151
|
Liu C, Hu Q, Xu B, Hu X, Su H, Li Q, Zhang X, Yue J, Yu J. Peripheral memory and naïve T cells in non-small cell lung cancer patients with lung metastases undergoing stereotactic body radiotherapy: predictors of early tumor response. Cancer Cell Int 2019; 19:121. [PMID: 31080362 PMCID: PMC6505218 DOI: 10.1186/s12935-019-0839-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/25/2019] [Indexed: 12/25/2022] Open
Abstract
Background Further analysis of phase I trial of the KEYNOTE-001 has shown that previous radiotherapy improves the outcomes of patients with advanced non-small cell lung cancer (NSCLC) who received pembrolizumab treatment, possibly explained by the radiation-induced specific anti-cancer immunity with a memory effect. In this study, we aimed to investigate the peripheral memory and naïve T cells as predictors of early response in lung metastases post-stereotactic body radiotherapy (SBRT). Methods Sixty-six lung metastases patients with NSCLC who received SBRT were enrolled in this study. Analyses of peripheral memory CD4+ T, memory CD8+ T, naive CD4+ T, and naive CD8+ T in NSCLC patients were performed by flow cytometry. Evaluations of the link between immune cells and early radiation response a month after SBRT were carried out via logistic regression analyses. Results Higher levels of memory CD4+ T, memory CD8+ T, and lower levels of naïve CD4+ T, CD4+ naïve/memory ratio, and CD8+ naïve/memory ratio were shown in responders compared with non-responders (all P < 0.05). Logistic regression analyses of univariate and multivariate revealed that peripheral memory CD4+ T (OR: 0.14, 95% CI 0.04–0.50, P = 0.003; OR: 0.17, 95% CI 0.05–0.66, P = 0.010), memory CD8+ T (OR: 0.11, 95% CI 0.01–0.87, P = 0.037; OR: 0.11, 95% CI 0.01–0.97, P = 0.047), naïve CD4+ T (OR: 16.25, 95% CI 3.17–83.13, P = 0.001; OR: 12.67, 95% CI 2.26–71.18, P = 0.004) and CD4+ naïve/memory ratio (OR: 11.27, 95% CI 2.67–47.58, P = 0.001; OR: 8.50, 95% CI 1.90–38.14, P = 0.005) were independent predictors for tumor response to SBRT in the lung metastases of NSCLC patients. Conclusions The tumor response of lung metastases a month after SBRT independently correlated with peripheral memory CD4+ T, memory CD8+ T, naïve CD4+ T, and CD4+ naïve/memory ratio. These findings could be helpful in incorporating additional treatments to improve clinical outcomes in the case of poor responders. Electronic supplementary material The online version of this article (10.1186/s12935-019-0839-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chao Liu
- 1Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060 China.,2Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, 250117 Shandong China.,3Department of Radiation Oncology, Affiliated Hospital of Academy of Military Medical Sciences, Beijing, 100071 China
| | - Qinyong Hu
- 1Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060 China
| | - Bin Xu
- 1Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060 China
| | - Xiaoyu Hu
- 2Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, 250117 Shandong China
| | - Huichao Su
- 2Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, 250117 Shandong China
| | - Qian Li
- 1Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060 China
| | - Xiaoling Zhang
- 4Department of Gynecologic Oncology, Shandong Cancer Hospital and Institute, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, 250117 Shandong China
| | - Jinbo Yue
- 2Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, 250117 Shandong China
| | - Jinming Yu
- 1Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, 430060 China.,2Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, 250117 Shandong China
| |
Collapse
|
152
|
Aznar MA, Planelles L, Perez-Olivares M, Molina C, Garasa S, Etxeberría I, Perez G, Rodriguez I, Bolaños E, Lopez-Casas P, Rodriguez-Ruiz ME, Perez-Gracia JL, Marquez-Rodas I, Teijeira A, Quintero M, Melero I. Immunotherapeutic effects of intratumoral nanoplexed poly I:C. J Immunother Cancer 2019; 7:116. [PMID: 31046839 PMCID: PMC6498680 DOI: 10.1186/s40425-019-0568-2] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 03/15/2019] [Indexed: 12/30/2022] Open
Abstract
Poly I:C is a powerful immune adjuvant as a result of its agonist activities on TLR-3, MDA5 and RIG-I. BO-112 is a nanoplexed formulation of Poly I:C complexed with polyethylenimine that causes tumor cell apoptosis showing immunogenic cell death features and which upon intratumoral release results in more prominent tumor infiltration by T lymphocytes. Intratumoral treatment with BO-112 of subcutaneous tumors derived from MC38, 4 T1 and B16-F10 leads to remarkable local disease control dependent on type-1 interferon and gamma-interferon. Some degree of control of non-injected tumor lesions following BO-112 intratumoral treatment was found in mice bearing bilateral B16-OVA melanomas, an activity which was enhanced with co-treatment with systemic anti-CD137 and anti-PD-L1 mAbs. More abundant CD8+ T lymphocytes were found in B16-OVA tumor-draining lymph nodes and in the tumor microenvironment following intratumoral BO-112 treatment, with enhanced numbers of tumor antigen-specific cytotoxic T lymphocytes. Genome-wide transcriptome analyses of injected tumor lesions were consistent with a marked upregulation of the type-I interferon pathway. Inspired by these data, intratumorally delivered BO-112 is being tested in cancer patients (NCT02828098).
Collapse
Affiliation(s)
- M Angela Aznar
- Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII, 55, 31008, Pamplona, Spain.
| | | | | | - Carmen Molina
- Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII, 55, 31008, Pamplona, Spain
| | - Saray Garasa
- Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII, 55, 31008, Pamplona, Spain
| | - Iñaki Etxeberría
- Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII, 55, 31008, Pamplona, Spain
| | - Guiomar Perez
- Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII, 55, 31008, Pamplona, Spain
| | - Inmaculada Rodriguez
- Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII, 55, 31008, Pamplona, Spain
| | - Elixabet Bolaños
- Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII, 55, 31008, Pamplona, Spain
| | | | - Maria E Rodriguez-Ruiz
- Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII, 55, 31008, Pamplona, Spain
| | - Jose L Perez-Gracia
- Clínica Universidad de Navarra, Pamplona, Spain.,CIBERONC, Madrid, Spain.,IDISNA, Instituto de investigación de Navarra, Pamplona, Spain
| | - Ivan Marquez-Rodas
- Medical Oncology Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Alvaro Teijeira
- Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII, 55, 31008, Pamplona, Spain.,CIBERONC, Madrid, Spain.,IDISNA, Instituto de investigación de Navarra, Pamplona, Spain
| | | | - Ignacio Melero
- Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII, 55, 31008, Pamplona, Spain. .,Clínica Universidad de Navarra, Pamplona, Spain. .,CIBERONC, Madrid, Spain. .,IDISNA, Instituto de investigación de Navarra, Pamplona, Spain.
| |
Collapse
|
153
|
Rodriguez-Ruiz ME, Yamazaki T, Buqué A, Bloy N, Silva VAO, Stafford L, Sato A, Galluzzi L. Monitoring abscopal responses to radiation in mice. Methods Enzymol 2019; 635:111-125. [PMID: 32122540 DOI: 10.1016/bs.mie.2019.04.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Focal radiation therapy has the potential to generate systemic tumor-targeting immune responses so potent as to eradicate anatomically distant, non-irradiated malignant lesions, a phenomenon commonly referred to as "the abscopal response." In cancer patients, bona fide abscopal responses are rare, although the recent introduction of immune checkpoint blockers into the clinical practice has significantly increased their incidence. In rodents, abscopal responses can be conveniently modeled by establishing two, slightly asynchronous and anatomically distant subcutaneous tumors in syngeneic immunocompetent hosts, provided that the therapeutic partners of radiation potentially included in the regimen of choice do not mediate systemic anticancer effects per se. Here, we describe such method to monitor abscopal responses based on mammary carcinoma TSA cells implanted in syngeneic immunocompetent BALB/c mice. With minor variations, the same technique can be conveniently applied to a variety of transplantable mouse tumors.
Collapse
Affiliation(s)
- Maria Esperanza Rodriguez-Ruiz
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States; Department of Radiation Oncology, University of Navarra Clinic and CIMA, Pamplona, Spain
| | - Takahiro Yamazaki
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States
| | - Aitziber Buqué
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States
| | - Norma Bloy
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States
| | - Viviane A O Silva
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States; Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SP, Brazil
| | - Lena Stafford
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States
| | - Ai Sato
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, United States; Sandra and Edward Meyer Cancer Center, New York, NY, United States; Department of Dermatology, Yale School of Medicine, New Haven, CT, United States; Université de Paris, Paris, France.
| |
Collapse
|
154
|
|
155
|
Yoneoka S, Nakagawa Y, Uto K, Sakura K, Tsukahara T, Ebara M. Boron-incorporating hemagglutinating virus of Japan envelope (HVJ-E) nanomaterial in boron neutron capture therapy. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2019; 20:291-304. [PMID: 30956733 PMCID: PMC6442114 DOI: 10.1080/14686996.2019.1586051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 02/19/2019] [Accepted: 02/19/2019] [Indexed: 06/09/2023]
Abstract
Combining immunotherapeutic and radiotherapeutic technique has recently attracted much attention for advancing cancer treatment. If boron-incorporated hemagglutinating virus of Japan-envelope (HVJ-E) having high membrane fusion ability can be used as a boron delivery agent in boron neutron capture therapy (BNCT), a radical synergistic improvement of boron accumulation efficiency into tumor cells and antitumor immunity may be induced. In this study, we aimed to develop novel boron-containing biocompatible polymers modified onto HVJ-E surfaces. The copolymer consisting of 2-methacryloyloxyethyl phosphorylcholine (MPC) and methacrylamide benzoxaborole (MAAmBO), poly[MPC-co-MAAmBO], was successfully synthesized by using a simple free radical polymerization. The molecular structures and molecular weight of the poly[MPC-co-MAAmBO] copolymer were characterized by nuclear magnetic resonance and matrix-assisted laser desorption ionization time-of-flight mass spectrometry, respectively. The poly[MPC-co-MAAmBO] was coated onto the HVJ-E surface via the chemical bonding between the MAAmBO moiety and the sugar moiety of HVJ-E. DLS, AFM, UV-Vis, and fluorescence measurements clarified that the size of the poly[MPC-co-MAAmBO]-coated HVJ-E, HVJ-E/p[MPC-MAAmBO], to be about 130 ~ 150 nm in diameter, and that the polymer having 9.82 × 106 ~ 7 boron atoms was steadily coated on a single HVJ-E particle. Moreover, cellular uptake of poly[MPC-co-MAAmBO] could be demonstrated without cytotoxicity, and the hemolysis could be successfully suppressed by 20%. These results indicate that the HVJ-E/p[MPC-MAAmBO] may be used as boron nanocarriers in a combination of immunotherapy with BNCT.
