151
|
Pace JR, DeBerardinis AM, Sail V, Tacheva-Grigorova SK, Chan KA, Tran R, Raccuia DS, Wechsler-Reya RJ, Hadden MK. Repurposing the Clinically Efficacious Antifungal Agent Itraconazole as an Anticancer Chemotherapeutic. J Med Chem 2016; 59:3635-49. [PMID: 27014922 DOI: 10.1021/acs.jmedchem.5b01718] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Itraconazole (ITZ) is an FDA-approved member of the triazole class of antifungal agents. Two recent drug repurposing screens identified ITZ as a promising anticancer chemotherapeutic that inhibits both the angiogenesis and hedgehog (Hh) signaling pathways. We have synthesized and evaluated first- and second-generation ITZ analogues for their anti-Hh and antiangiogenic activities to probe more fully the structural requirements for these anticancer properties. Our overall results suggest that the triazole functionality is required for ITZ-mediated inhibition of angiogenesis but that it is not essential for inhibition of Hh signaling. The synthesis and evaluation of stereochemically defined des-triazole ITZ analogues also provides key information as to the optimal configuration around the dioxolane ring of the ITZ scaffold. Finally, the results from our studies suggest that two distinct cellular mechanisms of action govern the anticancer properties of the ITZ scaffold.
Collapse
Affiliation(s)
- Jennifer R Pace
- Department of Pharmaceutical Sciences, University of Connecticut , 69 North Eagleville Road, Unit 3092, Storrs, Connecticut 06269-3092, United States
| | - Albert M DeBerardinis
- Department of Pharmaceutical Sciences, University of Connecticut , 69 North Eagleville Road, Unit 3092, Storrs, Connecticut 06269-3092, United States
| | - Vibhavari Sail
- Department of Pharmaceutical Sciences, University of Connecticut , 69 North Eagleville Road, Unit 3092, Storrs, Connecticut 06269-3092, United States
| | - Silvia K Tacheva-Grigorova
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute , 2880 Torrey Pines Scenic Drive, La Jolla, California 92037, United States
| | - Kelly A Chan
- Department of Pharmaceutical Sciences, University of Connecticut , 69 North Eagleville Road, Unit 3092, Storrs, Connecticut 06269-3092, United States
| | - Raymond Tran
- Department of Pharmaceutical Sciences, University of Connecticut , 69 North Eagleville Road, Unit 3092, Storrs, Connecticut 06269-3092, United States
| | - Daniel S Raccuia
- Department of Pharmaceutical Sciences, University of Connecticut , 69 North Eagleville Road, Unit 3092, Storrs, Connecticut 06269-3092, United States
| | - Robert J Wechsler-Reya
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute , 2880 Torrey Pines Scenic Drive, La Jolla, California 92037, United States
| | - M Kyle Hadden
- Department of Pharmaceutical Sciences, University of Connecticut , 69 North Eagleville Road, Unit 3092, Storrs, Connecticut 06269-3092, United States
| |
Collapse
|
152
|
Gorojankina T. Hedgehog signaling pathway: a novel model and molecular mechanisms of signal transduction. Cell Mol Life Sci 2016; 73:1317-32. [PMID: 26762301 PMCID: PMC11108571 DOI: 10.1007/s00018-015-2127-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 12/23/2015] [Accepted: 12/23/2015] [Indexed: 12/21/2022]
Abstract
The Hedgehog (Hh) signaling pathway has numerous roles in the control of cell proliferation, tissue patterning and stem cell maintenance. In spite of intensive study, the mechanisms of Hh signal transduction are not completely understood. Here I review published data and present a novel model of vertebrate Hh signaling suggesting that Smoothened (Smo) functions as a G-protein-coupled receptor in cilia. This is the first model to propose molecular mechanisms for the major steps of Hh signaling, including inhibition of Smo by Patched, Smo activation, and signal transduction from active Smo to Gli transcription factors. It also suggests a novel role for the negative pathway regulators Sufu and PKA in these processes.
Collapse
Affiliation(s)
- Tatiana Gorojankina
- Neuroscience Paris-Saclay Institute (Neuro-PSI), UMR 9197, CNRS, Université Paris-Sud, Bât. 32/33, CNRS, 91190, Gif-sur-Yvette, France.
- Institut Curie, Centre de Recherche, Orsay, France.
- CNRS UMR3347, 91400, Orsay, France.
- Univ. Paris Sud, Université Paris Saclay, Orsay, France.
- INSERM U1021, 91400, Orsay, France.
| |
Collapse
|
153
|
Seow HF, Yip WK, Fifis T. Advances in targeted and immunobased therapies for colorectal cancer in the genomic era. Onco Targets Ther 2016; 9:1899-920. [PMID: 27099521 PMCID: PMC4821380 DOI: 10.2147/ott.s95101] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Targeted therapies require information on specific defective signaling pathways or mutations. Advances in genomic technologies and cell biology have led to identification of new therapeutic targets associated with signal-transduction pathways. Survival times of patients with colorectal cancer (CRC) can be extended with combinations of conventional cytotoxic agents and targeted therapies. Targeting EGFR- and VEGFR-signaling systems has been the major focus for treatment of metastatic CRC. However, there are still limitations in their clinical application, and new and better drug combinations are needed. This review provides information on EGFR and VEGF inhibitors, new therapeutic agents in the pipeline targeting EGFR and VEGFR pathways, and those targeting other signal-transduction pathways, such as MET, IGF1R, MEK, PI3K, Wnt, Notch, Hedgehog, and death-receptor signaling pathways for treatment of metastatic CRC. Additionally, multitargeted approaches in combination therapies targeting negative-feedback loops, compensatory networks, and cross talk between pathways are highlighted. Then, immunobased strategies to enhance antitumor immunity using specific monoclonal antibodies, such as the immune-checkpoint inhibitors anti-CTLA4 and anti-PD1, as well as the challenges that need to be overcome for increased efficacy of targeted therapies, including drug resistance, predictive markers of response, tumor subtypes, and cancer stem cells, are covered. The review concludes with a brief insight into the applications of next-generation sequencing, expression profiling for tumor subtyping, and the exciting progress made in in silico predictive analysis in the development of a prescription strategy for cancer therapy.
Collapse
Affiliation(s)
- Heng Fong Seow
- Immunology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Wai Kien Yip
- Immunology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Theodora Fifis
- Department of Surgery, University of Melbourne, Melbourne, Australia
| |
Collapse
|
154
|
Chan TSY, Hawkins C, Krieger JR, McGlade CJ, Huang A. JPO2/CDCA7L and LEDGF/p75 Are Novel Mediators of PI3K/AKT Signaling and Aggressive Phenotypes in Medulloblastoma. Cancer Res 2016; 76:2802-12. [PMID: 27013196 DOI: 10.1158/0008-5472.can-15-2194] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 02/26/2016] [Indexed: 11/16/2022]
Abstract
Substantial evidence links Myc-PI3K/AKT signaling to the most aggressive subtype of medulloblastoma and this axis in medulloblastoma therapy. In this study, we advance understanding of how Myc-PI3K/AKT signaling contributes to this malignancy, specifically, in identifying the Myc-interacting protein JPO2 and its partner binding protein LEDGF/p75 as critical modulators of PI3K/AKT signaling and metastasis in medulloblastoma. JPO2 overexpression induced metastatic medulloblastoma in vivo through two synergistic feed-forward regulatory circuits involving LEDGF/p75 and AKT that promote metastatic phenotypes in this setting. Overall, our findings highlight two novel prometastatic loci in medulloblastoma and point to the JPO2:LEDGF/p75 protein complex as a potentially new targetable component of PI3K/AKT signaling in medulloblastoma. Cancer Res; 76(9); 2802-12. ©2016 AACR.
Collapse
Affiliation(s)
- Tiffany Sin Yu Chan
- Department of Paediatrics, Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada. Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Cynthia Hawkins
- Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada. Department of Pathology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jonathan R Krieger
- Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - C Jane McGlade
- Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada. Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Annie Huang
- Department of Paediatrics, Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada. Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.
| |
Collapse
|
155
|
Graab U, Hahn H, Fulda S. Identification of a novel synthetic lethality of combined inhibition of hedgehog and PI3K signaling in rhabdomyosarcoma. Oncotarget 2016; 6:8722-35. [PMID: 25749378 PMCID: PMC4496179 DOI: 10.18632/oncotarget.2726] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 11/12/2014] [Indexed: 12/31/2022] Open
Abstract
We previously reported that aberrant HH pathway activation confers a poor prognosis in rhabdomyosarcoma (RMS). Searching for new treatment strategies we therefore targeted HH signaling. Here, we identify a novel synthetic lethality of concomitant inhibition of HH and PI3K/AKT/mTOR pathways in RMS by GLI1/2 inhibitor GANT61 and PI3K/mTOR inhibitor PI103. Synergistic drug interaction is confirmed by calculation of combination index (CI < 0.2). Similarly, genetic silencing of GLI1/2 significantly increases PI103-induced apoptosis. GANT61 and PI103 also synergize to induce apoptosis in cultured primary RMS cells emphasizing the clinical relevance of this combination. Importantly, GANT61/PI103 cotreatment suppresses clonogenic survival, three-dimensional sphere formation and tumor growth in an in vivo model of RMS. Mechanistic studies reveal that GANT61 and PI103 cooperate to trigger caspase-dependent apoptosis via the mitochondrial pathway, as demonstrated by several lines of evidence. First, GANT61/PI103 cotreatment increases mRNA and protein expression of NOXA and BMF, which is required for apoptosis, since knockdown of NOXA or BMF significantly reduces GANT61/PI103-induced apoptosis. Second, GANT61/PI103 cotreatment triggers BAK/BAX activation, which contributes to GANT61/PI103-mediated apoptosis, since knockdown of BAK provides protection. Third, ectopic expression of BCL-2 or non-degradable phospho-mutant MCL-1 significantly rescue GANT61/PI103-triggered apoptosis. Fourth, GANT61/PI103 cotreatment initiate activation of the caspase cascade via apoptosome-mediated cleavage of the initiator caspase-9, as indicated by changes in the cleavage pattern of caspases (e.g. accumulation of the caspase-9 p35 cleavage fragment) upon addition of the caspase inhibitor zVAD.fmk. Thus, combined GLI1/2 and PI3K/mTOR inhibition represents a promising novel approach for synergistic apoptosis induction and tumor growth reduction with implications for new treatment strategies in RMS.
Collapse
Affiliation(s)
- Ulrike Graab
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Frankfurt, Germany
| | - Heidi Hahn
- Institute of Human Genetics, University Medical Center, Goettingen, Germany
| | - Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University, Frankfurt, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
156
|
Gruber W, Hutzinger M, Elmer DP, Parigger T, Sternberg C, Cegielkowski L, Zaja M, Leban J, Michel S, Hamm S, Vitt D, Aberger F. DYRK1B as therapeutic target in Hedgehog/GLI-dependent cancer cells with Smoothened inhibitor resistance. Oncotarget 2016; 7:7134-48. [PMID: 26784250 PMCID: PMC4872774 DOI: 10.18632/oncotarget.6910] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 01/04/2016] [Indexed: 12/26/2022] Open
Abstract
A wide range of human malignancies displays aberrant activation of Hedgehog (HH)/GLI signaling, including cancers of the skin, brain, gastrointestinal tract and hematopoietic system. Targeting oncogenic HH/GLI signaling with small molecule inhibitors of the essential pathway effector Smoothened (SMO) has shown remarkable therapeutic effects in patients with advanced and metastatic basal cell carcinoma. However, acquired and de novo resistance to SMO inhibitors poses severe limitations to the use of SMO antagonists and urgently calls for the identification of novel targets and compounds.Here we report on the identification of the Dual-Specificity-Tyrosine-Phosphorylation-Regulated Kinase 1B (DYRK1B) as critical positive regulator of HH/GLI signaling downstream of SMO. Genetic and chemical inhibition of DYRK1B in human and mouse cancer cells resulted in marked repression of HH signaling and GLI1 expression, respectively. Importantly, DYRK1B inhibition profoundly impaired GLI1 expression in both SMO-inhibitor sensitive and resistant settings. We further introduce a novel small molecule DYRK1B inhibitor, DYRKi, with suitable pharmacologic properties to impair SMO-dependent and SMO-independent oncogenic GLI activity. The results support the use of DYRK1B antagonists for the treatment of HH/GLI-associated cancers where SMO inhibitors fail to demonstrate therapeutic efficacy.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Blotting, Western
- Carcinoma, Basal Cell/drug therapy
- Carcinoma, Basal Cell/genetics
- Carcinoma, Basal Cell/metabolism
- Carcinoma, Basal Cell/pathology
- Cell Proliferation/drug effects
- Cells, Cultured
- Drug Resistance, Neoplasm
- Forkhead Transcription Factors/physiology
- Hedgehog Proteins/antagonists & inhibitors
- Hedgehog Proteins/genetics
- Hedgehog Proteins/metabolism
- Humans
- Mice
- Mice, Nude
- NIH 3T3 Cells
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/metabolism
- RNA, Messenger/genetics
- RNA, Small Interfering/genetics
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Skin Neoplasms/drug therapy
- Skin Neoplasms/genetics
- Skin Neoplasms/metabolism
- Skin Neoplasms/pathology
- Smoothened Receptor/antagonists & inhibitors
- Smoothened Receptor/genetics
- Smoothened Receptor/metabolism
- Xenograft Model Antitumor Assays
- Zinc Finger Protein GLI1/antagonists & inhibitors
- Zinc Finger Protein GLI1/genetics
- Zinc Finger Protein GLI1/metabolism
- Dyrk Kinases
Collapse
Affiliation(s)
- Wolfgang Gruber
- Cancer Cluster Salzburg, Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Martin Hutzinger
- Cancer Cluster Salzburg, Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Dominik Patrick Elmer
- Cancer Cluster Salzburg, Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Thomas Parigger
- Cancer Cluster Salzburg, Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Christina Sternberg
- Cancer Cluster Salzburg, Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Lukasz Cegielkowski
- Cancer Cluster Salzburg, Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| | - Mirko Zaja
- 4SC Discovery GmbH, Planegg-Martinsried, Germany
| | - Johann Leban
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | | | | | - Daniel Vitt
- 4SC Discovery GmbH, Planegg-Martinsried, Germany
- 4SC AG, Planegg-Martinsried, Germany
| | - Fritz Aberger
- Cancer Cluster Salzburg, Department of Molecular Biology, University of Salzburg, Salzburg, Austria
| |
Collapse
|
157
|
Vismodegib, itraconazole and sonidegib as hedgehog pathway inhibitors and their relative competencies in the treatment of basal cell carcinomas. Crit Rev Oncol Hematol 2016; 98:235-41. [DOI: 10.1016/j.critrevonc.2015.11.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 10/06/2015] [Accepted: 11/11/2015] [Indexed: 12/17/2022] Open
|
158
|
Chen B, Trang V, Lee A, Williams NS, Wilson AN, Epstein EH, Tang JY, Kim J. Posaconazole, a Second-Generation Triazole Antifungal Drug, Inhibits the Hedgehog Signaling Pathway and Progression of Basal Cell Carcinoma. Mol Cancer Ther 2016; 15:866-76. [PMID: 26823493 DOI: 10.1158/1535-7163.mct-15-0729-t] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 12/30/2015] [Indexed: 12/12/2022]
Abstract
Deregulation of Hedgehog (Hh) pathway signaling has been associated with the pathogenesis of various malignancies, including basal cell carcinomas (BCC). Inhibitors of the Hh pathway currently available or under clinical investigation all bind and antagonize Smoothened (SMO), inducing a marked but transient clinical response. Tumor regrowth and therapy failure were attributed to mutations in the binding site of these small-molecule SMO antagonists. The antifungal itraconazole was demonstrated to be a potent SMO antagonist with a distinct mechanism of action from that of current SMO inhibitors. However, itraconazole represents a suboptimal therapeutic option due to its numerous drug-drug interactions. Here, we show that posaconazole, a second-generation triazole antifungal with minimal drug-drug interactions and a favorable side-effect profile, is also a potent inhibitor of the Hh pathway that functions at the level of SMO. We demonstrate that posaconazole inhibits the Hh pathway by a mechanism distinct from that of cyclopamine and other cyclopamine-competitive SMO antagonists but, similar to itraconazole, has robust activity against drug-resistant SMO mutants and inhibits the growth of Hh-dependent BCC in vivo Our results suggest that posaconazole, alone or in combination with other Hh pathway antagonists, may be readily tested in clinical studies for the treatment of Hh-dependent cancers. Mol Cancer Ther; 15(5); 866-76. ©2016 AACR.
Collapse
Affiliation(s)
- Baozhi Chen
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern, Dallas, Texas
| | - Vinh Trang
- Department of Internal Medicine, University of Texas Southwestern, Dallas, Texas
| | - Alex Lee
- Children's Hospital Oakland Research Institute, Oakland, California
| | - Noelle S Williams
- Department of Biochemistry, University of Texas Southwestern, Dallas, Texas
| | - Alexandra N Wilson
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern, Dallas, Texas
| | - Ervin H Epstein
- Children's Hospital Oakland Research Institute, Oakland, California
| | - Jean Y Tang
- Children's Hospital Oakland Research Institute, Oakland, California. Department of Dermatology, Stanford University, Stanford, California
| | - James Kim
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern, Dallas, Texas. Department of Internal Medicine, University of Texas Southwestern, Dallas, Texas.
| |
Collapse
|
159
|
MicroRNA Biogenesis and Hedgehog-Patched Signaling Cooperate to Regulate an Important Developmental Transition in Granule Cell Development. Genetics 2016; 202:1105-18. [PMID: 26773048 DOI: 10.1534/genetics.115.184176] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 01/10/2016] [Indexed: 12/20/2022] Open
Abstract
The Dicer1, Dcr-1 homolog (Drosophila) gene encodes a type III ribonuclease required for the canonical maturation and functioning of microRNAs (miRNAs). Subsets of miRNAs are known to regulate normal cerebellar granule cell development, in addition to the growth and progression of medulloblastoma, a neoplasm that often originates from granule cell precursors. Multiple independent studies have also demonstrated that deregulation of Sonic Hedgehog (Shh)-Patched (Ptch) signaling, through miRNAs, is causative of granule cell pathologies. In the present study, we investigated the genetic interplay between miRNA biogenesis and Shh-Ptch signaling in granule cells of the cerebellum by way of the Cre/lox recombination system in genetically engineered models of Mus musculus (mouse). We demonstrate that, although the miRNA biogenesis and Shh-Ptch-signaling pathways, respectively, regulate the opposing growth processes of cerebellar hypoplasia and hyperplasia leading to medulloblastoma, their concurrent deregulation was nonadditive and did not bring the growth phenotypes toward an expected equilibrium. Instead, mice developed either hypoplasia or medulloblastoma, but of a greater severity. Furthermore, some genotypes were bistable, whereby subsets of mice developed hypoplasia or medulloblastoma. This implies that miRNAs and Shh-Ptch signaling regulate an important developmental transition in granule cells of the cerebellum. We also conclusively show that the Dicer1 gene encodes a haploinsufficient tumor suppressor gene for Ptch1-induced medulloblastoma, with the monoallielic loss of Dicer1 more severe than biallelic loss. These findings exemplify how genetic interplay between pathways may produce nonadditive effects with a substantial and unpredictable impact on biology. Furthermore, these findings suggest that the functional dosage of Dicer1 may nonadditively influence a wide range of Shh-Ptch-dependent pathologies.
