151
|
Yu X, Wei S, Yang Y, Ding Z, Wang Q, Zhao J, Liu X, Chu X, Tian J, Wu N, Fan Y. Identification of cadmium-binding proteins from rice (Oryza sativa L.). Int J Biol Macromol 2018; 119:597-603. [DOI: 10.1016/j.ijbiomac.2018.07.190] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/02/2018] [Accepted: 07/30/2018] [Indexed: 01/02/2023]
|
152
|
Espitia-Pérez P, Albino SM, da Rosa HT, Silveira AK, Espitia-Pérez L, Brango H, Moraes DP, Hermann PRS, Mingori M, Barreto F, Kunzler A, Gelain DP, Schnorr CE, Moreira JCF. Effects of methylmercury and retinol palmitate co-administration in rats during pregnancy and breastfeeding: Metabolic and redox parameters in dams and their offspring. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 162:603-615. [PMID: 30031321 DOI: 10.1016/j.ecoenv.2018.06.093] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 06/08/2023]
Abstract
Ubiquitous low-dose methylmercury (MeHg) exposure through an increased fish consumption represents a global public health problem, especially among pregnant women. A plethora of micronutrients presented in fish affects MeHg uptake/distribution, but limited data is available. Vitamin A (VitA), another fish micronutrient is used in nutritional supplementation, especially during pregnancy. However, there is no information about the health effects arising from their combined exposure. Therefore, the present study aimed to examine the effects of both MeHg and retinyl palmitate administered on pregnant and lactating rats in metabolic and redox parameters from dams and their offspring. Thirty Wistar female rats were orally supplemented with MeHg (0,5 mg/kg/day) and retinyl palmitate (7500 µg RAE/kg/day) via gavage, either individually or in combination from the gestational day 0 to weaning. For dams (150 days old) and their offspring (31 days old), glycogen accumulation (hepatic and cardiac) and retinoid contents (plasma and liver) were analyzed. Hg deposition in liver tissue was quantified. Redox parameters (liver, kidney, and heart) were evaluated for both animals. Cytogenetic damage was analyzed with micronucleus test. Our results showed no general toxic or metabolic alterations in dams and their offspring by MeHg-VitA co-administration during pregnancy and lactation. However, increased lipoperoxidation in maternal liver and a disrupted pro-oxidant response in the heart of male pups was encountered, with apparently no particular effects in the antioxidant response in female offspring. GST activity in dam kidney was altered leading to possible redox disruption of this tissue with no alterations in offspring. Finally, the genomic damage was exacerbated in both male and female pups. In conclusion, low-dose MeHg exposure and retinyl palmitate supplementation during gestation and lactation produced a potentiated pro-oxidant effect, which was tissue-specific. Although this is a pre-clinical approach, we recommend precaution for pregnant women regarding food consumption, and we encourage more epidemiological studies to assess possible modulations effects of MeHg-VitA co-administration at safe or inadvertently used doses in humans, which may be related to specific pathologies in mothers and their children.
Collapse
Affiliation(s)
- Pedro Espitia-Pérez
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600, Anexo Depto. Bioquímica, Lab 32, CEP 90035-003 Porto Alegre, Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| | - Suelen Marin Albino
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600, Anexo Depto. Bioquímica, Lab 32, CEP 90035-003 Porto Alegre, Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Helen Tais da Rosa
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600, Anexo Depto. Bioquímica, Lab 32, CEP 90035-003 Porto Alegre, Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Alexandre Kleber Silveira
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600, Anexo Depto. Bioquímica, Lab 32, CEP 90035-003 Porto Alegre, Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Lyda Espitia-Pérez
- Facultad de Ciencias de la Salud, Laboratorio de Investigación Biomédica y Biología Molecular, Universidad del Sinú, Calle 38 Carrera 1W, Barrio Juan XXIII, Montería, Córdoba, Colombia
| | - Hugo Brango
- Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, Brazil
| | - Diogo Pompéu Moraes
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves 9500, CEP 91501-970 Porto Alegre, Rio Grande do Sul, Brazil
| | - Paolla Rissi Silva Hermann
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves 9500, CEP 91501-970 Porto Alegre, Rio Grande do Sul, Brazil
| | - Moara Mingori
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600, Anexo Depto. Bioquímica, Lab 32, CEP 90035-003 Porto Alegre, Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Fabiano Barreto
- Laboratório de Análise de Resíduos de Pesticidas e Medicamentos Veterinários (RPM), Laboratório Nacional Agropecuário RS, Estrada da Ponta Grossa 3036, CEP: 91780-580 Porto Alegre, Rio Grande do Sul, Brazil
| | - Alice Kunzler
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600, Anexo Depto. Bioquímica, Lab 32, CEP 90035-003 Porto Alegre, Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Daniel Pens Gelain
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600, Anexo Depto. Bioquímica, Lab 32, CEP 90035-003 Porto Alegre, Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Carlos Eduardo Schnorr
- Departamento de Civil y Ambiental, Programa de Ingeniería Ambiental, Universidad de la Costa, Calle 58 #55- 66, Barranquilla, Atlántico, Colombia
| | - José Cláudio Fonseca Moreira
- Centro de Estudos em Estresse Oxidativo, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos 2600, Anexo Depto. Bioquímica, Lab 32, CEP 90035-003 Porto Alegre, Rio Grande do Sul, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
153
|
Pulmonary arterial hypertension and the potential roles of metallothioneins: A focused review. Life Sci 2018; 214:77-83. [PMID: 30355531 DOI: 10.1016/j.lfs.2018.10.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/10/2018] [Accepted: 10/19/2018] [Indexed: 12/17/2022]
Abstract
The pathophysiology of pulmonary arterial hypertension (PAH) is underlined by cell proliferation and vasoconstriction of pulmonary arterioles this involves multiple molecular factors or proteins, but it is not clear what the exact roles of these factors/proteins are. In addition, there may be other factors/proteins that have not been identified that contribute to PAH pathophysiology. Therefore, research has focused on investigating novel role players, in order to facilitate a better understanding of how PAH develop. Evidence suggest that mitochondrial regulators are key role players in PAH pathophysiology, but regulators that have not received sufficient attention in PAH are metallothioneins (MTs). In PAH patients, MT expression is elevated compared to healthy individuals, suggesting that MTs may be possible biomarkers. In other disease-models, MTs have been shown to regulate cell proliferation and vasoconstriction, processes that are instrumental in PAH pathophysiology. Due to the involvement of these processes in PAH pathophysiology and the ability of MTs to modulate them, this paper propose that cellular MTs may also play a role in PAH development. This paper suggests that PAH-research should perhaps begin to investigate the involvement of cellular MTs in the development of PAH.
Collapse
|
154
|
Abstract
Metallothioneins (MTs) are small cysteine-rich proteins that play important roles in metal homeostasis and protection against heavy metal toxicity, DNA damage, and oxidative stress. In humans, MTs have four main isoforms (MT1, MT2, MT3, and MT4) that are encoded by genes located on chromosome 16q13. MT1 comprises eight known functional (sub)isoforms (MT1A, MT1B, MT1E, MT1F, MT1G, MT1H, MT1M, and MT1X). Emerging evidence shows that MTs play a pivotal role in tumor formation, progression, and drug resistance. However, the expression of MTs is not universal in all human tumors and may depend on the type and differentiation status of tumors, as well as other environmental stimuli or gene mutations. More importantly, the differential expression of particular MT isoforms can be utilized for tumor diagnosis and therapy. This review summarizes the recent knowledge on the functions and mechanisms of MTs in carcinogenesis and describes the differential expression and regulation of MT isoforms in various malignant tumors. The roles of MTs in tumor growth, differentiation, angiogenesis, metastasis, microenvironment remodeling, immune escape, and drug resistance are also discussed. Finally, this review highlights the potential of MTs as biomarkers for cancer diagnosis and prognosis and introduces some current applications of targeting MT isoforms in cancer therapy. The knowledge on the MTs may provide new insights for treating cancer and bring hope for the elimination of cancer.
Collapse
Affiliation(s)
- Manfei Si
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Dongcheng District, Beijing, 100730 China
| | - Jinghe Lang
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Dongcheng District, Beijing, 100730 China
| |
Collapse
|
155
|
Effect of Metallothionein-III on Mercury-Induced Chemokine Gene Expression. TOXICS 2018; 6:toxics6030048. [PMID: 30103553 PMCID: PMC6161308 DOI: 10.3390/toxics6030048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 08/02/2018] [Accepted: 08/07/2018] [Indexed: 11/16/2022]
Abstract
Mercury compounds are known to cause central nervous system disorders; however the detailed molecular mechanisms of their actions remain unclear. Methylmercury increases the expression of several chemokine genes, specifically in the brain, while metallothionein-III (MT-III) has a protective role against various brain diseases. In this study, we investigated the involvement of MT-III in chemokine gene expression changes in response to methylmercury and mercury vapor in the cerebrum and cerebellum of wild-type mice and MT-III null mice. No difference in mercury concentration was observed between the wild-type mice and MT-III null mice in any brain tissue examined. The expression of Ccl3 in the cerebrum and of Cxcl10 in the cerebellum was increased by methylmercury in the MT-III null but not the wild-type mice. The expression of Ccl7 in the cerebellum was increased by mercury vapor in the MT-III null mice but not the wild-type mice. However, the expression of Ccl12 and Cxcl12 was increased in the cerebrum by methylmercury only in the wild-type mice and the expression of Ccl3 in the cerebellum was increased by mercury vapor only in the wild-type mice. These results indicate that MT-III does not affect mercury accumulation in the brain, but that it affects the expression of some chemokine genes in response to mercury compounds.
Collapse
|
156
|
Nejdl L, Moravanska A, Smerkova K, Mravec F, Krizkova S, Pomorski A, Krężel A, Macka M, Adam V, Vaculovicova M. Short-sweep capillary electrophoresis with a selective zinc fluorescence imaging reagent FluoZin-3 for determination of free and metalothionein-2a-bound Zn2+ ions. Anal Chim Acta 2018. [DOI: 10.1016/j.aca.2018.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
157
|
Mortensen LH, Rønn R, Vestergård M. Bioaccumulation of cadmium in soil organisms - With focus on wood ash application. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 156:452-462. [PMID: 29605665 DOI: 10.1016/j.ecoenv.2018.03.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 02/23/2018] [Accepted: 03/06/2018] [Indexed: 06/08/2023]
Abstract
Harvesting whole-tree biomass for biofuel combustion intensifies removal of nutrients from the ecosystem. This can be partly amended by applying ash from the combustion back to the system and thus recycle the nutrients. However, besides being rich in inorganic nutrients, ash also contains trace amounts of heavy metals. Due to the risk of toxic effects and trophic transfer of heavy metals, especially cadmium, legislation usually restricts the use of ash as a soil amendment. In order to provide researchers and governmental agencies with a tool to assess the risk of cadmium bioaccumulation in specific soil systems after ash application, we review: 1) the properties of ash; 2) the chemical and toxic properties of cadmium; 3) the key factors affecting cadmium bioavailability, cadmium uptake-, storage- and elimination-abilities in soil organisms and the risk of cadmium accumulation and biomagnification in the soil food web; 4) how ash impact on soil can change the risk of cadmium bioaccumulation. We conclude that for assessing the risk of cadmium bioaccumulation for specific sites, it is necessary to consider both the type and composition of ash, the soil conditions and organism composition on the site. On a general basis, we conclude that granulated ashes low in cadmium content, applied to low pH soils with high organic matter content, in systems with low abundances of earthworms, isopods and gastropods, will have a low risk of cadmium accumulation.
Collapse
Affiliation(s)
- Louise Hindborg Mortensen
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen Ø, Denmark.
| | - Regin Rønn
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen Ø, Denmark; Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China; Arctic Station, University of Copenhagen, Qeqertarsuaq, Greenland.
| | - Mette Vestergård
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen Ø, Denmark; Department of Agroecology, Aarhus University, Forsøgsvej 1, DK-4200 Slagelse, Denmark.
| |
Collapse
|
158
|
Pavlaki MD, Morgado RG, Soares AMVM, Calado R, Loureiro S. Toxicokinetics of cadmium in Palaemon varians postlarvae under waterborne and/or dietary exposure. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:1614-1622. [PMID: 29388712 DOI: 10.1002/etc.4104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 04/11/2017] [Accepted: 01/25/2018] [Indexed: 06/07/2023]
Abstract
The present study assessed cadmium uptake and depuration rates in the euryhaline estuarine shrimp Palaemon varians under different exposure routes. Postlarval shrimp were exposed for 4 d under different exposure routes: contaminated water, contaminated diet, and a 2-way exposure scenario where both contaminated water and diet were used. After exposure, postlarval shrimp were transferred to a clean medium and fed a noncontaminated diet for 96 h. Bioaccumulation via the different exposure routes was modeled with a standard first-order, one-compartment toxicokinetics model and one with an additional parameter reflecting an inert fraction or storage compartment. The simultaneous 2-way exposure (through water and diet) resulted in accumulation being almost twice as high as the sum of the individual exposure routes, thus indicating that accumulation from multiple routes may be more than additive. Cadmium uptake from water was faster than uptake from food maintained for 48 h at that same cadmium concentration. Shrimp were unable to eliminate cadmium from their body, showing no depuration during 96 h after exposure via different routes, thus suggesting that a longer depuration period is needed. Model comparisons did not provide a significantly better fit when the model included the presence of an inert fraction. The present study highlights the importance of assessing accumulation using multiple exposure routes compared with individual routes because the latter may underestimate bioaccumulation. Environ Toxicol Chem 2018;37:1614-1622. © 2018 SETAC.
