151
|
Donovan K, Herrington WG, Paré G, Pigeyre M, Haynes R, Sardell R, Butterworth AS, Folkersen L, Gustafsson S, Wang Q, Baigent C, Mälarstig A, Holmes MV, Staplin N. Fibroblast Growth Factor-23 and Risk of Cardiovascular Diseases: A Mendelian Randomization Study. Clin J Am Soc Nephrol 2023; 18:17-27. [PMID: 36719157 PMCID: PMC7614195 DOI: 10.2215/cjn.05080422] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 11/02/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Fibroblast growth factor-23 (FGF-23) is associated with a range of cardiovascular and noncardiovascular diseases in conventional epidemiological studies, but substantial residual confounding may exist. Mendelian randomization approaches can help control for such confounding. METHODS SCALLOP Consortium data of 19,195 participants were used to generate an FGF-23 genetic score. Data from 337,448 UK Biobank participants were used to estimate associations between higher genetically predicted FGF-23 concentration and the odds of any atherosclerotic cardiovascular disease (n=26,266 events), nonatherosclerotic cardiovascular disease (n=12,652), and noncardiovascular diseases previously linked to FGF-23. Measurements of carotid intima-media thickness and left ventricular mass were available in a subset. Associations with cardiovascular outcomes were also tested in three large case-control consortia: CARDIOGRAMplusC4D (coronary artery disease, n=181,249 cases), MEGASTROKE (stroke, n=34,217), and HERMES (heart failure, n=47,309). RESULTS We identified 34 independent variants for circulating FGF-23, which formed a validated genetic score. There were no associations between genetically predicted FGF-23 and any of the cardiovascular or noncardiovascular outcomes. In UK Biobank, the odds ratio (OR) for any atherosclerotic cardiovascular disease per 1-SD higher genetically predicted logFGF-23 was 1.03 (95% confidence interval [95% CI], 0.98 to 1.08), and for any nonatherosclerotic cardiovascular disease, it was 1.01 (95% CI, 0.94 to 1.09). The ORs in the case-control consortia were 1.00 (95% CI, 0.97 to 1.03) for coronary artery disease, 1.01 (95% CI, 0.95 to 1.07) for stroke, and 1.00 (95% CI, 0.95 to 1.05) for heart failure. In those with imaging, logFGF-23 was not associated with carotid or cardiac abnormalities. CONCLUSIONS Genetically predicted FGF-23 levels are not associated with atherosclerotic and nonatherosclerotic cardiovascular diseases, suggesting no important causal link. PODCAST This article contains a podcast at https://dts.podtrac.com/redirect.mp3/www.asn-online.org/media/podcast/CJASN/2023_01_10_CJN05080422.mp3.
Collapse
Affiliation(s)
- Killian Donovan
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health (NDPH), University of Oxford, Oxford, United Kingdom
| | - William G. Herrington
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health (NDPH), University of Oxford, Oxford, United Kingdom
- Medical Research Council Population Health Research Unit at the University of Oxford, NDPH, Oxford, United Kingdom
- Oxford Kidney Unit, Churchill Hospital, Oxford, United Kingdom
| | - Guillaume Paré
- Population Health Research Institute, McMaster University, Hamilton, Canada
| | - Marie Pigeyre
- Population Health Research Institute, McMaster University, Hamilton, Canada
| | - Richard Haynes
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health (NDPH), University of Oxford, Oxford, United Kingdom
- Medical Research Council Population Health Research Unit at the University of Oxford, NDPH, Oxford, United Kingdom
- Oxford Kidney Unit, Churchill Hospital, Oxford, United Kingdom
| | - Rebecca Sardell
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health (NDPH), University of Oxford, Oxford, United Kingdom
| | - Adam S. Butterworth
- BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | | | - Stefan Gustafsson
- Department of Medical Sciences, Molecular Epidemiology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Qin Wang
- Systems Epidemiology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Colin Baigent
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health (NDPH), University of Oxford, Oxford, United Kingdom
- Medical Research Council Population Health Research Unit at the University of Oxford, NDPH, Oxford, United Kingdom
| | - Anders Mälarstig
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Solna, Sweden
| | - Michael V. Holmes
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health (NDPH), University of Oxford, Oxford, United Kingdom
- Medical Research Council Population Health Research Unit at the University of Oxford, NDPH, Oxford, United Kingdom
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
| | - Natalie Staplin
