151
|
Changes in Musashi-1 subcellular localization correlate with cell cycle exit during postnatal retinal development. Exp Eye Res 2011; 92:344-52. [DOI: 10.1016/j.exer.2011.02.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 01/19/2011] [Accepted: 02/04/2011] [Indexed: 12/30/2022]
|
152
|
Kawase S, Imai T, Miyauchi-Hara C, Yaguchi K, Nishimoto Y, Fukami SI, Matsuzaki Y, Miyawaki A, Itohara S, Okano H. Identification of a novel intronic enhancer responsible for the transcriptional regulation of musashi1 in neural stem/progenitor cells. Mol Brain 2011; 4:14. [PMID: 21486496 PMCID: PMC3108301 DOI: 10.1186/1756-6606-4-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 04/13/2011] [Indexed: 01/18/2023] Open
Abstract
Background The specific genetic regulation of neural primordial cell determination is of great interest in stem cell biology. The Musashi1 (Msi1) protein, which belongs to an evolutionarily conserved family of RNA-binding proteins, is a marker for neural stem/progenitor cells (NS/PCs) in the embryonic and post-natal central nervous system (CNS). Msi1 regulates the translation of its downstream targets, including m-Numb and p21 mRNAs. In vitro experiments using knockout mice have shown that Msi1 and its isoform Musashi2 (Msi2) keep NS/PCs in an undifferentiated and proliferative state. Msi1 is expressed not only in NS/PCs, but also in other somatic stem cells and in tumours. Based on previous findings, Msi1 is likely to be a key regulator for maintaining the characteristics of self-renewing stem cells. However, the mechanisms regulating Msi1 expression are not yet clear. Results To identify the DNA region affecting Msi1 transcription, we inserted the fusion gene ffLuc, comprised of the fluorescent Venus protein and firefly Luciferase, at the translation initiation site of the mouse Msi1 gene locus contained in a 184-kb bacterial artificial chromosome (BAC). Fluorescence and Luciferase activity, reflecting the Msi1 transcriptional activity, were observed in a stable BAC-carrying embryonic stem cell line when it was induced toward neural lineage differentiation by retinoic acid treatment. When neuronal differentiation was induced in embryoid body (EB)-derived neurosphere cells, reporter signals were detected in Msi1-positive NSCs and GFAP-positive astrocytes, but not in MAP2-positive neurons. By introducing deletions into the BAC reporter gene and conducting further reporter experiments using a minimized enhancer region, we identified a region, "D5E2," that is responsible for Msi1 transcription in NS/PCs. Conclusions A regulatory element for Msi1 transcription in NS/PCs is located in the sixth intron of the Msi1 gene. The 595-bp D5E2 intronic enhancer can transactivate Msi1 gene expression with cell-type specificity markedly similar to the endogenous Msi1 expression patterns.
Collapse
Affiliation(s)
- Satoshi Kawase
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
153
|
Yadirgi G, Leinster V, Acquati S, Bhagat H, Shakhova O, Marino S. Conditional activation of Bmi1 expression regulates self-renewal, apoptosis, and differentiation of neural stem/progenitor cells in vitro and in vivo. Stem Cells 2011; 29:700-12. [PMID: 21305672 DOI: 10.1002/stem.614] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The Polycomb group protein Bmi1 is a key regulator of self-renewal of embryonic and adult central nervous system stem cells, and its overexpression has been shown to occur in several types of brain tumors. In a Cre/LoxP-based conditional transgenic mouse model, we show that fine-tuning of Bmi1 expression in embryonic neural stem cell (NSC) is sufficient to increase their proliferation and self-renewal potential both in vitro and in vivo. This is linked to downregulation of both the ink4a/ARF and the p21/Foxg1 axes. However, increased and ectopic proliferation induced by overexpression of Bmi1 in progenitors committed toward a neuronal lineage during embryonic cortical development, triggers apoptosis through a survivin-mediated mechanism and leads to reduced brain size. Postnatally, however, increased self-renewal capacity of neural stem/progenitor cells (NSPC) is independent of Foxg1 and resistance to apoptosis is observed in neural progenitors derived from NSC-overexpressing Bmi1. Neoplastic transformation is absent in mice-overexpressing Bmi1 aged up to 20 months. These studies provide strong evidence that fine tuning of Bmi1 expression is a viable tool to increase self-renewal capacity of NSCs both in vitro and in vivo without eliciting neoplastic transformation of these cells.
Collapse
Affiliation(s)
- Gokhan Yadirgi
- Blizard Institute of Cell and Molecular Science, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | | | | | | | | | | |
Collapse
|
154
|
Willett RT, Greene LA. Gata2 is required for migration and differentiation of retinorecipient neurons in the superior colliculus. J Neurosci 2011; 31:4444-55. [PMID: 21430145 PMCID: PMC3076930 DOI: 10.1523/jneurosci.4616-10.2011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 09/24/2010] [Accepted: 01/16/2011] [Indexed: 02/07/2023] Open
Abstract
The superior colliculus (SC)/optic tectum of the dorsal mesencephalon plays a major role in responses to visual input, yet regulation of neuronal differentiation within this layered structure is only partially understood. Here, we show that the zinc finger transcription factor Gata2 is required for normal SC development. Starting at embryonic day 15 (E15) (corresponding to the times at which neurons of the outer and intermediate layers of the SC are generated), Gata2 is transiently expressed in the rat embryonic dorsal mesencephalon within a restricted region between proliferating cells of the ventricular zone and the deepest neuronal layers of the developing SC. The Gata2-positive cells are postmitotic and lack markers of differentiated neurons, but express markers for immature neuronal precursors including Ascl1 and Pax3/7. In utero electroporation with Gata2 small hairpin RNAs at E16 into cells along the dorsal mesencephalic ventricle interferes with their normal migration into the SC and maintains them in a state characterized by retention of Pax3 expression and the absence of mature neuronal markers. Collectively, these findings indicate that Gata2 plays a required role in the transition of postmitotic neuronal precursor cells of the retinorecipient layers of the SC into mature neurons and that loss of Gata2 arrests them at an intermediate stage of differentiation.
Collapse
Affiliation(s)
- Ryan T. Willett
- Departments of Pharmacology and
- Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | - Lloyd A. Greene
- Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, New York 10032
| |
Collapse
|
155
|
Kawahara H, Okada Y, Imai T, Iwanami A, Mischel PS, Okano H. Musashi1 cooperates in abnormal cell lineage protein 28 (Lin28)-mediated let-7 family microRNA biogenesis in early neural differentiation. J Biol Chem 2011; 286:16121-30. [PMID: 21378162 DOI: 10.1074/jbc.m110.199166] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Musashi1 (Msi1) is an RNA-binding protein that is highly expressed in neural stem/progenitor cells (NS/PCs) as well as in other tissue stem cells. Msi1 binds to the 3'-UTR of its target mRNAs in NS/PCs, prevents their translation, and interferes with NS/PC differentiation. We previously showed that Msi1 competes with eIF4G to bind poly(A)-binding protein and inhibits assembly of the 80 S ribosome. Here we show that Msi1 works in concert with Lin28 to regulate post-transcriptional microRNA (miRNA) biogenesis in the cropping step, which occurs in the nucleus. Lin28 and its binding partner terminal uridylyltransferase 4 (TUT4) are known to maintain embryonic stem cell pluripotency by blocking let-7 miRNA biogenesis at the dicing step. Interestingly, we found that during early neural differentiation of embryonic stem cells, Msi1 enhanced the localization of Lin28 to the nucleus and also inhibited the nuclear cropping step of another let-7 family miRNA, miR98. These results suggest that Msi1 can influence stem cell maintenance and differentiation by controlling the subcellular localization of proteins involved in miRNA biogenesis, as well as by regulating the translation of its target mRNA.
Collapse
Affiliation(s)
- Hironori Kawahara
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
156
|
Chiodi I, Belgiovine C, Donà F, Scovassi AI, Mondello C. Drug treatment of cancer cell lines: a way to select for cancer stem cells? Cancers (Basel) 2011; 3:1111-28. [PMID: 24212655 PMCID: PMC3756405 DOI: 10.3390/cancers3011111] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 01/31/2011] [Accepted: 02/24/2011] [Indexed: 12/26/2022] Open
Abstract
Tumors are generally composed of different cell types. In recent years, it has been shown that in many types of cancers a subset of cells show peculiar characteristics, such as the ability to induce tumors when engrafted into host animals, self-renew and being immortal, and give rise to a differentiated progeny. These cells have been defined as cancer stem cells (CSCs) or tumor initiating cells. CSCs can be isolated both from tumor specimens and established cancer cell lines on the basis of their ability to exclude fluorescent dyes, express specific cell surface markers or grow in particular culture conditions. A key feature of CSCs is their resistance to chemotherapeutic agents, which could contribute to the remaining of residual cancer cells after therapeutic treatments. It has been shown that CSC-like cells can be isolated after drug treatment of cancer cell lines; in this review, we will describe the strategies so far applied to identify and isolate CSCs. Furthermore, we will discuss the possible use of these selected populations to investigate CSC biology and develop new anticancer drugs.
Collapse
Affiliation(s)
- Ilaria Chiodi
- Institute of Molecular Genetics, CNR, via Abbiategrasso 207, 27100 Pavia, Italy.
| | | | | | | | | |
Collapse
|
157
|
Imaizumi Y, Sakaguchi M, Morishita T, Ito M, Poirier F, Sawamoto K, Okano H. Galectin-1 is expressed in early-type neural progenitor cells and down-regulates neurogenesis in the adult hippocampus. Mol Brain 2011; 4:7. [PMID: 21269521 PMCID: PMC3041742 DOI: 10.1186/1756-6606-4-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Accepted: 01/27/2011] [Indexed: 01/05/2023] Open
Abstract
Background In the adult mammalian brain, neural stem cells (NSCs) proliferate in the dentate gyrus (DG) of the hippocampus and generate new neurons throughout life. A multimodal protein, Galectin-1, is expressed in neural progenitor cells (NPCs) and implicated in the proliferation of the NPCs in the DG. However, little is known about its detailed expression profile in the NPCs and functions in adult neurogenesis in the DG. Results Our immunohistochemical and morphological analysis showed that Galectin-1 was expressed in the type 1 and 2a cells, which are putative NSCs, in the subgranular zone (SGZ) of the adult mouse DG. To study Galectin-1's function in adult hippocampal neurogenesis, we made galectin-1 knock-out mice on the C57BL6 background and characterized the effects on neurogenesis. In the SGZ of the galectin-1 knock-out mice, increased numbers of type 1 cells, DCX-positive immature progenitors, and NeuN-positive newborn neurons were observed. Using triple-labeling immunohistochemistry and morphological analyses, we found that the proliferation of the type-1 cells was increased in the SGZ of the galectin-1 knock-out mice, and we propose that this proliferation is the mechanism for the net increase in the adult neurogenesis in these knock-out mice DG. Conclusions Galectin-1 is expressed in the neural stem cells and down-regulates neurogenesis in the adult hippocampus.
