151
|
Iancu O, Allen D, Knop O, Zehavi Y, Breier D, Arbiv A, Lev A, Lee YN, Beider K, Nagler A, Somech R, Hendel A. Multiplex HDR for disease and correction modeling of SCID by CRISPR genome editing in human HSPCs. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:105-121. [PMID: 36618262 PMCID: PMC9813580 DOI: 10.1016/j.omtn.2022.12.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
Severe combined immunodeficiency (SCID) is a group of disorders caused by mutations in genes involved in the process of lymphocyte maturation and function. CRISPR-Cas9 gene editing of the patient's own hematopoietic stem and progenitor cells (HSPCs) ex vivo could provide a therapeutic alternative to allogeneic hematopoietic stem cell transplantation, the current gold standard for treatment of SCID. To eliminate the need for scarce patient samples, we engineered genotypes in healthy donor (HD)-derived CD34+ HSPCs using CRISPR-Cas9/rAAV6 gene-editing, to model both SCID and the therapeutic outcomes of gene-editing therapies for SCID via multiplexed homology-directed repair (HDR). First, we developed a SCID disease model via biallelic knockout of genes critical to the development of lymphocytes; and second, we established a knockin/knockout strategy to develop a proof-of-concept single-allelic gene correction. Based on these results, we performed gene correction of RAG2-SCID patient-derived CD34+ HSPCs that successfully developed into CD3+ T cells with diverse TCR repertoires in an in vitro T cell differentiation platform. In summary, we present a strategy to determine the optimal configuration for CRISPR-Cas9 gene correction of SCID using HD-derived CD34+ HSPCs, and the feasibility of translating this gene correction approach in patient-derived CD34+ HSPCs.
Collapse
Affiliation(s)
- Ortal Iancu
- The Institute for Advanced Materials and Nanotechnology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Daniel Allen
- The Institute for Advanced Materials and Nanotechnology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Orli Knop
- The Institute for Advanced Materials and Nanotechnology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Yonathan Zehavi
- The Institute for Advanced Materials and Nanotechnology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Dor Breier
- The Institute for Advanced Materials and Nanotechnology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Adaya Arbiv
- The Institute for Advanced Materials and Nanotechnology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Atar Lev
- The Institute for Advanced Materials and Nanotechnology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-HaShomer, Ramat Gan 5266202, Israel
| | - Yu Nee Lee
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-HaShomer, Ramat Gan 5266202, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Katia Beider
- The Division of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-HaShomer, Ramat Gan 5266202, Israel
| | - Arnon Nagler
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
- The Division of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-HaShomer, Ramat Gan 5266202, Israel
| | - Raz Somech
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel-HaShomer, Ramat Gan 5266202, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ayal Hendel
- The Institute for Advanced Materials and Nanotechnology, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
152
|
In vivo efficacy of alcohol based hand rubs against noroviruses: A novel standardized European test method simulating practical conditions. J Hosp Infect 2023; 135:186-192. [PMID: 36921629 DOI: 10.1016/j.jhin.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/20/2023] [Accepted: 03/05/2023] [Indexed: 03/16/2023]
Abstract
BACKGROUND Non-enveloped viruses are particularly resistant to disinfectants, so to prevent and control the spread of virus infections, disinfectants with proven virucidal activity must be used. However, a test such as EN 1500, which uses an internal standard as reference treatment for determining the bactericidal efficacy of hand rubs, is still lacking. We aimed to establish a European standard for testing the in vivo efficacy of hand rubs against non-enveloped viruses. METHOD First, concentration and mode of application of ethanol as reference were determined. Afterwards, the efficacies of two commonly used hand rubs were compared to this reference. Hands of volunteers were contaminated with the murine norovirus strain S99. RESULTS 70% wt/wt ethanol (2 x 3 mL in 2 x 30 seconds) was defined as internal reference treatment. The commercial ethanol based hand rub could significantly reduce the titre of norovirus in 30 seconds whereas a rub based on ethanol and propan-2-ol was significantly less effective compared to the reference. CONCLUSION We have established a possible standard for testing the in vivo efficacy of hand rubs against non-enveloped viruses using murine norovirus, a low contamination volume technique and ethanol as internal reference. Nevertheless our findings have to be confirmed in European ring trials.
Collapse
|
153
|
Viral Vectors in Gene Therapy: Where Do We Stand in 2023? Viruses 2023; 15:v15030698. [PMID: 36992407 PMCID: PMC10059137 DOI: 10.3390/v15030698] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/23/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023] Open
Abstract
Viral vectors have been used for a broad spectrum of gene therapy for both acute and chronic diseases. In the context of cancer gene therapy, viral vectors expressing anti-tumor, toxic, suicide and immunostimulatory genes, such as cytokines and chemokines, have been applied. Oncolytic viruses, which specifically replicate in and kill tumor cells, have provided tumor eradication, and even cure of cancers in animal models. In a broader meaning, vaccine development against infectious diseases and various cancers has been considered as a type of gene therapy. Especially in the case of COVID-19 vaccines, adenovirus-based vaccines such as ChAdOx1 nCoV-19 and Ad26.COV2.S have demonstrated excellent safety and vaccine efficacy in clinical trials, leading to Emergency Use Authorization in many countries. Viral vectors have shown great promise in the treatment of chronic diseases such as severe combined immunodeficiency (SCID), muscular dystrophy, hemophilia, β-thalassemia, and sickle cell disease (SCD). Proof-of-concept has been established in preclinical studies in various animal models. Clinical gene therapy trials have confirmed good safety, tolerability, and therapeutic efficacy. Viral-based drugs have been approved for cancer, hematological, metabolic, neurological, and ophthalmological diseases as well as for vaccines. For example, the adenovirus-based drug Gendicine® for non-small-cell lung cancer, the reovirus-based drug Reolysin® for ovarian cancer, the oncolytic HSV T-VEC for melanoma, lentivirus-based treatment of ADA-SCID disease, and the rhabdovirus-based vaccine Ervebo against Ebola virus disease have been approved for human use.
Collapse
|
154
|
Castiello MC, Ferrari S, Villa A. Correcting inborn errors of immunity: From viral mediated gene addition to gene editing. Semin Immunol 2023; 66:101731. [PMID: 36863140 PMCID: PMC10109147 DOI: 10.1016/j.smim.2023.101731] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/25/2023] [Accepted: 02/14/2023] [Indexed: 03/04/2023]
Abstract
Allogeneic hematopoietic stem cell transplantation is an effective treatment to cure inborn errors of immunity. Remarkable progress has been achieved thanks to the development and optimization of effective combination of advanced conditioning regimens and use of immunoablative/suppressive agents preventing rejection as well as graft versus host disease. Despite these tremendous advances, autologous hematopoietic stem/progenitor cell therapy based on ex vivo gene addition exploiting integrating γ-retro- or lenti-viral vectors, has demonstrated to be an innovative and safe therapeutic strategy providing proof of correction without the complications of the allogeneic approach. The recent advent of targeted gene editing able to precisely correct genomic variants in an intended locus of the genome, by introducing deletions, insertions, nucleotide substitutions or introducing a corrective cassette, is emerging in the clinical setting, further extending the therapeutic armamentarium and offering a cure to inherited immune defects not approachable by conventional gene addition. In this review, we will analyze the current state-of-the art of conventional gene therapy and innovative protocols of genome editing in various primary immunodeficiencies, describing preclinical models and clinical data obtained from different trials, highlighting potential advantages and limits of gene correction.
Collapse
Affiliation(s)
- Maria Carmina Castiello
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (IRGB-CNR), Milan, Italy
| | - Samuele Ferrari
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Vita-Salute San Raffaele University, Milan 20132, Italy
| | - Anna Villa
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan 20132, Italy; Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (IRGB-CNR), Milan, Italy.
| |
Collapse
|
155
|
Cornetta K, Yao J, House K, Duffy L, Adusumilli PS, Beyer R, Booth C, Brenner M, Curran K, Grilley B, Heslop H, Hinrichs CS, Kaplan RN, Kiem HP, Kochenderfer J, Kohn DB, Mailankody S, Norberg SM, O'Cearbhaill RE, Pappas J, Park J, Ramos C, Ribas A, Rivière I, Rosenberg SA, Sauter C, Shah NN, Slovin SF, Thrasher A, Williams DA, Lin TY. Replication competent retrovirus testing (RCR) in the National Gene Vector Biorepository: No evidence of RCR in 1,595 post-treatment peripheral blood samples obtained from 60 clinical trials. Mol Ther 2023; 31:801-809. [PMID: 36518078 PMCID: PMC10014217 DOI: 10.1016/j.ymthe.2022.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/24/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
The clinical impact of any therapy requires the product be safe and effective. Gammaretroviral vectors pose several unique risks, including inadvertent exposure to replication competent retrovirus (RCR) that can arise during vector manufacture. The US FDA has required patient monitoring for RCR, and the National Gene Vector Biorepository is an NIH resource that has assisted eligible investigators in meeting this requirement. To date, we have found no evidence of RCR in 338 pre-treatment and 1,595 post-treatment blood samples from 737 patients associated with 60 clinical trials. Most samples (75%) were obtained within 1 year of treatment, and samples as far out as 9 years after treatment were analyzed. The majority of trials (93%) were cancer immunotherapy, and 90% of the trials used vector products produced with the PG13 packaging cell line. The data presented here provide further evidence that current manufacturing methods generate RCR-free products and support the overall safety profile of retroviral gene therapy.
Collapse
Affiliation(s)
- Kenneth Cornetta
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA; Brown Center for Immunotherapy, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Jing Yao
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kimberley House
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lisa Duffy
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | | - Claire Booth
- Molecular and Cellular Immunology, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Malcolm Brenner
- Center for Cell and Gene Therapy Baylor College of Medicine, Houston TX, USA
| | - Kevin Curran
- Memorial Sloan Kettering Cancer Center, Department of Pediatrics, New York, NY, USA; Weill Cornell Medical College, Department of Pediatrics, New York, NY, USA
| | - Bambi Grilley
- Center for Cell and Gene Therapy Baylor College of Medicine, Houston TX, USA
| | - Helen Heslop
- Center for Cell and Gene Therapy Baylor College of Medicine, Houston TX, USA
| | - Christian S Hinrichs
- Duncan and Nancy MacMillan Cancer Immunology and Metabolism Center of Excellence, New Brunswick, NJ 08901, USA; Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| | - Rosandra N Kaplan
- Pediatric Oncology Branch, Center for Cancer Research, NCI, Bethesda, MD 20892, USA
| | - Hans-Peter Kiem
- Fred Hutchison Cancer Center and University of Washington, Seattle, WA, USA
| | | | - Donald B Kohn
- Departments of Microbiology, Immunology and Molecular Genetics, Pediatrics (Hematology/Oncology) and Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sham Mailankody
- Myeloma and Cellular Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | | | | | - Jae Park
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Carlos Ramos
- Center for Cell and Gene Therapy Baylor College of Medicine, Houston TX, USA
| | - Antonio Ribas
- Jonsson Comprehensive Cancer Center at the University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | | | | | - Craig Sauter
- Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Nirali N Shah
- Pediatric Oncology Branch, Center for Cancer Research, NCI, Bethesda, MD 20892, USA
| | - Susan F Slovin
- Genitourinary Oncology Service, Sidney Kimmel Center for Prostate and Urologic Cancers, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Adrian Thrasher
- Molecular and Cellular Immunology, UCL Great Ormond Street Institute of Child Health, London, UK
| | - David A Williams
- Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tsai-Yu Lin
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA; Brown Center for Immunotherapy, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
156
|
Chimeric antigen receptor T cells therapy in solid tumors. Clin Transl Oncol 2023:10.1007/s12094-023-03122-8. [PMID: 36853399 DOI: 10.1007/s12094-023-03122-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/10/2023] [Indexed: 03/01/2023]
Abstract
Chimeric antigen receptor T cells therapy (CAR-T therapy) is a class of ACT therapy. Chimeric antigen receptor (CAR) is an engineered synthetic receptor of CAR-T, which give T cells the ability to recognize tumor antigens in a human leukocyte antigen-independent (HLA-independent) manner and enables them to recognize more extensive target antigens than natural T cell surface receptor (TCR), resulting in tumor destruction. CAR-T is composed of an extracellular single-chain variable fragment (scFv) of antibody, which serves as the targeting moiety, hinge region, transmembrane spacer, and intracellular signaling domain(s). CAR-T has been developing in many generations, which differ according to costimulatory domains. CAR-T therapy has several limitations that reduce its wide availability in immunotherapy which we can summarize in antigen escape that shows either partial or complete loss of target antigen expression, so multiplexing CAR-T cells are promoted to enhance targeting of tumor profiles. In addition, the large diversity in the tumor microenvironment also plays a major role in limiting this kind of treatment. Therefore, engineered CAR-T cells can evoke immunostimulatory signals that rebalance the tumor microenvironment. Using CAR-T therapy in treating the solid tumor is mainly restricted by the difficulty of CAR-T cells infiltrating the tumor site, so local administration was developed to improve the quality of treatment. The most severe toxicity after CAR-T therapy is on-target/on-tumor toxicity, such as cytokine release syndrome (CRS). Another type of toxicity is on-target/off-tumor toxicity which originates from the binding of CAR-T cells to target antigen that has shared expression on normal cells leading to damage in healthy cells and organs. Toxicity management should become a focus of implementation to permit management beyond specialized centers.
