151
|
Fan Z, Söder S, Oehler S, Fundel K, Aigner T. Activation of interleukin-1 signaling cascades in normal and osteoarthritic articular cartilage. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 171:938-46. [PMID: 17640966 PMCID: PMC1959501 DOI: 10.2353/ajpath.2007.061083] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Interleukin (IL)-1 is one of the most important catabolic cytokines in rheumatoid arthritis. In this study, we were interested in whether we could identify IL-1 expression and activity within normal and osteoarthritic cartilage. mRNA expression of IL-1beta and of one of its major target genes, IL-6, was observed at very low levels in normal cartilage, whereas only a minor up-regulation of these cytokines was noted in osteoarthritic cartilage, suggesting that IL-1 signaling is not a major event in osteoarthritis. However, immunolocalization of central mediators involved in IL-1 signaling pathways [38-kd protein kinases, phospho (P)-38-kd protein kinases, extracellular signal-regulated kinase 1/2, P-extracellular signal-regulated kinase 1/2, c-Jun NH(2)-terminal kinase 1/2, P-c-Jun NH(2)-terminal kinase 1/2, and nuclear factor kappaB] showed that the four IL-1 signaling cascades are functional in normal and osteoarthritic articular chondrocytes. In vivo, we found that IL-1 expression and signaling mechanisms were detectible in the upper zones of normal cartilage, whereas these observations were more pronounced in the upper portions of osteoarthritic cartilage. Given these expression and distribution patterns, our data support two roles for IL-1 in the pathophysiology of articular cartilage. First, chondrocytes in the upper zone of osteoarthritic articular cartilage seem to activate catabolic signaling pathways that may be in response to diffusion of external IL-1 from the synovial fluid. Second, IL-1 seems to be involved in normal cartilage tissue homeostasis as shown by identification of baseline expression patterns and signaling cascade activation.
Collapse
Affiliation(s)
- Zhiyong Fan
- Department of Pathology, University of Erlangen, Erlangen, Germany
| | | | | | | | | |
Collapse
|
152
|
Cortial D, Gouttenoire J, Rousseau CF, Ronzière MC, Piccardi N, Msika P, Herbage D, Mallein-Gerin F, Freyria AM. Activation by IL-1 of bovine articular chondrocytes in culture within a 3D collagen-based scaffold. An in vitro model to address the effect of compounds with therapeutic potential in osteoarthritis. Osteoarthritis Cartilage 2006; 14:631-40. [PMID: 16527498 DOI: 10.1016/j.joca.2006.01.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2005] [Accepted: 01/13/2006] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To determine the best protocol for the preparation of a tissue-engineered cartilage to investigate the potential anti-arthritic and/or anti-osteoarthritic effects of drugs. METHODS Calf articular chondrocytes, seeded in collagen sponges were grown in culture for up to 1 month. At day 14 cultures received interleukin (IL)-1beta (ranging from 0.1 to 20 ng/ml) for 1 to 3 days. Analyses of gene expression for extracellular matrix proteins, collagen-binding integrins, matrix metalloproteinases (MMPs), aggrecanases, TIMPs, IL-1Ra and Ikappa-Balpha were carried out using real-time polymerase chain reaction (PCR). Metalloproteinase activities were analysed in the culture medium using both zymography and fluorogenic peptide substrates. RESULTS We selected a culture for 15 or 17 days with collagen sponges seeded with 10(7) chondrocytes showing a minimal cell proliferation, a maximal sulphated glycosaminoglycan (sGAG) deposition and a high expression of COL2A1, aggrecan and the alpha10 integrin sub-unit and low expression of COL1A2 and the alpha11 integrin sub-unit. In the presence of 1 ng/ml IL-1beta, we observed at day 15 up-regulations of 450-fold for MMP-1, 60-fold for MMP-13, 54-fold for ADAMTS-4 and MMP-3 and 10-fold for ADAMTS-5 and IL-1Ra. Down-regulations of 2.5-fold for COL2A1 and aggrecan were observed only at day 17. At the protein level a dose-dependent increase of total MMP-1 and MMP-13 was noted with less than 15% in the active form. CONCLUSIONS This in vitro model of chondrocyte culture in three dimensional (3D) seems well adapted to investigate the responses of these cells to inflammatory cytokines and to evaluate the potential anti-inflammatory effects of drugs.
Collapse
Affiliation(s)
- D Cortial
- Institut de Biologie et Chimie des Protéines (IBCP UMR 5086); CNRS; Univ. Lyon 1; IFR 128 BioSciences Lyon-Gerland; 7, passage du Vercors, 69367 Lyon Cedex 07, France
| | | | | | | | | | | | | | | | | |
Collapse
|
153
|
Baici A, Lang A, Zwicky R, Müntener K. Cathepsin B in osteoarthritis: uncontrolled proteolysis in the wrong place. Semin Arthritis Rheum 2006; 34:24-8. [PMID: 16206953 DOI: 10.1016/j.semarthrit.2004.03.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Antonio Baici
- Department of Biochemistry, University of Zurich, Zurich, Switzerland.
| | | | | | | |
Collapse
|
154
|
Ge Z, Hu Y, Heng BC, Yang Z, Ouyang H, Lee EH, Cao T. Osteoarthritis and therapy. ACTA ACUST UNITED AC 2006; 55:493-500. [PMID: 16739189 DOI: 10.1002/art.21994] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Zigang Ge
- National University of Singapore, Singapore
| | | | | | | | | | | | | |
Collapse
|
155
|
Martin G, Andriamanalijaona R, Mathy-Hartert M, Henrotin Y, Pujol JP. Comparative effects of IL-1beta and hydrogen peroxide (H2O2) on catabolic and anabolic gene expression in juvenile bovine chondrocytes. Osteoarthritis Cartilage 2005; 13:915-24. [PMID: 15950497 DOI: 10.1016/j.joca.2005.03.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2004] [Accepted: 03/14/2005] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To compare the effects of hydrogen peroxide (H(2)O(2)) to those of interleukin-1beta (IL-1beta) on gene expression in juvenile bovine articular chondrocytes (BAC). The study analyses the activation of nuclear factor-kappa B (NF-kappaB) and activator protein-1 (AP-1) transcription factors, and the mRNA steady-state levels of the type II collagen, aggrecan core protein matrix, metalloproteinases (MMP-1, -3), and transforming growth factor-beta1 (TGF-beta1) genes. METHODS Confluent BAC cultures were treated for 3 and 24h with IL-1beta and/or different concentrations of H(2)O(2) (Protocol 1). Following initial treatment, a part of the cells was further subjected to another 24h with medium, in the presence of IL-1beta, to determine the effect of the cytokine on H(2)O(2) pre-treated cells (Protocol 2). Total RNA and nuclear protein extractions were performed to study mRNA steady-state levels (real-time polymerase chain reaction) and AP-1/NF-kappaB DNA binding (Electrophoretic Mobility Shift Assays), respectively. RESULTS IL-1beta enhanced both AP-1 and NF-kappaB binding, whereas H(2)O(2) only activated AP-1. H(2)O(2) pre-treatment decreased the IL-1beta activation of NF-kappaB. Both H(2)O(2) and IL-1beta down-regulated type II collagen and aggrecan expression and increased that of MMP-1 and -3. When cells were pre-treated with H(2)O(2), followed by IL-1beta, the effects were the same as those observed with H(2)O(2) alone. However, although H(2)O(2) and IL-1beta were capable of increasing TGF-beta1 expression separately, subsequent incubation with both factors led to a partial or total abolition of TGF-beta1 up-regulation. CONCLUSION The different regulation of NF-kappaB and AP-1 by H(2)O(2) and IL-1beta underlines the distinct roles played by the two transcription factors in the regulation of gene expression. H(2)O(2) and IL-1beta exert similar effects on matrix, MMPs and TGF-beta1 gene expression. However, the association of H(2)O(2) and IL-1beta does not cause synergic effect, and rather leads, in some cases, to an opposite effect. These data provide further insights into the respective roles of reactive oxygen species and cytokine in the pathophysiology of joint diseases.
Collapse
Affiliation(s)
- G Martin
- Laboratory of Connective Tissue Biochemistry, Faculty of Medicine, 14032 Caen Cedex, France
| | | | | | | | | |
Collapse
|
156
|
MacRae VE, Farquharson C, Ahmed SF. The pathophysiology of the growth plate in juvenile idiopathic arthritis. Rheumatology (Oxford) 2005; 45:11-9. [PMID: 16148018 DOI: 10.1093/rheumatology/kei091] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Children with chronic inflammatory diseases, such as juvenile idiopathic arthritis (JIA), suffer from a variety of growth disorders. These range from general growth retardation to local acceleration of growth in the affected limb. These disorders are associated with the increased production of proinflammatory cytokines, which may influence growth through a local effect in the growth plates of long bones and/or systemic effects throughout the whole body. In this article we review these aspects and also discuss the evidence for interaction between the inflammatory cytokine and growth-signalling pathways.
Collapse
Affiliation(s)
- V E MacRae
- Bone Biology Group, Roslin Institute, Edinburgh, UK
| | | | | |
Collapse
|
157
|
Aigner T, McKenna L, Zien A, Fan Z, Gebhard PM, Zimmer R. Gene expression profiling of serum- and interleukin-1β-stimulated primary human adult articular chondrocytes – A molecular analysis based on chondrocytes isolated from one donor. Cytokine 2005; 31:227-40. [PMID: 15955710 DOI: 10.1016/j.cyto.2005.04.009] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2004] [Revised: 03/07/2005] [Accepted: 04/27/2005] [Indexed: 10/25/2022]
Abstract
In order to understand the cellular disease mechanisms of osteoarthritic cartilage degeneration it is of primary importance to understand both the anabolic and the catabolic processes going on in parallel in the diseased tissue. In this study, we have applied cDNA-array technology (Clontech) to study gene expression patterns of primary human normal adult articular chondrocytes isolated from one donor cultured under anabolic (serum) and catabolic (IL-1beta) conditions. Significant differences between the different in vitro cultures tested were detected. Overall, serum and IL-1beta significantly altered gene expression levels of 102 and 79 genes, respectively. IL-1beta stimulated the matrix metalloproteinases-1, -3, and -13 as well as members of its intracellular signaling cascade, whereas serum increased the expression of many cartilage matrix genes. Comparative gene expression analysis with previously published in vivo data (normal and osteoarthritic cartilage) showed significant differences of all in vitro stimulations compared to the changes detected in osteoarthritic cartilage in vivo. This investigation allowed us to characterize gene expression profiles of two classical anabolic and catabolic stimuli of human adult articular chondrocytes in vitro. No in vitro model appeared to be adequate to study overall gene expression alterations in osteoarthritic cartilage. Serum stimulated in vitro cultures largely reflected the results that were only consistent with the anabolic activation seen in osteoarthritic chondrocytes. In contrast, IL-1beta did not appear to be a good model for mimicking catabolic gene alterations in degenerating chondrocytes.
Collapse
Affiliation(s)
- Thomas Aigner
- Osteoarticular and Arthritis Research, Department of Pathology, University of Erlangen-Nürnberg, Krankenhausstr 8-10, D-91054 Erlangen, FRG.
| | | | | | | | | | | |
Collapse
|
158
|
Kuroki K, Stoker AM, Cook JL. Effects of proinflammatory cytokines on canine articular chondrocytes in a three-dimensional culture. Am J Vet Res 2005; 66:1187-96. [PMID: 16111157 DOI: 10.2460/ajvr.2005.66.1187] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine the effects of interleukin (IL)-1 and tumor necrosis factor (TNF)-alpha on canine chondrocytes cultured in an agarose-based 3-dimensional (3-D) system. SAMPLE POPULATION Humeral head articular cartilage chondrocytes obtained from 6 adult dogs. PROCEDURE Chondrocytes were cultured in a 3-D system for < or = 12 days in serum-free medium with IL 1alpha, IL-1beta, or TNF-alpha at concentrations of 20, 50, or 100 ng/mL. After 1, 3, 6, and 12 days, glycosaminoglycan (GAG) concentrations in 3-D constructs; nitric oxide and prostaglandin E2 (PGE2) concentrations in media samples; and relative expressions of selected genes, including metalloproteinase (MMP)-13 and tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2, were evaluated. Control specimens were comprised of chondrocytes cultured without proinflammatory cytokines. RESULTS In control 3-D constructs, GAG content was significantly higher than for all other constructs. Compared with control values, relative expressions of MMP-13, TIMP-1, and TIMP-2 genes in the IL-1beta (50 ng/mL) group were significantly higher at day 1; at all evaluations, media concentrations of nitric oxide were significantly higher in all TNF-alpha-treated cultures; and concentrations of PGE2 in media samples were significantly higher in the IL-1beta (50 ng/mL) and IL-1beta (100 ng/mL) groups at days 1 and 3, in the IL-1beta (100 ng/mL) group at day 6, and in all TNF-alpha groups at days 1, 3, and 6. CONCLUSIONS AND CLINICAL RELEVANCE Results suggested that TNF-alpha more readily induces production of nitric oxide and PGE2 by canine chondrocytes, compared with IL-1beta. In vitro, IL-1alpha appeared to have a minimal effect on canine chondrocytes.