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health (NDPH), University of Oxford, Oxford, United Kingdom
- Medical Research Council Population Health Research Unit at the University of Oxford, NDPH, Oxford, United Kingdom
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
152
|
Kishimoto H, Nakano T, Torisu K, Tokumoto M, Uchida Y, Yamada S, Taniguchi M, Kitazono T. Indoxyl sulfate induces left ventricular hypertrophy via the AhR-FGF23-FGFR4 signaling pathway. Front Cardiovasc Med 2023; 10:990422. [PMID: 36895836 PMCID: PMC9988908 DOI: 10.3389/fcvm.2023.990422] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 01/18/2023] [Indexed: 02/23/2023] Open
Abstract
Background Patients with chronic kidney disease (CKD) have a high risk of left ventricular hypertrophy (LVH). Fibroblast growth factor 23 (FGF23) and indoxyl sulfate (IS) are associated with LVH in patients with CKD, but the interactions between these molecules remain unknown. We investigated whether IS contributes to LVH associated with FGF23 in cultured cardiomyocytes and CKD mice. Methods and results In cultured rat cardiac myoblast H9c2 cells incubated with IS, mRNA levels of the LVH markers atrial natriuretic factor, brain natriuretic peptide, and β-myosin heavy chain were significantly upregulated. Levels of mRNA of the polypeptide N-acetylgalactosaminyltransferase 3 (GALNT3), which regulates FGF23 O-glycosylation, and FGF23 were also upregulated in H9c2 cells. Intact FGF23 protein expression and fibroblast growth factor receptor 4 (FGFR4) phosphorylation were increased in cell lysates by IS administration. In C57BL/6J mice with heminephrectomy, IS promoted LVH, whereas the inhibition of FGFR4 significantly reduced heart weight and left ventricular wall thickness in IS-treated groups. While there was no significant difference in serum FGF23 concentrations, cardiac FGF23 protein expression was markedly increased in IS-injected mice. GALNT3, hypoxia-inducible factor 1 alpha, and FGF23 protein expression was induced in H9c2 cells by IS treatment and suppressed by the inhibition of Aryl hydrocarbon receptor which is the receptor for IS. Conclusion This study suggests that IS increases FGF23 protein expression via an increase in GALNT3 and hypoxia-inducible factor 1 alpha expression, and activates FGF23-FGFR4 signaling in cardiomyocytes, leading to LVH.
Collapse
Affiliation(s)
- Hiroshi Kishimoto
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshiaki Nakano
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kumiko Torisu
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Yushi Uchida
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shunsuke Yamada
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
153
|
Zeng D, Zha A, Lei Y, Yu Z, Cao R, Li L, Song Z, Li W, Li Y, Liu H, Huang S, Dong X, Krämer B, Hocher B, Yin L, Yun C, Morgera S, Guan B, Meng Y, Liu F, Hu B, Luan S. Correlation of Serum FGF23 and Chronic Kidney Disease-Mineral and Bone Abnormality Markers With Cardiac Structure Changes in Maintenance Hemodialysis Patients. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:6243771. [PMID: 37089720 PMCID: PMC10118877 DOI: 10.1155/2023/6243771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/01/2022] [Indexed: 04/25/2023]
Abstract
Background CKD-MBD is a mineral and bone metabolism syndrome caused by chronic kidney disease. FGF23 is an important factor regulating phosphorus and is the main influencer in the CKD-MBD process. In this study, we observed the correlation among serum FGF23 and calcium, phosphorus and parathyroid hormone, and the correlation between FGF23 levels and cardiac structural changes in MHD patients. Methods We examined serum FGF23 concentrations in 107 cases of MHD patients using the ELISA method, recorded demographic information and biochemical data, and analyzed the correlation between serum FGF23 levels and blood calcium and blood phosphorus and PTH levels. All patients were evaluated by cardiac color ultrasound, and we finally analyzed the association between the FGF23 level and cardiac structural changes. Results In 107 cases of MHD patients, serum FGF23 levels were linearly associated with serum calcium (r = 0.27 P < 0.01) and parathyroid hormone levels (r = 0.25, P < 0.05). FGF 23 was negatively correlated with age (r = -0.44, P < 0.01).Serum FGF23 levels were correlated with right atrial hypertrophy in HD patients (P < 0.05). No correlation was found among FGF23, left ventricular hypertrophy/enlargement, and valve calcification stenosis (P > 0.05). Conclusion Serum FGF23 showed a positive correlation among blood calcium levels and PTH levels in hemodialysis patients, and FGF23 levels can affect the incidence of right atrial hypertrophy in MHD patients.