Collapse
|
157
|
Qasim W. Genome-edited allogeneic donor "universal" chimeric antigen receptor T cells. Blood 2023; 141:835-845. [PMID: 36223560 PMCID: PMC10651779 DOI: 10.1182/blood.2022016204] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/29/2022] [Accepted: 09/11/2022] [Indexed: 11/20/2022] Open
Abstract
αβ T cell receptor (TCRαβ) T cells modified to express chimeric antigen receptors (CAR), are now available as authorized therapies for certain B-cell malignancies. However the process of autologous harvest and generation of patient-specific products is costly, with complex logistics and infrastructure requirements. Premanufactured banks of allogeneic donor-derived CAR T cells could help widen applicability if the challenges of HLA-mismatched T-cell therapy can be addressed. Genome editing is being applied to overcome allogeneic barriers, most notably, by disrupting TCRαβ to prevent graft-versus-host disease, and multiple competing editing technologies, including CRISPR/Cas9 and base editing, have reached clinical phase testing. Improvements in accuracy and efficiency have unlocked applications for a wider range of blood malignancies, with multiplexed editing incorporated to target HLA molecules, shared antigens and checkpoint pathways. Clinical trials will help establish safety profiles and determine the durability of responses as well as the role of consolidation with allogeneic transplantation.
Collapse
Affiliation(s)
- Waseem Qasim
- UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research, London, United Kingdom
| |
Collapse
|
158
|
Patterson MT, Khan SM, Nunes NS, Fletcher RE, Bian J, Hadjis AD, Eckhaus MA, Mendu SK, de Paula Pohl A, Venzon DJ, Choo-Wosoba H, Ishii K, Qin H, Fry TJ, Cam M, Kanakry CG. Murine allogeneic CAR T cells integrated before or early after posttransplant cyclophosphamide exert antitumor effects. Blood 2023; 141:659-672. [PMID: 36201744 PMCID: PMC9979711 DOI: 10.1182/blood.2022016660] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/20/2022] Open
Abstract
Relapse limits the therapeutic efficacy both of chimeric antigen receptor (CAR) T cells and allogeneic hematopoietic cell transplantation (allo-HCT). Patients may undergo these therapies sequentially to prevent or treat relapsed malignancy. However, direct integration of the 2 therapies has been avoided over concerns for potential induction of graft-versus-host disease (GVHD) by allogeneic CAR T cells. We have shown in murine T-cell-replete MHC-haploidentical allo-HCT that suppressive mechanisms induced immediately after posttransplant cyclophosphamide (PTCy), given on days +3/+4, prevent GVHD induction by alloreactive T cells infused as early as day +5. Therefore, we hypothesized that allogeneic CAR T cells given in a similarly integrated manner in our murine MHC-haploidentical allo-HCT model may safely exert antitumor effects. Indeed, allogeneic anti-CD19 CAR T cells given early after (day +5) PTCy or even prior to (day 0) PTCy cleared leukemia without exacerbating the cytokine release syndrome occurring from the MHC-haploidentical allo-HCT or interfering with PTCy-mediated GVHD prevention. Meanwhile, CAR T-cell treatment on day +9 or day +14 was safe but less effective, suggesting a limited therapeutic window. CAR T cells infused before PTCy were not eliminated, but surviving CAR T cells continued to proliferate highly and expand despite PTCy. In comparison with infusion on day +5, CAR T-cell infusion on day 0 demonstrated superior clinical efficacy associated with earlier CAR T-cell expansion, higher phenotypic CAR T-cell activation, less CD4+CD25+Foxp3+ CAR T-cell recovery, and transcriptional changes suggesting increased activation of CD4+ CAR T cells and more cytotoxic CD8+ CAR T cells. This study provides mechanistic insight into PTCy's impact on graft-versus-tumor immunity and describes novel approaches to integrate CAR T cells and allo-HCT that may compensate for deficiencies of each individual approach.
Collapse
Affiliation(s)
- Michael T. Patterson
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Shanzay M. Khan
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Natalia S. Nunes
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Rochelle E. Fletcher
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Jing Bian
- Collaborative Bioinformatics Resource, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Ashley D. Hadjis
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Michael A. Eckhaus
- Division of Veterinary Resources, Office of Research Services, National Institutes of Health, Bethesda, MD
| | - Suresh K. Mendu
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Alessandra de Paula Pohl
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - David J. Venzon
- Biostatistics and Data Management Section, Office of the Clinical Director, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Hyoyoung Choo-Wosoba
- Biostatistics and Data Management Section, Office of the Clinical Director, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Kazusa Ishii
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Haiying Qin
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Terry J. Fry
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Maggie Cam
- Collaborative Bioinformatics Resource, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Christopher G. Kanakry
- Center for Immuno-Oncology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
159
|
Zhao Z, Grégoire C, Oliveira B, Chung K, Melenhorst JJ. Challenges and opportunities of CAR T cell therapies for CLL. Semin Hematol 2023; 60:25-33. [PMID: 37080707 DOI: 10.1053/j.seminhematol.2023.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 02/10/2023]
Abstract
Chimeric antigen receptor (CAR) T-cell therapies have transformed the treatment landscape of blood cancers. These engineered receptors which endow T cells with antibody-like target cell recognition combined with the typical T cell target cell lysis abilities. Introduced into the clinic in the 2010s, CAR T-cells have shown efficacy in chronic B lymphocytic leukemia (CLL), but a majority of patients do not achieve sustained remission. Here we discuss the current treatment landscape in CLL using small molecules and allogeneic stem cell transplantation, the niche CAR T-cells filled in this context, and what we have learned from biomarker and mechanistic studies. Several product parameters and improvements are introduced as examples of how the bedside-to-bench is translated into improved CAR T-cells for CLL. We hope to convey to our readers the crucial role translational medicine plays in transforming the treatment outcomes for patients with CLL and how this line of research is an essential component of modern medicine.
Collapse
|
160
|
Chen MJ, Gatignol A, Scarborough RJ. The discovery and development of RNA-based therapies for treatment of HIV-1 infection. Expert Opin Drug Discov 2023; 18:163-179. [PMID: 36004505 DOI: 10.1080/17460441.2022.2117296] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Long-term control of HIV-1 infection can potentially be achieved using autologous stem cell transplants with gene-modified cells. Non-coding RNAs represent a diverse class of therapeutic agents including ribozymes, RNA aptamers and decoys, small interfering RNAs, short hairpin RNAs, and U1 interference RNAs that can be designed to inhibit HIV-1 replication. They have been engineered for delivery as drugs to complement current HIV-1 therapies and as gene therapies for a potential HIV-1 functional cure. AREAS COVERED This review surveys the past three decades of development of these RNA technologies with a focus on their efficacy and safety for treating HIV-1 infections. We describe the mechanisms of each RNA-based agent, targets they have been developed against, efforts to enhance their stability and efficacy, and we evaluate their performance in past and ongoing preclinical and clinical trials. EXPERT OPINION RNA-based technologies are among the top candidates for gene therapies where they can be stably expressed for long-term suppression of HIV-1. Advances in both gene and drug delivery strategies and improvements to non-coding RNA stability and antiviral properties will cooperatively drive forward progress in improving drug therapy and engineering HIV-1 resistant cells.
Collapse
Affiliation(s)
- Michelle J Chen
- Lady Davis Institute for Medical Research, Montréal, Québec, Canada.,Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
| | - Anne Gatignol
- Lady Davis Institute for Medical Research, Montréal, Québec, Canada.,Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec, Canada.,Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| | - Robert J Scarborough
- Lady Davis Institute for Medical Research, Montréal, Québec, Canada.,Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| |
Collapse
|
161
|
Mudde A, Booth C. Gene therapy for inborn error of immunity - current status and future perspectives. Curr Opin Allergy Clin Immunol 2023; 23:51-62. [PMID: 36539381 DOI: 10.1097/aci.0000000000000876] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW Development of hematopoietic stem cell (HSC) gene therapy (GT) for inborn errors of immunity (IEIs) continues to progress rapidly. Although more patients are being treated with HSC GT based on viral vector mediated gene addition, gene editing techniques provide a promising new approach, in which transgene expression remains under the control of endogenous regulatory elements. RECENT FINDINGS Many gene therapy clinical trials are being conducted and evidence showing that HSC GT through viral vector mediated gene addition is a successful and safe curative treatment option for various IEIs is accumulating. Gene editing techniques for gene correction are, on the other hand, not in clinical use yet, despite rapid developments during the past decade. Current studies are focussing on improving rates of targeted integration, while preserving the primitive HSC population, which is essential for future clinical translation. SUMMARY As HSC GT is becoming available for more diseases, novel developments should focus on improving availability while reducing costs of the treatment. Continued follow up of treated patients is essential for providing information about long-term safety and efficacy. Editing techniques have great potential but need to be improved further before the translation to clinical studies can happen.
Collapse
Affiliation(s)
- Anne Mudde
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health
| | - Claire Booth
- Molecular and Cellular Immunology Section, UCL Great Ormond Street Institute of Child Health
- Department of Immunology and Gene Therapy, Great Ormond Street Hospital, London, UK
| |
Collapse
|
162
|
Brooks IR, Sheriff A, Moran D, Wang J, Jacków J. Challenges of Gene Editing Therapies for Genodermatoses. Int J Mol Sci 2023; 24:2298. [PMID: 36768619 PMCID: PMC9916788 DOI: 10.3390/ijms24032298] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Genodermatoses encompass a wide range of inherited skin diseases, many of which are monogenic. Genodermatoses range in severity and result in early-onset cancers or life-threatening damage to the skin, and there are few curative options. As such, there is a clinical need for single-intervention treatments with curative potential. Here, we discuss the nascent field of gene editing for the treatment of genodermatoses, exploring CRISPR-Cas9 and homology-directed repair, base editing, and prime editing tools for correcting pathogenic mutations. We specifically focus on the optimisation of editing efficiency, the minimisation off-targets edits, and the tools for delivery for potential future therapies. Honing each of these factors is essential for translating gene editing therapies into the clinical setting. Therefore, the aim of this review article is to raise important considerations for investigators aiming to develop gene editing approaches for genodermatoses.
Collapse
Affiliation(s)
| | | | | | | | - Joanna Jacków
- St John’s Institute of Dermatology, King’s College London, London SE1 9RT, UK
| |
Collapse
|
163
|
Progress of Endogenous and Exogenous Nanoparticles for Cancer Therapy and Diagnostics. Genes (Basel) 2023; 14:genes14020259. [PMID: 36833186 PMCID: PMC9957423 DOI: 10.3390/genes14020259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
The focus of this brief review is to describe the application of nanoparticles, including endogenous nanoparticles (e.g., extracellular vesicles, EVs, and virus capsids) and exogenous nanoparticles (e.g., organic and inorganic materials) in cancer therapy and diagnostics. In this review, we mainly focused on EVs, where a recent study demonstrated that EVs secreted from cancer cells are associated with malignant alterations in cancer. EVs are expected to be used for cancer diagnostics by analyzing their informative cargo. Exogenous nanoparticles are also used in cancer diagnostics as imaging probes because they can be easily functionalized. Nanoparticles are promising targets for drug delivery system (DDS) development and have recently been actively studied. In this review, we introduce nanoparticles as a powerful tool in the field of cancer therapy and diagnostics and discuss issues and future prospects.
Collapse
|
164
|
Saleh AH, Rothe M, Barber DL, McKillop WM, Fraser G, Morel CF, Schambach A, Auray-Blais C, West ML, Khan A, Fowler DH, Rupar CA, Foley R, Medin JA, Keating A. Persistent hematopoietic polyclonality after lentivirus-mediated gene therapy for Fabry disease. Mol Ther Methods Clin Dev 2023; 28:262-271. [PMID: 36816757 PMCID: PMC9932294 DOI: 10.1016/j.omtm.2023.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
The safety and efficacy of lentivirus-mediated gene therapy was recently demonstrated in five male patients with Fabry disease-a rare X-linked lysosomal storage disorder caused by GLA gene mutations that result in multiple end-organ complications. To evaluate the risks of clonal dominance and leukemogenesis, which have been reported in multiple gene therapy trials, we conducted a comprehensive DNA insertion site analysis of peripheral blood samples from the five patients in our gene therapy trial. We found that patients had a polyclonal integration site spectrum and did not find evidence of a dominant clone in any patient. Although we identified vector integrations near proto-oncogenes, these had low percentages of contributions to the overall pool of integrations and did not persist over time. Overall, we show that our trial of lentivirus-mediated gene therapy for Fabry disease did not lead to hematopoietic clonal dominance and likely did not elevate the risk of leukemogenic transformation.