Collapse
Affiliation(s)
- Maria D Pavlaki
- Department of Biology and Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| | - Rui G Morgado
- Department of Biology and Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| | - Amadeu M V M Soares
- Department of Biology and Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| | - Ricardo Calado
- Department of Biology and Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| | - Susana Loureiro
- Department of Biology and Centre for Environmental and Marine Studies, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
159
|
T V D, Chandwadkar P, Acharya C. NmtA, a novel metallothionein of Anabaena sp. strain PCC 7120 imparts protection against cadmium stress but not oxidative stress. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 199:152-161. [PMID: 29626757 DOI: 10.1016/j.aquatox.2018.03.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/12/2018] [Accepted: 03/29/2018] [Indexed: 06/08/2023]
Abstract
Metallothioneins (MTs) are low molecular weight, sulfhydryl-containing, cysteine-rich, metal-binding proteins. Eukaryotes have multiple metallothionein genes; however, there is dearth of reports on prokaryotic metallothioneins. Bacterial MTs with SmtA from Synechococcus PCC 7942 as prototype have been studied in the context of cadmium detoxification. In this study, a smtA related ORF, namely nmtA, was identified in the heterocystous, nitrogen-fixing cyanobacterium, Anabaena PCC 7120. A recombinant N-terminal histidine-tagged Anabaena NmtA protein was overexpressed in Escherichia coli and purified. The protein was identified by peptide mass fingerprinting using MALDI-TOF Mass Spectrometry as putative metallothionein of Anabaena PCC 7120 with a calculated mass of ∼6.1 kDa. While the native metallated NmtA exhibited resistance against proteolysis, metal free apo-NmtA resulting from acid and dithiothreitol (DTT) treatment could be digested by proteinase K revealing a metal dependent proteolytic protection of NmtA. Expression of nmtA in Anabaena PCC 7120 was induced evidently by cadmium, zinc and copper but not by uranium or hydrogen peroxide. Recombinant Anabaena PCC 7120 overexpressing NmtA protein revealed superior cadmium tolerance but showed limited influence against oxidative stress tolerance as compared with the strain carrying vector alone. In contrast, a mutant of Synechococcus PCC 7942 deficient in MT locus was found to be highly susceptible to H2O2 indicating a likely involvement of cyanobacterial MT in protection against oxidative damage. Overall, the study improved our understanding of metal tolerance mechanisms in Anabaena PCC 7120 by demonstrating a key role of NmtA in cadmium tolerance.
Collapse
Affiliation(s)
- Divya T V
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Pallavi Chandwadkar
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Celin Acharya
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India.
| |
Collapse
|
160
|
Mairinger FD, Schmeller J, Borchert S, Wessolly M, Mairinger E, Kollmeier J, Hager T, Mairinger T, Christoph DC, Walter RFH, Eberhardt WEE, Plönes T, Wohlschlaeger J, Jasani B, Schmid KW, Bankfalvi A. Immunohistochemically detectable metallothionein expression in malignant pleural mesotheliomas is strongly associated with early failure to platin-based chemotherapy. Oncotarget 2018; 9:22254-22268. [PMID: 29854276 PMCID: PMC5976462 DOI: 10.18632/oncotarget.24962] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 03/11/2018] [Indexed: 12/13/2022] Open
Abstract
Background Malignant pleural mesothelioma (MPM) is a biologically highly aggressive tumor arising from the pleura with a dismal prognosis. Cisplatin is the drug of choice for the treatment of MPM, and carboplatin seems to have comparable efficacy. Nevertheless, cisplatin treatment results in a response rate of merely 14% and a median survival of less than seven months. Due to their role in many cellular processes, methallothioneins (MTs) have been widely studied in various cancers. The known heavy metal detoxifying effect of MT-I and MT-II may be the reason for heavy metal drug resistance of various cancers including MPM. Methods 105 patients were retrospectively analyzed immunohistochemically for their MT expression levels. Survival analysis was done by Cox-regression, and statistical significance determined using likelihood ratio, Wald test and Score (logrank) tests. Results Cox-regression analyses were done in a linear and logarithmic scale revealing a significant association between expression of MT and shortened overall survival (OS) in a linear (p=0.0009) and logarithmic scale (p=0.0003). Reduced progression free survival (PFS) was also observed for MT expressing tumors (linear: p=0.0134, log: p=0.0152). Conclusion Since both, overall survival and progression-free survival are negatively correlated with detectable MT expression in MPM, our results indicate a possible resistance to platin-based chemotherapy associated with MT expression upregulation, found exclusively in progressive MPM samples. Initial cell culture studies suggest promoter DNA hypomethylation and expression of miRNA-566 a direct regulator of copper transporter SLC31A1 and a putative regulator of MT1A and MT2A gene expression, to be responsible for the drug resistance.
Collapse
Affiliation(s)
- Fabian D Mairinger
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jan Schmeller
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Sabrina Borchert
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Michael Wessolly
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Elena Mairinger
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jens Kollmeier
- Department of Pneumology, Helios Klinikum Emil von Behring, Berlin, Germany
| | - Thomas Hager
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Thomas Mairinger
- Department of Pathology, Helios Klinikum Emil von Behring, Berlin, Germany
| | - Daniel C Christoph
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Department of Internistic Oncology, Kliniken Essen Mitte, Essen, Germany
| | - Robert F H Walter
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Ruhrlandklinik, West German Lung Centre, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Wilfried E E Eberhardt
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Ruhrlandklinik, West German Lung Centre, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Till Plönes
- Department of Thoracic Surgery and Thoracical Endoscopy, Ruhrlandklinik, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Jeremias Wohlschlaeger
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Department of Pathology, Diakonissenkrankenhaus Flensburg, Flensburg, Germany
| | - Bharat Jasani
- Department of Pathology, Targos Molecular Pathology GmbH, Kassel, Germany
| | - Kurt Werner Schmid
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Agnes Bankfalvi
- Institute of Pathology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
161
|
Ringot G, Gasparini J, Wagner M, Cheikh Albassatneh M, Frantz A. More and smaller resting eggs along a gradient for pollution by metals: dispersal, dormancy and detoxification strategies in Daphnia? Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Gabrielle Ringot
- Sorbonne Universités, Université Paris Diderot, Université Paris-Est Créteil, CNRS, INRA, IRD, Institute of Ecology and Environmental Science – Paris (iEES-Paris), Campus Pierre et Marie Curie, 4 place Jussieu, Paris, France
| | - Julien Gasparini
- Sorbonne Universités, Université Paris Diderot, Université Paris-Est Créteil, CNRS, INRA, IRD, Institute of Ecology and Environmental Science – Paris (iEES-Paris), Campus Pierre et Marie Curie, 4 place Jussieu, Paris, France
| | - Marie Wagner
- Sorbonne Universités, Université Paris Diderot, Université Paris-Est Créteil, CNRS, INRA, IRD, Institute of Ecology and Environmental Science – Paris (iEES-Paris), Campus Pierre et Marie Curie, 4 place Jussieu, Paris, France
| | - Marwan Cheikh Albassatneh
- Sorbonne Universités, Université Paris Diderot, Université Paris-Est Créteil, CNRS, INRA, IRD, Institute of Ecology and Environmental Science – Paris (iEES-Paris), Campus Pierre et Marie Curie, 4 place Jussieu, Paris, France
| | - Adrien Frantz
- Sorbonne Universités, Université Paris Diderot, Université Paris-Est Créteil, CNRS, INRA, IRD, Institute of Ecology and Environmental Science – Paris (iEES-Paris), Campus Pierre et Marie Curie, 4 place Jussieu, Paris, France
| |
Collapse
|
162
|
Hepatoprotective Activity of Vitamin E and Metallothionein in Cadmium-Induced Liver Injury in Ctenopharyngodon idellus. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:9506543. [PMID: 29849926 PMCID: PMC5924983 DOI: 10.1155/2018/9506543] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 01/21/2018] [Accepted: 02/15/2018] [Indexed: 12/31/2022]
Abstract
As an environmental and industrial pollutant, cadmium (Cd) can cause a broad spectrum of toxicological effects. Multiple organs, especially the liver, are considerably affected by Cd in both humans and animals. We investigated the protective effects of metallothionein (MT) and vitamin E (VE) supplementation on Cd-induced apoptosis in the grass carp (Ctenopharyngodon idellus) liver. Grass carp were divided into four groups: the control group, Cd + phosphate-buffered saline (PBS) group, Cd + VE group, and Cd + MT group. All fish were injected with CdCl2 on the first day and then VE, MT, and PBS were given 4 days postinjection, respectively. The results showed that Cd administration resulted in liver poisoning in grass carp, which was expressed as an increase in Cd contents, malondialdehyde (MDA) concentration, percentage of hepatocyte apoptosis, and apoptosis-related gene mRNA transcript expression. However, VE and MT treatments protected against Cd-induced hepatotoxicity in grass carp by decreasing Cd contents, lipid peroxidation, and histological damage and reducing the percentage of hepatocyte apoptosis by regulating related mRNA transcript expression. These data demonstrate that oxidative stress and activation of the caspase signaling cascade play a critical role in Cd-induced hepatotoxicity. However, VE and MT alleviate Cd-induced hepatotoxicity through their antioxidative and antiapoptotic effects, and MT has a more powerful effect than VE.
Collapse
|
163
|
Noise pollution limits metal bioaccumulation and growth rate in a filter feeder, the Pacific oyster Magallana gigas. PLoS One 2018; 13:e0194174. [PMID: 29617387 PMCID: PMC5884495 DOI: 10.1371/journal.pone.0194174] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 02/26/2018] [Indexed: 01/26/2023] Open
Abstract
Shipping has increased dramatically in recent decades and oysters can hear them. We studied the interaction between noise pollution and trace metal contamination in the oyster Magallana gigas. Four oyster-groups were studied during a 14-day exposure period. Two were exposed to cadmium in the presence of cargo ship-noise ([Cd++]w ≈ 0.5 μg∙L-1; maximum sound pressure level 150 dBrms re 1 μPa), and 2 were exposed only to cadmium. The Cd concentration in the gills ([Cd]g) and the digestive gland ([Cd]dg), the valve closure duration, number of valve closures and circadian distribution of opening and closure, the daily shell growth-rate and the expression of 19 genes in the gills were studied. Oysters exposed to Cd in the presence of cargo ship-noise accumulated 2.5 times less Cd in their gills than did the controls without ship noise and their growth rate was 2.6 times slower. In the presence of ship noise, oysters were closed more during the daytime, and their daily valve activity was reduced. Changes in gene activity in the gills were observed in 7 genes when the Cd was associated with the ship noise. In the absence of ship noise, a change in expression was measured in 4 genes. We conclude that chronic exposure to cargo ship noise has a depressant effect on the activity in oysters, including on the volume of the water flowing over their gills (Vw). In turn, a decrease in the Vw and valve-opening duration limited metal exposure and uptake by the gills but also limited food uptake. This latter conclusion would explain the slowing observed in the fat metabolism and growth rate. Thus, we propose that cargo ship noise exposure could protect against metal bioaccumulation and affect the growth rate. This latter conclusion points towards a potential risk in terms of ecosystem productivity.
Collapse
|
164
|
Miguel V, Cui JY, Daimiel L, Espinosa-Díez C, Fernández-Hernando C, Kavanagh TJ, Lamas S. The Role of MicroRNAs in Environmental Risk Factors, Noise-Induced Hearing Loss, and Mental Stress. Antioxid Redox Signal 2018; 28:773-796. [PMID: 28562070 PMCID: PMC5911706 DOI: 10.1089/ars.2017.7175] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SIGNIFICANCE MicroRNAs (miRNAs) are important regulators of gene expression and define part of the epigenetic signature. Their influence on every realm of biomedicine is established and progressively increasing. The impact of environment on human health is enormous. Among environmental risk factors impinging on quality of life are those of chemical nature (toxic chemicals, heavy metals, pollutants, and pesticides) as well as those related to everyday life such as exposure to noise or mental and psychosocial stress. Recent Advances: This review elaborates on the relationship between miRNAs and these environmental risk factors. CRITICAL ISSUES The most relevant facts underlying the role of miRNAs in the response to these environmental stressors, including redox regulatory changes and oxidative stress, are highlighted and discussed. In the cases wherein miRNA mutations are relevant for this response, the pertinent literature is also reviewed. FUTURE DIRECTIONS We conclude that, even though in some cases important advances have been made regarding close correlations between specific miRNAs and biological responses to environmental risk factors, a need for prospective large-cohort studies is likely necessary to establish causative roles. Antioxid. Redox Signal. 28, 773-796.