Collapse
Affiliation(s)
- Shuichiro Yoneoka
- Laboratory for Advanced Nuclear Energy, Tokyo Institute of Technology, Tokyo, Japan
| | - Yasuhiro Nakagawa
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, Japan
- Graduate School of Pure and Applied Science, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, Kawasaki-ku, Kawasaki, Japan
| | - Koichiro Uto
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, Japan
| | - Kazuma Sakura
- Department of Medical Innovation, and Respiratory Center, Osaka University Hospital, Suita, Osaka, Japan
| | - Takehiko Tsukahara
- Laboratory for Advanced Nuclear Energy, Tokyo Institute of Technology, Tokyo, Japan
| | - Mitsuhiro Ebara
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki, Japan
- Graduate School of Pure and Applied Science, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Graduate School of Industrial Science and Technology, Tokyo University of Science, Katsushika-ku, Tokyo, Japan
| |
Collapse
|
156
|
Liu J, Zhou J, Wu M, Hu C, Yang J, Li D, Wu P, Chen Y, Chen P, Lin S, Cui Y, Fu S, Wu J. Low-Dose Total Body Irradiation Can Enhance Systemic Immune Related Response Induced by Hypo-Fractionated Radiation. Front Immunol 2019; 10:317. [PMID: 30873170 PMCID: PMC6401363 DOI: 10.3389/fimmu.2019.00317] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 02/06/2019] [Indexed: 12/20/2022] Open
Abstract
A systemic immune related response (SIME) of radiotherapy has been occasionally observed on metastatic tumors, but the clinical outcomes remain poor. Novel treatment approaches are therefore needed to improve SIME ratio. We used a combination of hypo-fractionated radiation therapy (H-RT) with low-dose total body irradiation (L-TBI) in a syngeneic mouse model of breast and colon carcinoma. The combination therapy of H-RT and L-TBI potentially enhanced SIME by infiltration of CD8+ T cell and altering the immunosuppressive microenvironment in non-irradiated subcutaneous tumor lesions. The frequency of IFN-γ, as a tumor-specific CD8+ T cells producing, significantly inhibited the secondary tumor growth of breast and colon. Our findings suggest that L-TBI could serve as a potential therapeutic agent for metastatic breast and colon cancer and, together with H-RT, their therapeutic potential is enhanced significantly.
Collapse
Affiliation(s)
- Jing Liu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
| | - Jie Zhou
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Min Wu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
| | - ChuanFei Hu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
| | - Juan Yang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
| | - Dong Li
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
| | - Peng Wu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
| | - Yue Chen
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Department of Nuclear Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Ping Chen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
| | - Sheng Lin
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
| | - YongXia Cui
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
| | - ShaoZhi Fu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
| | - JingBo Wu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, China
| |
Collapse
|
157
|
Kroon P, Frijlink E, Iglesias-Guimarais V, Volkov A, van Buuren MM, Schumacher TN, Verheij M, Borst J, Verbrugge I. Radiotherapy and Cisplatin Increase Immunotherapy Efficacy by Enabling Local and Systemic Intratumoral T-cell Activity. Cancer Immunol Res 2019; 7:670-682. [PMID: 30782666 DOI: 10.1158/2326-6066.cir-18-0654] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/18/2018] [Accepted: 02/11/2019] [Indexed: 11/16/2022]
Abstract
To increase cancer immunotherapy success, PD-1 blockade must be combined with rationally selected treatments. Here, we examined, in a poorly immunogenic mouse breast cancer model, the potential of antibody-based immunomodulation and conventional anticancer treatments to collaborate with anti-PD-1 treatment. One requirement to improve anti-PD-1-mediated tumor control was to promote tumor-specific cytotoxic T-cell (CTL) priming, which was achieved by stimulating the CD137 costimulatory receptor. A second requirement was to overrule PD-1-unrelated mechanisms of CTL suppression in the tumor microenvironment (TME). This was achieved by radiotherapy and cisplatin treatment. In the context of CD137/PD-1-targeting immunotherapy, radiotherapy allowed for tumor elimination by altering the TME, rather than intrinsic CTL functionality. Combining this radioimmunotherapy regimen with low-dose cisplatin improved CTL-dependent regression of a contralateral tumor outside the radiation field. Thus, systemic tumor control may be achieved by combining immunotherapy protocols that promote T-cell priming with (chemo)radiation protocols that permit CTL activity in both the irradiated tumor and (occult) metastases.
Collapse
Affiliation(s)
- Paula Kroon
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek, 1066 CX Amsterdam, The Netherlands
| | - Elselien Frijlink
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek, 1066 CX Amsterdam, The Netherlands
| | - Victoria Iglesias-Guimarais
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek, 1066 CX Amsterdam, The Netherlands
| | - Andriy Volkov
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek, 1066 CX Amsterdam, The Netherlands
| | - Marit M van Buuren
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek, 1066 CX Amsterdam, The Netherlands
| | - Ton N Schumacher
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek, 1066 CX Amsterdam, The Netherlands.,Division of Molecular Oncology and Immunology, Oncode Institute, The Netherlands Cancer Institute-Antoni van Leeuwenhoek, 1066 CX Amsterdam, The Netherlands
| | - Marcel Verheij
- Department of Radiation Oncology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek, 1066 CX Amsterdam, The Netherlands
| | - Jannie Borst
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek, 1066 CX Amsterdam, The Netherlands
| | - Inge Verbrugge
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek, 1066 CX Amsterdam, The Netherlands.
| |
Collapse
|
158
|
Rodríguez-Ruiz ME, Rodríguez I, Mayorga L, Labiano T, Barbes B, Etxeberria I, Ponz-Sarvise M, Azpilikueta A, Bolaños E, Sanmamed MF, Berraondo P, Calvo FA, Barcelos-Hoff MH, Perez-Gracia JL, Melero I. TGFβ Blockade Enhances Radiotherapy Abscopal Efficacy Effects in Combination with Anti-PD1 and Anti-CD137 Immunostimulatory Monoclonal Antibodies. Mol Cancer Ther 2019; 18:621-631. [PMID: 30683810 DOI: 10.1158/1535-7163.mct-18-0558] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 11/07/2018] [Accepted: 01/15/2019] [Indexed: 12/23/2022]
Abstract
Radiotherapy can be synergistically combined with immunotherapy in mouse models, extending its efficacious effects outside of the irradiated field (abscopal effects). We previously reported that a regimen encompassing local radiotherapy in combination with anti-CD137 plus anti-PD-1 mAbs achieves potent abscopal effects against syngeneic transplanted murine tumors up to a certain tumor size. Knowing that TGFβ expression or activation increases in irradiated tissues, we tested whether TGFβ blockade may further enhance abscopal effects in conjunction with the anti-PD-1 plus anti-CD137 mAb combination. Indeed, TGFβ blockade with 1D11, a TGFβ-neutralizing mAb, markedly enhanced abscopal effects and overall treatment efficacy against subcutaneous tumors of either 4T1 breast cancer cells or large MC38 colorectal tumors. Increases in CD8 T cells infiltrating the nonirradiated lesion were documented upon combined treatment, which intensely expressed Granzyme-B as an indicator of cytotoxic effector capability. Interestingly, tumor tissue but not healthy tissue irradiation results in the presence of higher concentrations of TGFβ in the nonirradiated contralateral tumor that showed smad2/3 phosphorylation increases in infiltrating CD8 T cells. In conclusion, radiotherapy-induced TGFβ hampers abscopal efficacy even upon combination with a potent immunotherapy regimen. Therefore, TGFβ blockade in combination with radioimmunotherapy results in greater efficacy.
Collapse
Affiliation(s)
- María E Rodríguez-Ruiz
- Department of Oncology, University of Navarra and Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain. .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Inmaculada Rodríguez
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Department of Cellular Therapy, University of Navarra and Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain
| | - Lina Mayorga
- Department of Oncology, University of Navarra and Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain
| | - Tania Labiano
- Department of Oncology, Complejo Hospitalario de Navarra, Pamplona, Spain
| | - Benigno Barbes
- Department of Oncology, University of Navarra and Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain
| | - Iñaki Etxeberria
- Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra and Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain
| | - Mariano Ponz-Sarvise
- Department of Oncology, University of Navarra and Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Arantza Azpilikueta
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra and Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain
| | - Elixabet Bolaños
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra and Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain
| | - Miguel F Sanmamed
- Department of Oncology, University of Navarra and Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain
| | - Pedro Berraondo
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra and Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain
| | - Felipe A Calvo
- Department of Oncology, University of Navarra and Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain
| | - Mary Helen Barcelos-Hoff
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, California
| | - Jose L Perez-Gracia
- Department of Oncology, University of Navarra and Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Ignacio Melero
- Department of Oncology, University of Navarra and Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain. .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra and Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain
| |
Collapse
|
159
|
Wang H, Lin X, Luo Y, Sun S, Tian X, Sun Y, Zhang S, Chen J, Zhang J, Liu X, Liu H, Gong Y, Xie C. α-PD-L1 mAb enhances the abscopal effect of hypo-fractionated radiation by attenuating PD-L1 expression and inducing CD8 + T-cell infiltration. Immunotherapy 2018; 11:101-118. [PMID: 30511887 DOI: 10.2217/imt-2018-0049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AIM We investigated a promising cooperative combination of radiotherapy (RT) and programmed death ligand 1 (PD-L1) monoclonal antibodies (mAb) in both local and abscopal tumors. MATERIALS & METHODS C57BL/6 mice were randomly grouped and received RT, α-PD-L1 mAb or combination therapy 13 days after implantation of Lewis lung carcinoma cells. Flow cytometry and immunohistochemistry analyses demonstrated CD8+ T-cell infiltration and PD-L1 expression in tumor issue. Cytometric bead arrays were used to examine cytokine levels. RESULTS Our studies revealed that administration of 8 Gy × 3 F with α-PD-L1 mAb promoted both local and distant control. Only local hypofractionated RT enhanced CD8+ T-cell infiltration with increased PD-L1 expression at distant foci, which might occur via serum IFN-γ modulation. Addition of α-PD-L1 mAb reduced PD-L1 expression and further increased CD8+ T-cell infiltration. CONCLUSION We identified a novel mechanism through which combination therapy enhanced the abscopal effect.