Collapse
Affiliation(s)
- Yoichi Imaizumi
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
158
|
Tamura Y, Matsumura K, Sano M, Tabata H, Kimura K, Ieda M, Arai T, Ohno Y, Kanazawa H, Yuasa S, Kaneda R, Makino S, Nakajima K, Okano H, Fukuda K. Neural crest-derived stem cells migrate and differentiate into cardiomyocytes after myocardial infarction. Arterioscler Thromb Vasc Biol 2011; 31:582-9. [PMID: 21212399 DOI: 10.1161/atvbaha.110.214726] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE We recently demonstrated that primitive neural crest-derived (NC) cells migrate from the cardiac neural crest during embryonic development and remain in the heart as dormant stem cells, with the capacity to differentiate into various cell types, including cardiomyocytes. Here, we examined the migration and differentiation potential of these cells on myocardial infarction (MI). METHODS AND RESULTS We obtained double-transgenic mice by crossing protein-0 promoter-Cre mice with Floxed-enhanced green fluorescent protein mice, in which the NC cells express enhanced green fluorescent protein. In the neonatal heart, NC stem cells (NCSCs) were localized predominantly in the outflow tract, but they were also distributed in a gradient from base to apex throughout the ventricular myocardium. Time-lapse video analysis revealed that the NCSCs were migratory. Some NCSCs persisted in the adult heart. On MI, NCSCs accumulated at the ischemic border zone area (BZA), which expresses monocyte chemoattractant protein-1 (MCP-1). Ex vivo cell migration assays demonstrated that MCP-1 induced NCSC migration and that this chemotactic effect was significantly depressed by an anti-MCP-1 antibody. Small NC cardiomyocytes first appeared in the BZA 2 weeks post-MI and gradually increased in number thereafter. CONCLUSIONS These results suggested that NCSCs migrate into the BZA via MCP-1/CCR2 signaling and contribute to the provision of cardiomyocytes for cardiac regeneration after MI.
Collapse
Affiliation(s)
- Yuichi Tamura
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
159
|
Paradisi M, Fernández M, Del Vecchio G, Lizzo G, Marucci G, Giulioni M, Pozzati E, Antonelli T, Lanzoni G, Bagnara GP, Giardino L, Calzà L. Ex vivo study of dentate gyrus neurogenesis in human pharmacoresistant temporal lobe epilepsy. Neuropathol Appl Neurobiol 2011; 36:535-50. [PMID: 20609110 DOI: 10.1111/j.1365-2990.2010.01102.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
AIMS Neurogenesis in adult humans occurs in at least two areas of the brain, the subventricular zone of the telencephalon and the subgranular layer of the dentate gyrus in the hippocampal formation. We studied dentate gyrus subgranular layer neurogenesis in patients subjected to tailored antero-mesial temporal resection including amygdalohippocampectomy due to pharmacoresistant temporal lobe epilepsy (TLE) using the in vitro neurosphere assay. METHODS Sixteen patients were enrolled in the study; mesial temporal sclerosis (MTS) was present in eight patients. Neurogenesis was investigated by ex vivo neurosphere expansion in the presence of mitogens (epidermal growth factor + basic fibroblast growth factor) and spontaneous differentiation after mitogen withdrawal. Growth factor synthesis was investigated by qRT-PCR in neurospheres. RESULTS We demonstrate that in vitro proliferation of cells derived from dentate gyrus of TLE patients is dependent on disease duration. Moreover, the presence of MTS impairs proliferation. As long as in vitro proliferation occurs, neurogenesis is maintained, and cells expressing a mature neurone phenotype (TuJ1, MAP2, GAD) are spontaneously formed after mitogen withdrawal. Finally, formed neurospheres express mRNAs encoding for growth (vascular endothelial growth factor) as well as neurotrophic factors (brain-derived neurotrophic factor, ciliary neurotrophic factor, glial-derived neurotrophic factor, nerve growth factor). CONCLUSION We demonstrated that residual neurogenesis in the subgranular layer of the dentate gyrus in TLE is dependent on diseases duration and absent in MTS.
Collapse
Affiliation(s)
- M Paradisi
- BioPharmaNet-DIMORFIPA, and Department of Histology, Embryology and Applied Biology, University of Bologna, Via Tolara di Sopra 50, Bologna, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Papailiou J, Bramis KJ, Gazouli M, Theodoropoulos G. Stem cells in colon cancer. A new era in cancer theory begins. Int J Colorectal Dis 2011; 26:1-11. [PMID: 20680304 DOI: 10.1007/s00384-010-1022-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/14/2010] [Indexed: 02/04/2023]
Abstract
INTRODUCTION Despite the various therapeutic combinations and the emergence of new targeted therapies, there is still no curative treatment for all stages of colorectal cancer. Through the query for the best possible combination and solution, a new theory approaching colorectal cancer as a stem cell disease appeared, with a continuously growing body of evidence supporting this idea. The inability to directly recognize cancer stem cells has led researchers to an attempt of distinguishing those using indirect markers. DISCUSSION This review focuses on colon cancer stem cell theory, the various findings supporting and contradicting this hypothesis, and the markers used up to now in characterizing stem cell populations in colorectal cancer. Despite the numerous unanswered questions on this new cancer hypothesis, it appears to have a justifiable role to play in colorectal cancer tumor biology, and furthermore, it may be the basis for the development of new therapeutic agents of the future. Therefore, every surgeon, oncologist, and physician who is implicated with this disease should be familiar with this novel colorectal cancer theory.
Collapse
Affiliation(s)
- Joanna Papailiou
- 1st Department of Propaedeutic Surgery, Hippokratio Hospital, School of Medicine, University of Athens, 1527 Athens, Greece.
| | | | | | | |
Collapse
|
161
|
Iguchi H, Mitsui T, Ishida M, Kanba S, Arita J. cAMP response element-binding protein (CREB) is required for epidermal growth factor (EGF)-induced cell proliferation and serum response element activation in neural stem cells isolated from the forebrain subventricular zone of adult mice. Endocr J 2011; 58:747-59. [PMID: 21701076 DOI: 10.1507/endocrj.k11e-104] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Neurogenesis, which occurs not only in the developing brain but also in restricted regions in the adult brain including the forebrain subventricular zone (SVZ), is regulated by a variety of environmental factors, extracellular signals, and intracellular signal transduction pathways. We investigated whether the transcription factor cAMP response element (CRE)-binding protein (CREB) is involved in the regulation of cell proliferation of neural stem cells (NSCs) isolated from the SVZ of adult mice. Treatment of NSCs with the protein kinase A (PKA) inhibitors H89 and KT5720 inhibited epidermal growth factor (EGF)-stimulated NSC proliferation. Similar inhibition was observed when a dominant-negative mutant of CREB (MCREB) was expressed. EGF treatment increased CRE-mediated transcriptional activity, but this increase was much less than that caused by treatment with the adenylate cyclase activator forskolin, which changed neither basal nor EGF-stimulated proliferation of NSCs. Neither PKA inhibitors nor MCREB expression blocked EGF-induced phosphorylation of extracellular signal-regulated kinase (ERK), a protein kinase mediating EGF's mitogenic action. However, MCREB suppressed EGF-induced expression of several immediately early genes including c-fos, c-jun, jun-B, and fra-1 and subsequent AP-1 transcriptional activation. MCREB expression also inhibited the ability of EGF to stimulate transcriptional activation mediated by the serum response element (SRE), a promoter sequence regulating c-fos gene expression. These results suggest that basal activity of CREB is required for the mitogenic signaling of EGF in NSCs at a level between ERK activation and SRE-mediated transcriptional activation.
Collapse
Affiliation(s)
- Hironobu Iguchi
- Department of Physiology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi, Japan
| | | | | | | | | |
Collapse
|
162
|
Zhou YH, Hess KR, Raj VR, Yu L, Liu L, Yung AWK, Linskey ME. Establishment of prognostic models for astrocytic and oligodendroglial brain tumors with standardized quantification of marker gene expression and clinical variables. Biomark Insights 2010; 5:153-68. [PMID: 21234290 PMCID: PMC3018892 DOI: 10.4137/bmi.s6167] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Background Prognosis models established using multiple molecular markers in cancer along with clinical variables should enable prediction of natural disease progression and residual risk faced by patients. In this study, multivariate Cox proportional hazards analyses were done based on overall survival (OS) of 100 glioblastoma multiformes (GBMs, 92 events), 49 anaplastic astrocytomas (AAs, 33 events), 45 gliomas with oligodendroglial features, including anaplastic oligodendroglioma (AO, 13 events) and oligodendraglioma (O, 9 events). The modeling included two clinical variables (patient age and recurrence at the time of sample collection) and the expression variables of 13 genes selected based on their proven biological and/or prognosis functions in gliomas (ABCG2, BMI1, MELK, MSI1, PROM1, CDK4, EGFR, MMP2, VEGFA, PAX6, PTEN, RPS9, and IGFBP2). Gene expression data was a log-transformed ratio of marker and reference (ACTB) mRNA levels quantified using absolute real-time qRT-PCR. Results Age is positively associated with overall grade (4 for GBM, 3 for AA, 2_1 for AO_O), but lacks significant prognostic value in each grade. Recurrence is an unfavorable prognostic factor for AA, but lacks significant prognostic values for GBM and AO_O. Univariate models revealed opposing prognostic effects of ABCG2, MELK, BMI1, PROM1, IGFBP2, PAX6, RPS9, and MSI1 expressions for astrocytic (GBM and AA) and oligodendroglial tumors (AO_O). Multivariate models revealed independent prognostic values for the expressions of MSI1 (unfavorable) in GBM, CDK4 (unfavorable) and MMP2 (favorable) in AA, while IGFBP2 and MELK (unfavorable) in AO_O. With all 13 genes and 2 clinical variables, the model R2 was 14.2% (P = 0.358) for GBM, 45.2% (P = 0.029) for AA, and 62.2% (P = 0.008) for AO_O. Conclusion The study signifies the challenge in establishing a significant prognosis model for GBM. Our success in establishing prognosis models for AA and AO_O was largely based on identification of a set of genes with independent prognostic values and application of standardized gene expression quantification to allow formation of a large cohort in analysis.