Collapse
Affiliation(s)
- Verónica Miguel
- 1 Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM) , Madrid, Spain
| | - Julia Yue Cui
- 2 Department of Environmental and Occupational Health Sciences, University of Washington , Seattle, Washington
| | - Lidia Daimiel
- 3 Instituto Madrileño de Estudios Avanzados-Alimentación (IMDEA-Food) , Madrid, Spain
| | - Cristina Espinosa-Díez
- 4 Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University , Portland, Oregon
| | | | - Terrance J Kavanagh
- 2 Department of Environmental and Occupational Health Sciences, University of Washington , Seattle, Washington
| | - Santiago Lamas
- 1 Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM) , Madrid, Spain
| |
Collapse
|
165
|
Further aspects of Toxoplasma gondii elimination in the presence of metals. Parasitol Res 2018; 117:1245-1256. [PMID: 29455419 DOI: 10.1007/s00436-018-5806-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 02/08/2018] [Indexed: 01/06/2023]
Abstract
Toxoplasma gondii, the etiological agent of toxoplasmosis, infects nucleated cells and then resides and multiplies within a parasitophorous vacuole. For this purpose, the parasite secretes many virulence factors for the purpose of invading and subverting the host microbicidal defenses in order to facilitate its survival in the intracellular milieu. Essential metals are structural components of proteins and enzymes or cofactors of enzymatic reactions responsible for these parasitic survival mechanisms. However, an excess of non-essential or essential metals can lead to parasite death. Thus, infected host cells were incubated with 20 μM ZnCl2 in conjunction with 3 μM CdCl2 or HgCl2 for 12 h in order to investigate cellular events and organelle damage related to intracellular parasite death and elimination. In the presence of these metals, the tachyzoites undergo lipid uptake and transport impairment, functional and structural mitochondrial disorders, DNA condensation, and acidification of the parasitophorous vacuole, thus leading to parasite death. Additional research has suggested that lysosome-vacuole fusion was involved in parasite elimination since acid phosphatases were found inside the parasitophorous vacuole, and vacuoles containing parasites were also positive for autophagy. In conclusion, low concentrations of CdCl2, HgCl2, and ZnCl2 can cause damage to Toxoplasma gondii organelles, leading to loss of viability, organelle death, and elimination without causing toxic effects to host cells.
Collapse
|
166
|
Mansur AAP, Mansur HS, Mansur RL, de Carvalho FG, Carvalho SM. Bioengineered II-VI semiconductor quantum dot-carboxymethylcellulose nanoconjugates as multifunctional fluorescent nanoprobes for bioimaging live cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 189:393-404. [PMID: 28843194 DOI: 10.1016/j.saa.2017.08.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 08/16/2017] [Indexed: 06/07/2023]
Abstract
Colloidal semiconductor quantum dots (QDs) are light-emitting ultra-small nanoparticles, which have emerged as a new class of nanoprobes with unique optical properties for bioimaging and biomedical diagnostic. However, to be used for most biomedical applications the biocompatibility and water-solubility are mandatory that can achieved through surface modification forming QD-nanoconjugates. In this study, semiconductor II-VI quantum dots of type MX (M=Cd, Pb, Zn, X=S) were directly synthesized in aqueous media and at room temperature using carboxymethylcellulose sodium salt (CMC) behaving simultaneously as stabilizing and surface biofunctional ligand. These nanoconjugates were extensively characterized using UV-visible spectroscopy, photoluminescence spectroscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, dynamic light scattering and zeta potential. The results demonstrated that the biopolymer was effective on nucleating and stabilizing the colloidal nanocrystals of CdS, ZnS, and PbS with the average diameter ranging from 2.0 to 5.0nm depending on the composition of the semiconductor core, which showed quantum-size confinement effect. These QD/polysaccharide conjugates showed luminescent activity from UV-visible to near-infrared range of the spectra under violet laser excitation. Moreover, the bioassays performed proved that these novel nanoconjugates were biocompatible and behaved as composition-dependent fluorescent nanoprobes for in vitro live cell bioimaging with very promising perspectives to be used in numerous biomedical applications and nanomedicine.
Collapse
Affiliation(s)
- Alexandra A P Mansur
- Center of Nanoscience, Nanotechnology and Innovation - CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, Brazil
| | - Herman S Mansur
- Center of Nanoscience, Nanotechnology and Innovation - CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, Brazil.
| | - Rafael L Mansur
- Center of Nanoscience, Nanotechnology and Innovation - CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, Brazil
| | - Fernanda G de Carvalho
- Center of Nanoscience, Nanotechnology and Innovation - CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, Brazil
| | - Sandhra M Carvalho
- Center of Nanoscience, Nanotechnology and Innovation - CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, Brazil
| |
Collapse
|
167
|
Choudhuri S, Patton GW, Chanderbhan RF, Mattia A, Klaassen CD. From Classical Toxicology to Tox21: Some Critical Conceptual and Technological Advances in the Molecular Understanding of the Toxic Response Beginning From the Last Quarter of the 20th Century. Toxicol Sci 2018; 161:5-22. [PMID: 28973688 PMCID: PMC5837539 DOI: 10.1093/toxsci/kfx186] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Toxicology has made steady advances over the last 60+ years in understanding the mechanisms of toxicity at an increasingly finer level of cellular organization. Traditionally, toxicological studies have used animal models. However, the general adoption of the principles of 3R (Replace, Reduce, Refine) provided the impetus for the development of in vitro models in toxicity testing. The present commentary is an attempt to briefly discuss the transformation in toxicology that began around 1980. Many genes important in cellular protection and metabolism of toxicants were cloned and characterized in the 80s, and gene expression studies became feasible, too. The development of transgenic and knockout mice provided valuable animal models to investigate the role of specific genes in producing toxic effects of chemicals or protecting the organism from the toxic effects of chemicals. Further developments in toxicology came from the incorporation of the tools of "omics" (genomics, proteomics, metabolomics, interactomics), epigenetics, systems biology, computational biology, and in vitro biology. Collectively, the advances in toxicology made during the last 30-40 years are expected to provide more innovative and efficient approaches to risk assessment. A goal of experimental toxicology going forward is to reduce animal use and yet be able to conduct appropriate risk assessments and make sound regulatory decisions using alternative methods of toxicity testing. In that respect, Tox21 has provided a big picture framework for the future. Currently, regulatory decisions involving drugs, biologics, food additives, and similar compounds still utilize data from animal testing and human clinical trials. In contrast, the prioritization of environmental chemicals for further study can be made using in vitro screening and computational tools.
Collapse
Affiliation(s)
- Supratim Choudhuri
- Office of Food Additive Safety, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland
| | - Geoffrey W Patton
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington
| | - Ronald F Chanderbhan
- Office of Food Additive Safety, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland
| | - Antonia Mattia
- Office of Food Additive Safety, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, Maryland
| | - Curtis D Klaassen
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington
| |
Collapse
|
168
|
Dragun Z, Filipović Marijić V, Krasnići N, Ivanković D, Valić D, Žunić J, Kapetanović D, Smrzlić IV, Redžović Z, Grgić I, Erk M. Total and cytosolic concentrations of twenty metals/metalloids in the liver of brown trout Salmo trutta (Linnaeus, 1758) from the karstic Croatian river Krka. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 147:537-549. [PMID: 28918336 DOI: 10.1016/j.ecoenv.2017.09.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/31/2017] [Accepted: 09/05/2017] [Indexed: 06/07/2023]
Abstract
Total and cytosolic concentrations of twenty metals/metalloids in the liver of brown trout Salmo trutta (Linnaeus, 1758) were studied in the period from April 2015 to May 2016 at two sampling sites on Croatian river Krka, to establish if river water contamination with metals/metalloids downstream of Knin town has influenced metal bioaccumulation in S. trutta liver. Differences were observed between two sites, with higher concentrations of several elements (Ag, As, Ca, Co, Na, Se, Sr, V) found downstream of Knin town, whereas few others (Cd, Cs, Mo, Tl) were, unexpectedly, increased at the Krka River spring. However, total metal/metalloid concentrations in the liver of S. trutta from both sites of the Krka River were still mainly below previously reported levels for pristine freshwaters worldwide. The analysis of seasonal changes of metal/metalloid concentrations in S. trutta liver and their association with fish sex and size mostly indicated their independence of fish physiology, making them good indicators of water contamination and exposure level. Metal/metalloid concentrations in the metabolically available hepatic cytosolic fractions reported in this study are the first data of that kind for S. trutta liver, and the majority of analyzed elements were present in the cytosol in the quantity higher than 50% of their total concentrations, thus indicating their possible availability for toxic effects. However, the special attention should be directed to As, Cd, Cs, and Tl, which under the conditions of increased exposure tended to accumulate more within the cytosol. Although metal/metalloid concentrations in S. trutta liver were still rather low, monitoring of the Krka River water quality and of the health status of its biota is essential due to a trend of higher metal/metalloid bioaccumulation downstream of Knin town, especially taking into consideration the proximity of National Park Krka and the need for its conservation.
Collapse
Affiliation(s)
- Zrinka Dragun
- Ruđer Bošković Institute; Division for Marine and Environmental Research; Laboratory for Biological Effects of Metals, P.O. Box 180, 10002 Zagreb, Croatia.
| | - Vlatka Filipović Marijić
- Ruđer Bošković Institute; Division for Marine and Environmental Research; Laboratory for Biological Effects of Metals, P.O. Box 180, 10002 Zagreb, Croatia
| | - Nesrete Krasnići
- Ruđer Bošković Institute; Division for Marine and Environmental Research; Laboratory for Biological Effects of Metals, P.O. Box 180, 10002 Zagreb, Croatia
| | - Dušica Ivanković
- Ruđer Bošković Institute; Division for Marine and Environmental Research; Laboratory for Biological Effects of Metals, P.O. Box 180, 10002 Zagreb, Croatia
| | - Damir Valić
- Ruđer Bošković Institute; Division for Marine and Environmental Research; Laboratory for Aquaculture and Pathology of Aquatic Organisms, P.O. Box 180, 10002 Zagreb, Croatia
| | - Jakov Žunić
- Ruđer Bošković Institute; Division for Marine and Environmental Research; Laboratory for Aquaculture and Pathology of Aquatic Organisms, P.O. Box 180, 10002 Zagreb, Croatia
| | - Damir Kapetanović
- Ruđer Bošković Institute; Division for Marine and Environmental Research; Laboratory for Aquaculture and Pathology of Aquatic Organisms, P.O. Box 180, 10002 Zagreb, Croatia
| | - Irena Vardić Smrzlić
- Ruđer Bošković Institute; Division for Marine and Environmental Research; Laboratory for Aquaculture and Pathology of Aquatic Organisms, P.O. Box 180, 10002 Zagreb, Croatia
| | - Zuzana Redžović
- University of Zagreb; Faculty of Science; Department of Biology, Rooseveltov trg 6, 10000 Zagreb, Croatia
| | - Ivana Grgić
- University of Zagreb; Faculty of Science; Department of Biology, Rooseveltov trg 6, 10000 Zagreb, Croatia
| | - Marijana Erk
- Ruđer Bošković Institute; Division for Marine and Environmental Research; Laboratory for Biological Effects of Metals, P.O. Box 180, 10002 Zagreb, Croatia
| |
Collapse
|
169
|
Functional characterization of a type 2 metallothionein gene, SsMT2, from alkaline-tolerant Suaeda salsa. Sci Rep 2017; 7:17914. [PMID: 29263347 PMCID: PMC5738349 DOI: 10.1038/s41598-017-18263-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 11/22/2017] [Indexed: 11/08/2022] Open
Abstract
A type 2 metallothionein gene, SsMT2, was cloned from Suaeda salsa, a salt- and alkali-tolerant plant, which is dominant species on the saline/alkali soil of northeast China. The SsMT2 gene was expressed in all organs except the flower and its expression was induced by various stresses such as CdCl2, NaCl, NaHCO3, and H2O2 treatments. SsMT2-transgenic yeast (Saccharomyces cerevisiae) and plants (Arabidopsis thaliana) showed significantly increased resistance to metal, salt and oxidant stresses. These transgenics accumulated more Cd2+, but less Na+ than their wild type counterparts. SsMT2 transgenic Arabidopsis maintained lower level of H2O2 than wild type plants did in response to the stress treatments. These results demonstrated that the SsMT2 gene plays an important role in reactive oxygen species scavenging and confers enhanced metal and oxidant tolerance to plants.
