151
|
Foster-Schubert KE, McTiernan A, Frayo RS, Schwartz RS, Rajan KB, Yasui Y, Tworoger SS, Cummings DE. Human plasma ghrelin levels increase during a one-year exercise program. J Clin Endocrinol Metab 2005; 90:820-5. [PMID: 15585547 DOI: 10.1210/jc.2004-2081] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Weight loss resulting from decreased caloric intake raises levels of the orexigenic hormone, ghrelin. Because ingested nutrients suppress ghrelin, increased ghrelin levels in hypophagic weight loss may result from decreased inhibitory input by ingested food, rather than from lost weight. We assessed whether ghrelin levels increase in response to exercise-induced weight loss without decreased caloric intake. We randomized 173 sedentary, overweight, postmenopausal women to an aerobic exercise intervention or stretching control group. At baseline, 3 months, and 12 months, we measured body weight and composition, food intake, cardiopulmonary fitness (maximal oxygen consumption), leptin, insulin, and ghrelin. Complete data were available for 168 women (97%) at 12 months. Exercisers lost 1.4 +/- 0.4 kg (P < 0.05 compared with baseline; P = 0.01 compared with stretchers) and manifested a significant, progressive increase in ghrelin levels, whereas neither measure changed among stretchers. Ghrelin increased 18% in exercisers who lost more than 3 kg (P < 0.001). There was no change in caloric intake in either group and no effect on ghrelin of exercise per se independent of its impact on body weight. In summary, ghrelin levels increase with weight loss achieved without reduced food intake, consistent with a role for ghrelin in the adaptive response constraining weight loss and, thus, in long-term body weight regulation.
Collapse
Affiliation(s)
- Karen E Foster-Schubert
- Department of Medicine, Division of Metabolism, University of Washington, Veterans Affairs Puget Sound Health Care System, Seattle, Washington 98108, USA
| | | | | | | | | | | | | | | |
Collapse
|
152
|
Cummings DE, Overduin J, Foster-Schubert KE. Roles for ghrelin in the regulation of appetite and body weight. Curr Opin Endocrinol Diabetes Obes 2005; 12:72-79. [PMID: 31609101 DOI: 10.1097/01.med.0000152035.62993.5a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Ghrelin, the only known circulating appetite stimulant, has garnered widespread scientific interest and is currently featured in more than 2.3 new publications per day. Antagonists and agonists of its receptor are vigorously being developed by pharmaceutical companies to treat obesity and wasting conditions respectively. Here, the authors summarize the current state of knowledge regarding ghrelin's roles in energy homeostasis. RECENT FINDINGS Ghrelin is an acylated peptide produced primarily by the stomach and proximal small intestine. Circulating levels sharply increase before, and decrease after, meals. These and other findings implicate ghrelin in pre-meal hunger and meal initiation. Moreover, ghrelin satisfies established criteria for an adiposity-associated hormone involved in long-term body weight regulation. Blood levels correlate with energy stores and display compensatory changes in response to alterations of those stores. Ghrelin influences neuronal activity in brain areas critical to energy homeostasis. Excessive ghrelin signaling durably increases food intake and decreases energy expenditure, thereby promoting weight gain. Conversely, acute ghrelin blockade in adult animals reduces food intake and body weight, although the effects of lifelong genetic deletions are very subtle. Overproduction of ghrelin is etiologically implicated in Prader-Willi syndrome, whereas defective secretion may contribute to weight loss after gastric bypass surgery. SUMMARY Ghrelin appears to participate in mealtime hunger and meal initiation, as well as in long-term energy balance. Whether these roles are sufficiently important that ghrelin blockade will prove to be an effective antiobesity modality is a pivotal question that should soon be answered as ghrelin receptor antagonists are developed. Ghrelin agonists hold promise in the treatment of wasting conditions, for which few medications currently exist.
Collapse
|
153
|
Pöykkö SM, Ukkola O, Kauma H, Kellokoski E, Hörkkö S, Kesäniemi YA. The negative association between plasma ghrelin and IGF-I is modified by obesity, insulin resistance and type 2 diabetes. Diabetologia 2005; 48:309-16. [PMID: 15688209 DOI: 10.1007/s00125-004-1635-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2004] [Accepted: 09/15/2004] [Indexed: 12/11/2022]
Abstract
AIMS/HYPOTHESIS Ghrelin is a natural growth hormone-releasing peptide thought to be involved in the regulation of energy metabolism. The recent studies concerning the association between ghrelin and insulin-like growth factor-I (IGF-I) concentrations have shown either negative correlation or no correlation at all. The aims of this study were to clarify the association between ghrelin and IGF-I concentrations in a large cohort and to characterize whether obesity, insulin resistance and type 2 diabetes affect this association. METHODS We analysed fasting plasma ghrelin and IGF-I concentrations of 1,004 middle-aged subjects of the population-based OPERA study. Insulin resistance was estimated using QUICKI. RESULTS IGF-I concentrations were negatively associated with ghrelin concentrations in the analysis of all subjects before (beta=-0.32, p<0.001) and after adjustments for BMI, insulin levels, sex and age (beta=-0.40, p<0.001). The association was particularly strong in males and in the higher BMI tertiles. The degree of association varied in relation to the glycaemic status: no insulin resistance: r(2)=6.5% (p<0.001), insulin resistance without type 2 diabetes: r(2)=21.0% (p<0.001), type 2 diabetes: r(2)=25.4 (p<0.001). IGF-I levels explained larger proportion (r(2)=9.8%) of the variation in ghrelin concentrations compared to fasting insulin concentration (r(2)=3.0%) and BMI (r(2)=1.5%). CONCLUSIONS/INTERPRETATION There is a negative and independent association between ghrelin and IGF-I concentrations in middle-aged subjects. The interaction between IGF-I and ghrelin is modified by obesity, IR and type 2 diabetes. Further studies are warranted to elucidate the role of ghrelin in the development of these states.
Collapse
Affiliation(s)
- S M Pöykkö
- Department of Internal Medicine, University of Oulu, P.O. Box 5000, 90014 Oulu, Finland.
| | | | | | | | | | | |
Collapse
|
154
|
Xin Z, Zhao H, Serby MD, Liu B, Schaefer VG, Falls DH, Kaszubska W, Colins CA, Sham HL, Liu G. Synthesis and structure–activity relationships of isoxazole carboxamides as growth hormone secretagogue receptor antagonists. Bioorg Med Chem Lett 2005; 15:1201-4. [PMID: 15686942 DOI: 10.1016/j.bmcl.2004.11.075] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2004] [Revised: 11/19/2004] [Accepted: 11/30/2004] [Indexed: 10/26/2022]
Abstract
A series of isoxazole carboxamide derivatives has been developed as potent ghrelin receptor antagonists. The synthesis and structure-activity relationship (SAR) are described.
