glycosylation initiation and extension with emphasis on the initiating enzymes ppGalNAcTs (GALNTs), and introduce the GALA pathway--a change in GALNTs compartmentation within the secretory pathway that regulates Tn levels. We discuss the roles of O-GalNAc glycans and GALNTs in tumorigenic processes and finally consider diagnostic and therapeutic perspectives. MAJOR CONCLUSIONS Contrary to a common hypothesis, short O-glycans in tumors are not the result of an incomplete glycosylation process but rather reveal the activation of regulatory pathways. Surprisingly, high Tn levels reveal a major shift in the O-glycoproteome rather than a shortening of O-glycans. These changes are driven by membrane trafficking events. GENERAL SIGNIFICANCE Many attempts to use O-glycans for biomarker, antibody and therapeutic vaccine development have been made, but suffer limitations including poor sensitivity and/or specificity that may in part derive from lack of a mechanistic understanding. Deciphering how short O-GalNAc glycans are regulated would open new perspectives to exploit this biology for therapeutic usage. This article is part of a Special Issue entitled "Glycans in personalised medicine" Guest Editor: Professor Gordan Lauc.
Collapse
Affiliation(s)
- Joanne Chia
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, 138673, Singapore
| | - Germaine Goh
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, 138673, Singapore
| | - Frederic Bard
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, 138673, Singapore; Department of Biochemistry, National University of Singapore, 21 Lower Kent Ridge, Road, 119077, Singapore.
| |
Collapse
|
166
|
Poosarla C, Rajendra Santosh AB, Gudiseva S, Meda I, Reddy Baddam VR. Histomolecular Structural Aspects of High Endothelial Vessels in Lymph Node and Its Significance in Oral Cancer and Metastasis. NORTH AMERICAN JOURNAL OF MEDICAL SCIENCES 2016; 7:540-6. [PMID: 26942129 PMCID: PMC4755078 DOI: 10.4103/1947-2714.172839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Molecular cancer research studies focus on identifying diagnostic, screening, and metastatic indicators, and monitoring therapeutic responses. Migration of tumor cells and lymphocytes are important aspects in metastasis. High endothelial vessels are specialized histological structures identified in the blood vessels in lymphoid organs, which allow the migration of lymphocytes. In the recent decades, the role of high endothelial vessels is being addressed in cancer metastatic research. This review article is to highlight the histological and molecular structural aspects of high endothelial venules (HEVs) in the lymph node, and to demonstrate the role of HEVs in oral cancer metastasis, specifically oral and pharyngeal squamous cell carcinoma. The literature for the present paper were searched from the data sources such as Medline/PubMed, CINAHL plus, and gray literature sources from inception to May 2015. Searches were conducted using both free texts and medical subject headings related to the title of the present paper. Only the full text manuscripts of the search results that support the objective(s) of the paper and papers written in English were included. HEVs are unique structures that are identified in the lymphocytes and primarily assist in the lymphocytic migration from the blood stream into the lymph node. Understanding the histomolecular characteristics of HEV will allow researchers to develop novel therapeutic approaches in cancer tissues.
Collapse
Affiliation(s)
- Chandrasekar Poosarla
- Department of Oral and Maxillofacial Pathology, SIBAR Institute of Dental Sciences, Guntur, India
| | | | - Swetha Gudiseva
- Department of Oral and Maxillofacial Pathology, SIBAR Institute of Dental Sciences, Guntur, India
| | - Indira Meda
- Department of Oral and Maxillofacial Pathology, Konaseema Dental College, Amalapuram, Andhra Pradesh, India
| | | |
Collapse
|
167
|
Yamazaki Y, Sezukuri K, Takada J, Obata H, Kimura S, Ohmae M. Synthesis of type 2 Lewis antigens via novel regioselective glycosylation of an orthogonally protected lactosamine diol derivative. Carbohydr Res 2016; 422:34-44. [DOI: 10.1016/j.carres.2016.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 01/12/2016] [Accepted: 01/13/2016] [Indexed: 11/30/2022]
|
168
|
Sackstein R. Fulfilling Koch's postulates in glycoscience: HCELL, GPS and translational glycobiology. Glycobiology 2016; 26:560-70. [PMID: 26933169 DOI: 10.1093/glycob/cww026] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 02/23/2016] [Indexed: 12/16/2022] Open
Abstract
Glycoscience-based research that is performed expressly to address medical necessity and improve patient outcomes is called "translational glycobiology". In the 19th century, Robert Koch proposed a set of postulates to rigorously establish causality in microbial pathogenesis, and these postulates can be reshaped to guide knowledge into how naturally-expressed glycoconjugates direct molecular processes critical to human well-being. Studies in the 1990s indicated that E-selectin, an endothelial lectin that binds sialofucosylated carbohydrate determinants, is constitutively expressed on marrow microvessels, and investigations in my laboratory indicated that human hematopoietic stem cells (HSCs) uniquely express high levels of a specialized glycoform of CD44 called "hematopoietic cell E-/L-selectin ligand" (HCELL) that functions as a highly potent E-selectin ligand. To assess the role of HCELL in directing HSC migration to marrow, a method called "glycosyltransferase-programmed stereosubstitution" (GPS) was developed to custom-modify CD44 glycans to enforce HCELL expression on viable cell surfaces. Human mesenchymal stem cells (MSCs) are devoid of E-selectin ligands, but GPS-based glycoengineering of CD44 on MSCs licenses homing of these cells to marrow in vivo, providing direct evidence that HCELL serves as a "bone marrow homing receptor". This review will discuss the molecular basis of cell migration in historical context, will describe the discovery of HCELL and its function as the bone marrow homing receptor, and will inform on how glycoengineering of CD44 serves as a model for adapting Koch's postulates to elucidate the key roles that glycoconjugates play in human biology and for realizing the immense impact of translational glycobiology in clinical medicine.
Collapse
Affiliation(s)
- Robert Sackstein
- Department of Dermatology and Department of Medicine, Brigham & Women's Hospital, Boston, MA, USA Harvard Skin Disease Research Center Program of Excellence in Glycosciences, Harvard Medical School, 77 Avenue Louis Pasteur, Room 671, Boston, MA 02115, USA
| |
Collapse
|
169
|
Harris N, Koppel J, Zsila F, Juhas S, Il’kova G, Kogan FY, Lahmy O, Wildbaum G, Karin N, Zhuk R, Gregor P. Mechanism of action and efficacy of RX-111, a thieno[2,3-c]pyridine derivative and small molecule inhibitor of protein interaction with glycosaminoglycans (SMIGs), in delayed-type hypersensitivity, TNBS-induced colitis and experimental autoimmune encephalomyelitis. Inflamm Res 2016; 65:285-94. [DOI: 10.1007/s00011-016-0915-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 12/04/2015] [Accepted: 01/05/2016] [Indexed: 12/12/2022] Open
|
170
|
Park C, Hwang IY, Kehrl JH. Intravital Two-Photon Imaging of Lymphocytes Crossing High Endothelial Venules and Cortical Lymphatics in the Inguinal Lymph Node. Methods Mol Biol 2016; 1407:195-206. [PMID: 27271904 DOI: 10.1007/978-1-4939-3480-5_15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Lymphocyte recirculation through lymph nodes (LNs) requires their crossing of endothelial barriers present in blood vessels and lymphatics by means of chemoattractant-triggered cell migration. The chemoattractant-chemoattractant receptor axes that predominately govern the trafficking of lymphocytes into, and out of, LNs are CCL19/CCR7 and sphingosine 1-phosphate (S1P)/S1P receptor 1 (S1PR1), respectively. Blood-borne lymphocytes downregulate S1PR1 and use CCR7 signaling to adhere to high endothelial venules (HEVs) for transmigration. During their LN residency, recirculating lymphocytes reacquire S1PR1 and attenuate their sensitivity to chemokines. Eventually lymphocytes exit the LN by entering the cortical or medullary lymphatics, a process that depends upon S1PR1 signaling. Upon entering into the lymph, lymphocytes lose their polarity, downregulate their sensitivity to S1P due to the high concentration of S1P, and upregulate their sensitivity to chemokines. However, many of the details of lymphocyte transmigration across endothelial barriers remain poorly understood. Intravital two-photon imaging with advanced microscope technologies not only allows the real-time observation of immune cells in intact LN of a live mouse, but also provides a means to monitor the interactions between circulating lymphocytes and stromal barriers. Here, we describe procedures to visualize lymphocytes engaging and crossing HEVs, and approaching and crossing the cortical lymphatic endothelium to enter the efferent lymph in live mice.