Collapse
Affiliation(s)
- Yi-Hong Zhou
- Department of Neurological Surgery, The University of California, Irvine, CA 92697, USA
| | | | | | | | | | | | | |
Collapse
|
163
|
Schaeffer EL, da Silva ER, Novaes BDA, Skaf HD, Gattaz WF. Differential roles of phospholipases A2 in neuronal death and neurogenesis: implications for Alzheimer disease. Prog Neuropsychopharmacol Biol Psychiatry 2010; 34:1381-9. [PMID: 20804810 DOI: 10.1016/j.pnpbp.2010.08.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 08/04/2010] [Accepted: 08/21/2010] [Indexed: 01/06/2023]
Abstract
The involvement of phospholipase A(2) (PLA(2)) in Alzheimer disease (AD) was first investigated nearly 15 years ago. Over the years, several PLA(2) isoforms have been detected in brain tissue: calcium-dependent secreted PLA(2) or sPLA(2) (IIA, IIC, IIE, V, X, and XII), calcium-dependent cytosolic PLA(2) or cPLA(2) (IVA, IVB, and IVC), and calcium-independent PLA(2) or iPLA(2) (VIA and VIB). Additionally, numerous in vivo and in vitro studies have suggested the role of different brain PLA(2) in both physiological and pathological events. This review aimed to summarize the findings in the literature relating the different brain PLA(2) isoforms with alterations found in AD, such as neuronal cell death and impaired neurogenesis process. The review showed that sPLA(2)-IIA, sPLA(2)-V and cPLA(2)-IVA are involved in neuronal death, whereas sPLA(2)-III and sPLA(2)-X are related to the process of neurogenesis, and that the cPLA(2) and iPLA(2) groups can be involved in both neuronal death and neurogenesis. In AD, there are reports of reduced activity of the cPLA(2) and iPLA(2) groups and increased expression of sPLA(2)-IIA and cPLA(2)-IVA. The findings suggest that the inhibition of cPLA(2) and iPLA(2) isoforms (yet to be determined) might contribute to impaired neurogenesis, whereas stimulation of sPLA(2)-IIA and cPLA(2)-IVA might contribute to neurodegeneration in AD.
Collapse
Affiliation(s)
- Evelin L Schaeffer
- Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, Faculty of Medicine, University of Sao Paulo, Rua Dr. Ovídio Pires de Campos 785, 05403-010, Sao Paulo, SP, Brazil.
| | | | | | | | | |
Collapse
|
164
|
Lan SY, Yu T, Xia ZS, Yuan YH, Shi L, Lin Y, Huang KH, Chen QK. Musashi 1-positive cells derived from mouse embryonic stem cells can differentiate into neural and intestinal epithelial-like cells in vivo. Cell Biol Int 2010; 34:1171-1180. [PMID: 20670215 DOI: 10.1042/cbi20100108] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Msi1 (Musashi 1) is regarded as a marker for neural and intestinal epithelial stem cells. However, it is still unclear whether Msi1-positive cells derived from mouse embryonic stem cells have the ability to differentiate into neural or intestinal epithelial cells. A pMsi1-GFP (green fluorescent protein) reporter plasmid was constructed in order to sort Msi1-positive cells out of the differentiated cell population. The GFP-positive cells (i.e. Msi1-positive cells) were sorted by FACS and were hypodermically engrafted into the backs of NOD/SCID (non-obese diabetic/severe combined immunodeficient) mice. The presence of neural and intestinal epithelial cells in the grafts was detected. Msi1 was highly expressed in the GFP-positive cells, but not in the GFP-negative cells. The markers for neural cells (Nestin and Tubulin β III) and intestinal epithelial cells [FABP2 (fatty acid binding protein 2), Lyz (lysozyme) and ChA (chromogranin A)] were more highly expressed in the grafts from Msi1-positive cells than those from Msi1-negative cells (P<0.05). The grafts from the Msi1-negative cells contained more mesodermal-like tissues than those from the Msi1-positive cells. The pMsi1-GFP vector can be used to sort Msi1-positive cells from a cell population derived from mouse embryonic stem cells. The Msi1-positive cells can differentiate into neural and intestinal epithelial-like cells in vivo.
Collapse
Affiliation(s)
- Shao-Yang Lan
- Department of Gastroenterology, the Second Affiliated Hospital, Sun YatSen University, Guangzhou, Guangdong, Peoples Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
165
|
O'Sullivan SS, Johnson M, Williams DR, Revesz T, Holton JL, Lees AJ, Perry EK. The effect of drug treatment on neurogenesis in Parkinson's disease. Mov Disord 2010; 26:45-50. [DOI: 10.1002/mds.23340] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 02/22/2010] [Accepted: 06/10/2010] [Indexed: 11/07/2022] Open
|
166
|
Karbanová J, Soukup T, Suchánek J, Pytlík R, Corbeil D, Mokrý J. Characterization of dental pulp stem cells from impacted third molars cultured in low serum-containing medium. Cells Tissues Organs 2010; 193:344-65. [PMID: 21071916 DOI: 10.1159/000321160] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2010] [Indexed: 01/02/2023] Open
Abstract
We isolated and expanded stem cells from dental pulp from extracted third molars using an innovative culture method consisting of low serum-containing medium supplemented with epidermal growth factor and platelet-derived growth factor BB. We evaluated the differentiation potential of these cells when they were growing either adherently or as micromass/spheroid cultures in various media. Undifferentiated and differentiated cells were analyzed by flow cytometry, immunocytochemistry and immunoblotting. The flow cytometry results showed that the dental pulp stem cells (DPSCs) were positive for mesenchymal stromal cell markers, but negative for hematopoietic markers. Immunocytochemical and/or immunoblotting analyses revealed the expression of numerous stem cell markers, including nanog, Sox2, nestin, Musashi-1 and nucleostemin, whereas they were negative for markers associated with differentiated neural, vascular and hepatic cells. Surprisingly, the cells were only slightly positive for α-smooth muscle actin, and a heterogeneous expression of CD146 was observed. When cultured in osteogenic media, they expressed osteonectin, osteopontin and procollagen I, and in micromass cultures, they produced collagen I. DPSCs cultured in TGF-β1/3-supplemented media produced extracellular matrix typical of cartilaginous tissue. The addition of vascular endothelial growth factor to serum-free media resulted in the expression of endothelial markers. Interestingly, when cultured in neurogenic media, DPSCs exhibited de novo or upregulated markers of undifferentiated and differentiated neural cells. Collectively, our data show that DPSCs are self-renewing and able to express markers of bone, cartilage, vascular and neural tissues, suggesting their multipotential capacity. Their easy accessibility makes these cells a suitable source of somatic stem cells for tissue engineering.
Collapse
Affiliation(s)
- Jana Karbanová
- Department of Histology and Embryology, Charles University in Prague, Faculty of Medicine, Prague, Czech Republic.
| | | | | | | | | | | |
Collapse
|
167
|
Sharma P, Cline HT. Visual activity regulates neural progenitor cells in developing xenopus CNS through musashi1. Neuron 2010; 68:442-55. [PMID: 21040846 PMCID: PMC3005332 DOI: 10.1016/j.neuron.2010.09.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2010] [Indexed: 11/30/2022]
Abstract
Regulation of progenitor cell fate determines the numbers of neurons in the developing brain. While proliferation of neural progenitors predominates during early central nervous system (CNS) development, progenitor cell fate shifts toward differentiation as CNS circuits develop, suggesting that signals from developing circuits may regulate proliferation and differentiation. We tested whether activity regulates neurogenesis in vivo in the developing visual system of Xenopus tadpoles. Both cell proliferation and the number of musashi1-immunoreactive progenitors in the optic tectum decrease as visual system connections become stronger. Visual deprivation for 2 days increased proliferation of musashi1-immunoreactive radial glial progenitors, while visual experience increased neuronal differentiation. Morpholino-mediated knockdown and overexpression of musashi1 indicate that musashi1 is necessary and sufficient for neural progenitor proliferation in the CNS. These data demonstrate a mechanism by which increased brain activity in developing circuits decreases cell proliferation and increases neuronal differentiation through the downregulation of musashi1 in response to circuit activity.
Collapse
Affiliation(s)
- Pranav Sharma
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Hollis T. Cline
- The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
168
|
Konuma N, Wakabayashi K, Matsumoto T, Kusumi Y, Masuko T, Iribe Y, Mitsumata M, Okano H, Kusafuka T, Mugishima H. Mouse embryonic stem cells give rise to gut-like morphogenesis, including intestinal stem cells, in the embryoid body model. Stem Cells Dev 2010; 18:113-26. [PMID: 18680392 DOI: 10.1089/scd.2008.0045] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Embryonic stem (ES) cells have been proposed as candidates for cell replacement therapy in patients with intestinal failure because these cells can be expanded indefinitely without losing their pluripotent phenotype. We investigated the differentiation capacity of mouse ES cells into gut-like structures, including intestinal stem cells, and defined culture conditions for efficient induction of formation of these structures. ES cell-derived gut-like structures (ES-guts) were reproducibly induced in developing embryoid bodies (EBs) by day 21 of differentiation culture. ES-guts contained an endodermal epithelium, a smooth muscle layer, interstitial cells of Cajal, and enteric neurons and showed spontaneous contraction. Transplantation of ES-guts under the kidney capsules of immunodeficient mice induced formation of highly differentiated epithelium composed of absorptive cells and goblet cells in the grafts. Immunoreactivity for Musashi-1 (Msi-1), a marker of intestinal stem cells, was detected in 1.9% of the columnar epithelial cells in the graft. Culture with 0.1% dimethyl sulfoxide increased the numbers of ES-guts in EBs, and serum-replacement (SR) culture, in comparison to standard ES culture containing 15% serum, increased the area ratio of ES-guts to EBs. SR culture also promoted maturation of epithelium to form a single layer of columnar epithelial cells, including absorptive cells and goblet cells. Expression of Msi-1 mRNA and protein was significantly enhanced when EBs were cultured under SR conditions. In conclusion, SR conditions efficiently induce formation of ES-guts and promote differentiation of epithelium, including intestinal stem cells. These results suggest the feasibility of cell-based therapy for intestinal failure based on ES cell culture systems.