Collapse
Affiliation(s)
- Zhili Xin
- Metabolic Disease Research, Global Pharmaceutical Research and Development, Abbott Laboratories, 100 Abbott Park Road, Abbott Park, IL 60064-6098, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
155
|
Zhao H. Growth hormone secretagogue receptor antagonists as potential therapeutic agents for obesity. Drug Dev Res 2005. [DOI: 10.1002/ddr.20011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
156
|
Ariyasu H, Takaya K, Iwakura H, Hosoda H, Akamizu T, Arai Y, Kangawa K, Nakao K. Transgenic mice overexpressing des-acyl ghrelin show small phenotype. Endocrinology 2005; 146:355-64. [PMID: 15471959 DOI: 10.1210/en.2004-0629] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ghrelin, a 28-amino acid acylated peptide, displays strong GH-releasing activity in concert with GHRH. The fatty acid modification of ghrelin is essential for the actions, and des-acyl ghrelin, which lacks the modification, has been assumed to be devoid of biological effects. Some recent reports, however, indicate that des-acyl ghrelin has effects on cell proliferation and survival. In the present study, we generated two lines of transgenic mice bearing the preproghrelin gene under the control of chicken beta-actin promoter. Transgenic mice overexpressed des-acyl ghrelin in a wide variety of tissues, and plasma des-acyl ghrelin levels reached 10- and 44-fold of those in control mice. They exhibited lower body weights and shorter nose-to-anus lengths, compared with control mice. The serum GH levels tended to be lower, and the serum IGF-I levels were significantly lower in both male and female transgenic mice than control mice. The responses of GH to administered GHRH were normal, whereas those to administered ghrelin were reduced, especially in female transgenic mice, compared with control mice. These data suggest that overexpressed des-acyl ghrelin may modulate the GH-IGF-I axis and result in small phenotype in transgenic mice.
Collapse
Affiliation(s)
- Hiroyuki Ariyasu
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | | | | | | | | | | | | | | |
Collapse
|
157
|
Affiliation(s)
- Felipe F Casanueva
- Department of Medicine, Faculty of Medicine, University of Santiago de Compostela, E-15780, Spain.
| | | |
Collapse
|
158
|
Yokoyama M, Murakami N, Naganobu K, Hosoda H, Kangawa K, Nakahara K. Relationship Between Growth and Plasma Concentrations of Ghrelin and Growth Hormone in Juvenile Beagle Dogs. J Vet Med Sci 2005; 67:1189-92. [PMID: 16327235 DOI: 10.1292/jvms.67.1189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although the release of growth hormone (GH) is known to be regulated mainly by GH-releasing hormone (GHRH) and somatostatin (SRIF) secreted from the hypothalamus, ghrelin also may be involved in GH release during juvenile period. We have examined plasma concentrations of acylated ghrelin, desacyl ghrelin, and GH in juvenile beagle dogs. Plasma acylated and desacyl ghrelin levels changed through aging; however, there was no closely correlation between ghrelin, body weight and circulating GH levels during juvenile period. The increase in body weight was essentially linear until 8 months of age, whereas plasma GH concentrations exhibited bimodal peaks for the meanwhile. The results suggest that ghrelin may not play internal cueing in GH secretion in juvenile beagle dogs.
Collapse
Affiliation(s)
- Masayuki Yokoyama
- Department of Veterinary Physiology, Faculty of Agriculture, University of Miyazaki, Japan
| | | | | | | | | | | |
Collapse
|
159
|
Beck B, Richy S, Stricker-Krongrad A. Feeding response to ghrelin agonist and antagonist in lean and obese Zucker rats. Life Sci 2004; 76:473-8. [PMID: 15530508 DOI: 10.1016/j.lfs.2004.09.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Accepted: 09/09/2004] [Indexed: 12/11/2022]
Abstract
Ghrelin is a new orexigenic and adipogenic peptide primarily produced by the stomach and the hypothalamus. In the present experiment, we determined the circulating ghrelin levels in 60-week old fa/fa Zucker rats with a well-established obesity (n = 12) and in their lean (FA/FA) counterparts (n = 12). We also tested the feeding response of both groups to intra-peritoneal (I.P.) injection of ghrelin agonist and antagonist. Obese rats ate significantly more than the lean rats (21.7 +/- 1.1 vs. 18.3 +/- 0.3 g/day; p < 0.01). Their plasma ghrelin concentration was 35% higher than that in the lean homozygous rats (p < 0.025). GHRP-6 (1 mg/kg I.P, a GHS-R agonist) stimulated food intake in lean but not in obese rats (p < 0.01), whereas [D-Lys)]-GHRP-6 (12 mg/kg I.P., a GHS-R antagonist) decreased food intake in both groups (p < 0.0001). These results indicate that the obese Zucker rat is characterized by an increase in plasma ghrelin concentrations and by an attenuated response to a GHS-R agonist. They support a role for ghrelin in the development of obesity in the absence of leptin signaling.
Collapse
Affiliation(s)
- Bernard Beck
- UHP/EA 3453 - IFR 111-Systèmes Neuromodulateurs des Comportements Ingestifs-38, rue Lionnois 54000 Nancy, France
| | | | | |
Collapse
|
160
|
Liu X, York DA, Bray GA. Regulation of ghrelin gene expression in stomach and feeding response to a ghrelin analogue in two strains of rats. Peptides 2004; 25:2171-7. [PMID: 15572207 DOI: 10.1016/j.peptides.2004.08.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2004] [Revised: 08/30/2004] [Accepted: 08/30/2004] [Indexed: 11/27/2022]
Abstract
Ghrelin is a peptide produced by the stomach and released into the circulation. As a natural ligand of the growth hormone secretagogue (GHS) receptor, it stimulates growth hormone secretion but it also stimulates feeding in humans and rodents. The orexigenic effect of ghrelin has been related to AgRP/NPY and orexin pathways. We proposed that ghrelin might be involved in the susceptibility to diet induced obesity and in the regulation of macronutrient selection. We have investigated these hypotheses in two strains of rat, the Osborne-Mendel (OM) rat that prefers diets high in fat and is sensitive to dietary obesity and the S5B/P1 (S5B) rat that prefers a low fat diet and is resistant to high fat diet induced obesity. OM and S5B rats were adapted to a choice of high fat (HF) and low fat (LF) diet for 2 weeks. GHRP-2, an analogue of ghrelin, was injected intraperitoneally into satiated and 24 h fasted rats at doses of 10, 30 and 90 nmol. Food intake was measured over the next 4 h period. In satiated S5B rats, GHRP-2 stimulated intake of the LF diet in a dose dependent manner but did not affect the intake of the HF diet. In satiated OM rats, 90 nmol of GHRP-2 stimulated HF intake. In contrast, neither fasted OM nor S5B rats increased the intake of either HF or LF diet in response to GHRP-2. Fasting for 18 h induced a large rise in ghrelin mRNA in stomach of OM rats but not in S5B rats. There were no significant differences in plasma total ghrelin. An increase in ghrelin mRNA in stomach immediately before the onset of the dark cycle was observed in OM but not in S5B rats. Active ghrelin level was significantly affected by different feeding conditions in both OM and S5B rats adapted on HF diet with a trend to increase after 48 h of fasting and to decline to basal levels following 10 h of refeeding. These data suggest that ghrelin stimulates the intake of the preferred macronutrient. In addition, a differential regulation of ghrelin gene expression between OM and S5B rats may be important in their differential sensitivity to HF diet-induced obesity.