Collapse
Affiliation(s)
- Amr H. Saleh
- University Health Network, Toronto, ON, Canada,Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Michael Rothe
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Dwayne L. Barber
- University Health Network, Toronto, ON, Canada,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | | | - Graeme Fraser
- Department of Oncology, McMaster University and Juravinski Hospital and Cancer Centre, Hamilton, ON, Canada
| | - Chantal F. Morel
- Fred A. Litwin Family Centre in Genetic Medicine, Department of Medicine, University, Health Network, Toronto, ON, Canada
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany,Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Christiane Auray-Blais
- Division of Medical Genetics, Department of Pediatrics, CIUSSS de l’Estrie-CHUS, Hospital Fleurimont, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Michael L. West
- Division of Nephrology, Department of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Aneal Khan
- Department of Medical Genetics, Metabolics and Pediatrics, Alberta Children’s Hospital, Cumming School of Medicine, Research Institute, University of Calgary, Calgary, AB, Canada
| | | | - C. Anthony Rupar
- Departments of Pathology and Laboratory Medicine and Pediatrics, Western University, London, ON, Canada,Children’s Health Research Institute, London, ON, Canada
| | - Ronan Foley
- Department of Pathology and Molecular Medicine, McMaster University and Juravinski, Hospital and Cancer Centre, Hamilton, ON, Canada
| | - Jeffrey A. Medin
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA,Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Armand Keating
- University Health Network, Toronto, ON, Canada,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada,Princess Margaret Cancer Centre, 610 University Avenue, 700U 6-325 Toronto, ON M5G 2M9, Canada,Corresponding author Armand Keating, MD, Princess Margaret Cancer Centre, 610 University Avenue, 700U 6-325 Toronto, ON M5G 2M9, Canada.
| |
Collapse
|
165
|
The Plant Viruses and Molecular Farming: How Beneficial They Might Be for Human and Animal Health? Int J Mol Sci 2023; 24:ijms24021533. [PMID: 36675043 PMCID: PMC9863966 DOI: 10.3390/ijms24021533] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 01/15/2023] Open
Abstract
Plant viruses have traditionally been studied as pathogens in the context of understanding the molecular and cellular mechanisms of a particular disease affecting crops. In recent years, viruses have emerged as a new alternative for producing biological nanomaterials and chimeric vaccines. Plant viruses were also used to generate highly efficient expression vectors, revolutionizing plant molecular farming (PMF). Several biological products, including recombinant vaccines, monoclonal antibodies, diagnostic reagents, and other pharmaceutical products produced in plants, have passed their clinical trials and are in their market implementation stage. PMF offers opportunities for fast, adaptive, and low-cost technology to meet ever-growing and critical global health needs. In this review, we summarized the advancements in the virus-like particles-based (VLPs-based) nanotechnologies and the role they played in the production of advanced vaccines, drugs, diagnostic bio-nanomaterials, and other bioactive cargos. We also highlighted various applications and advantages plant-produced vaccines have and their relevance for treating human and animal illnesses. Furthermore, we summarized the plant-based biologics that have passed through clinical trials, the unique challenges they faced, and the challenges they will face to qualify, become available, and succeed on the market.
Collapse
|
166
|
Brault J, Liu T, Liu S, Lawson A, Choi U, Kozhushko N, Bzhilyanskaya V, Pavel-Dinu M, Meis RJ, Eckhaus MA, Burkett SS, Bosticardo M, Kleinstiver BP, Notarangelo LD, Lazzarotto CR, Tsai SQ, Wu X, Dahl GA, Porteus MH, Malech HL, De Ravin SS. CRISPR-Cas9-AAV versus lentivector transduction for genome modification of X-linked severe combined immunodeficiency hematopoietic stem cells. Front Immunol 2023; 13:1067417. [PMID: 36685559 PMCID: PMC9846165 DOI: 10.3389/fimmu.2022.1067417] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/06/2022] [Indexed: 01/05/2023] Open
Abstract
Introduction Ex vivo gene therapy for treatment of Inborn errors of Immunity (IEIs) have demonstrated significant clinical benefit in multiple Phase I/II clinical trials. Current approaches rely on engineered retroviral vectors to randomly integrate copy(s) of gene-of-interest in autologous hematopoietic stem/progenitor cells (HSPCs) genome permanently to provide gene function in transduced HSPCs and their progenies. To circumvent concerns related to potential genotoxicities due to the random vector integrations in HSPCs, targeted correction with CRISPR-Cas9-based genome editing offers improved precision for functional correction of multiple IEIs. Methods We compare the two approaches for integration of IL2RG transgene for functional correction of HSPCs from patients with X-linked Severe Combined Immunodeficiency (SCID-X1 or XSCID); delivery via current clinical lentivector (LV)-IL2RG versus targeted insertion (TI) of IL2RG via homology-directed repair (HDR) when using an adeno-associated virus (AAV)-IL2RG donor following double-strand DNA break at the endogenous IL2RG locus. Results and discussion In vitro differentiation of LV- or TI-treated XSCID HSPCs similarly overcome differentiation block into Pre-T-I and Pre-T-II lymphocytes but we observed significantly superior development of NK cells when corrected by TI (40.7% versus 4.1%, p = 0.0099). Transplants into immunodeficient mice demonstrated robust engraftment (8.1% and 23.3% in bone marrow) for LV- and TI-IL2RG HSPCs with efficient T cell development following TI-IL2RG in all four patients' HSPCs. Extensive specificity analysis of CRISPR-Cas9 editing with rhAmpSeq covering 82 predicted off-target sites found no evidence of indels in edited cells before (in vitro) or following transplant, in stark contrast to LV's non-targeted vector integration sites. Together, the improved efficiency and safety of IL2RG correction via CRISPR-Cas9-based TI approach provides a strong rationale for a clinical trial for treatment of XSCID patients.
Collapse
Affiliation(s)
- Julie Brault
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Taylor Liu
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Siyuan Liu
- Cancer Research Technology Program, Leidos Biomedical Research Inc., Frederick, MD, United States
| | - Amanda Lawson
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Uimook Choi
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Nikita Kozhushko
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Vera Bzhilyanskaya
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Mara Pavel-Dinu
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford University, Palo Alto, CA, United States
| | | | - Michael A. Eckhaus
- Division of Veterinary Resources, Office of Research Services, National Institutes of Health, Bethesda, MD, United States
| | - Sandra S. Burkett
- Molecular Cytogenetic Core Facility, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, United States
| | - Marita Bosticardo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Benjamin P. Kleinstiver
- Center for Genomic Medicine and Department of Pathology, Massachusetts General Hospital, Boston, MA, United States
- Department of Pathology, Harvard Medical School, Boston, MA, United States
| | - Luigi D. Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Cicera R. Lazzarotto
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Shengdar Q. Tsai
- Department of Hematology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Xiaolin Wu
- Cancer Research Technology Program, Leidos Biomedical Research Inc., Frederick, MD, United States
| | | | - Matthew H. Porteus
- Department of Pediatrics, Division of Stem Cell Transplantation and Regenerative Medicine, Stanford University, Palo Alto, CA, United States
| | - Harry L. Malech
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Suk See De Ravin
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
167
|
Lundstrom K. Gene Therapy Cargoes Based on Viral Vector Delivery. Curr Gene Ther 2023; 23:111-134. [PMID: 36154608 DOI: 10.2174/1566523222666220921112753] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/13/2022] [Accepted: 08/05/2022] [Indexed: 11/22/2022]
Abstract
Viral vectors have been proven useful in a broad spectrum of gene therapy applications due to their possibility to accommodate foreign genetic material for both local and systemic delivery. The wide range of viral vectors has enabled gene therapy applications for both acute and chronic diseases. Cancer gene therapy has been addressed by the delivery of viral vectors expressing anti-tumor, toxic, and suicide genes for the destruction of tumors. Delivery of immunostimulatory genes such as cytokines and chemokines has also been applied for cancer therapy. Moreover, oncolytic viruses specifically replicating in and killing tumor cells have been used as such for tumor eradication or in combination with tumor killing or immunostimulatory genes. In a broad meaning, vaccines against infectious diseases and various cancers can be considered gene therapy, which has been highly successful, not the least for the development of effective COVID-19 vaccines. Viral vector-based gene therapy has also demonstrated encouraging and promising results for chronic diseases such as severe combined immunodeficiency (SCID), muscular dystrophy, and hemophilia. Preclinical gene therapy studies in animal models have demonstrated proof-of-concept for a wide range of disease indications. Clinical evaluation of drugs and vaccines in humans has showed high safety levels, good tolerance, and therapeutic efficacy. Several gene therapy drugs such as the adenovirus-based drug Gendicine® for non-small-cell lung cancer, the reovirus-based drug Reolysin® for ovarian cancer, lentivirus-based treatment of SCID-X1 disease, and the rhabdovirus-based vaccine Ervebo against Ebola virus disease, and adenovirus-based vaccines against COVID-19 have been developed.
Collapse
|
168
|
Abstract
INTRODUCTION New methods in cancer immunotherapy, such as chimeric antigen receptor (CAR)-T cells, have shown promising results in destroying malignant cells. However, limitations and side effects of CAR-T cell therapy, such as graft-versus-host disease (GVHD), neurotoxicity, and cytokine release syndrome, have motivated researchers to investigate safer alternative cells like natural killer (NK) cells. AREA COVERED NK cells can effectively recognize hematologic malignant cells and destroy them. Many clinical and preclinical studies investigate the efficacy of CAR-NK cells in treating lymphoma and other hematologic malignancies. The results of published clinical trials and preclinical studies have shown that CAR-NK cells could be an appropriate choice for treating lymphoma. In this review, we discuss the characteristics of CAR-NK cells, their role in treating B-cell and T-cell lymphoma, and the challenges faced by using them. We also highlight clinical trials using CAR-NK cells for treating lymphoma. EXPERT OPINION CAR-NK cells have shown promising results in cancer therapy, especially B-cell lymphoma, with a much lower risk for GVHD, cytokine release syndrome, and neurotoxicity than CAR-T cells. Further investigations are required to overcome the obstacles of CAR-NK cell therapy, both generally, and in cancers like T-cell lymphoma.
Collapse
Affiliation(s)
- Shaghayegh Khanmohammadi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
169
|
de Lima SCG, Fantacini DMC, Furtado IP, Rossetti R, Silveira RM, Covas DT, de Souza LEB. Genome Editing for Engineering the Next Generation of Advanced Immune Cell Therapies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1429:85-110. [PMID: 37486518 DOI: 10.1007/978-3-031-33325-5_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Our current genetic engineering capacity through synthetic biology and genome editing is the foundation of a revolution in biomedical science: the use of genetically programmed cells as therapeutics. The prime example of this paradigm is the adoptive transfer of genetically engineered T cells to express tumor-specific receptors, such as chimeric antigen receptors (CARs) or engineered T-cell receptors (TCR). This approach has led to unprecedented complete remission rates in patients with otherwise incurable hematological malignancies. However, this approach is still largely ineffective against solid tumors, which comprise the vast majority of neoplasms. Also, limitations associated with the autologous nature of this therapy and shared markers between cancer cells and T cells further restrict the access to these therapies. Here, we described how cutting-edge genome editing approaches have been applied to unlock the full potential of these revolutionary therapies, thereby increasing therapeutic efficacy and patient accessibility.
Collapse
Affiliation(s)
- Sarah Caroline Gomes de Lima
- Blood Center of Ribeirão Preto - Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Izadora Peter Furtado
- Blood Center of Ribeirão Preto - Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Rafaela Rossetti
- Blood Center of Ribeirão Preto - Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Roberta Maraninchi Silveira
- Blood Center of Ribeirão Preto - Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Dimas Tadeu Covas
- Blood Center of Ribeirão Preto - Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Lucas Eduardo Botelho de Souza
- Blood Center of Ribeirão Preto - Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
170
|
Liao J, Wu Y. Gene Editing in Hematopoietic Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1442:177-199. [PMID: 38228965 DOI: 10.1007/978-981-99-7471-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Hematopoietic stem cells (HSCs) can be isolated and collected from the body, genetically modified, and expanded ex vivo. The invention of innovative and powerful gene editing tools has provided researchers with great convenience in genetically modifying a wide range of cells, including hematopoietic stem and progenitor cells (HSPCs). In addition to being used to modify genes to study the functional role that specific genes play in the hematopoietic system, the application of gene editing platforms in HSCs is largely focused on the development of cell-based gene editing therapies to treat diseases such as immune deficiency disorders and inherited blood disorders. Here, we review the application of gene editing tools in HSPCs. In particular, we provide a broad overview of the development of gene editing tools, multiple strategies for the application of gene editing tools in HSPCs, and exciting clinical advances in HSPC gene editing therapies. We also outline the various challenges integral to clinical translation of HSPC gene editing and provide the possible corresponding solutions.