Collapse
Affiliation(s)
- Noriyoshi Konuma
- Division of Cell Regeneration and Transplantation, Advanced Medical Research Center, Nihon University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
169
|
Neurogenic transdifferentiation of human adipose-derived stem cells? A critical protocol reevaluation with special emphasis on cell proliferation and cell cycle alterations. Histochem Cell Biol 2010; 134:453-68. [PMID: 20945072 DOI: 10.1007/s00418-010-0740-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2010] [Indexed: 01/01/2023]
Abstract
Adipose-derived stem cells (ASCs) are reported to display multilineage differentiation potential, including neuroectodermal pathways. The aim of the present study was to critically re-evaluate the potential neurogenic (trans-)differentiation capacity of ASCs using a neurogenic induction protocol based on the combination of isobutylmethylxanthine (IBMX), indomethacin and insulin. ASCs isolated from lipo-aspirate samples of five healthy female donors were characterized and potential neurogenic (trans-)differentiation was assessed by means of immunohistochemistry and gene expression analyses. Cell proliferation and cell cycle alterations were studied, and the expression of CREB/ATF transcription factors was analyzed. ASCs expressed CD59, CD90 and CD105, and were tested negative for CD34 and CD45. Under neurogenic induction, ASCs adopted a characteristic morphology comparable to neur(on)al progenitors and expressed musashi1, β-III-tubulin and nestin. Gene expression analyses revealed an increased expression of β-III-tubulin, GFAP, vimentin and BDNF, as well as SOX4 in induced ASCs. Cell proliferation was significantly reduced under neurogenic induction; cell cycle analyses showed a G2-cell cycle arrest accompanied by differential expression of key regulators of cell cycle progression. Differential expression of CREB/ATF transcription factors could be observed on neurogenic induction, pointing to a decisive role of the cAMP-CREB/ATF system. Our findings may point to a potential neurogenic (trans-)differentiation of ASCs into early neur(on)al progenitors, but do not present definite evidence for it. Especially, the adoption of a neural progenitor cell-like morphology must not automatically be misinterpreted as a specific characteristic of a respective (trans-)differentiation process, as this may as well be caused by alterations of cell cycle progression.
Collapse
|
170
|
Cao L, Gibson JD, Miyamoto S, Sail V, Verma R, Rosenberg DW, Nelson CE, Giardina C. Intestinal lineage commitment of embryonic stem cells. Differentiation 2010; 81:1-10. [PMID: 20934799 DOI: 10.1016/j.diff.2010.09.182] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 09/17/2010] [Accepted: 09/22/2010] [Indexed: 01/02/2023]
Abstract
Generating lineage-committed intestinal stem cells from embryonic stem cells (ESCs) could provide a tractable experimental system for understanding intestinal differentiation pathways and may ultimately provide cells for regenerating damaged intestinal tissue. We tested a two-step differentiation procedure in which ESCs were first cultured with activin A to favor formation of definitive endoderm, and then treated with fibroblast-conditioned medium with or without Wnt3A. The definitive endoderm expressed a number of genes associated with gut-tube development through mouse embryonic day 8.5 (Sox17, Foxa2, and Gata4 expressed and Id2 silent). The intestinal stem cell marker Lgr5 gene was also activated in the endodermal cells, whereas the Msi1, Ephb2, and Dcamkl1 intestinal stem cell markers were not. Exposure of the endoderm to fibroblast-conditioned medium with Wnt3A resulted in the activation of Id2, the remaining intestinal stem cell markers and the later gut markers Cdx2, Fabp2, and Muc2. Interestingly, genes associated with distal gut-associated mesoderm (Foxf2, Hlx, and Hoxd8) were also simulated by Wnt3A. The two-step differentiation protocol generated gut bodies with crypt-like structures that included regions of Lgr5-expressing proliferating cells and regions of cell differentiation. These gut bodies also had a smooth muscle component and some underwent peristaltic movement. The ability of the definitive endoderm to differentiate into intestinal epithelium was supported by the vivo engraftment of these cells into mouse colonic mucosa. These findings demonstrate that definitive endoderm derived from ESCs can carry out intestinal cell differentiation pathways and may provide cells to restore damaged intestinal tissue.
Collapse
Affiliation(s)
- Li Cao
- University of Connecticut, Department of Molecular and Cell Biology, 91 North Eagleville Road, Unit 3125 Storrs, CT 06269-3125, USA
| | | | | | | | | | | | | | | |
Collapse
|
171
|
Rezza A, Skah S, Roche C, Nadjar J, Samarut J, Plateroti M. The overexpression of the putative gut stem cell marker Musashi-1 induces tumorigenesis through Wnt and Notch activation. J Cell Sci 2010; 123:3256-65. [PMID: 20826465 DOI: 10.1242/jcs.065284] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The RNA-binding protein Musashi-1 (Msi1) has been proposed as a marker of intestinal epithelial stem cells. These cells are responsible for the continuous renewal of the intestinal epithelium. Although the function of Msi1 has been studied in several organs from different species and in mammalian cell lines, its function and molecular regulation in mouse intestinal epithelium progenitor cells are still undefined. We describe here that, in these cells, the expression of Msi1 is regulated by the canonical Wnt pathway, through a mechanism involving a functional Tcf/Lef binding site on its promoter. An in vitro study in intestinal epithelium primary cultures showed that Msi1 overexpression promotes progenitor proliferation and activates Wnt and Notch pathways. Moreover, Msi1-overexpressing cells exhibit tumorigenic properties in xenograft experiments. These data point to a positive feedback loop between Msi1 and Wnt in intestinal epithelial progenitors. They also suggest that Msi1 has oncogenic properties in these cells, probably through induction of both the Wnt and Notch pathways.
Collapse
Affiliation(s)
- Amelie Rezza
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, Université Lyon 1, CNRS, INRA, Ecole Normale Supérieure de Lyon, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | | | | | | | | | | |
Collapse
|
172
|
Kuwako KI, Kakumoto K, Imai T, Igarashi M, Hamakubo T, Sakakibara SI, Tessier-Lavigne M, Okano HJ, Okano H. Neural RNA-binding protein Musashi1 controls midline crossing of precerebellar neurons through posttranscriptional regulation of Robo3/Rig-1 expression. Neuron 2010; 67:407-21. [PMID: 20696379 DOI: 10.1016/j.neuron.2010.07.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2010] [Indexed: 12/11/2022]
Abstract
Precisely regulated spatiotemporal gene expression is essential for the establishment of neural circuits. In contrast to the increasing evidence for transcriptional regulation of axon guidance cues and receptors, the role of posttranscriptional regulation in axon guidance, especially in vivo, remains poorly characterized. Here, we demonstrate that the expression of Slit receptor Robo3/Rig-1, which plays crucial roles in axonal midline crossing, is regulated by a neural RNA-binding protein Musashi1 (Msi1). Msi1 binds to Robo3 mRNA through RNA recognition motifs and increases the protein level of Robo3 without affecting its mRNA level. In Msi1-deficient precerebellar neurons, Robo3 protein, but not its mRNA, is dramatically reduced. Moreover, similar to defects in Robo3-deficient mice, axonal midline crossing and neuronal migration of precerebellar neurons are severely impaired in Msi1-deficient mice. Together, these findings indicate that Msi1-mediated posttranscriptional regulation of Robo3 controls midline crossing of precerebellar neurons.
Collapse
Affiliation(s)
- Ken-ichiro Kuwako
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
173
|
Wang XY, Penalva LO, Yuan H, Linnoila RI, Lu J, Okano H, Glazer RI. Musashi1 regulates breast tumor cell proliferation and is a prognostic indicator of poor survival. Mol Cancer 2010; 9:221. [PMID: 20727204 PMCID: PMC2939568 DOI: 10.1186/1476-4598-9-221] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Accepted: 08/21/2010] [Indexed: 12/23/2022] Open
Abstract
Background Musashi1 (Msi1) is a conserved RNA-binding protein that regulates the Notch and Wnt pathways, and serves as a stem cell marker in the breast and other tissues. It is unknown how Msi1 relates to other breast cancer markers, whether it denotes tumor initiating cells (TICs), and how it affects gene expression and tumor cell survival in breast cancer cells. Results Msi1 expression was analyzed in 20 breast cancer cell lines and in 140 primary breast tumors by western blotting and immunohistochemistry, respectively. Lentivirus RNA interference was used to reduce Msi1 expression in breast cancer cell lines MCF-7 and T47D grown as spheroid cultures and to assess stem cell gene expression and the growth of these cell lines as xenografts. In normal human breast tissue, Msi1 was expressed in 10.6% of myoepithelum and 1.2% of ductal epithelium in the terminal ductal lobular unit (TDLU), whereas, less than 0.05% of ductal epithelium and myoepithelium in large ducts outside the TDLU expressed Msi1. Msi1 was expressed in 55% of the breast cancer cell lines and correlated with ErbB2 expression in 50% of the cell lines. Msi1 was expressed in 68% of primary tumors and in 100% of lymph node metastases, and correlated with 5 year survival. Msi1 was enriched in CD133+ MCF-7 and T47D cells and in spheroid cultures of these cells, and Msi1 'knockdown' (KD) with a lentivirus-expressed shRNA decreased the number and size of spheroid colonies. Msi1 KD reduced Notch1, c-Myc, ErbB2 and pERK1/2 expression, and increased p21CIP1 expression, which is consistent with known Msi1 target mRNAs. Msi1 KD also reduced the expression of the somatic and embryonic stem cell markers, CD133, Bmi1, Sox2, Nanog and Oct4. Xenografts of MCF-7 and T47D Msi1 KD cells resulted in a marked reduction of tumor growth, reduced Msi1 and Notch1 expression and increased p21CIP1 expression. Conclusion Msi1 is a negative prognostic indicator of breast cancer patient survival, and is indicative of tumor cells with stem cell-like characteristics. Msi1 KD reduces tumor cell survival and tumor xenograft growth, suggesting that it may represent a novel target for drug discovery.