Collapse
Affiliation(s)
- Hui Wang
- Department of Radiation & Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Xiangjie Lin
- Department of Radiation & Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Yuan Luo
- Department of Radiation & Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Shaoxing Sun
- Department of Radiation & Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Xiaoli Tian
- Department of Radiation & Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Yingming Sun
- Department of Radiation & Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | | | - Jing Chen
- Department of Radiation & Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Junhong Zhang
- Department of Radiation & Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Xuefeng Liu
- Department of Pathology & Center for Cell Reprogramming, Georgetown University Medical Center, Washington, DC 20541, USA
| | - Huan Liu
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| | - Conghua Xie
- Department of Radiation & Medical Oncology, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, China
| |
Collapse
|
160
|
Shen X, Li Q, Wang F, Bao J, Dai M, Zheng H, Lao X. Generation of a novel long-acting thymosin alpha1-Fc fusion protein and its efficacy for the inhibition of breast cancer in vivo. Biomed Pharmacother 2018; 108:610-617. [DOI: 10.1016/j.biopha.2018.09.064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/09/2018] [Accepted: 09/11/2018] [Indexed: 12/21/2022] Open
|
161
|
Liu J, Rozeman EA, O'Donnell JS, Allen S, Fanchi L, Smyth MJ, Blank CU, Teng MWL. Batf3 + DCs and type I IFN are critical for the efficacy of neoadjuvant cancer immunotherapy. Oncoimmunology 2018; 8:e1546068. [PMID: 30713806 DOI: 10.1080/2162402x.2018.1546068] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/28/2018] [Accepted: 11/02/2018] [Indexed: 12/31/2022] Open
Abstract
New clinical trials are now evaluating the efficacy of neoadjuvant immunotherapy in the context of primary tumor surgery. Using the orthotopic 4T1.2 mouse model of spontaneously metastatic mammary cancer, we have shown that neoadjuvant immunotherapy and surgery was superior in the generation of tumor-specific CD8+ T cells and eradication of lethal metastases compared to surgery followed by adjuvant immunotherapy. However, the importance of host Batf3 and type I interferon (IFN) for long-term survival of mice following neoadjuvant immunotherapy is unknown. Here we demonstrated that loss of Batf3+ DCs or type I IFN receptor blockade in 4T1.2 tumor-bearing mice treated with neoadjuvant anti-PD-1+anti-CD137 immunotherapy reduced long-term survival with a corresponding reduction in tumor-specific CD8+ T cells producing effector cytokines in the primary tumor and in the periphery. Interestingly, we found all high-risk stage III melanoma patients relapsing after adjuvant or neoadjuvant ipilimumab+nivolumab within the OpACIN trial (NCT02437279) displayed low expression of Batf3+ DC-associated genes in pre-treatment tumor biopsies. Further focus should now be placed on validating the requirement of an intratumoral Batf3+ DC gene signature for response to neoadjuvant immunotherapy.
Collapse
Affiliation(s)
- Jing Liu
- Cancer Immunoregulation and Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Elisa A Rozeman
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Jake S O'Donnell
- Cancer Immunoregulation and Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.,Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.,School of Medicine, University of Queensland, Herston, Queensland, Australia
| | - Stacey Allen
- Cancer Immunoregulation and Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Lorenzo Fanchi
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Mark J Smyth
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.,School of Medicine, University of Queensland, Herston, Queensland, Australia
| | - Christian U Blank
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Michele W L Teng
- Cancer Immunoregulation and Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.,School of Medicine, University of Queensland, Herston, Queensland, Australia
| |
Collapse
|
162
|
Choi SH, Seong J. Stereotactic Body Radiotherapy: Does It Have a Role in Management of Hepatocellular Carcinoma? Yonsei Med J 2018; 59:912-922. [PMID: 30187697 PMCID: PMC6127430 DOI: 10.3349/ymj.2018.59.8.912] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Indexed: 02/06/2023] Open
Abstract
Stereotactic body radiotherapy (SBRT) is a form of radiotherapy that delivers high doses of irradiation with high precision in a small number of fractions. However, it has not frequently been performed for the liver due to the risk of radiation-induced liver toxicity. Furthermore, liver SBRT is cumbersome because it requires accurate patient repositioning, target localization, control of breathing-related motion, and confers a toxicity risk to the small bowel. Recently, with the advancement of modern technologies including intensity-modulated RT and image-guided RT, SBRT has been shown to significantly improve local control and survival outcomes for hepatocellular carcinoma (HCC), specifically those unfit for other local therapies. While it can be used as a stand-alone treatment for those patients, it can also be applied either as an alternative or as an adjunct to other HCC therapies (e.g., transarterial chemoembolization, and radiofrequency ablation). SBRT might be an effective and safe bridging therapy for patients awaiting liver transplantation. Furthermore, in recent studies, SBRT has been shown to have a potential role as an immunostimulator, supporting the novel combination strategy of immunoradiotherapy for HCC. In this review, the role of SBRT with some technical issues is discussed. In addition, future implications of SBRT as an immunostimulator are considered.
Collapse
Affiliation(s)
- Seo Hee Choi
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Jinsil Seong
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
163
|
Zhuang Y, Li S, Wang H, Pi J, Xing Y, Li G. PD-1 blockade enhances radio-immunotherapy efficacy in murine tumor models. J Cancer Res Clin Oncol 2018; 144:1909-1920. [PMID: 30074066 DOI: 10.1007/s00432-018-2723-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/30/2018] [Indexed: 12/23/2022]
Abstract
PURPOSE It has become increasingly clear in cancer treatment that radiotherapy can be enhanced by immunotherapy. In the present study, we evaluated a novel triple combination therapy consisting of local radiotherapy, intratumoral CpG, and systemic PD-1 blockade in lung cancer models. METHODS The efficacy of a novel triple therapy was examined by recording tumor volume and survival time. The immunologic effects of this novel triple therapy were evaluated by the frequency and percentage of immune cells and cytokines using flow cytometry. RESULTS This triple combination proved more effective than its subcomponents and its positive antitumor effects included reducing tumor growth and improving host survival. The antitumor effect was not only observed in directly irradiated tumors but also in at distant tumor sites in a CD8+ T-cell-dependent fashion. Phenotypic analyses of CD8+ T cells revealed that the triple combination therapy increased the percentage of effector memory T cells in the spleen. Furthermore, the combination therapy significantly increased the frequency of IFN-γ and TNF-α-positive-CD8+ tumor-infiltrating lymphocytes (TIL) and mature-activated dendritic cells (DCs) within treated tumors, indicating that the antitumor effects likely depend on the activation of a DC subset specialized in antigen crosspriming to induce cytotoxic lymphocyte (CTLs). In addition, the triple therapy reduced immunosuppressive factors, like regulatory T cells (Tregs) in the spleen and tumor microenvironment while inducing the robust systemic antitumor effect. Finally, the triple treatment was, indeed, well tolerated and had a little effect on the hemogram and lung. CONCLUSIONS These results suggest that this triple therapy promotes a local antitumor immune response with systemic consequences. The efficacy and limited toxicity of this strategy are attractive for clinical translation.
Collapse
Affiliation(s)
- Yuan Zhuang
- Department of Radiation Oncology, The First Affiliated Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Sihan Li
- Department of Radiation Oncology, The First Affiliated Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Huihui Wang
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Jingbo Pi
- Program of Environmental Toxicology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, 110122, Liaoning, China
| | - Yuhui Xing
- Department of Radiation Oncology, The First Affiliated Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China
| | - Guang Li
- Department of Radiation Oncology, The First Affiliated Hospital of China Medical University, 155 North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, China.
| |
Collapse
|
164
|
Rodriguez-Vida A, Perez-Gracia JL, Bellmunt J. Immunotherapy Combinations and Sequences in Urothelial Cancer: Facts and Hopes. Clin Cancer Res 2018; 24:6115-6124. [PMID: 29991503 DOI: 10.1158/1078-0432.ccr-17-3108] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/15/2018] [Accepted: 07/05/2018] [Indexed: 11/16/2022]
Abstract
Immune checkpoint inhibitors (ICI) have emerged as a novel therapeutic strategy that achieves significant clinical benefit in several tumor types, including urothelial cancer. Overall, these agents have shown objective response rates of around 20% to 23%, which indicates that a significant proportion of patients do not benefit from immunotherapy when given as monotherapy. Moreover, despite an initial response to therapy and an improvement in the median duration of response compared with chemotherapy, still only half of the patients develop long-term maintained remissions. Active research is ongoing in several fields, aiming to increase the number of patients that benefit from ICI, and this research is largely based on the development of biomarkers for personalized immunotherapy and novel combinations of ICI with other agents. This article will review ongoing efforts to develop combinations of ICI with other therapeutic strategies in patients with urothelial cancer, including chemotherapy, targeted agents, other immunotherapy strategies, and radiotherapy.
Collapse
Affiliation(s)
- Alejo Rodriguez-Vida
- Medical Oncology Department, Hospital del Mar, IMIM (Hospital del Mar Research Institute), Barcelona, Spain
| | | | - Joaquim Bellmunt
- Medical Oncology Department, Hospital del Mar, IMIM (Hospital del Mar Research Institute), Barcelona, Spain. .,Dana-Farber Cancer Institute, Brigham and Women's Cancer Center, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
165
|
Sánchez-Paulete AR, Teijeira A, Cueto FJ, Garasa S, Pérez-Gracia JL, Sánchez-Arráez A, Sancho D, Melero I. Antigen cross-presentation and T-cell cross-priming in cancer immunology and immunotherapy. Ann Oncol 2018; 28:xii44-xii55. [PMID: 28945841 DOI: 10.1093/annonc/mdx237] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Dendritic cells (DCs) are the main professional antigen-presenting cells for induction of T-cell adaptive responses. Cancer cells express tumor antigens, including neoantigens generated by nonsynonymous mutations, but are poor for antigen presentation and for providing costimulatory signals for T-cell priming. Mounting evidence suggests that antigen transfer to DCs and their surrogate presentation on major histocompatibility complex class I and II molecules together with costimulatory signals is paramount for induction of viral and cancer immunity. Of the great diversity of DCs, BATF3/IRF8-dependent conventional DCs type 1 (cDC1) excel at cross-presentation of tumor cell-associated antigens. Location of cDC1s in the tumor correlates with improved infiltration by CD8+ T cells and tumor-specific T-cell immunity. Indeed, cDC1s are crucial for antitumor efficacy using checkpoint inhibitors and anti-CD137 agonist monoclonal antibodies in mouse models. Enhancement and exploitation of T-cell cross-priming by cDC1s offer opportunities for improved cancer immunotherapy, including in vivo targeting of tumor antigens to internalizing receptors on cDC1s and strategies to increase their numbers, activation and priming capacity within tumors and tumor-draining lymph nodes.
Collapse
Affiliation(s)
- A R Sánchez-Paulete
- Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona
| | - A Teijeira
- Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona
| | - F J Cueto
- Immunobiology Laboratory, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid.,Department of Biochemistry, Faculty of Medicine, Universidad Autónoma de Madrid, Madrid
| | - S Garasa
- Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona
| | - J L Pérez-Gracia
- University Clinic, University of Navarra, Pamplona, Spain.,CIBERONC, Madrid, Spain
| | - A Sánchez-Arráez
- Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona
| | - D Sancho
- Immunobiology Laboratory, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid
| | - I Melero
- Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona.,University Clinic, University of Navarra, Pamplona, Spain.,CIBERONC, Madrid, Spain
| |
Collapse
|
166
|
Xu J, Wang Y, Shi J, Liu J, Li Q, Chen L. Combination therapy: A feasibility strategy for CAR-T cell therapy in the treatment of solid tumors. Oncol Lett 2018; 16:2063-2070. [PMID: 30008901 PMCID: PMC6036511 DOI: 10.3892/ol.2018.8946] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 03/07/2018] [Indexed: 12/16/2022] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapies have been demonstrated to have durable and potentially curative therapeutic efficacies in patients with hematological malignancies. Currently, multiple clinical trials in CAR-T cell therapy have been evaluated for the treatment of patients with solid malignancies, but have had less marked therapeutic effects when the agents are used as monotherapies. When summarizing relevant studies, the present study found that combination therapy strategies for solid tumors based on CAR-T cell therapies might be more effective. This review will focus on various aspects of treating solid tumors with CAR-T cell therapy: i) The therapeutic efficacy of CAR-T cell monotherapy, ii) the feasibility of the CAR-T cell therapy in conjunction with chemotherapy, iii) the feasibility of CAR-T cell therapy with radiotherapy, iv) the feasibility of CAR-T cell therapy with chemoradiotherapy, and v) the feasibility of the combination of CAR-T cell therapy with other strategies.