Collapse
|
170
|
Palazzolo DL, Nelson JM, Ely EA, Crow AP, Distin J, Kunigelis SC. The Effects of Electronic Cigarette (ECIG)-Generated Aerosol and Conventional Cigarette Smoke on the Mucociliary Transport Velocity (MTV) Using the Bullfrog ( R. catesbiana) Palate Paradigm. Front Physiol 2017; 8:1023. [PMID: 29321743 PMCID: PMC5732188 DOI: 10.3389/fphys.2017.01023] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 11/27/2017] [Indexed: 11/13/2022] Open
Abstract
Background: While ECIGs are under scrutiny concerning safety, particularly in reference to the physiological impact that aerosolized ECIG liquid (E-liquid) may have on respiratory tissues, others believe that ECIGs are a “Harm Reduction” alternative to conventional cigarettes. Previous studies investigating ciliated respiratory epithelium indicate that smoking shortens cilia length, reduces cilia beat frequency and disrupts respiratory epithelium, which most likely contributes to the inhibition of mucocilliary clearance. Monitoring mucous clearance of respiratory tissues exposed to ECIG-generated aerosol or conventional cigarette smoke, as indexed by mucous transport velocity (MTV), is one way to gauge the impact aerosol and smoke have on the respiratory tract. Therefore, we designed an experiment to test the effect of ECIG-generated aerosol and smoke on MTV using the frog palate paradigm. Methods: Peristaltic pumps transport ECIG-generated aerosol and conventional cigarette smoke into custom-made chambers containing excised bullfrog palates. MTVs were determined before exposure, immediately after exposure and approximately 1 day following exposure. MTVs were also determined (at the same time points) for palates exposed to air (control). Surface and cross sectional SEM images of palates from all three groups were obtained to support MTV data. Results: The results indicate that ECIG-generated aerosol has a modest inhibitory effect (p < 0.05) on MTV 1 day post-exposure (0.09 ± 0.01) compared to control MTV (0.16 ± 0.03 mm/s). In contrast, smoke completely inhibits MTV from 0.14 ± 0.03 mm/s immediately before exposure to 0.00 mm/sec immediately after exposure and the MTV is unable to recover 1 day later. SEM images of control palates and palates exposed to ECIG-generated aerosol both show cilia throughout their epithelial surface, while some areas of palates exposed to smoke are completely devoid of cilia. Additionally, the epithelial thickness of aerosol-exposed palates appears thicker than control palates while smoke-exposed palates appear to be thinner due to epithelial disruption. Conclusions: These results indicate that ECIG-generated aerosol has only a modest effect on mucocilary clearance of bullfrog palates and aerosol sedimentation accounts for epithelial thickening. In accordance with the primary literature, conventional cigarette smoke dramatically inhibits mucociliary clearance and is, in part, due to decreased number of cilia and disruption of the smoke-exposed epithelium.
Collapse
Affiliation(s)
- Dominic L Palazzolo
- Department of Physiology, DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN, United States
| | - John M Nelson
- Department of Physiology, DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN, United States
| | - Emily A Ely
- Department of Physiology, DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN, United States
| | - Andrew P Crow
- Department of Physiology, DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN, United States
| | - James Distin
- Department of Physiology, DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN, United States
| | - Stan C Kunigelis
- Department of Physiology, DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Harrogate, TN, United States
| |
Collapse
|
171
|
Chen Y, Zhi J, Li X, Zhang H, Liu H, Xu J. Diversity in cadmium accumulation and resistance associated with various metallothionein genes (type III) in Phytolacca americana L. Int J Biol Macromol 2017; 108:704-709. [PMID: 29197572 DOI: 10.1016/j.ijbiomac.2017.11.152] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/23/2017] [Accepted: 11/23/2017] [Indexed: 11/19/2022]
Abstract
Metallothioneins (MTs) are known for their heavy metal deoxidation during phytoremediation. To estimate their roles in the cadmium (Cd) hyperaccumulator Phytolacca americana L., three MT genes, PaMT3-1, PaMT3-2 and PaMT3-3, belonging to the MT3 subfamily were cloned. They separately encoded 63, 65 and 65 amino acids, containing12, 10 and 11 cysteines (Cys), respectively. Each gene was individually transformed and expressed in Escherichia coli cells. A Cd-resistance assay showed that the recombinant strains had enhanced survival rates, especially those containing PaMT3-1 and PaMT3-3. Additionally, the recombinant strains were high Cd accumulators, with the recombinant PaMT3-1's maximum accumulation being 2.16 times that of the empty vector strains. The numbers of cysteines and the structures of MT proteins were associated with the Cd enrichment and resistance capabilities. PaMT3-1 could be an effective gene resource in future plant Cd remediation-related breeding programs.
Collapse
Affiliation(s)
- Yongkun Chen
- National Engineering Laboratory of Tree Breeding, Beijing Forestry University, 100083, China
| | - Junkai Zhi
- National Engineering Laboratory of Tree Breeding, Beijing Forestry University, 100083, China
| | - Xiaoyu Li
- National Engineering Laboratory of Tree Breeding, Beijing Forestry University, 100083, China
| | - Hao Zhang
- National Engineering Laboratory of Tree Breeding, Beijing Forestry University, 100083, China
| | - Huabo Liu
- National Engineering Laboratory of Tree Breeding, Beijing Forestry University, 100083, China
| | - Jichen Xu
- National Engineering Laboratory of Tree Breeding, Beijing Forestry University, 100083, China.
| |
Collapse
|
172
|
Khan MA, Khan S, Khan A, Alam M. Soil contamination with cadmium, consequences and remediation using organic amendments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 601-602:1591-1605. [PMID: 28609847 DOI: 10.1016/j.scitotenv.2017.06.030] [Citation(s) in RCA: 305] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 06/02/2017] [Accepted: 06/04/2017] [Indexed: 05/08/2023]
Abstract
Cadmium (Cd) contamination of soil and food crops is a ubiquitous environmental problem that has resulted from uncontrolled industrialization, unsustainable urbanization and intensive agricultural practices. Being a toxic element, Cd poses high threats to soil quality, food safety, and human health. Land is the ultimate source of waste disposal and utilization therefore, Cd released from different sources (natural and anthropogenic), eventually reaches soil, and then subsequently bio-accumulates in food crops. The stabilization of Cd in contaminated soil using organic amendments is an environmentally friendly and cost effective technique used for remediation of moderate to high contaminated soil. Globally, substantial amounts of organic waste are generated every day that can be used as a source of nutrients, and also as conditioners to improve soil quality. This review paper focuses on the sources, generation, and use of different organic amendments to remediate Cd contaminated soil, discusses their effects on soil physical and chemical properties, Cd bioavailability, plant uptake, and human health risk. Moreover, it also provides an update of the most relevant findings about the application of organic amendments to remediate Cd contaminated soil and associated mechanisms. Finally, future research needs and directions for the remediation of Cd contaminated soil using organic amendments are discussed.
Collapse
Affiliation(s)
- Muhammad Amjad Khan
- Department of Environmental Sciences, University of Peshawar, Peshawar 25120, Pakistan
| | - Sardar Khan
- Department of Environmental Sciences, University of Peshawar, Peshawar 25120, Pakistan; Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Anwarzeb Khan
- Department of Environmental Sciences, University of Peshawar, Peshawar 25120, Pakistan
| | - Mehboob Alam
- Department of Horticulture, University of Agriculture, Peshawar, Pakistan
| |
Collapse
|
173
|
Nielsen AE, Bohr A, Penkowa M. The Balance between Life and Death of Cells: Roles of Metallothioneins. Biomark Insights 2017. [DOI: 10.1177/117727190600100016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Metallothionein (MT) is a highly conserved, low-molecular-weight, cysteine-rich protein that occurs in 4 isoforms (MT-I to MT-IV), of which MT-I+II are the major and best characterized proteins. This review will focus on mammalian MT-I+II and their functional impact upon cellular survival and death, as seen in two rather contrasting pathological conditions: Neurodegeneration and neoplasms. MT-I+II have analogous functions including: 1) Antioxidant scavenging of reactive oxygen species (ROS); 2) Cytoprotection against degeneration and apoptosis; 3) Stimulation of cell growth and repair including angiogenesis/revascularization, activation of stem/progenitor cells, and neuroregeneration. Thereby, MT-I+II mediate neuroprotection, CNS restoration and clinical recovery during neurodegenerative disorders. Due to the promotion of cell survival, increased MT-I+II levels have been associated with poor tumor prognosis, although the data are less clear and direct causative roles of MT-I+II in oncogenesis remain to be identified. The MT-I+II molecular mechanisms of actions are not fully elucidated. However, their role in metal ion homeostasis might be fundamental in controlling Zn-dependent transcription factors, protein synthesis, cellular energy levels/metabolism and cell redox state. Here, the neuroprotective and regenerative functions of MT-I+II are reviewed, and the presumed link to oncogenesis is critically perused.
Collapse
Affiliation(s)
- Allan Evald Nielsen
- Section of Neuroprotection, Centre of Inflammation and Metabolism
- The Panum Institute, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Adam Bohr
- Section of Neuroprotection, Centre of Inflammation and Metabolism
- The Panum Institute, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Milena Penkowa
- Section of Neuroprotection, Centre of Inflammation and Metabolism
- The Panum Institute, Faculty of Health Sciences, University of Copenhagen, Denmark
| |
Collapse
|
174
|
Huo J, Dong A, Wang Y, Lee S, Ma C, Wang L. Cadmium induces histopathological injuries and ultrastructural changes in the liver of freshwater turtle (Chinemys reevesii). CHEMOSPHERE 2017; 186:459-465. [PMID: 28806674 DOI: 10.1016/j.chemosphere.2017.08.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/31/2017] [Accepted: 08/07/2017] [Indexed: 06/07/2023]
Abstract
The study investigated the histopathological and ultrastructural lesions of liver of freshwater turtle Chinemys reevesii exposed to Cadmium (Cd). The animals were exposed to 0 mg kg-1 (0.85% normal saline (NS)), 7.5 mg kg-1, 15 mg kg-1, 30 mg kg-1 Cd chloride separately by intraperitoneal injection. Liver samples were collected for examination of lesions under light and electronic microscopes. Results showed that liver tissues from Cd -treated animals presented various degrees of histopathological lesions. Liver cells showed swollen, degeneration and necrosis with dose-dependent manner. Under electronic microscope, nucleus, mitochondria and rough endoplasmic reticulum presented various degrees of lesions with dose-dependent manner. In conclusion, Cd has significant toxicity on liver tissue of the freshwater turtle, which occurs in a dose-dependent manner.
Collapse
Affiliation(s)
- Junfeng Huo
- School of Life Science, Shanxi University, Taiyuan, Shanxi Province, China; 2011 Collaborative Innovation Center/Research Center of Neurobiology, Shanxi University of Traditional Chinese Medicine, Taiyuan, Shanxi Province, China
| | - Aiguo Dong
- 2011 Collaborative Innovation Center/Research Center of Neurobiology, Shanxi University of Traditional Chinese Medicine, Taiyuan, Shanxi Province, China
| | - Yonghui Wang
- 2011 Collaborative Innovation Center/Research Center of Neurobiology, Shanxi University of Traditional Chinese Medicine, Taiyuan, Shanxi Province, China
| | - Shaochin Lee
- School of Life Science, Shanxi University, Taiyuan, Shanxi Province, China
| | - Cungen Ma
- 2011 Collaborative Innovation Center/Research Center of Neurobiology, Shanxi University of Traditional Chinese Medicine, Taiyuan, Shanxi Province, China; Institute of Brain Science, Shanxi Datong University, Datong, Shanxi Province, China
| | - Lan Wang
- School of Life Science, Shanxi University, Taiyuan, Shanxi Province, China.
| |
Collapse
|
175
|
Hawkins CA, Sokolova IM. Effects of elevated CO 2 levels on subcellular distribution of trace metals (Cd and Cu) in marine bivalves. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 192:251-264. [PMID: 28987992 DOI: 10.1016/j.aquatox.2017.09.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/20/2017] [Accepted: 09/28/2017] [Indexed: 06/07/2023]
Abstract
Hypercapnia (elevated CO2 levels) and pollution with trace metals such as Cu and Cd are common stressors in estuarine habitats that can negatively affect physiology and health of marine organisms. Hypercapnia can modulate toxicity of trace metals including Cu and Cd; however, the physiological and cellular mechanisms of the metal-CO2 interactions are not well understood. We investigated the effects of elevated PCO2 (∼800 and 2000μatm) and metal exposure (50μgl-1 of Cu or Cd) on subcellular distribution of metals in two common species of marine bivalves, Eastern oysters Crassostrea virginica and hard shell clams Mercenaria mercenaria. Oysters accumulated higher burdens of Cu and Cd in the gill tissues compared to clams. In both studied species, Cu was predominantly associated with the metabolically active cell compartments (mitochondria, lysosomes, microsomes and cytosolic enzymes), with a modest fraction sequestered by metallothioneins (∼30%) and the insoluble metal-containing granules (MCG) (∼15-20%). Unlike Cu, Cd was largely sequestered by metallothioneins (∼60-70%), with a relatively small fraction associated with the organelles and the cytosolic enzymes. Mitochondria were the main intracellular target for trace metals accumulating higher concentrations of Cd (and in the case of oysters - of Cu) than other organelles or cytosolic enzymes. Cu accumulation in the metabolically active cellular compartments was independent of the CO2 levels, while Cd content of the organelles and cytosolic enzymes increased at elevated PCO2 in both studied species indicating that hypercapnia may enhance cellular toxicity of Cd in bivalves. Hypercapnia suppressed the sequestration capacity of metallothioneins for Cu and Cd in oysters but increased Cu and Cd load in clam metallothioneins. Thus, metal-induced metabolic injury in oysters may be exaggerated by hypercapnia which enhances metal accumulation in the potentially sensitive intracellular fractions and suppresses the metal detoxification capacity. In contrast, clams appear to be more resistant to the combined effects of hypercapnia and metal exposure reflecting more efficient and robust detoxification mechanisms of this species.