Collapse
Affiliation(s)
- Keiichi Kuroki
- Comparative Orthopaedic Laboratory, University of Missouri, Columbia, MO 65211, USA
| | | | | |
Collapse
|
159
|
Arinci A, Ademoglu E, Aslan A, Mutlu-Turkoglu U, Karabulut AB, Karan A. Molecular correlates of temporomandibular joint disease. ACTA ACUST UNITED AC 2005; 99:666-70. [PMID: 15897851 DOI: 10.1016/j.tripleo.2004.08.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The relation between disease severity and the known mediators of pain, inflammation, and tissue damage-prostaglandin E 2 (PGE 2 ), leukotriene B 4 (LTB 4 ), malondialdehyde (MDA), nitric oxide (NO), and myeloperoxidase (MPO)-was examined in the synovial fluid of patients with internal derangement (ID) of the temporomandibular joint (TMJ). STUDY DESIGN Thirty-two patients with ID were classified according to Wilkes by clinical and radiological examinations, and TMJ synovial fluid samples were obtained by arthrocentesis. PGE 2 and LTB 4 levels were measured by ELISA kits, MDA levels were determined by a fluorometric method, myeloperoxidase activity was determined by an end-point method, and NO levels were measured by Griess reaction. RESULTS The earliest significant increase was observed in NO levels (stage II) and this elevation persisted in the subsequent stages. The first significant elevation in PGE 2 and LTB 4 levels and MPO activity were observed in stage III. Both PGE 2 and LTB 4 levels were increased in stage III and were correlated with each at this stage and in the subsequent stage. Significant increases in MDA levels were observed only in stage IV. At stage IV there was correlation between MDA and PGE 2 , MDA and LTB 4 , and MDA and MPO. The relation between PGE 2 and MDA was the most powerful one. CONCLUSION Results of this cross-sectional study point out the relation between disease severity and levels of some molecular mediators in synovial fluid of TMJ. Longitudinal studies are needed to explore the role of these molecular mediators in the progression of ID.
Collapse
Affiliation(s)
- Atilla Arinci
- Department of Plastic and Reconstructive Surgery, Istanbul Faculty of Medicine, Istanbul University, Turkey
| | | | | | | | | | | |
Collapse
|
160
|
Salvat C, Pigenet A, Humbert L, Berenbaum F, Thirion S. Immature murine articular chondrocytes in primary culture: a new tool for investigating cartilage. Osteoarthritis Cartilage 2005; 13:243-9. [PMID: 15727891 DOI: 10.1016/j.joca.2004.11.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2004] [Accepted: 11/22/2004] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Many genetically modified animal models are providing new keys for unlocking the pathophysiology of cartilage degradation. To produce a tool for cellular and molecular studies in genetically engineered murine models, we defined the optimal culture conditions for primary cultures of articular chondrocytes from newborn mice (C57Bl/6). METHODS To determine whether the cultured cells exhibited the typical articular chondrocyte phenotype, we examined several morphological, biochemical, and functional features. RESULTS The cells had the typical chondrocyte morphology, with a rounded or polygonal shape. Immunolocalization studies showed high levels of type II collagen and aggrecan expression, together with sulfated glycosaminoglycan accumulation. Type II collagen and aggrecan expression decreased with passaging. In contrast, type I collagen expression was low in primary cultures and high after four passages, indicating a fibroblast phenotype. To evaluate the functional integrity of our cultured cells, we evaluated their ability to produce prostaglandin E2 (PGE2) and nitric oxide (NO) in response to the catabolic cytokine interleukin (IL)-1beta (10 ng/ml). Production of both PGE2 and NO increased significantly as compared to untreated controls. In addition, IL-1beta induced COX-2 expression by the cultured cells, as shown by Western blotting. CONCLUSIONS Since functional and molecular parameters can be measured readily in mice, the immature murine articular chondrocyte (iMAC) model described here should prove a powerful tool for research, particularly as many transgenic and knockout mouse strains are available, even if iMACs are not optimal substitutes for human chondrocytes.
Collapse
Affiliation(s)
- Colette Salvat
- UMR CNRS 7079 Physiology and Pathophysiology Laboratory, Paris 6 University, 7 quai St Bernard, 75252 Paris Cedex 5, France
| | | | | | | | | |
Collapse
|
161
|
Fan Z, Bau B, Yang H, Soeder S, Aigner T. Freshly isolated osteoarthritic chondrocytes are catabolically more active than normal chondrocytes, but less responsive to catabolic stimulation with interleukin-1beta. ACTA ACUST UNITED AC 2005; 52:136-43. [PMID: 15641077 DOI: 10.1002/art.20725] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Interleukin-1beta (IL-1beta) is one potentially important cytokine during cartilage destruction. The aim of this study was to investigate whether there are different effects of low and high concentrations of IL-1beta on the expression level of anabolic genes (type II collagen, aggrecan), catabolic genes (matrix metalloproteinase 1 [MMP-1], MMP-2, MMP-3, MMP-13, and ADAMTS-4), and cytokines (IL-1beta, IL-6, and leukemia inhibitory factor [LIF]) by articular chondrocytes (normal and osteoarthritic). Determination of whether there was a difference in reactivity between normal and osteoarthritic chondrocytes was also a goal of this study. METHODS Gene expression levels were detected by real-time polymerase chain reaction from isolated (nonpassaged) chondrocytes (normal [n = 6]; osteoarthritic [n = 7]) after stimulation with 0.01 ng, 0.1 ng, 1 ng, and 10 ng/ml IL-1beta. RESULTS In normal adult articular chondrocytes the expression of both aggrecan and type II collagen genes was significantly down-regulated, whereas matrix-degrading proteases (except MMP-2), as well as the investigated cytokines, were induced by IL-1beta in a dose-dependent manner. The strongest regulation was found for IL-6 and LIF. Osteoarthritic chondrocytes showed strongly increased levels of catabolic enzymes and mediators, but were less responsive to further stimulation with IL-1beta. CONCLUSION Our study confirms that IL-1beta activity is critically dependent on both the applied concentration and the reactivity of the cells stimulated. The responsiveness appears to be significantly reduced in late-stage osteoarthritic chondrocytes. However, these cells show high basic expression levels of catabolic enzymes and mediators. Thus, it remains open whether our data indicate that osteoarthritic chondrocytes are per se not responsive to IL-1beta or are already so strongly stimulated (e.g., by IL-1) during the disease process that they are refractory to further stimulation.
Collapse
Affiliation(s)
- Zhiyong Fan
- Department of Pathology, University of Erlangen-Nürnberg, Krankenhausstrasse 8-10, D-91054 Erlangen, Germany
| | | | | | | | | |
Collapse
|
162
|
Kobayashi M, Squires GR, Mousa A, Tanzer M, Zukor DJ, Antoniou J, Feige U, Poole AR. Role of interleukin-1 and tumor necrosis factor alpha in matrix degradation of human osteoarthritic cartilage. ACTA ACUST UNITED AC 2005; 52:128-35. [PMID: 15641080 DOI: 10.1002/art.20776] [Citation(s) in RCA: 409] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE To determine whether interleukin-1 (IL-1) or tumor necrosis factor alpha (TNFalpha), or both, plays a role in the excessive degradation that is observed in cultured osteoarthritic (OA) articular cartilage. METHODS Antagonists of IL-1 and TNFalpha, namely, IL-1 receptor antagonist and the PEGylated soluble TNFalpha receptor I, respectively, were added at different concentrations to explant cultures of nonarthritic (5 obtained at autopsy) and OA (15 obtained at arthroplasty) articular cartilage. The cleavage of type II collagen (CII) by collagenase was measured by an immunoassay in cartilage and culture media. Proteoglycan (mainly aggrecan) content and degradation were measured by a colorimetric assay for glycosaminoglycan (GAG) content in cartilage and culture media. Reverse transcriptase-polymerase chain reaction was used to analyze gene expression of matrix metalloproteases (MMPs) 1, 3, and 13, CII, aggrecan, IL-1, and TNFalpha. RESULTS Antagonists of IL-1 and TNFalpha inhibited the increase in CII cleavage by collagenase as well as the increase in GAG release observed in OA cartilage compared with normal cartilage. Inhibition was significant in tissue from some patients but not from others, although significant inhibition was observed when all the results were analyzed together. An increase in the GAG content in cartilage was seen in 4 of 15 cases. However, this increase was not significant when all the data were combined. Preliminary results indicated no effect of these antagonists on nonarthritic cartilage from 3 different donors. Independent analyses of gene expression in cultured cartilage from 9 other OA patients revealed that IL-1 or TNFalpha blockade, either alone and/or in combination, frequently down-regulated MMP-1, MMP-3, and MMP-13 expression. Expression of IL-1 and TNFalpha was inhibited by either antagonist or by the combination in essentially half the cases. The combined blockade up-regulated aggrecan and CII gene expression in approximately half the cases. CONCLUSION These results suggest that the autocrine/paracrine activities of TNFalpha and IL-1 in articular cartilage may play important roles in cartilage matrix degradation in OA patients but not in all patients. Inhibition of either or both of these cytokines may offer a useful therapeutic approach to the management of OA by reducing gene expression of MMPs involved in cartilage matrix degradation and favoring its repair.
Collapse
Affiliation(s)
- Masahiko Kobayashi
- Joint Diseases Laboratory, Departments of Surgery and Medicine, Shriners Hospital for Children, McGill University, 1529 Cedar Avenue, Montreal, Quebec H3G 1A6, Canada
| | | | | | | | | | | | | | | |
Collapse
|
163
|
Sobajima S, Shimer AL, Chadderdon RC, Kompel JF, Kim JS, Gilbertson LG, Kang JD. Quantitative analysis of gene expression in a rabbit model of intervertebral disc degeneration by real-time polymerase chain reaction. Spine J 2005; 5:14-23. [PMID: 15653081 DOI: 10.1016/j.spinee.2004.05.251] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2004] [Accepted: 05/17/2004] [Indexed: 02/03/2023]
Abstract
BACKGROUND CONTEXT Serial analysis of gene expression during the course of intervertebral disc degeneration (IDD) could elucidate valuable insight into pathophysiology and provide a basis for identification of potential targets for the development of novel cellular- and gene-based therapies. However, very few previous studies described the changes in gene expression through the process of IDD using a suitable animal model. PURPOSE To use a recently developed rabbit annular stab model and the technique of real-time reverse transcriptase-polymerase chain reaction (RT-PCR) to quantify the change in expression of key rabbit-specific mRNA sequences encoding for selected extracellular matrix (ECM) products, catabolic, anabolic, and anti-catabolic factors in normal and stabbed discs. STUDY DESIGN Gene expression analyses were performed to characterize a slowly progressive and reproducible animal model of IDD using real-time RT-PCR. METHODS Twelve rabbits underwent an annular stab with a 16-gauge needle to the L2-L3, L3-L4, and L4-L5 discs, and three rabbits served as sham controls. Nucleus pulposus tissues were harvested from the stabbed discs at 3, 6, 12 and 24 weeks after confirmation of degenerative changes by magnetic resonance imaging (MRI) scan. Real-time RT-PCR was performed with the use of rabbit-specific primers for 1) extracellular matrix (ECM) component genes: collagen type Ia and IIa, and aggrecan; 2) catabolic genes: matrix metalloprotease-3 (MMP-3), inducible nitric oxide synthase (iNOS), and interleukin-1beta (IL-1beta); 3) anabolic growth genes: bone morphogenic protein-2, and -7 (BMP-2, -7), transforming growth factor-beta1 (TGF-beta1), and insulin-like growth factor-1 (IGF-1); and 4) anti-catabolic gene: tissue inhibitor of metalloprotease-1 (TIMP-1). These data were normalized to mRNA levels of glyceraldehyde phosphate dehydrogenase (GAPDH), a constitutively expressed gene. RESULTS The MRI images confirmed progressive decline in the nucleus pulposus area of high T2 signal and in the signal intensity of the stabbed discs over the 24-week study period consistent with IDD. The ECM components, aggrecan and collagen type IIa mRNA levels had decreased markedly by week 3 and never recovered, whereas type Ia collagen mRNA gradually increased throughout course of degeneration. BMP-2, BMP-7 and IGF-1 mRNA were relatively decreased from weeks 3 to 6 but then increased at weeks 12 and 24 to end at a level near the preoperative level. The TIMP-1 expression fell dramatically to approximately one tenth of the preoperative level by week 3 and remained low throughout the degenerative process. The remaining results, including those from TGF-beta1 and the catabolic genes (MMP-3, IL-1beta, iNOS) demonstrated a double peak characteristic. The gene expression increased by week 3, decreased to a low level at weeks 6 and 12 and then had a second, late peak at 24 weeks. CONCLUSIONS The gene expression profiles of ECM components and anabolic, catabolic, and anti-catabolic factors demonstrate many characteristics similar to the findings in human disc degeneration and suggest an inability of the intervertebral disc (IVD) to mount an early anabolic response to injury, thereby offering a possible explanation for the disc's lack of reparative capabilities. Catabolic genes are strongly up-regulated both early and late in degeneration, lending strong support to the hypothesis that an anabolic or catabolic imbalance plays a primary role in IDD. According to the resultant patterns, augmenting early production of BMP-2, BMP-7, IGF-1 or TIMP-1 by gene transfer techniques might possibly alter the progressive course of degeneration as seen in the stab model. The next step will be to transfer these therapeutic genes to regulate the biologic processes and ideally alter the progressive course of disc degeneration.