Collapse
Affiliation(s)
- Jiaoyang Liao
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yuxuan Wu
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
| |
Collapse
|
171
|
Pinto IS, Cordeiro RA, Faneca H. Polymer- and lipid-based gene delivery technology for CAR T cell therapy. J Control Release 2023; 353:196-215. [PMID: 36423871 DOI: 10.1016/j.jconrel.2022.11.038] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 11/27/2022]
Abstract
Chimeric antigen receptor T cell (CAR T cell) therapy is a revolutionary approach approved by the FDA and EMA to treat B cell malignancies and multiple myeloma. The production of these T cells has been done through viral vectors, which come with safety concerns, high cost and production challenges, and more recently also through electroporation, which can be extremely cytotoxic. In this context, nanosystems can constitute an alternative to overcome the challenges associated with current methods, resulting in a safe and cost-effective platform. However, the barriers associated with T cells transfection show that the design and engineering of novel approaches in this field are highly imperative. Here, we present an overview from CAR constitution to transfection technologies used in T cells, highlighting the lipid- and polymer-based nanoparticles as a potential delivery platform. Specifically, we provide examples, strengths and weaknesses of nanosystem formulations, and advances in nanoparticle design to improve transfection of T cells. This review will guide the researchers in the design and development of novel nanosystems for next-generation CAR T therapeutics.
Collapse
Affiliation(s)
- Inês S Pinto
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Department of Medical Sciences, University of Aveiro, Campus Universitário de Santiago, Agra do Castro, 3810-193 Aveiro, Portugal
| | - Rosemeyre A Cordeiro
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Institute of Interdisciplinary Research (III), University of Coimbra, Casa Costa Alemão - Pólo II, 3030-789 Coimbra, Portugal
| | - Henrique Faneca
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Institute of Interdisciplinary Research (III), University of Coimbra, Casa Costa Alemão - Pólo II, 3030-789 Coimbra, Portugal.
| |
Collapse
|
172
|
Pai SY. Gene Therapy for Artemis-Deficient SCID. N Engl J Med 2022; 387:2382-2386. [PMID: 36546634 DOI: 10.1056/nejme2213255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Sung-Yun Pai
- From the Immune Deficiency Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| |
Collapse
|
173
|
Challenges in Gene Therapy for Somatic Reverted Mosaicism in X-Linked Combined Immunodeficiency by CRISPR/Cas9 and Prime Editing. Genes (Basel) 2022; 13:genes13122348. [PMID: 36553615 PMCID: PMC9777626 DOI: 10.3390/genes13122348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/02/2022] [Accepted: 12/10/2022] [Indexed: 12/15/2022] Open
Abstract
X-linked severe combined immunodeficiency (X-SCID) is a primary immunodeficiency that is caused by mutations in the interleukin-2 receptor gamma (IL2RG) gene. Some patients present atypical X-SCID with mild clinical symptoms due to somatic revertant mosaicism. CRISPR/Cas9 and prime editing are two advanced genome editing tools that paved the way for treating immune deficiency diseases. Prime editing overcomes the limitations of the CRISPR/Cas9 system, as it does not need to induce double-strand breaks (DSBs) or exogenous donor DNA templates to modify the genome. Here, we applied CRISPR/Cas9 with single-stranded oligodeoxynucleotides (ssODNs) and prime editing methods to generate an in vitro model of the disease in K-562 cells and healthy donors' T cells for the c. 458T>C point mutation in the IL2RG gene, which also resulted in a useful way to optimize the gene correction approach for subsequent experiments in patients' cells. Both methods proved to be successful and were able to induce the mutation of up to 31% of treated K-562 cells and 26% of treated T cells. We also applied similar strategies to correct the IL2RG c. 458T>C mutation in patient T cells that carry the mutation with revertant somatic mosaicism. However, both methods failed to increase the frequency of the wild-type sequence in the mosaic T cells of patients due to limited in vitro proliferation of mutant cells and the presence of somatic reversion. To the best of our knowledge, this is the first attempt to treat mosaic cells from atypical X-SCID patients employing CRISPR/Cas9 and prime editing. We showed that prime editing can be applied to the formation of specific-point IL2RG mutations without inducing nonspecific on-target modifications. We hypothesize that the feasibility of the nucleotide substitution of the IL2RG gene using gene therapy, especially prime editing, could provide an alternative strategy to treat X-SCID patients without revertant mutations, and further technological improvements need to be developed to correct somatic mosaicism mutations.
Collapse
|
174
|
Pinto MV, Neves JF. Precision medicine: The use of tailored therapy in primary immunodeficiencies. Front Immunol 2022; 13:1029560. [PMID: 36569887 PMCID: PMC9773086 DOI: 10.3389/fimmu.2022.1029560] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022] Open
Abstract
Primary immunodeficiencies (PID) are rare, complex diseases that can be characterised by a spectrum of phenotypes, from increased susceptibility to infections to autoimmunity, allergy, auto-inflammatory diseases and predisposition to malignancy. With the introduction of genetic testing in these patients and wider use of next-Generation sequencing techniques, a higher number of pathogenic genetic variants and conditions have been identified, allowing the development of new, targeted treatments in PID. The concept of precision medicine, that aims to tailor the medical interventions to each patient, allows to perform more precise diagnosis and more importantly the use of treatments directed to a specific defect, with the objective to cure or achieve long-term remission, minimising the number and type of side effects. This approach takes particular importance in PID, considering the nature of causative defects, disease severity, short- and long-term complications of disease but also of the available treatments, with impact in life-expectancy and quality of life. In this review we revisit how this approach can or is already being implemented in PID and provide a summary of the most relevant treatments applied to specific diseases.
Collapse
Affiliation(s)
- Marta Valente Pinto
- Primary Immunodeficiencies Unit, Hospital Dona Estefânia, CHULC-EPE, Lisbon, Portugal
- Centro de Investigação Egas Moniz (CiiEM), Instituto Universitário Egas Moniz (IUEM), Quinta da Granja, Monte da Caparica, Caparica, Portugal
| | - João Farela Neves
- Primary Immunodeficiencies Unit, Hospital Dona Estefânia, CHULC-EPE, Lisbon, Portugal
- CHRC, Comprehensive Health Research Centre, Nova Medical School, Lisbon, Portugal
| |
Collapse
|
175
|
Suleman S, Payne A, Bowden J, Haque SA, Zahn M, Fawaz S, Khalifa MS, Jobling S, Hay D, Franco M, Fronza R, Wang W, Strobel-Freidekind O, Deichmann A, Takeuchi Y, Waddington SN, Gil-Farina I, Schmidt M, Themis M. HIV- 1 lentivirus tethering to the genome is associated with transcription factor binding sites found in genes that favour virus survival. Gene Ther 2022; 29:720-729. [PMID: 35513551 PMCID: PMC9750860 DOI: 10.1038/s41434-022-00335-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 01/09/2023]
Abstract
Lentiviral vectors (LV) are attractive for permanent and effective gene therapy. However, integration into the host genome can cause insertional mutagenesis highlighting the importance of understanding of LV integration. Insertion site (IS) tethering is believed to involve cellular proteins such as PSIP1/LEDGF/p75, which binds to the virus pre-integration complexes (PICs) helping to target the virus genome. Transcription factors (TF) that bind both the vector LTR and host genome are also suspected influential to this. To determine the role of TF in the tethering process, we mapped predicted transcription factor binding sites (pTFBS) near to IS chosen by HIV-1 LV using a narrow 20 bp window in infected human induced pluripotent stem cells (iPSCs) and their hepatocyte-like cell (HLC) derivatives. We then aligned the pTFBS with these sequences found in the LTRs of native and self-inactivated LTRs. We found significant enrichment of these sequences for pTFBS essential to HIV-1 life cycle and virus survival. These same sites also appear in HIV-1 patient IS and in mice infected with HIV-1 based LV. This in silco data analysis suggests pTFBS present in the virus LTR and IS sites selected by HIV-1 LV are important to virus survival and propagation.
Collapse
Affiliation(s)
- Saqlain Suleman
- Department of Life Sciences, College of Health, Medicine & Life Sciences, Brunel University London, Uxbridge, UK
- Testavec Ltd, Queensgate House, Maidenhead, UK
| | - Annette Payne
- Testavec Ltd, Queensgate House, Maidenhead, UK
- Department of Computer Science, College of Engineering Design and Physical Sciences, Brunel University London, Uxbridge, UK
| | - Johnathan Bowden
- Department of Life Sciences, College of Health, Medicine & Life Sciences, Brunel University London, Uxbridge, UK
| | - Sharmin Al Haque
- Department of Life Sciences, College of Health, Medicine & Life Sciences, Brunel University London, Uxbridge, UK
| | - Marco Zahn
- Genewerk GmbH, Heidelberg, Germany
- University Heidelberg, Medical Faculty, Heidelberg, Germany
| | - Serena Fawaz
- Department of Life Sciences, College of Health, Medicine & Life Sciences, Brunel University London, Uxbridge, UK
| | - Mohammad S Khalifa
- Department of Life Sciences, College of Health, Medicine & Life Sciences, Brunel University London, Uxbridge, UK
| | - Susan Jobling
- Testavec Ltd, Queensgate House, Maidenhead, UK
- Institute of Environment, Health and Societies, College of Business, Arts and Social Sciences, Brunel University London, Uxbridge, UK
| | - David Hay
- Centre for Regenerative Medicine, The University of Edinburgh, Edinburgh, UK
| | | | | | - Wei Wang
- Genewerk GmbH, Heidelberg, Germany
| | | | | | - Yasuhiro Takeuchi
- Division of Infection and Immunity, University College London, London, UK
- Division of Advanced Therapies, National Institute for Biological Standards and Control, Potters Bar, UK
| | - Simon N Waddington
- Gene Transfer Technology, EGA Institute for Women's Health, University College London, London, UK
- MRC Antiviral Gene Therapy Research Unit, Faculty of Health Sciences, University of the Witswatersrand, Johannesburg, South Africa
| | | | - Manfred Schmidt
- Genewerk GmbH, Heidelberg, Germany
- Department of Translational Oncology, NCT and DKFZ, Heidelberg, Germany
| | - Michael Themis
- Department of Life Sciences, College of Health, Medicine & Life Sciences, Brunel University London, Uxbridge, UK.
- Division of Ecology and Evolution, Department of Life Sciences, Imperial College London, London, UK.
| |
Collapse
|
176
|
Skulimowska I, Sosniak J, Gonka M, Szade A, Jozkowicz A, Szade K. The biology of hematopoietic stem cells and its clinical implications. FEBS J 2022; 289:7740-7759. [PMID: 34496144 DOI: 10.1111/febs.16192] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/19/2021] [Accepted: 09/07/2021] [Indexed: 01/14/2023]
Abstract
Hematopoietic stem cells (HSCs) give rise to all types of blood cells and self-renew their own population. The regeneration potential of HSCs has already been successfully translated into clinical applications. However, recent studies on the biology of HSCs may further extend their clinical use in future. The roles of HSCs in native hematopoiesis and in transplantation settings may differ. Furthermore, the heterogenic pool of HSCs dynamically changes during aging. These changes also involve the complex interactions of HSCs with the bone marrow niche. Here, we review the opportunities and challenges of these findings to improve the clinical use of HSCs. We describe new methods of HSCs mobilization and conditioning for the transplantation of HSCs. Finally, we highlight the research findings that may lead to overcoming the current limitations of HSC transplantation and broaden the patient group that can benefit from the clinical potential of HSCs.
Collapse
Affiliation(s)
- Izabella Skulimowska
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Justyna Sosniak
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Monika Gonka
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Agata Szade
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Alicja Jozkowicz
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Krzysztof Szade
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
177
|
Zangari B, Tsuji T, Matsuzaki J, Mohammadpour H, Eppolito C, Battaglia S, Ito F, Chodon T, Koya R, Robert McGray AJ, Odunsi K. Tcf-1 protects anti-tumor TCR-engineered CD8 + T-cells from GzmB mediated self-destruction. Cancer Immunol Immunother 2022; 71:2881-2898. [PMID: 35460379 PMCID: PMC9588092 DOI: 10.1007/s00262-022-03197-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/24/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND T-cell longevity is undermined by antigen-driven differentiation programs that render cells prone to attrition through several mechanisms. CD8 + T cells that express the Tcf-1 transcription factor have undergone limited differentiation and exhibit stem-cell-like replenishment functions that facilitate persistence. We engineered human CD8 + T cells to constitutively express Tcf-1 and a TCR specific for the NY-ESO-1 cancer-associated antigen. Co-engineered cells were assessed for their potential for adoptive cellular immunotherapy. METHODS Tcf-1 mRNA encoding TCF-1B and TCF-1E isoforms, along with GzmB expression were assessed in CD62L + CD57 -, CD62L - CD57 -, and CD62L - CD57 + CD8 + T cells derived from normal donor lymphocytes. The impact of stable Tcf-1B expression on CD8 + T-cell phenotype, anti-tumor activity, and cell-cycle activity was assessed in vitro and in an in vivo tumor xenograft model. RESULTS TCF-1B and TCF-1E were dynamically regulated during self-renewal, with progeny of recently activated naïve T cells more enriched for TCF-1B mRNA. Constitutive TCF-1B expression improved the survival of TCR-engineered CD8 + T cells upon engagement with tumor cells. Tcf-1B prohibited the acquisition of a GzmB High state, and protected T cells from apoptosis associated with elicitation of effector function, and promoted stem cell-like characteristics. CONCLUSIONS Tcf-1 protects TCR-engineered CD8 + T cells from activation induced cell death by restricting GzmB expression. Our study presents constitutive Tcf-1B expression as a potential means to impart therapeutic T cells with attributes of persistence for durable anti-tumor activity.