Collapse
Affiliation(s)
- Chung Park
- B-Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bldg 10, Room 11B08, 10 Center Dr. MSC 1876, Bethesda, MD, 20892, USA
| | - Il-Young Hwang
- B-Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bldg 10, Room 11B08, 10 Center Dr. MSC 1876, Bethesda, MD, 20892, USA
| | - John H Kehrl
- B-Cell Molecular Immunology Section, Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bldg 10, Room 11B08, 10 Center Dr. MSC 1876, Bethesda, MD, 20892, USA.
| |
Collapse
|
171
|
Yan X, Yan M, Guo Y, Singh G, Chen Y, Yu M, Wang D, Hillery CA, Chan AM. R-Ras Regulates Murine T Cell Migration and Intercellular Adhesion Molecule-1 Binding. PLoS One 2015; 10:e0145218. [PMID: 26710069 PMCID: PMC4692399 DOI: 10.1371/journal.pone.0145218] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 11/30/2015] [Indexed: 12/04/2022] Open
Abstract
The trafficking of T-lymphocytes to peripheral draining lymph nodes is crucial for mounting an adaptive immune response. The role of chemokines in the activation of integrins via Ras-related small GTPases has been well established. R-Ras is a member of the Ras-subfamily of small guanosine-5’-triphosphate-binding proteins and its role in T cell trafficking has been investigated in R-Ras null mice (Rras−/−). An examination of the lymphoid organs of Rras−/− mice revealed a 40% reduction in the cellularity of the peripheral lymph nodes. Morphologically, the high endothelial venules of Rras−/− mice were more disorganized and less mature than those of wild-type mice. Furthermore, CD4+ and CD8+ T cells from Rras−/− mice had approximately 42% lower surface expression of L-selectin/CD62L. These aberrant peripheral lymph node phenotypes were associated with proliferative and trafficking defects in Rras−/− T cells. Furthermore, R-Ras could be activated by the chemokine, CCL21. Indeed, Rras−/− T cells had approximately 14.5% attenuation in binding to intercellular adhesion molecule 1 upon CCL21 stimulation. Finally, in a graft-versus host disease model, recipient mice that were transfused with Rras−/− T cells showed a significant reduction in disease severity when compared with mice transplanted with wild-type T cells. These findings implicate a role for R-Ras in T cell trafficking in the high endothelial venules during an effective immune response.
Collapse
Affiliation(s)
- Xiaocai Yan
- Department of Pediatrics, The Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Mingfei Yan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Yihe Guo
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Gobind Singh
- Department of Oncological Sciences, The Mount Sinai School of Medicine, New York, New York, United States of America
| | - Yuhong Chen
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Mei Yu
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Demin Wang
- Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Cheryl A Hillery
- Department of Pediatrics, The Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America.,Blood Research Institute, BloodCenter of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Andrew M Chan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| |
Collapse
|
172
|
Paschall CD, Klibanov AL, Lawrence MB. Regulation of L-selectin-dependent hydrodynamic shear thresholding by leukocyte deformability and shear dependent bond number. Biorheology 2015; 52:415-32. [PMID: 26600268 DOI: 10.3233/bir-15064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND During inflammation leukocyte attachment to the blood vessel wall is augmented by capture of near-wall flowing leukocytes by previously adherent leukocytes. Adhesive interactions between flowing and adherent leukocytes are mediated by L-selectin and P-selectin Glycoprotein Ligand-1 (PSGL-1) co-expressed on the leukocyte surface and ultimately regulated by hydrodynamic shear thresholding. OBJECTIVE We hypothesized that leukocyte deformability is a significant contributory factor in shear thresholding and secondary capture. METHODS Cytochalasin D (CD) was used to increase neutrophil deformability and fixation was used to reduce deformability. Neutrophil rolling on PSGL-1 coated planar surfaces and collisions with PSGL-1 coated microbeads were analyzed using high-speed videomicroscopy (250 fps). RESULTS Increased deformability led to an increase in neutrophil rolling flux on PSGL-1 surfaces while fixation led to a decrease in rolling flux. Abrupt drops in flow below the shear threshold resulted in extended release times from the substrate for CD-treated neutrophils, suggesting increased bond number. In a cell-microbead collision assay lower flow rates were correlated with briefer adhesion lifetimes and smaller adhesive contact patches. CONCLUSIONS Leukocyte deformation may control selectin bond number at the flow rates associated with hydrodynamic shear thresholding. Model analysis supported a requirement for both L-selectin catch-slip bond properties and multiple bond formation for shear thresholding.
Collapse
Affiliation(s)
| | - Alexander L Klibanov
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA.,Department of Medicine, Division of Cardiovascular Medicine, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Michael B Lawrence
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
173
|
Vojkovics D, Kellermayer Z, Heidt D, Mihalj M, Kajtár B, Ernszt D, Kovács T, Németh P, Balogh P. Isolation and Characterization of a Murine Spontaneous High-Grade Follicular Lymphoma with Restricted In Vivo Spreading--a Model for Lymphatic Metastasis Via the Mesentery. Pathol Oncol Res 2015; 22:421-30. [PMID: 26584567 DOI: 10.1007/s12253-015-0025-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 11/16/2015] [Indexed: 11/30/2022]
Abstract
Spontaneous or induced malignant lymphomas in mice are valuable tools for studying human lymphoproliferative diseases, including the mechanism of migration between peripheral lymphoid organs and positioning within distinct tissue compartments. Here we report the isolation and characterization of a novel spontaneous lymphoma from BALB/c mice showing restricted tissue distribution and metastasis. The lymphoma cells display CD19, B220, MHC II, surface IgG2a/kappa chain with VH7183 rearrangement of the IgH gene, indicating their B-cell origin. Serial intraperitoneal injection of primary tumor into both BALB/c and RAG-1-deficient hosts led to the successful propagation of lymphoma. Despite the cytological characteristics of high-grade follicular B-cell lymphoma, the tumor cells (denoted as Bc-DLFL.1) showed significantly lesser spreading to extraabdominal locations upon intraperitoneal passage compared to splenic and mesenteric lymph node expansion. In mesenteric lymph nodes the high endothelial venules contained only few tumor cells, while the lymphatic vessels were almost completely filled with lymphoma cells. Similarly, the LYVE-1-positive lymphatic capillaries within the mesentery were packed with lymphoma cells. These findings suggest that Bc-DLFL.1 cells likely propagate primarily via the lymphatic circulation within the mesentery, therefore this tumor may offer an in vivo model to investigate the tumor cell migration via the lymphatic circulation from the peritoneal cavity.
Collapse
Affiliation(s)
- Dóra Vojkovics
- Department of Immunology and Biotechnology, University of Pécs, Szigeti út 12, Pécs, H-7624, Hungary.,Lymphoid Organogenesis Research Group, Szentágothai Research Center, University of Pécs, Pécs, Hungary
| | - Zoltán Kellermayer
- Department of Immunology and Biotechnology, University of Pécs, Szigeti út 12, Pécs, H-7624, Hungary.,Lymphoid Organogenesis Research Group, Szentágothai Research Center, University of Pécs, Pécs, Hungary
| | - Diána Heidt
- Department of Immunology and Biotechnology, University of Pécs, Szigeti út 12, Pécs, H-7624, Hungary.,Lymphoid Organogenesis Research Group, Szentágothai Research Center, University of Pécs, Pécs, Hungary
| | - Martina Mihalj
- Department of Physiology and Immunology, School of Medicine Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Béla Kajtár
- Department of Pathology, University of Pécs, Pécs, Hungary
| | - Dávid Ernszt
- Department of Pharmaceutical Biotechnology, University of Pécs, Pécs, Hungary
| | - Tamás Kovács
- Department of Pharmaceutical Biotechnology, University of Pécs, Pécs, Hungary
| | - Péter Németh
- Department of Immunology and Biotechnology, University of Pécs, Szigeti út 12, Pécs, H-7624, Hungary
| | - Péter Balogh
- Department of Immunology and Biotechnology, University of Pécs, Szigeti út 12, Pécs, H-7624, Hungary. .,Lymphoid Organogenesis Research Group, Szentágothai Research Center, University of Pécs, Pécs, Hungary.
| |
Collapse
|
174
|
Cheng B, Xie R, Dong L, Chen X. Metabolic Remodeling of Cell-Surface Sialic Acids: Principles, Applications, and Recent Advances. Chembiochem 2015; 17:11-27. [PMID: 26573222 DOI: 10.1002/cbic.201500344] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Indexed: 12/14/2022]
Abstract
Cell-surface sialic acids are essential in mediating a variety of physiological and pathological processes. Sialic acid chemistry and biology remain challenging to investigate, demanding new tools for probing sialylation in living systems. The metabolic glycan labeling (MGL) strategy has emerged as an invaluable chemical biology tool that enables metabolic installation of useful functionalities into cell-surface sialoglycans by "hijacking" the sialic acid biosynthetic pathway. Here we review the principles of MGL and its applications in study and manipulation of sialic acid function, with an emphasis on recent advances.