Collapse
Affiliation(s)
- Satoshi Sobajima
- Ferguson Laboratory for Orthopaedic Research, Department of Orthopedic Surgery, University of Pittsburgh School of Medicine, 200 Lothrop Street PUH C-313, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | |
Collapse
|
164
|
Schörle CM, Finger F, Zien A, Block JA, Gebhard PM, Aigner T. Phenotypic characterization of chondrosarcoma-derived cell lines. Cancer Lett 2004; 226:143-54. [PMID: 16039953 DOI: 10.1016/j.canlet.2004.11.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Revised: 11/04/2004] [Accepted: 11/09/2004] [Indexed: 11/28/2022]
Abstract
Gene expression profiling of three chondrosarcoma derived cell lines (AD, SM, 105KC) showed an increased proliferative activity and a reduced expression of chondrocytic-typical matrix products compared to primary chondrocytes. The incapability to maintain an adequate matrix synthesis as well as a notable proliferative activity at the same time is comparable to neoplastic chondrosarcoma cells in vivo which cease largely cartilage matrix formation as soon as their proliferative activity increases. Thus, the investigated cell lines are of limited value as substitute of primary chondrocytes but might have a much higher potential to investigate the behavior of neoplastic chondrocytes, i.e. chondrosarcoma biology.
Collapse
Affiliation(s)
- C M Schörle
- Osteoarticular and Arthritis Research, Department of Pathology, University of Erlangen-Nürnberg, Krankenhausstr. 8-10, D-91054 Erlangen, Germany
| | | | | | | | | | | |
Collapse
|
165
|
Kuroki K, Cook JL, Kreeger JM. Effects of tissue inhibitor of metalloproteinases on canine chondrocytes cultured in vitro with tumor necrosis factor-. Am J Vet Res 2004; 65:1611-5. [PMID: 15631022 DOI: 10.2460/ajvr.2004.65.1611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To elucidate tissue inhibitor of metalloproteinase (TIMP)-mediated effects on chondrocytes. SAMPLE POPULATION Articular cartilage from humeral heads of 6 dogs. PROCEDURE Chondrocytes from harvested specimens were cultured in 3-dimensional (3-D) agarose at 10(6) cells/mL. We prepared 3-D constructs exposed to only tumor necrosis factor (TNF)-alpha (50 ng/mL). Recombinant human TIMP-1 (255nM), -2 (285nM), or -3 (250nM) was added to liquid media bathing 3-D constructs cultured with TNF-alpha. Chondrocytes cultured without TIMP or TNF-alpha served as control samples. Samples of liquid media were collected on days 6, 9, 15, and 21 of culture for evaluation of glycosaminoglycan (GAG) and nitric oxide concentrations. The 3-D constructs were collected on days 9, 15, and 21 for evaluation of GAG, hydroxyproline (HP), and DNA contents. RESULTS GAG content in control samples increased significantly during the study, whereas GAG content in 3-D constructs cultured with TNF-alpha or TNF-alpha plus TIMP did not increase. On day 9, GAG release from 3-D constructs cultured with TNF-alpha was significantly higher than that in other constructs. The HP content in control samples increased during the study and was significantly higher than that in all other constructs on day 21. Concentrations of nitric oxide were significantly lower in control samples on day 6, compared with concentrations for all other constructs. CONCLUSIONS AND CLINICAL RELEVANCE Addition of TIMPs did not counteract suppression of GAG and HP accumulation in 3-D constructs exposed to TNF-alpha. Apparently, adverse effects on chondrocytes exposed to TNF-alpha cannot be prevented by addition of TIMP alone.
Collapse
Affiliation(s)
- Keiichi Kuroki
- Comparative Orthopaedic Laboratory, Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO 65211, USA
| | | | | |
Collapse
|
166
|
Saas J, Lindauer K, Bau B, Takigawa M, Aigner T. Molecular phenotyping of HCS-2/8 cells as an in vitro model of human chondrocytes. Osteoarthritis Cartilage 2004; 12:924-34. [PMID: 15501409 DOI: 10.1016/j.joca.2004.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2004] [Accepted: 08/11/2004] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Cultures of primary articular chondrocytes for studying chondrocyte biology are notoriously difficult to handle. One alternative is the use of chondrocytic cell lines. Because the HCS-2/8 cells are the most widely used cell line in cartilage research, we investigated the molecular phenotype of these cells by mRNA-expression profiling. DESIGN Monolayers of HCS-2/8 cells were cultured to sub-confluence, confluence and over-confluence; primary human chondrocytes were grown in monolayer culture and alginate-bead cultures and several other chondrocytic cell lines were cultured as monolayers. RNA was isolated and analyzed by cDNA array profiling using Affymetrix GeneChips (U95A/U95Av2) and quantitative PCR. RESULTS Important similarities, but also remarkable differences between the HCS-2/8 cells and adult human articular chondrocytes were detected: Aggrecan and several cartilage typical collagens as well as SOX9 transcripts were strongly expressed in HCS-2/8 cells, whereas HCS-2/8 cells expressed hardly any chondrocyte-typical cartilage matrix degrading enzymes. Of all culturing conditions, clustering analysis showed that HCS-2/8 cultured at confluence are most closely related to primary chondrocytes. CONCLUSION Our study confirms how careful one needs to be in choosing in vitro model systems for investigating effects of interest. The major issue of chondrocyte cell lines appears to be that they mainly proliferate and show less expression of genes of matrix synthesis and turnover. A successful approach will have to select suitable chondrocyte cell lines and to validate findings obtained using primary chondrocytes. This allows to establish a reproducible in vitro model showing the property of interest and subsequently to relate back the obtained results to the physiologic situation.
Collapse
Affiliation(s)
- J Saas
- Aventis Pharma Deutschland GmbH, Disease Group Osteoarthritis and Department of Bioinformatics Frankfurt, Germany
| | | | | | | | | |
Collapse
|
167
|
Goldring MB. Human chondrocyte cultures as models of cartilage-specific gene regulation. METHODS IN MOLECULAR MEDICINE 2004; 107:69-95. [PMID: 15492365 PMCID: PMC3939611 DOI: 10.1385/1-59259-861-7:069] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The human adult articular chondrocyte is a unique cell type that has reached a fully differentiated state as an end point of development. Within the cartilage matrix, chondrocytes are normally quiescent and maintain the matrix constituents in a low-turnover state of equilibrium. Isolated chondrocytes in culture have provided useful models to study cellular responses to alterations in the environment such as those occurring in different forms of arthritis. However, expansion of primary chondrocytes in monolayer culture results in the loss of phenotype, particularly if high cell density is not maintained. This chapter describes strategies for maintaining or restoring differentiated phenotype by culture in suspension, gels, or scaffolds. Techniques for assessing phenotype involving primarily the analysis of synthesis of cartilage-specific matrix proteins as well as the corresponding mRNAs are also described. Approaches for studying gene regulation, including transfection of promoter-driven reporter genes with expression vectors for transcriptional and signaling regulators, chromatin immunoprecipitation, and DNA methylation are also described.
Collapse
Affiliation(s)
- Mary B Goldring
- Beth Israel Deaconess Medical Center, Department of Medicine, Division of Theumatology, New England Baptist Bone and Joint Institute, Harvard Institutes of Medicine, Boston, MA, USA
| |
Collapse
|
168
|
Fan Z, Bau B, Yang H, Aigner T. IL-1β induction of IL-6 and LIF in normal articular human chondrocytes involves the ERK, p38 and NFκB signaling pathways. Cytokine 2004; 28:17-24. [PMID: 15341921 DOI: 10.1016/j.cyto.2004.06.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2003] [Revised: 05/29/2004] [Accepted: 06/10/2004] [Indexed: 11/27/2022]
Abstract
Interleukin-1 (IL-1) is an important catabolic cytokine in rheumatoid and osteoarthritic joint disease. Besides inducing a catabolic response in articular chondrocytes it also strongly induces synergistic mediators such as leukemia inhibitory factor (LIF) and interleukin-6 (IL-6). The molecular basis of this is so far hardly understood. The aim of our study was to evaluate in vitro and in vivo whether IL-6 and LIF are differentially expressed in normal human and osteoarthritic adult articular chondrocytes and to investigate the potential intracellular signaling pathways of IL-1 involved in these gene regulation events. IL-6 and LIF mRNA expressions were found only at low levels in normal adult articular cartilage. Neither IL-6 nor LIF was strongly over-expressed in osteoarthritic cartilage degeneration. Clearly, both IL-6 and LIF can be very efficiently induced by IL-1beta in articular chondrocytes in vitro. However, this induction was somewhat less in osteoarthritic cells, which were overall activated in terms of expression of both cytokines without stimulation. Experiments using pathway selective inhibitors showed that intracellular signaling of IL-1beta for IL-6 and LIF is mediated by a mixture of the IL-1 signaling cascades. However, the ERK-pathway appeared to be particularly important and might be, therefore, of particular potential if one intends to block induction of these molecules by IL-1 in arthritic joint disease.
Collapse
Affiliation(s)
- Zhiyong Fan
- Osteoarticular and Arthritis Research Group, Department of Pathology, University of Erlangen-Nürnberg, Krankenhausstrasse 8-10, D-91054 Erlangen, Germany
| | | | | | | |
Collapse
|
169
|
Abstract
Chondrocytes are the single cellular component of hyaline cartilage. Under physiologic conditions, they show steady-state equilibrium between anabolic and catabolic activities that maintains the structural and functional integrity of the cartilage extracellular matrix. Implicit in the loss of cartilage matrix that is associated with osteoarthritis is that there is a disturbance in the regulation of synthetic (anabolic) and resorptive (catabolic) activities of the resident chondrocytes that results in a net loss of cartilage matrix components and deterioration in the structural and functional properties of the cartilage. Multiple mechanisms likely are involved in the disturbance of chondrocyte remodeling activities in OA. They include the development of acquired or age-related alterations in chondrocyte function, the effects of excessive mechanical loading, and the presence of dysregulated cytokine activities. Cytokines are soluble or cell-surface molecules that play an essential role in mediating cell-cell interactions. It is possible to classify the cytokines that regulate cartilage remodeling as catabolic, acting on target cells to increase products that enhance matrix degradation; as anticatabolic, tending to inhibit or antagonize the activity of the catabolic cytokines; and as anabolic, acting on chondrocytes to increase synthetic activity. This review will focus on the role of proinflammatory cytokines and their roles in mediating the increased matrix degradation that characterizes the osteoarthritic cartilage lesion.