Collapse
Affiliation(s)
- Brendan Zangari
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Takemasa Tsuji
- University of Chicago Medicine Comprehensive Cancer Center, 5841 S Maryland Ave, Chicago, IL, 60637, USA
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL, USA
| | - Junko Matsuzaki
- University of Chicago Medicine Comprehensive Cancer Center, 5841 S Maryland Ave, Chicago, IL, 60637, USA
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL, USA
| | - Hemn Mohammadpour
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Cheryl Eppolito
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Sebastiano Battaglia
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
- Department of Genetics and Genomics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Fumito Ito
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Thinle Chodon
- University of Chicago Medicine Comprehensive Cancer Center, 5841 S Maryland Ave, Chicago, IL, 60637, USA
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL, USA
| | - Richard Koya
- University of Chicago Medicine Comprehensive Cancer Center, 5841 S Maryland Ave, Chicago, IL, 60637, USA
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL, USA
| | - A J Robert McGray
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Kunle Odunsi
- University of Chicago Medicine Comprehensive Cancer Center, 5841 S Maryland Ave, Chicago, IL, 60637, USA.
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
178
|
Smith RH, Bloomer H, Fink D, Keyvanfar K, Nasimuzzaman M, Sancheznieto F, Dutta R, Guenther Bui K, Alvarado LJ, Bauer TR, Hickstein DD, Russell DW, Malik P, van der Loo JC, Highfill SL, Kuhns DB, Pirooznia M, Larochelle A. Preclinical Evaluation of Foamy Virus Vector-Mediated Gene Addition in Human Hematopoietic Stem/Progenitor Cells for Correction of Leukocyte Adhesion Deficiency Type 1. Hum Gene Ther 2022; 33:1293-1304. [PMID: 36094106 PMCID: PMC9808799 DOI: 10.1089/hum.2022.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/23/2022] [Indexed: 01/13/2023] Open
Abstract
Ex vivo gene therapy procedures targeting hematopoietic stem and progenitor cells (HSPCs) predominantly utilize lentivirus-based vectors for gene transfer. We provide the first pre-clinical evidence of the therapeutic utility of a foamy virus vector (FVV) for the genetic correction of human leukocyte adhesion deficiency type 1 (LAD-1), an inherited primary immunodeficiency resulting from mutation of the β2 integrin common chain, CD18. CD34+ HSPCs isolated from a severely affected LAD-1 patient were transduced under a current good manufacturing practice-compatible protocol with FVV harboring a therapeutic CD18 transgene. LAD-1-associated cellular chemotactic defects were ameliorated in transgene-positive, myeloid-differentiated LAD-1 cells assayed in response to a strong neutrophil chemoattractant in vitro. Xenotransplantation of vector-transduced LAD-1 HSPCs in immunodeficient (NSG) mice resulted in long-term (∼5 months) human cell engraftment within murine bone marrow. Moreover, engrafted LAD-1 myeloid cells displayed in vivo levels of transgene marking previously reported to ameliorate the LAD-1 phenotype in a large animal model of the disease. Vector insertion site analysis revealed a favorable vector integration profile with no overt evidence of genotoxicity. These results coupled with the unique biological features of wild-type foamy virus support the development of FVVs for ex vivo gene therapy of LAD-1.
Collapse
Affiliation(s)
- Richard H. Smith
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Hanan Bloomer
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Danielle Fink
- Neutrophil Monitoring Lab, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Keyvan Keyvanfar
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Md Nasimuzzaman
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Fátima Sancheznieto
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Roop Dutta
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Kacey Guenther Bui
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Luigi J. Alvarado
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Thomas R. Bauer
- Immune Deficiency-Cellular Therapy Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Dennis D. Hickstein
- Immune Deficiency-Cellular Therapy Program, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - David W. Russell
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Punam Malik
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Johannes C.M. van der Loo
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Steven L. Highfill
- Center for Cellular Engineering, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Douglas B. Kuhns
- Neutrophil Monitoring Lab, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Mehdi Pirooznia
- Laboratory of Bioinformatics and Computational Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Andre Larochelle
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
179
|
Padmakumar S, D'Souza A, Parayath NN, Bleier BS, Amiji MM. Nucleic acid therapies for CNS diseases: Pathophysiology, targets, barriers, and delivery strategies. J Control Release 2022; 352:121-145. [PMID: 36252748 DOI: 10.1016/j.jconrel.2022.10.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/10/2022] [Accepted: 10/10/2022] [Indexed: 11/08/2022]
Abstract
Nucleic acid therapeutics have emerged as one of the very advanced and efficacious treatment approaches for debilitating health conditions, including those diseases affecting the central nervous system (CNS). Precise targeting with an optimal control over gene regulation confers long-lasting benefits through the administration of nucleic acid payloads via viral, non-viral, and engineered vectors. The current review majorly focuses on the development and clinical translational potential of non-viral vectors for treating CNS diseases with a focus on their specific design and targeting approaches. These carriers must be able to surmount the various intracellular and extracellular barriers, to ensure successful neuronal transfection and ultimately attain higher therapeutic efficacies. Additionally, the specific challenges associated with CNS administration also include the presence of blood-brain barrier (BBB), the complex pathophysiological and biochemical changes associated with different disease conditions and the existence of non-dividing cells. The advantages offered by lipid-based or polymeric systems, engineered proteins, particle-based systems coupled with various approaches of neuronal targeting have been discussed in the context of a variety of CNS diseases. The possibilities of rapid yet highly efficient gene modifications rendered by the breakthrough methodologies for gene editing and gene manipulation have also opened vast avenues of research in neuroscience and CNS disease therapy. The current review also underscores the extensive scientific efforts to optimize specialized, efficacious yet non-invasive and safer administration approaches to overcome the therapeutic delivery challenges specifically posed by the CNS transport barriers and the overall obstacles to clinical translation.
Collapse
Affiliation(s)
- Smrithi Padmakumar
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA
| | - Anisha D'Souza
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA; Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 20115, USA
| | - Neha N Parayath
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA
| | - Benjamin S Bleier
- Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA 20115, USA
| | - Mansoor M Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, MA 02115, USA; Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
180
|
Hernandez JD, Hsieh EW. A great disturbance in the force: IL-2 receptor defects disrupt immune homeostasis. Curr Opin Pediatr 2022; 34:580-588. [PMID: 36165614 PMCID: PMC9633542 DOI: 10.1097/mop.0000000000001181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
PURPOSE OF REVIEW The current review highlights how inborn errors of immunity (IEI) due to IL-2 receptor (IL-2R) subunit defects may result in children presenting with a wide variety of infectious and inflammatory presentations beyond typical X-linked severe combined immune deficiency (X-SCID) associated with IL-2Rγ. RECENT FINDINGS Newborn screening has made diagnosis of typical SCID presenting with severe infections less common. Instead, infants are typically diagnosed in the first days of life when they appear healthy. Although earlier diagnosis has improved clinical outcomes for X-SCID, atypical SCID or other IEI not detected on newborn screening may present with more limited infectious presentations and/or profound immune dysregulation. Early management to prevent/control infections and reduce inflammatory complications is important for optimal outcomes of definitive therapies. Hematopoietic stem cell transplant (HSCT) is curative for IL-2Rα, IL-2Rβ, and IL-2Rγ defects, but gene therapy may yield comparable results for X-SCID. SUMMARY Defects in IL-2R subunits present with infectious and inflammatory phenotypes that should raise clinician's concern for IEI. Immunophenotyping may support the suspicion for diagnosis, but ultimately genetic studies will confirm the diagnosis and enable family counseling. Management of infectious and inflammatory complications will determine the success of gene therapy or HSCT.
Collapse
Affiliation(s)
- Joseph D. Hernandez
- Department of Pediatrics, Division of Allergy, Immunology and Rheumatology, School of Medicine, Stanford University, Lucile Packard Children’s Hospital
| | - Elena W.Y. Hsieh
- Department of Pediatrics, Section of Allergy and Immunology, School of Medicine, University of Colorado, Children’s Hospital Colorado
- Department of Immunology and Microbiology, School of Medicine, University of Colorado
| |
Collapse
|
181
|
Fischer A. Gene therapy for inborn errors of immunity: past, present and future. Nat Rev Immunol 2022:10.1038/s41577-022-00800-6. [DOI: 10.1038/s41577-022-00800-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2022] [Indexed: 11/27/2022]
|
182
|
Tsai HC, Pietrobon V, Peng M, Wang S, Zhao L, Marincola FM, Cai Q. Current strategies employed in the manipulation of gene expression for clinical purposes. J Transl Med 2022; 20:535. [PMID: 36401279 PMCID: PMC9673226 DOI: 10.1186/s12967-022-03747-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/29/2022] [Indexed: 11/19/2022] Open
Abstract
Abnormal gene expression level or expression of genes containing deleterious mutations are two of the main determinants which lead to genetic disease. To obtain a therapeutic effect and thus to cure genetic diseases, it is crucial to regulate the host's gene expression and restore it to physiological conditions. With this purpose, several molecular tools have been developed and are currently tested in clinical trials. Genome editing nucleases are a class of molecular tools routinely used in laboratories to rewire host's gene expression. Genome editing nucleases include different categories of enzymes: meganucleses (MNs), zinc finger nucleases (ZFNs), clustered regularly interspaced short palindromic repeats (CRISPR)- CRISPR associated protein (Cas) and transcription activator-like effector nuclease (TALENs). Transposable elements are also a category of molecular tools which includes different members, for example Sleeping Beauty (SB), PiggyBac (PB), Tol2 and TcBuster. Transposons have been used for genetic studies and can serve as gene delivery tools. Molecular tools to rewire host's gene expression also include episomes, which are divided into different categories depending on their molecular structure. Finally, RNA interference is commonly used to regulate gene expression through the administration of small interfering RNA (siRNA), short hairpin RNA (shRNA) and bi-functional shRNA molecules. In this review, we will describe the different molecular tools that can be used to regulate gene expression and discuss their potential for clinical applications. These molecular tools are delivered into the host's cells in the form of DNA, RNA or protein using vectors that can be grouped into physical or biochemical categories. In this review we will also illustrate the different types of payloads that can be used, and we will discuss recent developments in viral and non-viral vector technology.
Collapse
Affiliation(s)
| | | | - Maoyu Peng
- Kite Pharma Inc, Santa Monica, CA, 90404, USA
| | - Suning Wang
- Kite Pharma Inc, Santa Monica, CA, 90404, USA
| | - Lihong Zhao
- Kite Pharma Inc, Santa Monica, CA, 90404, USA
| | | | - Qi Cai
- Kite Pharma Inc, Santa Monica, CA, 90404, USA.
| |
Collapse
|
183
|
Wienert B, Cromer MK. CRISPR nuclease off-target activity and mitigation strategies. Front Genome Ed 2022; 4:1050507. [PMID: 36439866 PMCID: PMC9685173 DOI: 10.3389/fgeed.2022.1050507] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022] Open
Abstract
The discovery of CRISPR has allowed site-specific genomic modification to become a reality and this technology is now being applied in a number of human clinical trials. While this technology has demonstrated impressive efficacy in the clinic to date, there remains the potential for unintended on- and off-target effects of CRISPR nuclease activity. A variety of in silico-based prediction tools and empirically derived experimental methods have been developed to identify the most common unintended effect-small insertions and deletions at genomic sites with homology to the guide RNA. However, large-scale aberrations have recently been reported such as translocations, inversions, deletions, and even chromothripsis. These are more difficult to detect using current workflows indicating a major unmet need in the field. In this review we summarize potential sequencing-based solutions that may be able to detect these large-scale effects even at low frequencies of occurrence. In addition, many of the current clinical trials using CRISPR involve ex vivo isolation of a patient's own stem cells, modification, and re-transplantation. However, there is growing interest in direct, in vivo delivery of genome editing tools. While this strategy has the potential to address disease in cell types that are not amenable to ex vivo manipulation, in vivo editing has only one desired outcome-on-target editing in the cell type of interest. CRISPR activity in unintended cell types (both on- and off-target) is therefore a major safety as well as ethical concern in tissues that could enable germline transmission. In this review, we have summarized the strengths and weaknesses of current editing and delivery tools and potential improvements to off-target and off-tissue CRISPR activity detection. We have also outlined potential mitigation strategies that will ensure that the safety of CRISPR keeps pace with efficacy, a necessary requirement if this technology is to realize its full translational potential.