Collapse
Affiliation(s)
- Bo Cheng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center and, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Ran Xie
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center and, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Lu Dong
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center and, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Xing Chen
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center and, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
175
|
Lee HJ, Park IA, Song IH, Shin SJ, Kim JY, Yu JH, Gong G. Tertiary lymphoid structures: prognostic significance and relationship with tumour-infiltrating lymphocytes in triple-negative breast cancer. J Clin Pathol 2015; 69:422-30. [DOI: 10.1136/jclinpath-2015-203089] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 09/28/2015] [Indexed: 01/03/2023]
Abstract
BackgroundTumour-infiltrating lymphocytes (TILs) have a strong prognostic significance, particularly in triple-negative breast cancer (TNBC). One important source of TILs in breast cancer is tertiary lymphoid structures (TLSs).ObjectiveTo carry out a histological analysis of surgically resected TNBC to identify the location of TLSs, the relationship between TLSs and TILs and their prognostic significance in TNBC.MethodsWe retrospectively analysed 769 patients with TNBC.ResultsTILs were defined as the percentage of stroma of invasive carcinoma infiltrated by lymphocytes. TLSs were mainly present within adjacent terminal duct lobular units and around in situ components. TNBC with higher levels of TILs showed a higher nuclear grade, lower lymphovascular invasion, less accompanying in situ component, a homogeneous growth pattern, necrosis in invasive areas, low levels of tumour stroma, high levels of peritumoral lymphocytic infiltration and moderate to abundant TLSs in adjacent tissue. TILs, the degree of peritumoral lymphocytic infiltration and adjacent TLSs were prognostic factors for disease-free and overall survival. Although the TIL level did not have a prognostic value in stage I, it added significant prognostic information for stages II and III. Conversely, patients with high levels of TILs did not show prognostic differences according to the pTNM stage. Patients with high levels of TILs (>60%) and moderate to abundant TLSs had significantly better disease-free survival than those with high levels of TILs but none or few TLSs.ConclusionsTLSs are frequently present in TNBC and are closely associated with TILs. TILs provide additional prognostic information in patients with TNBC with a higher pTNM stage.
Collapse
|
176
|
High mobility group B1 and N1 (HMGB1 and HMGN1) are associated with tumor-infiltrating lymphocytes in HER2-positive breast cancers. Virchows Arch 2015; 467:701-709. [PMID: 26445971 DOI: 10.1007/s00428-015-1861-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/15/2015] [Accepted: 09/29/2015] [Indexed: 10/23/2022]
Abstract
Although the prognostic and predictive significance of tumor-infiltrating lymphocytes (TILs) in HER2-positive breast cancers has been established, the drivers of TIL influx remain unclear. We tested whether potential triggers for this response could include high mobility group B1 and N1 (HMGB1 and HMGN1) proteins, which are immunogenic damage-associated molecular pattern molecules. We evaluated TILs and the immunohistochemical expression of HMGB1 and HMGN1 in 447 HER2-positive breast cancer tissues. Normal luminal cells exhibited nuclear expression of HMGB1 and HMBN1. The nuclear and cytoplasmic expression levels of HMG proteins showed a significant inverse correlation (rho = -0.150, p = 0.001 for HMGB1; rho = -0.247, p < 0.001 for HMGN1). Low levels of HMGB1 and HMGN1 nuclear expression were identified in 185 (41.4 %) and 208 (46.5 %) cases, respectively. High levels of cytoplasmic HMGB1 and HMGN1 expression were identified in 107 (23.9 %) and 49 (11.0 %) cases, respectively. High cytoplasmic expression of HMG proteins was significantly associated with a high histological grade, high levels of TILs, peritumoral lymphocytic infiltration, and tertiary lymphoid structures in HER2-positive breast cancer tissues. Tumors with low levels of cytoplasmic HMGB1 and HMGN1 showed significantly lower levels of TILs than those with high levels of each or both HMG proteins. However, the nuclear or cytoplasmic expression of either HMG protein was not found to be significantly associated with survival. High levels of cytoplasmic HMGB1 and HMGN1 protein expression correlated with high levels of TILs in HER2-positive breast cancers. The manipulation of HMGB1 and HMGN1 could represent an immunotherapeutic approach to promote TIL influx into a tumor.
Collapse
|
177
|
Sittel I, Galan MC. Chemo-enzymatic synthesis of imidazolium-tagged sialyllactosamine probes. Bioorg Med Chem Lett 2015; 25:4329-32. [DOI: 10.1016/j.bmcl.2015.07.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Revised: 07/19/2015] [Accepted: 07/20/2015] [Indexed: 10/23/2022]
|
178
|
Lee HJ, Kim JY, Song IH, Park IA, Yu JH, Gong G. Expression of NY-ESO-1 in Triple-Negative Breast Cancer Is Associated with Tumor-Infiltrating Lymphocytes and a Good Prognosis. Oncology 2015; 89:337-44. [DOI: 10.1159/000439535] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/13/2015] [Indexed: 11/19/2022]
|
179
|
Belardi B, Bertozzi CR. Chemical Lectinology: Tools for Probing the Ligands and Dynamics of Mammalian Lectins In Vivo. ACTA ACUST UNITED AC 2015; 22:983-93. [PMID: 26256477 DOI: 10.1016/j.chembiol.2015.07.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/29/2015] [Accepted: 07/08/2015] [Indexed: 02/06/2023]
Abstract
The importance and complexity associated with the totality of glycan structures, i.e. the glycome, has garnered significant attention from chemists and biologists alike. However, what is lacking from this biochemical picture is how cells, tissues, and organisms interpret glycan patterns and translate this information into appropriate responses. Lectins, glycan-binding proteins, are thought to bridge this gap by decoding the glycome and dictating cell fate based on the underlying chemical identities and properties of the glycome. Yet, our understanding of the in vivo ligands and function for most lectins is still incomplete. This review focuses on recent advances in chemical tools to study the specificity and dynamics of mammalian lectins in live cells. A picture emerges of lectin function that is highly sensitive to its organization, which in turn drastically shapes immunity and cancer progression. We hope this review will inspire biologists to make use of these new techniques and stimulate chemists to continue developing innovative approaches to probe lectin biology in vivo.
Collapse
Affiliation(s)
- Brian Belardi
- Departments of Chemistry and Molecular and Cell Biology and Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Carolyn R Bertozzi
- Department of Chemistry and Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305-4401, USA.
| |
Collapse
|
180
|
McEver RP. Selectins: initiators of leucocyte adhesion and signalling at the vascular wall. Cardiovasc Res 2015; 107:331-9. [PMID: 25994174 PMCID: PMC4592324 DOI: 10.1093/cvr/cvv154] [Citation(s) in RCA: 344] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 04/06/2015] [Accepted: 04/29/2015] [Indexed: 12/28/2022] Open
Abstract
The selectins are transmembrane, Ca(2+)-dependent lectins that mediate leucocyte rolling on vascular surfaces, the first adhesive step during inflammation and immune surveillance. Leucocytes express L-selectin, activated platelets express P-selectin, and activated endothelial cells express E- and P-selectin. Rolling involves force-regulated, rapidly reversible interactions of selectins with a limited number of glycosylated cell surface ligands. Rolling permits leucocytes to interact with immobilized chemokines that convert β2 integrins to high-affinity conformations, which mediate arrest, post-arrest adhesion strengthening, and transendothelial migration. However, rolling leucocytes also transduce signals through selectin ligands, the focus of this review. These signals include serial activation of kinases and recruitment of adaptors that convert integrins to intermediate-affinity conformations, which decrease rolling velocities. In vitro, selectin signalling enables myeloid cells to respond to suboptimal levels of chemokines and other agonists. This cooperative signalling triggers effector responses such as degranulation, superoxide production, chemokine synthesis, and release of procoagulant/proinflammatory microparticles. In vivo, selectin-mediated adhesion and signalling likely contributes to atherosclerosis, arterial and deep vein thrombosis, ischaemia-reperfusion injury, and other cardiovascular diseases.