Collapse
|
160
|
Hadden MK. Hedgehog and Vitamin D Signaling Pathways in Development and Disease. VITAMIN D HORMONE 2016; 100:231-53. [DOI: 10.1016/bs.vh.2015.10.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
161
|
Asić K. Dominant mechanisms of primary resistance differ from dominant mechanisms of secondary resistance to targeted therapies. Crit Rev Oncol Hematol 2016; 97:178-96. [DOI: 10.1016/j.critrevonc.2015.08.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 06/18/2015] [Accepted: 08/04/2015] [Indexed: 02/07/2023] Open
|
162
|
Catenacci DVT, Junttila MR, Karrison T, Bahary N, Horiba MN, Nattam SR, Marsh R, Wallace J, Kozloff M, Rajdev L, Cohen D, Wade J, Sleckman B, Lenz HJ, Stiff P, Kumar P, Xu P, Henderson L, Takebe N, Salgia R, Wang X, Stadler WM, de Sauvage FJ, Kindler HL. Randomized Phase Ib/II Study of Gemcitabine Plus Placebo or Vismodegib, a Hedgehog Pathway Inhibitor, in Patients With Metastatic Pancreatic Cancer. J Clin Oncol 2015; 33:4284-92. [PMID: 26527777 PMCID: PMC4678179 DOI: 10.1200/jco.2015.62.8719] [Citation(s) in RCA: 422] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Sonic hedgehog (SHH), an activating ligand of smoothened (SMO), is overexpressed in > 70% of pancreatic cancers (PCs). We investigated the impact of vismodegib, an SHH antagonist, plus gemcitabine (GV) or gemcitabine plus placebo (GP) in a multicenter phase Ib/randomized phase II trial and preclinical PC models. PATIENTS AND METHODS Patients with PC not amenable to curative therapy who had received no prior therapy for metastatic disease and had Karnofsky performance score ≥ 80 were enrolled. Patients were randomly assigned in a one-to-one ratio to GV or GP. The primary end point was progression-free-survival (PFS). Exploratory correlative studies included serial SHH serum levels and contrast perfusion computed tomography imaging. To further investigate putative biologic mechanisms of SMO inhibition, two autochthonous pancreatic cancer models (Kras(G12D); p16/p19(fl/fl); Pdx1-Cre and Kras(G12D); p53(R270H/wt); Pdx1-Cre) were studied. RESULTS No safety issues were identified in the phase Ib portion (n = 7), and the phase II study enrolled 106 evaluable patients (n = 53 in each arm). Median PFS was 4.0 and 2.5 months for GV and GP arms, respectively (95% CI, 2.5 to 5.3 and 1.9 to 3.8, respectively; adjusted hazard ratio, 0.81; 95% CI, 0.54 to 1.21; P = .30). Median overall survival (OS) was 6.9 and 6.1 months for GV and GP arms, respectively (95% CI, 5.8 to 8.0 and 5.0 to 8.0, respectively; adjusted hazard ratio, 1.04; 95% CI, 0.69 to 1.58; P = .84). Response rates were not significantly different. There were no significant associations between correlative markers and overall response rate, PFS, or OS. Preclinical trials revealed no significant differences with vismodegib in drug delivery, tumor growth rate, or OS in either model. CONCLUSION The addition of vismodegib to gemcitabine in an unselected cohort did not improve overall response rate, PFS, or OS in patients with metastatic PC. Our preclinical and clinical results revealed no statistically significant differences with respect to drug delivery or treatment efficacy using vismodegib.
Collapse
Affiliation(s)
- Daniel V T Catenacci
- Daniel V.T. Catenacci, Theodore Karrison, James Wallace, Mark Kozloff, Peng Xu, Les Henderson, Ravi Salgia, Walter M. Stadler, Hedy L. Kindler, University of Chicago Medical Center; Patrick Stiff, Loyola University Medical Center, Chicago; Robert Marsh, Northshore University Health System, Evanston; James Wallace, Mark Kozloff, Ingalls Hospital, Harvey; James Wade, Decatur Memorial Hospital, Decatur; Pankaj Kumar, Oncology/Hematology Associates, Peoria, IL; Melissa R. Junttila, Xi Wang, and Frederic J. de Sauvage, Genentech, South San Francisco; Heinz-Josef Lenz, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA; Nathan Bahary, University of Pittsburgh Cancer Institute, Pittsburgh, PA; Margit N. Horiba, University of Maryland Greenebaum Cancer Center, Baltimore, MD; Sreenivasa R. Nattam, Ft Wayne Medical Oncology/Hematology, Ft Wayne, IN; Lakshmi Rajdev, Montefiore Medical Center, Bronx; Deirdre Cohen, New York University Cancer Center, New York, NY; Bethany Sleckman, St John's Mercy Medical Center, St Louis, MO; and Naoko Takebe, National Cancer Institute, National Institutes of Health, Bethesda, MD.
| | - Melissa R Junttila
- Daniel V.T. Catenacci, Theodore Karrison, James Wallace, Mark Kozloff, Peng Xu, Les Henderson, Ravi Salgia, Walter M. Stadler, Hedy L. Kindler, University of Chicago Medical Center; Patrick Stiff, Loyola University Medical Center, Chicago; Robert Marsh, Northshore University Health System, Evanston; James Wallace, Mark Kozloff, Ingalls Hospital, Harvey; James Wade, Decatur Memorial Hospital, Decatur; Pankaj Kumar, Oncology/Hematology Associates, Peoria, IL; Melissa R. Junttila, Xi Wang, and Frederic J. de Sauvage, Genentech, South San Francisco; Heinz-Josef Lenz, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA; Nathan Bahary, University of Pittsburgh Cancer Institute, Pittsburgh, PA; Margit N. Horiba, University of Maryland Greenebaum Cancer Center, Baltimore, MD; Sreenivasa R. Nattam, Ft Wayne Medical Oncology/Hematology, Ft Wayne, IN; Lakshmi Rajdev, Montefiore Medical Center, Bronx; Deirdre Cohen, New York University Cancer Center, New York, NY; Bethany Sleckman, St John's Mercy Medical Center, St Louis, MO; and Naoko Takebe, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Theodore Karrison
- Daniel V.T. Catenacci, Theodore Karrison, James Wallace, Mark Kozloff, Peng Xu, Les Henderson, Ravi Salgia, Walter M. Stadler, Hedy L. Kindler, University of Chicago Medical Center; Patrick Stiff, Loyola University Medical Center, Chicago; Robert Marsh, Northshore University Health System, Evanston; James Wallace, Mark Kozloff, Ingalls Hospital, Harvey; James Wade, Decatur Memorial Hospital, Decatur; Pankaj Kumar, Oncology/Hematology Associates, Peoria, IL; Melissa R. Junttila, Xi Wang, and Frederic J. de Sauvage, Genentech, South San Francisco; Heinz-Josef Lenz, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA; Nathan Bahary, University of Pittsburgh Cancer Institute, Pittsburgh, PA; Margit N. Horiba, University of Maryland Greenebaum Cancer Center, Baltimore, MD; Sreenivasa R. Nattam, Ft Wayne Medical Oncology/Hematology, Ft Wayne, IN; Lakshmi Rajdev, Montefiore Medical Center, Bronx; Deirdre Cohen, New York University Cancer Center, New York, NY; Bethany Sleckman, St John's Mercy Medical Center, St Louis, MO; and Naoko Takebe, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Nathan Bahary
- Daniel V.T. Catenacci, Theodore Karrison, James Wallace, Mark Kozloff, Peng Xu, Les Henderson, Ravi Salgia, Walter M. Stadler, Hedy L. Kindler, University of Chicago Medical Center; Patrick Stiff, Loyola University Medical Center, Chicago; Robert Marsh, Northshore University Health System, Evanston; James Wallace, Mark Kozloff, Ingalls Hospital, Harvey; James Wade, Decatur Memorial Hospital, Decatur; Pankaj Kumar, Oncology/Hematology Associates, Peoria, IL; Melissa R. Junttila, Xi Wang, and Frederic J. de Sauvage, Genentech, South San Francisco; Heinz-Josef Lenz, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA; Nathan Bahary, University of Pittsburgh Cancer Institute, Pittsburgh, PA; Margit N. Horiba, University of Maryland Greenebaum Cancer Center, Baltimore, MD; Sreenivasa R. Nattam, Ft Wayne Medical Oncology/Hematology, Ft Wayne, IN; Lakshmi Rajdev, Montefiore Medical Center, Bronx; Deirdre Cohen, New York University Cancer Center, New York, NY; Bethany Sleckman, St John's Mercy Medical Center, St Louis, MO; and Naoko Takebe, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Margit N Horiba
- Daniel V.T. Catenacci, Theodore Karrison, James Wallace, Mark Kozloff, Peng Xu, Les Henderson, Ravi Salgia, Walter M. Stadler, Hedy L. Kindler, University of Chicago Medical Center; Patrick Stiff, Loyola University Medical Center, Chicago; Robert Marsh, Northshore University Health System, Evanston; James Wallace, Mark Kozloff, Ingalls Hospital, Harvey; James Wade, Decatur Memorial Hospital, Decatur; Pankaj Kumar, Oncology/Hematology Associates, Peoria, IL; Melissa R. Junttila, Xi Wang, and Frederic J. de Sauvage, Genentech, South San Francisco; Heinz-Josef Lenz, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA; Nathan Bahary, University of Pittsburgh Cancer Institute, Pittsburgh, PA; Margit N. Horiba, University of Maryland Greenebaum Cancer Center, Baltimore, MD; Sreenivasa R. Nattam, Ft Wayne Medical Oncology/Hematology, Ft Wayne, IN; Lakshmi Rajdev, Montefiore Medical Center, Bronx; Deirdre Cohen, New York University Cancer Center, New York, NY; Bethany Sleckman, St John's Mercy Medical Center, St Louis, MO; and Naoko Takebe, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Sreenivasa R Nattam
- Daniel V.T. Catenacci, Theodore Karrison, James Wallace, Mark Kozloff, Peng Xu, Les Henderson, Ravi Salgia, Walter M. Stadler, Hedy L. Kindler, University of Chicago Medical Center; Patrick Stiff, Loyola University Medical Center, Chicago; Robert Marsh, Northshore University Health System, Evanston; James Wallace, Mark Kozloff, Ingalls Hospital, Harvey; James Wade, Decatur Memorial Hospital, Decatur; Pankaj Kumar, Oncology/Hematology Associates, Peoria, IL; Melissa R. Junttila, Xi Wang, and Frederic J. de Sauvage, Genentech, South San Francisco; Heinz-Josef Lenz, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA; Nathan Bahary, University of Pittsburgh Cancer Institute, Pittsburgh, PA; Margit N. Horiba, University of Maryland Greenebaum Cancer Center, Baltimore, MD; Sreenivasa R. Nattam, Ft Wayne Medical Oncology/Hematology, Ft Wayne, IN; Lakshmi Rajdev, Montefiore Medical Center, Bronx; Deirdre Cohen, New York University Cancer Center, New York, NY; Bethany Sleckman, St John's Mercy Medical Center, St Louis, MO; and Naoko Takebe, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Robert Marsh
- Daniel V.T. Catenacci, Theodore Karrison, James Wallace, Mark Kozloff, Peng Xu, Les Henderson, Ravi Salgia, Walter M. Stadler, Hedy L. Kindler, University of Chicago Medical Center; Patrick Stiff, Loyola University Medical Center, Chicago; Robert Marsh, Northshore University Health System, Evanston; James Wallace, Mark Kozloff, Ingalls Hospital, Harvey; James Wade, Decatur Memorial Hospital, Decatur; Pankaj Kumar, Oncology/Hematology Associates, Peoria, IL; Melissa R. Junttila, Xi Wang, and Frederic J. de Sauvage, Genentech, South San Francisco; Heinz-Josef Lenz, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA; Nathan Bahary, University of Pittsburgh Cancer Institute, Pittsburgh, PA; Margit N. Horiba, University of Maryland Greenebaum Cancer Center, Baltimore, MD; Sreenivasa R. Nattam, Ft Wayne Medical Oncology/Hematology, Ft Wayne, IN; Lakshmi Rajdev, Montefiore Medical Center, Bronx; Deirdre Cohen, New York University Cancer Center, New York, NY; Bethany Sleckman, St John's Mercy Medical Center, St Louis, MO; and Naoko Takebe, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - James Wallace
- Daniel V.T. Catenacci, Theodore Karrison, James Wallace, Mark Kozloff, Peng Xu, Les Henderson, Ravi Salgia, Walter M. Stadler, Hedy L. Kindler, University of Chicago Medical Center; Patrick Stiff, Loyola University Medical Center, Chicago; Robert Marsh, Northshore University Health System, Evanston; James Wallace, Mark Kozloff, Ingalls Hospital, Harvey; James Wade, Decatur Memorial Hospital, Decatur; Pankaj Kumar, Oncology/Hematology Associates, Peoria, IL; Melissa R. Junttila, Xi Wang, and Frederic J. de Sauvage, Genentech, South San Francisco; Heinz-Josef Lenz, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA; Nathan Bahary, University of Pittsburgh Cancer Institute, Pittsburgh, PA; Margit N. Horiba, University of Maryland Greenebaum Cancer Center, Baltimore, MD; Sreenivasa R. Nattam, Ft Wayne Medical Oncology/Hematology, Ft Wayne, IN; Lakshmi Rajdev, Montefiore Medical Center, Bronx; Deirdre Cohen, New York University Cancer Center, New York, NY; Bethany Sleckman, St John's Mercy Medical Center, St Louis, MO; and Naoko Takebe, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Mark Kozloff
- Daniel V.T. Catenacci, Theodore Karrison, James Wallace, Mark Kozloff, Peng Xu, Les Henderson, Ravi Salgia, Walter M. Stadler, Hedy L. Kindler, University of Chicago Medical Center; Patrick Stiff, Loyola University Medical Center, Chicago; Robert Marsh, Northshore University Health System, Evanston; James Wallace, Mark Kozloff, Ingalls Hospital, Harvey; James Wade, Decatur Memorial Hospital, Decatur; Pankaj Kumar, Oncology/Hematology Associates, Peoria, IL; Melissa R. Junttila, Xi Wang, and Frederic J. de Sauvage, Genentech, South San Francisco; Heinz-Josef Lenz, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA; Nathan Bahary, University of Pittsburgh Cancer Institute, Pittsburgh, PA; Margit N. Horiba, University of Maryland Greenebaum Cancer Center, Baltimore, MD; Sreenivasa R. Nattam, Ft Wayne Medical Oncology/Hematology, Ft Wayne, IN; Lakshmi Rajdev, Montefiore Medical Center, Bronx; Deirdre Cohen, New York University Cancer Center, New York, NY; Bethany Sleckman, St John's Mercy Medical Center, St Louis, MO; and Naoko Takebe, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Lakshmi Rajdev
- Daniel V.T. Catenacci, Theodore Karrison, James Wallace, Mark Kozloff, Peng Xu, Les Henderson, Ravi Salgia, Walter M. Stadler, Hedy L. Kindler, University of Chicago Medical Center; Patrick Stiff, Loyola University Medical Center, Chicago; Robert Marsh, Northshore University Health System, Evanston; James Wallace, Mark Kozloff, Ingalls Hospital, Harvey; James Wade, Decatur Memorial Hospital, Decatur; Pankaj Kumar, Oncology/Hematology Associates, Peoria, IL; Melissa R. Junttila, Xi Wang, and Frederic J. de Sauvage, Genentech, South San Francisco; Heinz-Josef Lenz, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA; Nathan Bahary, University of Pittsburgh Cancer Institute, Pittsburgh, PA; Margit N. Horiba, University of Maryland Greenebaum Cancer Center, Baltimore, MD; Sreenivasa R. Nattam, Ft Wayne Medical Oncology/Hematology, Ft Wayne, IN; Lakshmi Rajdev, Montefiore Medical Center, Bronx; Deirdre Cohen, New York University Cancer Center, New York, NY; Bethany Sleckman, St John's Mercy Medical Center, St Louis, MO; and Naoko Takebe, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Deirdre Cohen
- Daniel V.T. Catenacci, Theodore Karrison, James Wallace, Mark Kozloff, Peng Xu, Les Henderson, Ravi Salgia, Walter M. Stadler, Hedy L. Kindler, University of Chicago Medical Center; Patrick Stiff, Loyola University Medical Center, Chicago; Robert Marsh, Northshore University Health System, Evanston; James Wallace, Mark Kozloff, Ingalls Hospital, Harvey; James Wade, Decatur Memorial Hospital, Decatur; Pankaj Kumar, Oncology/Hematology Associates, Peoria, IL; Melissa R. Junttila, Xi Wang, and Frederic J. de Sauvage, Genentech, South San Francisco; Heinz-Josef Lenz, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA; Nathan Bahary, University of Pittsburgh Cancer Institute, Pittsburgh, PA; Margit N. Horiba, University of Maryland Greenebaum Cancer Center, Baltimore, MD; Sreenivasa R. Nattam, Ft Wayne Medical Oncology/Hematology, Ft Wayne, IN; Lakshmi Rajdev, Montefiore Medical Center, Bronx; Deirdre Cohen, New York University Cancer Center, New York, NY; Bethany Sleckman, St John's Mercy Medical Center, St Louis, MO; and Naoko Takebe, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - James Wade
- Daniel V.T. Catenacci, Theodore Karrison, James Wallace, Mark Kozloff, Peng Xu, Les Henderson, Ravi Salgia, Walter M. Stadler, Hedy L. Kindler, University of Chicago Medical Center; Patrick Stiff, Loyola University Medical Center, Chicago; Robert Marsh, Northshore University Health System, Evanston; James Wallace, Mark Kozloff, Ingalls Hospital, Harvey; James Wade, Decatur Memorial Hospital, Decatur; Pankaj Kumar, Oncology/Hematology Associates, Peoria, IL; Melissa R. Junttila, Xi Wang, and Frederic J. de Sauvage, Genentech, South San Francisco; Heinz-Josef Lenz, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA; Nathan Bahary, University of Pittsburgh Cancer Institute, Pittsburgh, PA; Margit N. Horiba, University of Maryland Greenebaum Cancer Center, Baltimore, MD; Sreenivasa R. Nattam, Ft Wayne Medical Oncology/Hematology, Ft Wayne, IN; Lakshmi Rajdev, Montefiore Medical Center, Bronx; Deirdre Cohen, New York University Cancer Center, New York, NY; Bethany Sleckman, St John's Mercy Medical Center, St Louis, MO; and Naoko Takebe, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Bethany Sleckman