Collapse
Affiliation(s)
- Xiaotuan Liu
- Experimental Obesity Laboratory, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA.
| | | | | |
Collapse
|
161
|
Kamegai J, Tamura H, Shimizu T, Ishii S, Sugihara H, Oikawa S. Effects of insulin, leptin, and glucagon on ghrelin secretion from isolated perfused rat stomach. ACTA ACUST UNITED AC 2004; 119:77-81. [PMID: 15093700 DOI: 10.1016/j.regpep.2004.01.012] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2003] [Revised: 01/07/2004] [Accepted: 01/14/2004] [Indexed: 01/12/2023]
Abstract
Ghrelin, an endogenous ligand for the growth hormone secretagogue receptor, was originally purified from the rat stomach. Although ghrelin has been recognized as an important regulator of energy metabolism, the regulation of the ghrelin secretion is largely unknown. Here, we examined the direct effects of insulin, leptin, and glucagon on the release of ghrelin from the isolated rat stomach. The isolated pancreas-spleen-duodenum deprived preparation of rat stomach was used. After a baseline control infusion into the left gastric artery, insulin, leptin, or glucagon were infused for 15 min at concentrations of 0.1, 1, and 10 nM. The levels of immunoreactive ghrelin in the venous effluents were measured with a radioimmunoassay. Insulin and leptin inhibited ghrelin secretion dose-dependently (total amount of ghrelin release: insulin at 1 nM, 73.5+/-7.3% of the control infusion; leptin at 1 nM, 81.8+/-2.5% of the control infusion; n=5, P<0.05), while glucagon increased it dose-dependently (total amount of ghrelin released at 10 nM was 143.9+/-19.3% of the control infusion; n=5, P<0.01). These results indicate that the ghrelin responses observed in vivo could be due to direct effects of multiple hormonal signals on the stomach.
Collapse
Affiliation(s)
- Jun Kamegai
- Department of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo, Tokyo 113-8603, Japan.
| | | | | | | | | | | |
Collapse
|
162
|
Erickson D, Keenan DM, Mielke K, Bradford K, Bowers CY, Miles JM, Veldhuis JD. Dual secretagogue drive of burst-like growth hormone secretion in postmenopausal compared with premenopausal women studied under an experimental estradiol clamp. J Clin Endocrinol Metab 2004; 89:4746-54. [PMID: 15356089 DOI: 10.1210/jc.2004-0424] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We show that in an experimentally enforced estradiol-predominant milieu, postmenopausal compared with premenopausal women maintain 1) decreased fasting GH and IGF-I concentrations, 2) reduced basal and pulsatile GH secretion, and 3) attenuated GH secretion after maximal stimulation by the paired secretagogues l-arginine/GH-releasing peptide (GHRP)-2, l-arginine/GHRH, and GHRP-2/GHRH. These foregoing outcomes are selective, because menopausal status did not determine mean GH secretory-burst frequency or peptide-induced waveform shortening. Abdominal visceral fat mass predicted up to 25% of the variability in fasting and stimulated GH secretion in the combined cohorts under fixed systemic estradiol availability. Accordingly, as much as three-fourths of interindividual differences in burst-like GH secretion among healthy pre- and postmenopausal women arise from age-related mechanisms independently of short-term systemic estrogen availability and relative intraabdominal adiposity.
Collapse
Affiliation(s)
- Dana Erickson
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Mayo Medical and Graduate Schools of Medicine, General Clinical Research Center, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | |
Collapse
|
163
|
Helmling S, Maasch C, Eulberg D, Buchner K, Schröder W, Lange C, Vonhoff S, Wlotzka B, Tschöp MH, Rosewicz S, Klussmann S. Inhibition of ghrelin action in vitro and in vivo by an RNA-Spiegelmer. Proc Natl Acad Sci U S A 2004; 101:13174-9. [PMID: 15329412 PMCID: PMC516544 DOI: 10.1073/pnas.0404175101] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Employing in vitro selection techniques, we have generated biostable RNA-based compounds, so-called Spiegelmers, that specifically bind n-octanoyl ghrelin, the recently discovered endogenous ligand for the type 1a growth hormone secretagogue (GHS) receptor. Ghrelin is a potent stimulant of growth hormone release, food intake, and adiposity. We demonstrate that our lead compound, L-NOX-B11, binds ghrelin with low-nanomolar affinity and inhibits ghrelin-mediated GHS-receptor activation in cell culture with an IC(50) of 5 nM. l-NOX-B11 is highly specific for the bioactive, n-octanoylated form of ghrelin. Like the GHS receptor, it does not recognize the inactive unmodified peptide and requires only the N-terminal five amino acids for the interaction. The i.v. administration of polyethylene glycol modified l-NOX-B11 efficiently suppresses ghrelin-induced growth hormone release in rats. These results demonstrate that the neutralization of circulating bioactive ghrelin leads to inhibition of ghrelin's secretory effects in the CNS.
Collapse
|
164
|
Kamegai J, Tamura H, Shimizu T, Ishii S, Tatsuguchi A, Sugihara H, Oikawa S, Kineman RD. The role of pituitary ghrelin in growth hormone (GH) secretion: GH-releasing hormone-dependent regulation of pituitary ghrelin gene expression and peptide content. Endocrinology 2004; 145:3731-8. [PMID: 15087428 DOI: 10.1210/en.2003-1424] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ghrelin is a GH-releasing peptide originally purified from the rat stomach. It has been demonstrated that ghrelin expression, within the gastroenteric system, is regulated by both the metabolic and GH milieu. Our laboratory and others have previously reported that ghrelin is also produced in the pituitary. Given that the receptor for ghrelin [GH secretagogue receptor (GHS-R)] is also expressed by the pituitary, the possibility exists that locally produced ghrelin plays an autocrine/paracrine role in regulating GH release. Because we have previously reported that GHRH infusion increases pituitary levels of ghrelin mRNA, we hypothesized that GHRH could be a key regulator of pituitary ghrelin expression. In this report, we demonstrate that 4-h GHRH infusion increased pituitary ghrelin peptide content. Interestingly, under experimental conditions in which hypothalamic GHRH expression is increased, e.g. GH deficiency due to GH gene mutation, glucocorticoid deficiency, and hypothyroidism, we observed that pituitary ghrelin expression (mRNA levels and peptide content) was also increased. Consistent with this positive correlation between GHRH and ghrelin, pituitary ghrelin expression (mRNA levels and peptide content) was found to be decreased in conditions in which hypothalamic GHRH expression is decreased, e.g. GH treatment, glucocorticoid excess, hyperthyroid state, and food deprivation. Collectively, these results suggest that pituitary ghrelin expression is GHRH dependent. We also conducted functional studies to examine whether the pituitary ghrelin/GHS-R system contributes to GH release after GHRH stimulation, by challenging pituitary cell cultures with GHRH in the presence of a GHS-R-specific inhibitor ([d-Lys-3]-GHRP-6). The GHS-R inhibitor did not affect GH release in the absence of GHRH, but significantly reduced GHRH-mediated GH release. This is the first report demonstrating that endogenous pituitary ghrelin can play a physiological role in GH release, by optimizing somatotroph responsiveness to GHRH.
Collapse
Affiliation(s)
- Jun Kamegai
- Department of Medicine, Nippon Medical School, Tokyo 113-8603, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
165
|
Meier U, Gressner AM. Endocrine regulation of energy metabolism: review of pathobiochemical and clinical chemical aspects of leptin, ghrelin, adiponectin, and resistin. Clin Chem 2004; 50:1511-25. [PMID: 15265818 DOI: 10.1373/clinchem.2004.032482] [Citation(s) in RCA: 621] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Recent studies point to the adipose tissue as a highly active endocrine organ secreting a range of hormones. Leptin, ghrelin, adiponectin, and resistin are considered to take part in the regulation of energy metabolism. APPROACH This review summarizes recent knowledge on leptin and its receptor and on ghrelin, adiponectin, and resistin, and emphasizes their roles in pathobiochemistry and clinical chemistry. CONTENT Leptin, adiponectin, and resistin are produced by the adipose tissue. The protein leptin, a satiety hormone, regulates appetite and energy balance of the body. Adiponectin could suppress the development of atherosclerosis and liver fibrosis and might play a role as an antiinflammatory hormone. Increased resistin concentrations might cause insulin resistance and thus could link obesity with type II diabetes. Ghrelin is produced in the stomach. In addition to its role in long-term regulation of energy metabolism, it is involved in the short-term regulation of feeding. These hormones have important roles in energy homeostasis, glucose and lipid metabolism, reproduction, cardiovascular function, and immunity. They directly influence other organ systems, including the brain, liver, and skeletal muscle, and are significantly regulated by nutritional status. This newly discovered secretory function has extended the biological relevance of adipose tissue, which is no longer considered as only an energy storage site. SUMMARY The functional roles, structures, synthesis, analytical aspects, and clinical significance of leptin, ghrelin, adiponectin, and resistin are summarized.