Collapse
Affiliation(s)
- Rodger P McEver
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, and Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 825 N.E. 13th Street, Oklahoma City, OK 73104, USA
| |
Collapse
|
181
|
Bai R, Kusama K, Sakurai T, Bai H, Wang C, Zhang J, Kuse M, Ideta A, Aoyagi Y, Okuda K, Imakawa K. The Role of Endometrial Selectins and Their Ligands on Bovine Conceptus Attachment to the Uterine Epithelium During Peri-Implantation Period1. Biol Reprod 2015; 93:46. [DOI: 10.1095/biolreprod.115.128652] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 06/25/2015] [Indexed: 11/01/2022] Open
|
182
|
Lee HJ, Kim JY, Park IA, Song IH, Yu JH, Ahn JH, Gong G. Prognostic Significance of Tumor-Infiltrating Lymphocytes and the Tertiary Lymphoid Structures in HER2-Positive Breast Cancer Treated With Adjuvant Trastuzumab. Am J Clin Pathol 2015; 144:278-88. [PMID: 26185313 DOI: 10.1309/ajcpixuydvz0rz3g] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Tumor-infiltrating lymphocytes (TILs) have prognostic significance in breast cancer. The tertiary lymphoid structure (TLS) is related to the influx of TILs, and expression of major histocompatibility complex (MHC) I in tumor cells is necessary for the effective action of TILs. METHODS We retrospectively evaluated the relationship of TILs and TLS and the expression of MHC I in 447 HER2-positive breast cancers treated with chemotherapy and 1 year of trastuzumab. RESULTS TILs were more abundant in hormone receptor (HR)-/HER2+ tumors than in HR+/HER2+ tumors. HR-/HER2+ breast cancers with abundant TILs showed a higher histologic grade, the absence of lymphovascular invasion, the presence of peritumoral lymphocytic infiltration, moderate to abundant TLSs in adjacent tissue, and stronger HLA-ABC and HLA-A expression. Abundant TILs and the absence of lymphovascular invasion were found to be good, independent prognostic factors for disease-free survival in patients with HR-/HER2+ breast cancer. The level of TILs was not associated with the patients' prognosis in HR+ tumors. CONCLUSIONS Abundant TILs are an independent prognostic factor in HR-/HER2+ breast cancers. Evaluation of TILs in HR-/HER2+ breast cancers may provide valuable information regarding the prognosis of patients treated using adjuvant chemotherapy and trastuzumab.
Collapse
Affiliation(s)
- Hee Jin Lee
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Joo Young Kim
- Department of Pathology, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Korea
| | - In Ah Park
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - In Hye Song
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Jong Han Yu
- Department of Surgery, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Jin-Hee Ahn
- sDepartment of Oncology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| | - Gyungyub Gong
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea
| |
Collapse
|
183
|
Gerhardt T, Ley K. Monocyte trafficking across the vessel wall. Cardiovasc Res 2015; 107:321-30. [PMID: 25990461 PMCID: PMC4592323 DOI: 10.1093/cvr/cvv147] [Citation(s) in RCA: 339] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 03/06/2015] [Accepted: 03/30/2015] [Indexed: 12/14/2022] Open
Abstract
Monocytes fundamentally contribute to immune surveillance and the inflammatory response in immunoinflammatory diseases like atherosclerosis. Recruitment of these cells to the site of injury requires their trafficking across the blood vessel wall. A series of events, including capture, rolling, slow rolling, arrest, adhesion strengthening, and lateral locomotion, precede monocyte transmigration. Recent investigations have revealed new aspects of this cascade. This article revisits some conventional paradigms and selectively highlights new findings, including novel insights into monocyte differentiation and recently identified functional mediators, signalling pathways, and new structural aspects of monocyte extravasation. The emerging roles of endothelial junctional molecules like vascular endothelial-cadherin and the junctional adhesion molecule family, adhesion molecules such as intercellular adhesion molecule-1, molecules localized to the lateral border recycling compartment like cluster of differentiation 99, platelet/endothelial cell adhesion molecule-1, and poliovirus receptor (CD155), as well as other cell surface molecules such as cluster of differentiation 146 and ephrins in transendothelial migration are discussed.
Collapse
Affiliation(s)
- Teresa Gerhardt
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, 9420 Athena Cir, La Jolla, CA 92037, USA
| | - Klaus Ley
- Division of Inflammation Biology, La Jolla Institute for Allergy and Immunology, 9420 Athena Cir, La Jolla, CA 92037, USA
| |
Collapse
|
184
|
L-selectin controls trafficking of chronic lymphocytic leukemia cells in lymph node high endothelial venules in vivo. Blood 2015; 126:1336-45. [PMID: 26162407 DOI: 10.1182/blood-2015-02-626291] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 06/17/2015] [Indexed: 12/14/2022] Open
Abstract
B-cell chronic lymphocytic leukemia (CLL) is the most common leukemia in adults. Lymph nodes (LNs) are sites of malignant proliferation and LN enlargement is associated with poor prognosis in the clinics. The LN microenvironment is believed to favor disease progression by promoting CLL cell growth and drug resistance. A better understanding of the mechanisms regulating trafficking of CLL cells to LNs is thus urgently needed. Here, we studied the first step of CLL cell migration to LNs, their interaction with high endothelial venules (HEVs), specialized blood vessels for lymphocyte extravasation in lymphoid organs. We observed that the density of HEV blood vessels was increased in CLL LNs and that CD20(+) CLL cells accumulated within HEV pockets, suggesting intense trafficking. We used intravital imaging to visualize the behavior of human CLL cells within the mouse LN microcirculation, and discovered that CLL cells bind to HEVs in vivo via a multistep adhesion cascade, which involves rolling, sticking, and crawling of the leukemic cells on the endothelium. Functional analyses revealed that the lymphocyte homing receptor L-selectin (CD62L) is the key factor controlling the binding of CLL cells to HEV walls in vivo. Interestingly, L-selectin expression was decreased on CLL cells from patients treated with idelalisib, a phosphoinositide-3-kinase δ inhibitor recently approved for CLL therapy. Interference with L-selectin-mediated trafficking in HEVs could represent a novel strategy to block dissemination of CLL cells to LNs and increase the efficacy of conventional therapy.
Collapse
|
185
|
Merzaban JS, Imitola J, Starossom SC, Zhu B, Wang Y, Lee J, Ali AJ, Olah M, Abuelela AF, Khoury SJ, Sackstein R. Cell surface glycan engineering of neural stem cells augments neurotropism and improves recovery in a murine model of multiple sclerosis. Glycobiology 2015; 25:1392-409. [PMID: 26153105 DOI: 10.1093/glycob/cwv046] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 07/02/2015] [Indexed: 02/07/2023] Open
Abstract
Neural stem cell (NSC)-based therapies offer potential for neural repair in central nervous system (CNS) inflammatory and degenerative disorders. Typically, these conditions present with multifocal CNS lesions making it impractical to inject NSCs locally, thus mandating optimization of vascular delivery of the cells to involved sites. Here, we analyzed NSCs for expression of molecular effectors of cell migration and found that these cells are natively devoid of E-selectin ligands. Using glycosyltransferase-programmed stereosubstitution (GPS), we glycan engineered the cell surface of NSCs ("GPS-NSCs") with resultant enforced expression of the potent E-selectin ligand HCELL (hematopoietic cell E-/L-selectin ligand) and of an E-selectin-binding glycoform of neural cell adhesion molecule ("NCAM-E"). Following intravenous (i.v.) injection, short-term homing studies demonstrated that, compared with buffer-treated (control) NSCs, GPS-NSCs showed greater neurotropism. Administration of GPS-NSC significantly attenuated the clinical course of experimental autoimmune encephalomyelitis (EAE), with markedly decreased inflammation and improved oligodendroglial and axonal integrity, but without evidence of long-term stem cell engraftment. Notably, this effect of NSC is not a universal property of adult stem cells, as administration of GPS-engineered mouse hematopoietic stem/progenitor cells did not improve EAE clinical course. These findings highlight the utility of cell surface glycan engineering to boost stem cell delivery in neuroinflammatory conditions and indicate that, despite the use of a neural tissue-specific progenitor cell population, neural repair in EAE results from endogenous repair and not from direct, NSC-derived cell replacement.