- Daniel V.T. Catenacci, Theodore Karrison, James Wallace, Mark Kozloff, Peng Xu, Les Henderson, Ravi Salgia, Walter M. Stadler, Hedy L. Kindler, University of Chicago Medical Center; Patrick Stiff, Loyola University Medical Center, Chicago; Robert Marsh, Northshore University Health System, Evanston; James Wallace, Mark Kozloff, Ingalls Hospital, Harvey; James Wade, Decatur Memorial Hospital, Decatur; Pankaj Kumar, Oncology/Hematology Associates, Peoria, IL; Melissa R. Junttila, Xi Wang, and Frederic J. de Sauvage, Genentech, South San Francisco; Heinz-Josef Lenz, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA; Nathan Bahary, University of Pittsburgh Cancer Institute, Pittsburgh, PA; Margit N. Horiba, University of Maryland Greenebaum Cancer Center, Baltimore, MD; Sreenivasa R. Nattam, Ft Wayne Medical Oncology/Hematology, Ft Wayne, IN; Lakshmi Rajdev, Montefiore Medical Center, Bronx; Deirdre Cohen, New York University Cancer Center, New York, NY; Bethany Sleckman, St John's Mercy Medical Center, St Louis, MO; and Naoko Takebe, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Heinz-Josef Lenz
- Daniel V.T. Catenacci, Theodore Karrison, James Wallace, Mark Kozloff, Peng Xu, Les Henderson, Ravi Salgia, Walter M. Stadler, Hedy L. Kindler, University of Chicago Medical Center; Patrick Stiff, Loyola University Medical Center, Chicago; Robert Marsh, Northshore University Health System, Evanston; James Wallace, Mark Kozloff, Ingalls Hospital, Harvey; James Wade, Decatur Memorial Hospital, Decatur; Pankaj Kumar, Oncology/Hematology Associates, Peoria, IL; Melissa R. Junttila, Xi Wang, and Frederic J. de Sauvage, Genentech, South San Francisco; Heinz-Josef Lenz, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA; Nathan Bahary, University of Pittsburgh Cancer Institute, Pittsburgh, PA; Margit N. Horiba, University of Maryland Greenebaum Cancer Center, Baltimore, MD; Sreenivasa R. Nattam, Ft Wayne Medical Oncology/Hematology, Ft Wayne, IN; Lakshmi Rajdev, Montefiore Medical Center, Bronx; Deirdre Cohen, New York University Cancer Center, New York, NY; Bethany Sleckman, St John's Mercy Medical Center, St Louis, MO; and Naoko Takebe, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Patrick Stiff
- Daniel V.T. Catenacci, Theodore Karrison, James Wallace, Mark Kozloff, Peng Xu, Les Henderson, Ravi Salgia, Walter M. Stadler, Hedy L. Kindler, University of Chicago Medical Center; Patrick Stiff, Loyola University Medical Center, Chicago; Robert Marsh, Northshore University Health System, Evanston; James Wallace, Mark Kozloff, Ingalls Hospital, Harvey; James Wade, Decatur Memorial Hospital, Decatur; Pankaj Kumar, Oncology/Hematology Associates, Peoria, IL; Melissa R. Junttila, Xi Wang, and Frederic J. de Sauvage, Genentech, South San Francisco; Heinz-Josef Lenz, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA; Nathan Bahary, University of Pittsburgh Cancer Institute, Pittsburgh, PA; Margit N. Horiba, University of Maryland Greenebaum Cancer Center, Baltimore, MD; Sreenivasa R. Nattam, Ft Wayne Medical Oncology/Hematology, Ft Wayne, IN; Lakshmi Rajdev, Montefiore Medical Center, Bronx; Deirdre Cohen, New York University Cancer Center, New York, NY; Bethany Sleckman, St John's Mercy Medical Center, St Louis, MO; and Naoko Takebe, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Pankaj Kumar
- Daniel V.T. Catenacci, Theodore Karrison, James Wallace, Mark Kozloff, Peng Xu, Les Henderson, Ravi Salgia, Walter M. Stadler, Hedy L. Kindler, University of Chicago Medical Center; Patrick Stiff, Loyola University Medical Center, Chicago; Robert Marsh, Northshore University Health System, Evanston; James Wallace, Mark Kozloff, Ingalls Hospital, Harvey; James Wade, Decatur Memorial Hospital, Decatur; Pankaj Kumar, Oncology/Hematology Associates, Peoria, IL; Melissa R. Junttila, Xi Wang, and Frederic J. de Sauvage, Genentech, South San Francisco; Heinz-Josef Lenz, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA; Nathan Bahary, University of Pittsburgh Cancer Institute, Pittsburgh, PA; Margit N. Horiba, University of Maryland Greenebaum Cancer Center, Baltimore, MD; Sreenivasa R. Nattam, Ft Wayne Medical Oncology/Hematology, Ft Wayne, IN; Lakshmi Rajdev, Montefiore Medical Center, Bronx; Deirdre Cohen, New York University Cancer Center, New York, NY; Bethany Sleckman, St John's Mercy Medical Center, St Louis, MO; and Naoko Takebe, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Peng Xu
- Daniel V.T. Catenacci, Theodore Karrison, James Wallace, Mark Kozloff, Peng Xu, Les Henderson, Ravi Salgia, Walter M. Stadler, Hedy L. Kindler, University of Chicago Medical Center; Patrick Stiff, Loyola University Medical Center, Chicago; Robert Marsh, Northshore University Health System, Evanston; James Wallace, Mark Kozloff, Ingalls Hospital, Harvey; James Wade, Decatur Memorial Hospital, Decatur; Pankaj Kumar, Oncology/Hematology Associates, Peoria, IL; Melissa R. Junttila, Xi Wang, and Frederic J. de Sauvage, Genentech, South San Francisco; Heinz-Josef Lenz, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA; Nathan Bahary, University of Pittsburgh Cancer Institute, Pittsburgh, PA; Margit N. Horiba, University of Maryland Greenebaum Cancer Center, Baltimore, MD; Sreenivasa R. Nattam, Ft Wayne Medical Oncology/Hematology, Ft Wayne, IN; Lakshmi Rajdev, Montefiore Medical Center, Bronx; Deirdre Cohen, New York University Cancer Center, New York, NY; Bethany Sleckman, St John's Mercy Medical Center, St Louis, MO; and Naoko Takebe, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Les Henderson
- Daniel V.T. Catenacci, Theodore Karrison, James Wallace, Mark Kozloff, Peng Xu, Les Henderson, Ravi Salgia, Walter M. Stadler, Hedy L. Kindler, University of Chicago Medical Center; Patrick Stiff, Loyola University Medical Center, Chicago; Robert Marsh, Northshore University Health System, Evanston; James Wallace, Mark Kozloff, Ingalls Hospital, Harvey; James Wade, Decatur Memorial Hospital, Decatur; Pankaj Kumar, Oncology/Hematology Associates, Peoria, IL; Melissa R. Junttila, Xi Wang, and Frederic J. de Sauvage, Genentech, South San Francisco; Heinz-Josef Lenz, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA; Nathan Bahary, University of Pittsburgh Cancer Institute, Pittsburgh, PA; Margit N. Horiba, University of Maryland Greenebaum Cancer Center, Baltimore, MD; Sreenivasa R. Nattam, Ft Wayne Medical Oncology/Hematology, Ft Wayne, IN; Lakshmi Rajdev, Montefiore Medical Center, Bronx; Deirdre Cohen, New York University Cancer Center, New York, NY; Bethany Sleckman, St John's Mercy Medical Center, St Louis, MO; and Naoko Takebe, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Naoko Takebe
- Daniel V.T. Catenacci, Theodore Karrison, James Wallace, Mark Kozloff, Peng Xu, Les Henderson, Ravi Salgia, Walter M. Stadler, Hedy L. Kindler, University of Chicago Medical Center; Patrick Stiff, Loyola University Medical Center, Chicago; Robert Marsh, Northshore University Health System, Evanston; James Wallace, Mark Kozloff, Ingalls Hospital, Harvey; James Wade, Decatur Memorial Hospital, Decatur; Pankaj Kumar, Oncology/Hematology Associates, Peoria, IL; Melissa R. Junttila, Xi Wang, and Frederic J. de Sauvage, Genentech, South San Francisco; Heinz-Josef Lenz, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA; Nathan Bahary, University of Pittsburgh Cancer Institute, Pittsburgh, PA; Margit N. Horiba, University of Maryland Greenebaum Cancer Center, Baltimore, MD; Sreenivasa R. Nattam, Ft Wayne Medical Oncology/Hematology, Ft Wayne, IN; Lakshmi Rajdev, Montefiore Medical Center, Bronx; Deirdre Cohen, New York University Cancer Center, New York, NY; Bethany Sleckman, St John's Mercy Medical Center, St Louis, MO; and Naoko Takebe, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Ravi Salgia
- Daniel V.T. Catenacci, Theodore Karrison, James Wallace, Mark Kozloff, Peng Xu, Les Henderson, Ravi Salgia, Walter M. Stadler, Hedy L. Kindler, University of Chicago Medical Center; Patrick Stiff, Loyola University Medical Center, Chicago; Robert Marsh, Northshore University Health System, Evanston; James Wallace, Mark Kozloff, Ingalls Hospital, Harvey; James Wade, Decatur Memorial Hospital, Decatur; Pankaj Kumar, Oncology/Hematology Associates, Peoria, IL; Melissa R. Junttila, Xi Wang, and Frederic J. de Sauvage, Genentech, South San Francisco; Heinz-Josef Lenz, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA; Nathan Bahary, University of Pittsburgh Cancer Institute, Pittsburgh, PA; Margit N. Horiba, University of Maryland Greenebaum Cancer Center, Baltimore, MD; Sreenivasa R. Nattam, Ft Wayne Medical Oncology/Hematology, Ft Wayne, IN; Lakshmi Rajdev, Montefiore Medical Center, Bronx; Deirdre Cohen, New York University Cancer Center, New York, NY; Bethany Sleckman, St John's Mercy Medical Center, St Louis, MO; and Naoko Takebe, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Xi Wang
- Daniel V.T. Catenacci, Theodore Karrison, James Wallace, Mark Kozloff, Peng Xu, Les Henderson, Ravi Salgia, Walter M. Stadler, Hedy L. Kindler, University of Chicago Medical Center; Patrick Stiff, Loyola University Medical Center, Chicago; Robert Marsh, Northshore University Health System, Evanston; James Wallace, Mark Kozloff, Ingalls Hospital, Harvey; James Wade, Decatur Memorial Hospital, Decatur; Pankaj Kumar, Oncology/Hematology Associates, Peoria, IL; Melissa R. Junttila, Xi Wang, and Frederic J. de Sauvage, Genentech, South San Francisco; Heinz-Josef Lenz, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA; Nathan Bahary, University of Pittsburgh Cancer Institute, Pittsburgh, PA; Margit N. Horiba, University of Maryland Greenebaum Cancer Center, Baltimore, MD; Sreenivasa R. Nattam, Ft Wayne Medical Oncology/Hematology, Ft Wayne, IN; Lakshmi Rajdev, Montefiore Medical Center, Bronx; Deirdre Cohen, New York University Cancer Center, New York, NY; Bethany Sleckman, St John's Mercy Medical Center, St Louis, MO; and Naoko Takebe, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Walter M Stadler
- Daniel V.T. Catenacci, Theodore Karrison, James Wallace, Mark Kozloff, Peng Xu, Les Henderson, Ravi Salgia, Walter M. Stadler, Hedy L. Kindler, University of Chicago Medical Center; Patrick Stiff, Loyola University Medical Center, Chicago; Robert Marsh, Northshore University Health System, Evanston; James Wallace, Mark Kozloff, Ingalls Hospital, Harvey; James Wade, Decatur Memorial Hospital, Decatur; Pankaj Kumar, Oncology/Hematology Associates, Peoria, IL; Melissa R. Junttila, Xi Wang, and Frederic J. de Sauvage, Genentech, South San Francisco; Heinz-Josef Lenz, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA; Nathan Bahary, University of Pittsburgh Cancer Institute, Pittsburgh, PA; Margit N. Horiba, University of Maryland Greenebaum Cancer Center, Baltimore, MD; Sreenivasa R. Nattam, Ft Wayne Medical Oncology/Hematology, Ft Wayne, IN; Lakshmi Rajdev, Montefiore Medical Center, Bronx; Deirdre Cohen, New York University Cancer Center, New York, NY; Bethany Sleckman, St John's Mercy Medical Center, St Louis, MO; and Naoko Takebe, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Frederic J de Sauvage
- Daniel V.T. Catenacci, Theodore Karrison, James Wallace, Mark Kozloff, Peng Xu, Les Henderson, Ravi Salgia, Walter M. Stadler, Hedy L. Kindler, University of Chicago Medical Center; Patrick Stiff, Loyola University Medical Center, Chicago; Robert Marsh, Northshore University Health System, Evanston; James Wallace, Mark Kozloff, Ingalls Hospital, Harvey; James Wade, Decatur Memorial Hospital, Decatur; Pankaj Kumar, Oncology/Hematology Associates, Peoria, IL; Melissa R. Junttila, Xi Wang, and Frederic J. de Sauvage, Genentech, South San Francisco; Heinz-Josef Lenz, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA; Nathan Bahary, University of Pittsburgh Cancer Institute, Pittsburgh, PA; Margit N. Horiba, University of Maryland Greenebaum Cancer Center, Baltimore, MD; Sreenivasa R. Nattam, Ft Wayne Medical Oncology/Hematology, Ft Wayne, IN; Lakshmi Rajdev, Montefiore Medical Center, Bronx; Deirdre Cohen, New York University Cancer Center, New York, NY; Bethany Sleckman, St John's Mercy Medical Center, St Louis, MO; and Naoko Takebe, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Hedy L Kindler
- Daniel V.T. Catenacci, Theodore Karrison, James Wallace, Mark Kozloff, Peng Xu, Les Henderson, Ravi Salgia, Walter M. Stadler, Hedy L. Kindler, University of Chicago Medical Center; Patrick Stiff, Loyola University Medical Center, Chicago; Robert Marsh, Northshore University Health System, Evanston; James Wallace, Mark Kozloff, Ingalls Hospital, Harvey; James Wade, Decatur Memorial Hospital, Decatur; Pankaj Kumar, Oncology/Hematology Associates, Peoria, IL; Melissa R. Junttila, Xi Wang, and Frederic J. de Sauvage, Genentech, South San Francisco; Heinz-Josef Lenz, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA; Nathan Bahary, University of Pittsburgh Cancer Institute, Pittsburgh, PA; Margit N. Horiba, University of Maryland Greenebaum Cancer Center, Baltimore, MD; Sreenivasa R. Nattam, Ft Wayne Medical Oncology/Hematology, Ft Wayne, IN; Lakshmi Rajdev, Montefiore Medical Center, Bronx; Deirdre Cohen, New York University Cancer Center, New York, NY; Bethany Sleckman, St John's Mercy Medical Center, St Louis, MO; and Naoko Takebe, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
163
|
Insights into cerebellar development and medulloblastoma. Bull Cancer 2015; 103:30-40. [PMID: 26688373 DOI: 10.1016/j.bulcan.2015.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 11/09/2015] [Indexed: 12/18/2022]
Abstract
Cerebellar development is an extensive process that begins during early embryonic stages and persists more than one year after birth in human. Therefore, the cerebellum is susceptible to acquire various developmental abnormalities leading to numerous diseases such as medulloblastoma, the most common pediatric malignant brain tumor. One third of the patients with medulloblastoma are incurable and survivors have a poor quality of life due to the aggressiveness of the broad-spectrum treatments. Within the past few years, it has been highlighted that medulloblastoma is a heterogeneous disease that is divided in four molecular subgroups. This recent advance in the field, combined with the development of associated preclinical models for each subgroup, should enable, in the future, the discovery and use of targeted therapy in clinical treatments for each subtype of medulloblastoma. In this review, we first aim to show how deregulation of cerebellar development can lead to medulloblastoma formation and then to present the advances in the molecular subgrouping of medulloblastoma and the associated preclinical models.
Collapse
|
164
|
Fecher LA, Sharfman WH. Advanced basal cell carcinoma, the hedgehog pathway, and treatment options - role of smoothened inhibitors. Biologics 2015; 9:129-40. [PMID: 26604681 PMCID: PMC4642804 DOI: 10.2147/btt.s54179] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Cutaneous basal cell carcinoma (BCC) is the most common human cancer and its incidence is rising worldwide. Ultraviolet radiation exposure, including tanning bed use, as well as host factors play a role in its development. The majority of cases are treated and cured with local therapies including surgery. Yet, the health care costs of diagnosis and treatment of BCCs in the US is substantial. In the United States, the cost of nonmelanoma skin cancer care in the Medicare population is estimated to be US$426 million per year. While rare, locally advanced BCCs that can no longer be controlled with surgery and/or radiation, and metastatic BCCs do occur and can be associated with significant morbidity and mortality. Vismodegib (GDC-0449), a smoothened inhibitor targeted at the hedgehog pathway, is the first US Food and Drug Association (FDA)-approved agent in the treatment of locally advanced, unresectable, and metastatic BCCs. This class of agents appears to be changing the survival rates in advanced BCC patients, but appropriate patient selection and monitoring are important. Multidisciplinary assessments are essential for the optimal care and management of these patients. For some patients with locally advanced BCC, treatment with a hedgehog inhibitor may eliminate the need for an excessively disfiguring or morbid surgery.