Collapse
Affiliation(s)
- Steven R Goldring
- Rheumatology Division, Beth Israel Deaconess Medical Center, Harvard Institute of Medicine, Boston, MA 02115, USA.
| | | |
Collapse
|
170
|
Goldring MB, Berenbaum F. The regulation of chondrocyte function by proinflammatory mediators: prostaglandins and nitric oxide. Clin Orthop Relat Res 2004:S37-46. [PMID: 15480072 DOI: 10.1097/01.blo.0000144484.69656.e4] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Within the mature articular cartilage matrix, which has no blood or nerve supply, chondrocytes show little metabolic activity with low turnover of matrix components. Under conditions of stress because of biomechanical factors, however, chondrocytes are capable of producing mediators that are associated with inflammation, including cytokines such as interleukin-1 and tumor necrosis factor-alpha, which in turn stimulate the production of prostaglandins and nitric oxide. Chondrocytes also express receptors for these mediators, which accumulate at high local concentrations and can act in an autocrine-paracrine fashion to feedback-regulate chondrocyte responses. Prostaglandin E2 can exert catabolic or anabolic effects depending on the microenvironment. Nitric oxide can promote cellular injury and increase chondrocyte susceptibility to cytokine-induced apoptosis. Because cross-talk between these mediators produces complex modulation of catabolic and anabolic pathways, further studies in vitro and in vivo are required to elucidate their precise roles in osteoarthritis.
Collapse
Affiliation(s)
- Mary B Goldring
- Rheumatology Division, Beth Israel Deaconess Medical Center, Harvard Institute of Medicine, Boston, MA 02115, USA.
| | | |
Collapse
|
171
|
Martin G, Bogdanowicz P, Domagala F, Ficheux H, Pujol JP. Rhein inhibits interleukin-1 beta-induced activation of MEK/ERK pathway and DNA binding of NF-kappa B and AP-1 in chondrocytes cultured in hypoxia: a potential mechanism for its disease-modifying effect in osteoarthritis. Inflammation 2004; 27:233-46. [PMID: 14527176 DOI: 10.1023/a:1025040631514] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In the present report, we show that bovine articular chondrocytes cultured in low oxygen tension, i.e. in conditions mimicking their hypoxic in vivo environment, respond to IL-1beta (10 ng/mL) by an increased DNA binding activity of NF-kappaB and AP-1 transcription factors. Incubation of the cells with 10(-5) M rhein for 24 h was found to reduce this activity, particularly in the case of AP-1. Mitogen activated kinases (ERK-1 and ERK-2) were activated by exposure of the chondrocytes to 1-h treatment with IL-1beta. This effect was greater in hypoxia (3% O2) than in normoxia (21% O2). Rhein was capable of reducing the IL-1beta-stimulated ERK1/ERK2 pathway whatever the tension of oxygen present in the environment. The level of c-jun protein, an element of AP-1 complex, was increased by exposure of the chondrocytes to IL-1beta after 2, 6, and 24 h. Addition of rhein at 10(-5) M for 24 h did not reduce the c-jun protein amount. The mRNA steady-state levels of collagen type II (COL2A1) and aggrecan core protein were found to be significantly increased by a 24-h treatment with 10(-5) M rhein. This stimulating effect was also observed in the presence of IL-1beta, suggesting that the drug could prevent or reduce the IL-1beta-induced inhibition of extracellular matrix synthesis. IL-1-induced collagenase (MMPI) expression was significantly decreased by rhein in the same conditions. In conclusion, rhein can effectively inhibit the IL-1-activated MAPK pathway and the binding of NF-kappaB and AP-1 transcription factors, two key factors involved in the expression of several proinflammatory genes by chondrocytes. In addition, the drug can reduce the procatabolic effect of the cytokine, by reducing the MMPI synthesis, and enhance the synthesis of matrix components, such as type II collagen and aggrecan. These results may explain the antiosteoarthritic properties of rhein and its disease-modifying effects on OA cartilage, in spite of absence of inhibition at prostaglandin level.
Collapse
Affiliation(s)
- Grégoire Martin
- Laboratory of Connective Tissue Biochemistry, Faculty of Medicine, Caen Cedex, France
| | | | | | | | | |
Collapse
|
172
|
Pfander D, Heinz N, Rothe P, Carl HD, Swoboda B. Tenascin and aggrecan expression by articular chondrocytes is influenced by interleukin 1beta: a possible explanation for the changes in matrix synthesis during osteoarthritis. Ann Rheum Dis 2004; 63:240-4. [PMID: 14962956 PMCID: PMC1754923 DOI: 10.1136/ard.2002.003749] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVE To analyse the distribution patterns of tenascin and proteoglycans in normal and osteoarthritic cartilage, and to determine the effect of interleukin 1beta (IL1beta) on aggrecan and tenascin expression by human articular chondrocytes in vitro. METHODS Normal and osteoarthritic cartilage and bone samples were obtained during total knee replacements or necropsies. After fixation and decalcification, paraffin embedded specimens were sectioned perpendicular to the surface. Specimens were graded according to Mankin and subdivided into those with normal, and mild, moderate, and severe osteoarthritic lesions. Serial sections were immunostained for tenascin. Tenascin expression by healthy and osteoarthritic chondrocytes was quantified by real time polymerase chain reaction (PCR). Furthermore, in cell culture experiments, human articular chondrocytes were treated with 0.1 or 10 ng/ml IL1beta. Real time PCR analyses of aggrecan and tenascin transcripts (normalised 18S rRNA) were conducted to determine the effect of IL1beta on later mRNA levels. RESULTS Tenascin was immunodetected in normal and osteoarthritic cartilage. In osteoarthritic cartilage increased tenascin staining was found. Tenascin was found specifically in upper OA cartilage showing a strong reduction of proteoglycans. Greatly increased tenascin transcript levels were detected in osteoarthritic cartilage compared with healthy articular cartilage. IL1beta treatment of articular chondrocytes in vitro significantly increased tenascin transcripts (approximately 200% of control) and strongly reduced aggrecan mRNA levels (approximately 42% of control). CONCLUSIONS During progression of osteoarthritis the switch in matrix synthesis occurs mainly in upper osteoarthritic cartilage. Furthermore, changes in synthesis patterns of osteoarthritic chondrocytes may be significantly influenced by IL1beta, probably diffusing from the joint cavity within the upper osteoarthritic cartilage.
Collapse
Affiliation(s)
- D Pfander
- Division of Orthopaedic Rheumatology, Department of Orthopaedic Surgery, University of Erlangen-Nuremberg, Erlangen, Germany.
| | | | | | | | | |
Collapse
|
173
|
Enomoto H, Furuichi T, Zanma A, Yamana K, Yoshida C, Sumitani S, Yamamoto H, Enomoto-Iwamoto M, Iwamoto M, Komori T. Runx2 deficiency in chondrocytes causes adipogenic changes in vitro. J Cell Sci 2004; 117:417-425. [PMID: 14702386 DOI: 10.1242/jcs.00866] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Runx2 (runt-related transcription factor 2) is an important transcription factor for chondrocyte differentiation as well as for osteoblast differentiation. To investigate the function of Runx2 in chondrocytes, we isolated chondrocytes from the rib cartilage of Runx2-deficient (Runx2-/-) mice and examined the effect of Runx2 deficiency on chondrocyte function and behavior in culture for up to 12 days. At the beginning of the culture, Runx2-/- chondrocytes actively proliferated, had a polygonal shape and expressed type II collagen; these are all characteristics of chondrocytes. However, they gradually accumulated lipid droplets that stained with oil red O and resembled adipocytes. Northern blot analysis revealed that the expression of adipocyte-related differentiation marker genes including PPAR gamma (peroxisome proliferator-activated receptor gamma), aP2 and Glut4 increased over time in culture, whereas expression of type II collagen decreased. Furthermore, the expression of Pref-1, an important inhibitory gene of adipogenesis, was remarkably decreased. Adenoviral introduction of Runx2 or treatment with transforming growth factor-beta, retinoic acid, interleukin-1 beta, basic fibroblast growth factor, platelet-derived growth factor or parathyroid hormone inhibited the adipogenic changes in Runx2-/- chondrocytes. Runx2 and transforming growth factor-beta synergistically upregulated interleukin-11 expression, and the addition of interleukin-11 to the culture medium reduced adipogenesis in Runx2-/- chondrocytes. These findings indicate that depletion of Runx2 resulted in the loss of the differentiated phenotype in chondrocytes and induced adipogenic differentiation in vitro, and show that Runx2 plays important roles in maintaining the chondrocyte phenotype and in inhibiting adipogenesis. Our findings suggest that these Runx2-dependent functions are mediated, at least in part, by interleukin-11.
Collapse
Affiliation(s)
- Hirayuki Enomoto
- Department of Molecular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
174
|
Hsu YH, Hsieh MS, Liang YC, Li CY, Sheu MT, Chou DT, Chen TF, Chen CH. Production of the chemokine eotaxin-1 in osteoarthritis and its role in cartilage degradation. J Cell Biochem 2004; 93:929-39. [PMID: 15389872 DOI: 10.1002/jcb.20239] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The expression of the chemokine, eotaxin-1, and its receptors in normal and osteoarthritic human chondrocytes was examined, and its role in cartilage degradation was elucidated in this study. Results indicated that plasma concentrations of eotaxin-1 as well as the chemokines, RANTES, and MCP-1alpha, were higher in patients with osteoarthritis (OA) than those in normal humans. Stimulation of chondrocytes with IL-1beta or TNF-alpha significantly induced eotaxin-1 expression. The production of eotaxin-1 induced expression of its own receptor of CCR3 and CCR5 on the cell surface of chondrosarcomas, suggesting that an autocrine/paracrine pathway is involved in eotaxin-1's action. In addition, eotaxin-1 markedly increased the expressions of MMP-3 and MMP-13 mRNA, but had no effect on TIMP-1 expression in chondrocytes. However, pretreatment of anti-eotaxin-1 antibody significantly decreased the MMP-3 expression induced by IL-1beta. These results first demonstrate that human chondrocytes express the chemokine, eotaxin-1, and that its expression is induced by treatment with IL-1beta and TNF-alpha. The cytokine-triggered induction of eotaxin-1 further results in enhanced expressions of its own receptor of CCR3, CCR5, and MMPs, suggesting that eotaxin-1 plays an important role in cartilage degradation in OA.
Collapse
Affiliation(s)
- Yi-Hsin Hsu
- Department of Internal Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan, ROC
| | | | | | | | | | | | | | | |
Collapse
|
175
|
Fanning PJ, Emkey G, Smith RJ, Grodzinsky AJ, Szasz N, Trippel SB. Mechanical regulation of mitogen-activated protein kinase signaling in articular cartilage. J Biol Chem 2003; 278:50940-8. [PMID: 12952976 DOI: 10.1074/jbc.m305107200] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Articular chondrocytes respond to mechanical forces by alterations in gene expression, proliferative status, and metabolic functions. Little is known concerning the cell signaling systems that receive, transduce, and convey mechanical information to the chondrocyte interior. Here, we show that ex vivo cartilage compression stimulates the phosphorylation of ERK1/2, p38 MAPK, and SAPK/ERK kinase-1 (SEK1) of the JNK pathway. Mechanical compression induced a phased phosphorylation of ERK consisting of a rapid induction of ERK1/2 phosphorylation at 10 min, a rapid decay, and a sustained level of ERK2 phosphorylation that persisted for at least 24 h. Mechanical compression also induced the phosphorylation of p38 MAPK in strictly a transient fashion, with maximal phosphorylation occurring at 10 min. Mechanical compression stimulated SEK1 phosphorylation, with a maximum at the relatively delayed time point of 1 h and with a higher amplitude than ERK1/2 and p38 MAPK phosphorylation. These data demonstrate that mechanical compression alone activates MAPK signaling in intact cartilage. In addition, these data demonstrate distinct temporal patterns of MAPK signaling in response to mechanical loading and to the anabolic insulin-like growth factor-I. Finally, the data indicate that compression coactivates distinct signaling pathways that may help define the nature of mechanotransduction in cartilage.