Collapse
Affiliation(s)
- Xiao-Yang Wang
- Department of Oncology, Georgetown University, and Lombardi Comprehensive Cancer Center, Washington, DC 20007, USA.
| | | | | | | | | | | | | |
Collapse
|
174
|
Fernando CV, Moses D, Parish CL, Tomas D, Drago J, Horne MK. Creating a ventral midbrain stem cell niche in an animal model for Parkinson's disease. Stem Cells Dev 2010; 19:1995-2007. [PMID: 20415529 DOI: 10.1089/scd.2009.0486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Neural progenitor cells reside in many regions of the adult brain. However, their capacity to generate new neurons relies on stem cell niches, consisting of stem cells, niche support cells, and basal lamina, which maintain stem cells and direct their differentiation and migration into tissue structures. Neurospheres are thought to expose neural progenitor cells to an environment reminiscent of the stem cell niche. We show that embryonic day 14.5 ventral mesencephalon neurospheres grafted into the midbrain of 6-hydroxydopamine lesioned mice express markers of mesenchymal cells, such as CD29 and CD44, and enclose a core of host-derived proliferating cells that express nestin, polysialic acid-neural cell adhesion molecule, βIII-tubulin, and neuron-specific nuclear protein. Laminin was expressed between the grafted cells and the core of proliferating host-derived cells. Further, infusion of the anti-mitotic agent β-d-arabinofuroside into the midbrain resulted in the loss of host-derived core cells that gradually returned over many days following β-d-arabinofuroside withdrawal. Together, these data suggest that a stem cell niche had been formed. Tyrosine hydroxylase (TH+) cells, ectopic to the usual midbrain locations, were present 4 weeks after grafting and increased in numbers up to 12 weeks after grafting, resulting in significantly more TH cells than control animals. These data provide evidence that cells within the midbrain are capable of acquiring a TH phenotype when exposed to the appropriate environment. Whether these cells are a result of neurogenesis or phenotypic shift remains unanswered.
Collapse
Affiliation(s)
- Chathurini V Fernando
- Neurodegeneration Division, Florey Neurosciences Institute, The University of Melbourne, Parkville, Australia
| | | | | | | | | | | |
Collapse
|
175
|
Silbereis J, Heintz T, Taylor MM, Ganat Y, Ment LR, Bordey A, Vaccarino F. Astroglial cells in the external granular layer are precursors of cerebellar granule neurons in neonates. Mol Cell Neurosci 2010; 44:362-73. [PMID: 20470892 PMCID: PMC2900521 DOI: 10.1016/j.mcn.2010.05.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Revised: 04/17/2010] [Accepted: 05/03/2010] [Indexed: 12/12/2022] Open
Abstract
It is well established that cerebellar granule cell precursors (GCPs) initially derive from progenitors in the rhombic lip of the embryonic cerebellar primordium. GCPs proliferate and migrate tangentially across the cerebellum to form the external granule cell layer (EGL) in late embryogenesis and early postnatal development. It is unclear whether GCPs are specified exclusively in the embryonic rhombic lip or whether their precursor persists in the neonate. Using transgenic mice expressing DsRed under the human glial fibrillary acidic protein (hGFAP) promoter, we found 2 populations of DsRed(+) cells in the EGL in the first postnatal week defined by bright and faint DsRed-fluorescent signal. Bright DsRed(+) cells have a protein expression profile and electrophysiological characteristics typical of astrocytes, but faint DsRed(+) cells in the EGL and internal granule cell layer (IGL) express markers and physiological properties of immature neurons. To determine if these astroglial cells gave rise to GCPs, we genetically tagged them with EGFP or betagal reporter genes at postnatal day (P)3-P5 using a hGFAP promoter driven inducible Cre recombinase. We found that GFAP promoter(+) cells in the EGL are proliferative and express glial and neural stem cell markers. In addition, immature granule cells (GCs) en route to the IGL at P12 as well as GCs in the mature cerebellum, 30days after recombination, express the reporter protein, suggesting that GFAP promoter(+) cells in the EGL generate a subset of granule cells. The identification of glial cells which function as neuronal progenitor cells profoundly impacts our understanding of cellular plasticity in the developing cerebellum.
Collapse
Affiliation(s)
- John Silbereis
- Child Study Center, Yale University School of Medicine, 333 Cedar Street New Haven CT 06520
| | - Tristan Heintz
- Department of Neurosurgery, and Cellular & Molecular Physiology, Yale University School of Medicine, 333 Cedar Street New Haven CT 06520
| | - Mary Morgan Taylor
- Department of Neurosurgery, and Cellular & Molecular Physiology, Yale University School of Medicine, 333 Cedar Street New Haven CT 06520
| | - Yosif Ganat
- Child Study Center, Yale University School of Medicine, 333 Cedar Street New Haven CT 06520
| | - Laura R. Ment
- Department of Pediatrics, Yale University School of Medicine, 333 Cedar Street New Haven CT 06520
| | - Angelique Bordey
- Department of Neurosurgery, and Cellular & Molecular Physiology, Yale University School of Medicine, 333 Cedar Street New Haven CT 06520
| | - Flora Vaccarino
- Child Study Center, Yale University School of Medicine, 333 Cedar Street New Haven CT 06520
- Department of Neurobiology, Yale University School of Medicine, 333 Cedar Street New Haven CT 06520
| |
Collapse
|
176
|
Knerlich-Lukoschus F, von der Ropp-Brenner B, Lucius R, Mehdorn HM, Held-Feindt J. Chemokine expression in the white matter spinal cord precursor niche after force-defined spinal cord contusion injuries in adult rats. Glia 2010; 58:916-31. [PMID: 20155816 DOI: 10.1002/glia.20974] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Inflammatory cascades induced by spinal cord injuries (SCI) are localized in the white matter, a recognized neural stem- and progenitor-cell (NSPC) niche of the adult spinal cord. Chemokines, as integrators of these processes, might also be important determinants of this NSPC niche. CCL3/CCR1, CCL2/CCR2, and SDF-1alpha/CXCR4 were analyzed in the ventrolateral white matter after force defined thoracic SCI: Immunoreactivity (IR) density levels were measured 2 d, 7 d, 14 d, and 42 d on cervical (C 5), thoracic (T 5), and lumbar (L 5) levels. On day post operation (DPO) 42, chemokine inductions were further evaluated by real-time RT-PCR and Western blot analyses. Cellular phenotypes were confirmed by double labeling with markers for major cell types and NSPCs (nestin, Musashi-1, NG2, 3CB2, BLBP). Mitotic profiles were investigated in parallel by BrdU labeling. After lesion, chemokines were induced in the ventrolateral white matter on IR-, mRNA-, and protein-level. IR was generally more pronounced after severe lesions, with soaring increases of CCL2/CCR2 and continuous elevations of CCL3/CCR1. SDF-1alpha and CXCR4 IR induction was focused on thoracic levels. Chemokines/-receptors were co-expressed with astroglial, oligodendroglial markers, nestin, 3CB2 and BLBP by cells morphologically resembling radial glia on DPO 7 to DPO 42, and NG2 or Musashi-1 on DPO 2 and 7. In the white matter BrdU positive cells were significantly elevated after lesion compared with sham controls on all investigated time points peaking in the early time course on thoracic level: Here, chemokines were co-expressed by subsets of BrdU-labeled cells. These findings suggest an important role of chemokines/-receptors in the subpial white matter NSPC niche after SCI.
Collapse
|
177
|
Zhou ZH, Zhang JD, Zhao HB, Zhao LN, Shan BZ. Cell origin and premalignant lesions of gastric signet-ring cell carcinoma: a histopathologic study. Shijie Huaren Xiaohua Zazhi 2010; 18:2001-2006. [DOI: 10.11569/wcjd.v18.i19.2001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
AIM: To investigate the cell origin and premalignant lesions of gastric signet-ring cell carcinoma (SRCC).
METHODS: A total of 42 cases of early gastric SRCC were included in this study. The histological morphology of gastric SRCC was observed. Differentiation markers MUC5AC and MUC6 were labeled by immunohistochemical double-staining of gastric SRCC tissue. The expression of Ki-67 and gastrointestinal stem/progenitor cell marker musashi-1 in SRCC was detected by immunohistochemistry. Additionally, the immunophenotype of gastric glands adjacent to carcinoma was also detected.
RESULTS: Early gastric SRCC was characterized by a two-layered structure consisting of superficial layer and basal layer. The superficial layer contained typical large signet-ring cells that possessed abundant cytoplasm, whereas the basal layer was composed of small-sized primitive cancer cells with a high nucleus/cytoplasm ratio. Cells in the basal layer shared common morphologic features and a similar anatomic location with those in the proliferative zone of gastric glands. These cells were negative for both MUC5AC and MUC6, or merely exhibited a weak MUC5AC expression. Compared with the superficial layer, the percentages of Ki-67- and musashi-1-positive cells were significantly higher in the basal layer (t = 31.0 and 22.8, respectively, both P < 0.01). Cells in the basal layer could differentiate into typical signet-ring cells, which resembles the differentiation process of proliferitive zone cells into gastric pit cells. Dysplasia of the proliferative zone of gastric glands adjacent to SRCC was noted, and dysplastic cells in the proliferative zone were phenotypically consistent with cancer cells in the basal layer.
CONCLUSION: Gastric SRCC may originate from MUC5AC-/lowMUC6- pre-pit cells in the proliferative zone of gastric glands. Dysplasia of the proliferative zone may represent the premalignant lesions of gastric SRCC.