Collapse
Affiliation(s)
- C A Hawkins
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC, USA
| | - I M Sokolova
- Department of Marine Biology, Institute of Biological Sciences, University of Rostock, A.-Einstein Str., 3, Rostock, Germany.
| |
Collapse
|
176
|
Life and death of Trypanosoma cruzi in presence of metals. Biometals 2017; 30:955-974. [PMID: 29081021 DOI: 10.1007/s10534-017-0064-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/26/2017] [Indexed: 12/17/2022]
Abstract
Trypanosoma cruzi has many molecules that need metallic elements to work, allowing cell invasion and the establishment of infection, causing Chagas disease. Nonetheless, knowledge regarding how the parasites address metals and maintain homeostasis is lacking. To study this relationship, zinc, cadmium and mercury were chosen. Epimastigote, trypomastigote and intracellular forms of T. cruzi were incubated with these metals for different times and at different concentrations. In general, epimastigotes were the most sensitive and trypomastigotes the most resistant to metals. ZnCl2 induced low toxic effects to all parasite forms. Although the parasites were very sensitive to the toxic effects of CdCl2 and HgCl2, pretreatment with ZnCl2 decreased the death rate. The trypomastigotes pretreated with CdCl2 were unable to infect the host cells, and the treated intracellular forms were damaged after 2 h of incubation, when the toxic effects were poorly reverted. New insights on metal toxicity mechanisms are provided, helping to understand how metallic ions influence the parasite's biochemical and physiological processes.
Collapse
|
177
|
Li SW, He Y, Zhao HJ, Wang Y, Liu JJ, Shao YZ, Li JL, Sun X, Zhang LN, Xing MW. Assessment of 28 trace elements and 17 amino acid levels in muscular tissues of broiler chicken (Gallus gallus) suffering from arsenic trioxide. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 144:430-437. [PMID: 28666216 DOI: 10.1016/j.ecoenv.2017.06.061] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 06/21/2017] [Accepted: 06/22/2017] [Indexed: 06/07/2023]
Abstract
The contents of 28 trace elements, 17 amino acid were evaluated in muscular tissues (wings, crureus and pectoralis) of chickens in response to arsenic trioxide (As2O3). A total of 200 one-day-old male Hy-line chickens were fed either a commercial diet (C-group) or an As2O3 supplement diet containing 7.5mg/kg (L-group), 15mg/kg (M-group) or 30mg/kg (H-group) As2O3 for 90 days. The elements content was analyzed by inductively coupled plasma mass spectrometry (ICP-MS). Under As2O3 exposure, the concentration of As were elevated 8.87-15.76 fold, 7.93-15.63 fold and 5.94-12.45 fold in wings, crureus and pectoralis compared to the corresponding C-group, respectively. 19 element levels (lithium (Li), magnesium (Mg), aluminum (Al), silicon (Si), kalium (K), vanadium (V), chromium (Cr), manganese (Mn), nickel (Ni), copper (Cu), selenium (Se), strontium (Sr), molybdenum (Mo), cadmium (Cd), tin (Sn), antimony (Sb), barium (Ba), mercury (Hg) and lead (Pb), 9 element levels (K, Co, Ni, Cu, As, Se, Sr, Sn, Ba and Hg) and 4 element levels (Mn, cobalt (Co), As, Sr and Ba) were significantly increased (P < 0.05) in wing, crureus and pectoralis, respectively. 2 element levels (sodium (Na) and zinc (Zn)), 5 element levels (Li, Na, Si, titanium (Ti and Cr), 13 element levels (Li, Na, Mg, K, V, Cr, iron (Fe), Cu, Zn, Mo, Sn, Hg and Pb) were significantly decreased (P < 0.05) in wing muscle, crureus and pectoralis, respectively. Additionally, in crureus and pectoralis, the content of total amino acids (TAA) was no significant alterations in L and M-group and then increased approximately 10.2% and 7.6% in H-group, respectively (P < 0.05). In wings, the level of total amino acids increased approximately 10% in L-group, whereas it showed unchanged in M and H-group compared to the corresponding C-group. We also observed that significantly increased levels of proline, cysteine, aspartic acid, methionine along with decrease in the tyrosine levels in muscular tissues compared to the corresponding C-group. In conclusion, the residual of As in the muscular tissues of chickens were dose-dependent and disrupts trace element homeostasis, amino acids level in muscular tissues of chickens under As2O3 exposure. Additionally, the response (trace elements and amino acids) were different in wing, thigh and pectoral of chick under As2O3 exposure. This study provided references for further study of heavy metal poisoning and may be helpful to understanding the toxicological mechanism of As2O3 exposure in muscular tissues of chickens.
Collapse
Affiliation(s)
- Si-Wen Li
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Ying He
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Hong-Jing Zhao
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Yu Wang
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Juan-Juan Liu
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Yi-Zhi Shao
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Jing-Lun Li
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Xiao Sun
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, People's Republic of China
| | - Li-Na Zhang
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, People's Republic of China.
| | - Ming-Wei Xing
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, People's Republic of China.
| |
Collapse
|
178
|
Metallothionein in Brain Disorders. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:5828056. [PMID: 29085556 PMCID: PMC5632493 DOI: 10.1155/2017/5828056] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/17/2017] [Accepted: 08/03/2017] [Indexed: 12/22/2022]
Abstract
Metallothioneins are a family of proteins which are able to bind metals intracellularly, so their main function is to regulate the cellular metabolism of essential metals. There are 4 major isoforms of MTs (I-IV), three of which have been localized in the central nervous system. MT-I and MT-II have been localized in the spinal cord and brain, mainly in astrocytes, whereas MT-III has been found mainly in neurons. MT-I and MT-II have been considered polyvalent proteins whose main function is to maintain cellular homeostasis of essential metals such as zinc and copper, but other functions have also been considered: detoxification of heavy metals, regulation of gene expression, processes of inflammation, and protection against free radicals generated by oxidative stress. On the other hand, the MT-III has been related in events of pathogenesis of neurodegenerative diseases such as Parkinson and Alzheimer. Likewise, the participation of MTs in other neurological disorders has also been reported. This review shows recent evidence about the role of MT in the central nervous system and its possible role in neurodegenerative diseases as well as in brain disorders.
Collapse
|
179
|
Huo J, Dong A, Yan J, Wang L, Ma C, Lee S. Cadmium toxicokinetics in the freshwater turtle, Chinemys reevesii. CHEMOSPHERE 2017; 182:392-398. [PMID: 28511134 DOI: 10.1016/j.chemosphere.2017.05.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/28/2017] [Accepted: 05/04/2017] [Indexed: 06/07/2023]
Abstract
This study was designed to investigate the toxicokinetics of Cadmium (Cd) in Chinemys reevesii. The animals were exposed to 15 mg/kg Cd chloride by intraperitoneal injection, and the Cd absorption, distribution, and excretion in different organs were determined. The results showed that Cd absorption reached its peak in the blood at 3 h after treatment. The accumulation of Cd was the highest in the liver and the second highest in the pancreas. All other tissues also accumulated Cd, such as spleen, kidney, intestine, lung, stomach, heart, brain, muscle. A small amount of Cd was found in the faeces. The urine and bile had low concentrations of Cd. In conclusion, absorbance of Cd reaches its peak at 3 h in blood. The liver and pancreas are the major organs of Cd accumulation, and the major excretion route of Cd is through feaces.
Collapse
Affiliation(s)
- Junfeng Huo
- School of Life Science, Shanxi University, Taiyuan, Shanxi Province, China; 2011 Collaborative Innovation Center/Research Center of Neurobiology, Shanxi University of Traditional Chinese Medicine, Taiyuan, Shanxi Province, China
| | - Aiguo Dong
- 2011 Collaborative Innovation Center/Research Center of Neurobiology, Shanxi University of Traditional Chinese Medicine, Taiyuan, Shanxi Province, China
| | - Juanjuan Yan
- 2011 Collaborative Innovation Center/Research Center of Neurobiology, Shanxi University of Traditional Chinese Medicine, Taiyuan, Shanxi Province, China
| | - Lan Wang
- School of Life Science, Shanxi University, Taiyuan, Shanxi Province, China
| | - Cungen Ma
- 2011 Collaborative Innovation Center/Research Center of Neurobiology, Shanxi University of Traditional Chinese Medicine, Taiyuan, Shanxi Province, China; Institute of Brain Science, Shanxi Datong University, Datong, Shanxi Province, China
| | - Shaochin Lee
- School of Life Science, Shanxi University, Taiyuan, Shanxi Province, China.
| |
Collapse
|
180
|
Benito D, Niederwanger M, Izagirre U, Dallinger R, Soto M. Successive Onset of Molecular, Cellular and Tissue-Specific Responses in Midgut Gland of Littorina littorea Exposed to Sub-Lethal Cadmium Concentrations. Int J Mol Sci 2017; 18:E1815. [PMID: 28829377 PMCID: PMC5578201 DOI: 10.3390/ijms18081815] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/17/2017] [Accepted: 08/18/2017] [Indexed: 12/23/2022] Open
Abstract
Cadmium (Cd) is one of the most harmful metals, being toxic to most animal species, including marine invertebrates. Among marine gastropods, the periwinkle (Littorina littorea) in particular can accumulate high amounts of Cd in its midgut gland. In this organ, the metal can elicit extensive cytological and tissue-specific alterations that may reach, depending on the intensity of Cd exposure, from reversible lesions to pathological cellular disruptions. At the same time, Littorina littorea expresses a Cd-specific metallothionein (MT) that, due to its molecular features, expectedly exerts a protective function against the adverse intracellular effects of this metal. The aim of the present study was, therefore, to assess the time course of MT induction in the periwinkle's midgut gland on the one hand, and cellular and tissue-specific alterations in the digestive organ complex (midgut gland and digestive tract) on the other, upon exposure to sub-lethal Cd concentrations (0.25 and 1 mg Cd/L) over 21 days. Depending on the Cd concentrations applied, the beginning of alterations of the assessed parameters followed distinct concentration-dependent and time-dependent patterns, where the timeframe for the onset of the different response reactions became narrower at higher Cd concentrations compared to lower exposure concentrations.
Collapse
Affiliation(s)
- Denis Benito
- CBET Research Group, Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country UPV/EHU, Areatza Pasalekua, 48620 Plentzia-Bizkaia, Basque Country, Spain.
| | - Michael Niederwanger
- Institute of Zoology and Center of Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Technikerstraße 25, A-6020 Innsbruck, Austria.
| | - Urtzi Izagirre
- CBET Research Group, Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country UPV/EHU, Areatza Pasalekua, 48620 Plentzia-Bizkaia, Basque Country, Spain.
| | - Reinhard Dallinger
- Institute of Zoology and Center of Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Technikerstraße 25, A-6020 Innsbruck, Austria.
| | - Manu Soto
- CBET Research Group, Research Centre for Experimental Marine Biology and Biotechnology (PiE-UPV/EHU), University of the Basque Country UPV/EHU, Areatza Pasalekua, 48620 Plentzia-Bizkaia, Basque Country, Spain.
| |
Collapse
|
181
|
Niederwanger M, Dvorak M, Schnegg R, Pedrini-Martha V, Bacher K, Bidoli M, Dallinger R. Challenging the Metallothionein (MT) Gene of Biomphalaria glabrata: Unexpected Response Patterns Due to Cadmium Exposure and Temperature Stress. Int J Mol Sci 2017; 18:E1747. [PMID: 28800079 PMCID: PMC5578137 DOI: 10.3390/ijms18081747] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/03/2017] [Accepted: 08/07/2017] [Indexed: 02/04/2023] Open
Abstract
Metallothioneins (MTs) are low-molecular-mass, cysteine-rich, metal binding proteins. In most animal species, they are involved in metal homeostasis and detoxification, and provide protection from oxidative stress. Gastropod MTs are highly diversified, exhibiting unique features and adaptations like metal specificity and multiplications of their metal binding domains. Here, we show that the MT gene of Biomphalaria glabrata, one of the largest MT genes identified so far, is composed in a unique way. The encoding for an MT protein has a three-domain structure and a C-terminal, Cys-rich extension. Using a bioinformatic approach involving structural and in silico analysis of putative transcription factor binding sites (TFBs), we found that this MT gene consists of five exons and four introns. It exhibits a regulatory promoter region containing three metal-responsive elements (MREs) and several TFBs with putative involvement in environmental stress response, and regulation of gene expression. Quantitative real-time polymerase chain reaction (qRT-PCR) data indicate that the MT gene is not inducible by cadmium (Cd) nor by temperature challenges (heat and cold), despite significant Cd uptake within the midgut gland and the high Cd tolerance of metal-exposed snails.