Collapse
Affiliation(s)
- Paul J Fanning
- Massachusetts General Hospital, Orthopaedic Research Laboratories, and Harvard Medical School, Boston, Massachusetts, USA.
| | | | | | | | | | | |
Collapse
|
176
|
Chadjichristos C, Ghayor C, Kypriotou M, Martin G, Renard E, Ala-Kokko L, Suske G, de Crombrugghe B, Pujol JP, Galéra P. Sp1 and Sp3 transcription factors mediate interleukin-1 beta down-regulation of human type II collagen gene expression in articular chondrocytes. J Biol Chem 2003; 278:39762-72. [PMID: 12888570 DOI: 10.1074/jbc.m303541200] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Interleukin-1 beta (IL-1 beta) is a pleiotropic cytokine that was shown to inhibit the biosynthesis of articular cartilage components. Here we demonstrate that IL-1 beta inhibits the production of newly synthesized collagens in proliferating rabbit articular chondrocytes and that this effect is accompanied by a decrease in the steady-state levels of type II collagen mRNA. IL-1 beta down-regulates COL2A1 gene transcription through a -41/-33 bp sequence that binds a multimeric complex including Sp1 and Sp3 transcription factors. Specificity of IL-1 beta effects on COL2A1 promoter activity was demonstrated in experiments in which transfection of a wild type -50/+1 sequence of COL2A1 promoter as a decoy oligonucleotide abolished the IL-1 beta inhibition of a -63/+47 COL2A1-mediated transcription. By contrast, transfection of the related oligonucleotide harboring a targeted mutation in the -41/-33 sequence did not modify the negative effect the cytokine. Because we demonstrated previously that Sp1 was a strong activator of COL2A1 gene expression via the -63/+1 promoter region, whereas Sp3 overexpression blocked Sp1-induced promoter activity and inhibited COL2A1 gene transcription, we conclude that IL-1 beta down-regulation of that gene, as we found previously for transforming growth factor-beta 1, is mediated by an increase in the Sp3/Sp1 ratio. Moreover, IL-1 beta increased steady-state levels of Sp1 and Sp3 mRNAs, whereas it enhanced Sp3 protein expression and inhibited Sp1 protein biosynthesis. Nevertheless, IL-1 beta decreased the binding activity of both Sp1 and Sp3 to the 63-bp short COL2A1 promoter, suggesting that the cytokine exerts a post-transcriptional regulatory mechanism on Sp1 and Sp3 gene expressions. Altogether, these data indicate that modulation of Sp3/Sp1 ratio in cartilage could be a potential target to prevent or limit the tissue degradation.
Collapse
Affiliation(s)
- Christos Chadjichristos
- Laboratoire de Biochimie du Tissu Conjonctif, Faculté de Médecine, CHU Niveau 3, Avenue de la Côte de Nacre, Caen Cedex 14032, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
177
|
Séguin CA, Bernier SM. TNFα suppresses link protein and type II collagen expression in chondrocytes: Role of MEK1/2 and NF-κB signaling pathways. J Cell Physiol 2003; 197:356-69. [PMID: 14566965 DOI: 10.1002/jcp.10371] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Tumor necrosis factor alpha (TNFalpha) inhibits matrix synthesis by chondrocytes in rheumatoid arthritis and osteoarthritis; however, the underlying signaling pathways are poorly characterized. This study investigated the TNFalpha-activated pathways regulating expression of two key components of the cartilage matrix-link protein and type II collagen. In rat articular chondrocytes, TNFalpha decreased link protein and type II collagen mRNA to undetectable levels within 48 h. Levels of link protein mRNA recovered more readily than type II collagen mRNA following removal of the cytokine. TNFalpha-mediated reduction in mRNA of both matrix molecules occurred at the level of transcription and, for link protein, mRNA stability. Turnover of type II collagen and link protein mRNA was dependent on new protein synthesis. In both prechondrocytes and articular chondrocytes, TNFalpha induced concentration-dependent activation of MEK1/2 and NF-kappaB, but not p38 or JNK. Sustained activation of NF-kappaB was observed for up to 72 h following continuous or transient exposure to TNFalpha. Using pharmacological and molecular approaches, the MEK1/2 and NF-kappaB pathways were found to mediate inhibition of type II collagen and link protein gene expression by TNFalpha. Both prechondrocytes and articular chondrocytes are targets of TNFalpha. This study identifies pathways through which TNFalpha perturbs the synthesis and organization of articular cartilage matrix during inflammation.
Collapse
Affiliation(s)
- Cheryle A Séguin
- CHIR Group in Skeletal Development and Remodeling, The University of Western Ontario, London, Ontario, Canada
| | | |
Collapse
|
178
|
Shin SJ, Fermor B, Weinberg JB, Pisetsky DS, Guilak F. Regulation of matrix turnover in meniscal explants: role of mechanical stress, interleukin-1, and nitric oxide. J Appl Physiol (1985) 2003; 95:308-13. [PMID: 12665533 DOI: 10.1152/japplphysiol.00131.2003] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The meniscus is an intra-articular fibrocartilaginous structure that serves essential biomechanical roles in the knee. With injury or arthritis, the meniscus may be exposed to significant changes in its biochemical and biomechanical environments that likely contribute to the progression of joint disease. The goal of this study was to examine the influence of mechanical stress on matrix turnover in the meniscus in the presence of interleukin-1 (IL-1) and to determine the role of nitric oxide (NO) in these processes. Explants of porcine menisci were subjected to dynamic compressive stresses at 0.1 MPa for 24 h at 0.5 Hz with 1 ng/ml IL-1, and the synthesis of total protein, proteoglycan, and NO was measured. The effects of a nitric oxide synthase 2 (NOS2) inhibitor were determined. Dynamic compression significantly increased protein and proteoglycan synthesis by 68 and 58%, respectively, compared with uncompressed explants. This stimulatory effect of mechanical stress was prevented by the presence of IL-1 but was restored by specifically inhibiting NOS2. Release of proteoglycans into the medium was increased by IL-1 or mechanical compression and further enhanced by IL-1 and compression together. Stimulation of proteoglycan release in response to compression was dependent on NOS2 regardless of the presence of IL-1. These finding suggest that IL-1 may modulate the effects of mechanical stress on extracellular matrix turnover through a pathway that is dependent on NO.
Collapse
Affiliation(s)
- Sang-Jin Shin
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | | | | | | | | |
Collapse
|
179
|
Aigner T, Gebhard PM, Schmid E, Bau B, Harley V, Pöschl E. SOX9 expression does not correlate with type II collagen expression in adult articular chondrocytes. Matrix Biol 2003; 22:363-72. [PMID: 12935820 DOI: 10.1016/s0945-053x(03)00049-0] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Anabolic activity is a crucial activity of articular chondrocytes and its failure is one major reason of osteoarthritic cartilage degeneration. The intracellular factors responsible for the increase or decrease of anabolic activity of articular chondrocytes remain largely unknown. A recent candidate, the transcription factor SOX9, has elicited much interest as it is suggested to be a central factor in chondrocytic differentiation during development, including collagen type II (COL2A1) expression, the major anabolic gene product of chondrocytes. Here we show that normal adult human articular chondrocytes in vivo contain high SOX9 mRNA levels, which are decreased in osteoarthritic cartilage. Surprisingly, no positive correlation between SOX9 and COL2A1 expression was observed--to the contrary, the expression of COL2A1 was significantly increased in the diseased cells. Immunolocalization confirmed the presence of SOX9 protein in normal and osteoarthritic chondrocytes without showing significant differences in both SOX9 quantity and subcellular localization in osteoarthritic compared to normal cartilage tissue. Interestingly, laser scanning confocal microscopy showed that the subcellular distribution of SOX9 in adult chondrocytes was not restricted to the nucleus as observed in fetal chondrocytes, but was also detected within the cytoplasm, with no differences in subcellular SOX9 distribution between normal and OA cartilage. This is consistent with the lack of positive correlation between SOX9 and COL2A1 expression in adult articular chondrocytes. Also, no positive correlation between SOX9 and COL2A1 expression was observed in vitro after challenge of chondrocytes with Il-1beta, which is a strong (negative) regulator of COL2A1 expression, or with IGF-I, which stimulates COL2A1 expression. These results suggest that SOX9 is not the key regulator of COL2A1 promoter activity in human adult articular chondrocytes. However, SOX9 might still be involved in maintaining the chondrocytic phenotype in normal and osteoarthritic cartilage.
Collapse
Affiliation(s)
- Thomas Aigner
- Cartilage Research, Department of Pathology, University of Erlangen-Nürnberg, Krankenhausstrasse 8-10, Erlangen 91504, Germany.
| | | | | | | | | | | |
Collapse
|
180
|
Marini S, Fasciglione GF, Monteleone G, Maiotti M, Tarantino U, Coletta M. A correlation between knee cartilage degradation observed by arthroscopy and synovial proteinases activities. Clin Biochem 2003; 36:295-304. [PMID: 12810159 DOI: 10.1016/s0009-9120(03)00029-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE A novel study has been carried out to characterize the amount and activity levels of metalloproteinases (i.e., MMP-1, MMP-2, MMP-3, MMP-8, MMP-9 and MMP-13) and of their inhibitors (i.e., TIMP-1 and TIMP-2) in synovial fluid from patients (n = 56) with different degrees of either chondral lesions or knee arthritis identified and classified by arthroscopy. DESIGN AND METHODS Zymographies, Western blotting and ELISA tests have been used to correlate the disease stage, as determined by arthroscopy, and both the amount and the activation state of different MMPs and of their inhibitors. RESULTS Analysis of data obtained demonstrates that the degree of cartilage degradation, as seen by arthroscopy, is strictly related to the activity of some synovial MMPs, in particular MMP-2 and MMP-13 and on reduced inhibitory effect of MMP-2 by TIMP-2; in addition, a serine protease weighing about 125 kDa appears only in patients with severe cartilage degradation, i.e., with knee arthritis. CONCLUSIONS On the whole, this is the first study in which an analysis of synovial MMPs/other proteinases activity and TIMPs has been strictly related to arthroscopy results in patients with different degrees of osteoarthritis. Results indicate that an imbalance between specific MMP activities and the amount of TIMPs and of its inhibitory efficiency is crucial for the disease evolution and it is related to the disease stage.
Collapse
Affiliation(s)
- Stefano Marini
- Department of Experimental Medicine and Biochemistry Science, University of Rome TorVergata, Rome, Italy
| | | | | | | | | | | |
Collapse
|
181
|
Tan L, Peng H, Osaki M, Choy BK, Auron PE, Sandell LJ, Goldring MB. Egr-1 mediates transcriptional repression of COL2A1 promoter activity by interleukin-1beta. J Biol Chem 2003; 278:17688-700. [PMID: 12637574 DOI: 10.1074/jbc.m301676200] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Following induction and activation of the early growth response (Egr)-1 transcription factor in human chondrocytes, interleukin-1beta (IL-1beta) suppresses the expression of the type II collagen gene (COL2A1), associated with induction of Egr-1 binding activity in nuclear extracts. The COL2A1 proximal promoter contains overlapping binding sites for Egr-1 and Sp1 family members at -119/-112 bp and -81/-74 bp. Mutations that block binding of Sp1 and Sp3 to either site markedly reduce constitutive expression of the core promoter. IL-1beta-induced Egr-1 binds strongly to the -119/-112 bp site, and mutations that block Egr-1 binding prevent inhibition by IL-1beta. Cotransfection with pCMV-Egr1 potentiates the inhibition of COL2A1 promoter activity by IL-1beta, whereas overexpression of dominant-negative Egr-1 mutant, Wilm's tumor-1 (WT1)/Egr1, Sp1, or Sp3 reverses the inhibition by IL-1beta. Cotransfection of pGL2-COL2/Gal4, in which we substituted the critical residue for Egr-1 binding with a Gal4 binding domain and a pCMV-Gal4-Egr1 chimera permits an inhibitory response to IL-1beta that is reversed by overexpression of Gal4-CBP. Our results indicate that IL-1beta-induced activation of Egr-1 binding is required for inhibition of COL2A1 proximal promoter activity and suggest that Egr-1 acts as a repressor of a constitutively expressed collagen gene by preventing interactions between Sp1 and the general transcriptional machinery.
Collapse
Affiliation(s)
- Lujian Tan
- Rheumatology Division, Beth Israel Deaconess Medical Center and New England Baptist Bone & Joint Institute, Harvard Institutes of Medicine, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
182
|
Huh YH, Kim SH, Kim SJ, Chun JS. Differentiation status-dependent regulation of cyclooxygenase-2 expression and prostaglandin E2 production by epidermal growth factor via mitogen-activated protein kinase in articular chondrocytes. J Biol Chem 2003; 278:9691-7. [PMID: 12493746 DOI: 10.1074/jbc.m211360200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although large amounts of epidermal growth factor (EGF) are found in the synovial fluids of arthritic cartilage, the role of EGF in arthritis is not clearly understood. This study investigated the effect of EGF on differentiation and on inflammatory responses such as cyclooxygenase-2 (COX-2) expression and prostaglandin E(2) (PGE(2)) production in articular chondrocytes. EGF caused a loss of differentiated chondrocyte phenotype as demonstrated by inhibition of type II collagen expression and proteoglycan synthesis. EGF also induced COX-2 expression and PGE(2) production. EGF-induced dedifferentiation was caused by EGF receptor-mediated activation of extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) but not p38 kinase, whereas the activation of both ERK1/2 and p38 kinase was necessary for COX-2 expression and PGE(2) production. Neither the inhibition of COX-2 expression and PGE(2) production nor the addition of exogenous PGE(2) affected EGF-induced dedifferentiation. However, COX-2 expression and PGE(2) production were significantly enhanced in chondrocytes that were dedifferentiated by serial subculture, and EGF also potentiated COX-2 expression and PGE(2) production, although these cells were less sensitive to EGF. Dedifferentiation-induced COX-2 expression and PGE(2) production were mediated by ERK1/2 and p38 kinase signaling. Our results indicate that EGF in articular chondrocytes stimulates COX-2 expression and PGE(2) production via ERK and p38 kinase signaling in association with differentiation status.