Collapse
Affiliation(s)
- Leslie A Fecher
- Department of Internal Medicine and Dermatology, Indiana University Health Simon Cancer Center, Indianapolis, IN, USA
- Department of Internal Medicine and Dermatology, University of Michigan, MI, USA
| | - William H Sharfman
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| |
Collapse
|
165
|
Chaudhary SC, Tang X, Arumugam A, Li C, Srivastava RK, Weng Z, Xu J, Zhang X, Kim AL, McKay K, Elmets CA, Kopelovich L, Bickers DR, Athar M. Shh and p50/Bcl3 signaling crosstalk drives pathogenesis of BCCs in Gorlin syndrome. Oncotarget 2015; 6:36789-814. [PMID: 26413810 PMCID: PMC4742211 DOI: 10.18632/oncotarget.5103] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 09/04/2015] [Indexed: 12/12/2022] Open
Abstract
Nevoid basal cell carcinoma syndrome (NBCCS) is a rare autosomal dominant disorder that is due, in large measure, to aberrant Shh signaling driven by mutations in the tumor suppressor gene Ptch1. Here, we describe the development of Ptch1+/-/ SKH-1 mice as a novel model of this disease. These animals manifest many features of NBCCS, including developmental anomalies and are remarkably sensitive to both ultraviolet (UVB) and ionizing radiation that drive the development of multiple BCCs. Just as in patients with NBCCS, Ptch1+/-/SKH-1 also spontaneously develops BCCs and other neoplasms such as rhabdomyomas/rhabdomyosarcomas. Administration of smoothened inhibitors (vismodegib/itraconazole/cyclopamine) or non-steroidal anti-inflammatory drug (sulindac/sulfasalazine) each result in partial resolution of BCCs in these animals. However, combined administration of these agents inhibits the growth of UVB-induced BCCs by >90%. Employing small molecule- and decoy-peptide-based approaches we further affirm that complete remission of BCCs could only be achieved by combined inhibition of p50-NFκB/Bcl3 and Shh signaling. We posit that Ptch1+/-/SKH-1 mice are a novel and relevant animal model for NBCCS. Understanding mechanisms that govern genetic predisposition to BCCs should facilitate our ability to identify and treat NBCCS gene carriers, including those at risk for sporadic BCCs while accelerating development of novel therapeutic modalities for these patients.
Collapse
Affiliation(s)
- Sandeep C. Chaudhary
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| | - Xiuwei Tang
- Department of Dermatology, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - Aadithya Arumugam
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| | - Changzhao Li
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| | - Ritesh K. Srivastava
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| | - Zhiping Weng
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| | - Jianmin Xu
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| | - Xiao Zhang
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
- Present address: Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA 90048, USA
| | - Arianna L. Kim
- Department of Dermatology, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - Kristopher McKay
- Division of Dermatopathology, Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294-4550, USA
| | - Craig A. Elmets
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| | - Levy Kopelovich
- Department of Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - David R. Bickers
- Department of Dermatology, College of Physicians & Surgeons, Columbia University, New York, NY 10032, USA
| | - Mohammad Athar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| |
Collapse
|
166
|
Justilien V, Fields AP. Molecular pathways: novel approaches for improved therapeutic targeting of Hedgehog signaling in cancer stem cells. Clin Cancer Res 2015; 21:505-13. [PMID: 25646180 DOI: 10.1158/1078-0432.ccr-14-0507] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The Hedgehog (Hh) signaling pathway is critical for embryonic development. In adult tissues, Hh signaling is relatively quiescent with the exception of roles in tissue maintenance and repair. Aberrant activation of Hh signaling is implicated in multiple aspects of transformation, including the maintenance of the cancer stem cell (CSC) phenotype. Preclinical studies indicate that CSCs from many tumor types are sensitive to Hh pathway inhibition and that Hh-targeted therapeutics block many aspects of transformation attributed to CSCs, including drug resistance, relapse, and metastasis. However, to date, Hh inhibitors, specifically those targeting Smoothened [such as vismodegib, BMS-833923, saridegib (IPI-926), sonidegib/erismodegib (LDE225), PF-04449913, LY2940680, LEQ 506, and TAK-441], have demonstrated good efficacy as monotherapy in patients with basal cell carcinoma and medulloblastoma, but have shown limited activity in other tumor types. This lack of success is likely due to many factors, including a lack of patient stratification in early trials, cross-talk between Hh and other oncogenic signaling pathways that can modulate therapeutic response, and a limited knowledge of Hh pathway activation mechanisms in CSCs from most tumor types. Here, we discuss Hh signaling mechanisms in the context of human cancer, particularly in the maintenance of the CSC phenotype, and consider new therapeutic strategies that hold the potential to expand considerably the scope and therapeutic efficacy of Hh-directed anticancer therapy.
Collapse
Affiliation(s)
- Verline Justilien
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida
| | - Alan P Fields
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida.
| |
Collapse
|
167
|
Discovery of a 6-(pyridin-3-yl)benzo[d]thiazole template for optimization of hedgehog and PI3K/AKT/mTOR dual inhibitors. Bioorg Med Chem Lett 2015; 25:3665-70. [DOI: 10.1016/j.bmcl.2015.06.049] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 05/28/2015] [Accepted: 06/12/2015] [Indexed: 11/18/2022]
|
168
|
The Role of Hedgehog Signaling in Tumor Induced Bone Disease. Cancers (Basel) 2015; 7:1658-83. [PMID: 26343726 PMCID: PMC4586789 DOI: 10.3390/cancers7030856] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 08/13/2015] [Accepted: 08/18/2015] [Indexed: 12/21/2022] Open
Abstract
Despite significant progress in cancer treatments, tumor induced bone disease continues to cause significant morbidities. While tumors show distinct mutations and clinical characteristics, they behave similarly once they establish in bone. Tumors can metastasize to bone from distant sites (breast, prostate, lung), directly invade into bone (head and neck) or originate from the bone (melanoma, chondrosarcoma) where they cause pain, fractures, hypercalcemia, and ultimately, poor prognoses and outcomes. Tumors in bone secrete factors (interleukins and parathyroid hormone-related protein) that induce RANKL expression from osteoblasts, causing an increase in osteoclast mediated bone resorption. While the mechanisms involved varies slightly between tumor types, many tumors display an increase in Hedgehog signaling components that lead to increased tumor growth, therapy failure, and metastasis. The work of multiple laboratories has detailed Hh signaling in several tumor types and revealed that tumor establishment in bone can be controlled by both canonical and non-canonical Hh signaling in a cell type specific manner. This review will explore the role of Hh signaling in the modulation of tumor induced bone disease, and will shed insight into possible therapeutic interventions for blocking Hh signaling in these tumors.
Collapse
|
169
|
Robinson GW, Orr BA, Wu G, Gururangan S, Lin T, Qaddoumi I, Packer RJ, Goldman S, Prados MD, Desjardins A, Chintagumpala M, Takebe N, Kaste SC, Rusch M, Allen SJ, Onar-Thomas A, Stewart CF, Fouladi M, Boyett JM, Gilbertson RJ, Curran T, Ellison DW, Gajjar A. Vismodegib Exerts Targeted Efficacy Against Recurrent Sonic Hedgehog-Subgroup Medulloblastoma: Results From Phase II Pediatric Brain Tumor Consortium Studies PBTC-025B and PBTC-032. J Clin Oncol 2015; 33:2646-54. [PMID: 26169613 PMCID: PMC4534527 DOI: 10.1200/jco.2014.60.1591] [Citation(s) in RCA: 320] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Two phase II studies assessed the efficacy of vismodegib, a sonic hedgehog (SHH) pathway inhibitor that binds smoothened (SMO), in pediatric and adult recurrent medulloblastoma (MB). PATIENTS AND METHODS Adult patients enrolled onto PBTC-025B and pediatric patients enrolled onto PBTC-032 were treated with vismodegib (150 to 300 mg/d). Protocol-defined response, which had to be sustained for 8 weeks, was confirmed by central neuroimaging review. Molecular tests to identify patterns of response and insensitivity were performed when tissue was available. RESULTS A total of 31 patients were enrolled onto PBTC-025B, and 12 were enrolled onto PBTC-032. Three patients in PBTC-025B and one in PBTC-032, all with SHH-subgroup MB (SHH-MB), exhibited protocol-defined responses. Progression-free survival (PFS) was longer in those with SHH-MB than in those with non-SHH-MB, and prolonged disease stabilization occurred in 41% of patient cases of SHH-MB. Among those with SHH-MB, loss of heterozygosity of PTCH1 was associated with prolonged PFS, and diffuse staining of P53 was associated with reduced PFS. Whole-exome sequencing identified mutations in SHH genes downstream from SMO in four of four tissue samples from nonresponders and upstream of SMO in two of four patients with favorable responses. CONCLUSION Vismodegib exhibits activity against adult recurrent SHH-MB but not against recurrent non-SHH-MB. Inadequate accrual of pediatric patients precluded conclusions in this population. Molecular analyses support the hypothesis that SMO inhibitor activity depends on the genomic aberrations within the tumor. Such inhibitors should be advanced in SHH-MB studies; however, molecular and genomic work remains imperative to identify target populations that will truly benefit.
Collapse
Affiliation(s)
- Giles W Robinson
- Giles W. Robinson, Brent A. Orr, Gang Wu, Tong Lin, Ibrahim Qaddoumi, Sue C. Kaste, Michael Rusch, Sariah J. Allen, Arzu Onar-Thomas, Clinton F. Stewart, James M. Boyett, Richard J. Gilbertson, David W. Ellison, and Amar Gajjar, St Jude Children's Research Hospital, Memphis, TN; Sridharan Gururangan and Annick Desjardins, Duke University Medical Center, Durham, NC; Roger J. Packer, Children's National Medical Center, Washington, DC; Stewart Goldman, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL; Michael D. Prados, University of California San Francisco, San Francisco, CA; Murali Chintagumpala, Texas Children's Cancer Center, Houston, TX; Naoko Takebe, National Cancer Institute, Bethesda, MD; Maryam Fouladi, Cincinnati Children's Hospital, Cincinnati, OH; and Tom Curran, Children's Hospital of Philadelphia, Philadelphia, PA.
| | - Brent A Orr
- Giles W. Robinson, Brent A. Orr, Gang Wu, Tong Lin, Ibrahim Qaddoumi, Sue C. Kaste, Michael Rusch, Sariah J. Allen, Arzu Onar-Thomas, Clinton F. Stewart, James M. Boyett, Richard J. Gilbertson, David W. Ellison, and Amar Gajjar, St Jude Children's Research Hospital, Memphis, TN; Sridharan Gururangan and Annick Desjardins, Duke University Medical Center, Durham, NC; Roger J. Packer, Children's National Medical Center, Washington, DC; Stewart Goldman, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL; Michael D. Prados, University of California San Francisco, San Francisco, CA; Murali Chintagumpala, Texas Children's Cancer Center, Houston, TX; Naoko Takebe, National Cancer Institute, Bethesda, MD; Maryam Fouladi, Cincinnati Children's Hospital, Cincinnati, OH; and Tom Curran, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Gang Wu
- Giles W. Robinson, Brent A. Orr, Gang Wu, Tong Lin, Ibrahim Qaddoumi, Sue C. Kaste, Michael Rusch, Sariah J. Allen, Arzu Onar-Thomas, Clinton F. Stewart, James M. Boyett, Richard J. Gilbertson, David W. Ellison, and Amar Gajjar, St Jude Children's Research Hospital, Memphis, TN; Sridharan Gururangan and Annick Desjardins, Duke University Medical Center, Durham, NC; Roger J. Packer, Children's National Medical Center, Washington, DC; Stewart Goldman, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL; Michael D. Prados, University of California San Francisco, San Francisco, CA; Murali Chintagumpala, Texas Children's Cancer Center, Houston, TX; Naoko Takebe, National Cancer Institute, Bethesda, MD; Maryam Fouladi, Cincinnati Children's Hospital, Cincinnati, OH; and Tom Curran, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Sridharan Gururangan
- Giles W. Robinson, Brent A. Orr, Gang Wu, Tong Lin, Ibrahim Qaddoumi, Sue C. Kaste, Michael Rusch, Sariah J. Allen, Arzu Onar-Thomas, Clinton F. Stewart, James M. Boyett, Richard J. Gilbertson, David W. Ellison, and Amar Gajjar, St Jude Children's Research Hospital, Memphis, TN; Sridharan Gururangan and Annick Desjardins, Duke University Medical Center, Durham, NC; Roger J. Packer, Children's National Medical Center, Washington, DC; Stewart Goldman, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL; Michael D. Prados, University of California San Francisco, San Francisco, CA; Murali Chintagumpala, Texas Children's Cancer Center, Houston, TX; Naoko Takebe, National Cancer Institute, Bethesda, MD; Maryam Fouladi, Cincinnati Children's Hospital, Cincinnati, OH; and Tom Curran, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Tong Lin
- Giles W. Robinson, Brent A. Orr, Gang Wu, Tong Lin, Ibrahim Qaddoumi, Sue C. Kaste, Michael Rusch, Sariah J. Allen, Arzu Onar-Thomas, Clinton F. Stewart, James M. Boyett, Richard J. Gilbertson, David W. Ellison, and Amar Gajjar, St Jude Children's Research Hospital, Memphis, TN; Sridharan Gururangan and Annick Desjardins, Duke University Medical Center, Durham, NC; Roger J. Packer, Children's National Medical Center, Washington, DC; Stewart Goldman, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL; Michael D. Prados, University of California San Francisco, San Francisco, CA; Murali Chintagumpala, Texas Children's Cancer Center, Houston, TX; Naoko Takebe, National Cancer Institute, Bethesda, MD; Maryam Fouladi, Cincinnati Children's Hospital, Cincinnati, OH; and Tom Curran, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Ibrahim Qaddoumi
- Giles W. Robinson, Brent A. Orr, Gang Wu, Tong Lin, Ibrahim Qaddoumi, Sue C. Kaste, Michael Rusch, Sariah J. Allen, Arzu Onar-Thomas, Clinton F. Stewart, James M. Boyett, Richard J. Gilbertson, David W. Ellison, and Amar Gajjar, St Jude Children's Research Hospital, Memphis, TN; Sridharan Gururangan and Annick Desjardins, Duke University Medical Center, Durham, NC; Roger J. Packer, Children's National Medical Center, Washington, DC; Stewart Goldman, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL; Michael D. Prados, University of California San Francisco, San Francisco, CA; Murali Chintagumpala, Texas Children's Cancer Center, Houston, TX; Naoko Takebe, National Cancer Institute, Bethesda, MD; Maryam Fouladi, Cincinnati Children's Hospital, Cincinnati, OH; and Tom Curran, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Roger J Packer
- Giles W. Robinson, Brent A. Orr, Gang Wu, Tong Lin, Ibrahim Qaddoumi, Sue C. Kaste, Michael Rusch, Sariah J. Allen, Arzu Onar-Thomas, Clinton F. Stewart, James M. Boyett, Richard J. Gilbertson, David W. Ellison, and Amar Gajjar, St Jude Children's Research Hospital, Memphis, TN; Sridharan Gururangan and Annick Desjardins, Duke University Medical Center, Durham, NC; Roger J. Packer, Children's National Medical Center, Washington, DC; Stewart Goldman, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL; Michael D. Prados, University of California San Francisco, San Francisco, CA; Murali Chintagumpala, Texas Children's Cancer Center, Houston, TX; Naoko Takebe, National Cancer Institute, Bethesda, MD; Maryam Fouladi, Cincinnati Children's Hospital, Cincinnati, OH; and Tom Curran, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Stewart Goldman
- Giles W. Robinson, Brent A. Orr, Gang Wu, Tong Lin, Ibrahim Qaddoumi, Sue C. Kaste, Michael Rusch, Sariah J. Allen, Arzu Onar-Thomas, Clinton F. Stewart, James M. Boyett, Richard J. Gilbertson, David W. Ellison, and Amar Gajjar, St Jude Children's Research Hospital, Memphis, TN; Sridharan Gururangan and Annick Desjardins, Duke University Medical Center, Durham, NC; Roger J. Packer, Children's National Medical Center, Washington, DC; Stewart Goldman, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL; Michael D. Prados, University of California San Francisco, San Francisco, CA; Murali Chintagumpala, Texas Children's Cancer Center, Houston, TX; Naoko Takebe, National Cancer Institute, Bethesda, MD; Maryam Fouladi, Cincinnati Children's Hospital, Cincinnati, OH; and Tom Curran, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Michael D Prados
- Giles W. Robinson, Brent A. Orr, Gang Wu, Tong Lin, Ibrahim Qaddoumi, Sue C. Kaste, Michael Rusch, Sariah J. Allen, Arzu Onar-Thomas, Clinton F. Stewart, James M. Boyett, Richard J. Gilbertson, David W. Ellison, and Amar Gajjar, St Jude Children's Research Hospital, Memphis, TN; Sridharan Gururangan and Annick Desjardins, Duke University Medical Center, Durham, NC; Roger J. Packer, Children's National Medical Center, Washington, DC; Stewart Goldman, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL; Michael D. Prados, University of California San Francisco, San Francisco, CA; Murali Chintagumpala, Texas Children's Cancer Center, Houston, TX; Naoko Takebe, National Cancer Institute, Bethesda, MD; Maryam Fouladi, Cincinnati Children's Hospital, Cincinnati, OH; and Tom Curran, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Annick Desjardins
- Giles W. Robinson, Brent A. Orr, Gang Wu, Tong Lin, Ibrahim Qaddoumi, Sue C. Kaste, Michael Rusch, Sariah J. Allen, Arzu Onar-Thomas, Clinton F. Stewart, James M. Boyett, Richard J. Gilbertson, David W. Ellison, and Amar Gajjar, St Jude Children's Research Hospital, Memphis, TN; Sridharan Gururangan and Annick Desjardins, Duke University Medical Center, Durham, NC; Roger J. Packer, Children's National Medical Center, Washington, DC; Stewart Goldman, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL; Michael D. Prados, University of California San Francisco, San Francisco, CA; Murali Chintagumpala, Texas Children's Cancer Center, Houston, TX; Naoko Takebe, National Cancer Institute, Bethesda, MD; Maryam Fouladi, Cincinnati Children's Hospital, Cincinnati, OH; and Tom Curran, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Murali Chintagumpala