Collapse
Affiliation(s)
- Beeke Wienert
- Graphite Bio, Inc., South San Francisco, CA, United States
| | - M. Kyle Cromer
- Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, United States
- Eli and Edythe Broad Center for Regeneration Medicine, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
184
|
Shao L, Shi R, Zhao Y, Liu H, Lu A, Ma J, Cai Y, Fuksenko T, Pelayo A, Shah NN, Kochenderfer JN, Norberg SM, Hinrichs C, Highfill SL, Somerville RP, Panch SR, Jin P, Stroncek DF. Genome-wide profiling of retroviral DNA integration and its effect on clinical pre-infusion CAR T-cell products. J Transl Med 2022; 20:514. [DOI: 10.1186/s12967-022-03729-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 10/23/2022] [Indexed: 11/09/2022] Open
Abstract
Abstract
Background
Clinical CAR T-cell therapy using integrating vector systems represents a promising approach for the treatment of hematological malignancies. Lentiviral and γ-retroviral vectors are the most commonly used vectors in the manufacturing process. However, the integration pattern of these viral vectors and subsequent effect on CAR T-cell products is still unclear.
Methods
We used a modified viral integration sites analysis (VISA) pipeline to evaluate viral integration events around the whole genome in pre-infusion CAR T-cell products. We compared the differences of integration pattern between lentiviral and γ-retroviral products. We also explored whether the integration sites correlated with clinical outcomes.
Results
We found that γ-retroviral vectors were more likely to insert than lentiviral vectors into promoter, untranslated, and exon regions, while lentiviral vector integration sites were more likely to occur in intron and intergenic regions. Some integration events affected gene expression at the transcriptional and post-transcriptional level. Moreover, γ-retroviral vectors showed a stronger impact on the host transcriptome. Analysis of individuals with different clinical outcomes revealed genes with differential enrichment of integration events. These genes may affect biological functions by interrupting amino acid sequences and generating abnormal proteins, instead of by affecting mRNA expression. These results suggest that vector integration is associated with CAR T-cell efficacy and clinical responses.
Conclusion
We found differences in integration patterns, insertion hotspots and effects on gene expression vary between lentiviral and γ-retroviral vectors used in CAR T-cell products and established a foundation upon which we can conduct further analyses.
Collapse
|
185
|
Alhawaj AF. Stem cell-based therapy for hirschsprung disease, do we have the guts to treat? Gene Ther 2022; 29:578-587. [PMID: 34121091 PMCID: PMC9684071 DOI: 10.1038/s41434-021-00268-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 04/26/2021] [Accepted: 05/27/2021] [Indexed: 01/09/2023]
Abstract
Hirschsprung disease (HSCR) is a congenital anomaly of the colon that results from failure of enteric nervous system formation, leading to a constricted dysfunctional segment of the colon with variable lengths, and necessitating surgical intervention. The underlying pathophysiology includes a defect in neural crest cells migration, proliferation and differentiation, which are partially explained by identified genetic and epigenetic alterations. Despite the high success rate of the curative surgeries, they are associated with significant adverse outcomes such as enterocolitis, fecal soiling, and chronic constipation. In addition, some patients suffer from extensive lethal variants of the disease, all of which justify the need for an alternative cure. During the last 5 years, there has been considerable progress in HSCR stem cell-based therapy research. However, many major issues remain unsolved. This review will provide concise background information on HSCR, outline the future approaches of stem cell-based HSCR therapy, review recent key publications, discuss technical and ethical challenges the field faces prior to clinical translation, and tackle such challenges by proposing solutions and evaluating existing approaches to progress further.
Collapse
Affiliation(s)
- Ali Fouad Alhawaj
- Department of Haematology, UCL Cancer Institute, University College London, London, WC1E 6DD, United Kingdom.
- Department of Physiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.
| |
Collapse
|
186
|
Kook H, Kim B, Baek HJ. How I Treat Primary Immune Deficiencies with Hematopoietic Stem Cell Transplantation. CLINICAL PEDIATRIC HEMATOLOGY-ONCOLOGY 2022. [DOI: 10.15264/cpho.2022.29.2.35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Hoon Kook
- Department of Pediatrics, Chonnam National University Medical School, Gwangju, Korea
- Department of Pediatrics, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Boram Kim
- Department of Pediatrics, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Hee Jo Baek
- Department of Pediatrics, Chonnam National University Medical School, Gwangju, Korea
- Department of Pediatrics, Chonnam National University Hwasun Hospital, Hwasun, Korea
| |
Collapse
|
187
|
Ivančić D, Mir-Pedrol J, Jaraba-Wallace J, Rafel N, Sanchez-Mejias A, Güell M. INSERT-seq enables high-resolution mapping of genomically integrated DNA using Nanopore sequencing. Genome Biol 2022; 23:227. [PMID: 36284361 PMCID: PMC9594898 DOI: 10.1186/s13059-022-02778-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 09/30/2022] [Indexed: 11/10/2022] Open
Abstract
Comprehensive characterisation of genome engineering technologies is relevant for their development and safe use in human gene therapy. Short-read based methods can overlook insertion events in repetitive regions. We develop INSERT-seq, a method that combines targeted amplification of integrated DNA, UMI-based correction of PCR bias and Oxford Nanopore long-read sequencing for robust analysis of DNA integration. The experimental pipeline improves the number of mappable insertions at repetitive regions by 4.8–7.3% and larger repeats are processed with a computational peak calling pipeline. INSERT-seq is a simple, cheap and robust method to quantitatively characterise DNA integration in diverse ex vivo and in vivo samples.
Collapse
Affiliation(s)
- Dimitrije Ivančić
- grid.5612.00000 0001 2172 2676Departament de Medicina i Ciències de la Vida (MELIS), Universitat Pompeu Fabra, Barcelona, Spain ,grid.473715.30000 0004 6475 7299The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Júlia Mir-Pedrol
- grid.5612.00000 0001 2172 2676Departament de Medicina i Ciències de la Vida (MELIS), Universitat Pompeu Fabra, Barcelona, Spain
| | - Jessica Jaraba-Wallace
- grid.5612.00000 0001 2172 2676Departament de Medicina i Ciències de la Vida (MELIS), Universitat Pompeu Fabra, Barcelona, Spain
| | - Núria Rafel
- grid.5612.00000 0001 2172 2676Departament de Medicina i Ciències de la Vida (MELIS), Universitat Pompeu Fabra, Barcelona, Spain
| | - Avencia Sanchez-Mejias
- grid.5612.00000 0001 2172 2676Departament de Medicina i Ciències de la Vida (MELIS), Universitat Pompeu Fabra, Barcelona, Spain
| | - Marc Güell
- grid.5612.00000 0001 2172 2676Departament de Medicina i Ciències de la Vida (MELIS), Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
188
|
Episomes and Transposases-Utilities to Maintain Transgene Expression from Nonviral Vectors. Genes (Basel) 2022; 13:genes13101872. [PMID: 36292757 PMCID: PMC9601623 DOI: 10.3390/genes13101872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 11/04/2022] Open
Abstract
The efficient delivery and stable transgene expression are critical for applications in gene therapy. While carefully selected and engineered viral vectors allowed for remarkable clinical successes, they still bear significant safety risks. Thus, nonviral vectors are a sound alternative and avoid genotoxicity and adverse immunological reactions. Nonviral vector systems have been extensively studied and refined during the last decades. Emerging knowledge of the epigenetic regulation of replication and spatial chromatin organisation, as well as new technologies, such as Crispr/Cas, were employed to enhance the performance of different nonviral vector systems. Thus, nonviral vectors are in focus and hold some promising perspectives for future applications in gene therapy. This review addresses three prominent nonviral vector systems: the Sleeping Beauty transposase, S/MAR-based episomes, and viral plasmid replicon-based EBV vectors. Exemplarily, we review different utilities, modifications, and new concepts that were pursued to overcome limitations regarding stable transgene expression and mitotic stability. New insights into the nuclear localisation of nonviral vector molecules and the potential consequences thereof are highlighted. Finally, we discuss the remaining limitations and provide an outlook on possible future developments in nonviral vector technology.
Collapse
|
189
|
Wolff JH, Mikkelsen JG. Delivering genes with human immunodeficiency virus-derived vehicles: still state-of-the-art after 25 years. J Biomed Sci 2022; 29:79. [PMID: 36209077 PMCID: PMC9548131 DOI: 10.1186/s12929-022-00865-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 09/29/2022] [Indexed: 11/10/2022] Open
Abstract
Viruses are naturally endowed with the capacity to transfer genetic material between cells. Following early skepticism, engineered viruses have been used to transfer genetic information into thousands of patients, and genetic therapies are currently attracting large investments. Despite challenges and severe adverse effects along the way, optimized technologies and improved manufacturing processes are driving gene therapy toward clinical translation. Fueled by the outbreak of AIDS in the 1980s and the accompanying focus on human immunodeficiency virus (HIV), lentiviral vectors derived from HIV have grown to become one of the most successful and widely used vector technologies. In 2022, this vector technology has been around for more than 25 years. Here, we celebrate the anniversary by portraying the vector system and its intriguing properties. We dive into the technology itself and recapitulate the use of lentiviral vectors for ex vivo gene transfer to hematopoietic stem cells and for production of CAR T-cells. Furthermore, we describe the adaptation of lentiviral vectors for in vivo gene delivery and cover the important contribution of lentiviral vectors to basic molecular research including their role as carriers of CRISPR genome editing technologies. Last, we dwell on the emerging capacity of lentiviral particles to package and transfer foreign proteins.
Collapse
Affiliation(s)
- Jonas Holst Wolff
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000, Aarhus C, Denmark
| | - Jacob Giehm Mikkelsen
- Department of Biomedicine, Aarhus University, Høegh-Guldbergs Gade 10, 8000, Aarhus C, Denmark.
| |
Collapse
|
190
|
Tipanee J, Samara-Kuko E, Gevaert T, Chuah MK, VandenDriessche T. Universal allogeneic CAR T cells engineered with Sleeping Beauty transposons and CRISPR-CAS9 for cancer immunotherapy. Mol Ther 2022; 30:3155-3175. [PMID: 35711141 PMCID: PMC9552804 DOI: 10.1016/j.ymthe.2022.06.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 05/18/2022] [Accepted: 06/07/2022] [Indexed: 12/25/2022] Open
Abstract
Allogeneic CD19-specific chimeric antigen receptor (CAR) T cells with inactivated donor T cell receptor (TCR) expression can be used as an "off-the-shelf" therapeutic modality for lymphoid malignancies, thus offering an attractive alternative to autologous, patient-derived T cells. Current approaches for T cell engineering mainly rely on the use of viral vectors. Here, we optimized and validated a non-viral genetic modification platform based on Sleeping Beauty (SB) transposons delivered with minicircles to express CD19-28z.CAR and CRISPR-Cas9 ribonucleoparticles to inactivate allogeneic TCRs. Efficient TCR gene disruption was achieved with minimal cytotoxicity and with attainment of robust and stable CD19-28z.CAR expression. The CAR T cells were responsive to CD19+ tumor cells with antitumor activities that induced complete tumor remission in NALM6 tumor-bearing mice while significantly reducing TCR alloreactivity and GvHD development. Single CAR signaling induced the similar T cell signaling signatures in TCR-disrupted CAR T cells and control CAR T cells. In contrast, TCR disruption inhibited T cell signaling/protein phosphorylation compared with the control CAR T cells during dual CAR/TCR signaling. This non-viral SB transposon-CRISPR-Cas9 combination strategy serves as an alternative for generating next-generation CD19-specific CAR T while reducing GvHD risk and easing potential manufacturing constraints intrinsic to viral vectors.