Collapse
Affiliation(s)
- Yun-Hyun Huh
- Department of Life Science, National Research Laboratory, Kwangju Institute of Science and Technology, Gwangju 500-712, Korea
| | | | | | | |
Collapse
|
183
|
Osaki M, Tan L, Choy BK, Yoshida Y, Cheah KSE, Auron PE, Goldring MB. The TATA-containing core promoter of the type II collagen gene (COL2A1) is the target of interferon-gamma-mediated inhibition in human chondrocytes: requirement for Stat1 alpha, Jak1 and Jak2. Biochem J 2003; 369:103-15. [PMID: 12223098 PMCID: PMC1223055 DOI: 10.1042/bj20020928] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2002] [Revised: 09/05/2002] [Accepted: 09/11/2002] [Indexed: 01/18/2023]
Abstract
Interferon-gamma (IFN-gamma) inhibits the synthesis of the cartilage-specific extracellular matrix protein type II collagen, and suppresses the expression of the type II collagen gene ( COL2A1 ) at the transcriptional level. To further examine this mechanism, the responses of COL2A1 regulatory sequences to IFN-gamma and the role of components of the Janus kinase/signal transducer and activators of transcription (JAK/STAT) pathway were examined in the immortalized human chondrocyte cell line, C-28/I2. IFN-gamma inhibited the mRNA levels of COL2A1 and aggrecan, but not Sox9, L-Sox5 and Sox6, all of which were expressed by these cells as markers of the differentiated phenotype. IFN-gamma suppressed the expression of luciferase reporter constructs containing sequences of the COL2A1 promoter spanning -6368 to +125 bp in the absence and presence of the intronic enhancer and stimulated activity of the gamma-interferon-activated site (GAS) luciferase reporter vector, associated with induction of Stat1 alpha-binding activity in nuclear extracts. These responses to IFN-gamma were blocked by overexpression of the JAK inhibitor, JAK-binding protein (JAB), or reversed by dominant-negative Stat1 alpha Y701F containing a mutation at Tyr-701, the JAK phosphorylation site. IFN-gamma had no effect on COL2A1 promoter expression in Jak1 (U4A)-, Jak2 (gamma 2A)- and Stat1 alpha (U3A)-deficient cell lines. In the U3A cell line, the response to IFN-gamma was rescued by overexpression of Stat1 alpha, but not by either Stat1 alpha Y701F or Stat1 beta. Functional analysis using deletion constructs showed that the IFN-gamma response was retained in the COL2A1 core promoter region spanning -45 to +11 bp, containing the TATA-box and GC-rich sequences but no Stat1-binding elements. Inhibition of COL2A1 promoter activity by IFN-gamma persisted in the presence of multiple deletions within the -45/+11 bp region. Our results indicate that repression of COL2A1 gene transcription by IFN-gamma requires Jak1, Jak2 and Stat1 alpha and suggest that this response involves indirect interaction of activated Stat1 alpha with the general transcriptional machinery that drives constitutive COL2A1 expression.
Collapse
Affiliation(s)
- Makoto Osaki
- Beth Israel Deaconess Medical Center, Rheumatology Division, and New England Baptist Bone & Joint Institute, Harvard Institutes of Medicine, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
184
|
Bau B, Haag J, Schmid E, Kaiser M, Gebhard PM, Aigner T. Bone morphogenetic protein-mediating receptor-associated Smads as well as common Smad are expressed in human articular chondrocytes but not up-regulated or down-regulated in osteoarthritic cartilage. J Bone Miner Res 2002; 17:2141-50. [PMID: 12469908 DOI: 10.1359/jbmr.2002.17.12.2141] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Bone morphogenetic proteins (BMPs) are supposed to be important for cartilage matrix anabolism. In this study, we investigated whether the intracellular mediators of BMP activity, Smads 1, 4, 5, and 8, are expressed in normal human articular chondrocytes in vivo and in vitro and whether alterations in expression and distribution pattern are found in osteoarthritic cartilage or in vitro after stimulation with interleukin (IL)-1, because down-regulation of these mediators could be responsible for the decrease of anabolic activity in osteoarthritic cartilage. RNA was isolated from normal and osteoarthritic human knee cartilage and analyzed by (quantitative) polymerase chain reaction (PCR) technology. Articular chondrocytes were cultured in alginate beads and short-term high-density monolayer cultures with and without stimulation by IL-1. In addition, immunolocalization of the receptor-associated Smads (R-Smads) was performed on sections of normal and diseased articular cartilage. Reverse-transcription (RT)-PCR analysis showed a moderate expression of all Smads investigated in normal, early degenerative, and late stage osteoarthritic cartilage. Immunolocalization detected the R-Smads in most chondrocytes on the protein level in all specimen groups investigated. In vitro, the Smads were also expressed and partly up-regulated by Il-1beta in alginate bead culture. Of note, for Smad 1, two truncated splice variants were expressed by articular chondrocytes missing exon 4 as well as exons 3 and 4. Our study showed that BMP-receptor Smads 1, 5, and 8 as well as common Smad (C-Smad) 4 are expressed and present in human normal and osteoarthritic articular chondrocytes corroborating the importance of BMPs and BMP signaling for articular cartilage. This study is the first to describe splicing variants for Smad 1. Smads 1, 4, and 5 are up-regulated in vitro by Il-1beta, suggesting a linkage of the Il-1 and BMP-signaling pathways within the chondrocytes. None of the Smads were grossly up- or down-regulated in osteoarthritic chondrocytes, suggesting that differences in overall expression levels of the investigated Smad proteins are not relevant for metabolic activity of articular chondrocytes in vivo.
Collapse
Affiliation(s)
- Brigitte Bau
- Cartilage Research, Department of Pathology, University of Erlangen-Nürnberg. Erlangen, Germany
| | | | | | | | | | | |
Collapse
|
185
|
Dvorak LD, Cook JL, Kreeger JM, Kuroki K, Tomlinson JL. Effects of carprofen and dexamethasone on canine chondrocytes in a three-dimensional culture model of osteoarthritis. Am J Vet Res 2002; 63:1363-9. [PMID: 12371761 DOI: 10.2460/ajvr.2002.63.1363] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To determine effects of carprofen and dexamethasone on chondrocytes in a culture model of osteoarthritis (OA). SAMPLE POPULATION Chondrocytes isolated from articular cartilage of the humeral head of 5 adult dogs. PROCEDURE Chondrocytes were harvested, cultured and subcultured in monolayer, and then cultured in a 3-dimensional (3-D) medium. Cells from each dog were distributed into 6 groups with differing content of liquid medium for each 3-D construct (agarose [AG], AG plus interleukin [IL]-1beta, AG plus carprofen [4 microg/mL], AG plus dexamethasone [1 mg/mL], AG plus IL-1beta [20 ng/mL] plus carprofen [4 microg/mL], and AG plus IL-1beta (20 ng/mL) plus dexamethasone (1 mg/mL). On days 3, 6, 12, and 20 of culture, samples from all groups were collected. Liquid media were assayed for glycosaminoglycan, prostaglandin (PG)E2, matrix metalloprotease (MMP)-3, and MMP-13 concentrations. All 3-D constructs were evaluated for viability, cell morphology, proteoglycan staining, and collagen type-II concentration. Total glycosaminoglycan content in each 3-D construct was quantitated by spectrophotometric assay. RESULTS Addition of IL-1beta caused a significant loss of cell viability and matrix production. Addition of carprofen or dexamethasone caused significant decreases in PGE2 in the liquid media, and each was minimally effective in protecting chondrocytes against negative effects of IL-1beta. CONCLUSIONS AND CLINICAL RELEVANCE Human recombinant IL-1beta resulted in loss of cell viability, alterations in extracellular matrix components, and production of PG and MMP Carprofen and dexamethasone had little effect on cell and matrix variables but did decrease PGE2 concentrations and primarily affected the inflammatory pathway of osteoarthritis.
Collapse
Affiliation(s)
- Laura D Dvorak
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia 65211, USA
| | | | | | | | | |
Collapse
|
186
|
Abstract
Functional genomics is a challenging new way to address a complex disease like osteoarthritis on a molecular level. Despite osteoarthritis being ultimately a biochemical problem, mainly characterized by an imbalanced cartilage matrix turnover, a deeper understanding of molecular events within the tissue cells (i.e., the chondrocytes) will provide not only a better understanding of pathogenetic mechanisms but also new diagnostic markers and cellular targets for therapeutic intervention. This innovative technology represents a challenging approach complementing (not replacing) classical research in previously described and new disease-relevant genes: large-scale functional genomics will open up new areas of so far unrecognized molecular networks. This will include as yet unidentified players in the anabolic-catabolic balance of matrix turnover of articular cartilage as well as disease-relevant intracellular signaling cascades so far hardly investigated in articular chondrocytes. However, care must be taken not to over or misinterpret results and some major challenges must be overcome in order to properly utilize the potential of this technology in the field of osteoarthritis.
Collapse
Affiliation(s)
- Thomas Aigner
- Cartilage Research, Department of Pathology, University of Erlangen-Nürnberg, Krankenhausstr. 8-10D-91054 Erlangen, FRG, Germany.
| | | | | | | |
Collapse
|
187
|
Okazaki K, Li J, Yu H, Fukui N, Sandell LJ. CCAAT/enhancer-binding proteins beta and delta mediate the repression of gene transcription of cartilage-derived retinoic acid-sensitive protein induced by interleukin-1 beta. J Biol Chem 2002; 277:31526-33. [PMID: 12072435 DOI: 10.1074/jbc.m202815200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cartilage-derived retinoic acid-sensitive protein (CD-RAP) is a secreted protein expressed by chondrocytes; the expression is repressed by interleukin 1 beta (IL-1 beta). To investigate the transcriptional mechanism, by which CD-RAP expression is suppressed by IL-1 beta, deletion constructs of the mouse CD-RAP promoter were transfected into rat chondrocytes treated with or without IL-1 beta. The results revealed an IL-1 beta-responsive element located between -2138 and -2068 bp. As this element contains a CAAT/enhancer-binding protein (C/EBP) motif, the function of C/EBP beta and C/EBP delta was examined. IL-1 beta stimulated the expression of C/EBP beta and -delta, and the direct binding of C/EBP beta to the C/EBP motif was confirmed. The -2251-bp CD-RAP promoter activity was down-regulated by co-transfection with C/EBP expression vectors. Mutation of the C/EBP motif abolished the inhibitory response to IL-1 beta. Additionally, C/EBP expression vectors were found to down-regulate the construct containing the promoter and enhancer of the type II collagen gene. Finally, the enhancer factor, Sox9, was shown to bind adjacent to the C/EBP site competing with C/EBP binding. Taken together, these results suggest that C/EBP beta and -delta may play an important role in the IL-1 beta-induced repression of cartilage-specific proteins and that expression of matrix proteins will be influenced by the availability of positive and negative trans-acting factors.