Collapse
Affiliation(s)
- Michael Niederwanger
- Institute of Zoology and Center of Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria.
| | - Martin Dvorak
- Institute of Zoology and Center of Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria.
| | - Raimund Schnegg
- Institute of Zoology and Center of Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria.
| | - Veronika Pedrini-Martha
- Institute of Zoology and Center of Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria.
| | - Katharina Bacher
- Institute of Zoology and Center of Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria.
| | - Massimo Bidoli
- Institute of Zoology and Center of Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria.
| | - Reinhard Dallinger
- Institute of Zoology and Center of Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria.
| |
Collapse
|
182
|
Sampels S, Kroupova HK, Linhartova P. Effect of cadmium on uptake of iron, zinc and copper and mRNA expression of metallothioneins in HepG2 cells in vitro. Toxicol In Vitro 2017; 44:372-376. [PMID: 28802572 DOI: 10.1016/j.tiv.2017.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 07/20/2017] [Accepted: 08/08/2017] [Indexed: 12/30/2022]
Abstract
The intake of cadmium contaminated fish was mimicked by incubating human hepatoblastoma cells (Cell line HepG2) with a combination of different levels of cadmium (0-5μM) plus the n-3 fatty acids docosahexaenoic acid and eicosapentaenoic acid, which are typical for fish. Uptake of cadmium, iron, copper and zinc was measured by ICP-MS. In addition mRNA expression of two metallothioneins (mt1 g and mt1 m) was evaluated by real-time PCR. The obtained data shows that the presence of cadmium increases the uptake of iron and zinc into the HepG2 cells while the uptake of copper remains unaffected. The presence of the chosen fatty acids did not affect the uptake of either cadmium or iron, zinc and copper. The presence of already 1μM cadmium increased the mRNA expression of mt1 g and mt1 m significantly, while the fatty acids did not interfere with the effect of cadmium.
Collapse
Affiliation(s)
- Sabine Sampels
- Institute of Aquaculture and Protection of Waters, Husova tř. 458/102, 370 05 České Budějovice, Czech Republic; Swedish University of Agricultural Sciences, Department of Molecular Sciences, P.O. Box 7015, 75007 Uppsala, Sweden.
| | - Hana Kocour Kroupova
- Research Institute of fish Culture and Hydrobiology, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Pavla Linhartova
- Institute of Aquaculture and Protection of Waters, Husova tř. 458/102, 370 05 České Budějovice, Czech Republic; ERA Chair, CEITEC, Masaryk University, Kamenice 753/5, A35/143, 625 00 Brno, Czech Republic
| |
Collapse
|
183
|
de Angelis C, Galdiero M, Pivonello C, Salzano C, Gianfrilli D, Piscitelli P, Lenzi A, Colao A, Pivonello R. The environment and male reproduction: The effect of cadmium exposure on reproductive function and its implication in fertility. Reprod Toxicol 2017; 73:105-127. [PMID: 28774687 DOI: 10.1016/j.reprotox.2017.07.021] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 07/11/2017] [Accepted: 07/26/2017] [Indexed: 12/22/2022]
Abstract
Cadmium is an environmental pollutant known as endocrine disruptor. Testis is particularly susceptible to cadmium, and testis injury occurs at high but even low levels of exposure. Cadmium reproductive toxicity is mediated by multiple mechanisms, including structural damage to testis vasculature and blood-testis barrier, inflammation, cytotoxicity on Sertoli and Leydig cells, oxidative stress mainly by means of mimicry and interference with essential ions, apoptosis, interference with selected signaling pathways and epigenetic regulation of genes involved in the regulation of reproductive function, and disturbance of the hypothalamus-pituitary-gonadal axis. The current review outlines epidemiological observational findings from environmental and occupational exposure in humans, and reports experimental studies in humans and animals. Lastly, a focus on the pathogenetic mechanisms of cadmium toxicity and on the specific mechanisms of cadmium sensitivity and resistance, particularly assessed in animal models, is included. Despite convincing experimental findings in animals and supporting evidences in humans identifying cadmium as reproductive toxicant, observational findings are controversial, suffering from heterogeneity of study design and pattern of exposure, and from co-exposure to multiple pollutants.
Collapse
Affiliation(s)
| | | | - Claudia Pivonello
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università "Federico II" di Napoli, Naples, Italy.
| | - Ciro Salzano
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università "Federico II" di Napoli, Naples, Italy.
| | - Daniele Gianfrilli
- Dipartimento di Medicina Sperimentale, Università di Roma "La Sapienza", Rome, Italy.
| | | | - Andrea Lenzi
- Dipartimento di Medicina Sperimentale, Università di Roma "La Sapienza", Rome, Italy.
| | - Annamaria Colao
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università "Federico II" di Napoli, Naples, Italy.
| | - Rosario Pivonello
- Dipartimento di Medicina Clinica e Chirurgia, Sezione di Endocrinologia, Università "Federico II" di Napoli, Naples, Italy.
| |
Collapse
|
184
|
|
185
|
Jacobo-Estrada T, Santoyo-Sánchez M, Thévenod F, Barbier O. Cadmium Handling, Toxicity and Molecular Targets Involved during Pregnancy: Lessons from Experimental Models. Int J Mol Sci 2017; 18:ijms18071590. [PMID: 28737682 PMCID: PMC5536077 DOI: 10.3390/ijms18071590] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 07/18/2017] [Accepted: 07/18/2017] [Indexed: 12/16/2022] Open
Abstract
Even decades after the discovery of Cadmium (Cd) toxicity, research on this heavy metal is still a hot topic in scientific literature: as we wrote this review, more than 1440 scientific articles had been published and listed by the PubMed.gov website during 2017. Cadmium is one of the most common and harmful heavy metals present in our environment. Since pregnancy is a very particular physiological condition that could impact and modify essential pathways involved in the handling of Cd, the prenatal life is a critical stage for exposure to this non-essential element. To give the reader an overview of the possible mechanisms involved in the multiple organ toxic effects in fetuses after the exposure to Cd during pregnancy, we decided to compile some of the most relevant experimental studies performed in experimental models and to summarize the advances in this field such as the Cd distribution and the factors that could alter it (diet, binding-proteins and membrane transporters), the Cd-induced toxicity in dams (preeclampsia, fertility, kidney injury, alteration in essential element homeostasis and bone mineralization), in placenta and in fetus (teratogenicity, central nervous system, liver and kidney).
Collapse
Affiliation(s)
- Tania Jacobo-Estrada
- Departamento de Sociedad y Política Ambiental, CIIEMAD, Instituto Politécnico Nacional, 30 de Junio de 1520 s/n, La Laguna Ticomán, Ciudad de México 07340, Mexico.
| | - Mitzi Santoyo-Sánchez
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Gustavo A. Madero, San Pedro Zacatenco, Ciudad de México 07360, Mexico.
| | - Frank Thévenod
- Department of Physiology, Pathophysiology & Toxicology and ZBAF (Centre for Biomedical Education and Research), Faculty of Health-School of Medicine, Witten/Herdecke University, Stockumer Str 12 (Thyssenhaus), D 58453 Witten, Germany.
| | - Olivier Barbier
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Gustavo A. Madero, San Pedro Zacatenco, Ciudad de México 07360, Mexico.
| |
Collapse
|
186
|
Huang Y, He C, Shen C, Guo J, Mubeen S, Yuan J, Yang Z. Toxicity of cadmium and its health risks from leafy vegetable consumption. Food Funct 2017; 8:1373-1401. [PMID: 28232985 DOI: 10.1039/c6fo01580h] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cadmium (Cd) is a highly toxic heavy metal and has spread widely in the environment in recent decades. This review summarizes current knowledge about Cd contamination of leafy vegetables, its toxicity, exposure, health risks, and approaches to reducing its toxicity in humans. Leafy vegetable consumption has been identified as a dominant exposure pathway of Cd in the human body. An overview of Cd pollution in leafy vegetables as well as the main sources of Cd is given. Notable estimated daily intakes and health risks of Cd exposure through vegetable consumption for humans are revealed in occupational exposure areas and even in some reference areas. Vegetable consumption is one of the most significant sources of exposure to Cd, particularly in occupational exposure regions. Therefore, numerous approaches have been developed to minimize the accumulation of Cd in leafy vegetables, among which the breeding of Cd pollution-safe cultivars is one of the most effective tools. Furthermore, dietary supplements from leafy vegetables perform positive roles in alleviating Cd toxicity in humans with regard to the effects of essential mineral elements, vitamins and phytochemicals taken into the human body via leafy vegetable consumption.
Collapse
Affiliation(s)
- Yingying Huang
- State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Xingang Xi Road 135, Guangzhou, 510275, China.
| | | | | | | | | | | | | |
Collapse
|
187
|
Liu GD, Sheng Z, Hou CC, Ni J, Han YL, Wang YF, Zhou Y, Fu SY, Zhu JQ. Molecular cloning, characterization and expression analysis of metallothionein in the liver of the teleost Acrossocheilus fasciatus exposed to cadmium chloride. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 53:1-9. [PMID: 28482255 DOI: 10.1016/j.etap.2017.03.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 03/26/2017] [Accepted: 03/28/2017] [Indexed: 06/07/2023]
Abstract
Metallothionein (MT) has a characteristic molecular structure with a cysteine-rich content. This unique structure provides metal-binding and redox capabilities and promoting metal homeostasis and detoxification in living animals. In order to evaluate the effects of cadmium (Cd) on hepatic MT expression in the liver of Acrossocheilus fasciatus, we obtained the complete cDNA of the A. fasciatus liver MT for the first time. The MT cDNA contains a 605-bp sequence, which codes for 60 amino acids. Protein alignment showed that the similarity between MT protein sequences of A. fasciatus and those of other vertebrates (especially teleosts) was very high and a cysteine residue structure was also conserved. MT was detected in the liver, kidney, gill, testis, muscle, spleen, heart and brain tissues of A. fasciatus by tissue-specific expression analysis. After Cd exposure, Cd/hemoglobin saturation assay, immunohistochemistry and reverse-transcription quantitative PCR (RT-qPCR) were used to describe MT expression in liver tissue. These techniques indicate a sensitive response by liver MT to Cd exposure. The results suggest that A. fasciatus MT may play an important role in the detoxification processes in the liver, and also would be a useful biomarker for monitoring metal pollution in aquatic environments. In addition, A. fasciatus could be regarded as one candidate for a model species for bony fishes in ecotoxicology.
Collapse
Affiliation(s)
- Guo-Di Liu
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Zhang Sheng
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Cong-Cong Hou
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Jie Ni
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Ying-Li Han
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - You-Fa Wang
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Yang Zhou
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Su-Yan Fu
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Jun-Quan Zhu
- School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, PR China.
| |
Collapse
|
188
|
Hall JA, McElwee MK, Freedman JH. Identification of ATF-7 and the insulin signaling pathway in the regulation of metallothionein in C. elegans suggests roles in aging and reactive oxygen species. PLoS One 2017. [PMID: 28632756 PMCID: PMC5478092 DOI: 10.1371/journal.pone.0177432] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
It has been proposed that aging results from the lifelong accumulation of intracellular damage via reactions with reactive oxygen species (ROS). Metallothioneins are conserved cysteine-rich proteins that function as efficient ROS scavengers and may affect longevity. To better understand mechanisms controlling metallothionein expression, the regulatory factors and pathways that controlled cadmium-inducible transcription of the C. elegans metallothionein gene, mtl-1, were identified. The transcription factor ATF-7 was identified in both ethylmethanesulfonate mutagenesis and candidate gene screens. PMK-1 and members of the insulin signaling pathway, PDK-1 and AKT-1/2, were also identified as mtl-1 regulators. Genetic and previous results support a model for the regulation of cadmium-inducible mtl-1 transcription based on the derepression of the constitutively active transcription factor ELT-2. In addition, knockdown of the mammalian homologs of PDK1 and ATF7 in HEK293 cells resulted in changes in metallothionein expression, suggesting that this pathway was evolutionarily conserved. The insulin signaling pathway is known to influence the aging process; however, various factors responsible for affecting the aging phenotype are unknown. Identification of portions of the insulin signaling pathway as regulators of metallothionein expression supports the hypothesis that longevity is affected by the expression of this efficient ROS scavenger.