Collapse
Affiliation(s)
- Jaitip Tipanee
- Department of Gene Therapy and Regenerative Medicine, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Building D, Room D365, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Ermira Samara-Kuko
- Department of Gene Therapy and Regenerative Medicine, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Building D, Room D365, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Thierry Gevaert
- Department of Radiotherapy, Oncology Centre University Hospital Brussels (Universitair Ziekenhuis (UZ) Brussel), Vrije Universiteit Brussel, Brussels, Belgium
| | - Marinee K Chuah
- Department of Gene Therapy and Regenerative Medicine, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Building D, Room D365, Laarbeeklaan 103, 1090 Brussels, Belgium; Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, 3000 Leuven, Belgium.
| | - Thierry VandenDriessche
- Department of Gene Therapy and Regenerative Medicine, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Building D, Room D365, Laarbeeklaan 103, 1090 Brussels, Belgium; Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, 3000 Leuven, Belgium.
| |
Collapse
|
191
|
Falcon C, Smith L, Al-Obaidi M, Abu Zaanona M, Purvis K, Minagawa K, Athar M, Salzman D, Bhatia R, Goldman F, Di Stasi A. Combinatorial suicide gene strategies for the safety of cell therapies. Front Immunol 2022; 13:975233. [PMID: 36189285 PMCID: PMC9515659 DOI: 10.3389/fimmu.2022.975233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Gene-modified cellular therapies carry inherent risks of severe and potentially fatal adverse events, including the expansion of alloreactive cells or malignant transformation due to insertional mutagenesis. Strategies to mitigate uncontrolled proliferation of gene-modified cells include co-transfection of a suicide gene, such as the inducible caspase 9 safety switch (ΔiC9). However, the activation of the ΔiC9 fails to completely eliminate all gene-modified cells. Therefore, we tested a two suicide gene system used independently or together, with the goal of complete cell elimination. The first approach combined the ΔiC9 with an inducible caspase 8, ΔiC8, which lacks the endogenous prodomain. The rationale was to use a second caspase with an alternative and complementary mechanism of action. Jurkat cells co-transduced to co-express the ΔiC8, activatable by a BB homodimerizer, and the ΔiC9 activatable by the rapamycin analog sirolimus were used in a model to estimate the degree of inducible cell elimination. We found that both agents could activate each caspase independently, with enhanced elimination with superior reduction in cell regrowth of gene-modified cells when both systems were activated simultaneously. A second approach was employed in parallel, combining the ΔiC9 with the RQR8 compact suicide gene. RQR8 incorporates a CD20 mimotope, targeted by the anti-CD20 monoclonal antibody rituxan, and the QBend10, a ΔCD34 selectable marker. Likewise, enhanced cell elimination with superior reduction in cell regrowth was observed when both systems were activated together. A dose-titration effect was also noted utilizing the BB homodimerizer, whereas sirolimus remained very potent at minimal concentrations. Further in vivo studies are needed to validate these novel combination systems, which may play a role in future cancer therapies or regenerative medicine.
Collapse
|
192
|
Rive CM, Yung E, Dreolini L, Brown SD, May CG, Woodsworth DJ, Holt RA. Selective B cell depletion upon intravenous infusion of replication-incompetent anti-CD19 CAR lentivirus. Mol Ther Methods Clin Dev 2022; 26:4-14. [PMID: 35755944 PMCID: PMC9198363 DOI: 10.1016/j.omtm.2022.05.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 05/25/2022] [Indexed: 12/27/2022]
Abstract
Anti-CD19 chimeric antigen receptor (CAR)-T therapy for B cell malignancies has shown clinical success, but a major limitation is the logistical complexity and high cost of manufacturing autologous cell products. If engineered for improved safety, direct infusion of viral gene transfer vectors to initiate in vivo CAR-T transduction, expansion, and anti-tumor activity could provide an alternative, universal approach. To explore this approach we administered approximately 20 million replication-incompetent vesicular stomatitis virus G protein (VSV-G) lentiviral particles carrying an anti-CD19CAR-2A-GFP transgene comprising either an FMC63 (human) or 1D3 (murine) anti-CD19 binding domain, or a GFP-only control transgene, to wild-type C57BL/6 mice by tail vein infusion. The dynamics of immune cell subsets isolated from peripheral blood were monitored at weekly intervals. We saw emergence of a persistent CAR-transduced CD3+ T cell population beginning week 3-4 that reaching a maximum of 13.5% ± 0.58% (mean ± SD) and 7.8% ± 0.76% of the peripheral blood CD3+ T cell population in mice infused with ID3-CAR or FMC63-CAR lentivector, respectively, followed by a rapid decline in each case of the B cell content of peripheral blood. Complete B cell aplasia was apparent by week 5 and was sustained until the end of the protocol (week 8). No significant CAR-positive populations were observed within other immune cell subsets or other tissues. These results indicate that direct intravenous infusion of conventional VSV-G-pseudotyped lentiviral particles carrying a CD19 CAR transgene can transduce T cells that then fully ablate endogenous B cells in wild-type mice.
Collapse
Affiliation(s)
- Craig M. Rive
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 1L3, Canada
| | - Eric Yung
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 1L3, Canada
| | - Lisa Dreolini
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 1L3, Canada
| | - Scott D. Brown
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 1L3, Canada
| | - Christopher G. May
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 1L3, Canada
| | - Daniel J. Woodsworth
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 1L3, Canada
| | - Robert A. Holt
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 1L3, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Molecular Biology & Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
- Corresponding author Robert A. Holt, PhD, Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 1L3, Canada.
| |
Collapse
|
193
|
Castaman G, Di Minno G, De Cristofaro R, Peyvandi F. The Arrival of Gene Therapy for Patients with Hemophilia A. Int J Mol Sci 2022; 23:10228. [PMID: 36142153 PMCID: PMC9499514 DOI: 10.3390/ijms231810228] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 11/16/2022] Open
Abstract
Historically, the standard of care for hemophilia A has been intravenous administration of exogenous factor VIII (FVIII), either as prophylaxis or episodically. The development of emicizumab, a humanized bispecific monoclonal antibody mimicking activated FVIII, was a subsequent advance in treatment. However, both exogenous FVIII and emicizumab require repeated and lifelong administration, negatively impacting patient quality of life. A recent breakthrough has been the development of gene therapy. This allows a single intravenous treatment that could result in long-term expression of FVIII, maintenance of steady-state plasma concentrations, and minimization (or possibly elimination) of bleeding episodes for the recipient's lifetime. Several gene therapies have been assessed in clinical trials, with positive outcomes. Valoctocogene roxaparvovec (an adeno-associated viral 5-based therapy encoding human B domain-deleted FVIII) is expected to be the first approved gene therapy in European countries, including Italy, in 2022. Some novel challenges exist including refining patient selection criteria, managing patient expectations, further elucidation of the durability and variability of transgene expression and long-term safety, and the development of standardized 'hub and spoke' centers to optimize and monitor this innovative treatment. Gene therapy represents a paradigm shift, and may become a new reference standard for treating patients with hemophilia A.
Collapse
Affiliation(s)
- Giancarlo Castaman
- Center for Bleeding Disorders, Department of Oncology, Careggi University Hospital, Largo Brambilla 3, 50134 Firenze, Italy
| | - Giovanni Di Minno
- Regional Reference Centre for Hemo-Coagulation Diseases, Federico II University, Via S. Pansini 5, 80131 Naples, Italy
| | - Raimondo De Cristofaro
- Servizio Malattie Emorragiche e Trombotiche, Dipartimento di Medicina e Chirurgia Traslazionale, Fondazione Policlinico Universitraio “A. Gemelli” IRCCS, Università Cattolica S. Cuore Roma, Largo Francesco Vito, 1, 00168 Rome, Italy
| | - Flora Peyvandi
- Angelo Bianchi Bonomi Hemophilia and Thrombosis Center, Fondazione Luigi Villa, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Via Pace 9, 20122 Milan, Italy
| |
Collapse
|
194
|
Nieto-Alamilla G, Behan M, Hossain M, Gochuico BR, Malicdan MCV. Hermansky-Pudlak syndrome: Gene therapy for pulmonary fibrosis. Mol Genet Metab 2022; 137:187-191. [PMID: 36088816 DOI: 10.1016/j.ymgme.2022.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/27/2022] [Accepted: 08/28/2022] [Indexed: 10/14/2022]
Abstract
Pulmonary fibrosis is a progressive and often fatal lung disease that manifests in most patients with Hermansky-Pudlak syndrome (HPS) type 1. Although the pathobiology of HPS pulmonary fibrosis is unknown, several studies highlight the pathogenic roles of different cell types, including type 2 alveolar epithelial cells, alveolar macrophages, fibroblasts, myofibroblasts, and immune cells. Despite the identification of the HPS1 gene and progress in understanding the pathobiology of HPS pulmonary fibrosis, specific treatment for HPS pulmonary fibrosis is not available, emphasizing the need to identify cellular and molecular targets and to develop therapeutic strategies for this devastating disease. This commentary summarizes recent advances and aims to provide insights into gene therapy for HPS pulmonary fibrosis.
Collapse
Affiliation(s)
- Gustavo Nieto-Alamilla
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Molly Behan
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States of America
| | - Mahin Hossain
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States of America; Undergraduate Scholarship Program, Office of the Director, National Institutes of Health, Bethesda, MD, United States of America
| | - Bernadette R Gochuico
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States of America.
| | - May Christine V Malicdan
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States of America; Undiagnosed Diseases Program, Office of the Director, National Institutes of Health, Bethesda, MD, United States of America
| |
Collapse
|
195
|
Senger K, Akhmetzyanova I, Haley B, Rutz S, Oh SA. Plasmid-Based Donor Templates for Nonviral CRISPR/Cas9-Mediated Gene Knock-In in Human T Cells. Curr Protoc 2022; 2:e538. [PMID: 36130036 DOI: 10.1002/cpz1.538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Effective and precise gene editing of T lymphocytes is critical for advancing the understanding of T cell biology and the development of next-generation cellular therapies. Although methods for effective CRISPR/Cas9-mediated gene knock-out in primary human T cells have been developed, complementary techniques for nonviral gene knock-in can be cumbersome and inefficient. Here, we report a simple and efficient method for nonviral CRISPR/Cas9-based gene knock-in utilizing plasmid-based donor DNA templates. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Purification of human CD4+ or CD8+ T cells from blood Basic Protocol 2: Activation of purified CD4+ or CD8+ T cells using TransAct CD3/CD28 agonist-conjugated nanomatrix Basic Protocol 3: Preparation of Cas9/sgRNA RNPs Basic Protocol 4: Transfection of CAS9-RNP and knock-in template into human T cells Support Protocol 1: Purity check following magnetic T cell isolation Support Protocol 2: Dextramer staining of TCR-edited T cells Support Protocol 3: Functional characterization of TCR knock-in T cells Support Protocol 4: Detection of knock-in reporter activity in CRISPR/CAS9-edited T cells.
Collapse
Affiliation(s)
- Kate Senger
- Molecular Biology, Genentech, South San Francisco, California
| | | | - Benjamin Haley
- Molecular Biology, Genentech, South San Francisco, California
| | - Sascha Rutz
- Cancer Immunology, Genentech, South San Francisco, California
| | - Soyoung A Oh
- Cancer Immunology, Genentech, South San Francisco, California
| |
Collapse
|
196
|
Nicolas CT, VanLith CJ, Hickey RD, Du Z, Hillin LG, Guthman RM, Cao WJ, Haugo B, Lillegard A, Roy D, Bhagwate A, O'Brien D, Kocher JP, Kaiser RA, Russell SJ, Lillegard JB. In vivo lentiviral vector gene therapy to cure hereditary tyrosinemia type 1 and prevent development of precancerous and cancerous lesions. Nat Commun 2022; 13:5012. [PMID: 36008405 PMCID: PMC9411607 DOI: 10.1038/s41467-022-32576-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/08/2022] [Indexed: 11/23/2022] Open
Abstract
Conventional therapy for hereditary tyrosinemia type-1 (HT1) with 2-(2-nitro-4-trifluoromethylbenzoyl)−1,3-cyclohexanedione (NTBC) delays and in some cases fails to prevent disease progression to liver fibrosis, liver failure, and activation of tumorigenic pathways. Here we demonstrate cure of HT1 by direct, in vivo administration of a therapeutic lentiviral vector targeting the expression of a human fumarylacetoacetate hydrolase (FAH) transgene in the porcine model of HT1. This therapy is well tolerated and provides stable long-term expression of FAH in pigs with HT1. Genomic integration displays a benign profile, with subsequent fibrosis and tumorigenicity gene expression patterns similar to wild-type animals as compared to NTBC-treated or diseased untreated animals. Indeed, the phenotypic and genomic data following in vivo lentiviral vector administration demonstrate comparative superiority over other therapies including ex vivo cell therapy and therefore support clinical application of this approach. Hereditary tyrosinemia type 1 (HT1) is an inborn error of metabolism caused by a deficiency in fumarylacetoacetate hydrolase (FAH). Here, the authors show in an animal model that HT1 can be treated via in vivo portal vein administration of a lentiviral vector carrying the human FAH transgene.