Collapse
Affiliation(s)
- Jinjing Xu
- Galactophore Department, Jiangsu Huai'an Maternity and Children Hospital, Huai'an, Jiangsu 223001, P.R. China
| | - Yali Wang
- Galactophore Department, Jiangsu Huai'an Maternity and Children Hospital, Huai'an, Jiangsu 223001, P.R. China
| | - Jing Shi
- Galactophore Department, Jiangsu Huai'an Maternity and Children Hospital, Huai'an, Jiangsu 223001, P.R. China
| | - Juan Liu
- Galactophore Department, Jiangsu Huai'an Maternity and Children Hospital, Huai'an, Jiangsu 223001, P.R. China
| | - Qingguo Li
- Galactophore Department, Jiangsu Huai'an Maternity and Children Hospital, Huai'an, Jiangsu 223001, P.R. China
| | - Longzhou Chen
- Galactophore Department, Jiangsu Huai'an Maternity and Children Hospital, Huai'an, Jiangsu 223001, P.R. China
| |
Collapse
|
167
|
Gong J, Le TQ, Massarelli E, Hendifar AE, Tuli R. Radiation therapy and PD-1/PD-L1 blockade: the clinical development of an evolving anticancer combination. J Immunother Cancer 2018; 6:46. [PMID: 29866197 PMCID: PMC5987486 DOI: 10.1186/s40425-018-0361-7] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 05/16/2018] [Indexed: 02/06/2023] Open
Abstract
Several inhibitors of programmed cell death-1 (PD-1) and programmed death ligand-1 (PD-L1) have been approved as a form of immunotherapy for multiple cancers. Ionizing radiation therapy (RT) has been shown to enhance the priming and effector phases of the antitumor T-cell response rendering it an attractive therapy to combine with PD-1/PD-L1 inhibitors. Preclinical data support the rational combination of the 2 modalities and has paved way for the clinical development of the combination across a spectrum of cancers. In this review, we highlight the preclinical and clinical development of combined RT and PD-1/PD-L1 blockade to date. In addition to a comprehensive evaluation of available safety and efficacy data, we discuss important points of consideration in clinical trial design for this promising combination.
Collapse
Affiliation(s)
- Jun Gong
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, CA, USA
| | - Thang Q Le
- Division of Angiography and Interventional Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Erminia Massarelli
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, CA, USA
| | - Andrew E Hendifar
- Division of Medical Oncology, Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Richard Tuli
- Departments of Radiation Oncology and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, AC 1023, Los Angeles, CA, 90048, USA.
| |
Collapse
|
168
|
Morisada M, Chamberlin M, Allen C. Exploring the rationale for combining ionizing radiation and immune checkpoint blockade in head and neck cancer. Head Neck 2018; 40:1321-1334. [PMID: 29461655 PMCID: PMC5980679 DOI: 10.1002/hed.25101] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 10/18/2017] [Accepted: 01/11/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The ability of radiation to enhance antitumor immunity under specific experimental conditions is well established. Here, we explore preclinical data and the rationale for combining different radiation doses and fractions with immune checkpoint blockade immunotherapy. METHODS We conducted a review of the literature. RESULTS The ability of high-dose or hypofractionated radiation to enhance antitumor immunity resulting in additive or synergistic tumor control when combined with checkpoint blockade is well studied. Whether low-dose daily fractionated radiation does the same is less well studied and available data suggests it may be immunosuppressive. CONCLUSION Although daily fractionated radiation is well established as the standard of care for the treatment of patients with head and neck cancer, how this radiation schema alters antitumor immunity needs further study. If the radiation doses and fractions alter antitumor immunity differently can have profound implications in the rational design of clinical trials investigating whether radiation can enhance response rates to immune checkpoint blockade.
Collapse
Affiliation(s)
- Megan Morisada
- Translation Tumor Immunology Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD
| | - Michael Chamberlin
- Department of Radiation Oncology, Walter Reed National Military Medical Center, Bethesda, MD
| | - Clint Allen
- Translation Tumor Immunology Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, MD
| |
Collapse
|
169
|
Brix N, Tiefenthaller A, Anders H, Belka C, Lauber K. Abscopal, immunological effects of radiotherapy: Narrowing the gap between clinical and preclinical experiences. Immunol Rev 2018; 280:249-279. [PMID: 29027221 DOI: 10.1111/imr.12573] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Radiotherapy-despite being a local therapy that meanwhile is characterized by an impressively high degree of spatial accuracy-can stimulate systemic phenomena which occasionally lead to regression and rejection of non-irradiated, distant tumor lesions. These abscopal effects of local irradiation have been observed in sporadic clinical case reports since the beginning of the 20th century, and extensive preclinical work has contributed to identify systemic anti-tumor immune responses as the underlying driving forces. Although abscopal tumor regression still remains a rare event in the radiotherapeutic routine, increasing numbers of cases are being reported, particularly since the clinical implementation of immune checkpoint inhibiting agents. Accordingly, interests to systematically exploit the therapeutic potential of radiotherapy-stimulated systemic responses are constantly growing. The present review briefly delineates the history of radiotherapy-induced abscopal effects and the activation of systemic anti-tumor immune responses by local irradiation. We discuss preclinical and clinical reports with specific focus on the corresponding controversies, and we propose issues that should be addressed in the future in order to narrow the gap between preclinical knowledge and clinical experiences.
Collapse
Affiliation(s)
- Nikko Brix
- Department of Radiation Oncology, University Hospital, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Anna Tiefenthaller
- Department of Radiation Oncology, University Hospital, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Heike Anders
- Department of Radiation Oncology, University Hospital, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, Ludwig-Maximilians-University of Munich, Munich, Germany.,Clinical Cooperation Group 'Personalized Radiotherapy in Head and Neck Cancer' Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Neuherberg, Germany.,German Cancer Consortium Partner Site München, Munich, Germany
| | - Kirsten Lauber
- Department of Radiation Oncology, University Hospital, Ludwig-Maximilians-University of Munich, Munich, Germany.,Clinical Cooperation Group 'Personalized Radiotherapy in Head and Neck Cancer' Helmholtz Center Munich, German Research Center for Environmental Health GmbH, Neuherberg, Germany
| |
Collapse
|
170
|
Tumor cure by radiation therapy and checkpoint inhibitors depends on pre-existing immunity. Sci Rep 2018; 8:7012. [PMID: 29725089 PMCID: PMC5934473 DOI: 10.1038/s41598-018-25482-w] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 04/20/2018] [Indexed: 11/25/2022] Open
Abstract
Radiation therapy is a source of tumor antigen release that has the potential to serve as an endogenous tumor vaccination event. In preclinical models radiation therapy synergizes with checkpoint inhibitors to cure tumors via CD8 T cell responses. To evaluate the immune response initiated by radiation therapy, we used a range of approaches to block the pre-existing immune response artifact initiated by tumor implantation. We demonstrate that blocking immune responses at tumor implantation blocks development of a tumor-resident antigen specific T cell population and prevents tumor cure by radiation therapy combined with checkpoint immunotherapy. These data demonstrate that this treatment combination relies on a pre-existing immune response to cure tumors, and may not be a solution for patients without pre-existing immunity.
Collapse
|
171
|
Rodríguez-Ruiz M, Perez-Gracia J, Rodríguez I, Alfaro C, Oñate C, Pérez G, Gil-Bazo I, Benito A, Inogés S, López-Diaz de Cerio A, Ponz-Sarvise M, Resano L, Berraondo P, Barbés B, Martin-Algarra S, Gúrpide A, Sanmamed M, de Andrea C, Salazar A, Melero I. Combined immunotherapy encompassing intratumoral poly-ICLC, dendritic-cell vaccination and radiotherapy in advanced cancer patients. Ann Oncol 2018; 29:1312-1319. [DOI: 10.1093/annonc/mdy089] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
172
|
Zizzari IG, Napoletano C, Botticelli A, Caponnetto S, Calabrò F, Gelibter A, Rughetti A, Ruscito I, Rahimi H, Rossi E, Schinzari G, Marchetti P, Nuti M. TK Inhibitor Pazopanib Primes DCs by Downregulation of the β-Catenin Pathway. Cancer Immunol Res 2018; 6:711-722. [PMID: 29700053 DOI: 10.1158/2326-6066.cir-17-0594] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 02/15/2018] [Accepted: 04/06/2018] [Indexed: 11/16/2022]
Abstract
Tyrosine kinase inhibitors (TKIs) target angiogenesis by affecting, for example, the VEGF receptors in tumors and have improved outcomes for patients with metastatic renal cell carcinoma (mRCC). Immune checkpoint inhibitors (ICIs) have also been proposed for treatment of mRCC with encouraging results. A better understanding of the activity of immune cells in mRCC, the immunomodulatory effects of TKIs, and the characteristics defining patients most likely to benefit from various therapies will help optimize immunotherapeutic approaches. In this study, we investigated the influence of the TKI pazopanib on dendritic cell (DC) performance and immune priming. Pazopanib improved DC differentiation and performance by promoting upregulation of the maturation markers HLA-DR, CD40, and CCR7; decreasing IL10 production and endocytosis; and increasing T-cell proliferation. PD-L1 expression was also downregulated. Our results demonstrate that pazopanib inhibits the Erk/β-catenin pathway, suggesting this pathway might be involved in increased DC activation. Similar results were confirmed in DCs differentiated from mRCC patients during pazopanib treatment. In treated patients pazopanib appeared to enhance a circulating CD4+ T-cell population that expresses CD137 (4-1BB). These results suggest that a potentially exploitable immunomodulatory effect induced by pazopanib could improve responses of patients with mRCC in customized protocols combining TKIs with ICI immunotherapy. Cancer Immunol Res; 6(6); 711-22. ©2018 AACR.