- Giles W. Robinson, Brent A. Orr, Gang Wu, Tong Lin, Ibrahim Qaddoumi, Sue C. Kaste, Michael Rusch, Sariah J. Allen, Arzu Onar-Thomas, Clinton F. Stewart, James M. Boyett, Richard J. Gilbertson, David W. Ellison, and Amar Gajjar, St Jude Children's Research Hospital, Memphis, TN; Sridharan Gururangan and Annick Desjardins, Duke University Medical Center, Durham, NC; Roger J. Packer, Children's National Medical Center, Washington, DC; Stewart Goldman, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL; Michael D. Prados, University of California San Francisco, San Francisco, CA; Murali Chintagumpala, Texas Children's Cancer Center, Houston, TX; Naoko Takebe, National Cancer Institute, Bethesda, MD; Maryam Fouladi, Cincinnati Children's Hospital, Cincinnati, OH; and Tom Curran, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Naoko Takebe
- Giles W. Robinson, Brent A. Orr, Gang Wu, Tong Lin, Ibrahim Qaddoumi, Sue C. Kaste, Michael Rusch, Sariah J. Allen, Arzu Onar-Thomas, Clinton F. Stewart, James M. Boyett, Richard J. Gilbertson, David W. Ellison, and Amar Gajjar, St Jude Children's Research Hospital, Memphis, TN; Sridharan Gururangan and Annick Desjardins, Duke University Medical Center, Durham, NC; Roger J. Packer, Children's National Medical Center, Washington, DC; Stewart Goldman, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL; Michael D. Prados, University of California San Francisco, San Francisco, CA; Murali Chintagumpala, Texas Children's Cancer Center, Houston, TX; Naoko Takebe, National Cancer Institute, Bethesda, MD; Maryam Fouladi, Cincinnati Children's Hospital, Cincinnati, OH; and Tom Curran, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Sue C Kaste
- Giles W. Robinson, Brent A. Orr, Gang Wu, Tong Lin, Ibrahim Qaddoumi, Sue C. Kaste, Michael Rusch, Sariah J. Allen, Arzu Onar-Thomas, Clinton F. Stewart, James M. Boyett, Richard J. Gilbertson, David W. Ellison, and Amar Gajjar, St Jude Children's Research Hospital, Memphis, TN; Sridharan Gururangan and Annick Desjardins, Duke University Medical Center, Durham, NC; Roger J. Packer, Children's National Medical Center, Washington, DC; Stewart Goldman, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL; Michael D. Prados, University of California San Francisco, San Francisco, CA; Murali Chintagumpala, Texas Children's Cancer Center, Houston, TX; Naoko Takebe, National Cancer Institute, Bethesda, MD; Maryam Fouladi, Cincinnati Children's Hospital, Cincinnati, OH; and Tom Curran, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Michael Rusch
- Giles W. Robinson, Brent A. Orr, Gang Wu, Tong Lin, Ibrahim Qaddoumi, Sue C. Kaste, Michael Rusch, Sariah J. Allen, Arzu Onar-Thomas, Clinton F. Stewart, James M. Boyett, Richard J. Gilbertson, David W. Ellison, and Amar Gajjar, St Jude Children's Research Hospital, Memphis, TN; Sridharan Gururangan and Annick Desjardins, Duke University Medical Center, Durham, NC; Roger J. Packer, Children's National Medical Center, Washington, DC; Stewart Goldman, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL; Michael D. Prados, University of California San Francisco, San Francisco, CA; Murali Chintagumpala, Texas Children's Cancer Center, Houston, TX; Naoko Takebe, National Cancer Institute, Bethesda, MD; Maryam Fouladi, Cincinnati Children's Hospital, Cincinnati, OH; and Tom Curran, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Sariah J Allen
- Giles W. Robinson, Brent A. Orr, Gang Wu, Tong Lin, Ibrahim Qaddoumi, Sue C. Kaste, Michael Rusch, Sariah J. Allen, Arzu Onar-Thomas, Clinton F. Stewart, James M. Boyett, Richard J. Gilbertson, David W. Ellison, and Amar Gajjar, St Jude Children's Research Hospital, Memphis, TN; Sridharan Gururangan and Annick Desjardins, Duke University Medical Center, Durham, NC; Roger J. Packer, Children's National Medical Center, Washington, DC; Stewart Goldman, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL; Michael D. Prados, University of California San Francisco, San Francisco, CA; Murali Chintagumpala, Texas Children's Cancer Center, Houston, TX; Naoko Takebe, National Cancer Institute, Bethesda, MD; Maryam Fouladi, Cincinnati Children's Hospital, Cincinnati, OH; and Tom Curran, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Arzu Onar-Thomas
- Giles W. Robinson, Brent A. Orr, Gang Wu, Tong Lin, Ibrahim Qaddoumi, Sue C. Kaste, Michael Rusch, Sariah J. Allen, Arzu Onar-Thomas, Clinton F. Stewart, James M. Boyett, Richard J. Gilbertson, David W. Ellison, and Amar Gajjar, St Jude Children's Research Hospital, Memphis, TN; Sridharan Gururangan and Annick Desjardins, Duke University Medical Center, Durham, NC; Roger J. Packer, Children's National Medical Center, Washington, DC; Stewart Goldman, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL; Michael D. Prados, University of California San Francisco, San Francisco, CA; Murali Chintagumpala, Texas Children's Cancer Center, Houston, TX; Naoko Takebe, National Cancer Institute, Bethesda, MD; Maryam Fouladi, Cincinnati Children's Hospital, Cincinnati, OH; and Tom Curran, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Clinton F Stewart
- Giles W. Robinson, Brent A. Orr, Gang Wu, Tong Lin, Ibrahim Qaddoumi, Sue C. Kaste, Michael Rusch, Sariah J. Allen, Arzu Onar-Thomas, Clinton F. Stewart, James M. Boyett, Richard J. Gilbertson, David W. Ellison, and Amar Gajjar, St Jude Children's Research Hospital, Memphis, TN; Sridharan Gururangan and Annick Desjardins, Duke University Medical Center, Durham, NC; Roger J. Packer, Children's National Medical Center, Washington, DC; Stewart Goldman, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL; Michael D. Prados, University of California San Francisco, San Francisco, CA; Murali Chintagumpala, Texas Children's Cancer Center, Houston, TX; Naoko Takebe, National Cancer Institute, Bethesda, MD; Maryam Fouladi, Cincinnati Children's Hospital, Cincinnati, OH; and Tom Curran, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Maryam Fouladi
- Giles W. Robinson, Brent A. Orr, Gang Wu, Tong Lin, Ibrahim Qaddoumi, Sue C. Kaste, Michael Rusch, Sariah J. Allen, Arzu Onar-Thomas, Clinton F. Stewart, James M. Boyett, Richard J. Gilbertson, David W. Ellison, and Amar Gajjar, St Jude Children's Research Hospital, Memphis, TN; Sridharan Gururangan and Annick Desjardins, Duke University Medical Center, Durham, NC; Roger J. Packer, Children's National Medical Center, Washington, DC; Stewart Goldman, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL; Michael D. Prados, University of California San Francisco, San Francisco, CA; Murali Chintagumpala, Texas Children's Cancer Center, Houston, TX; Naoko Takebe, National Cancer Institute, Bethesda, MD; Maryam Fouladi, Cincinnati Children's Hospital, Cincinnati, OH; and Tom Curran, Children's Hospital of Philadelphia, Philadelphia, PA
| | - James M Boyett
- Giles W. Robinson, Brent A. Orr, Gang Wu, Tong Lin, Ibrahim Qaddoumi, Sue C. Kaste, Michael Rusch, Sariah J. Allen, Arzu Onar-Thomas, Clinton F. Stewart, James M. Boyett, Richard J. Gilbertson, David W. Ellison, and Amar Gajjar, St Jude Children's Research Hospital, Memphis, TN; Sridharan Gururangan and Annick Desjardins, Duke University Medical Center, Durham, NC; Roger J. Packer, Children's National Medical Center, Washington, DC; Stewart Goldman, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL; Michael D. Prados, University of California San Francisco, San Francisco, CA; Murali Chintagumpala, Texas Children's Cancer Center, Houston, TX; Naoko Takebe, National Cancer Institute, Bethesda, MD; Maryam Fouladi, Cincinnati Children's Hospital, Cincinnati, OH; and Tom Curran, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Richard J Gilbertson
- Giles W. Robinson, Brent A. Orr, Gang Wu, Tong Lin, Ibrahim Qaddoumi, Sue C. Kaste, Michael Rusch, Sariah J. Allen, Arzu Onar-Thomas, Clinton F. Stewart, James M. Boyett, Richard J. Gilbertson, David W. Ellison, and Amar Gajjar, St Jude Children's Research Hospital, Memphis, TN; Sridharan Gururangan and Annick Desjardins, Duke University Medical Center, Durham, NC; Roger J. Packer, Children's National Medical Center, Washington, DC; Stewart Goldman, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL; Michael D. Prados, University of California San Francisco, San Francisco, CA; Murali Chintagumpala, Texas Children's Cancer Center, Houston, TX; Naoko Takebe, National Cancer Institute, Bethesda, MD; Maryam Fouladi, Cincinnati Children's Hospital, Cincinnati, OH; and Tom Curran, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Tom Curran
- Giles W. Robinson, Brent A. Orr, Gang Wu, Tong Lin, Ibrahim Qaddoumi, Sue C. Kaste, Michael Rusch, Sariah J. Allen, Arzu Onar-Thomas, Clinton F. Stewart, James M. Boyett, Richard J. Gilbertson, David W. Ellison, and Amar Gajjar, St Jude Children's Research Hospital, Memphis, TN; Sridharan Gururangan and Annick Desjardins, Duke University Medical Center, Durham, NC; Roger J. Packer, Children's National Medical Center, Washington, DC; Stewart Goldman, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL; Michael D. Prados, University of California San Francisco, San Francisco, CA; Murali Chintagumpala, Texas Children's Cancer Center, Houston, TX; Naoko Takebe, National Cancer Institute, Bethesda, MD; Maryam Fouladi, Cincinnati Children's Hospital, Cincinnati, OH; and Tom Curran, Children's Hospital of Philadelphia, Philadelphia, PA
| | - David W Ellison
- Giles W. Robinson, Brent A. Orr, Gang Wu, Tong Lin, Ibrahim Qaddoumi, Sue C. Kaste, Michael Rusch, Sariah J. Allen, Arzu Onar-Thomas, Clinton F. Stewart, James M. Boyett, Richard J. Gilbertson, David W. Ellison, and Amar Gajjar, St Jude Children's Research Hospital, Memphis, TN; Sridharan Gururangan and Annick Desjardins, Duke University Medical Center, Durham, NC; Roger J. Packer, Children's National Medical Center, Washington, DC; Stewart Goldman, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL; Michael D. Prados, University of California San Francisco, San Francisco, CA; Murali Chintagumpala, Texas Children's Cancer Center, Houston, TX; Naoko Takebe, National Cancer Institute, Bethesda, MD; Maryam Fouladi, Cincinnati Children's Hospital, Cincinnati, OH; and Tom Curran, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Amar Gajjar
- Giles W. Robinson, Brent A. Orr, Gang Wu, Tong Lin, Ibrahim Qaddoumi, Sue C. Kaste, Michael Rusch, Sariah J. Allen, Arzu Onar-Thomas, Clinton F. Stewart, James M. Boyett, Richard J. Gilbertson, David W. Ellison, and Amar Gajjar, St Jude Children's Research Hospital, Memphis, TN; Sridharan Gururangan and Annick Desjardins, Duke University Medical Center, Durham, NC; Roger J. Packer, Children's National Medical Center, Washington, DC; Stewart Goldman, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL; Michael D. Prados, University of California San Francisco, San Francisco, CA; Murali Chintagumpala, Texas Children's Cancer Center, Houston, TX; Naoko Takebe, National Cancer Institute, Bethesda, MD; Maryam Fouladi, Cincinnati Children's Hospital, Cincinnati, OH; and Tom Curran, Children's Hospital of Philadelphia, Philadelphia, PA
| |
Collapse
|
170
|
Sonic hedgehog-glioma associated oncogene homolog 1 signaling enhances drug resistance in CD44(+)/Musashi-1(+) gastric cancer stem cells. Cancer Lett 2015; 369:124-33. [PMID: 26276718 DOI: 10.1016/j.canlet.2015.08.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 08/04/2015] [Accepted: 08/06/2015] [Indexed: 12/31/2022]
Abstract
Drug resistance in gastric cancer largely results from the gastric cancer stem cells (GCSCs), which could be targeted to improve the efficacy of chemotherapy. In this study, we identified a subpopulation of GCSCs enriched in holoclones that expressed CD44(+)/Musashi-1(+) stem cell biomarkers, capable of self-renewal and proliferation. Enriched CD44(+)/Musashi-1(+) GCSCs demonstrated elevated expression of sonic hedgehog (SHH) and glioma-associated oncogene homolog 1 (GLI1), the well-known signaling pathway molecules involved in the drug resistance. Further, CD44(+)/Musashi-1(+) cells exhibited high drug efflux bump activity and were resistant to doxorubicin (Dox)-induced apoptosis, and unregulated the ATP-binding cassette sub-family G member 2 (ABCG2) expression,. The above effects on apoptosis were reversed in the presence of GLI inhibitors, GANT61 and GDC-0449, or by the knockdown of GLI1/SHH. Upon knockdown of GLI1, expression of ABCG2 was downregulated the antitumor effects were significantly improved as observed in the gastric cancer xenograft. Collectively, our study revealed that co-expression of CD44(+)/Musashi-1(+) could be used to identify GCSCs, which also accounts for the drug resistance in gastric cancer. SHH-GLI and its downstream effector ABCG2 could be better targeted to possibly improve the efficacy of chemotherapy in drug-resistant gastric cancers.
Collapse
|
171
|
Ransohoff KJ, Sarin KY, Tang JY. Smoothened Inhibitors in Sonic Hedgehog Subgroup Medulloblastoma. J Clin Oncol 2015. [PMID: 26195713 DOI: 10.1200/jco.2015.62.2225] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
172
|
Zhao X, Ponomaryov T, Ornell KJ, Zhou P, Dabral SK, Pak E, Li W, Atwood SX, Whitson RJ, Chang ALS, Li J, Oro AE, Chan JA, Kelleher JF, Segal RA. RAS/MAPK Activation Drives Resistance to Smo Inhibition, Metastasis, and Tumor Evolution in Shh Pathway-Dependent Tumors. Cancer Res 2015; 75:3623-35. [PMID: 26130651 DOI: 10.1158/0008-5472.can-14-2999-t] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 06/18/2015] [Indexed: 11/16/2022]
Abstract
Aberrant Shh signaling promotes tumor growth in diverse cancers. The importance of Shh signaling is particularly evident in medulloblastoma and basal cell carcinoma (BCC), where inhibitors targeting the Shh pathway component Smoothened (Smo) show great therapeutic promise. However, the emergence of drug resistance limits long-term efficacy, and the mechanisms of resistance remain poorly understood. Using new medulloblastoma models, we identify two distinct paradigms of resistance to Smo inhibition. Sufu mutations lead to maintenance of the Shh pathway in the presence of Smo inhibitors. Alternatively activation of the RAS-MAPK pathway circumvents Shh pathway dependency, drives tumor growth, and enhances metastatic behavior. Strikingly, in BCC patients treated with Smo inhibitor, squamous cell cancers with RAS/MAPK activation emerged from the antecedent BCC tumors. Together, these findings reveal a critical role of the RAS-MAPK pathway in drug resistance and tumor evolution of Shh pathway-dependent tumors.
Collapse
Affiliation(s)
- Xuesong Zhao
- Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. Neurobiology, Harvard Medical School, Boston, Massachusetts
| | - Tatyana Ponomaryov
- Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. Neurobiology, Harvard Medical School, Boston, Massachusetts. University of Birmingham, Centre for Cardiovascular Sciences, College of Medical and Dental Sciences, Edgbaston, Birmingham, United Kingdom
| | - Kimberly J Ornell
- Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. Neurobiology, Harvard Medical School, Boston, Massachusetts
| | - Pengcheng Zhou
- Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. Neurobiology, Harvard Medical School, Boston, Massachusetts
| | - Sukriti K Dabral
- Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. Neurobiology, Harvard Medical School, Boston, Massachusetts
| | - Ekaterina Pak
- Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. Neurobiology, Harvard Medical School, Boston, Massachusetts
| | - Wei Li
- Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard School of Public Health, Boston, Massachusetts
| | - Scott X Atwood
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California
| | - Ramon J Whitson
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California
| | - Anne Lynn S Chang
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California
| | - Jiang Li
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California
| | - Anthony E Oro
- Program in Epithelial Biology, Stanford University School of Medicine, Stanford, California
| | - Jennifer A Chan
- Pathology and Laboratory Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Joseph F Kelleher
- Novartis Institutes for Biomedical Research, Cambridge, Massachusetts
| | - Rosalind A Segal
- Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts. Neurobiology, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
173
|
Abstract
OPINION STATEMENT Approximately 70 % of newly diagnosed children with medulloblastoma (MB) will be classified as "standard risk": their tumor is localized to the posterior fossa, they undergo a near or gross total resection, the tumor does not meet the criteria for large cell/anaplastic histology, and there is no evidence of neuroaxis dissemination by brain/spine MRI and lumbar puncture for cytopathology. Following surgical recovery, they are treated with craniospinal radiation therapy with a boost to the posterior fossa or tumor bed. Adjuvant therapy for approximately 1 year follows anchored by the use of alkylators, platinators, and microtubule inhibitors. This approach to standard risk MB works; greater than 80 % of patients will be cured, and such approaches are arguably the standard of care worldwide for such children. Despite this success, some children with standard risk features will relapse and die of recurrent disease despite aggressive salvage therapy. Moreover, current treatment, even when curative causes life-long morbidity in those who survive, and the consequences are age dependent. For the 20-year-old patient, damage to the cerebellum from surgery conveys greater risk than craniospinal radiation; however, for the 3-year-old patient, the opposite is true. The challenge for the neuro-oncologist today is how to identify accurately patients who need less therapy as well as those for whom current therapy is inadequate. As molecular diagnostics comes of age in brain tumors, the question becomes how to best implement novel methods of risk stratification. Are we able to obtain specific information about the tumor's biology in an increasingly rapid and reliable way, and utilize these findings in the upfront management of these tumors? Precision medicine should allow us to tailor therapy to the specific drivers of each patient's tumor. Regardless of how new approaches are implemented, it is likely that we will no longer be able to have a single standard approach to standard risk medulloblastoma in the near future.