Collapse
Affiliation(s)
- Clara T Nicolas
- Department of Surgery, Mayo Clinic, Rochester, MN, USA.,Faculty of Medicine, University of Barcelona, Barcelona, Spain.,Department of Surgery, University of Alabama Birmingham, Birmingham, AL, USA
| | | | - Raymond D Hickey
- Department of Surgery, Mayo Clinic, Rochester, MN, USA.,Department of Molecular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Zeji Du
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Lori G Hillin
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Rebekah M Guthman
- Department of Surgery, Mayo Clinic, Rochester, MN, USA.,Medical College of Wisconsin, Wausau, WI, USA
| | - William J Cao
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | | | | | - Diya Roy
- Department of Surgery, Mayo Clinic, Rochester, MN, USA
| | - Aditya Bhagwate
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Daniel O'Brien
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Jean-Pierre Kocher
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Robert A Kaiser
- Department of Surgery, Mayo Clinic, Rochester, MN, USA.,Midwest Fetal Care Center, Children's Hospitals and Clinics of Minnesota, Minneapolis, MN, USA
| | | | - Joseph B Lillegard
- Department of Surgery, Mayo Clinic, Rochester, MN, USA. .,Midwest Fetal Care Center, Children's Hospitals and Clinics of Minnesota, Minneapolis, MN, USA. .,Pediatric Surgical Associates, Minneapolis, MN, USA.
| |
Collapse
|
197
|
Cuvelier GDE, Logan BR, Prockop SE, Buckley RH, Kuo CY, Griffith LM, Liu X, Yip A, Hershfield MS, Ayoub PG, Moore TB, Dorsey MJ, O'Reilly RJ, Kapoor N, Pai SY, Kapadia M, Ebens CL, Forbes Satter LR, Burroughs LM, Petrovic A, Chellapandian D, Heimall J, Shyr DC, Rayes A, Bednarski JJ, Chandra S, Chandrakasan S, Gillio AP, Madden L, Quigg TC, Caywood EH, Dávila Saldaña BJ, DeSantes K, Eissa H, Goldman FD, Rozmus J, Shah AJ, Vander Lugt MT, Thakar MS, Parrott RE, Martinez C, Leiding JW, Torgerson TR, Pulsipher MA, Notarangelo LD, Cowan MJ, Dvorak CC, Haddad E, Puck JM, Kohn DB. Outcomes following treatment for ADA-deficient severe combined immunodeficiency: a report from the PIDTC. Blood 2022; 140:685-705. [PMID: 35671392 PMCID: PMC9389638 DOI: 10.1182/blood.2022016196] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/21/2022] [Indexed: 11/20/2022] Open
Abstract
Adenosine deaminase (ADA) deficiency causes ∼13% of cases of severe combined immune deficiency (SCID). Treatments include enzyme replacement therapy (ERT), hematopoietic cell transplant (HCT), and gene therapy (GT). We evaluated 131 patients with ADA-SCID diagnosed between 1982 and 2017 who were enrolled in the Primary Immune Deficiency Treatment Consortium SCID studies. Baseline clinical, immunologic, genetic characteristics, and treatment outcomes were analyzed. First definitive cellular therapy (FDCT) included 56 receiving HCT without preceding ERT (HCT); 31 HCT preceded by ERT (ERT-HCT); and 33 GT preceded by ERT (ERT-GT). Five-year event-free survival (EFS, alive, no need for further ERT or cellular therapy) was 49.5% (HCT), 73% (ERT-HCT), and 75.3% (ERT-GT; P < .01). Overall survival (OS) at 5 years after FDCT was 72.5% (HCT), 79.6% (ERT-HCT), and 100% (ERT-GT; P = .01). Five-year OS was superior for patients undergoing HCT at <3.5 months of age (91.6% vs 68% if ≥3.5 months, P = .02). Active infection at the time of HCT (regardless of ERT) decreased 5-year EFS (33.1% vs 68.2%, P < .01) and OS (64.7% vs 82.3%, P = .02). Five-year EFS (90.5%) and OS (100%) were best for matched sibling and matched family donors (MSD/MFD). For patients treated after the year 2000 and without active infection at the time of FDCT, no difference in 5-year EFS or OS was found between HCT using a variety of transplant approaches and ERT-GT. This suggests alternative donor HCT may be considered when MSD/MFD HCT and GT are not available, particularly when newborn screening identifies patients with ADA-SCID soon after birth and before the onset of infections. This trial was registered at www.clinicaltrials.gov as #NCT01186913 and #NCT01346150.
Collapse
Affiliation(s)
- Geoffrey D E Cuvelier
- Manitoba Blood and Marrow Transplant Program, CancerCare Manitoba, University of Manitoba, Winnipeg, MB, Canada
| | - Brent R Logan
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI
| | - Susan E Prockop
- Stem Cell Transplant Service, Dana Farber Cancer Institute/Boston Children's Hospital, Boston, MA
| | | | - Caroline Y Kuo
- Division of Allergy, Immunology, Rheumatology, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Linda M Griffith
- Division of Allergy, Immunology and Transplantation, National Institutes of Allergy, National Institutes of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD
| | - Xuerong Liu
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, WI
| | - Alison Yip
- University of California San Francisco Benioff Children's Hospital, San Francisco, CA
| | | | - Paul G Ayoub
- Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA
| | - Theodore B Moore
- Department of Pediatric Hematology-Oncology, Mattel Children's Hospital, University of California, Los Angeles, CA
| | - Morna J Dorsey
- University of California San Francisco Benioff Children's Hospital, San Francisco, CA
| | - Richard J O'Reilly
- Stem Cell Transplantation and Cellular Therapy, MSK Kids, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Neena Kapoor
- Division of Hematology, Oncology and Blood and Marrow Transplant, Children's Hospital, Los Angeles, CA
| | - Sung-Yun Pai
- Immune Deficiency Cellular Therapy Program, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Malika Kapadia
- Boston Children's Hospital, Dana-Farber Cancer Institute, Boston, MA
| | - Christen L Ebens
- Division of Pediatric Blood and Marrow Transplant and Cellular Therapy, MHealth Fairview Masonic Children's Hospital, Minneapolis, MN
| | - Lisa R Forbes Satter
- Immunology, Allergy and Retrovirology, Baylor College of Medicine, Texas Children's Hospital, Houston, TX
| | - Lauri M Burroughs
- Fred Hutchinson Cancer Research Center, University of Washington, Department of Pediatrics and Seattle Children's Hospital, Seattle, WA
| | - Aleksandra Petrovic
- Fred Hutchinson Cancer Research Center, University of Washington, Department of Pediatrics and Seattle Children's Hospital, Seattle, WA
| | - Deepak Chellapandian
- Center for Cell and Gene Therapy for Non-Malignant Conditions, Johns Hopkins All Children's Hospital, St Petersburg, FL
| | - Jennifer Heimall
- Division of Allergy and Immunology, Children's Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA
| | - David C Shyr
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Lucile Packard Children's Hospital, Stanford School of Medicine, Palo Alto, CA
| | - Ahmad Rayes
- Primary Children's Hospital, University of Utah, Salt Lake City, UT
| | | | - Sharat Chandra
- Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | | | - Alfred P Gillio
- Children's Cancer Institute, Hackensack University Medical Center, Hackensack, NJ
| | - Lisa Madden
- Methodist Children's Hospital of South Texas, San Antonio, TX
| | - Troy C Quigg
- Pediatric Blood and Marrow Transplant and Cellular Therapy Program, Helen DeVos Children's Hospital, Michigan State University College of Human Medicine, Grand Rapids, MI
| | - Emi H Caywood
- Nemours Children's Health, Thomas Jefferson University, Wilmington, DE
| | | | - Kenneth DeSantes
- Division of Pediatric Hematology-Oncology & Bone Marrow Transplant, University of Wisconsin, American Family Children's Hospital, Madison, WI
| | - Hesham Eissa
- Division of Pediatric Hematology-Oncology-BMT, Aurora, CO
| | - Frederick D Goldman
- Division of Pediatric Hematology and Oncology and Bone Marrow Transplant, University of Alabama at Birmingham, Birmingham, AL
| | - Jacob Rozmus
- British Columbia Children's Hospital, Vancouver, BC, Canada
| | - Ami J Shah
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Lucile Packard Children's Hospital, Stanford School of Medicine, Palo Alto, CA
| | - Mark T Vander Lugt
- Blood and Marrow Transplant Program, University of Michigan, Ann Arbor, MI
| | - Monica S Thakar
- Fred Hutchinson Cancer Research Center, University of Washington, Department of Pediatrics and Seattle Children's Hospital, Seattle, WA
| | | | - Caridad Martinez
- Hematology/Oncology/BMT, Texas Children's Hospital, Baylor College of Medicine, Houston, TX
| | - Jennifer W Leiding
- Division of Allergy and Immunology, Johns Hopkins University, St Petersburg, FL
| | | | - Michael A Pulsipher
- Division of Pediatric Hematology and Oncology, Intermountain Primary Children's Hospital, Huntsman Cancer Institute at the University of Utah Spencer Fox Eccles School of Medicine, Salt Lake City, UT
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD; and
| | - Morton J Cowan
- University of California San Francisco Benioff Children's Hospital, San Francisco, CA
| | - Christopher C Dvorak
- University of California San Francisco Benioff Children's Hospital, San Francisco, CA
| | - Elie Haddad
- Department of Pediatrics, Centre Hospitalier Universitaire (CHU) Sainte-Justine, University of Montreal, Montreal, QC, Canada
| | - Jennifer M Puck
- University of California San Francisco Benioff Children's Hospital, San Francisco, CA
| | - Donald B Kohn
- Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, CA
| |
Collapse
|
198
|
Therapeutic Strategies in Huntington’s Disease: From Genetic Defect to Gene Therapy. Biomedicines 2022; 10:biomedicines10081895. [PMID: 36009443 PMCID: PMC9405755 DOI: 10.3390/biomedicines10081895] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 12/14/2022] Open
Abstract
Despite the identification of an expanded CAG repeat on exon 1 of the huntingtin gene located on chromosome 1 as the genetic defect causing Huntington’s disease almost 30 years ago, currently approved therapies provide only limited symptomatic relief and do not influence the age of onset or disease progression rate. Research has identified various intricate pathogenic cascades which lead to neuronal degeneration, but therapies interfering with these mechanisms have been marked by many failures and remain to be validated. Exciting new opportunities are opened by the emerging techniques which target the mutant protein DNA and RNA, allowing for “gene editing”. Although some issues relating to “off-target” effects or immune-mediated side effects need to be solved, these strategies, combined with stem cell therapies and more traditional approaches targeting specific pathogenic cascades, such as excitotoxicity and bioavailability of neurotrophic factors, could lead to significant improvement of the outcomes of treated Huntington’s disease patients.
Collapse
|
199
|
Sabatino DE, Bushman FD, Chandler RJ, Crystal RG, Davidson BL, Dolmetsch R, Eggan KC, Gao G, Gil-Farina I, Kay MA, McCarty DM, Montini E, Ndu A, Yuan J. Evaluating the state of the science for adeno-associated virus integration: An integrated perspective. Mol Ther 2022; 30:2646-2663. [PMID: 35690906 PMCID: PMC9372310 DOI: 10.1016/j.ymthe.2022.06.004] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 12/12/2022] Open
Abstract
On August 18, 2021, the American Society of Gene and Cell Therapy (ASGCT) hosted a virtual roundtable on adeno-associated virus (AAV) integration, featuring leading experts in preclinical and clinical AAV gene therapy, to further contextualize and understand this phenomenon. Recombinant AAV (rAAV) vectors are used to develop therapies for many conditions given their ability to transduce multiple cell types, resulting in long-term expression of transgenes. Although most rAAV DNA typically remains episomal, some rAAV DNA becomes integrated into genomic DNA at a low frequency, and rAAV insertional mutagenesis has been shown to lead to tumorigenesis in neonatal mice. Currently, the risk of rAAV-mediated oncogenesis in humans is theoretical because no confirmed genotoxic events have been reported to date. However, because insertional mutagenesis has been reported in a small number of murine studies, there is a need to characterize this genotoxicity to inform research, regulatory needs, and patient care. The purpose of this white paper is to review the evidence of rAAV-related host genome integration in animal models and possible risks of insertional mutagenesis in patients. In addition, technical considerations, regulatory guidance, and bioethics are discussed.
Collapse
Affiliation(s)
- Denise E Sabatino
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Division of Hematology, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Frederic D Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Randy J Chandler
- National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Ronald G Crystal
- Department of Genetic Medicine, Weill Medical College of Cornell University, New York, NY, USA
| | - Beverly L Davidson
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Medical School, Worcester, MA, USA
| | | | - Mark A Kay
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA, USA
| | | | - Eugenio Montini
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Adora Ndu
- BridgeBio Pharma, Inc., Palo Alto, CA, USA
| | - Jing Yuan
- Drug Safety Research and Development, Pfizer Inc., Cambridge, MA, USA
| |
Collapse
|
200
|
Slatter MA, Gennery AR. Advances in the treatment of severe combined immunodeficiency. Clin Immunol 2022; 242:109084. [DOI: 10.1016/j.clim.2022.109084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 06/10/2022] [Accepted: 08/01/2022] [Indexed: 11/03/2022]
|