Collapse
Affiliation(s)
- Ursula Meier
- Institute of Clinical Chemistry and Pathobiochemistry, Rhenish-Westphalian Technical University, University Hospital Aachen, Pauwelsstrasse 30, D-52074, Germany.
| | | |
Collapse
|
166
|
Inui A, Asakawa A, Bowers CY, Mantovani G, Laviano A, Meguid MM, Fujimiya M. Ghrelin, appetite, and gastric motility: the emerging role of the stomach as an endocrine organ. FASEB J 2004; 18:439-56. [PMID: 15003990 DOI: 10.1096/fj.03-0641rev] [Citation(s) in RCA: 264] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent progress in the field of energy homeostasis was triggered by the discovery of adipocyte hormone leptin and revealed a complex regulatory neuroendocrine network. A late addition is the novel stomach hormone ghrelin, which is an endogenous agonist at the growth hormone secretagogne receptor and is the motilin-related family of regulatory peptides. In addition to its ability to stimulate GH secretion and gastric motility, ghrelin stimulates appetite and induces a positive energy balance leading to body weight gain. Leptin and ghrelin are complementary, yet antagonistic, signals reflecting acute and chronic changes in energy balance, the effects of which are mediated by hypothalamic neuropeptides such as neuropeptide Y and agouti-related peptide. Endocrine and vagal afferent pathways are involved in these actions of ghrelin and leptin. Ghrelin is a novel neuroendocrine signal possessing a wide spectrum of biological activities that illustrates the importance of the stomach in providing input into the brain. Defective ghrelin signaling from the stomach could contribute to abnormalities in energy balance, growth, and associated gastrointestinal and neuroendocrine functions.
Collapse
Affiliation(s)
- Akio Inui
- Division of Diabetes, Digestive and Kidney Diseases, Department of Clinical Molecular Medicine, Kobe University Graduate School of Medicine, Kobe, Japan.
| | | | | | | | | | | | | |
Collapse
|
167
|
van der Lely AJ, Tschöp M, Heiman ML, Ghigo E. Biological, physiological, pathophysiological, and pharmacological aspects of ghrelin. Endocr Rev 2004; 25:426-57. [PMID: 15180951 DOI: 10.1210/er.2002-0029] [Citation(s) in RCA: 820] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ghrelin is a peptide predominantly produced by the stomach. Ghrelin displays strong GH-releasing activity. This activity is mediated by the activation of the so-called GH secretagogue receptor type 1a. This receptor had been shown to be specific for a family of synthetic, peptidyl and nonpeptidyl GH secretagogues. Apart from a potent GH-releasing action, ghrelin has other activities including stimulation of lactotroph and corticotroph function, influence on the pituitary gonadal axis, stimulation of appetite, control of energy balance, influence on sleep and behavior, control of gastric motility and acid secretion, and influence on pancreatic exocrine and endocrine function as well as on glucose metabolism. Cardiovascular actions and modulation of proliferation of neoplastic cells, as well as of the immune system, are other actions of ghrelin. Therefore, we consider ghrelin a gastrointestinal peptide contributing to the regulation of diverse functions of the gut-brain axis. So, there is indeed a possibility that ghrelin analogs, acting as either agonists or antagonists, might have clinical impact.
Collapse
Affiliation(s)
- Aart J van der Lely
- Department of Internal Medicine, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands.
| | | | | | | |
Collapse
|
168
|
Bowers CY, Granda R, Mohan S, Kuipers J, Baylink D, Veldhuis JD. Sustained elevation of pulsatile growth hormone (GH) secretion and insulin-like growth factor I (IGF-I), IGF-binding protein-3 (IGFBP-3), and IGFBP-5 concentrations during 30-day continuous subcutaneous infusion of GH-releasing peptide-2 in older men and women. J Clin Endocrinol Metab 2004; 89:2290-300. [PMID: 15126555 DOI: 10.1210/jc.2003-031799] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We test the interlinked hypotheses that in healthy older adults: 1). i.v. injection of GH-releasing peptide-2 (GHRP-2) and GHRH synergizes more in aging women than men; 2). sc infusion of both GHRP-2 (1 microg/kg.h = 1) and GHRH (1, 3, or 10) for 24 h augments GH secretion more than either agonist alone; and 3). continuous sc delivery of GHRP-2 (1) for 30 d stimulates daily GH secretion and IGF-I, IGF-binding protein-3 (IGFBP-3), and IGFBP-5. Acute two-peptide synergy was 3-fold greater in young (n = 16) than older volunteers (n = 17; P < 0.025) and was 2.3-fold higher in elderly women than men (P < 0.025). The 24-h infusion of GHRP-2 (1) combined with GHRH (3 or 10) in men and with GHRH (10) in women drove GH secretion more than GHRH alone (P <or= 0.024). In the entire cohort (n = 11), GHRP-2/GHRH (1/10) stimulated GH secretion more than either GHRP-2 (1; P = 0.021) or GHRH (10; P = 0.012). The 30-d delivery of GHRP-2 (1; n = 17 subjects): 1). stimulated pulsatile, rhythmic, and entropic GH secretion by more than 3-fold on d 1 and more than 1.8-fold on d 14 and 30 (each P < 0.001 vs. saline); 2). elevated IGF-I to a stable plateau on d 1, 14, and 30 (P < 0.025 vs. baseline); and 3). increased IGFBP-3 (P < 0.01) and IGFBP-5 (P < 0.025) on d 14 and/or 30. Safety screening tests remained normal. In summary, in healthy elderly women and men: 1). acute synergy of GHRP-2 and GHRH is greater in the female; 2). 24-h combined GHRP-2 and GHRH drive is more effective than either agonist alone; and 3). 30-d stimulation with GHRP-2 sustains a physiologically activated somatotropic axis. We conclude that age, gender, stimulus duration, and secretagogue combination determine acute, intermediate, and extended responses of the somatotropic axis in the older adult.
Collapse
Affiliation(s)
- Cyril Y Bowers
- Tulane University Health Sciences Center, New Orleans, Louisiana 70112, USA.
| | | | | | | | | | | |
Collapse
|
169
|
Farhy LS, Veldhuis JD. Putative GH pulse renewal: periventricular somatostatinergic control of an arcuate-nuclear somatostatin and GH-releasing hormone oscillator. Am J Physiol Regul Integr Comp Physiol 2004; 286:R1030-42. [PMID: 14988084 DOI: 10.1152/ajpregu.00473.2003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Growth hormone (GH) pulsatility requires periventricular-nuclear somatostatin(SRIF(PeV)), arcuate-nuclear (ArC) GH-releasing hormone (GHRH), and systemic GH autofeedback. However, no current formalism interlinks these regulatory loci in a manner that generates self-renewable GH dynamics. The latter must include in the adult rat 1) infrequent volleys of high-amplitude GH peaks in the male, 2) frequent discrete low-amplitude GH pulses in the female, 3) disruption of the male pattern by severing SRIF(PeV) outflow to ArC, 4) stimulation of GHRH and GH secretion by central nervous system delivery of SRIF, 5) inhibition of GH release by central exposure to GHRH, and 6) a reboundlike burst of GHRH secretion induced by stopping peripheral infusion of SRIF. The present study validates by computer-assisted simulations a simplified ensemble formulation that predicts each of the foregoing six outcomes, wherein 1) blood-borne GH stimulates SRIF(PeV) secretion after a long time latency, 2) SRIF(PeV) inhibits both pituitary GH and ArC GHRH release, 3) ArC GHRH and SRIF(ArC) oscillate reciprocally with brief time delay, and 4) SRIF(PeV) represses and disinhibits the putative GHRH-SRIF(ArC) oscillator. According to the present analytic construction, time-delayed feedforward and feedback signaling among SRIF(PeV), ArC GHRH, and SRIF(ArC) could endow the complex physiological patterns of GH secretion in the male and female.