Collapse
|
174
|
Digging a hole under Hedgehog: downstream inhibition as an emerging anticancer strategy. Biochim Biophys Acta Rev Cancer 2015; 1856:62-72. [PMID: 26080084 DOI: 10.1016/j.bbcan.2015.06.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/04/2015] [Accepted: 06/11/2015] [Indexed: 12/25/2022]
Abstract
Hedgehog signaling is a key regulator of development and stem cell fate and its aberrant activation is a leading cause of a number of tumors. Activating germline or somatic mutations of genes encoding Hh pathway components are found in Basal Cell Carcinoma (BCC) and Medulloblastoma (MB). Ligand-dependent Hedgehog hyperactivation, due to autocrine or paracrine mechanisms, is also observed in a large number of malignancies of the breast, colon, skin, bladder, pancreas and other tissues. The key tumorigenic role of Hedgehog has prompted effort aimed at identifying inhibitors of this signaling. To date, only the antagonists of the membrane transducer Smo have been approved for therapy or are under clinical trials in patients with BCC and MB linked to Ptch or Smo mutations. Despite the good initial response, patients treated with Smo antagonists have eventually developed resistance due to the occurrence of compensating mechanisms. Furthermore, Smo antagonists are not effective in tumors where the Hedgehog hyperactivation is due to mutations of pathway components downstream of Smo, or in case of non-canonical, Smo-independent activation of the Gli transcription factors. For all these reasons, the research of Hh inhibitors acting downstream of Smo is becoming an area of intensive investigation. In this review we illustrate the progresses made in the identification of effective Hedgehog inhibitors and their application in cancer, with a special emphasis on the newly identified downstream inhibitors. We describe in detail the Gli inhibitors and illustrate their mode of action and applications in experimental and/or clinical settings.
Collapse
|
175
|
Ridzewski R, Rettberg D, Dittmann K, Cuvelier N, Fulda S, Hahn H. Hedgehog Inhibitors in Rhabdomyosarcoma: A Comparison of Four Compounds and Responsiveness of Four Cell Lines. Front Oncol 2015; 5:130. [PMID: 26106586 PMCID: PMC4459089 DOI: 10.3389/fonc.2015.00130] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/22/2015] [Indexed: 11/22/2022] Open
Abstract
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in children and is divided into two major histological subgroups, i.e., embryonal (ERMS) and alveolar RMS (ARMS). RMS can show HEDGEHOG/SMOOTHENED (HH/SMO) signaling activity and several clinical trials using HH inhibitors for therapy of RMS have been launched. We here compared the antitumoral effects of the SMO inhibitors GDC-0449, LDE225, HhA, and cyclopamine in two ERMS (RD, RUCH-2) and two ARMS (RMS-13, Rh41) cell lines. Our data show that the antitumoral effects of these SMO inhibitors are highly divers and do not necessarily correlate with inhibition of HH signaling. In addition, the responsiveness of the RMS cell lines to the drugs is highly heterogeneous. Whereas some SMO inhibitors (i.e., LDE225 and HhA) induce strong proapoptotic and antiproliferative effects in some RMS cell lines, others paradoxically induce cellular proliferation at certain concentrations (e.g., 10 μM GDC-0449 or 5 μM cyclopamine in RUCH-2 and Rh41 cells) or can increase HH signaling activity as judged by GLI1 expression (i.e., LDE225, HhA, and cyclopamine). Similarly, some drugs (e.g., HhA) inhibit PI3K/AKT signaling or induce autophagy (e.g., LDE225) in some cell lines, whereas others cannot (e.g., GDC-0449). In addition, the effects of SMO inhibitors are concentration-dependent (e.g., 1 and 10 μM GDC-0449 decrease GLI1 expression in RD cells whereas 30 μM GDC-0449 does not). Together these data show that some SMO inhibitors can induce strong antitumoral effects in some, but not all, RMS cell lines. Due to the highly heterogeneous response, we propose to conduct thorough pretesting of SMO inhibitors in patient-derived short-term RMS cultures or patient-derived xenograft mouse models before applying these drugs to RMS patients.
Collapse
Affiliation(s)
- Rosalie Ridzewski
- Institute of Human Genetics, University Medical Center Goettingen , Goettingen , Germany
| | - Diana Rettberg
- Institute of Human Genetics, University Medical Center Goettingen , Goettingen , Germany
| | - Kai Dittmann
- Institute for Cellular and Molecular Immunology, University Medical Center Goettingen , Goettingen , Germany
| | - Nicole Cuvelier
- Institute of Human Genetics, University Medical Center Goettingen , Goettingen , Germany
| | - Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt , Frankfurt , Germany
| | - Heidi Hahn
- Institute of Human Genetics, University Medical Center Goettingen , Goettingen , Germany
| |
Collapse
|
176
|
Abstract
The goal of this study was to determine whether combined targeted therapies, specifically those against the Notch, hedgehog and ubiquitin-proteasome pathways, could overcome ovarian cancer chemoresistance. Chemoresistant ovarian cancer cells were exposed to gamma-secretase inhibitors (GSI-I, Compound E) or the proteasome inhibitor bortezomib, alone and in combination with the hedgehog antagonist, LDE225. Bortezomib, alone and in combination with LDE225, was evaluated for effects on paclitaxel efficacy. Cell viability and cell cycle analysis were assessed by MTT assay and propidium iodide staining, respectively. Proteasome activity and gene expression were determined by luminescence assay and qPCR, respectively. Studies demonstrated that GSI-I, but not Compound E, inhibited proteasome activity, similar to bortezomib. Proteasome inhibition decreased hedgehog target genes (PTCH1, GLI1 and GLI2) and increased LDE225 sensitivity in vitro. Bortezomib, alone and in combination with LDE225, increased paclitaxel sensitivity through apoptosis and G2/M arrest. Expression of the multi-drug resistance gene ABCB1/MDR1 was decreased and acetylation of α-tubulin, a marker of microtubule stabilization, was increased following bortezomib treatment. HDAC6 inhibitor tubastatin-a demonstrated that microtubule effects are associated with hedgehog inhibition and sensitization to paclitaxel and LDE225. These results suggest that proteasome inhibition, through alteration of microtubule dynamics and hedgehog signaling, can reverse taxane-mediated chemoresistance.
Collapse
|
177
|
Shimizu Y, Ishii T, Ogawa K, Sasaki S, Matsui H, Nakayama M. Biochemical characterization of smoothened receptor antagonists by binding kinetics against drug-resistant mutant. Eur J Pharmacol 2015; 764:220-227. [PMID: 26048307 DOI: 10.1016/j.ejphar.2015.05.062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 05/29/2015] [Accepted: 05/29/2015] [Indexed: 11/27/2022]
Abstract
Hedgehog (Hh) signaling critical for development, differentiation, and cell growth is involved in several cancers, including medulloblastoma and basal cell carcinoma. Although antagonism of the smoothened receptor (SMO), which mediates Hh signaling, is an attractive therapeutic target, a drug-resistant mutation in SMO (SMO-D473H) was identified in a clinical trial of the approved drug vismodegib. TAK-441 potently inhibits SMO-D473H, unlike vismodegib and another SMO antagonist, cyclopamine, whereas the differences in binding modes between these antagonists remain unknown. Here we report the biochemical characterization of TAK-441, vismodegib, and cyclopamine by binding kinetics. The association (kon) and dissociation (koff) rates were determined by kinetic binding studies using [(3)H]TAK-441, and dissociation was confirmed by label-free affinity selection-mass spectrometry (AS-MS). In the [(3)H]TAK-441 competition assay, TAK-441 but not vismodegib and cyclopamine showed time-dependent inhibition. Quantitative kinetic binding analysis revealed that koff of TAK-441 was >10-fold smaller than those of vismodegib and cyclopamine. To further assess the binding mode of antagonists, kinetic binding analysis was performed against SMO-D473H. The D473H mutation affected koff of TAK-441 but not kon. In contrast, only kon was changed by the D473H mutation in the case of vismodegib and cyclopamine. These results suggest that the difference in antagonist efficacy against D473H is associated with the binding mode of antagonists. These findings provide a new insight into the drug action of SMO antagonists and help develop potential therapeutics for drug-resistant mutants.
Collapse
Affiliation(s)
- Yuji Shimizu
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan.
| | - Tsuyoshi Ishii
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Kazumasa Ogawa
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Satoshi Sasaki
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Hideki Matsui
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| | - Masaharu Nakayama
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, 26-1, Muraoka-higashi 2-chome, Fujisawa, Kanagawa 251-8555, Japan
| |
Collapse
|
178
|
Regulation of the oncoprotein Smoothened by small molecules. Nat Chem Biol 2015; 11:246-55. [PMID: 25785427 DOI: 10.1038/nchembio.1776] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 02/19/2015] [Indexed: 01/01/2023]
Abstract
The Hedgehog pathway is critical for animal development and has been implicated in multiple human malignancies. Despite great interest in targeting the pathway pharmacologically, many of the principles underlying the signal transduction cascade remain poorly understood. Hedgehog ligands are recognized by a unique receptor system that features the transporter-like protein Patched and the G protein-coupled receptor (GPCR)-like Smoothened (SMO). The biochemical interaction between these transmembrane proteins is the subject of intensive efforts. Recent structural and functional studies have provided great insight into the small-molecule regulation of SMO through identification of two distinct ligand-binding sites. In this Perspective, we review these recent findings and relate them to potential mechanisms for the endogenous regulation of SMO.
Collapse
|
179
|
Soura E, Chasapi V, Stratigos AJ. Pharmacologic treatment options for advanced epithelial skin cancer. Expert Opin Pharmacother 2015; 16:1479-93. [DOI: 10.1517/14656566.2015.1052743] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
180
|
Brandes AA, Bartolotti M, Marucci G, Ghimenton C, Agati R, Fioravanti A, Mascarin M, Volpin L, Ammannati F, Masotto B, Gardiman MP, De Biase D, Tallini G, Crisi G, Bartolini S, Franceschi E. New perspectives in the treatment of adult medulloblastoma in the era of molecular oncology. Crit Rev Oncol Hematol 2015; 94:348-359. [PMID: 25600839 DOI: 10.1016/j.critrevonc.2014.12.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 12/10/2014] [Accepted: 12/23/2014] [Indexed: 02/08/2023] Open
Abstract
Medulloblastoma is the most common central nervous system tumor in children, while it is extremely rare in adults. Multimodal treatment involving surgery, radiotherapy and chemotherapy can improve the prognosis of this disease, and recent advances in molecular biology have allowed the identification of molecular subgroups (WNT, SHH, Groups 3 and 4), each of which have different cytogenetic, mutational and gene expression signatures, demographics, histology and prognosis. The present review focuses on the state of the art for adult medulloblastoma treatment and on novel molecular advances and their future implications in the treatment of this disease.
Collapse
Affiliation(s)
- Alba A Brandes
- Department of Medical Oncology, Bellaria-Maggiore Hospitals, Azienda USL - IRCCS Institute of Neurological Sciences, Bologna, Italy.
| | - Marco Bartolotti
- Department of Medical Oncology, Bellaria-Maggiore Hospitals, Azienda USL - IRCCS Institute of Neurological Sciences, Bologna, Italy
| | - Gianluca Marucci
- Department of Biomedical and NeuroMotor Sciences (DiBiNeM), University, of Bologna, Section of Pathology, M. Malpighi, Bellaria Hospital, Bologna, Italy
| | | | - Raffaele Agati
- Department of Neuroradiology, Bellaria-Maggiore Hospitals, Azienda USL - IRCCS Institute of Neurological Sciences, Bologna, Italy
| | - Antonio Fioravanti
- Department of Neurosurgery, Bellaria Hospital - IRCCS Institute of Neurological Sciences, Azienda USL, Bologna, Italy
| | | | - Lorenzo Volpin
- Department of Neuroscience and Neurosurgery, San Bortolo Hospital, Vicenza, Italy
| | - Franco Ammannati
- Department of Neurosurgery I, Careggi University Hospital, Firenze, Italy
| | - Barbara Masotto
- Section of Neurosurgery, Department of Neuroscience, University of Verona, Verona, Italy
| | - Marina Paola Gardiman
- Surgical Pathology & Cytopathology Unit, Department of Medicine (DIMED), University Hospital, Padova, Italy
| | - Dario De Biase
- Department of Medicine (DIMES) - Anatomic Pathology Unit, Bellaria Hospital, University of Bologna, Bologna, Italy
| | - Giovanni Tallini
- Department of Medicine (DIMES) - Anatomic Pathology Unit, Bellaria Hospital, University of Bologna, Bologna, Italy
| | - Girolamo Crisi
- Department of Neuroradiology, Parma University Hospital, Parma, Italy
| | - Stefania Bartolini
- Department of Medical Oncology, Bellaria-Maggiore Hospitals, Azienda USL - IRCCS Institute of Neurological Sciences, Bologna, Italy
| | - Enrico Franceschi
- Department of Medical Oncology, Bellaria-Maggiore Hospitals, Azienda USL - IRCCS Institute of Neurological Sciences, Bologna, Italy
| |
Collapse
|
181
|
Munoz JL, Rodriguez-Cruz V, Walker ND, Greco SJ, Rameshwar P. Temozolomide resistance and tumor recurrence: Halting the Hedgehog. ACTA ACUST UNITED AC 2015; 2. [PMID: 27158638 DOI: 10.14800/ccm.747] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chemotherapy with Temozolomide (TMZ), radiation and surgery are the primary methods to treat Glioblastoma Multiforme (GBM), the most common adult intracranial tumor with dismal outcome. GBM resistance to therapy is the main reason of poor patient outcomes. Thus, methods to overcome the resistance are an area of extensive research. This highlight focuses on three recently published articles on the mechanism of resistance and possible therapeutic intervention, including RNA treatment with stem cells. We showed a crucial role of the developmental Sonic Hedgehog (SHH) pathway in the acquisition and maintenance of TMZ resistance. SHH signaling caused TMZ resistance in GBM cells through an increase in the multiple drug resistance gene (MDR1). The SHH receptor, Patched-1 (PTCH1), negatively regulate SHH signaling. In GBM, miR-9 suppressed PTCH1 levels, resulting in the activation of SHH pathway. Thus, SHH signaling is independent of the ligand in resistant GBM cells. MiR-9 was also increased in chemoresistance CD133+ GBM cells. A potential method to reverse resistance was tested by delivering the anti-miR in bone marrow-derived Mesenchymal Stem Cells (MSCs). The anti-miR-9 was transferred into the resistant GBM cells through exosomes and gap junctional intercellular communication. We also review on-going clinical trials with inhibitor of SHH signaling, and also discuss drug delivery by cell therapy for GBM. While GBM treatment has proven to be a challenge, there are a number of novel approaches we are currently developing to manage this malignancy.
Collapse
Affiliation(s)
- Jessian L Munoz
- Department of Medicine-Hematology/Oncology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Vivian Rodriguez-Cruz
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences-SUNY University of Buffalo, Buffalo, NY, USA
| | - Nykia D Walker
- Department of Medicine-Hematology/Oncology, Rutgers New Jersey Medical School, Newark, NJ, USA; Rutgers Graduate School of Biomedical Sciences, Newark, NJ, USA
| | - Steven J Greco
- Department of Medicine-Hematology/Oncology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Pranela Rameshwar
- Department of Medicine-Hematology/Oncology, Rutgers New Jersey Medical School, Newark, NJ, USA; Rutgers Graduate School of Biomedical Sciences, Newark, NJ, USA
| |
Collapse
|
182
|
Khan AA, Harrison CN, McLornan DP. Targeting of the Hedgehog pathway in myeloid malignancies: still a worthy chase? Br J Haematol 2015; 170:323-35. [PMID: 25892100 DOI: 10.1111/bjh.13426] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Deregulated Hedgehog (Hh) signalling activity may be associated with a broad range of cancer types and hence has become an attractive target for therapeutic intervention. Although initial haematological interest focused on the therapeutic targeting of this pathway in chronic myeloid leukaemia), small molecule inhibitors targeting the Hh pathway are now being tested in a range of other myeloid disorders, including myelofibrosis, myelodysplasia and acute myeloid leukaemia. In this review we will evaluate the rationale for targeting of the Hh pathway in myeloid diseases and discuss the novel agents that have entered the clinical arena. We will discuss pre-clinical models, emerging clinical trial data, and suggest how these targeted therapies may address current unmet medical needs. Finally, we will explore potential limitations of these therapies due to the emergence of secondary resistance mechanisms and speculate on future developments within this arena.
Collapse
Affiliation(s)
- Alesia A Khan
- Department of Haematology, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Claire N Harrison
- Department of Haematology, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Donal P McLornan
- Department of Haematology, Guy's and St. Thomas' NHS Foundation Trust, London, UK.,Department of Haematological Medicine, King's College Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
183
|
Masumoto N, Lanyon-Hogg T, Rodgers UR, Konitsiotis AD, Magee AI, Tate EW. Membrane bound O-acyltransferases and their inhibitors. Biochem Soc Trans 2015; 43:246-52. [PMID: 25849925 DOI: 10.1042/bst20150018] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Since the identification of the membrane-bound O-acyltransferase (MBOATs) protein family in the early 2000s, three distinct members [porcupine (PORCN), hedgehog (Hh) acyltransferase (HHAT) and ghrelin O-acyltransferase (GOAT)] have been shown to acylate specific proteins or peptides. In this review, topology determination, development of assays to measure enzymatic activities and discovery of small molecule inhibitors are compared and discussed for each of these enzymes.
Collapse
Affiliation(s)
- Naoko Masumoto
- *Department of Chemistry, Imperial College London, South Kensington Campus, London, SW7 2AZ, U.K
| | - Thomas Lanyon-Hogg
- *Department of Chemistry, Imperial College London, South Kensington Campus, London, SW7 2AZ, U.K
| | - Ursula R Rodgers
- ‡Molecular Medicine Section, National Lung & Heart Institute, Sir Alexander Fleming Building, South Kensington Campus, Imperial College London, SW7 2AZ, U.K
| | - Antonios D Konitsiotis
- ‡Molecular Medicine Section, National Lung & Heart Institute, Sir Alexander Fleming Building, South Kensington Campus, Imperial College London, SW7 2AZ, U.K
| | - Anthony I Magee
- †Institute of Chemical Biology, Department of Chemistry, Imperial College London, SW7 2AZ, U.K
| | - Edward W Tate
- *Department of Chemistry, Imperial College London, South Kensington Campus, London, SW7 2AZ, U.K
| |
Collapse
|
184
|
Sharpe HJ, Pau G, Dijkgraaf GJ, Basset-Seguin N, Modrusan Z, Januario T, Tsui V, Durham AB, Dlugosz AA, Haverty PM, Bourgon R, Tang JY, Sarin KY, Dirix L, Fisher DC, Rudin CM, Sofen H, Migden MR, Yauch RL, de Sauvage FJ. Genomic analysis of smoothened inhibitor resistance in basal cell carcinoma. Cancer Cell 2015; 27:327-41. [PMID: 25759019 PMCID: PMC5675004 DOI: 10.1016/j.ccell.2015.02.001] [Citation(s) in RCA: 298] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 11/12/2014] [Accepted: 02/05/2015] [Indexed: 01/01/2023]
Abstract
Smoothened (SMO) inhibitors are under clinical investigation for the treatment of several cancers. Vismodegib is approved for the treatment of locally advanced and metastatic basal cell carcinoma (BCC). Most BCC patients experience significant clinical benefit on vismodegib, but some develop resistance. Genomic analysis of tumor biopsies revealed that vismodegib resistance is associated with Hedgehog (Hh) pathway reactivation, predominantly through mutation of the drug target SMO and to a lesser extent through concurrent copy number changes in SUFU and GLI2. SMO mutations either directly impaired drug binding or activated SMO to varying levels. Furthermore, we found evidence for intra-tumor heterogeneity, suggesting that a combination of therapies targeting components at multiple levels of the Hh pathway is required to overcome resistance.