Collapse
Affiliation(s)
- Ilaria Grazia Zizzari
- Laboratory of Tumor Immunology and Cell Therapy, Department of Experimental Medicine, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy.
| | - Chiara Napoletano
- Laboratory of Tumor Immunology and Cell Therapy, Department of Experimental Medicine, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy
| | - Andrea Botticelli
- Division of Oncology, Department of Clinical and Molecular Medicine, Ospedale Sant'Andrea, "Sapienza" University of Rome, Rome, Italy
| | - Salvatore Caponnetto
- Division of Oncology, Department of Radiological, Oncological and Pathological Science, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy
| | - Fabio Calabrò
- Division of Medical Oncology B, San Camillo Forlanini Hospital Rome, Rome, Italy
| | - Alain Gelibter
- Division of Oncology, Department of Radiological, Oncological and Pathological Science, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy
| | - Aurelia Rughetti
- Laboratory of Tumor Immunology and Cell Therapy, Department of Experimental Medicine, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy
| | - Ilary Ruscito
- Laboratory of Tumor Immunology and Cell Therapy, Department of Experimental Medicine, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy
| | - Hassan Rahimi
- Laboratory of Tumor Immunology and Cell Therapy, Department of Experimental Medicine, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy
| | - Ernesto Rossi
- Department of Medical Oncology, Fondazione Policlinico A. Gemelli Rome, Italy
| | - Giovanni Schinzari
- Department of Medical Oncology, Fondazione Policlinico A. Gemelli Rome, Italy
| | - Paolo Marchetti
- Division of Oncology, Department of Clinical and Molecular Medicine, Ospedale Sant'Andrea, "Sapienza" University of Rome, Rome, Italy
| | - Marianna Nuti
- Laboratory of Tumor Immunology and Cell Therapy, Department of Experimental Medicine, Policlinico Umberto I, "Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
173
|
Basler L, Kowalczyk A, Heidenreich R, Fotin-Mleczek M, Tsitsekidis S, Zips D, Eckert F, Huber SM. Abscopal effects of radiotherapy and combined mRNA-based immunotherapy in a syngeneic, OVA-expressing thymoma mouse model. Cancer Immunol Immunother 2018; 67:653-662. [PMID: 29335856 PMCID: PMC11028190 DOI: 10.1007/s00262-018-2117-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 01/11/2018] [Indexed: 12/31/2022]
Abstract
BACKGROUND Tumor metastasis and immune evasion present major challenges of cancer treatment. Radiotherapy can overcome immunosuppressive tumor microenvironments. Anecdotal reports suggest abscopal anti-tumor immune responses. This study assesses abscopal effects of radiotherapy in combination with mRNA-based cancer vaccination (RNActive®). METHODS C57BL/6 mice were injected with ovalbumin-expressing thymoma cells into the right hind leg (primary tumor) and left flank (secondary tumor) with a delay of 4 days. Primary tumors were irradiated with 3 × 2 Gy, while secondary tumors were shielded. RNA and combined treatment groups received mRNA-based RNActive® vaccination. RESULTS Radiotherapy and combined radioimmunotherapy significantly delayed primary tumor growth with a tumor control in 15 and 53% of mice, respectively. In small secondary tumors, radioimmunotherapy significantly slowed growth rate compared to vaccination (p = 0.002) and control groups (p = 0.01). Cytokine microarray analysis of secondary tumors showed changes in the cytokine microenvironment, even in the non-irradiated contralateral tumors after combination treatment. CONCLUSION Combined irradiation and immunotherapy is able to induce abscopal responses, even with low, normofractionated radiation doses. Thus, the combination of mRNA-based vaccination with irradiation might be an effective regimen to induce systemic anti-tumor immunity.
Collapse
Affiliation(s)
- Lucas Basler
- Department of Radiation Oncology, University of Tübingen, Rämistrasse 100, 8091, Tübingen, Germany.
- Department of Radiation Oncology, University Hospital Zürich, Zurich, Switzerland.
| | - Aleksandra Kowalczyk
- CureVac AG, Tübingen, Germany
- Boehringer-Ingelheim, Birkendorferstr. 85, 88397, Biberach an der Riss, Germany
| | | | | | - Savas Tsitsekidis
- Department of Radiation Oncology, University of Tübingen, Rämistrasse 100, 8091, Tübingen, Germany
| | - Daniel Zips
- Department of Radiation Oncology, University of Tübingen, Rämistrasse 100, 8091, Tübingen, Germany
| | - Franziska Eckert
- Department of Radiation Oncology, University of Tübingen, Rämistrasse 100, 8091, Tübingen, Germany
| | - Stephan M Huber
- Department of Radiation Oncology, University of Tübingen, Rämistrasse 100, 8091, Tübingen, Germany
| |
Collapse
|
174
|
Marconcini R, Spagnolo F, Stucci LS, Ribero S, Marra E, Rosa FD, Picasso V, Di Guardo L, Cimminiello C, Cavalieri S, Orgiano L, Tanda E, Spano L, Falcone A, Queirolo P. Current status and perspectives in immunotherapy for metastatic melanoma. Oncotarget 2018; 9:12452-12470. [PMID: 29552325 PMCID: PMC5844761 DOI: 10.18632/oncotarget.23746] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 11/03/2017] [Indexed: 12/31/2022] Open
Abstract
Metastatic melanoma was the first malignancy in which immune checkpoint inhibitors demonstrated their successful efficacy. Currently, the knowledge on the interaction between the immune system and malignant disease is steadily increasing and new drugs and therapeutic strategies are overlooking in the clinical scenario. To provide a comprehensive overview of immune modulating drugs currently available in the treatment of melanoma as well as to discuss of possible future strategies in the metastatic melanoma setting, the present review aims at analyzing controversial aspects about the optimal immunomodulating treatment sequences, the search for biomarkers of efficacy of immunocheckpoint inhibitors, and innovative combinations of drugs currently under investigation.
Collapse
Affiliation(s)
- Riccardo Marconcini
- Unit of Medical Oncology 2, Azienda Ospedaliera-Universitaria
Pisana, Department of Translational Research and New Technologies in Medicine and
Surgery, University of Pisa, Italy
| | - Francesco Spagnolo
- Department of Medical Oncology, IRCCS AOU San Martino-Istituto
Nazionale per la Ricerca sul Cancro, Genova, Italy
| | - Luigia Stefania Stucci
- Medical Oncology Unit, Department of Biomedical Sciences and
Clinical Oncology, University of Bari, Bari, Italy
| | - Simone Ribero
- Dermatologic Clinic, Department of Medical Sciences,
University of Turin, Turin, Italy
| | - Elena Marra
- Dermatologic Clinic, Department of Medical Sciences,
University of Turin, Turin, Italy
| | - Francesco De Rosa
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei
Tumori, IRST IRCCS, Meldola, Italy
| | - Virginia Picasso
- Department of Medical Oncology, IRCCS AOU San Martino-Istituto
Nazionale per la Ricerca sul Cancro, Genova, Italy
| | | | | | | | - Laura Orgiano
- AOU Cagliari, Department of Medical Oncology, University of
Cagliari, Cagliari, Italy
| | - Enrica Tanda
- Department of Medical Oncology, IRCCS AOU San Martino-Istituto
Nazionale per la Ricerca sul Cancro, Genova, Italy
| | - Laura Spano
- Department of Medical Oncology, IRCCS AOU San Martino-Istituto
Nazionale per la Ricerca sul Cancro, Genova, Italy
| | - Alfredo Falcone
- Unit of Medical Oncology 2, Azienda Ospedaliera-Universitaria
Pisana, Department of Translational Research and New Technologies in Medicine and
Surgery, University of Pisa, Italy
| | - Paola Queirolo
- Department of Medical Oncology, IRCCS AOU San Martino-Istituto
Nazionale per la Ricerca sul Cancro, Genova, Italy
| | - for the Italian Melanoma Intergroup (IMI)
- Unit of Medical Oncology 2, Azienda Ospedaliera-Universitaria
Pisana, Department of Translational Research and New Technologies in Medicine and
Surgery, University of Pisa, Italy
- Department of Medical Oncology, IRCCS AOU San Martino-Istituto
Nazionale per la Ricerca sul Cancro, Genova, Italy
- Medical Oncology Unit, Department of Biomedical Sciences and
Clinical Oncology, University of Bari, Bari, Italy
- Dermatologic Clinic, Department of Medical Sciences,
University of Turin, Turin, Italy
- Istituto Scientifico Romagnolo per lo Studio e la Cura dei
Tumori, IRST IRCCS, Meldola, Italy
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milan,
Italy
- AOU Cagliari, Department of Medical Oncology, University of
Cagliari, Cagliari, Italy
| |
Collapse
|
175
|
Walle T, Martinez Monge R, Cerwenka A, Ajona D, Melero I, Lecanda F. Radiation effects on antitumor immune responses: current perspectives and challenges. Ther Adv Med Oncol 2018; 10:1758834017742575. [PMID: 29383033 PMCID: PMC5784573 DOI: 10.1177/1758834017742575] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/24/2017] [Indexed: 12/14/2022] Open
Abstract
Radiotherapy (RT) is currently used in more than 50% of cancer patients during the course of their disease in the curative, adjuvant or palliative setting. RT achieves good local control of tumor growth, conferring DNA damage and impacting tumor vasculature and the immune system. Formerly regarded as a merely immunosuppressive treatment, pre- and clinical observations indicate that the therapeutic effect of RT is partially immune mediated. In some instances, RT synergizes with immunotherapy (IT), through different mechanisms promoting an effective antitumor immune response. Cell death induced by RT is thought to be immunogenic and results in modulation of lymphocyte effector function in the tumor microenvironment promoting local control. Moreover, a systemic immune response can be elicited or modulated to exert effects outside the irradiation field (so called abscopal effects). In this review, we discuss the body of evidence related to RT and its immunogenic potential for the future design of novel combination therapies.