Collapse
Affiliation(s)
- Leon S Farhy
- Division of Endocrinology and Metabolism, Department of Internal Medicine, School of Medicine, University of Virginia, Charlottesville, 22908, USA
| | | |
Collapse
|
170
|
St-Pierre DH, Wang L, Taché Y. Ghrelin: a novel player in the gut-brain regulation of growth hormone and energy balance. Physiology (Bethesda) 2004; 18:242-6. [PMID: 14614157 DOI: 10.1152/nips.01460.2003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ghrelin is a newly discovered peptide hormone produced by the stomach that displays potent growth hormone-releasing activity and a stimulatory effect on food intake and digestive function while reducing energy expenditure. The isolation of ghrelin has led to new insights into how this gastric hormone links the endocrine control of nutritional homeostasis with growth hormone secretion and gastrointestinal motility through gut-brain interactions.
Collapse
Affiliation(s)
- David H St-Pierre
- Faculty of Medicine, Department of Nutrition, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | | | | |
Collapse
|
171
|
Abstract
Appetite is controlled by a complicated system with hunger and satiety signals interacting in complex pathways both peripherally and centrally. Insulin, leptin and ghrelin are key hormonal regulators of food intake. Ghrelin enhances appetite while leptin is a satiety signal. A novel peripheral regulator of food intake, peptide YY(3-36), is released from the gastrointestinal tract postprandially. In this review old and new peripheral signals and their interaction in the control of food intake are briefly discussed.
Collapse
Affiliation(s)
- O Ukkola
- Department of Internal Medicine and Biocenter Oulu, University of Oulu, Oulu, Finland.
| |
Collapse
|
172
|
Thompson NM, Gill DAS, Davies R, Loveridge N, Houston PA, Robinson ICAF, Wells T. Ghrelin and des-octanoyl ghrelin promote adipogenesis directly in vivo by a mechanism independent of the type 1a growth hormone secretagogue receptor. Endocrinology 2004; 145:234-42. [PMID: 14551228 DOI: 10.1210/en.2003-0899] [Citation(s) in RCA: 285] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Ghrelin promotes fat accumulation, despite potent stimulation of the lipolytic hormone, GH. The function of the major circulating isoform of ghrelin, des-octanoyl ghrelin, is unclear, because it does not activate the GH secretagogue receptor (GHS-R1a) and lacks the endocrine activities of ghrelin. We have now addressed these issues by infusing ghrelin, des-octanoyl ghrelin, or synthetic GHS-R1a agonists into three rat models with moderate, severe, or total GH deficiency. We show that in the context of significant GH secretion, the adipogenic effect of systemic ghrelin infusion is pattern dependent. However, this adipogenic action is not mediated by the pituitary hormones. Using a novel unilateral local infusion strategy, we demonstrate that ghrelin promotes bone marrow adipogenesis in vivo by a direct peripheral action. Surprisingly, this effect was also observed with des-octanoyl ghrelin, whereas a potent synthetic GHS-R1a agonist was ineffective. Thus, these adipogenic effects are mediated by a receptor other than GHS-R1a. This is the first in vivo demonstration of a direct adipogenic effect of des-octanoyl ghrelin, a major circulating form of ghrelin that lacks GH-releasing activity. We suggest that the ratio of ghrelin and des-octanoyl ghrelin production could help regulate the balance between adipogenesis and lipolysis in response to nutritional status.
Collapse
Affiliation(s)
- Nichola M Thompson
- School of Biosciences, Cardiff University, Cardiff, United Kingdom CF10 3US
| | | | | | | | | | | | | |
Collapse
|
173
|
Giordano R, Picu A, Broglio F, Bonelli L, Baldi M, Berardelli R, Ghigo E, Arvat E. Ghrelin, hypothalamus-pituitary-adrenal (HPA) axis and Cushing's syndrome. Pituitary 2004; 7:243-8. [PMID: 16132204 DOI: 10.1007/s11102-005-1173-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Ghrelin, a peptide predominantly produced by the stomach, has been discovered as a natural ligand of the GH Secretagogue receptor type 1a (GHS-R1a), known as specific for synthetic GHS. Ghrelin has recently attracted considerable interest as a new orexigenic factor. However, ghrelin exerts pleiotropic actions that are explained by the widespread distribution of ghrelin and GHS-R expression. Besides strong stimulation of GH secretion, the neuroendocrine ghrelin actions also include significant stimulation of both lactotroph and corticotroph secretion; all these actions depend on acylation of ghrelin in serine-3 that allows binding and activation of the GHS-R1a. However, GHS-R subtypes are likely to exist; they also bind unacylated ghrelin that is, in fact, the most abundant circulating form and exerts some biological actions. Ghrelin secretion is mainly regulated by metabolic signals, namely inhibited by feeding, glucose and insulin while stimulated by energy restriction. The role of glucocorticoids on ghrelin synthesis and secretion is still unclear although morning ghrelin levels have been found reduced in some patients with Cushing's syndrome; this, however, would simply reflect its negative association to body mass. Ghrelin, like synthetic GHS, stimulates ACTH and cortisol secretion in normal subjects and this effect is generally sensitive to the negative glucocorticoid feedback. It is remarkable that, despite hypercortisolism, ghrelin as well as synthetic GHS display marked increase in their stimulatory effect on ACTH and cortisol secretion in patients with Cushing's disease. This is even more intriguing considering that the GH response to ghrelin and GHS is markedly reduced by glucocorticoid excess. It has been demonstrated that the ACTH-releasing effect of ghrelin and GHS is purely mediated at the central level in physiological conditions; its enhancement in the presence of ACTH-secreting tumours is, instead, likely to reflect direct action on GHS receptors present on the neoplastic tissues. In fact, peculiar ACTH hyperresponsiveness to ghrelin and GHS has been observed also in ectopic ACTH-secreting tumours.