Collapse
Affiliation(s)
- Ken Okazaki
- Department of Orthopaedic Surgery, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, Missouri 63110, USA
| | | | | | | | | |
Collapse
|
188
|
Ghosh AK. Factors involved in the regulation of type I collagen gene expression: implication in fibrosis. Exp Biol Med (Maywood) 2002; 227:301-14. [PMID: 11976400 DOI: 10.1177/153537020222700502] [Citation(s) in RCA: 192] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Type I collagen, the major component of extracellular matrix in skin and other tissues, is a heterotrimer of two alpha1 and one alpha2 collagen polypeptides. The synthesis of both chains is highly regulated by different cytokines at the transcriptional level. Excessive synthesis and deposition of collagen in the dermal region causes thick and hard skin, a clinical manifestation of scleroderma. To better understand the causes of scleroderma or other tissue fibrosis, it is very important to investigate the molecular mechanisms that cause upregulation of the Type I collagen synthesis in these tissues. Several cis-acting regulatory elements and trans-acting protein factors, which are involved in basal as well as cytokine-modulated Type I collagen gene expression, have been identified and characterized. Hypertranscription of Type I collagen in scleroderma skin fibroblasts may be due to abnormal activities of different positive or negative transcription factors in response to different abnormally induced signaling pathways. In this review, I discuss the present day understanding about the involvement of different factors in the regulation of basal as well as cytokine-modulated Type I collagen gene expression and its implication in scleroderma research.
Collapse
Affiliation(s)
- Asish K Ghosh
- Section of Rheumatology, Department of Medicine, 1158 Molecular Biology Research Building, University of Illinois, 900 South Ashland Avenue, Chicago, IL 60607, USA.
| |
Collapse
|
189
|
Thomas B, Thirion S, Humbert L, Tan L, Goldring MB, Béréziat G, Berenbaum F. Differentiation regulates interleukin-1beta-induced cyclo-oxygenase-2 in human articular chondrocytes: role of p38 mitogen-activated protein kinase. Biochem J 2002; 362:367-73. [PMID: 11853544 PMCID: PMC1222396 DOI: 10.1042/0264-6021:3620367] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Chondrocyte dedifferentiation has been noted in osteoarthritic cartilage, but the contribution of this phenomenon is poorly understood. Interleukin (IL)-1beta, the major pro-inflammatory cytokine found in osteoarthritic synovial fluid, induces the dedifferentiation of cultured articular chondrocytes, whereas E-series prostaglandins (PGE) are capable of inducing cell differentiation. Since PGE(2) synthesis is up-regulated by IL-1beta, we addressed the question of whether the state of chondrocyte differentiation may influence the production of IL-1-induced PGE(2) by modulating cyclooxygenase (COX)-2 expression. Immortalized human articular chondrocytes, (tsT/AC62) cultured in monolayer after passage through alginate matrix (alg+) produced 5-fold greater amounts of PGE(2) than continuous monolayer cultures (alg-) after stimulation with IL-1beta. Moreover, IL-1beta induced COX-2 expression at 0.01 ng/ml in (alg+) cells, whereas a 100-fold higher dose of cytokine was necessary for stimulation in (alg-) cells. SB203580, a selective p38 mitogen-activated protein kinase (MAPK) inhibitor, completely abolished the IL-1beta-induced COX-2 mRNA. Overexpression of p38 MAPK induces a COX-2 reporter, whereas overexpression of dominant negative p38 MAPK represses IL-1beta-induced promoter expression. Interestingly, IL-1beta-induced p38 MAPK activity was greatly enhanced in (alg+) compared with (alg-) cells. Our results suggest that differentiated articular chondrocytes are highly responsive to IL-1beta and that p38 MAPK mediates this response by inducing COX-2 gene expression.
Collapse
Affiliation(s)
- Béatrice Thomas
- UPRES-A CNRS 7079, Université Pierre et Marie Curie, 7 Quai Saint-Bernard, 75252 Paris Cédex 05, France
| | | | | | | | | | | | | |
Collapse
|
190
|
Punzi L, Calò L, Plebani M. Clinical significance of cytokine determination in synovial fluid. Crit Rev Clin Lab Sci 2002; 39:63-88. [PMID: 11890208 DOI: 10.1080/10408360290795448] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Cytokines are a complex family of small regulatory proteins able to mediate intercellular communication and play a crucial role in immunologic and inflammatory reactions. Many reports have demonstrated that some cytokines, in particular tumor necrosis factor alpha (TNFalpha) and interleukin (IL)-1beta, IL-6, and IL-8, so-called proinflammatory, may have a major role in the pathogenesis of joint diseases. Thus, high levels of these substances have been found in inflammatory arthropathies, in particular in those characterized by a more aggressive and destructive outcome, such as rheumatoid arthritis, gout, and infectious arthritis. In keeping with their role, the determination of cytokines in synovial fluid may be proposed for clinical purposes, including diagnostic and prognostic assessments. Furthermore, as some of these cytokines may reflect disease activity, their determination may also be useful in the evaluation of therapy.
Collapse
Affiliation(s)
- Leonardo Punzi
- Division of Rheumatology, Department of Medical and Surgical Sciences, University of Padova, Italy.
| | | | | |
Collapse
|
191
|
Palmer G, Guerne PA, Mezin F, Maret M, Guicheux J, Goldring MB, Gabay C. Production of interleukin-1 receptor antagonist by human articular chondrocytes. ARTHRITIS RESEARCH 2002; 4:226-31. [PMID: 12010575 PMCID: PMC111027 DOI: 10.1186/ar411] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2001] [Revised: 02/20/2002] [Accepted: 03/11/2002] [Indexed: 01/08/2023]
Abstract
Interleukin-1 receptor antagonist (IL-1Ra) is a natural IL-1 inhibitor possessing anti-inflammatory properties. IL-1Ra is produced as different isoforms, one secreted (sIL-1Ra) and three intracellular (icIL-1Ra1, icIL-1Ra2 and icIL-1Ra3), derived from the same gene. We examined the production of IL-1Ra species by cultured human articular chondrocytes in response to various cytokines. The levels of IL-1Ra were undetectable in culture supernatants of untreated cells, but were significantly increased by IL-1beta. Cell lysates contained very low levels of IL-1Ra, even in response to IL-1beta, suggesting that chondrocytes produce predominantly sIL-1Ra. IL-6, which had no effect on its own, enhanced the effect of IL-1beta, while dexamethasone prevented the response. We observed by RT-PCR that IL-1beta and IL-6 induced primarily the production of sIL-1Ra mRNA. Furthermore, IL-1beta alone or combined with IL-6 increased the levels of nascent unspliced sIL-1Ra mRNA, suggesting that sIL-1Ra expression is regulated at the transcriptional level. Reporter gene assays in immortalized chondrocytes, C-20/A4, consistently showed increased sIL-1Ra promoter activity in response to IL-1beta and IL-6. In conclusion, human articular chondrocytes produce sIL-1Ra in response to IL-1beta and IL-6. The production of sIL-1Ra by chondrocytes may have a protective effect against articular inflammatory and catabolic responses.
Collapse
Affiliation(s)
- Gaby Palmer
- Division of Rheumatology, University Hospital, Geneva, Switzerland
| | | | - Francoise Mezin
- Division of Rheumatology, University Hospital, Geneva, Switzerland
| | - Michel Maret
- Division of Rheumatology, University Hospital, Geneva, Switzerland
| | - Jerome Guicheux
- Division of Rheumatology, University Hospital, Geneva, Switzerland
- INSERM EM 9903, School of Dental Surgery, Nantes, France
| | - Mary B Goldring
- New England Baptist Bone and Joint Institute and Rheumatology Division, Beth Israel Deaconess Medical Center, Harvard Institutes of Medicine, Boston, Massachussetts, USA
| | - Cem Gabay
- Division of Rheumatology, University Hospital, Geneva, Switzerland
| |
Collapse
|
192
|
Tung JT, Venta PJ, Caron JP. Inducible nitric oxide expression in equine articular chondrocytes: effects of antiinflammatory compounds. Osteoarthritis Cartilage 2002; 10:5-12. [PMID: 11795978 DOI: 10.1053/joca.2001.0476] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To determine the effects of recombinant equine IL-1beta and a number of antiinflammatory compounds on the expression and activity of inducible nitric oxide synthase (iNOS) in cultured equine chondrocytes. DESIGN RT-PCR methods were used to amplify a portion of the equine iNOS message to prepare an RNA probe. Northern blot analysis was used to quantify the expression of iNOS in first passage cultures of equine articular chondrocytes propagated in the presence or absence of recombinant equine interleukin-1beta (reIL-1beta), dexamethasone (DEX), polysulfated glycosaminoglycan (PSGAG), hyaluronan (HA), and phenylbutazone (PBZ), each at concentrations of 10 and 100 microg/ml. Nitrite concentrations in conditioned media of similarly treated cells were used to quantify iNOS activity. RESULTS Recombinant equine IL-1beta increased the expression of iNOS in a dose-dependent manner. This result was paralleled by an increased concentration of nitrite in the culture media of reIL-1beta-treated cells. DEX and PSGAG significantly reduced iNOS gene expression and media supernatant nitrite concentrations in cytokine-stimulated cultures. HA and PBZ had no consistent effect on the expression of iNOS and did not significantly influence nitrite content of conditioned media. CONCLUSIONS NO is considered an important mediator in the pathophysiologic processes of arthritis and an inducible NOS is expressed by equine chondrocytes. Pre-translational regulation of the iNOS gene by DEX and PSGAG appears to contribute to the cartilage-sparing properties of these compounds.
Collapse
Affiliation(s)
- J T Tung
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, Michigan 48824-1314, USA
| | | | | |
Collapse
|
193
|
Majumdar MK, Wang E, Morris EA. BMP-2 and BMP-9 promotes chondrogenic differentiation of human multipotential mesenchymal cells and overcomes the inhibitory effect of IL-1. J Cell Physiol 2001; 189:275-84. [PMID: 11748585 DOI: 10.1002/jcp.10025] [Citation(s) in RCA: 203] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Bone morphogenetic proteins play important roles in connective tissue morphogenesis. In this study, we used human multipotential mesenchymal cells as a target to analyze the effect of bone morphogenetic proteins on chondrogenesis. We also analyzed the effect of proinflammatory cytokine interleukin-1 on chondrogenic-differentiated cells and the interaction of IL-1beta with bone morphogenetic proteins. Cells placed in a 3-dimensional matrix of alginate beads and cultured in a serum-free media with bone morphogenetic protein-2 and -9 induced expression of type II collagen (Col2A1) mRNA and increased expression of aggrecan and cartilage oligomeric matrix protein suggesting chondrogenic differentiation of the cells. The transcription factor Sox-9 that regulates both Col2A1 and aggrecan gene expression showed increased expression with BMP treatment. Chondrogenic differentiated cells treated with interleukin-1 decreased Sox-9, Col2A1 and aggrecan gene expression. Removal of interleukin-1 and further addition of bone morphogenetic proteins resulted in returned expression of chondrogenic markers. Chondrogenic differentiated cells cultured in the presence of different concentrations of bone morphogenetic proteins and interleukin-1 showed that bone morphogenetic proteins were able to partially block the suppressive effect of interleukin-1. This study shows that bone morphogenetic proteins play an important role in chondrogenesis and may prove to be potential therapeutics in cartilage repair.
Collapse
Affiliation(s)
- M K Majumdar
- Genetics Institute, Inc., Cambridge, Massachusetts 02140, USA.
| | | | | |
Collapse
|
194
|
Ghayor C, Chadjichristos C, Herrouin JF, Ala-Kokko L, Suske G, Pujol JP, Galera P. Sp3 represses the Sp1-mediated transactivation of the human COL2A1 gene in primary and de-differentiated chondrocytes. J Biol Chem 2001; 276:36881-95. [PMID: 11447232 DOI: 10.1074/jbc.m105083200] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Sp1 and Sp3 effects on the transcription of the human alpha1(II) procollagen gene (COL2A1) were investigated in both differentiated and de-differentiated rabbit articular chondrocytes. Transient transfection with constructs of deleted COL2A1 promoter sequences driving the luciferase reporter gene revealed that the region spanning -266 to +121 base pairs showed Sp1-enhancing effects, whatever the differentiation state. In contrast, Sp3 did not influence COL2A1 gene transcription. Concomitant overexpression of the two Sp proteins demonstrated that Sp3 blocked the Sp1 induction of COL2A1 promoter activity. Moreover, inhibition of Sp1/Sp3 binding to their target DNA sequence decreased both COL2A1 gene transcription and Sp1-enhancing effects. DNase I footprinting and gel retardation assays revealed that Sp1 and Sp3 bind specifically to cis-sequences of the COL2A1 gene promoter whereby they exert their transcriptional effects. Sp1 and Sp3 levels were found to be reduced in de-differentiated chondrocytes, as revealed by DNA-binding and immunochemical study. Sp1 specifically activated collagen neosynthesis whatever the differentiation state of chondrocytes, suggesting that this factor exerts a major role in the expression of collagen type II. However, our data indicate that type II collagen-specific expression in chondrocytes depend on both the Sp1/Sp3 ratio and cooperation of Sp1 with other transcription factors, the amounts of which are also modulated by phenotype alteration.