Collapse
Affiliation(s)
- Thomas Walle
- Innate Immunity Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Adelheid Cerwenka
- German Cancer Research Center (DKFZ), Research Group Innate Immunity, Heidelberg, Germany
| | - Daniel Ajona
- Division of Oncology, Centre for Applied Biomedical Research (CIMA), Pamplona, SpainIdiSNA, Navarra Institute for Health Research, Pamplona, SpainDepartment of Biochemistry and Genetics, University of Navarra, Pamplona, Spain Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)
| | - Ignacio Melero
- Programme in Immunotherapy, Centre for Applied Biomedical Research (CIMA), Pamplona, SpainDepartment of Immunology and Immunotherapy, Clínica Universidad de Navarra, Pamplona, Spain Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)
| | - Fernando Lecanda
- Programme in Solid Tumours and Biomarkers, Division of Oncology, Centre for Applied Biomedical Research (CIMA), IdiSNA, Navarra Institute for Health Research, Department of Histology and Pathology, University of Navarra, School of Medicine, Pamplona, Spain. Centro de Investigación Biomédica en Red de Cáncer (CIBERONC)
| |
Collapse
|
176
|
Nedrow JR, Josefsson A, Park S, Bäck T, Hobbs RF, Brayton C, Bruchertseifer F, Morgenstern A, Sgouros G. Pharmacokinetics, microscale distribution, and dosimetry of alpha-emitter-labeled anti-PD-L1 antibodies in an immune competent transgenic breast cancer model. EJNMMI Res 2017; 7:57. [PMID: 28721684 PMCID: PMC5515722 DOI: 10.1186/s13550-017-0303-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/05/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Studies combining immune checkpoint inhibitors with external beam radiation have shown a therapeutic advantage over each modality alone. The purpose of these works is to evaluate the potential of targeted delivery of high LET radiation to the tumor microenvironment via an immune checkpoint inhibitor. METHODS The impact of protein concentration on the distribution of 111In-DTPA-anti-PD-L1-BC, an 111In-antibody conjugate targeted to PD-L1, was evaluated in an immunocompetent mouse model of breast cancer. 225Ac-DOTA-anti-PD-L1-BC was evaluated by both macroscale (ex vivo biodistribution) and microscale (alpha-camera images at a protein concentration determined by the 111In data. RESULTS The evaluation of 111In-DTPA-anti-PD-L1-BC at 1, 3, and 10 mg/kg highlighted the impact of protein concentration on the distribution of the labeled antibody, particularly in the blood, spleen, thymus, and tumor. Alpha-camera images for the microscale distribution of 225Ac-DOTA-anti-PD-L1-BC showed a uniform distribution in the liver while highly non-uniform distributions were obtained in the thymus, spleen, kidney, and tumor. At an antibody dose of 3 mg/kg, the liver was dose-limiting with an absorbed dose of 738 mGy/kBq; based upon blood activity concentration measurements, the marrow absorbed dose was 29 mGy/kBq. CONCLUSIONS These studies demonstrate that 225Ac-DOTA-anti-PD-L1-BC is capable of delivering high LET radiation to PD-L1 tumors. The use of a surrogate SPECT agent, 111In-DTPA-anti-PD-L1-BC, is beneficial in optimizing the dose delivered to the tumor sites. Furthermore, an accounting of the microscale distribution of the antibody in preclinical studies was essential to the proper interpretation of organ absorbed doses and their likely relation to biologic effect.
Collapse
Affiliation(s)
- Jessie R Nedrow
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, CRBII 4M.61, 1550 Orleans Street, Baltimore, MD, 21231, USA
| | - Anders Josefsson
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, CRBII 4M.61, 1550 Orleans Street, Baltimore, MD, 21231, USA
| | - Sunju Park
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, CRBII 4M.61, 1550 Orleans Street, Baltimore, MD, 21231, USA
| | - Tom Bäck
- The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Robert F Hobbs
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Cory Brayton
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Frank Bruchertseifer
- European Commission Joint Research Centre, Directorate for Nuclear Safety and Security, Karlsruhe, Germany
| | - Alfred Morgenstern
- European Commission Joint Research Centre, Directorate for Nuclear Safety and Security, Karlsruhe, Germany
| | - George Sgouros
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, CRBII 4M.61, 1550 Orleans Street, Baltimore, MD, 21231, USA.
| |
Collapse
|
177
|
Abstract
Radiation therapy is primarily a modality to kill cancer cells in the treatment field. It is becoming increasingly clear that radiation therapy can also be used to direct immune responses that have the potential to clear residual local or distant disease outside the treatment field. We believe that cancer cell death is the critical link between these processes. Understanding the handling of dying cancer cells by immune cells in the tumor environment is crucial to facilitate immune responses following radiation therapy. We review the role of the TAM (Tyro3 Axl Mertk) group of receptor tyrosine kinases and their role following radiation-induced cancer cell death in the tumor environment.
Collapse
|
178
|
Honeychurch J, Illidge TM. The influence of radiation in the context of developing combination immunotherapies in cancer. Ther Adv Vaccines Immunother 2017; 5:115-122. [PMID: 29998216 PMCID: PMC5933534 DOI: 10.1177/2051013617750561] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/05/2017] [Indexed: 01/02/2023] Open
Abstract
In addition to tumouricidal activity, radiotherapy is now recognized to display potent immunostimulatory properties that can contribute to the generation of anti-cancer immune responses. Treatment with radiation can induce a variety of pro-immunogenic and phenotypic changes in malignant cells, and recalibrate the immune contexture of the tumour microenvironment, leading to enhanced activation of the innate immune system, and priming of tumour-specific T-cell immunity. The immune-dependent effects of radiotherapy provide a sound rationale for the development of combination strategies, whereby the immunomodulatory properties of radiation can be exploited to augment the activity of immunotherapeutic agents. Encouraged by the recent success of breakthrough therapies such as immune checkpoint blockade, and a wealth of experimental data demonstrating the efficacy of radiotherapy and immunotherapy combinations, the clinical potential of this approach is now being explored in numerous trials. Successful translation will require careful consideration of the most suitable dose and fractionation of radiation, choice of immunotherapy and optimal sequencing and scheduling regimen. Immunological control of cancer is now becoming a clinical reality. There is considerable optimism that the development of effective radiotherapy and immunotherapy combinations with the capacity to induce durable, systemic immunity will further enhance patient outcome and transform the future management of cancer.
Collapse
Affiliation(s)
- Jamie Honeychurch
- Targeted Therapy Group, Division of Cancer Sciences, Manchester Cancer Research Centre, Christie Hospital, Manchester Academic Health Sciences Centre, National Institute of Health Research Biomedical Research Centre, Manchester, M20 4BX, UK
| | - Timothy M. Illidge
- Targeted Therapy Group, Division of Cancer Sciences, Manchester Cancer Research Centre, Christie Hospital, Manchester Academic Health Sciences Centre, National Institute of Health Research Biomedical Research Centre, Manchester, UK
| |
Collapse
|
179
|
Morisada M, Clavijo PE, Moore E, Sun L, Chamberlin M, Van Waes C, Hodge JW, Mitchell JB, Friedman J, Allen CT. PD-1 blockade reverses adaptive immune resistance induced by high-dose hypofractionated but not low-dose daily fractionated radiation. Oncoimmunology 2017; 7:e1395996. [PMID: 29399393 PMCID: PMC5790397 DOI: 10.1080/2162402x.2017.1395996] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/18/2017] [Accepted: 10/19/2017] [Indexed: 01/08/2023] Open
Abstract
Preclinical evidence suggests that high-dose hypofractionated ionizing radiation (IR) can enhance anti-tumor immunity and result in significant tumor control when combined with immune checkpoint blockade (ICB). However, low-dose daily fractioned IR used for many tumor types including head and neck squamous cell carcinoma results in lymphopenia and may be immunosuppressive. We compared immune correlates, primary tumor and abscopal tumor control rates following the addition of PD-1 mAb to either high-dose hypofractioned (8Gyx2) or low-dose daily fractionated (2Gyx10) IR in syngeneic models of cancer. When compared to 2Gyx10 IR, 8Gyx2 IR preserved peripheral and tumor-infiltrating CD8+ T-lymphocyte accumulation and activation and reduced peripheral and tumor gMDSC accumulation. Regulatory T-lymphocytes were largely unaltered. Type I and I IFN levels and expression of IFN-responsive MHC class I and PD-L1 was enhanced in tumors treated with 8Gyx2 compared to 2Gyx10 IR. Functionally, tumor-specific CD8+ T-lymphocyte IFN responses within tumor draining lymph nodes were enhanced following 8Gyx2 IR but suppressed following 2Gyx10 IR. When combined with PD-1 mAb, reversal of adaptive immune resistance and subsequent enhancement of CD8+ cell dependent primary and abscopal tumor control was observed following 8Gyx2 but not 2Gyx10 IR. These data strongly support that compared to daily fractionated low-dose IR, high-dose hypofractionated IR preserves or enhances anti-tumor immunity and, when combined with PD-1 mAb to reverse adaptive immune resistance, promotes anti-tumor immunity to control primary and distant tumors. These data critically inform the rational design of trials combining IR and ICB.
Collapse
Affiliation(s)
- Megan Morisada
- Translational Tumor Immunology Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Paul E. Clavijo
- Translational Tumor Immunology Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Ellen Moore
- Translational Tumor Immunology Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Lillian Sun
- Translational Tumor Immunology Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Michael Chamberlin
- Department of Radiation Oncology, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Carter Van Waes
- Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - James W. Hodge
- Laboratory of Tumor Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James B. Mitchell
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jay Friedman
- Translational Tumor Immunology Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Clint T. Allen
- Translational Tumor Immunology Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
- Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
180
|
Milazzo FM, Anastasi AM, Chiapparino C, Rosi A, Leoni B, Vesci L, Petronzelli F, De Santis R. AvidinOX-anchored biotinylated trastuzumab and pertuzumab induce down-modulation of ErbB2 and tumor cell death at concentrations order of magnitude lower than not-anchored antibodies. Oncotarget 2017; 8:22590-22605. [PMID: 28186982 PMCID: PMC5410247 DOI: 10.18632/oncotarget.15145] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 01/25/2017] [Indexed: 01/22/2023] Open
Abstract
The oxidized version of Avidin, known as AvidinOX, was previously shown to link to tissue proteins upon injection or nebulization, thus becoming a stable receptor for biotinylated therapeutics. AvidinOX is currently under clinical investigation to target radioactive biotin to inoperable tumor lesions (ClinicalTrials.gov NCT02053324). Presently, we show that the anti-ErbB2 monoclonal antibodies Trastuzumab and Pertuzumab can be chemically biotinylated while maintaining their biochemical and biological properties. By using several and diverse experimental conditions, we show that when AvidinOX is conjugated to tumor cells, low antibody concentrations of biotinylated Trastuzumab (bTrast) or Pertuzumab (bPert) prevent internalization of ErbB2, induce endoplasmic reticulum stress, cell cycle arrest and apoptosis leading to inhibition of proliferation and ErbB2 signaling. Moreover, we found that the treatment is able to induce down-modulation of ErbB2 thus bypassing the known resistance of this receptor to degradation. Interestingly, we show that AvidinOX anchorage is a way to counteract agonistic activities of Trastuzumab and Pertuzumab. Present data are in agreement with previous observations from our group indicating that the engagement of the Epidermal Growth Factor Receptor (EGFR) by AvidinOX-bound biotinylated Cetuximab or Panitumumab, leads to potent tumor inhibition both in vitro and in animal models. All results taken together encourage further investigation of AvidinOX-based treatments with biotinylated antibodies directed to the members of the EGFR family.