Collapse
Affiliation(s)
- Roberta Giordano
- Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Turin, Turin, Italy
| | | | | | | | | | | | | | | |
Collapse
|
174
|
Abstract
A few examples of hypothalamic, peptidergic disorders leading to clinical signs and symptoms are presented in this review. Increased activity of corticotropin-releasing hormone (CRH) neurons in the paraventricular nucleus (PVN) and decreased activity of the vasopressin neurons in the biological clock and of the thyroxine-releasing hormone (TRH) neurons in the PVN contribute to the signs and symptoms of depression. In men, the central nucleus of the bed nucleus of the stria terminalis (BSTc) is about twice as large and contains twice as many somatostatin neurons as in women. In transsexuals this sex difference is reversed, pointing to a role of this structure in gender. Luteinizing hormone-releasing hormone (LHRH) neurons are formed in the fetal olfactory placade and migrate along the terminal nerve fibers into the hypothalamus. In Kallmann's syndrome the migration process of the LHRH (gonadotropin-releasing hormone) neurons is aborted, which explains the joint occurrence of hypogonadotropic hypogonadism and anosmia in this syndrome. In postmenopausal women, the neurons of the infundibular nucleus hypertrophy and become hyperactive because of the disappearance of the estrogen feedback and contain hyperactive peptidergic neurons. Climacteric flushes may be caused by hyperactivity of the neurokinin-B or LHRH neurons in this nucleus. The hypocretin (orexin) neurons in the perifornical area are involved in sleep. In narcolepsy with cataplexy, a loss of these neurons, probably due to an autoimmune process, is found. Obese subjects with a mutation in the gene that encodes for leptin, the preproghrelin gene, or the alpha-melanocyte-stimulating hormone (alpha-MSH) gene have been described. Decreased numbers and activity of the oxytocin neurons in the PVN may be responsible for the absence of satiety in Prader-Willi syndrome. Moreover, a glucocorticoid receptor polymorphism is associated with obesitas and dysregulation of the hypothalamus-pituitary-adrenal axis. In contrast, two single nucleotide polymorphisms (SNPs) of the AGRP gene have been associated with anorexia nervosa.
Collapse
Affiliation(s)
- Dick F Swaab
- Netherlands Institute for Brain Research, 1105 AZ, Amsterdam, The Netherlands
| |
Collapse
|
175
|
Kaiya H, Kojima M, Hosoda H, Moriyama S, Takahashi A, Kawauchi H, Kangawa K. Peptide purification, complementary deoxyribonucleic acid (DNA) and genomic DNA cloning, and functional characterization of ghrelin in rainbow trout. Endocrinology 2003; 144:5215-26. [PMID: 12970156 DOI: 10.1210/en.2003-1085] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have identified ghrelin from the stomach of rainbow trout. Four isoforms of ghrelin peptide were isolated: the C-terminal amidated type of rainbow trout ghrelin (rt ghrelin) composed of 24 amino acids (GSSFLSPSQKPQVRQGKGKPPRV-amide) is a basic form; des-VRQ-rt ghrelin, which deleted three amino acids (V13R14Q15) from rt ghrelin; and further two types of rt ghrelin that retained the glycine residue at the C terminus, rt ghrelin-Gly, and des-VRQ-rt ghrelin-Gly. The third serine residue was modified by octanoic acid, decanoic acid, or the unsaturated form of those fatty acids. In agreement with the isolated peptides, two cDNAs of different lengths were isolated. The rt ghrelin gene has five exons and four introns, and two different mRNA molecules are predicted to be produced by alternative splicing of the gene. A high level of ghrelin mRNA expression was detected in the stomach, and moderate levels were detected in the brain, hypothalamus, and intestinal tracts. Des-VRQ-rt ghrelin stimulated the release of GH in the rat in vivo. Furthermore, des-VRQ-rt ghrelin stimulated the release of GH, but not the release of prolactin and somatolactin in rainbow trout in vivo and in vitro. These results indicate that ghrelin is a novel GH secretagogue in rainbow trout that may affect somatic growth or osmoregulation through GH. Because ghrelin is expressed in various tissues other than stomach, it may play important role(s) in cellular function as a local regulator.
Collapse
Affiliation(s)
- Hiroyuki Kaiya
- Department of Biochemistry, National Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan.
| | | | | | | | | | | | | |
Collapse
|
176
|
Whatmore AJ, Hall CM, Jones J, Westwood M, Clayton PE. Ghrelin concentrations in healthy children and adolescents. Clin Endocrinol (Oxf) 2003; 59:649-54. [PMID: 14616891 DOI: 10.1046/j.1365-2265.2003.01903.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE In addition to its regulation by GH releasing hormone (GHRH) and somatostatin, release of GH from the pituitary is modulated by a third factor, ghrelin, which is expressed in high concentration in the stomach and is present in the circulation. Ghrelin has also been shown to cause weight gain by increasing food intake and decreasing fat utilization. Ghrelin is a potential candidate hormone to influence nutrient intake and growth. Its role through normal childhood and adolescence has not been fully defined. DESIGN Cross-sectional study in 121 healthy children (65 male, 56 female) aged 5-18 years, in whom height, weight, body mass index (BMI), pubertal status and measurements of IGF-I, IGFBP-3, IGFBP-1 and leptin were available. METHODS Serum ghrelin concentrations have been measured in radioimmunoassay (RIA; Phoenix, AZ, USA) that detects active and inactive human ghrelin. Relationships between ghrelin and anthropometric data and growth factors were assessed by correlation and regression analyses. RESULTS Ghrelin was detected in all samples, with a median concentration of 162 pg/ml, range 60-493 pg/ml. Prepubertal children had higher ghrelin concentrations than those in puberty [218 pg/ml (n = 42) and 157 pg/ml (n = 79), P < 0.001], with significant negative correlations between ghrelin and age (rs = -0.39, P < 0.001) and pubertal stage (rs = -0.42, P < 0.001). The decrease in ghrelin with advancing pubertal stage/age was more marked in boys than girls. In the whole group, ghrelin was negatively correlated to BMI SD (rs = -0.24, P = 0.006) and to weight SD (rs = -0.24, P = 0.008) but not height sds. Ghrelin was also negatively correlated to IGF-I (rs = -0.48, P < 0.001), IGFBP-3 (rs = -0.32, P < 0.001) and leptin (rs = -0.22, P = 0.02) but not IGF-II. It was positively related to IGFBP-1 (rs = +0.46, P < 0.001). In stepwise multiple regression, 30% of the variability in ghrelin through childhood could be accounted for by log IGF-I (24%) and log IGFBP-1 (6%). CONCLUSIONS The fall in ghrelin over childhood and with puberty does not suggest that it is a direct growth-promoting hormone. However in view of the negative relationship with IGF-I and the positive relationship with IGFBP-1, this fall in ghrelin could facilitate growth acceleration over puberty.
Collapse
Affiliation(s)
- A J Whatmore
- Endocrine Science Research Group, University of Manchester, UK
| | | | | | | | | |
Collapse
|
177
|
Levin BE, Dunn-Meynell AA, Ricci MR, Cummings DE. Abnormalities of leptin and ghrelin regulation in obesity-prone juvenile rats. Am J Physiol Endocrinol Metab 2003; 285:E949-57. [PMID: 12865257 DOI: 10.1152/ajpendo.00186.2003] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rats selectively bred to develop diet-induced obesity (DIO) spontaneously gain more body weight between 5 and 7 wk of age than do those bred to be diet resistant (DR). Here, chow-fed DIO rats ate 9% more and gained 19% more body weight from 5 to 6 wk of age than did DR rats but had comparable leptin and insulin levels. However, 6-wk-old DIO rats had 29% lower plasma ghrelin levels at dark onset but equivalent levels 6 h later compared with DR rats. When subsequently fed a high-energy (HE; 31% fat) diet for 10 days, DIO rats ate 70% more, gained more body and adipose depot weight, had higher leptin and insulin levels, and had 22% lower feed efficiency than DR rats fed HE diet. In DIO rats on HE diet, leptin levels increased significantly at 3 days followed by increased insulin levels at 7 days. These altered DIO leptin and ghrelin responses were associated with 10% lower leptin receptor mRNA expression in the arcuate (ARC), dorsomedial (DMN), and ventromedial hypothalamic nuclei and 13 and 15% lower ghrelin receptor (GHS-R) mRNA expression in the ARC and DMN than in the DR rats. These data suggest that increased ghrelin signaling is not a proximate cause of DIO, whereas reduced leptin sensitivity might play a causal role.