Collapse
Affiliation(s)
- Jasmeen S Merzaban
- Department of Dermatology Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Jaime Imitola
- Department of Neurology, Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sarah C Starossom
- Department of Neurology, Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Bing Zhu
- Department of Neurology, Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Yue Wang
- Department of Neurology, Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Amal J Ali
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Marta Olah
- Department of Neurology, Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ayman F Abuelela
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Samia J Khoury
- Department of Neurology, Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Robert Sackstein
- Department of Dermatology Department of Medicine, Harvard Skin Disease Research Center
| |
Collapse
|
186
|
Guarda IFMS, Correia CJ, Breithaupt-Faloppa AC, Ferreira SG, Moreno ACR, Martinez MB, Rocha-e-Silva M, Sannomiya P. Effects of ethyl pyruvate on leukocyte-endothelial interactions in the mesenteric microcirculation during early sepsis treatment. Clinics (Sao Paulo) 2015. [PMID: 26222821 PMCID: PMC4496755 DOI: 10.6061/clinics/2015(07)08] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES Experimental studies on sepsis have demonstrated that ethyl pyruvate is endowed with antioxidant and anti-inflammatory properties. This study aimed to investigate the effects of ethyl pyruvate on leukocyte-endothelial interactions in the mesenteric microcirculation in a live Escherichia coli-induced sepsis model in rats. METHODS Male Wistar rats were administered an intravenous suspension of E. coli bacteria or were subjected to a sham procedure. Three hours after bacterial infusion, the rats were randomized into the following groups: a control group without treatment, a group treated with lactated Ringer's solution (4 mL/kg, i.v.), and a group treated with lactated Ringer's solution (4 mL/kg, i.v.) plus ethyl pyruvate (50 mg/kg). At 24 h after bacterial infusion, leukocyte-endothelial interactions were investigated using intravital microscopy, and the expression of P-selectin and intercellular adhesion molecule-1 was evaluated via immunohistochemistry. White blood cell and platelet counts were also determined at baseline and 3 h and 24 h after E. coli inoculation. RESULTS The non-treated and lactated Ringer's solution-treated groups exhibited increases in the numbers of rolling leukocytes (∼2.5-fold increase), adherent cells (∼3.0-fold), and migrated cells (∼3.5-fold) compared with the sham group. In contrast, treatment with Ringer's ethyl pyruvate solution reduced the numbers of rolling, adherent and migrated leukocytes to the levels observed in the sham group. Additionally, the expression of P-selectin and intercellular adhesion molecule-1 was significantly increased on mesenteric microvessels in the non-treated group compared with the sham group (p<0.001). The expression of both adhesion molecules was reduced in the other groups, with ethyl pyruvate being more effective than lactated Ringer's solution. Infusion of bacteria caused significant leukopenia (3 h), followed by leukocytosis with granulocytosis (24 h). There was also an intense and progressive reduction in the number of platelets. However, no differences were observed after treatment with the different solutions. CONCLUSIONS The presented data suggest that ethyl pyruvate efficiently reduces the inflammatory response in the mesenteric microcirculation in an experimental model of sepsis induced by live E. coli and is associated, at least in part, with down-regulation of P-selectin and intercellular adhesion molecule-1.
Collapse
Affiliation(s)
- Ismael Francisco Mota Siqueira Guarda
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicinada Universidade de São Paulo (InCor), Laboratório de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), São Paulo/SP, Brazil
- Corresponding author: E-mail:
| | - Cristiano Jesus Correia
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicinada Universidade de São Paulo (InCor), Laboratório de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), São Paulo/SP, Brazil
| | - Ana Cristina Breithaupt-Faloppa
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicinada Universidade de São Paulo (InCor), Laboratório de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), São Paulo/SP, Brazil
| | - Sueli Gomes Ferreira
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicinada Universidade de São Paulo (InCor), Laboratório de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), São Paulo/SP, Brazil
| | | | | | - Mauricio Rocha-e-Silva
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicinada Universidade de São Paulo (InCor), Laboratório de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), São Paulo/SP, Brazil
| | - Paulina Sannomiya
- Instituto do Coração do Hospital das Clínicas da Faculdade de Medicinada Universidade de São Paulo (InCor), Laboratório de Cirurgia Cardiovascular e Fisiopatologia da Circulação (LIM-11), São Paulo/SP, Brazil
| |
Collapse
|
187
|
Cheng CW, Chou CC, Lin CH, Nycholat C, Fukuda M, Khoo KH. Efficient Mapping of Sulfated Glycotopes by Negative Ion Mode nanoLC-MS/MS-Based Sulfoglycomic Analysis of Permethylated Glycans. Anal Chem 2015; 87:6380-8. [PMID: 26016788 PMCID: PMC4843773 DOI: 10.1021/acs.analchem.5b01409] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We have previously developed the enabling techniques for sulfoglycomics based on mass spectrometry (MS) analysis of permethylated glycans, which preserves the attractive features of more reliable MS/MS sequencing compared with that performed on native glycans, while providing an easy way to separate and hence enrich the sulfated glycans. Unlike LC-MS/MS analysis of native glycans in negative ion mode that has been more widely in use, the characteristics and potential benefits of similar applications based on permethylated sulfated glycans have not been fully investigated. We report here the important features of reverse phase-based nanoLC-MS/MS analysis of permethylated sulfated glycans in negative ion mode and demonstrate that complementary sets of diagnostic fragment ions afforded can allow rapid identification of various fucosylated, sialylated, sulfated glycotopes and definitive determination of the location of sulfate in a way difficult to achieve by other means. A parallel acquisition of both higher collision energy and trap-based MS(2) coupled with a product dependent MS(3) is conceivably the most productive sulfoglycomic workflow currently possible and the manually curated fragmentation characteristics presented here will allow future developments in automating data analysis.
Collapse
Affiliation(s)
- Chu-Wen Cheng
- Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan
- Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Chi-Chi Chou
- Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Chun-Hung Lin
- Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan
- Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Corwin Nycholat
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Minoru Fukuda
- Sanford-Burnham Medical Research Institute, La Jolla, CA, USA
| | - Kay-Hooi Khoo
- Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan
- Institute of Biological Chemistry, Academia Sinica, Nankang, Taipei 115, Taiwan
| |
Collapse
|
188
|
Peske JD, Woods AB, Engelhard VH. Control of CD8 T-Cell Infiltration into Tumors by Vasculature and Microenvironment. Adv Cancer Res 2015. [PMID: 26216636 DOI: 10.1016/bs.acr.2015.05.001] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
CD8 T-cells are a critical brake on the initial development of tumors. In established tumors, the presence of CD8 T-cells is correlated with a positive patient prognosis, although immunosuppressive mechanisms limit their effectiveness and they are rarely curative without manipulation. Cancer immunotherapies aim to shift the balance back to dominant antitumor immunity through antibody blockade of immunosuppressive signaling pathways, vaccination, and adoptive transfer of activated or engineered T-cells. These approaches have yielded striking responses in small subsets of patients with solid tumors, most notably those with melanoma. Importantly, the subset of patients who respond to vaccination or immunosuppression blockade therapies are those with CD8 T-cells present in the tumor prior to initiating therapy. While current adoptive cell therapy approaches can be dramatically effective, they require infusion of extremely large numbers of T-cells, but the number that actually infiltrates the tumor is very small. Thus, poor representation of CD8 T-cells in tumors is a fundamental hurdle to successful immunotherapy, over and above the well-established barrier of immunosuppression. In this review, we discuss the factors that determine whether immune cells are present in tumors, with a focus on the representation of cytotoxic CD8 T-cells. We emphasize the critically important role of tumor-associated vasculature as a gateway that enables the active infiltration of both effector and naïve CD8 T-cells that exert antitumor activity. We also discuss strategies to enhance the gateway function and extend the effectiveness of immunotherapies to a broader set of cancer patients.