Collapse
Affiliation(s)
- Dewang Zeng
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Department of Nephrology, Huadu District People's Hospital, Guangzhou, China
| | - Aiyun Zha
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Ying Lei
- Department of Nephrology, Huadu District People's Hospital, Guangzhou, China
| | - Zongchao Yu
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Rui Cao
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Ling Li
- Hospital of South China Agricultural University, Guangzhou 510642, China
| | - Zhuoheng Song
- Department of Nephrology, Shenzhen Longhua District Central Hospital, Guangdong, Shenzhen 518110, China
| | - Weilong Li
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- Department of Nephrology, Shenzhen Longhua District Central Hospital, Guangdong, Shenzhen 518110, China
| | - Yunyi Li
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Haiping Liu
- The Second People's Hospital of Lianping County, Heyuan, Guangdong 517139, China
| | - Shaoxing Huang
- The Second People's Hospital of Lianping County, Heyuan, Guangdong 517139, China
| | - Xiangnan Dong
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Bernhard Krämer
- Fifth Department of Medicine, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Berthold Hocher
- Fifth Department of Medicine, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Lianghong Yin
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Chen Yun
- Department of Nephrology, Charité -Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - Stanislao Morgera
- Department of Nephrology, Charité -Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany
| | - Baozhang Guan
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Yu Meng
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Fanna Liu
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Bo Hu
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Shaodong Luan
- Department of Nephrology, Shenzhen Longhua District Central Hospital, Guangdong, Shenzhen 518110, China
| |
Collapse
|
154
|
Wolf M. FGF23 AND ALTERED MINERAL HOMEOSTASIS IN KIDNEY DISEASE AND FOLLOWING INTRAVENOUS IRON. TRANSACTIONS OF THE AMERICAN CLINICAL AND CLIMATOLOGICAL ASSOCIATION 2023; 133:262-273. [PMID: 37701608 PMCID: PMC10493719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Fibroblast growth factor 23 (FGF23) is an endocrine hormone that stimulates renal phosphate excretion and suppresses circulating concentrations of 1,25-dihydroxyvitamin D (1,25D). These effects of FGF23 are most evident in rare diseases that are characterized by FGF23-mediated hypophosphatemic rickets-osteomalacia. More commonly, elevated FGF23 is a ubiquitous, early consequence of chronic kidney disease (CKD) in which it helps to maintain normal serum phosphate levels but causes secondary hyperparathyroidism by suppressing 1,25D, and directly promotes cardiovascular disease and death. Elevated FGF23 is also a common complication of intravenous administration of ferric carboxymaltose (FCM), which is widely used to treat iron deficiency anemia. Among patients with normal kidney function who receive FCM, the resulting increase in FGF23 and subsequent FGF23-mediated reduction of 1,25D and secondary hyperparathyroidism promote hypophosphatemia that can be symptomatic, severe, and associated with musculoskeletal complications. Ongoing research is needed to design novel therapeutic approaches to mitigate FGF23-related illnesses.