Collapse
Affiliation(s)
- Hayley J Sharpe
- Department of Molecular Oncology, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Gregoire Pau
- Department of Bioinformatics and Computational Biology, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Gerrit J Dijkgraaf
- Department of Molecular Oncology, Genentech, Inc., South San Francisco, CA 94080, USA
| | | | - Zora Modrusan
- Department of Molecular Biology, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Thomas Januario
- Department of Molecular Oncology, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Vickie Tsui
- Department of Discovery Chemistry, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Alison B Durham
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Andrzej A Dlugosz
- Department of Dermatology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Peter M Haverty
- Department of Bioinformatics and Computational Biology, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Richard Bourgon
- Department of Bioinformatics and Computational Biology, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Jean Y Tang
- Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kavita Y Sarin
- Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Luc Dirix
- Sint-Augustinus Cancer Center, Antwerp University Hospital, University of Antwerp, Antwerp 2610, Belgium
| | | | - Charles M Rudin
- Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Howard Sofen
- Department of Medicine/Dermatology, UCLA School of Medicine, Los Angeles, CA 90095, USA
| | | | - Robert L Yauch
- Department of Molecular Oncology, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Frederic J de Sauvage
- Department of Molecular Oncology, Genentech, Inc., South San Francisco, CA 94080, USA.
| |
Collapse
|
185
|
Atwood SX, Sarin KY, Whitson RJ, Li JR, Kim G, Rezaee M, Ally MS, Kim J, Yao C, Chang ALS, Oro AE, Tang JY. Smoothened variants explain the majority of drug resistance in basal cell carcinoma. Cancer Cell 2015; 27:342-53. [PMID: 25759020 PMCID: PMC4357167 DOI: 10.1016/j.ccell.2015.02.002] [Citation(s) in RCA: 325] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 11/11/2014] [Accepted: 02/04/2015] [Indexed: 11/17/2022]
Abstract
Advanced basal cell carcinomas (BCCs) frequently acquire resistance to Smoothened (SMO) inhibitors through unknown mechanisms. Here we identify SMO mutations in 50% (22 of 44) of resistant BCCs and show that these mutations maintain Hedgehog signaling in the presence of SMO inhibitors. Alterations include four ligand binding pocket mutations defining sites of inhibitor binding and four variants conferring constitutive activity and inhibitor resistance, illuminating pivotal residues that ensure receptor autoinhibition. In the presence of a SMO inhibitor, tumor cells containing either class of SMO mutants effectively outcompete cells containing the wild-type SMO. Finally, we show that both classes of SMO variants respond to aPKC-ι/λ or GLI2 inhibitors that operate downstream of SMO, setting the stage for the clinical use of GLI antagonists.
Collapse
Affiliation(s)
- Scott X Atwood
- Program in Epithelial Biology and Department of Dermatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kavita Y Sarin
- Program in Epithelial Biology and Department of Dermatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ramon J Whitson
- Program in Epithelial Biology and Department of Dermatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jiang R Li
- Program in Epithelial Biology and Department of Dermatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Geurim Kim
- Program in Epithelial Biology and Department of Dermatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Melika Rezaee
- Program in Epithelial Biology and Department of Dermatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mina S Ally
- Program in Epithelial Biology and Department of Dermatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jinah Kim
- Program in Epithelial Biology and Department of Dermatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Catherine Yao
- Program in Epithelial Biology and Department of Dermatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Anne Lynn S Chang
- Program in Epithelial Biology and Department of Dermatology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Anthony E Oro
- Program in Epithelial Biology and Department of Dermatology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Jean Y Tang
- Program in Epithelial Biology and Department of Dermatology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
186
|
Lyons TG, O'Kane GM, Kelly CM. Efficacy and safety of vismodegib : a new therapeutic agent in the treatment of basal cell carcinoma. Expert Opin Drug Saf 2015; 13:1125-32. [PMID: 25033383 DOI: 10.1517/14740338.2014.939952] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Basal cell carcinoma (BCC) is the most common human malignancy. Treatment options for the minority of patients presenting with locally advanced inoperable or metastatic BCC are very limited. The hedgehog (Hh) pathway plays a crucial role in the pathogenesis of BCC. Recent advances in targeting this pathway have led to the development of a first-in-class, small-molecule oral Hh inhibitor, vismodegib (Erivedge®, Genentech). AREAS COVERED In this article, we review vismodegib with regard to its mechanism of action, clinical efficacy, safety and tolerability, and we consider the causes of emerging resistance to the drug. EXPERT OPINION Vismodegib is a welcome addition to the treatment paradigm for BCC. Approval was based on Phase II evidence, the patient number was relatively small, there was no control group or a comparator group and survival data have not been presented so longer term follow-up and larger exposure to the drug is required to fully appreciate its clinical utility into the future. With ongoing use of the drug in the nontrial population and further studies investigating its use in both early- and later-stage disease, we will get a better understanding of the drug and determine its place in the armamentarium against BCC.
Collapse
Affiliation(s)
- Tomas G Lyons
- Mater Misericordiae University Hospital, University College Dublin, Department of Medical Oncology , Eccles Street, Dublin 7 , Ireland
| | | | | |
Collapse
|
187
|
Cooperative integration between HEDGEHOG-GLI signalling and other oncogenic pathways: implications for cancer therapy. Expert Rev Mol Med 2015; 17:e5. [PMID: 25660620 PMCID: PMC4836208 DOI: 10.1017/erm.2015.3] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The HEDGEHOG-GLI (HH-GLI) signalling is a key pathway critical in embryonic development, stem cell biology and tissue homeostasis. In recent years, aberrant activation of HH-GLI signalling has been linked to several types of cancer, including those of the skin, brain, lungs, prostate, gastrointestinal tract and blood. HH-GLI signalling is initiated by binding of HH ligands to the transmembrane receptor PATCHED and is mediated by transcriptional effectors that belong to the GLI family, whose activity is finely tuned by a number of molecular interactions and post-translation modifications. Several reports suggest that the activity of the GLI proteins is regulated by several proliferative and oncogenic inputs, in addition or independent of upstream HH signalling. The identification of this complex crosstalk and the understanding of how the major oncogenic signalling pathways interact in cancer is a crucial step towards the establishment of efficient targeted combinatorial treatments. Here we review recent findings on the cooperative integration of HH-GLI signalling with the major oncogenic inputs and we discuss how these cues modulate the activity of the GLI proteins in cancer. We then summarise the latest advances on SMO and GLI inhibitors and alternative approaches to attenuate HH signalling through rational combinatorial therapies.
Collapse
|
188
|
Hoch L, Faure H, Roudaut H, Schoenfelder A, Mann A, Girard N, Bihannic L, Ayrault O, Petricci E, Taddei M, Rognan D, Ruat M. MRT-92 inhibits Hedgehog signaling by blocking overlapping binding sites in the transmembrane domain of the Smoothened receptor. FASEB J 2015; 29:1817-29. [PMID: 25636740 DOI: 10.1096/fj.14-267849] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 12/18/2014] [Indexed: 12/28/2022]
Abstract
The Smoothened (Smo) receptor, a member of class F G protein-coupled receptors, is the main transducer of the Hedgehog (Hh) signaling pathway implicated in a wide range of developmental and adult processes. Smo is the target of anticancer drugs that bind to a long and narrow cavity in the 7-transmembrane (7TM) domain. X-ray structures of human Smo (hSmo) bound to several ligands have revealed 2 types of 7TM-directed antagonists: those binding mostly to extracellular loops (site 1, e.g., LY2940680) and those penetrating deeply in the 7TM cavity (site 2, e.g., SANT-1). Here we report the development of the acylguanidine MRT-92, which displays subnanomolar antagonist activity against Smo in various Hh cell-based assays. MRT-92 inhibits rodent cerebellar granule cell proliferation induced by Hh pathway activation through pharmacologic (half maximal inhibitory concentration [IC50] = 0.4 nM) or genetic manipulation. Using [(3)H]MRT-92 (Kd = 0.3 nM for hSmo), we created a comprehensive framework for the interaction of small molecule modulators with hSmo and for understanding chemoresistance linked to hSmo mutations. Guided by molecular docking and site-directed mutagenesis data, our work convincingly confirms that MRT-92 simultaneously recognized and occupied both sites 1 and 2. Our data demonstrate the existence of a third type of Smo antagonists, those entirely filling the Smo binding cavity from the upper extracellular part to the lower cytoplasmic-proximal subpocket. Our studies should help design novel potent Smo antagonists and more effective therapeutic strategies for treating Hh-linked cancers and associated chemoresistance.
Collapse
Affiliation(s)
- Lucile Hoch
- *Centre National de la Recherche Scientifique, Unité Mixte de Recherche-9197, Neuroscience Paris-Saclay Institute, Molecules Circuits Department, Signal Transduction and Developmental Neuropharmacology Team, Gif-sur-Yvette, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche-7200, Laboratoire d'Innovation Thérapeutique, Université de Strasbourg, Illkirch, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche-3306, Institut National de la Santé et de la Recherche Médicale U1005, Institut Curie, Centre Universitaire, Orsay, France; and Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy
| | - Helene Faure
- *Centre National de la Recherche Scientifique, Unité Mixte de Recherche-9197, Neuroscience Paris-Saclay Institute, Molecules Circuits Department, Signal Transduction and Developmental Neuropharmacology Team, Gif-sur-Yvette, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche-7200, Laboratoire d'Innovation Thérapeutique, Université de Strasbourg, Illkirch, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche-3306, Institut National de la Santé et de la Recherche Médicale U1005, Institut Curie, Centre Universitaire, Orsay, France; and Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy
| | - Hermine Roudaut
- *Centre National de la Recherche Scientifique, Unité Mixte de Recherche-9197, Neuroscience Paris-Saclay Institute, Molecules Circuits Department, Signal Transduction and Developmental Neuropharmacology Team, Gif-sur-Yvette, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche-7200, Laboratoire d'Innovation Thérapeutique, Université de Strasbourg, Illkirch, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche-3306, Institut National de la Santé et de la Recherche Médicale U1005, Institut Curie, Centre Universitaire, Orsay, France; and Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy
| | - Angele Schoenfelder
- *Centre National de la Recherche Scientifique, Unité Mixte de Recherche-9197, Neuroscience Paris-Saclay Institute, Molecules Circuits Department, Signal Transduction and Developmental Neuropharmacology Team, Gif-sur-Yvette, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche-7200, Laboratoire d'Innovation Thérapeutique, Université de Strasbourg, Illkirch, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche-3306, Institut National de la Santé et de la Recherche Médicale U1005, Institut Curie, Centre Universitaire, Orsay, France; and Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy
| | - Andre Mann
- *Centre National de la Recherche Scientifique, Unité Mixte de Recherche-9197, Neuroscience Paris-Saclay Institute, Molecules Circuits Department, Signal Transduction and Developmental Neuropharmacology Team, Gif-sur-Yvette, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche-7200, Laboratoire d'Innovation Thérapeutique, Université de Strasbourg, Illkirch, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche-3306, Institut National de la Santé et de la Recherche Médicale U1005, Institut Curie, Centre Universitaire, Orsay, France; and Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy
| | - Nicolas Girard
- *Centre National de la Recherche Scientifique, Unité Mixte de Recherche-9197, Neuroscience Paris-Saclay Institute, Molecules Circuits Department, Signal Transduction and Developmental Neuropharmacology Team, Gif-sur-Yvette, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche-7200, Laboratoire d'Innovation Thérapeutique, Université de Strasbourg, Illkirch, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche-3306, Institut National de la Santé et de la Recherche Médicale U1005, Institut Curie, Centre Universitaire, Orsay, France; and Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy
| | - Laure Bihannic
- *Centre National de la Recherche Scientifique, Unité Mixte de Recherche-9197, Neuroscience Paris-Saclay Institute, Molecules Circuits Department, Signal Transduction and Developmental Neuropharmacology Team, Gif-sur-Yvette, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche-7200, Laboratoire d'Innovation Thérapeutique, Université de Strasbourg, Illkirch, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche-3306, Institut National de la Santé et de la Recherche Médicale U1005, Institut Curie, Centre Universitaire, Orsay, France; and Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy
| | - Olivier Ayrault
- *Centre National de la Recherche Scientifique, Unité Mixte de Recherche-9197, Neuroscience Paris-Saclay Institute, Molecules Circuits Department, Signal Transduction and Developmental Neuropharmacology Team, Gif-sur-Yvette, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche-7200, Laboratoire d'Innovation Thérapeutique, Université de Strasbourg, Illkirch, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche-3306, Institut National de la Santé et de la Recherche Médicale U1005, Institut Curie, Centre Universitaire, Orsay, France; and Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy
| | - Elena Petricci
- *Centre National de la Recherche Scientifique, Unité Mixte de Recherche-9197, Neuroscience Paris-Saclay Institute, Molecules Circuits Department, Signal Transduction and Developmental Neuropharmacology Team, Gif-sur-Yvette, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche-7200, Laboratoire d'Innovation Thérapeutique, Université de Strasbourg, Illkirch, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche-3306, Institut National de la Santé et de la Recherche Médicale U1005, Institut Curie, Centre Universitaire, Orsay, France; and Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy
| | - Maurizio Taddei
- *Centre National de la Recherche Scientifique, Unité Mixte de Recherche-9197, Neuroscience Paris-Saclay Institute, Molecules Circuits Department, Signal Transduction and Developmental Neuropharmacology Team, Gif-sur-Yvette, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche-7200, Laboratoire d'Innovation Thérapeutique, Université de Strasbourg, Illkirch, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche-3306, Institut National de la Santé et de la Recherche Médicale U1005, Institut Curie, Centre Universitaire, Orsay, France; and Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy
| | - Didier Rognan
- *Centre National de la Recherche Scientifique, Unité Mixte de Recherche-9197, Neuroscience Paris-Saclay Institute, Molecules Circuits Department, Signal Transduction and Developmental Neuropharmacology Team, Gif-sur-Yvette, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche-7200, Laboratoire d'Innovation Thérapeutique, Université de Strasbourg, Illkirch, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche-3306, Institut National de la Santé et de la Recherche Médicale U1005, Institut Curie, Centre Universitaire, Orsay, France; and Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy
| | - Martial Ruat
- *Centre National de la Recherche Scientifique, Unité Mixte de Recherche-9197, Neuroscience Paris-Saclay Institute, Molecules Circuits Department, Signal Transduction and Developmental Neuropharmacology Team, Gif-sur-Yvette, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche-7200, Laboratoire d'Innovation Thérapeutique, Université de Strasbourg, Illkirch, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche-3306, Institut National de la Santé et de la Recherche Médicale U1005, Institut Curie, Centre Universitaire, Orsay, France; and Dipartimento di Biotecnologie, Chimica e Farmacia, Università degli Studi di Siena, Siena, Italy
| |
Collapse
|
189
|
Sun C, Li Y, Shi A, Zhang J, Li Y, Zhao M, Zhang L, Zheng H, Meng Y, Ding H, Song H. Synthesis and evaluation of novel N-3-benzimidazolephenylbisamide derivatives for antiproliferative and Hedgehog pathway inhibitory activity. MEDCHEMCOMM 2015. [DOI: 10.1039/c5md00092k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
7m, as a novel Hedgehog inhibitor, interacted closely with the smoothened receptor at the co-crystallized ligand (taledegib) site.
Collapse
|
190
|
Acquired resistance to the Hedgehog pathway inhibitor vismodegib due to smoothened mutations in treatment of locally advanced basal cell carcinoma. J Am Acad Dermatol 2014; 71:1005-8. [DOI: 10.1016/j.jaad.2014.08.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 07/31/2014] [Accepted: 08/04/2014] [Indexed: 12/14/2022]
|
191
|
Long J, Li B, Rodriguez-Blanco J, Pastori C, Volmar CH, Wahlestedt C, Capobianco A, Bai F, Pei XH, Ayad NG, Robbins DJ. The BET bromodomain inhibitor I-BET151 acts downstream of smoothened protein to abrogate the growth of hedgehog protein-driven cancers. J Biol Chem 2014; 289:35494-502. [PMID: 25355313 DOI: 10.1074/jbc.m114.595348] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Epigenetic enzymes modulate signal transduction pathways in different biological contexts. We reasoned that epigenetic regulators might modulate the Hedgehog (HH) signaling pathway, a main driver of cell proliferation in various cancers including medulloblastoma. To test this hypothesis, we performed an unbiased small-molecule screen utilizing an HH-dependent reporter cell line (Light2 cells). We incubated Light2 cells with small molecules targeting different epigenetic modulators and identified four histone deacetylase inhibitors and a bromodomain and extra terminal domain (BET) protein inhibitor (I-BET151) that attenuate HH activity. I-BET151 was also able to inhibit the expression of HH target genes in Sufu(-/-) mouse embryonic fibroblasts, in which constitutive Gli activity is activated in a Smoothened (Smo)-independent fashion, consistent with it acting downstream of Smo. Knockdown of Brd4 (which encodes one of the BET proteins) phenocopies I-BET151 treatment, suggesting that Brd4 is a regulator of the HH signaling pathway. Consistent with this suggestion, Brd4 associates with the proximal promoter region of the Gli1 locus, and does so in a manner that can be reversed by I-BET151. Importantly, I-BET151 also suppressed the HH activity-dependent growth of medulloblastoma cells, in vitro and in vivo. These studies suggest that BET protein modulation may be an attractive therapeutic strategy for attenuating the growth of HH-dependent cancers, such as medulloblastoma.