Collapse
Affiliation(s)
- J David Peske
- Department of Microbiology, Immunology, and Cancer Biology, Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Amber B Woods
- Department of Microbiology, Immunology, and Cancer Biology, Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Victor H Engelhard
- Department of Microbiology, Immunology, and Cancer Biology, Carter Immunology Center, University of Virginia School of Medicine, Charlottesville, Virginia, USA.
| |
Collapse
|
189
|
Hirata T, Usui T, Kobayashi S, Mimori T. A novel splice variant of human L-selectin encodes a soluble molecule that is elevated in serum of patients with rheumatic diseases. Biochem Biophys Res Commun 2015; 462:371-7. [PMID: 25982478 DOI: 10.1016/j.bbrc.2015.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 05/01/2015] [Indexed: 11/26/2022]
Abstract
L-selectin, a type I membrane protein, is a leukocyte adhesion molecule that mediates both lymphocyte homing to peripheral lymph nodes and leukocyte accumulation at sites of inflammation. L-selectin is rapidly shed from the cell surface after cellular activation, and the ectodomain thus released is thought to account for high levels of soluble L-selectin in serum. In this study, we report the identification of a novel, naturally occurring isoform of the human L-selectin gene. Sequence analysis revealed that this isoform is generated by an alternative splicing event: the 7th exon of the human L-selectin gene, which encodes the region containing the transmembrane domain, is excluded, predicting a soluble protein product. The mRNA for this splice variant was expressed in lymphoid organs, where conventional L-selectin mRNA was also expressed. Activating T cells increased the variant mRNA and its ratio to the membrane form. Soluble L-selectin translated from the variant mRNA was present in human serum, albeit at a much lower level than that arising from ectodomain shedding, and was markedly elevated in patients with various rheumatic diseases, including rheumatoid arthritis and systemic lupus erythematosus. These observations indicate that some of the soluble L-selectin present in human serum arises through alternative splicing, which may be upregulated during lymphocyte activation in patients with various clinical conditions.
Collapse
Affiliation(s)
- Takako Hirata
- Department of Fundamental Biosciences, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan.
| | - Takashi Usui
- Department of Rheumatology and Clinical Immunology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Shio Kobayashi
- Center for Innovation in Immunoregulative Technology and Therapeutics, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Tsuneyo Mimori
- Department of Rheumatology and Clinical Immunology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| |
Collapse
|
190
|
Peske JD, Thompson ED, Gemta L, Baylis RA, Fu YX, Engelhard VH. Effector lymphocyte-induced lymph node-like vasculature enables naive T-cell entry into tumours and enhanced anti-tumour immunity. Nat Commun 2015; 6:7114. [PMID: 25968334 PMCID: PMC4435831 DOI: 10.1038/ncomms8114] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 04/03/2015] [Indexed: 12/11/2022] Open
Abstract
The presence of lymph node (LN)-like vasculature in tumors, characterized by expression of peripheral node addressin and chemokine CCL21, is correlated with T-cell infiltration and positive prognosis in breast cancer and melanoma patients. However, mechanisms controlling the development of LN-like vasculature and how it might contribute to a beneficial outcome for cancer patients are unknown. Here we demonstrate that LN-like vasculature is present in murine models of melanoma and lung carcinoma. It enables infiltration by naïve T-cells that significantly delay tumor outgrowth after intratumoral activation. Development of this vasculature is controlled by a mechanism involving effector CD8 T-cells and NK cells that secrete LTα3 and IFNγ. LN-like vasculature is also associated with organized aggregates of B-lymphocytes and gp38+ fibroblasts that resemble tertiary lymphoid organs that develop in models of chronic inflammation. These results establish LN-like vasculature as both a consequence of and key contributor to anti-tumor immunity.
Collapse
Affiliation(s)
- J David Peske
- Department of Microbiology and Carter Immunology Center, University of Virginia School of Medicine, Box 801386, Charlottesville, Virginia 22901, USA
| | - Elizabeth D Thompson
- Department of Microbiology and Carter Immunology Center, University of Virginia School of Medicine, Box 801386, Charlottesville, Virginia 22901, USA
| | - Lelisa Gemta
- Department of Microbiology and Carter Immunology Center, University of Virginia School of Medicine, Box 801386, Charlottesville, Virginia 22901, USA
| | - Richard A Baylis
- Department of Microbiology and Carter Immunology Center, University of Virginia School of Medicine, Box 801386, Charlottesville, Virginia 22901, USA
| | - Yang-Xin Fu
- Department of Pathology and Committee on Immunology, University of Chicago, Chicago, Illinois 60637, USA
| | - Victor H Engelhard
- Department of Microbiology and Carter Immunology Center, University of Virginia School of Medicine, Box 801386, Charlottesville, Virginia 22901, USA
| |
Collapse
|
191
|
Ager A, May MJ. Understanding high endothelial venules: Lessons for cancer immunology. Oncoimmunology 2015; 4:e1008791. [PMID: 26155419 PMCID: PMC4485764 DOI: 10.1080/2162402x.2015.1008791] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 01/09/2015] [Accepted: 01/10/2015] [Indexed: 01/06/2023] Open
Abstract
High endothelial venules (HEVs) are blood vessels especially adapted for lymphocyte trafficking which are normally found in secondary lymphoid organs such as lymph nodes (LN) and Peyer's patches. It has long been known that HEVs develop in non-lymphoid organs during chronic inflammation driven by autoimmunity, infection or allografts. More recently, HEVs have been observed in solid, vascularized tumors and their presence correlated with reduced tumor size and improved patient outcome. It is proposed that newly formed HEV promote antitumor immunity by recruiting naive lymphocytes into the tumor, thus allowing the local generation of cancerous tissue-destroying lymphocytes. Understanding how HEVs develop and function are therefore important to unravel their role in human cancers. In LN, HEVs develop during embryonic and early post-natal life and are actively maintained by the LN microenvironment. Systemic blockade of lymphotoxin-β receptor leads to HEV de-differentiation, but the LN components that induce HEV differentiation have remained elusive. Recent elegant studies using gene-targeted mice have demonstrated clearly that triggering the lymphotoxin-β receptor in endothelial cells (EC) induces the differentiation of HEV and that CD11c+ dendritic cells play a crucial role in this process. It will be important to determine whether lymphotoxin-β receptor-dependent signaling in EC drives the development of HEV during tumorigenesis and which cells have HEV-inducer properties. This may reveal therapeutic approaches to promote HEV neogenesis and determine the impact of newly formed HEV on tumor immunity.
Collapse
Key Words
- EC, endothelial cells
- FRC, fibroblast reticular cells
- HEC, high endothelial cells
- HEV, high endothelial venules
- LN, lymph nodes
- LPA, lysophosphatidic acid
- LT, lymphotoxin
- LT-βR, lymphotoxin-β receptor
- MAdCAM, mucosal cell adhesion molecule
- PNAd, peripheral node addressin
- SIP, sphingosine-1-phosphate
- T cell homing
- TLO, tertiary lymphoid organ
- VE-cadherin, vascular endothelial cadherin
- VEGF, vascular endothelial growth factor
- dendritic cells
- high endothelial venules
- lymphotoxin-β receptor
- tumor immunotherapy
Collapse
Affiliation(s)
- Ann Ager
- Infection and Immunity; School of Medicine; Cardiff University ; Cardiff, UK
| | - Michael J May
- School of Veterinary Medicine; University of Pennsylvania ; Philadelphia, PA, USA
| |
Collapse
|
192
|
Sakai Y, Kobayashi M. Lymphocyte 'homing' and chronic inflammation. Pathol Int 2015; 65:344-54. [PMID: 25831975 DOI: 10.1111/pin.12294] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 03/04/2015] [Indexed: 12/20/2022]
Abstract
Chronic inflammation is a response to prolonged exposure to injurious stimuli that harm and destroy tissues and promote lymphocyte infiltration into inflamed sites. Following progressive accumulation of lymphocytes, the histology of inflamed tissue begins to resemble that of peripheral lymphoid organs, which can be referred to as lymphoid neogenesis or formation of tertiary lymphoid tissues. Lymphocyte recruitment to inflamed tissues is also reminiscent of lymphocyte homing to peripheral lymphoid organs. In the latter, under physiological conditions, homing receptors expressed on lymphocytes adhere to vascular addressin expressed on high endothelial venules (HEVs), initiating a lymphocyte migration process composed of sequential adhesive interactions. Intriguingly, in chronic inflammation, HEV-like vessels are induced de novo, despite the fact that the inflamed site is not originally lymphoid tissue, and these vessels contribute to lymphocyte recruitment in a manner similar to physiological lymphocyte homing. In this review, we first describe physiological lymphocyte homing mechanisms focusing on vascular addressins. We then describe HEV-like vessel-mediated pathogenesis seen in various chronic inflammatory disorders such as Helicobacter pylori gastritis, inflammatory bowel disease (IBD), autoimmune pancreatitis and sclerosing sialadenitis, as well as chronic inflammatory cell neoplasm MALT lymphoma, with reference to our work and that of others.