Collapse
Affiliation(s)
- Julie A. Hall
- Biomolecular Screening Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
- * E-mail:
| | - Matthew K. McElwee
- Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Jonathan H. Freedman
- Biomolecular Screening Branch, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
- Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| |
Collapse
|
189
|
Milnerowicz H, Śliwińska-Mossoń M, Sobiech KA. The effect of ozone on the expression of metallothionein in tissues of rats chronically exposed to cadmium. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 52:27-37. [PMID: 28366866 DOI: 10.1016/j.etap.2017.03.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/14/2017] [Accepted: 03/15/2017] [Indexed: 06/07/2023]
Abstract
Our aims were to evaluate the expression of metallothionein (MT) in an experimental rat model which experienced chronic exposure to cadmium (Cd) and to measure its expression after ozone therapy (OT) or oxygen (Ox) in the same model, as compared to the control group, which was exposed to neither cadmium nor ozone. Forty male Wistar rats were divided into 5 groups: control, Cd, Cd and Ox, Cd and Oz, and Oz. During our research, Cd concentration (ASA) and MT concentration (ELISA) were determined in supernatants of the kidneys, liver and pancreas. SDS-PAGE analyses and immunohistochemical localization were used to evaluate the level of MT expression in the tissue. In rats intoxicated with Cd, the highest concentration of both Cd and MT was observed in the kidneys and liver, with a significantly lower concentration measured in the pancreas. Ozone therapy reduces the accumulation of cadmium in the liver and kidneys, resulting in a reduced expression of metallothionein in those tissues.
Collapse
Affiliation(s)
- Halina Milnerowicz
- Department of Biomedical and Environmental Analysis, Wrocław Medical University, Borowska 211, Poland.
| | - Mariola Śliwińska-Mossoń
- Department of Biomedical and Environmental Analysis, Wrocław Medical University, Borowska 211, Poland.
| | - Krzysztof A Sobiech
- Department of Basic Physiotherapy, University School of Physical Education in Wroclaw, Poland.
| |
Collapse
|
190
|
Tafakori V, Zadmard R, Tabandeh F, Amoozegar MA, Ahmadian G. Equilibrium Isotherm, Kinetic Modeling, Optimization, and Characterization Studies of Cadmium Adsorption by Surface-Engineered Escherichia coli. IRANIAN BIOMEDICAL JOURNAL 2017; 21:380-91. [PMID: 28555492 PMCID: PMC5572434 DOI: 10.18869/acadpub.ibj.21.6.380] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Background Amongst the methods that remove heavy metals from environment, biosorption approaches have received increased attention because of their environmentally friendly and cost-effective feature, as well as their superior performances. Methods In the present study, we investigated the ability of a surface-engineered Escherichia coli, carrying the cyanobacterial metallothionein on the cell surface, in the removal of Ca (II) from solution under different experimental conditions. The biosorption process was optimized using central composite design. In parallel, the kinetics of metal biosorption was studied, and the rate constants of different kinetic models were calculated. Results Cadmium biosorption is followed by the second-order kinetics. Freundlich and Langmuir equations were used to analyze sorption data; characteristic parameters were determined for each adsorption isotherm. The biosorption process was optimized using the central composite design. The optimal cadmium sorption capacity (284.69 nmol/mg biomass) was obtained at 40°C (pH 8) and a biomass dosage of 10 mg. The influence of two elutants, EDTA and CaCl2, was also assessed on metal recovery. Approximately, 68.58% and 56.54% of the adsorbed cadmium were removed by EDTA and CaCl2 during desorption, respectively. The Fourier transform infrared spectrophotometer (FTIR) analysis indicated that carboxyl, amino, phosphoryl, thiol, and hydroxyl are the main chemical groups involved in the cadmium bioadsorption process. Conclusion Results from this study implied that chemical adsorption on the heterogeneous surface of E. coli E and optimization of adsorption parameters provides a highly efficient bioadsorbent.
Collapse
Affiliation(s)
- Vida Tafakori
- Department of Cell and Molecular Sciences, School of Biological Science, Kharazmi University, Tehran, Iran.,Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Reza Zadmard
- Chemistry and Chemical Engineering Research Center of Iran, Tehran, Iran
| | - Fatemeh Tabandeh
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Mohammad Ali Amoozegar
- Extremophiles Laboratory, Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Gholamreza Ahmadian
- Department of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| |
Collapse
|
191
|
Voels B, Wang L, Sens DA, Garrett SH, Zhang K, Somji S. The unique C- and N-terminal sequences of Metallothionein isoform 3 mediate growth inhibition and Vectorial active transport in MCF-7 cells. BMC Cancer 2017; 17:369. [PMID: 28545470 PMCID: PMC5445401 DOI: 10.1186/s12885-017-3355-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 05/15/2017] [Indexed: 12/28/2022] Open
Abstract
Background The 3rd isoform of the metallothionein (MT3) gene family has been shown to be overexpressed in most ductal breast cancers. A previous study has shown that the stable transfection of MCF-7 cells with the MT3 gene inhibits cell growth. The goal of the present study was to determine the role of the unique C-terminal and N-terminal sequences of MT3 on phenotypic properties and gene expression profiles of MCF-7 cells. Methods MCF-7 cells were transfected with various metallothionein gene constructs which contain the insertion or the removal of the unique MT3 C- and N-terminal domains. Global gene expression analysis was performed on the MCF-7 cells containing the various constructs and the expression of the unique C- and N- terminal domains of MT3 was correlated to phenotypic properties of the cells. Results The results of the present study demonstrate that the C-terminal sequence of MT3, in the absence of the N-terminal sequence, induces dome formation in MCF-7 cells, which in cell cultures is the phenotypic manifestation of a cell’s ability to perform vectorial active transport. Global gene expression analysis demonstrated that the increased expression of the GAGE gene family correlated with dome formation. Expression of the C-terminal domain induced GAGE gene expression, whereas the N-terminal domain inhibited GAGE gene expression and that the effect of the N-terminal domain inhibition was dominant over the C-terminal domain of MT3. Transfection with the metallothionein 1E gene increased the expression of GAGE genes. In addition, both the C- and the N-terminal sequences of the MT3 gene had growth inhibitory properties, which correlated to an increased expression of the interferon alpha-inducible protein 6. Conclusions Our study shows that the C-terminal domain of MT3 confers dome formation in MCF-7 cells and the presence of this domain induces expression of the GAGE family of genes. The differential effects of MT3 and metallothionein 1E on the expression of GAGE genes suggests unique roles of these genes in the development and progression of breast cancer. The finding that interferon alpha-inducible protein 6 expression is associated with the ability of MT3 to inhibit growth needs further investigation. Electronic supplementary material The online version of this article (doi:10.1186/s12885-017-3355-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Brent Voels
- Department of Pathology, University of North Dakota, School of Medicine and Health Sciences, 1301 N. Columbia Road, Stop 9037, Grand Forks, ND, 58202, USA.,Departments of Science, Cankdeska Cikana Community College, 214 1st Avenue, Fort Totten, ND, 58335, USA
| | - Liping Wang
- Department of Pathology, University of North Dakota, School of Medicine and Health Sciences, 1301 N. Columbia Road, Stop 9037, Grand Forks, ND, 58202, USA.,Present address: Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huangzhong University of Science and Techology, Wuhan, 430030, People's Republic of China
| | - Donald A Sens
- Department of Pathology, University of North Dakota, School of Medicine and Health Sciences, 1301 N. Columbia Road, Stop 9037, Grand Forks, ND, 58202, USA
| | - Scott H Garrett
- Department of Pathology, University of North Dakota, School of Medicine and Health Sciences, 1301 N. Columbia Road, Stop 9037, Grand Forks, ND, 58202, USA
| | - Ke Zhang
- Department of Pathology, University of North Dakota, School of Medicine and Health Sciences, 1301 N. Columbia Road, Stop 9037, Grand Forks, ND, 58202, USA
| | - Seema Somji
- Department of Pathology, University of North Dakota, School of Medicine and Health Sciences, 1301 N. Columbia Road, Stop 9037, Grand Forks, ND, 58202, USA.
| |
Collapse
|
192
|
Liu W, Worms IAM, Herlin-Boime N, Truffier-Boutry D, Michaud-Soret I, Mintz E, Vidaud C, Rollin-Genetet F. Interaction of silver nanoparticles with metallothionein and ceruloplasmin: impact on metal substitution by Ag(i), corona formation and enzymatic activity. NANOSCALE 2017; 9:6581-6594. [PMID: 28474724 DOI: 10.1039/c7nr01075c] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The release of Ag(i) from silver nanoparticles (AgNPs) unintentionally spread in the environment is suspected to impair some key biological functions. In comparison with AgNO3, in-depth investigations were carried out into the interactions between citrate-coated AgNPs (20 nm) and two metalloproteins, intracellular metallothionein 1 (MT1) and plasmatic ceruloplasmin (Cp), both involved in metal homeostasis. These were chosen for their physiological relevance and the diversity of their various native metals bound because of thiol groups and/or their structural differences. Transmission electron microscopy (TEM), and dynamic light scattering (DLS), UV-vis and circular dichroism (CD) spectroscopies were used to study the effects of such intricate interactions on AgNP dissolution and proteins in terms of metal exchanges and structural modifications. The isolation of the different populations formed together with on-line quantifications of their metal content were performed by asymmetrical flow field-flow fractionation (AF4) linked to inductively coupled plasma mass spectrometry (ICP-MS). For the 2 proteins, Ag(i) dissolved from the AgNPs, substituted for the native metal, to different extents and with different types of dynamics for the corona formed: the MT1 rapidly surrounded the AgNPs with the transient reticulate corona thus promoting their dissolution associated with the metal substitution, whereas the Cp established a more stable layer around the AgNPs, with a limited substitution of Cu and a decrease in its ferroxidase activity. The accessibility and lability of the metal binding sites inside these proteins and their relative affinities for Ag(i) are discussed, taking into account the structural characteristics of the proteins.
Collapse
Affiliation(s)
- Wei Liu
- CEA, DRF-BIAM, Site de Marcoule, F-30207 Bagnols-sur-Cèze, France.
| | | | | | | | | | | | | | | |
Collapse
|
193
|
Irvine GW, Stillman MJ. Residue Modification and Mass Spectrometry for the Investigation of Structural and Metalation Properties of Metallothionein and Cysteine-Rich Proteins. Int J Mol Sci 2017; 18:ijms18050913. [PMID: 28445428 PMCID: PMC5454826 DOI: 10.3390/ijms18050913] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 04/18/2017] [Accepted: 04/20/2017] [Indexed: 12/23/2022] Open
Abstract
Structural information regarding metallothioneins (MTs) has been hard to come by due to its highly dynamic nature in the absence of metal-thiolate cluster formation and crystallization difficulties. Thus, typical spectroscopic methods for structural determination are limited in their usefulness when applied to MTs. Mass spectrometric methods have revolutionized our understanding of protein dynamics, structure, and folding. Recently, advances have been made in residue modification mass spectrometry in order to probe the hard-to-characterize structure of apo- and partially metalated MTs. By using different cysteine specific alkylation reagents, time dependent electrospray ionization mass spectrometry (ESI-MS), and step-wise “snapshot” ESI-MS, we are beginning to understand the dynamics of the conformers of apo-MT and related species. In this review we highlight recent papers that use these and similar techniques for structure elucidation and attempt to explain in a concise manner the data interpretations of these complex methods. We expect increasing resolution in our picture of the structural conformations of metal-free MTs as these techniques are more widely adopted and combined with other promising tools for structural elucidation.
Collapse
Affiliation(s)
- Gordon W Irvine
- Department of Chemistry, The University of Western Ontario, London, ON N6A 3K7, Canada.
| | - Martin J Stillman
- Department of Chemistry, The University of Western Ontario, London, ON N6A 3K7, Canada.
| |
Collapse
|
194
|
Mallya R, Chatterjee PK, Vinodini NA, Chatterjee P, Mithra P. Moringa oleifera Leaf Extract: Beneficial Effects on Cadmium Induced Toxicities - A Review. J Clin Diagn Res 2017; 11:CE01-CE04. [PMID: 28571135 DOI: 10.7860/jcdr/2017/21796.9671] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 11/30/2016] [Indexed: 11/24/2022]
Abstract
Environment has been contaminated by heavy metals ever since the original magma of earth has solidified. One such toxin is cadmium. Cadmium that has been around since the industrial age, is considered hazardous both to us and to the environment. From time immemorial man is dependent on plants available in nature for several health benefits. Moringa oleifera, has nutritional, pharmacological and antioxidant properties, thus having several medicinal applications. In the present article, we discuss the dose and time dependent damage due to exposure to cadmium on kidneys, liver, testis, lipid profile and haematological parameters in adult Wistar rats and the protective effects of Moringa oleifera (pre-treatment) on cadmium induced damage.