Collapse
Affiliation(s)
- Jun Long
- From the Molecular Oncology Program, The DeWitt Daughtry Family Department of Surgery and
| | - Bin Li
- From the Molecular Oncology Program, The DeWitt Daughtry Family Department of Surgery and
| | | | - Chiara Pastori
- the Center for Therapeutic Innovation, Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, Florida 33136 and
| | - Claude-Henry Volmar
- the Center for Therapeutic Innovation, Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, Florida 33136 and
| | - Claes Wahlestedt
- the Center for Therapeutic Innovation, Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, Florida 33136 and the Sylvester Cancer Center and
| | - Anthony Capobianco
- From the Molecular Oncology Program, The DeWitt Daughtry Family Department of Surgery and the Sylvester Cancer Center and Department of Biochemistry and Molecular Biology, University of Miami, Miami, Florida 33136
| | - Feng Bai
- From the Molecular Oncology Program, The DeWitt Daughtry Family Department of Surgery and
| | - Xin-Hai Pei
- From the Molecular Oncology Program, The DeWitt Daughtry Family Department of Surgery and the Sylvester Cancer Center and
| | - Nagi G Ayad
- the Center for Therapeutic Innovation, Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, Florida 33136 and the Sylvester Cancer Center and
| | - David J Robbins
- From the Molecular Oncology Program, The DeWitt Daughtry Family Department of Surgery and the Sylvester Cancer Center and Department of Biochemistry and Molecular Biology, University of Miami, Miami, Florida 33136
| |
Collapse
|
192
|
Abidi A. Hedgehog signaling pathway: a novel target for cancer therapy: vismodegib, a promising therapeutic option in treatment of basal cell carcinomas. Indian J Pharmacol 2014; 46:3-12. [PMID: 24550577 PMCID: PMC3912804 DOI: 10.4103/0253-7613.124884] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 10/08/2013] [Accepted: 11/11/2013] [Indexed: 12/31/2022] Open
Abstract
The Hedgehog signaling pathway is one of the major regulators of cell growth and differentiation during embryogenesis and early development. It is mostly quiescent in adults but inappropriate mutation or deregulation of the pathway is involved in the development of cancers. Therefore; recently it has been recognized as a novel therapeutic target in cancers. Basal cell carcinomas (BCC) and medulloblastomas are the two most common cancers identified with mutations in components of the hedgehog pathway. The discovery of targeted Hedgehog pathway inhibitors has shown promising results in clinical trials, several of which are still undergoing clinical evaluation. Vismodegib (GDC-0449), an oral hedgehog signaling pathway inhibitor has reached the farthest in clinical development. Initial clinical trials in basal cell carcinoma and medulloblastoma have shown good efficacy and safety and hence were approved by U.S. FDA for use in advanced basal cell carcinomas. This review highlights the molecular basis and the current knowledge of hedgehog pathway activation in different types of human cancers as well as the present and future prospects of the novel drug vismodegib.
Collapse
Affiliation(s)
- Afroz Abidi
- Department of Pharmacology, Subharti Medical College, Meerut, Uttar Pradesh, India
| |
Collapse
|
193
|
Du X, Lin BC, Wang QR, Li H, Ingalla E, Tien J, Rooney I, Ashkenazi A, Penuel E, Qing J. MMP-1 and Pro-MMP-10 as Potential Urinary Pharmacodynamic Biomarkers of FGFR3-Targeted Therapy in Patients with Bladder Cancer. Clin Cancer Res 2014; 20:6324-35. [DOI: 10.1158/1078-0432.ccr-13-3336] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
194
|
Ruiz-Salas V, Alegre M, López-Ferrer A, Garcés J. Vismodegib: A Review. ACTAS DERMO-SIFILIOGRAFICAS 2014. [DOI: 10.1016/j.adengl.2013.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
195
|
Smoothened (SMO) receptor mutations dictate resistance to vismodegib in basal cell carcinoma. Mol Oncol 2014; 9:389-97. [PMID: 25306392 DOI: 10.1016/j.molonc.2014.09.003] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/08/2014] [Accepted: 09/10/2014] [Indexed: 11/21/2022] Open
Abstract
Basal cell carcinomas (BCCs) and a subset of medulloblastomas are characterized by loss-of-function mutations in the tumor suppressor gene, PTCH1. PTCH1 normally functions by repressing the activity of the Smoothened (SMO) receptor. Inactivating PTCH1 mutations result in constitutive Hedgehog pathway activity through uncontrolled SMO signaling. Targeting this pathway with vismodegib, a novel SMO inhibitor, results in impressive tumor regression in patients harboring genetic defects in this pathway. However, a secondary mutation in SMO has been reported in medulloblastoma patients following relapse on vismodegib to date. This mutation preserves pathway activity, but appears to confer resistance by interfering with drug binding. Here we report for the first time on the molecular mechanisms of resistance to vismodegib in two BCC cases. The first case, showing progression after 2 months of continuous vismodegib (primary resistance), exhibited the new SMO G497W mutation. The second case, showing a complete clinical response after 5 months of treatment and a subsequent progression after 11 months on vismodegib (secondary resistance), exhibited a PTCH1 nonsense mutation in both the pre- and the post-treatment specimens, and the SMO D473Y mutation in the post-treatment specimens only. In silico analysis demonstrated that SMO(G497W) undergoes a conformational rearrangement resulting in a partial obstruction of the protein drug entry site, whereas the SMO D473Y mutation induces a direct effect on the binding site geometry leading to a total disruption of a stabilizing hydrogen bond network. Thus, the G497W and D473Y SMO mutations may represent two different mechanisms leading to primary and secondary resistance to vismodegib, respectively.
Collapse
|
196
|
Pillow TH, Tien J, Parsons-Reponte KL, Bhakta S, Li H, Staben LR, Li G, Chuh J, Fourie-O'Donohue A, Darwish M, Yip V, Liu L, Leipold DD, Su D, Wu E, Spencer SD, Shen BQ, Xu K, Kozak KR, Raab H, Vandlen R, Lewis Phillips GD, Scheller RH, Polakis P, Sliwkowski MX, Flygare JA, Junutula JR. Site-specific trastuzumab maytansinoid antibody-drug conjugates with improved therapeutic activity through linker and antibody engineering. J Med Chem 2014; 57:7890-9. [PMID: 25191794 DOI: 10.1021/jm500552c] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antibody-drug conjugates (ADCs) have a significant impact toward the treatment of cancer, as evidenced by the clinical activity of the recently approved ADCs, brentuximab vedotin for Hodgkin lymphoma and ado-trastuzumab emtansine (trastuzumab-MCC-DM1) for metastatic HER2+ breast cancer. DM1 is an analog of the natural product maytansine, a microtubule inhibitor that by itself has limited clinical activity and high systemic toxicity. However, by conjugation of DM1 to trastuzumab, the safety was improved and clinical activity was demonstrated. Here, we report that through chemical modification of the linker-drug and antibody engineering, the therapeutic activity of trastuzumab maytansinoid ADCs can be further improved. These improvements include eliminating DM1 release in the plasma and increasing the drug load by engineering four cysteine residues into the antibody. The chemical synthesis of highly stable linker-drugs and the modification of cysteine residues of engineered site-specific antibodies resulted in a homogeneous ADC with increased therapeutic activity compared to the clinically approved ADC, trastuzumab-MCC-DM1.
Collapse
Affiliation(s)
- Thomas H Pillow
- Genentech, Inc. , 1 DNA Way, South San Francisco, California 94080, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
197
|
Du W, Liu X, Chen L, Dou Z, Lei X, Chang L, Cai J, Cui Y, Yang D, Sun Y, Li Y, Jiang C. Targeting the SMO oncogene by miR-326 inhibits glioma biological behaviors and stemness. Neuro Oncol 2014; 17:243-53. [PMID: 25173582 DOI: 10.1093/neuonc/nou217] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Few studies have associated microRNAs (miRNAs) with the hedgehog (Hh) pathway. Here, we investigated whether targeting smoothened (SMO) with miR-326 would affect glioma biological behavior and stemness. METHODS To investigate the expression of SMO and miR-326 in glioma specimens and cell lines, we utilized quantitative real-time (qRT)-PCR, Western blot, immunohistochemistry, and fluorescence in situ hybridization. The luciferase reporter assay was used to verify the relationship between SMO and miR-326. We performed cell counting kit-8, transwell, and flow cytometric assays using annexin-V labeling to detect changes after transfection with siRNA against SMO or miR-326. qRT-PCR assays, neurosphere formation, and immunofluorescence were utilized to detect the modification of self-renewal and stemness in U251 tumor stem cells. A U251-implanted intracranial model was used to study the effect of miR-326 on tumor volume and SMO suppression efficacy. RESULTS SMO was upregulated in gliomas and was associated with tumor grade and survival period. SMO inhibition suppressed the biological behaviors of glioma cells. SMO expression was inversely correlated with miR-326 and was identified as a novel direct target of miR-326. miR-326 overexpression not only repressed SMO and downstream genes but also decreased the activity of the Hh pathway. Moreover, miR-326 overexpression decreased self-renewal and stemness and partially prompted differentiation in U251 tumor stem cells. In turn, the inhibition of Hh partially elevated miR-326 expression. Intracranial tumorigenicity induced by the transfection of miR-326 was reduced and was partially mediated by the decreased SMO expression. CONCLUSIONS This work suggests a possible molecular mechanism of the miR- 326/SMO axis, which can be a potential alternative therapeutic pathway for gliomas.
Collapse
Affiliation(s)
- Wenzhong Du
- Department of Neurosurgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China (W.D., X.L., Z.D., X.L., L.C., J.C., Y.C., D.Y., Y.S., Y.L., C.J.); Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China (L.C.)
| | - Xing Liu
- Department of Neurosurgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China (W.D., X.L., Z.D., X.L., L.C., J.C., Y.C., D.Y., Y.S., Y.L., C.J.); Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China (L.C.)
| | - Lingchao Chen
- Department of Neurosurgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China (W.D., X.L., Z.D., X.L., L.C., J.C., Y.C., D.Y., Y.S., Y.L., C.J.); Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China (L.C.)
| | - Zhijin Dou
- Department of Neurosurgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China (W.D., X.L., Z.D., X.L., L.C., J.C., Y.C., D.Y., Y.S., Y.L., C.J.); Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China (L.C.)
| | - Xuhui Lei
- Department of Neurosurgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China (W.D., X.L., Z.D., X.L., L.C., J.C., Y.C., D.Y., Y.S., Y.L., C.J.); Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China (L.C.)
| | - Liang Chang
- Department of Neurosurgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China (W.D., X.L., Z.D., X.L., L.C., J.C., Y.C., D.Y., Y.S., Y.L., C.J.); Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China (L.C.)
| | - Jinquan Cai
- Department of Neurosurgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China (W.D., X.L., Z.D., X.L., L.C., J.C., Y.C., D.Y., Y.S., Y.L., C.J.); Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China (L.C.)
| | - Yuqiong Cui
- Department of Neurosurgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China (W.D., X.L., Z.D., X.L., L.C., J.C., Y.C., D.Y., Y.S., Y.L., C.J.); Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China (L.C.)
| | - Dongbo Yang
- Department of Neurosurgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China (W.D., X.L., Z.D., X.L., L.C., J.C., Y.C., D.Y., Y.S., Y.L., C.J.); Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China (L.C.)
| | - Ying Sun
- Department of Neurosurgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China (W.D., X.L., Z.D., X.L., L.C., J.C., Y.C., D.Y., Y.S., Y.L., C.J.); Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China (L.C.)
| | - Yongli Li
- Department of Neurosurgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China (W.D., X.L., Z.D., X.L., L.C., J.C., Y.C., D.Y., Y.S., Y.L., C.J.); Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China (L.C.)
| | - Chuanlu Jiang
- Department of Neurosurgery, Second Affiliated Hospital of Harbin Medical University, Harbin, China (W.D., X.L., Z.D., X.L., L.C., J.C., Y.C., D.Y., Y.S., Y.L., C.J.); Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China (L.C.)
| |
Collapse
|
198
|
He X, Zhang L, Chen Y, Remke M, Shih D, Lu F, Wang H, Deng Y, Yu Y, Xia Y, Wu X, Ramaswamy V, Hu T, Wang F, Zhou W, Burns DK, Kim SH, Kool M, Pfister SM, Weinstein LS, Pomeroy SL, Gilbertson RJ, Rubin JB, Hou Y, Wechsler-Reya R, Taylor MD, Lu QR. The G protein α subunit Gαs is a tumor suppressor in Sonic hedgehog-driven medulloblastoma. Nat Med 2014; 20:1035-42. [PMID: 25150496 PMCID: PMC4334261 DOI: 10.1038/nm.3666] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 07/17/2014] [Indexed: 02/05/2023]
Abstract
Medulloblastoma, the most common malignant childhood brain tumor, exhibits distinct molecular subtypes and cellular origins. Genetic alterations driving medulloblastoma initiation and progression remain poorly understood. Herein, we identify GNAS, encoding the G-protein Gsα, as a potent tumor suppressor gene that defines a subset of aggressive Sonic Hedgehog (Shh)-driven human medulloblastomas. Ablation of the single Gnas gene in anatomically-distinct progenitors is sufficient to induce Shh-associated medulloblastomas, which recapitulate their human counterparts. Gsα is highly enriched at the primary cilium of granule neuron precursors and suppresses Shh-signaling by regulating both the cAMP-dependent pathway and ciliary trafficking of Hedgehog pathway components. Elevation of a Gsα effector, cAMP, effectively inhibits tumor cell proliferation and progression in Gnas mutants. Thus, our gain- and loss-of-function studies identify a previously unrecognized tumor suppressor function for Gsα that acts as a molecular link across Shh-group medulloblastomas of disparate cellular and anatomical origins, illuminating G-protein modulation as a potential therapeutic avenue.
Collapse
Affiliation(s)
- Xuelian He
- 1] Department of Forensic Medicine, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, School of Preclinical and Forensic Medicine, West China Second Hospital, Sichuan University, Chengdu, China. [2] Department of Pediatrics, Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Liguo Zhang
- Department of Pediatrics, Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Ying Chen
- School of Life Sciences, Xiamen University, Fujian, China
| | - Marc Remke
- The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - David Shih
- The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Fanghui Lu
- Department of Pediatrics, Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Haibo Wang
- Department of Pediatrics, Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Yaqi Deng
- Department of Pediatrics, Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Yang Yu
- Department of Pediatrics, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Second Hospital, Sichuan University, Chengdu, China
| | - Yong Xia
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaochong Wu
- The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Vijay Ramaswamy
- The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Tom Hu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, USA
| | - Fan Wang
- Department of Forensic Medicine, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, School of Preclinical and Forensic Medicine, West China Second Hospital, Sichuan University, Chengdu, China
| | - Wenhao Zhou
- Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China
| | - Dennis K Burns
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, USA
| | - Se Hoon Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Marcel Kool
- Division of Pediatric Neurooncology, German Cancer Research Center, Heidelberg, Germany
| | - Stefan M Pfister
- Division of Pediatric Neurooncology, German Cancer Research Center, Heidelberg, Germany
| | - Lee S Weinstein
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Scott L Pomeroy
- Department of Neurology, Children's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Richard J Gilbertson
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Joshua B Rubin
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yiping Hou
- Department of Forensic Medicine, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, School of Preclinical and Forensic Medicine, West China Second Hospital, Sichuan University, Chengdu, China
| | - Robert Wechsler-Reya
- Tumor Development Program, Sanford-Burnham Medical Research Institute, La Jolla, California, USA
| | - Michael D Taylor
- The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Q Richard Lu
- 1] Department of Pediatrics, Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA. [2] Department of Pediatrics, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Second Hospital, Sichuan University, Chengdu, China. [3] Key Laboratory of Birth Defects, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
199
|
Kieran MW. Targeted treatment for sonic hedgehog-dependent medulloblastoma. Neuro Oncol 2014; 16:1037-47. [PMID: 24951114 PMCID: PMC4096181 DOI: 10.1093/neuonc/nou109] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 05/15/2014] [Indexed: 12/28/2022] Open
Abstract
Novel treatment options, including targeted therapies, are needed for patients with medulloblastoma (MB), especially for those with high-risk or recurrent/relapsed disease. Four major molecular subgroups of MB have been identified, one of which is characterized by activation of the sonic hedgehog (SHH) pathway. Preclinical data suggest that inhibitors of the hedgehog (Hh) pathway could become valuable treatment options for patients with this subgroup of MB. Indeed, agents targeting the positive regulator of the pathway, smoothened (SMO), have demonstrated efficacy in a subset of patients with SHH MB. However, because of resistance and the presence of mutations downstream of SMO, not all patients with SHH MB respond to SMO inhibitors. The development of agents that target these resistance mechanisms and the potential for their combination with traditional chemotherapy and SHH inhibitors will be discussed. Due to its extensive molecular heterogeneity, the future of MB treatment is in personalized therapy, which may lead to improved efficacy and reduced toxicity. This will include the development of clinically available tests that can efficiently discern the SHH subgroup. The preliminary use of these tests in clinical trials is also discussed herein.
Collapse
Affiliation(s)
- Mark W Kieran
- Pediatric Medical Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| |
Collapse
|
200
|
Kufareva I, Katritch V, Stevens RC, Abagyan R. Advances in GPCR modeling evaluated by the GPCR Dock 2013 assessment: meeting new challenges. Structure 2014; 22:1120-1139. [PMID: 25066135 DOI: 10.1016/j.str.2014.06.012] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 06/05/2014] [Accepted: 06/06/2014] [Indexed: 01/22/2023]
Abstract
Despite tremendous successes of GPCR crystallography, the receptors with available structures represent only a small fraction of human GPCRs. An important role of the modeling community is to maximize structural insights for the remaining receptors and complexes. The community-wide GPCR Dock assessment was established to stimulate and monitor the progress in molecular modeling and ligand docking for GPCRs. The four targets in the present third assessment round presented new and diverse challenges for modelers, including prediction of allosteric ligand interaction and activation states in 5-hydroxytryptamine receptors 1B and 2B, and modeling by extremely distant homology for smoothened receptor. Forty-four modeling groups participated in the assessment. State-of-the-art modeling approaches achieved close-to-experimental accuracy for small rigid orthosteric ligands and models built by close homology, and they correctly predicted protein fold for distant homology targets. Predictions of long loops and GPCR activation states remain unsolved problems.
Collapse
Affiliation(s)
- Irina Kufareva
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92039, USA
| | - Vsevolod Katritch
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | | | - Raymond C Stevens
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| | - Ruben Abagyan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, 92039, USA.
| |
Collapse
|