Collapse
Affiliation(s)
- Yasuhiro Sakai
- Division of Tumor Pathology, Department of Pathological Sciences, Faculty of Medical Sciences, University of Fukui, Eiheiji, Japan
| | - Motohiro Kobayashi
- Division of Tumor Pathology, Department of Pathological Sciences, Faculty of Medical Sciences, University of Fukui, Eiheiji, Japan
| |
Collapse
|
193
|
Increased expression of L-selectin (CD62L) in high-grade urothelial carcinoma: A potential marker for metastatic disease. Urol Oncol 2015; 33:387.e17-27. [PMID: 25618296 DOI: 10.1016/j.urolonc.2014.12.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 12/06/2014] [Accepted: 12/15/2014] [Indexed: 12/20/2022]
Abstract
INTRODUCTION L-Selectin (CD62L) is a vascular adhesion molecule constitutively expressed on leukocytes with a primary function of directing leukocyte migration and homing of lymphocytes to lymph nodes. In a gene expression microarray study comparing laser-captured microdissected high-grade muscle-invasive bladder cancer (MIBC) without prior treatment and low-grade bladder cancer (LGBC) human samples, we found CD62L to be the highest differentially expressed gene. We sought to examine the differential expression of CD62L in MIBCs and its clinical relevance. METHODS Unfixed fresh and formalin-fixed paraffin-embedded human bladder cancer specimens and serum samples were obtained from the University of Connecticut Health Center tumor bank. Tumor cells were isolated from frozen tumor tissue sections by laser-captured microdissected followed by RNA isolation. Quantitative polymerase chain reaction was used to validate the level of CD62L transcripts. Immunohistochemistry and enzyme-linked immunosorbent assay were performed to evaluate the CD62L protein localization and expression level. Flow cytometry was used to identify the relative number of cells expressing CD62L in fresh tumor tissue. In silico studies were performed using the Oncomine database. RESULTS Immunostaining showed a uniformly higher expression of CD62L in MIBC specimens vs. LGBCs specimens. Further, CD62L localization was seen in foci of metastatic tumor cells in lymph node specimens from patients with high-grade MIBC and known nodal involvement. Up-regulated expression of CD62L was also observed by flow cytometric analysis of freshly isolated tumor cells from biopsies of high-grade cancers vs. LGBC specimens. Circulating CD62L levels were also found to be higher in serum samples from patients with high-grade metastatic vs. high-grade nonmetastatic MIBC. In addition, in silico analysis of Oncomine Microarray Database showed a significant correlation between CD62L expression and tumor aggressiveness and clinical outcomes. CONCLUSION These data confirm the expression of CD62L on urothelial carcinoma cells and suggest that CD62L may serve as biomarker to predict the presence of or risk for developing metastatic disease in patients with bladder cancer.
Collapse
|
194
|
Molecular mechanisms of CD8(+) T cell trafficking and localization. Cell Mol Life Sci 2015; 72:2461-73. [PMID: 25577280 DOI: 10.1007/s00018-015-1835-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 01/06/2015] [Accepted: 01/08/2015] [Indexed: 12/13/2022]
Abstract
Cytotoxic CD8(+) T cells are potent mediators of host protection against disease due to their ability to directly kill cells infected with intracellular pathogens and produce inflammatory cytokines at the site of infection. To fully achieve this objective, naïve CD8(+) T cells must be able to survey the entire body for the presence of foreign or "non-self" antigen that is delivered to draining lymph nodes following infection or tissue injury. Once activated, CD8(+) T cells undergo many rounds of cell division, acquire effector functions, and are no longer restricted to the circulation and lymphoid compartments like their naïve counterparts, but rather are drawn to inflamed tissues to combat infection. As CD8(+) T cells transition from naïve to effector to memory populations, this is accompanied by dynamic changes in the expression of adhesion molecules and chemokine receptors that ultimately dictate their localization in vivo. Thus, an understanding of the molecular mechanisms regulating CD8(+) T cell trafficking and localization is critical for vaccine design, control of infectious diseases, treatment of autoimmune disorders, and cancer immunotherapy.
Collapse
|
195
|
Quaranta M, Erez O, Mastrolia SA, Koifman A, Leron E, Eshkoli T, Mazor M, Holcberg G. The physiologic and therapeutic role of heparin in implantation and placentation. PeerJ 2015; 3:e691. [PMID: 25653897 PMCID: PMC4304855 DOI: 10.7717/peerj.691] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 11/19/2014] [Indexed: 01/19/2023] Open
Abstract
Implantation, trophoblast development and placentation are crucial processes in the establishment and development of normal pregnancy. Abnormalities of these processes can lead to pregnancy complications known as the great obstetrical syndromes: preeclampsia, intrauterine growth restriction, fetal demise, premature prelabor rupture of membranes, preterm labor, and recurrent pregnancy loss. There is mounting evidence regarding the physiological and therapeutic role of heparins in the establishment of normal gestation and as a modality for treatment and prevention of pregnancy complications. In this review, we will summarize the properties and the physiological contributions of heparins to the success of implantation, placentation and normal pregnancy.
Collapse
Affiliation(s)
- Michela Quaranta
- Department of Obstetrics and Gynecology, Azienda Ospedaliera Universitaria Integrata, Università degli Studi di Verona , Verona , Italy
| | - Offer Erez
- Department of Obstetrics and Gynecology, Soroka University Medical Center, School of Medicine, Ben Gurion University of the Negev , Beer Sheva , Israel
| | - Salvatore Andrea Mastrolia
- Department of Obstetrics and Gynecology, Azienda Ospedaliera-Universitaria Policlinico di Bari, School of Medicine, University of Bari "Aldo Moro" , Bari , Italy
| | - Arie Koifman
- Department of Obstetrics and Gynecology, Soroka University Medical Center, School of Medicine, Ben Gurion University of the Negev , Beer Sheva , Israel
| | - Elad Leron
- Department of Obstetrics and Gynecology, Soroka University Medical Center, School of Medicine, Ben Gurion University of the Negev , Beer Sheva , Israel
| | - Tamar Eshkoli
- Department of Obstetrics and Gynecology, Soroka University Medical Center, School of Medicine, Ben Gurion University of the Negev , Beer Sheva , Israel
| | - Moshe Mazor
- Department of Obstetrics and Gynecology, Soroka University Medical Center, School of Medicine, Ben Gurion University of the Negev , Beer Sheva , Israel
| | - Gershon Holcberg
- Department of Obstetrics and Gynecology, Soroka University Medical Center, School of Medicine, Ben Gurion University of the Negev , Beer Sheva , Israel
| |
Collapse
|
196
|
Abstract
There is no "response" in either the innate or adaptive immune response unless leukocytes cross blood vessels. They do this through the process of diapedesis, in which the leukocyte moves in ameboid fashion through tightly apposed endothelial borders (paracellular transmigration) and in some cases through the endothelial cell itself (transcellular migration). This review summarizes the steps leading up to diapedesis, then focuses on the molecules and mechanisms responsible for transendothelial migration. Surprisingly, many of the same molecules and mechanisms that regulate paracellular migration also control transcellular migration, including a major role for membrane from the recently described lateral border recycling compartment. A hypothesis that integrates the various known mechanisms of transmigration is proposed.
Collapse
Affiliation(s)
- W A Muller
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
197
|
The cholesterol-dependent cytolysins pneumolysin and streptolysin O require binding to red blood cell glycans for hemolytic activity. Proc Natl Acad Sci U S A 2014; 111:E5312-20. [PMID: 25422425 DOI: 10.1073/pnas.1412703111] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cholesterol-dependent cytolysin (CDC) pneumolysin (Ply) is a key virulence factor of Streptococcus pneumoniae. Membrane cholesterol is required for the cytolytic activity of this toxin, but it is not clear whether cholesterol is the only cellular receptor. Analysis of Ply binding to a glycan microarray revealed that Ply has lectin activity and binds glycans, including the Lewis histo-blood group antigens. Surface plasmon resonance analysis showed that Ply has the highest affinity for the sialyl LewisX (sLeX) structure, with a K(d) of 1.88 × 10(-5) M. Ply hemolytic activity against human RBCs showed dose-dependent inhibition by sLeX. Flow cytometric analysis and Western blots showed that blocking binding of Ply to the sLeX glycolipid on RBCs prevents deposition of the toxin in the membrane. The lectin domain responsible for sLeX binding is in domain 4 of Ply, which contains candidate carbohydrate-binding sites. Mutagenesis of these predicted carbohydrate-binding residues of Ply resulted in a decrease in hemolytic activity and a reduced affinity for sLeX. This study reveals that this archetypal CDC requires interaction with the sLeX glycolipid cellular receptor as an essential step before membrane insertion. A similar analysis conducted on streptolysin O from Streptococcus pyogenes revealed that this CDC also has glycan-binding properties and that hemolytic activity against RBCs can be blocked with the glycan lacto-N-neotetraose by inhibiting binding to the cell surface. Together, these data support the emerging paradigm shift that pore-forming toxins, including CDCs, have cellular receptors other than cholesterol that define target cell tropism.