Collapse
Affiliation(s)
| | - Anna Maria Anastasi
- Biotech Products, Research and Development, Sigma-Tau SpA, 00071 Pomezia (Rome), Italy
| | - Caterina Chiapparino
- Biotech Products, Research and Development, Sigma-Tau SpA, 00071 Pomezia (Rome), Italy
| | - Antonio Rosi
- Biotech Products, Research and Development, Sigma-Tau SpA, 00071 Pomezia (Rome), Italy
| | - Barbara Leoni
- Biotech Products, Research and Development, Sigma-Tau SpA, 00071 Pomezia (Rome), Italy
| | - Loredana Vesci
- Biotech Products, Research and Development, Sigma-Tau SpA, 00071 Pomezia (Rome), Italy
| | - Fiorella Petronzelli
- Biotech Products, Research and Development, Sigma-Tau SpA, 00071 Pomezia (Rome), Italy
| | - Rita De Santis
- Biotech Products, Research and Development, Sigma-Tau SpA, 00071 Pomezia (Rome), Italy
| |
Collapse
|
181
|
Dovedi SJ, Cheadle EJ, Popple AL, Poon E, Morrow M, Stewart R, Yusko EC, Sanders CM, Vignali M, Emerson RO, Robins HS, Wilkinson RW, Honeychurch J, Illidge TM. Fractionated Radiation Therapy Stimulates Antitumor Immunity Mediated by Both Resident and Infiltrating Polyclonal T-cell Populations when Combined with PD-1 Blockade. Clin Cancer Res 2017; 23:5514-5526. [PMID: 28533222 DOI: 10.1158/1078-0432.ccr-16-1673] [Citation(s) in RCA: 251] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 11/17/2016] [Accepted: 05/16/2017] [Indexed: 12/18/2022]
Abstract
Purpose: Radiotherapy is a highly effective anticancer treatment forming part of the standard of care for the majority of patients, but local and distal disease recurrence remains a major cause of mortality. Radiotherapy is known to enhance tumor immunogenicity; however, the contribution and mechanisms of radiotherapy-induced immune responses are unknown.Experimental Design: The impact of low-dose fractionated radiotherapy (5 × 2 Gy) alone and in combination with αPD-1 mAb on the tumor microenvironment was evaluated by flow cytometry and next-generation sequencing of the T-cell receptor (TCR) repertoire. A dual-tumor model was used, with fractionated radiotherapy delivered to a single tumor site to enable evaluation of the local and systemic response to treatment and ability to induce abscopal responses outside the radiation field.Results: We show that fractionated radiotherapy leads to T-cell infiltration at the irradiated site; however, the TCR landscape remains dominated by polyclonal expansion of preexisting T-cell clones. Adaptive resistance via the PD-1/PD-L1 pathway restricts the generation of systemic anticancer immunity following radiotherapy, which can be overcome through combination with αPD-1 mAb leading to improved local and distal tumor control. Moreover, we show that effective clearance of tumor following combination therapy is dependent on both T cells resident in the tumor at the time of radiotherapy and infiltrating T cells.Conclusions: These data provide evidence that radiotherapy can enhance T-cell trafficking to locally treated tumor sites and augment preexisting anticancer T-cell responses with the capacity to mediate regression of out-of-field tumor lesions when delivered in combination with αPD-1 mAb therapy. Clin Cancer Res; 23(18); 5514-26. ©2017 AACR.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Hormonal/pharmacology
- Cell Line, Tumor
- Combined Modality Therapy
- Cytokines/metabolism
- Disease Models, Animal
- Humans
- Lymphocytes, Tumor-Infiltrating/drug effects
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Lymphocytes, Tumor-Infiltrating/radiation effects
- Mice
- Neoplasms/immunology
- Neoplasms/metabolism
- Neoplasms/pathology
- Neoplasms/therapy
- Programmed Cell Death 1 Receptor/antagonists & inhibitors
- Programmed Cell Death 1 Receptor/metabolism
- Radiotherapy
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Survival Rate
- T-Lymphocyte Subsets/drug effects
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/radiation effects
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Simon J Dovedi
- Targeted Therapy Group, Division of Molecular and Clinical Cancer Sciences, Manchester Cancer Research Centre, Christie Hospital, Manchester Academic Health Sciences Centre, United Kingdom.
- MedImmune Ltd., Granta Park, Cambridge, United Kingdom
| | - Eleanor J Cheadle
- Targeted Therapy Group, Division of Molecular and Clinical Cancer Sciences, Manchester Cancer Research Centre, Christie Hospital, Manchester Academic Health Sciences Centre, United Kingdom
| | - Amy L Popple
- Targeted Therapy Group, Division of Molecular and Clinical Cancer Sciences, Manchester Cancer Research Centre, Christie Hospital, Manchester Academic Health Sciences Centre, United Kingdom
| | - Edmund Poon
- MedImmune Ltd., Granta Park, Cambridge, United Kingdom
| | | | - Ross Stewart
- MedImmune Ltd., Granta Park, Cambridge, United Kingdom
| | | | | | | | | | | | | | - Jamie Honeychurch
- Targeted Therapy Group, Division of Molecular and Clinical Cancer Sciences, Manchester Cancer Research Centre, Christie Hospital, Manchester Academic Health Sciences Centre, United Kingdom
| | - Timothy M Illidge
- Targeted Therapy Group, Division of Molecular and Clinical Cancer Sciences, Manchester Cancer Research Centre, Christie Hospital, Manchester Academic Health Sciences Centre, United Kingdom.
| |
Collapse
|
182
|
Administration of low-dose combination anti-CTLA4, anti-CD137, and anti-OX40 into murine tumor or proximal to the tumor draining lymph node induces systemic tumor regression. Cancer Immunol Immunother 2017; 67:47-60. [PMID: 28905118 DOI: 10.1007/s00262-017-2059-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 08/30/2017] [Indexed: 01/01/2023]
Abstract
The delivery of immunomodulators directly into the tumor potentially harnesses the existing antigen, tumor-specific infiltrating lymphocytes, and antigen presenting cells. This can confer specificity and generate a potent systemic anti-tumor immune response with lower doses and less toxicity compared to systemic administration, in effect an in situ vaccine. Here, we test this concept using the novel combination of immunomodulators anti-CTLA4, -CD137, and -OX40. The triple combination administered intratumorally at low doses to one tumor of a dual tumor mouse model had dramatic local and systemic anti-tumor efficacy in lymphoma (A20) and solid tumor (MC38) models, consistent with an abscopal effect. The minimal effective dose was 10 μg each. The effect was dependent on CD8 T-cells. Intratumoral administration resulted in superior local and distant tumor control compared to systemic routes, supporting the in situ vaccine concept. In a single tumor A20 model, injection close to the tDLN resulted in similar efficacy as intratumoral and significantly better than targeting a non-tDLN, supporting the role of the tDLN as a viable immunotherapy target in addition to the tumor itself. Distribution studies confirmed expected concentration of antibodies in tumor and tDLN, in keeping with the anti-tumor results. Overall intratumoral or peri-tDLN administration of the novel combination of anti-CTLA4, anti-CD137, and anti-OX40, all agents in the clinic or clinical trials, demonstrates potent systemic anti-tumor effects. This immunotherapeutic combination is promising for future clinical development via both these safe and highly efficacious routes of administration.
Collapse
|
183
|
Rodriguez-Ruiz ME, Rodriguez I, Barbes B, Mayorga L, Sanchez-Paulete AR, Ponz-Sarvise M, Pérez-Gracia JL, Melero I. Brachytherapy attains abscopal effects when combined with immunostimulatory monoclonal antibodies. Brachytherapy 2017; 16:1246-1251. [PMID: 28838649 DOI: 10.1016/j.brachy.2017.06.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/27/2017] [Accepted: 06/27/2017] [Indexed: 12/22/2022]
Abstract
PURPOSE/OBJECTIVES Preclinical and clinical evidence indicate that the proimmune effects of radiotherapy can be synergistically augmented with immunostimulatory monoclonal antibodies (mAb) to act both on irradiated tumor lesions and on tumors at distant, nonirradiated sites. We have recently reported that external beam radiotherapy achieves abscopal effects when combined with antagonist anti-PD1 mAbs and agonist anti-CD137 (4-1BB) mAbs. The goal of this work is to study the abscopal effects of radiotherapy instigated by brachytherapy techniques. METHODS AND MATERIALS Mice bearing a subcutaneous colorectal carcinoma, MC38 (colorectal cancer), in both flanks were randomly assigned to receive brachytherapy or not (8 Gy × three fractions) to only one of the two grafted tumors, in combination with intraperitoneal immunostimulatory monoclonal antibodies (anti-PD1, anti-CD137, and/or their respective isotype controls). To study the abscopal effects of brachytherapy, we established an experimental set up that permits irradiation of mouse tumors sparing a distant site resembling metastasis. Such second nonirradiated tumor was used as indicator of abscopal effect. Tumor size was monitored every 2 days. RESULTS Abscopal effects on distant nonirradiated subcutaneous tumor lesions of transplanted MC38-derived tumors only took place when brachytherapy was combined with immunostimulatory anti-PD1 and/or anti-CD137 mAbs. CONCLUSIONS Our results demonstrate that immunotherapy-potentiated abscopal effects can be attained by brachytherapy. Accordingly, immunotherapy plus brachytherapy combinations are suitable for clinical translation.
Collapse
Affiliation(s)
- María E Rodriguez-Ruiz
- Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra and Instituto de Investigacion Sanitaria de Navarra (IdISNA), Pamplona, Spain; Department of Oncology, University Clinic of Navarra, Pamplona, Spain; University Clinic, University of Navarra and Instituto de Investigacion Sanitaria de Navarra (IdISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain.
| | - Inmaculada Rodriguez
- Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra and Instituto de Investigacion Sanitaria de Navarra (IdISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| | - Benigno Barbes
- Department of Oncology, University Clinic of Navarra, Pamplona, Spain; University Clinic, University of Navarra and Instituto de Investigacion Sanitaria de Navarra (IdISNA), Pamplona, Spain
| | - Lina Mayorga
- Department of Oncology, University Clinic of Navarra, Pamplona, Spain; University Clinic, University of Navarra and Instituto de Investigacion Sanitaria de Navarra (IdISNA), Pamplona, Spain
| | - Alfonso Rodriguez Sanchez-Paulete
- Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra and Instituto de Investigacion Sanitaria de Navarra (IdISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| | - Mariano Ponz-Sarvise
- Department of Oncology, University Clinic of Navarra, Pamplona, Spain; University Clinic, University of Navarra and Instituto de Investigacion Sanitaria de Navarra (IdISNA), Pamplona, Spain
| | - José Luis Pérez-Gracia
- Department of Oncology, University Clinic of Navarra, Pamplona, Spain; University Clinic, University of Navarra and Instituto de Investigacion Sanitaria de Navarra (IdISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain
| | - Ignacio Melero
- Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra and Instituto de Investigacion Sanitaria de Navarra (IdISNA), Pamplona, Spain; Department of Oncology, University Clinic of Navarra, Pamplona, Spain; University Clinic, University of Navarra and Instituto de Investigacion Sanitaria de Navarra (IdISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Spain.
| |
Collapse
|
184
|
Stern PL. Is immunity in cancer the key to improving clinical outcome?: Report on the International Symposium on Immunotherapy, The Royal Society, London, UK, 12-13 May 2017. THERAPEUTIC ADVANCES IN VACCINES 2017; 5:55-68. [PMID: 28794878 DOI: 10.1177/2051013617720659] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 06/19/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Peter L Stern
- Division of Molecular & Clinical Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Paterson Building, Wilmslow Road, Manchester M20 4BX, UK
| |
Collapse
|
185
|
Candidate immune biomarkers for radioimmunotherapy. Biochim Biophys Acta Rev Cancer 2017; 1868:58-68. [DOI: 10.1016/j.bbcan.2017.02.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/21/2017] [Accepted: 02/25/2017] [Indexed: 12/25/2022]
|
186
|
Mitotic progression following DNA damage enables pattern recognition within micronuclei. Nature 2017; 548:466-470. [PMID: 28759889 PMCID: PMC5857357 DOI: 10.1038/nature23470] [Citation(s) in RCA: 1025] [Impact Index Per Article: 128.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/11/2017] [Indexed: 12/21/2022]
Abstract
Inflammatory gene expression following genotoxic cancer therapy is well documented, yet the events underlying its induction remain poorly understood. Inflammatory cytokines modify the tumour microenvironment by recruiting immune cells and are critical for both local and systemic (abscopal) tumour responses to radiotherapy. A poorly understood feature of these responses is the delayed onset (days), in contrast to the acute DNA-damage responses that occur in minutes to hours. Such dichotomous kinetics implicate additional rate-limiting steps that are essential for DNA-damage-induced inflammation. Here we show that cell cycle progression through mitosis following double-stranded DNA breaks leads to the formation of micronuclei, which precede activation of inflammatory signalling and are a repository for the pattern-recognition receptor cyclic GMP-AMP synthase (cGAS). Inhibiting progression through mitosis or loss of pattern recognition by stimulator of interferon genes (STING)-cGAS impaired interferon signalling. Moreover, STING loss prevented the regression of abscopal tumours in the context of ionizing radiation and immune checkpoint blockade in vivo. These findings implicate temporal modulation of the cell cycle as an important consideration in the context of therapeutic strategies that combine genotoxic agents with immune checkpoint blockade.