Collapse
|
178
|
Yoneyama M, Kawada K, Ogita K. Enhanced neurogenesis in the olfactory bulb in adult mice after injury induced by acute treatment with trimethyltin. J Neurosci Res 2010; 88:1242-51. [PMID: 19998485 DOI: 10.1002/jnr.22305] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In adults, the subventricular zone is known to contain undifferentiated neural progenitor cells that proliferate and generate the olfactory bulb (OB) interneurons throughout life. We earlier showed that trimethyltin (TMT) causes neuronal damage in the granular cell layer of the OB in adult mice. In the current study, we examined neurogenesis in the OB in adult mice after injury induced by acute treatment with TMT. On day 2 post-TMT treatment, enhanced incorporation of 5-bromo-2'-deoxyuridine (BrdU) was seen in the granular cell layer of the OB. Many of the BrdU-labeled cells were undifferentiated cells on day 2 post-treatment. On day 30 post-TMT treatment, BrdU-labeled neuronal cells were dramatically increased in number in the granular cell layer of the OB. However, TMT treatment was ineffective in affecting the migration of BrdU-labeled cells from the subventricular zone to the OB. The results of a neurosphere assay revealed that the number of neurospheres derived from the OB was significantly increased on day 2 post-TMT treatment. The neurosphere-forming neural progenitor cells derived from the OB of TMT-treated animals were capable of differentiating into neuronal cells as well as into astrocytes. Taken together, our data suggest that the OB has the ability to undergo enhanced neurogenesis following TMT-induced neuronal injury in adult mice.
Collapse
Affiliation(s)
- Masanori Yoneyama
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University Hirakata, Osaka, Japan
| | | | | |
Collapse
|
179
|
Abstract
Carcinomas may arise as a disorder of regeneration, so that a malignant cell may represent a failure to fully attain the characteristics of differentiated tissue. We hypothesized that there is a differential distribution of progenitor cell markers among different histological types of lung cancers, with poorly differentiated tumors being more likely to express progenitor stem cell markers. The study was limited to paraffin-embedded archival material of resected untreated pulmonary carcinomas, including adenocarcinoma, squamous cell carcinoma, large cell carcinoma, and small cell carcinoma. The sections were stained for putative stem cells markers (Musashi-1, Musashi-2, CD34, CD21, KIT, CD133, p63, and OCT-4). Positivity was read as isolated, focal, or diffuse staining. Stem cell markers were detected in all histological types of pulmonary carcinomas. There was a difference in the expression of markers among the histological types. Small cell carcinoma showed diffuse positivity for most of the markers; in contrast to focal or negative staining in other histological groups. An inverse relationship between CD21 and Musashi-1 was observed. No staining for OCT-4 and CD34 was seen in any of the tumor types. Hierarchical clustering based on marker expression separated tumors into two groups, with one group marked by high expression of Musashi-1 and KIT, contained most of the poorly differentiated adenocarcinomas and small cell carcinomas. Therefore, stem cell markers are expressed in lung cancers with different patterns seen for different histological types and degrees of differentiation.
Collapse
|
180
|
Alunni A, Hermel JM, Heuzé A, Bourrat F, Jamen F, Joly JS. Evidence for neural stem cells in the medaka optic tectum proliferation zones. Dev Neurobiol 2010; 70:693-713. [DOI: 10.1002/dneu.20799] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
181
|
Morgan SC, Yasin S, Uwanogho D, Jeffries A, Price J. Positional Specification in a Neural Stem Cell Line Involves Modulation of Musashi1 Expression. Stem Cells Dev 2010; 19:579-92. [DOI: 10.1089/scd.2009.0108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Sarah C. Morgan
- Centre for the Cellular Basis of Behaviour, King’s College London, Institute of Psychiatry, Denmark Hill, London, United Kingdom
| | - Shireena Yasin
- Centre for the Cellular Basis of Behaviour, King’s College London, Institute of Psychiatry, Denmark Hill, London, United Kingdom
| | - Dafe Uwanogho
- Centre for the Cellular Basis of Behaviour, King’s College London, Institute of Psychiatry, Denmark Hill, London, United Kingdom
| | - Aaron Jeffries
- Centre for the Cellular Basis of Behaviour, King’s College London, Institute of Psychiatry, Denmark Hill, London, United Kingdom
| | - Jack Price
- Centre for the Cellular Basis of Behaviour, King’s College London, Institute of Psychiatry, Denmark Hill, London, United Kingdom
| |
Collapse
|
182
|
Musashi1 as a marker of reactive astrocytes after transient focal brain ischemia. Neurosci Res 2010; 66:390-5. [DOI: 10.1016/j.neures.2009.12.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2009] [Revised: 12/09/2009] [Accepted: 12/15/2009] [Indexed: 11/22/2022]
|
183
|
Ito Y, Tanaka H, Okamoto H, Ohshima T. Characterization of neural stem cells and their progeny in the adult zebrafish optic tectum. Dev Biol 2010; 342:26-38. [PMID: 20346355 DOI: 10.1016/j.ydbio.2010.03.008] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2009] [Revised: 03/11/2010] [Accepted: 03/15/2010] [Indexed: 01/11/2023]
Abstract
In the adult teleost brain, proliferating cells are observed in a broad area, while these cells have a restricted distribution in adult mammalian brains. In the adult teleost optic tectum, most of the proliferating cells are distributed in the caudal margin of the periventricular gray zone (PGZ). We found that the PGZ is largely divided into 3 regions: 1 mitotic region and 2 post-mitotic regions-the superficial and deep layers. These regions are distinguished by the differential expression of several marker genes: pcna, sox2, msi1, elavl3, gfap, fabp7a, and s100beta. Using transgenic zebrafish Tg (gfap:GFP), we found that the deep layer cells specifically express gfap:GFP and have a radial glial morphology. We noted that bromodeoxyuridine (BrdU)-positive cells in the mitotic region did not exhibit glial properties, but maintained neuroepithelial characteristics. Pulse chase experiments with BrdU-positive cells revealed the presence of self-renewing stem cells within the mitotic region. BrdU-positive cells differentiate into glutamatergic or GABAergic neurons and oligodendrocytes in the superficial layer and into radial glial cells in the deep layer. These results demonstrate that the proliferating cells in the PGZ contribute to neuronal and glial lineages to maintain the structure of the optic tectum in adult zebrafish.
Collapse
Affiliation(s)
- Yoko Ito
- Department of Life Science and Medical Bio-Science, School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, 162-8480, Japan
| | | | | | | |
Collapse
|
184
|
Zhang Y, Huang X. Investigation of doublecortin and calcium/calmodulin-dependent protein kinase-like-1-expressing cells in the mouse stomach. J Gastroenterol Hepatol 2010; 25:576-82. [PMID: 20074165 DOI: 10.1111/j.1440-1746.2009.06114.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS For lack of a definite stem cell marker, there is limited knowledge of the precise location and fate of stem cells after injury. Doublecortin and calcium/calmodulin-dependent protein kinase-like-1 (DCAMKL-1) is a putative intestinal and colon stem cell marker. Our aim was to identify DCAMKL-1-expressing cells in the gastric epithelium and to analyze the fate of DCAMKL-1-expressing cells during gastric mucosal injury and repair. METHODS Acidified ethanol was administered to wild-type mice. DCAMKL-1 expression were detected by immunohistochemistry and western blotting. RESULTS There were some DCAMKL-1-expressing cells in normal mouse stomachs. All the cells were located in the gastric isthmus region. All DCAMKL-1-expressing cells were double stained with Dolichos biflorus lectin-expressing parietal cells and Musashi-1-expressing cells. The DCAMKL-1 antigen expression decreased 12 h after injury and gradually increased to normal 4 d after injury. CONCLUSION Using DCAMKL-1 as a marker for stomach stem cells, we could describe the expression pattern of stomach stem cells during mucosal injury.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Gastroenterology, Sichuan University, Sichuan, China.
| | | |
Collapse
|
185
|
Chung KF, Sicard F, Vukicevic V, Hermann A, Storch A, Huttner WB, Bornstein SR, Ehrhart-Bornstein M. Isolation of neural crest derived chromaffin progenitors from adult adrenal medulla. Stem Cells 2010; 27:2602-13. [PMID: 19609938 DOI: 10.1002/stem.180] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chromaffin cells of the adrenal medulla are neural crest-derived cells of the sympathoadrenal lineage. Unlike the closely-related sympathetic neurons, a subpopulation of proliferation-competent cells exists even in the adult. Here, we describe the isolation, expansion, and in vitro characterization of proliferation-competent progenitor cells from the bovine adrenal medulla. Similar to neurospheres, these cells, when prevented from adherence to the culture dish, grew in spheres, which we named chromospheres. These chromospheres were devoid of mRNA specific for smooth muscle cells (MYH11) or endothelial cells (PECAM1). During sphere formation, markers for differentiated chromaffin cells, such as phenylethanolamine-N-methyl transferase, were downregulated while neural progenitor markers nestin, vimentin, musashi 1, and nerve growth factor receptor, as well as markers of neural crest progenitor cells such as Sox1 and Sox9, were upregulated. Clonal analysis and bromo-2'-deoxyuridine-incorporation analysis demonstrated the self-renewing capacity of chromosphere cells. Differentiation protocols using NGF and BMP4 or dexamethasone induced neuronal or endocrine differentiation, respectively. Electrophysiological analyses of neural cells derived from chromospheres revealed functional properties of mature nerve cells, such as tetrodotoxin-sensitive sodium channels and action potentials. Our study provides evidence that proliferation and differentiation competent chromaffin progenitor cells can be isolated from adult adrenal medulla and that these cells might harbor the potential for the treatment of neurodegenerative diseases, such as Parkinson's disease.