Collapse
Affiliation(s)
- Roopashree Mallya
- Tutor, Department of Physiology, Kasturba Medical College (KMC), Manipal University (MU), Mangalore, Karnataka, India
| | - Pratik Kumar Chatterjee
- Associate Professor, Department of Physiology, Kasturba Medical College (KMC), Manipal University (MU), Mangalore, Karnataka, India
| | - N A Vinodini
- Associate Professor, Department of Physiology, Kasturba Medical College (KMC), Manipal University (MU), Mangalore, Karnataka, India
| | - Poulomi Chatterjee
- Dietician, Department of Nutrition and Dietetics, Formerly Attached To Manipal Ecron Acu-Nova Kh Clinical Research Centre, Manipal University (MU), Mangalore, Karnataka, India
| | - Prasanna Mithra
- Associate Professor, Department of Community Medicine, Kasturba Medical College (KMC), Manipal University (MU), Mangalore, Karnataka, India
| |
Collapse
|
195
|
α-Synuclein Enhances Cadmium Uptake and Neurotoxicity via Oxidative Stress and Caspase Activated Cell Death Mechanisms in a Dopaminergic Cell Model of Parkinson’s Disease. Neurotox Res 2017; 32:231-246. [DOI: 10.1007/s12640-017-9725-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 03/06/2017] [Accepted: 03/08/2017] [Indexed: 10/19/2022]
|
196
|
Rojo-Nieto E, Fernández-Maldonado C. Assessing trace elements in striped dolphins from the Strait of Gibraltar: Clues to link the bioaccumulation in the westernmost Mediterranean Sea area and nearest Atlantic Ocean. CHEMOSPHERE 2017; 170:41-50. [PMID: 27974270 DOI: 10.1016/j.chemosphere.2016.12.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 10/24/2016] [Accepted: 12/03/2016] [Indexed: 06/06/2023]
Abstract
Dolphins are considered sentinel species in the marine environment. The Strait of Gibraltar is the only passage between the Mediterranean Sea and the Atlantic Ocean, being the transitional region which connects these two basins and one of the most important routes of cetacean migration worldwide. In this work, eight trace elements (TE) were studied in 45 samples of liver, kidney and muscle, from 15 specimens stranded in this study area. The preliminary results show, among others, the patterns of distribution of the TE in the target organs studied, the influence of sex, length and developmental stage in these TE concentrations and the Se/Hg ratio. Subsequently, the results of TE concentrations in liver have being compared to previous data on S. coeruleoalba from the westernmost Mediterranean Sea and the nearest Atlantic Ocean. For some elements (e.g. for As), concentrations are similar to those obtained from Atlantic samples, despite in other cases (e.g. for Cd) results are lined up with those observed in Mediterranean studies. In addition, in the case of some TE (e.g. Se and Zn) the results are in the middle of those reported for both basins, reinforcing the idea of the Strait of Gibraltar being a transitional zone. Present study is the first research regarding this issue in this outstanding region, aiming to give insights of how this matchless area can help to link TE concentrations observed in these Atlantic and Mediterranean threatened species.
Collapse
Affiliation(s)
- Elisa Rojo-Nieto
- Department of Environmental Technologies, Andalusian Center for Marine Science and Technology (CACYTMAR/INMAR), International Campus of Excellence of the Sea, University of Cádiz, Spain; Stranding-Supporting Network, DELPHIS - Ecologistas en Acción Cádiz, c/ San Alejandro s/n., Puerto Real, Spain.
| | - Carolina Fernández-Maldonado
- Center for the Management of the Marine Environment (CEGMA), Andalusian Agency for Environment and Water, (Andalusian Environmental and Spatial Planning Council), Avda. Johan Gütemberg 1, Isla de la Cartuja, Sevilla, Spain
| |
Collapse
|
197
|
Durkalec M, Kolenda R, Owczarek T, Szkoda J, Nawrocka A, Grzegrzółka J, Dzięgiel P, Socha P, Kołacz R, Schierack P, Żmudzki J, Posyniak A. Expression of metallothionein in the liver and kidneys of the red deer (Cervus elaphus L.) from an industrial metal smelting area of Poland. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 137:121-129. [PMID: 27918943 DOI: 10.1016/j.ecoenv.2016.11.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 11/22/2016] [Accepted: 11/25/2016] [Indexed: 06/06/2023]
Abstract
The metallothionein 1 (MT1) coding sequence of red deer was identified and compared to orthologous sequences from other mammals. Over 90% identity was observed between red deer MT1 amino acid sequence and MT1 sequences of other ruminants. Liver and kidney samples of red deer were collected from the industrial zinc smelting site of Miasteczko Slaskie and from the Masuria Lake District serving as a pollution-free control site. The concentrations of cadmium (Cd), lead (Pb), copper (Cu) and zinc (Zn) were analyzed by the atomic absorption spectrometry technique (AAS). The levels of Cd in the liver of red deer from the metal smelting region was about 8 times higher than for the reference control site. Next, the expression of MT1 mRNA in the liver of red deer was quantified by the reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and the expression of MT1/2 protein in the liver and kidneys was analyzed by immunohistochemistry. Positive correlations were found between expression levels for MT1 mRNA and the concentrations of Cu and Zn in liver of red deer, and with the age of animals. Immunohistochemical staining demonstrated the nuclear and cytoplasmatic expression in both liver and kidney tissues, but with no obvious relationship shown for the expression of MT1/2 protein and tissue metal levels. Our results showed that the analysis of MT expression levels in the red deer could not be used independently as a biomarker for identifying exposure to Cd, but could be co-analyzed with tissue metal levels to give better prognosis for environmental exposure to metals.
Collapse
Affiliation(s)
- Maciej Durkalec
- Department of Toxicology and Pharmacology, National Veterinary Research Institute, Aleja Partyzantów 57, 24-100 Puławy, Poland.
| | - Rafał Kolenda
- Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Großenhainer Str. 57, 01968 Senftenberg, Germany; Department of Biochemistry, Pharmacology and Toxicology, Wroclaw University of Environmental and Life Sciences, ul. C. K. Norwida 31, 51-375 Wroclaw, Poland.
| | - Tomasz Owczarek
- Department of Biochemistry, Pharmacology and Toxicology, Wroclaw University of Environmental and Life Sciences, ul. C. K. Norwida 31, 51-375 Wroclaw, Poland
| | - Józef Szkoda
- Department of Toxicology and Pharmacology, National Veterinary Research Institute, Aleja Partyzantów 57, 24-100 Puławy, Poland
| | - Agnieszka Nawrocka
- Department of Toxicology and Pharmacology, National Veterinary Research Institute, Aleja Partyzantów 57, 24-100 Puławy, Poland
| | - Jędrzej Grzegrzółka
- Department of Histology and Embryology, Wroclaw Medical University, ul. Chałubińskiego 6a, 50-368 Wrocław, Poland
| | - Piotr Dzięgiel
- Department of Histology and Embryology, Wroclaw Medical University, ul. Chałubińskiego 6a, 50-368 Wrocław, Poland; Department of Physiotherapy, Wroclaw University of Physical Education, al. I. J. Paderewskiego 35, 51-612 Wroclaw, Poland
| | - Piotr Socha
- Department of Animal Reproduction with Clinic, University of Warmia and Mazury in Olsztyn, ul. M. Oczapowskiego 14, 10-719 Olsztyn, Poland
| | - Roman Kołacz
- Department of Environment, Hygiene and Animal Welfare, Wrocław University of Environmental and Life Sciences, ul. Chełmonskiego 38C, 51-630 Wroclaw, Poland
| | - Peter Schierack
- Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Großenhainer Str. 57, 01968 Senftenberg, Germany
| | - Jan Żmudzki
- Department of Toxicology and Pharmacology, National Veterinary Research Institute, Aleja Partyzantów 57, 24-100 Puławy, Poland
| | - Andrzej Posyniak
- Department of Toxicology and Pharmacology, National Veterinary Research Institute, Aleja Partyzantów 57, 24-100 Puławy, Poland
| |
Collapse
|
198
|
Pedrosa J, Gravato C, Campos D, Cardoso P, Figueira E, Nowak C, Soares AMVM, Barata C, Pestana JLT. Investigating heritability of cadmium tolerance in Chironomus riparius natural populations: A physiological approach. CHEMOSPHERE 2017; 170:83-94. [PMID: 28006760 DOI: 10.1016/j.chemosphere.2016.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 11/06/2016] [Accepted: 12/03/2016] [Indexed: 06/06/2023]
Abstract
Physiological responses allow populations to cope with metal contamination and can be involved in the evolution of tolerance under historical metal contamination scenarios. Here we investigate physiological aspects that might be underlying the heritable high tolerance to cadmium (Cd) in two Chironomus riparius populations collected from historically metal contaminated sites in comparison to two populations from reference sites. To evaluate differences in the physiological response to short-term Cd exposure, protein expression profiles, metallothioneins [MTs] and several antioxidant defences such as total glutathione (GSHt), catalase (CAT) and glutathione-S-transferases [GSTs], were measured in all four populations reared for at least 8 generations under laboratory clean conditions. Cd-induced oxidative damage in lipids and energy related parameters (energy consumption and energy reserves) were also assessed. Results showed two major gradients of protein profiles according to Cd concentration and population tolerance. Furthermore, Cd-tolerant populations showed higher baseline levels of MTs and GSHt while Cd-sensitive populations, collected from reference sites, showed significant induction of GSHt levels with Cd exposure that were nonetheless insufficient to avoid increased oxidative damage to lipids. Cd exposure had no clear effects on the antioxidant enzymes or energy reserves but triggered a general increase in energy consumption. Finally, energy consumption was higher in Cd-tolerant populations across experimental conditions. Altogether, results demonstrate that inherited Cd-tolerance in these midge populations is related, at least in part, with different constitutive levels and plasticity of different defence mechanisms confirming the validity of using multiple physiological traits when studying evolution of tolerance.
Collapse
Affiliation(s)
- João Pedrosa
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal; Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum of Frankfurt, Clamecystrasse 12, 63571 Gelnhausen, Germany.
| | - Carlos Gravato
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Diana Campos
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Paulo Cardoso
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Etelvina Figueira
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Carsten Nowak
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum of Frankfurt, Clamecystrasse 12, 63571 Gelnhausen, Germany
| | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Carlos Barata
- Department of Environmental Chemistry (IDAEA-CSIC), Jordi Girona, 18-26, 08034 Barcelona, Spain
| | - João L T Pestana
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
199
|
Protective Role of Tetrahydrocurcumin: an Active Polyphenolic Curcuminoid on Cadmium-InducedOxidative Damage in Rats. Appl Biochem Biotechnol 2017; 183:51-69. [DOI: 10.1007/s12010-017-2430-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/25/2017] [Indexed: 01/01/2023]
|
200
|
Ding K, Lu L, Wang J, Wang J, Zhou M, Zheng C, Liu J, Zhang C, Zhuang S. In vitro and in silico investigations of the binary-mixture toxicity of phthalate esters and cadmium (II) to Vibrio qinghaiensis sp.-Q67. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 580:1078-1084. [PMID: 27993475 DOI: 10.1016/j.scitotenv.2016.12.062] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/09/2016] [Accepted: 12/09/2016] [Indexed: 06/06/2023]
Abstract
Phthalate esters (PAEs) are widely used as plasticizers and have become one of the emerging contaminants with an increasing public concern. The residues of PAEs frequently co-exist with heavy metals such as cadmium (Cd) in waters; however, their joint ecotoxicity remains largely unknown. We herein investigated the single and joint toxicity of commonly used PAEs and Cd using freshwater luminescent bacteria Vibrio qinghaiensis sp.-Q67. The median effective concentration (EC50) of benzyl butyl phthalate (BBP), dibutyl phthalate (DBP), diethyl phthalate (DEP), dimethyl phthalate (DMP), diisooctyl phthalate (DIOP) and di-n-octyl phthalate (DOP) were determined to be in the range from 134.4mg/L to as high as 1000mg/L, indicating very weak toxicity to Vibrio qinghaiensis sp.-Q67. The toxicity of single PAEs showed a significant linear relationship with Log Kow, indicating the dependence of the elevated toxicity on the increasing hydrophilicity. The toxicity of binary mixture of PAEs was further evaluated in silico using the independent action (IA) model and concentration addition (CA) model. DMP-DEP, DEP-DBP or DMP-DBP exhibited antagonistic effects with the toxic unit value higher than 1.2. The CA and IA models poorly predicted the joint toxicity of DMP-DEP, DEP-DBP or DMP-DBP. The joint toxicity of the binary mixtures of DMP, DEP or DBP with Cd was simple additive as predicted by the CA and IA models. Our results indicated the potentially higher risk of PAEs in the presence of Cd, emphasizing the importance of determining the impact of their joint effects on aquatic organisms. The integrated in vitro and in silico methods employed in this study will be beneficial to study the joint toxicity and better assess the aquatic ecological risk of PAEs.
Collapse
Affiliation(s)
- Keke Ding
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan 316022, China
| | - Liping Lu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan 316022, China
| | - Jiaying Wang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jingpeng Wang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Minqiang Zhou
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Cunwu Zheng
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jinsong Liu
- Zhejiang Province Environmental Monitoring Center, Hangzhou 310005, China
| | - Chunlong Zhang
- Department of Biological and Environmental Sciences, University of Houston-Clear Lake, 2700 Bay Area Blvd., Houston, TX 77058, USA
| | - Shulin Zhuang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan 316022, China.
| |
Collapse
|