Collapse
|
187
|
Vanpouille-Box C, Formenti SC, Demaria S. Toward Precision Radiotherapy for Use with Immune Checkpoint Blockers. Clin Cancer Res 2017; 24:259-265. [PMID: 28751442 DOI: 10.1158/1078-0432.ccr-16-0037] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/18/2017] [Accepted: 07/19/2017] [Indexed: 12/20/2022]
Abstract
The first evidence that radiotherapy enhances the efficacy of immune checkpoint blockers (ICB) was obtained a dozen years ago in a mouse model of metastatic carcinoma refractory to anti-CTLA-4 treatment. At the time, ICBs had just entered clinical testing, an endeavor that culminated in 2011 with the approval of the first anti-CTLA-4 antibody for use in metastatic melanoma patients (ipilimumab). Thereafter, some patients progressing on ipilimumab showed systemic responses only upon receiving radiation to one lesion, confirming clinically the proimmunogenic effects of radiation. Preclinical data demonstrate that multiple immunomodulators synergize with radiotherapy to cause the regression of irradiated tumors and, less often, nonirradiated metastases. However, the impact of dose and fractionation on the immunostimulatory potential of radiotherapy has not been thoroughly investigated. This issue is extremely relevant given the growing number of clinical trials testing the ability of radiotherapy to increase the efficacy of ICBs. Recent data demonstrate that the recruitment of dendritic cells to neoplastic lesions (and hence the priming of tumor-specific CD8+ T cells) is highly dependent on radiotherapy dose and fractionation through a mechanism that involves the accumulation of double-stranded DNA in the cytoplasm of cancer cells and consequent type I IFN release. The molecular links between the cellular response to radiotherapy and type I IFN secretion are just being uncovered. Here, we discuss the rationale for an optimized use of radiotherapy as well as candidate biomarkers that may predict clinical responses to radiotherapy combined with ICBs. Clin Cancer Res; 24(2); 259-65. ©2017 AACR.
Collapse
Affiliation(s)
| | - Silvia C Formenti
- Department of Radiation Oncology, Weill Cornell Medicine, New York, New York
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medicine, New York, New York. .,Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| |
Collapse
|
188
|
王 维, 王 丹, 秦 国, 陈 新, 张 毅. 免疫检查点抑制剂在结直肠癌中的应用以及未来发展方向. Shijie Huaren Xiaohua Zazhi 2017; 25:1714-1727. [DOI: 10.11569/wcjd.v25.i19.1714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
结直肠癌(colorectal cancer, CRC)是消化系最常见的恶性肿瘤之一, 在我国, 其发病率及死亡率处于逐年上升趋势, 且总体预后相对较差. 近年来, 免疫治疗的基础和临床研究都获得了快速发展, 已成为肿瘤研究的热点. 其中, 免疫检查点抑制剂已经被批准用于包括CRC在内的多种实体肿瘤的临床治疗. 本文将重点阐述免疫检查点的作用、机制和免疫检查点抑制剂在CRC中应用的最新进展, 以及影响其抗肿瘤疗效的因素. 已经完成和正在进行的临床试验肯定了免疫检查点抑制剂在CRC的治疗中的潜力, 尽管部分患者仍对免疫检查点治疗无应答. 因此, 探究免疫检查点抑制剂治疗CRC患者的敏感因素, 对实现个体化精准治疗至关重要. 未来, 免疫检查点抑制剂有望和其他多种治疗方法相联合, 提高患者反应率, 延长患者的生存期.
Collapse
|
189
|
Bracci L, Sistigu A, Proietti E, Moschella F. The added value of type I interferons to cytotoxic treatments of cancer. Cytokine Growth Factor Rev 2017; 36:89-97. [PMID: 28693974 DOI: 10.1016/j.cytogfr.2017.06.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 06/16/2017] [Indexed: 12/17/2022]
Abstract
Type I interferons (IFNs) exert anti-proliferative, antiviral and immunomodulatory activities. They are also involved in cell differentiation and anti-tumor defense processes. A growing body of literature indicates that the success of conventional chemotherapeutics, epigenetic drugs, targeted anticancer agents and radiotherapy (RT) relies, at least in part, on the induction of type I IFN signaling in malignant cells, tumor-infiltrating antigen presenting cells or other immune cells within lymphoid organs or blood. The mechanisms underlying type I IFN induction and the clinical consequences of these observations are only beginning to be elucidated. In the present manuscript, we reviewed the recent advances in the field and provided our personal view on the role of type I IFNs induced in the context of cytotoxic anticancer treatments and on its possible exploitation as a complement in cancer therapy.
Collapse
Affiliation(s)
- Laura Bracci
- Unit of Tumor Immunology, Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy.
| | - Antonella Sistigu
- Unit of Tumor Immunology and Immunotherapy, Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy; Department of General Pathology and Physiopathology, Università Cattolica del Sacro Cuore, Rome, Italy.
| | - Enrico Proietti
- Unit of Tumor Immunology, Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy.
| | - Federica Moschella
- Unit of Tumor Immunology, Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
190
|
Redmond KJ, Lo SS, Dagan R, Poon I, Foote MC, Erler D, Lee Y, Lohr F, Biswas T, Ricardi U, Sahgal A. A multinational report of technical factors on stereotactic body radiotherapy for oligometastases. Future Oncol 2017; 13:1081-1089. [PMID: 28152619 DOI: 10.2217/fon-2016-0479] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
AIM Oligometastatic cancer is being increasingly managed with aggressive local therapy using stereotactic body radiation therapy (SBRT). However, few guidelines exist. We summarize the results of an international survey reviewing technical factors for extracranial SBRT for oligometastatic disease to guide safe management. MATERIALS & METHODS Seven high-volume centers contributed. Levels of agreement were categorized as strong (6-7 common responses), moderate (4-5), low (2-3) or no agreement. RESULTS & CONCLUSION We present the results of a multi-national and multi-institutional survey of technical factors of SBRT for extracranial oligometastases. Key methods including target delineation, prescription doses, normal tissue constraints, imaging and set-up for safe implementation and practice of SBRT for oligometastasis have been identified. This manuscript will serve as a foundation for future clinical evaluations.
Collapse
Affiliation(s)
| | - Simon S Lo
- University of Washington School of Medicine, Seattle, WA, USA
| | - Roi Dagan
- University of Florida, Jacksonville, FL, USA
| | - Ian Poon
- Odette Cancer Centre-Sunnybrook Health Sciences, Toronto, Ontario, Canada
| | - Matthew C Foote
- University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Darby Erler
- Odette Cancer Centre-Sunnybrook Health Sciences, Toronto, Ontario, Canada
| | - Young Lee
- Odette Cancer Centre-Sunnybrook Health Sciences, Toronto, Ontario, Canada
| | - Frank Lohr
- Azienda Az. Ospedaliero-Universitaria di Modena, Dipartimento di Oncologia, Unita Operativa di Radioterapia, Modena, Italy
| | - Tithi Biswas
- University Hospitals Seidman Cancer Center, Cleveland, OH, USA
| | | | - Arjun Sahgal
- Odette Cancer Centre-Sunnybrook Health Sciences, Toronto, Ontario, Canada
| |
Collapse
|
191
|
Azad A, Yin Lim S, D'Costa Z, Jones K, Diana A, Sansom OJ, Kruger P, Liu S, McKenna WG, Dushek O, Muschel RJ, Fokas E. PD-L1 blockade enhances response of pancreatic ductal adenocarcinoma to radiotherapy. EMBO Mol Med 2017; 9:167-180. [PMID: 27932443 PMCID: PMC5286375 DOI: 10.15252/emmm.201606674] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 10/26/2016] [Accepted: 10/28/2016] [Indexed: 12/20/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is considered a non-immunogenic tumor, and immune checkpoint inhibitor monotherapy lacks efficacy in this disease. Radiotherapy (RT) can stimulate the immune system. Here, we show that treatment of KPC and Pan02 murine PDAC cells with RT and gemcitabine upregulated PD-L1 expression in a JAK/Stat1-dependent manner. In vitro, PD-L1 inhibition did not alter radio- and chemosensitivity. In vivo, addition of anti-PD-L1 to high (12, 5 × 3, 20 Gy) but not low (6, 5 × 2 Gy) RT doses significantly improved tumor response in KPC and Pan02 allografts. Radiosensitization after PD-L1 blockade was associated with reduced CD11b+Gr1+ myeloid cell infiltration and enhanced CD45+CD8+ T-cell infiltration with concomitant upregulation of T-cell activation markers including CD69, CD44, and FasL, and increased CD8:Treg ratio. Depletion of CD8+ T cells abrogated radiosensitization by anti-PD-L1. Blockade of PD-L1 further augmented the effect of high RT doses (12 Gy) in preventing development of liver metastases. Exploring multiple mathematical models reveals a mechanism able to explain the observed synergy between RT and anti-PD-L1 therapy. Our findings provide a rationale for testing the use of immune checkpoint inhibitors with RT in PDAC.
Collapse
Affiliation(s)
- Abul Azad
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Su Yin Lim
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Zenobia D'Costa
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Keaton Jones
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Angela Diana
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Owen J Sansom
- CRUK Beatson Cancer Institute, University of Glasgow, Glasgow, UK
| | - Philipp Kruger
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Stanley Liu
- Department of Radiation Oncology, Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - W Gillies McKenna
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Omer Dushek
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Ruth J Muschel
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Emmanouil Fokas
- Department of Oncology, CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| |
Collapse
|