Collapse
Affiliation(s)
- Kuei-Fang Chung
- Carl Gustav Carus University Medical School, Medical Clinic III, Dresden University of Technology, Dresden, Germany
| | | | | | | | | | | | | | | |
Collapse
|
186
|
Puy LD, Chuva de Sousa Lopes SM, Haagsman HP, Roelen BA. Differentiation of Porcine Inner Cell Mass Cells Into Proliferating Neural Cells. Stem Cells Dev 2010; 19:61-70. [DOI: 10.1089/scd.2009.0075] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Leonie du Puy
- Department of Farm Animal Health and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | | - Henk P. Haagsman
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Bernard A.J. Roelen
- Department of Farm Animal Health and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
187
|
Okano H. Neural stem cells and strategies for the regeneration of the central nervous system. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2010; 86:438-50. [PMID: 20431266 PMCID: PMC3417805 DOI: 10.2183/pjab.86.438] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Accepted: 02/16/2010] [Indexed: 05/24/2023]
Abstract
The adult mammalian central nervous system (CNS), especially that of adult humans, is a representative example of organs that do not regenerate. However, increasing interest has focused on the development of innovative therapeutic methods that aim to regenerate damaged CNS tissue by taking advantage of recent advances in stem cell and neuroscience research. In fact, the recapitulation of normal neural development has become a vital strategy for CNS regeneration. Normal CNS development is initiated by the induction of stem cells in the CNS, i.e., neural stem cells (NSCs). Thus, the introduction or mobilization of NSCs could be expected to lead to CNS regeneration by recapitulating normal CNS development, in terms of the activation of the endogenous regenerative capacity and cell transplantation therapy. Here, the recent progress in basic stem cell biology, including the author's own studies, on the prospective identification of NSCs, the elucidation of the mechanisms of ontogenic changes in the differentiation potential of NSCs, the induction of neural fate and NSCs from pluripotent stem cells, and their therapeutic applications are summarized. These lines of research will, hopefully, contribute to a basic understanding of the nature of NSCs, which should in turn lead to feasible strategies for the development of ideal "stem cell therapies" for the treatment of damaged brain and spinal cord tissue.
Collapse
Affiliation(s)
- Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Shinanomachi,Shinjuku-ku, Tokyo, Japan.
| |
Collapse
|
188
|
Abstract
Exploring stem cells is a fascinating task, especially in a discipline where the use of stem cells seems far-fetched at first glance, as is the case in psychiatry. In this article we would like to provide a brief overview of the current situation in relation to the treatment of mental diseases. For reasons that we will explain, this review will focus on affective disorders. The following section will give a more detailed account of stem-cell biology including current basic science approaches presenting in-vivo and in-vitro techniques. The final part will then look into future perspectives of using these stem cells to cure mental illnesses, and discuss the related challenges and opportunities.
Collapse
Affiliation(s)
- Jens Benninghoff
- Department of Psychiatry, Ludwig-Maximilian University, Munich, Germany.
| |
Collapse
|
189
|
Mesenchymal stem cells improve small intestinal integrity through regulation of endogenous epithelial cell homeostasis. Cell Death Differ 2009; 17:952-61. [PMID: 20019749 DOI: 10.1038/cdd.2009.187] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Patients who undergo pelvic or abdominal radiotherapy may develop acute and/or chronic side effects resulting from gastrointestinal tract (GIT) alterations. In this study, we address the question of the regenerative capability of mesenchymal stem cells (MSC) after radiation-induced GIT injury. We also propose cellular targets of MSC therapy. We report that the infusion of human bone marrow-derived MSC (hMSC) provides a therapeutic benefit to NOD/SCID mice undergoing radiation-induced GIT failure. We observed that hMSC treatment brings about fast recovery of the small intestine (structure and function) in mice with reversible alterations and extends the life of mice with irreversible GIT disorders. The effects of hMSC are a consequence of their ability to improve the renewal capability of small intestinal epithelium. hMSC treatment favors the re-establishment of cellular homeostasis by both increasing endogenous proliferation processes (Ki67 immunostaining) and inhibiting apoptosis (TUNEL staining) of radiation-induced small intestinal epithelial cells. Our results suggest that MSC infusion may be used as a therapeutic treatment to limit radiation-induced GIT damage.
Collapse
|
190
|
Prenatal exposure to environmental tobacco smoke alters gene expression in the developing murine hippocampus. Reprod Toxicol 2009; 29:164-75. [PMID: 19969065 DOI: 10.1016/j.reprotox.2009.12.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 11/16/2009] [Accepted: 12/01/2009] [Indexed: 11/18/2022]
Abstract
BACKGROUND Little is known about the effects of passive smoke exposures on the developing brain. OBJECTIVE The purpose of the current study was to identify changes in gene expression in the murine hippocampus as a consequence of in utero exposure to sidestream cigarette smoke (an experimental equivalent of environmental tobacco smoke (ETS)) at exposure levels that do not result in fetal growth inhibition. METHODS A whole body smoke inhalation exposure system was utilized to deliver ETS to pregnant C57BL/6J mice for 6 h/day from gestational days 6-17 (gd 6-17) [for microarray] or gd 6-18.5 [for fetal phenotyping]. RESULTS There were no significant effects of ETS exposure on fetal phenotype. However, 61 "expressed" genes in the gd 18.5 fetal hippocampus were differentially regulated (up- or down-regulated by 1.5-fold or greater) by maternal exposure to ETS. Of these 61 genes, 25 genes were upregulated while 36 genes were down-regulated. A systems biology approach, including computational methodologies, identified cellular response pathways, and biological themes, underlying altered fetal programming of the embryonic hippocampus by in utero cigarette smoke exposure. CONCLUSIONS Results from the present study suggest that even in the absence of effects on fetal growth, prenatal smoke exposure can alter gene expression during the "early" period of hippocampal growth and may result in abnormal hippocampal morphology, connectivity, and function.
Collapse
|
191
|
Takaoka T, Shiotani A, Saito K, Tomifuji M, Mori Y, Fujimine T, Okano H, Ogawa K. Neuronal re-juvenilization in the nucleus ambiguus after vagal nerve injury. Neurosci Res 2009; 65:353-9. [DOI: 10.1016/j.neures.2009.08.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 08/05/2009] [Accepted: 08/24/2009] [Indexed: 10/20/2022]
|
192
|
Brain cancer propagating cells: biology, genetics and targeted therapies. Trends Mol Med 2009; 15:519-30. [PMID: 19889578 DOI: 10.1016/j.molmed.2009.09.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 09/03/2009] [Accepted: 09/03/2009] [Indexed: 12/17/2022]
Abstract
Cancer propagating cells (CPCs) within primary central nervous system (CNS) tumors (glioblastoma multiforme (GBM), medulloblastoma (MB) and ependymoma) might be integral to tumor development and perpetuation. These cells, also known as brain cancer propagating cells (BCPCs), have the ability to self-renew and proliferate. BCPCs can initiate new tumors in mice with high efficiency and these exhibit many features that are characteristic of patient's brain tumors. Accumulating evidence suggests that BCPCs might originate from the transformation of neural stem cells (NSCs) and their progenitors. Furthermore, recent studies have shown that NSC surface markers also define BCPCs. Ultimately, treatments that include specific targeting of BCPCs might potentially be more effective at treating the entire tumor mass, translating to improved patient survival and quality of life.
Collapse
|
193
|
Strategies to promote differentiation of newborn neurons into mature functional cells in Alzheimer brain. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33:1087-102. [PMID: 19596396 DOI: 10.1016/j.pnpbp.2009.06.024] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2009] [Revised: 06/29/2009] [Accepted: 06/30/2009] [Indexed: 01/09/2023]
Abstract
Adult neurogenesis occurs in the subgranular zone (SGZ) and subventricular zone (SVZ). New SGZ neurons migrate into the granule cell layer of the dentate gyrus (DG). New SVZ neurons seem to enter the association neocortex and entorhinal cortex besides the olfactory bulb. Alzheimer disease (AD) is characterized by neuron loss in the hippocampus (DG and CA1 field), entorhinal cortex, and association neocortex, which underlies the learning and memory deficits. We hypothesized that, if the AD brain can support neurogenesis, strategies to stimulate the neurogenesis process could have therapeutic value in AD. We reviewed the literature on: (a) the functional significance of adult-born neurons; (b) the occurrence of endogenous neurogenesis in AD; and (c) strategies to stimulate the adult neurogenesis process. We found that: (a) new neurons in the adult DG contribute to memory function; (b) new neurons are generated in the SGZ and SVZ of AD brains, but they fail to differentiate into mature neurons in the target regions; and (c) numerous strategies (Lithium, Glatiramer Acetate, nerve growth factor, environmental enrichment) can enhance adult neurogenesis and promote maturation of newly generated neurons. Such strategies might help to compensate for the loss of neurons and improve the memory function in AD.
Collapse
|
194
|
Wohl SG, Schmeer CW, Kretz A, Witte OW, Isenmann S. Optic nerve lesion increases cell proliferation and nestin expression in the adult mouse eye in vivo. Exp Neurol 2009; 219:175-86. [DOI: 10.1016/j.expneurol.2009.05.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Revised: 04/01/2009] [Accepted: 05/08/2009] [Indexed: 11/28/2022]
|
195
|
Axell MZ, Zlateva S, Curtis M. A method for rapid derivation and propagation of neural progenitors from human embryonic stem cells. J Neurosci Methods 2009; 184:275-84. [PMID: 19715727 DOI: 10.1016/j.jneumeth.2009.08.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 08/18/2009] [Accepted: 08/19/2009] [Indexed: 12/17/2022]
Abstract
Neuronal loss is a common feature of many neurological disorders, including stroke, Parkinson's disease, Alzheimer's disease and traumatic brain injury. Human embryonic stem cell (hESC)-derived neural progenitors (NPs) may provide new ways of treatment for several diseases and injuries in the brain, as well as enhance our understanding of early human development. Here we report a method for rapid generation of proliferating NPs from feeder free cultures of undifferentiated hESCs. In this rapid and simple protocol, NPs are derived by seeding undifferentiated hESC on adherent surfaces of laminin or gelatine with normal hESC culturing medium and with the addition of basic fibroblast growth factor. After the first passage, adherent monolayer progenitors are derived that express early neuroectodermal and progenitor markers, such as Nestin, Sox1, Sox2, Sox3, Internexin, Musashi-1, NCAM, and Pax6. This novel protocol renders hESCs suitable for large scale progenitor production and long-term propagation, and the progenitors have the capacity to differentiate in vitro into all three neural lineages (neurons, astrocytes and oligodendrocytes). This method allows rapid, cost-efficient production of expandable progenitors that may be a source of cells for the restoration of cellular and functional loss after neurodegeneration and/or provide a useful source of progenitor cells for studying early brain development.