Collapse
Affiliation(s)
- C Ghayor
- Laboratoire de Biochimie du Tissu Conjonctif, Faculté de Médecine, CHU niveau 3, Avenue de la Côte de Nacre, 14032, Caen Cedex, France
| | | | | | | | | | | | | |
Collapse
|
195
|
Kolettas E, Muir HI, Barrett JC, Hardingham TE. Chondrocyte phenotype and cell survival are regulated by culture conditions and by specific cytokines through the expression of Sox-9 transcription factor. Rheumatology (Oxford) 2001; 40:1146-56. [PMID: 11600745 DOI: 10.1093/rheumatology/40.10.1146] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE To investigate the effects of culture conditions, serum and specific cytokines such as insulin-like growth factor (IGF) 1 and interleukin (IL) 1alpha on phenotype and cell survival in cultures of Syrian hamster embryonic chondrocyte-like cells (DES4(+).2). METHODS Proteins and RNA extracted from subconfluent and confluent early- and late-passage DES4(+).2 cells cultured in the presence or absence of serum and IL-1alpha or IGF-1 or both cytokines together were analysed for the expression of chondrocyte-specific genes and for the chondrogenic transcription factor Sox-9 by Western and Northern blotting. Apoptosis was assessed by agarose gel electrophoresis of labelled low-molecular weight DNA extracted from DES4(+).2 cells and another Syrian hamster embryonic chondrocyte-like cell line, 10W(+).1, cultured under the different conditions and treatments. RESULTS Early passage DES4(+).2 cells expressed chondrocyte-specific molecules such as collagen types alpha1(II) and alpha1(IX), aggrecan, biglycan and link protein and collagen types alpha1(I) and alpha1(X) mRNAs, suggesting a prehypertrophic chondrocyte-like phenotype. The expression of all genes investigated was cell density- and serum-dependent and was low to undetectable in cell populations from later passages. Early-passage DES4(+).2 and 10W(+).1 cells survived when cultured at low cell density, but died by apoptosis when cultured at high cell density in the absence of serum or IGF-1. IGF-1 and IL-1alpha had opposite and antagonistic effects on the chondrocyte phenotype and survival. Whereas IL-1alpha acting alone suppressed cartilage-specific gene expression without significantly affecting cell survival, IGF-1 increased the steady-state mRNA levels and relieved the IL-1alpha-induced suppression of all the chondrocyte-specific genes investigated; it also enhanced chondrocyte survival. Suppression of the chondrocyte phenotype by the inflammatory cytokine IL-1alpha correlated with marked down-regulation of the transcription factor Sox-9, which was relieved by IGF-1. The expression of the Sox9 gene was closely correlated with the expression of the chondrocyte-specific genes under all conditions and treatments. CONCLUSIONS The results suggest that the effects of cartilage anabolic and catabolic cytokines IGF-1 and IL-1alpha on the expression of the chondrocyte phenotype are mediated by Sox-9. As Sox-9 appears to be essential for matrix production, the potent effect of IL-1alpha in suppressing Sox-9 expression may limit the ability of cartilage to repair during inflammatory joint diseases.
Collapse
Affiliation(s)
- E Kolettas
- Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, University of Manchester, Manchester M13 9PT, UK
| | | | | | | |
Collapse
|
196
|
Chubinskaya S, Huch K, Schulze M, Otten L, Aydelotte MB, Cole AA. Gene expression by human articular chondrocytes cultured in alginate beads. J Histochem Cytochem 2001; 49:1211-20. [PMID: 11561005 DOI: 10.1177/002215540104901003] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Culture of articular chondrocytes in alginate beads offers several advantages over culture in monolayer; cells retain their phenotype for 8 months or longer. Earlier studies of chondrocytes cultured in alginate concentrated on collagen and proteoglycan synthesis. However, gene expression by in situ hybridization (ISH) has not been investigated. The purposes of the present study on human chondrocytes were (a) to modify the ISH procedure for the alginate beads to examine the mRNA expression of alpha1 (II) procollagen, aggrecan, and two matrix metalloproteinases (MMP-3 and MMP-8) thought to be involved in cartilage matrix degradation, and (b) to compare expression in cultured chondrocytes with that in chondrocytes of intact human cartilage. The modifications made for ISH include the presence of CaCl2 and BaCl2 in the fixation and washing steps and exclusion of cetyl pyridinium chloride. By ISH we show that aggrecan, MMP-3, and MMP-8 are continuously expressed during 8 months of culture. The alpha1 (II) procollagen gene is expressed only during the first 2 months of culture and after 3 months its expression is undetectable, which is consistent with its absence in adult articular cartilage. By Western blotting, Type II collagen protein had been synthesized and deposited in both the cell-associated and further-removed matrix compartments at 7 and 14 days of culture. These data indicate that chondrocytes cultured in alginate beads could be preserved for immunohistochemistry and ISH and that culture of human chondrocytes in alginate beads may serve as a good model for studying cartilage-specific phenotype as well as factors that influence cartilage matrix turnover.
Collapse
Affiliation(s)
- S Chubinskaya
- Department of Biochemistry, Rush Medical College at Rush-Presbyterian-St Luke's Medical Center, Chicago, Illinois 60612, USA.
| | | | | | | | | | | |
Collapse
|
197
|
Abstract
Joint injury results in cartilage lesions that are characterized by a poor repair response, and such lesions often progress to osteoarthritis. Acute joint injury or chronic exposure of cartilage to an abnormal biochemical or biomechanical environment results in the activation of chondrocytes. This chondrocyte response is manifested by enhanced cell proliferation and death, matrix degradation, and new matrix synthesis. Cytokines are important stimuli of this chondrocyte activation response and trigger joint inflammation that can accompany cartilage injury. The presence of cytokines in cartilage is associated with abnormal extracellular matrix remodeling and loss, therefore defining them as a class of targets for therapeutic interventions. Insight into intracellular signaling mechanisms that are activated by cytokines may provide the basis for pharmacologic interventions that promote cartilage repair.
Collapse
Affiliation(s)
- M Lotz
- Division of Arthritis Research, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
198
|
Alaaeddine N, Olee T, Hashimoto S, Creighton-Achermann L, Lotz M. Production of the chemokine RANTES by articular chondrocytes and role in cartilage degradation. ARTHRITIS AND RHEUMATISM 2001; 44:1633-43. [PMID: 11465714 DOI: 10.1002/1529-0131(200107)44:7<1633::aid-art286>3.0.co;2-z] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE To examine the expression of the chemokine RANTES and its receptors in normal and osteoarthritic (OA) human cartilage and to analyze its effects on chondrocyte function. METHODS The expression of RANTES and its receptors were examined by reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry. The effect of RANTES on gene expression of other cytokines and on the release of mediators of cartilage degradation was also examined by PCR and enzyme-linked immunosorbent assay. RESULTS The expression of RANTES was undetectable in normal chondrocytes until after stimulation with interleukin-1beta (IL-1beta) or IL-18. Cultures of normal cartilage also produced RANTES in response to IL-1beta, as demonstrated by immunohistochemistry. All OA cartilage samples analyzed expressed RANTES messenger RNA (mRNA); RANTES protein was detected by immunohistochemistry in the superficial and mid zones of the tissue. OA chondrocytes produced elevated levels of RANTES constitutively and after IL-1beta stimulation. Normal cartilage expressed the RANTES receptors CCR3 and CCR5, but not CCR1. CCR1 was expressed in OA cartilage, and CCR3 and CCR5 were increased. In normal chondrocytes, RANTES induced the expression of inducible nitric oxide synthase and IL-6. RANTES stimulated the release of matrix metalloproteinase 1 in normal and OA chondrocytes as effectively as IL-1beta. Treatment of normal articular cartilage with RANTES increased the release of glycosaminoglycans and profoundly reduced the intensity of Safranin O staining. CONCLUSION Chondrocytes produce RANTES and express RANTES receptors. RANTES and CCR5 were markedly increased in OA and after in vitro treatment of normal chondrocytes with IL-1. Chondrocyte activation and cartilage degradation were identified as novel biologic and pathogenetic activities of this chemokine.
Collapse
Affiliation(s)
- N Alaaeddine
- The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
199
|
Billinghurst RC, Buxton EM, Edwards MG, McGraw MS, McIlwraith CW. Use of an antineoepitope antibody for identification of type-II collagen degradation in equine articular cartilage. Am J Vet Res 2001; 62:1031-9. [PMID: 11453476 DOI: 10.2460/ajvr.2001.62.1031] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To develop an antibody that specifically recognizes collagenase-cleaved type-II collagen in equine articular cartilage. SAMPLE POPULATION Cartilage specimens from horses euthanatized for problems unrelated to the musculoskeletal system. PROCEDURE A peptide was synthesized representing the carboxy- (C-) terminus (neoepitope) of the equine type-II collagen fragment created by mammalian collagenases. This peptide was used to produce a polyclonal antibody, characterized by western analysis for reactivity to native and collagenase-cleaved equine collagens. The antibody was evaluated as an antineoepitope antibody by ELISA, using peptides +/- an amino acid at the C-terminus of the immunizing peptide. Collagen cleavage was assayed from equine articular cartilage cultured with interleukin-1 (IL-1), +/- a synthetic MMP inhibitor, BAY 12-9566. Cartilage specimens from osteoarthritic and nonarthritic joints were compared for antibody staining. RESULTS An antibody, 234CEQ, recognized only collagenase-generated 3/4-length fragments of equine type-II collagen. This was a true antineoepitope antibody, as altering the C-terminus of the immunizing peptide significantly decreased competition for binding in an inhibition ELISA. The IL-1-induced release of type-II collagen fragments from articular cartilage was prevented with the MMP inhibitor. Cartilage from an osteoarthritic joint of a horse had increased staining with the 234CEQ antibody, compared with normal articular cartilage. CONCLUSIONS AND CLINICAL RELEVANCE We generated an antineoepitope antibody recognizing collagenase-cleaved type-II collagen of horses. This antibody detects increases in type-II collagen cleavage in diseased equine articular cartilage. The 234CEQ antibody has the potential to aid in the early diagnosis of arthritis and to monitor treatment responses.
Collapse
Affiliation(s)
- R C Billinghurst
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins 80523, USA
| | | | | | | | | |
Collapse
|
200
|
Hui W, Rowan AD, Cawston T. Insulin-like growth factor 1 blocks collagen release and down regulates matrix metalloproteinase-1, -3, -8, and -13 mRNA expression in bovine nasal cartilage stimulated with oncostatin M in combination with interleukin 1alpha. Ann Rheum Dis 2001; 60:254-61. [PMID: 11171688 PMCID: PMC1753584 DOI: 10.1136/ard.60.3.254] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
OBJECTIVE To investigate the effect of insulin-like growth factor 1 (IGF1) on the release of collagen, and the production and expression of matrix metalloproteinases (MMPs) induced by the proinflammatory cytokine interleukin 1alpha (IL1alpha) in combination with oncostatin M (OSM) from bovine nasal cartilage and primary human articular chondrocytes. METHODS Human articular chondrocytes and bovine nasal cartilage were cultured with and without IGF1 in the presence of IL1alpha or IL1alpha + OSM. The release of collagen was measured by an assay for hydroxyproline. Collagenase activity was determined with the diffuse fibril assay using 3H acetylated collagen. The expression of MMP-1, MMP-3, MMP-8, MMP-13, and tissue inhibitor of metalloproteinase 1 (TIMP-1) mRNA was analysed by northern blot. RESULTS IGF1 can partially inhibit the release of collagen induced by IL1alpha or IL1alpha + OSM from bovine nasal cartilage. This was accompanied by a reduced secretion and activation of collagenase by bovine nasal cartilage. IGF1 can also down regulate IL1alpha or IL1alpha + OSM induced MMP-1, MMP-3, MMP-8, and MMP-13 mRNA expression in human articular chondrocytes and bovine chondrocytes. It had no significant effect on the production and expression of TIMP-1 mRNA in chondrocytes. CONCLUSION This study shows for the first time that IGF1 can partially block the release of collagen from cartilage and suggests that down regulation of collagenases by IGF1 may be an important mechanism in preventing cartilage resorption initiated by proinflammatory cytokines.
Collapse
Affiliation(s)
- W Hui
- Department of Rheumatology, Medical School, University of Newcastle, Newcastle Upon Tyne, NE2 4HH, UK.
| | | | | |
Collapse
|