Collapse
Affiliation(s)
- Barry E Levin
- Neurology Service, Department of Veterans Affairs Medical Center, 127C VA Medical Center, 385 Tremont Ave., E. Orange, NJ 07018-1095, USA.
| | | | | | | |
Collapse
|
178
|
Veldhuis JD, Evans WS, Bowers CY. Estradiol supplementation enhances submaximal feed-forward drive of growth hormone (GH) secretion by recombinant human GH-releasing hormone-1,44-amide in a putatively somatostatin-withdrawn milieu. J Clin Endocrinol Metab 2003; 88:5484-9. [PMID: 14602794 DOI: 10.1210/jc.2003-030410] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
To test the clinical hypothesis that an estrogen-enriched milieu enhances GHRH action, we administered placebo (Pl) and estradiol-17 beta (E(2)) orally for 23 d to six postmenopausal women in a prospectively randomized, double-masked, within-subject crossover design with 6 wk intervening. The GHRH stimulation protocol entailed consecutive i.v. infusion of L-arginine and a single i.v. pulse of saline or one of five randomly ordered doses of recombinant human GHRH-1,44-amide (0.03, 0.1, 0.3, 1.0, or 3.0 microg/kg) in a total of 12 separate morning, fasting sessions. GH secretion was monitored by sampling blood every 10 min for 6 h; chemiluminescence assay of GH concentrations; deconvolution analysis of stimulated GH release; and nonlinear dose-response reconstruction. Supplementation with E(2), compared with Pl: 1) increased (mean +/- SEM) E(2) concentrations from 18 +/- 3 (Pl) to 164 +/- 12 pg/ml (to convert to picomoles per liter, multiply by 3.57) (P < 0.001); 2) decreased IGF-I concentrations from 181 +/- 14 to 120 +/- 11 microg/liter (P < 0.01); 3) elevated mean GH concentrations from 0.27 +/- 0.06 to 0.59 +/- 0.08 microg/liter (P = 0.014); 4) potentiated GH secretion stimulated by L-arginine alone by 1.43-fold (P = 0.012); 5) reduced the ED(50) of GHRH from 0.27 +/- 0.02 to 0.13 +/- 0.01 microg/kg (P < 0.01), denoting enhanced GHRH potency; and 6) heightened the maximal slope of the dose-response function from 1.1 +/- 0.1 to 1.4 +/- 0.05 [( microg/liter) ( microg/kg)(-1)] (P < 0.05), signifying augmented pituitary sensitivity. The foregoing facilitative mechanisms were specific because E(2) replacement did alter maximal L-arginine/GHRH-induced GH secretion, indicating unchanged secretagogue efficacy. In conclusion, inasmuch as E(2) also attenuates inhibition of GH secretion by infused somatostatin and potentiates stimulation of GH secretion by GH-releasing peptide-2, we postulate that estrogenic steroids drive pulsatile GH production in part via mechanisms that include all three of GHRH, somatostatin, and putatively GH-releasing peptide/ghrelin signaling.
Collapse
Affiliation(s)
- Johannes D Veldhuis
- Division of Endocrinology and Metabolism, Department of Internal Medicine Mayo Medical and Graduate Schools of Medicine, General Clinical Research Center, Mayo Clinic, Rochester, Minnesota 55905,USA.
| | | | | |
Collapse
|
179
|
Klerman EB, Adler GK, Jin M, Maliszewski AM, Brown EN. A statistical model of diurnal variation in human growth hormone. Am J Physiol Endocrinol Metab 2003; 285:E1118-26. [PMID: 12888486 DOI: 10.1152/ajpendo.00562.2002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The diurnal pattern of growth hormone (GH) serum levels depends on the frequency and amplitude of GH secretory events, the kinetics of GH infusion into and clearance from the circulation, and the feedback of GH on its secretion. We present a two-dimensional linear differential equation model based on these physiological principles to describe GH diurnal patterns. The model characterizes the onset times of the secretory events, the secretory event amplitudes, as well as the infusion, clearance, and feedback half-lives of GH. We illustrate the model by using maximum likelihood methods to fit it to GH measurements collected in 12 normal, healthy women during 8 h of scheduled sleep and a 16-h circadian constant-routine protocol. We assess the importance of the model components by using parameter standard error estimates and Akaike's Information Criterion. During sleep, both the median infusion and clearance half-life estimates were 13.8 min, and the median number of secretory events was 2. During the constant routine, the median infusion half-life estimate was 12.6 min, the median clearance half-life estimate was 11.7 min, and the median number of secretory events was 5. The infusion and clearance half-life estimates and the number of secretory events are consistent with current published reports. Our model gave an excellent fit to each GH data series. Our analysis paradigm suggests an approach to decomposing GH diurnal patterns that can be used to characterize the physiological properties of this hormone under normal and pathological conditions.
Collapse
Affiliation(s)
- Elizabeth B Klerman
- Division of Sleep Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Ave., Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
180
|
Fagerberg B, Hultén LM, Hulthe J. Plasma ghrelin, body fat, insulin resistance, and smoking in clinically healthy men: the atherosclerosis and insulin resistance study. Metabolism 2003; 52:1460-3. [PMID: 14624407 DOI: 10.1016/s0026-0495(03)00274-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The purpose of the study was to examine whether insulin sensitivity was associated with fasting plasma ghrelin concentrations in a population-based sample of 58-year-old clinically healthy Caucasian men. The methods used were dual-energy x-ray absorptiometry (DXA) for measurement of body composition and a conventional euglycemic hyperinsulinemic clamp, measuring glucose infusion rate (GIR) that was adjusted for fat-free mass. Plasma ghrelin was measured by radioimmunoassay. The results showed that ghrelin was not associated with GIR adjusted for fat-free mass or with GIR adjusted for body mass, and body fat, or waist circumference. Plasma ghrelin correlated negatively to body fat (-0.46, P<.001) and waist circumference (-0.45, P<.001). Ghrelin was also inversely related to systolic and diastolic blood pressure (r=-.29 and r=-0.34, respectively, P<.01) and positively to high-density lipoprotein (HDL) cholesterol (0.33, P<.01), and low-density lipoprotein (LDL) particle size (0.34, P<.001), but these associations did not remain after adjustment for body fat. Plasma ghrelin was associated with current smoking independent of waist circumference. Among current smokers, circulating plasma concentrations were higher in those who had smoked during the hour preceding the blood sample than those who had smoked 2 to 12 hours ago (P=.043). The conclusion is that whole body insulin sensitivity was not associated with plasma ghrelin concentrations. Body fatness was the strongest determinant of circulating ghrelin. It was found that acute smoking may affect ghrelin levels.
Collapse
Affiliation(s)
- Björn Fagerberg
- Institute of Internal Medicine, Sahlgrenska University Hospital, Göteborg University, Gothenburg, Sweden
| | | | | |
Collapse
|
181
|
Ukkola O. Endocrinological activities of ghrelin: new insights. Eur J Intern Med 2003; 14:351-356. [PMID: 14769492 DOI: 10.1016/s0953-6205(03)90000-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2003] [Accepted: 07/10/2003] [Indexed: 10/26/2022]
Abstract
Ghrelin is a potent endogenous growth hormone secretagogue in supraphysiological doses. It also exhibits several other endocrinological (e.g. lactotrophic and corticotrophic) activities when given intravenously. However, the significance of these effects in a normal physiological situation is still unknown, and subcutaneous administration of ghrelin seems to only increase growth hormone secretion. Interest in ghrelin research is currently focused on energy metabolism; the link between ghrelin and the regulation of both growth and energy metabolism is missing. In this paper we present an up-to-date review of the endocrinological activities of ghrelin.