Collapse
|
196
|
Yao R, Zhang L, Li X, Li L. Effects of Epimedium flavonoids on proliferation and differentiation of neural stem cells in vitro. Neurol Res 2009; 32:736-42. [PMID: 19703337 DOI: 10.1179/174313209x459183] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVE The purpose of this study is to investigate the effects of Epimedium flavonoids (EF), which is extracted from a traditional Chinese Epimedium herb, and its effect on the proliferation and differentiation of neural stem cells (NSCs) in vitro. METHODS The single cells isolated from the hippocampi of 1 day old neonatal rats were cultured in a serum-free condition medium DMEM/F12 (1 : 1) with different concentrations of EF or 20 ng/ml epidermal growth factor (EGF) and 10 ng/ml basic fibroblast growth factor (bFGF). After 7 and 28 days, the neurospheres' diameters were measured. The formed neurospheres were cultured in the differentiation medium containing EF or 10% fetal bovine serum (FBS). After 12 hours and 7 days, immunofluorescent studies for nestin, Musashi-1, BrdU, beta-III-tubulin, NF-200 and GFAP were performed. The number and lengths of 10-15 axons of NF-200 immunopositive cells were measured. RESULTS The results showed that the isolated cells had the ability to propagate as neurospheres in the medium with 200 and 400 m g/ml EF, but without any EGF or bFGF, and the volume of neurospheres increase gradually from 7 to 28 days. In comparison with FBS control, the number of NF-200 positive neurons had significantly increased in the EF groups where the newborn neurons were morphologically more mature and able to migrate farther away from neurospheres than in the FBS control. DISCUSSION The results demonstrate that EF effectively promotes the proliferation and differentiation of NSCs in vitro, suggesting that EF may have new properties of regulating central nervous system function by neurogenesis.
Collapse
Affiliation(s)
- Ruiqin Yao
- Department of Pharmacology, Xuanwu Hospital of Capital Medical University, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, China
| | | | | | | |
Collapse
|
197
|
Liu MT, Kuan YH, Wang J, Hen R, Gershon MD. 5-HT4 receptor-mediated neuroprotection and neurogenesis in the enteric nervous system of adult mice. J Neurosci 2009; 29:9683-99. [PMID: 19657021 PMCID: PMC2749879 DOI: 10.1523/jneurosci.1145-09.2009] [Citation(s) in RCA: 261] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 05/18/2009] [Accepted: 06/19/2009] [Indexed: 12/27/2022] Open
Abstract
Although the mature enteric nervous system (ENS) has been shown to retain stem cells, enteric neurogenesis has not previously been demonstrated in adults. The relative number of enteric neurons in wild-type (WT) mice and those lacking 5-HT(4) receptors [knock-out (KO)] was found to be similar at birth; however, the abundance of ENS neurons increased during the first 4 months after birth in WT but not KO littermates. Enteric neurons subsequently decreased in both WT and KO but at 12 months were significantly more numerous in WT. We tested the hypothesis that stimulation of the 5-HT(4) receptor promotes enteric neuron survival and/or neurogenesis. In vitro, 5-HT(4) agonists increased enteric neuronal development/survival, decreased apoptosis, and activated CREB (cAMP response element-binding protein). In vivo, in WT but not KO mice, 5-HT(4) agonists induced bromodeoxyuridine incorporation into cells that expressed markers of neurons (HuC/D, doublecortin), neural precursors (Sox10, nestin, Phox2b), or stem cells (Musashi-1). This is the first demonstration of adult enteric neurogenesis; our results suggest that 5-HT(4) receptors are required postnatally for ENS growth and maintenance.
Collapse
Affiliation(s)
- Min-Tsai Liu
- Department of Pathology and Cell Biology, Columbia University, New York, New York 10032, USA.
| | | | | | | | | |
Collapse
|
198
|
Xu Q, Yuan X, Tunici P, Liu G, Fan X, Xu M, Hu J, Hwang JY, Farkas DL, Black KL, Yu JS. Isolation of tumour stem-like cells from benign tumours. Br J Cancer 2009; 101:303-11. [PMID: 19568241 PMCID: PMC2720199 DOI: 10.1038/sj.bjc.6605142] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Revised: 05/27/2009] [Accepted: 05/27/2009] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Cancerous stem-like cells (CSCs) have been implicated as cancer-initiating cells in a range of malignant tumours. Diverse genetic programs regulate CSC behaviours, and CSCs from glioblastoma patients are qualitatively distinct from each other. The intrinsic connection between the presence of CSCs and malignancy is unclear. We set out to test whether tumour stem-like cells can be identified from benign tumours. METHODS Tumour sphere cultures were derived from hormone-positive and -negative pituitary adenomas. Characterisation of tumour stem-like cells in vitro was performed using self-renewal assays, stem cell-associated marker expression analysis, differentiation, and stimulated hormone production assays. The tumour-initiating capability of these tumour stem-like cells was tested in serial brain tumour transplantation experiments using SCID mice. RESULTS In this study, we isolated sphere-forming, self-renewable, and multipotent stem-like cells from pituitary adenomas, which are benign tumours. We found that pituitary adenoma stem-like cells (PASCs), compared with their differentiated daughter cells, expressed increased levels of stem cell-associated gene products, antiapoptotic proteins, and pituitary progenitor cell markers. Similar to CSCs isolated from glioblastomas, PASCs are more resistant to chemotherapeutics than their differentiated daughter cells. Furthermore, differentiated PASCs responded to stimulation with hypothalamic hormones and produced corresponding pituitary hormones that are reflective of the phenotypes of the primary pituitary tumours. Finally, we demonstrated that PASCs are pituitary tumour-initiating cells in serial transplantation animal experiments. CONCLUSION This study for the first time indicates that stem-like cells are present in benign tumours. The conclusions from this study may have applications to understanding pituitary tumour biology and therapies, as well as implications for the notion of tumour-initiating cells in general.
Collapse
Affiliation(s)
- Q Xu
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - X Yuan
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - P Tunici
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - G Liu
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - X Fan
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - M Xu
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - J Hu
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - J Y Hwang
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - D L Farkas
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - K L Black
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - J S Yu
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
199
|
Chong YK, Toh TB, Zaiden N, Poonepalli A, Leong SH, Ong CEL, Yu Y, Tan PB, See SJ, Ng WH, Ng I, Hande MP, Kon OL, Ang BT, Tang C. Cryopreservation of neurospheres derived from human glioblastoma multiforme. Stem Cells 2009; 27:29-39. [PMID: 18845764 PMCID: PMC2729678 DOI: 10.1634/stemcells.2008-0009] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cancer stem cells have been shown to initiate and sustain tumor growth. In many instances, clinical material is limited, compounded by a lack of methods to preserve such cells at convenient time points. Although brain tumor-initiating cells grown in a spheroid manner have been shown to maintain their integrity through serial transplantation in immune-compromised animals, practically, it is not always possible to have access to animals of suitable ages to continuously maintain these cells. We therefore explored vitrification as a cryopreservation technique for brain tumor-initiating cells. Tumor neurospheres were derived from five patients with glioblastoma multiforme (GBM). Cryopreservation in 90% serum and 10% dimethyl sulfoxide yielded greatest viability and could be explored in future studies. Vitrification yielded cells that maintained self-renewal and multipotentiality properties. Karyotypic analyses confirmed the presence of GBM hallmarks. Upon implantation into NOD/SCID mice, our vitrified cells reformed glioma masses that could be serially transplanted. Transcriptome analysis showed that the vitrified and nonvitrified samples in either the stem-like or differentiated states clustered together, providing evidence that vitrification does not change the genotype of frozen cells. Upon induction of differentiation, the transcriptomes of vitrified cells associated with the original primary tumors, indicating that tumor stem-like cells are a genetically distinct population from the differentiated mass, underscoring the importance of working with the relevant tumor-initiating population. Our results demonstrate that vitrification of brain tumor-initiating cells preserves the biological phenotype and genetic profiles of the cells. This should facilitate the establishment of a repository of tumor-initiating cells for subsequent experimental designs.
Collapse
Affiliation(s)
- Yuk-Kien Chong
- Singapore Institute for Clinical Sciences, Genome Institute of Singapore, Agency for Science, Technology and ResearchSingapore
| | - Tan-Boon Toh
- Department of Research, National Neuroscience InstituteSingapore
| | - Norazean Zaiden
- Department of Research, National Neuroscience InstituteSingapore
| | - Anuradha Poonepalli
- Department of Physiology, Yong Loo Lin School of Medicine, National University of SingaporeSingapore
| | - Siew Hong Leong
- Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, National Cancer CentreSingapore
| | | | - Yiting Yu
- Cell and Medical Biology, Genome Institute of Singapore, Agency for Science, Technology and ResearchSingapore
| | - Patrick B Tan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of SingaporeSingapore
- Cell and Medical Biology, Genome Institute of Singapore, Agency for Science, Technology and ResearchSingapore
- Duke-National University of Singapore Graduate Medical SchoolSingapore
| | - Siew-Ju See
- Department of Neurology, National Neuroscience InstituteSingapore
| | - Wai-Hoe Ng
- Department of Neurosurgery, National Neuroscience InstituteSingapore
| | - Ivan Ng
- Duke-National University of Singapore Graduate Medical SchoolSingapore
- Department of Neurosurgery, National Neuroscience InstituteSingapore
| | - Manoor P Hande
- Department of Physiology, Yong Loo Lin School of Medicine, National University of SingaporeSingapore
| | - Oi Lian Kon
- Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, National Cancer CentreSingapore
- Duke-National University of Singapore Graduate Medical SchoolSingapore
| | - Beng-Ti Ang
- Singapore Institute for Clinical Sciences, Genome Institute of Singapore, Agency for Science, Technology and ResearchSingapore
- Duke-National University of Singapore Graduate Medical SchoolSingapore
- Department of Neurosurgery, National Neuroscience InstituteSingapore
| | - Carol Tang
- Department of Research, National Neuroscience InstituteSingapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of SingaporeSingapore
- Division of Medical Sciences, Humphrey Oei Institute of Cancer Research, National Cancer CentreSingapore
- Duke-National University of Singapore Graduate Medical SchoolSingapore
| |
Collapse
|
200
|
Colitti M, Farinacci M. Expression of a putative stem cell marker, Musashi 1, in mammary glands of ewes. J Mol Histol 2009; 40:139-49. [DOI: 10.1007/s10735-009-9224-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Accepted: 06/09/2009] [Indexed: 10/20/2022]
|