Collapse
|
198
|
Macauley MS, Arlian BM, Rillahan CD, Pang PC, Bortell N, Marcondes MCG, Haslam SM, Dell A, Paulson JC. Systemic blockade of sialylation in mice with a global inhibitor of sialyltransferases. J Biol Chem 2014; 289:35149-58. [PMID: 25368325 DOI: 10.1074/jbc.m114.606517] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Sialic acid terminates glycans of glycoproteins and glycolipids that play numerous biological roles in health and disease. Although genetic tools are available for interrogating the effects of decreased or abolished sialoside expression in mice, pharmacological inhibition of the sialyltransferase family has, to date, not been possible. We have recently shown that a sialic acid analog, 2,4,7,8,9-pentaacetyl-3Fax-Neu5Ac-CO2Me (3F-NeuAc), added to the media of cultured cells shuts down sialylation by a mechanism involving its intracellular conversion to CMP-3F-NeuAc, a competitive inhibitor of all sialyltransferases. Here we show that administering 3F-NeuAc to mice dramatically decreases sialylated glycans in cells of all tissues tested, including blood, spleen, liver, brain, lung, heart, kidney, and testes. A single dose results in greatly decreased sialoside expression for over 7 weeks in some tissues. Although blockade of sialylation with 3F-NeuAc does not affect viability of cultured cells, its use in vivo has a deleterious "on target" effect on liver and kidney function. After administration of 3F-NeuAc, liver enzymes in the blood are dramatically altered, and mice develop proteinuria concomitant with dramatic loss of sialic acid in the glomeruli within 4 days, leading to irreversible kidney dysfunction and failure to thrive. These results confirm a critical role for sialosides in liver and kidney function and document the feasibility of pharmacological inhibition of sialyltransferases for in vivo modulation of sialoside expression.
Collapse
Affiliation(s)
- Matthew S Macauley
- From the Departments of Cell and Molecular Biology, Chemical Physiology, and Immunology and Microbial Science and
| | - Britni M Arlian
- From the Departments of Cell and Molecular Biology, Chemical Physiology, and Immunology and Microbial Science and
| | - Cory D Rillahan
- From the Departments of Cell and Molecular Biology, Chemical Physiology, and Immunology and Microbial Science and the Division of Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, and
| | - Poh-Choo Pang
- the Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Nikki Bortell
- the Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La, Jolla, California 92037
| | - Maria Cecilia G Marcondes
- the Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La, Jolla, California 92037
| | - Stuart M Haslam
- the Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - Anne Dell
- the Department of Life Sciences, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | - James C Paulson
- From the Departments of Cell and Molecular Biology, Chemical Physiology, and Immunology and Microbial Science and
| |
Collapse
|
199
|
Kellermayer Z, Mihalj M, Lábadi Á, Czömpöly T, Lee M, O'Hara E, Butcher EC, Berta G, Balogh A, Arnold HH, Balogh P. Absence of Nkx2-3 homeodomain transcription factor reprograms the endothelial addressin preference for lymphocyte homing in Peyer's patches. THE JOURNAL OF IMMUNOLOGY 2014; 193:5284-93. [PMID: 25320278 DOI: 10.4049/jimmunol.1402016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Although the homing of lymphocytes to GALT has been extensively studied, little is known about how high endothelial venules (HEVs) within Peyer's patches (PPs) are patterned to display dominantly mucosal addressin cell adhesion molecule 1 (MAdCAM-1). In this study, we report that Nkx2-3-deficient mice show gradual loss of MAdCAM-1 in PPs postnatally and increased levels of mRNA for peripheral lymph node addressin (PNAd) backbone proteins as well as enhanced expression of MECA79 sulfated glycoepitope at the luminal aspect of HEVs, thus replacing MAdCAM-1 with PNAd. Induction of PNAd in mutant PPs requires lymphotoxin β receptor activity, and its upregulation needs the presence of mature T and B cells. Furthermore, treatment with MECA-79 anti-PNAd mAb in vivo effectively blocks lymphocyte homing to mutant PPs. Despite the replacement of MAdCAM-1 by PNAd in HEV endothelia, lymphocytes could efficiently home to PPs in mutant mice. We conclude that although Nkx2-3 activity controls the addressin balance of HEVs in GALT, the general HEV functionality is preserved independently from Nkx2-3, indicating a substantial plasticity in the specification of GALT HEV endothelium.
Collapse
Affiliation(s)
- Zoltán Kellermayer
- Department of Immunology and Biotechnology, Faculty of Medicine, University of Pécs, H-7624 Pécs, Hungary; Lymphoid Organogenesis Research Group, Szentágothai János Research Center, University of Pécs, H-7624 Pécs, Hungary
| | - Martina Mihalj
- Department of Physiology and Immunology, University of Osijek, 31000 Osijek, Croatia
| | - Árpád Lábadi
- Department of Immunology and Biotechnology, Faculty of Medicine, University of Pécs, H-7624 Pécs, Hungary
| | - Tamás Czömpöly
- Cancer Research and Product Development Laboratory, Immunal Ltd., H-7630 Pécs, Hungary
| | - Mike Lee
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305
| | - Edward O'Hara
- Palo Alto Veterans Institute for Research, Palo Alto, CA 94304
| | - Eugene C Butcher
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305; Palo Alto Veterans Institute for Research, Palo Alto, CA 94304; Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304
| | - Gergely Berta
- Department of Medical Biology, University of Pécs, H-7624 Pécs, Hungary; and
| | - András Balogh
- Department of Medical Biology, University of Pécs, H-7624 Pécs, Hungary; and
| | - Hans-Henning Arnold
- Department of Cell and Molecular Biology, Institute of Biochemistry and Biotechnology, Technical University of Braunschweig, 38106 Braunschweig, Germany
| | - Péter Balogh
- Department of Immunology and Biotechnology, Faculty of Medicine, University of Pécs, H-7624 Pécs, Hungary; Lymphoid Organogenesis Research Group, Szentágothai János Research Center, University of Pécs, H-7624 Pécs, Hungary;
| |
Collapse
|
200
|
Famakin BM. The Immune Response to Acute Focal Cerebral Ischemia and Associated Post-stroke Immunodepression: A Focused Review. Aging Dis 2014; 5:307-26. [PMID: 25276490 DOI: 10.14336/ad.2014.0500307] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 07/07/2014] [Accepted: 07/08/2014] [Indexed: 12/20/2022] Open
Abstract
It is currently well established that the immune system is activated in response to transient or focal cerebral ischemia. This acute immune activation occurs in response to damage, and injury, to components of the neurovascular unit and is mediated by the innate and adaptive arms of the immune response. The initial immune activation is rapid, occurs via the innate immune response and leads to inflammation. The inflammatory mediators produced during the innate immune response in turn lead to recruitment of inflammatory cells and the production of more inflammatory mediators that result in activation of the adaptive immune response. Under ideal conditions, this inflammation gives way to tissue repair and attempts at regeneration. However, for reasons that are just being understood, immunosuppression occurs following acute stroke leading to post-stroke immunodepression. This review focuses on the current state of knowledge regarding innate and adaptive immune activation in response to focal cerebral ischemia as well as the immunodepression that can occur following stroke. A better understanding of the intricate and complex events that take place following immune response activation, to acute cerebral ischemia, is imperative for the development of effective novel immunomodulatory therapies for the treatment of acute stroke.
Collapse
Affiliation(s)
- Bolanle M Famakin
- National Institutes of Health, National Institute of Neurological Diseases and Stroke, Stroke Branch, Branch, Bethesda, MD, 20892, USA
| |
Collapse
|