Collapse
Affiliation(s)
- Olavi Ukkola
- Department of Internal Medicine and Biocenter Oulu, University of Oulu, FIN-90220 Oulu, Finland
| |
Collapse
|
182
|
Abstract
Age and gender impact the full repertoire of neurohormone systems, including most prominently the somatotropic, gonadotropic and lactotropic axes. For example, daily GH production is approximately 2-fold higher in young women than men and varies by 20-fold by sexual developmental status and age. Deconvolution estimates of 24-h GH secretion rates exceed 1200 microg/m2 in adolescents and fall below 60 microg/m2 in aged individuals. The present overview highlights plausible factors driving such lifetime variations in GH availability, i.e., estrogen, aromatizable androgen, hypothalamic peptides and negative feedback by GH and IGF-I. In view of the daunting complexity of potential neuromodulatory signals, we underline the utility of conceptualizing a simplified three-peptide regulatory ensemble of GHRH, GHRP (ghrelin) and somatostatin. The foregoing signals act as individual and conjoint mediators of adaptive GH control. Regulation is enforced at 3-fold complementary time scales, which embrace pulsatile (burst-like), entropic (orderly) and 24-h rhythmic (nycthemeral) modes of GH release. This unifying platform offers a convergent perspective of multivalent control of GH outflow.
Collapse
Affiliation(s)
- J D Veldhuis
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Mayo Medical School of Medicine, General Clinical Research Center, Mayo Clinic, Rochester, MN 55905, USA.
| | | |
Collapse
|
183
|
Tritos NA, Mun E, Bertkau A, Grayson R, Maratos-Flier E, Goldfine A. Serum ghrelin levels in response to glucose load in obese subjects post-gastric bypass surgery. OBESITY RESEARCH 2003; 11:919-24. [PMID: 12917494 DOI: 10.1038/oby.2003.126] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE We sought to elucidate further the mechanisms leading to weight loss after gastric bypass (GBP) surgery in morbidly obese individuals. Ghrelin is a gastroenteric appetite-stimulating peptide hormone, fasting levels of which decrease with increasing adiposity and increase with diet-induced weight loss. In addition, ghrelin levels rapidly decline postprandially. RESEARCH METHODS AND PROCEDURES We measured serum ghrelin responses to a 75-g oral glucose tolerance test (OGTT) in 6 subjects who had undergone GBP surgery 1.5 +/- 0.7 years before testing and compared these responses with 6 obese subjects about to undergo GBP surgery, 6 obese nonsurgical subjects (matched for BMI to the post-GBP surgical group), and 5 lean subjects. RESULTS Despite weight loss induced by the GBP surgery, fasting serum ghrelin levels were significantly lower in the post-GBP surgery group than in the lean subject (by 57%) or pre-GBP surgery (by 45%) group. Serum ghrelin levels during the OGTT were significantly lower in postoperative than in lean, obese pre-GBP surgical, or obese nonsurgical subjects. The magnitude of the decline in serum ghrelin levels between 0 and 120 minutes post-OGTT was significantly smaller in postoperative (by 62%), obese pre-GBP surgical (by 80%), or obese nonsurgical (by 69%) subjects in comparison with lean subjects. DISCUSSION Serum ghrelin levels in response to OGTT are lower in subjects post-GBP surgery than in either lean or obese subjects. Tonically low serum ghrelin levels may be involved in the mechanisms inducing sustained weight loss after GBP surgery.
Collapse
|
184
|
Cummings DE, Shannon MH. Ghrelin and gastric bypass: is there a hormonal contribution to surgical weight loss? J Clin Endocrinol Metab 2003; 88:2999-3002. [PMID: 12843132 DOI: 10.1210/jc.2003-030705] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- David E Cummings
- Department of Medicine, Division of Metabolism, Endocrinology and Nutrition, University of Washington, Veterans Affairs Puget Sound Health Care System, Seattle, Washington 98108, USA.
| | | |
Collapse
|
185
|
|
186
|
Bagnasco M, Tulipano G, Melis MR, Argiolas A, Cocchi D, Muller EE. Endogenous ghrelin is an orexigenic peptide acting in the arcuate nucleus in response to fasting. REGULATORY PEPTIDES 2003; 111:161-7. [PMID: 12609764 DOI: 10.1016/s0167-0115(02)00283-5] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Ghrelin, a circulating growth-hormone releasing peptide derived from stomach, stimulates food intake through neuropeptide Y (NPY) neurons of the arcuate nucleus in the hypothalamus (ARC). We examined the effect of ghrelin microinjected into the ARC and the influence of intracerebroventricular (i.c.v.) pretreatment with a GHRH or NPY receptor antagonist on ghrelin-induced food intake in free-feeding male rats. Ghrelin (0.1-1 microg) stimulated food intake in a dose-dependent manner, and this effect was reduced by 55-60% by the Y(5) NPY receptor antagonist (10 microg i.c.v.), but not by the GHRH receptor antagonist MZ-4-71 (10 microg i.c.v.). We also evaluated the effects of passive ghrelin immunoneutralization by the microinjection of anti-ghrelin immunoglobulins (IgGs) intracerebroventricularly or directly into the ARC on food intake in free-feeding and fasted male rats. i.c.v. administration of anti-ghrelin IgGs decreased cumulative food intake over 24 h, whereas microinfusion of anti-ghrelin IgGs into the ARC induced only a short-lived (2 and 6 h) effect. Collectively, these data would indicate that centrally derived ghrelin has a major role in the control of food intake in rats and, in this context, blood-born ghrelin would be effective only in relation to its ability to reach the ARC, which is devoid of blood-brain barrier.
Collapse
Affiliation(s)
- Michela Bagnasco
- Department of Pharmacology, Chemotherapy and Medical Toxicology, University of Milan, Via Vanvitelli, 32-20129 Milan, Italy
| | | | | | | | | | | |
Collapse
|
187
|
Abstract
Ghrelin is produced by stomach oxyntic cells and thought to be involved in the regulation of body weight and food intake. We demonstrate here that the peptide inhibits insulin secretion from overnight-incubated mouse islets in the presence of 8.3, 11.1, and 22.2 mmol/liter glucose. Ghrelin was most efficient at 1 nmol/liter and its effect disappeared by raising the dose more than 25 nmol/liter. Also, insulin secretion in the presence of high K(+) concentrations (20 mmol/liter) was inhibited by ghrelin. Furthermore, when administered iv to mice together with glucose (1 g/kg), ghrelin (50 nmol/kg) inhibited both the rapid 1-min insulin response (364 +/- 90 vs. 985 +/- 114 pmol/liter in controls, P < 0.001) and the area under the 50 min curve of insulin concentration (12.6 +/- 1.2 vs. 15.6 +/- 1.2 nmol/liter x 50 min; P = 0.046) without affecting the glucose disposal rate, insulin sensitivity or glucose effectiveness, i.e. glucose disposal independent from any dynamic change in insulin. The insulinostatic effect of ghrelin was inversely related to insulin sensitivity. In contrast, ghrelin had no influence at the lower dose of 5 nmol/kg and only slightly inhibited insulin secretion at the higher dose of 150 nmol/kg. These findings therefore show that ghrelin inhibits glucose-stimulated insulin secretion in the mouse. The effect is dependent on the dose and elicited on distal signaling steps in islet cells. The results suggest that the islet beta-cells are targets for ghrelin.
Collapse
|