Collapse
|
155
|
Minciunescu A, Genovese L, deFilippi C. Cardiovascular Alterations and Structural Changes in the Setting of Chronic Kidney Disease: a Review of Cardiorenal Syndrome Type 4. SN COMPREHENSIVE CLINICAL MEDICINE 2022; 5:15. [PMID: 36530959 PMCID: PMC9734879 DOI: 10.1007/s42399-022-01347-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
Cardiovascular and renal physiology are interrelated. More than a decade ago this was codified in guidelines defining the five subtypes of the cardiorenal syndrome. Morbidity and mortality for those with the cardiorenal syndrome is high compared to demographically matched individuals without cardiorenal disease, acute or chronic. The focus of this review will be the epidemiology, the impact of chronic kidney disease on cardiac structure and function, and associated clinical symptoms, outcomes, and potential treatments for patients with chronic reno-cardiac syndrome, or cardiorenal syndrome type 4. Cardiac structural changes can be profound and are described in detail both at a cellular and physiologic level. Integrating therapies for the treatment of causative or resulting comorbidities may ultimately slow progression of both cardiac and renal disease as well as minimize symptoms and death.
Collapse
Affiliation(s)
- Andrei Minciunescu
- Inova Heart and Vascular Institute, 3300 Gallows Rd, Falls Church, VA 22042 USA
| | - Leonard Genovese
- Inova Heart and Vascular Institute, 3300 Gallows Rd, Falls Church, VA 22042 USA
| | | |
Collapse
|
156
|
Abraham CR, Li A. Aging-suppressor Klotho: Prospects in diagnostics and therapeutics. Ageing Res Rev 2022; 82:101766. [PMID: 36283617 DOI: 10.1016/j.arr.2022.101766] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 01/31/2023]
Abstract
INTRODUCTION The protein Klotho (KL) was first discovered in KL-deficient mice, which developed a syndrome similar to premature aging in humans. Since then, KL has been implicated in multiple molecular signaling pathways and diseases. KL has been shown to have anti-aging, healthspan and lifespan extending, cognitive enhancing, anti-oxidative, anti-inflammatory, and anti-tumor properties. KL levels decrease with age and in many diseases. Therefore, it has been of great interest to develop a KL-boosting or restoring drug, or to supplement endogenous Klotho with exogenous Klotho genetic material or recombinant Klotho protein, and to use KL levels in the body as a marker for the efficacy of such drugs and as a biomarker for the diagnosis and management of diseases. OBJECTIVE The goal of this study was to provide a comprehensive review of KL levels across age groups in individuals who are healthy or have certain health conditions, using four sources: blood, cerebrospinal fluid, urine, and whole biopsy/necropsy tissue. By doing so, baseline KL levels can be identified across the lifespan, in the absence or presence of disease. In turn, these findings can be used to guide the development of future KL-based therapeutics and biomarkers, which will heavily rely on an individual's baseline KL range to be efficacious. METHODS A total of 65 studies were collected primarily using the PubMed database. Research articles that were published up to April 2022 were included. Statistical analysis was conducted using RStudio. RESULTS Mean and median blood KL levels in healthy individuals, mean blood KL levels in individuals with renal conditions, and mean blood KL levels in individuals with metabolic or endocrine conditions were shown to decrease with age. Similarly, CSF KL levels in patients with AD also declined compared with age-matched controls. CONCLUSIONS The present study confirms the trend that KL levels in blood decrease with age in humans, among those who are healthy, and even further among those with renal and endocrine/metabolic illnesses. Further, by drawing this trend from multiple published works, we were able to provide a general idea of baseline KL ranges, specifically in blood in these populations. These data add to the current knowledge on normal KL levels in the body and how they change with time and in disease, and can potentially support efforts to create KL-based treatments and screening tools to better manage aging, renal, and metabolic/endocrine diseases.
Collapse
Affiliation(s)
- Carmela R Abraham
- Department of Biochemistry, Boston University School of Medicine, USA; Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, USA.
| | - Anne Li
- Division of Graduate Medical Sciences, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
157
|
Cipriani C, Minisola S, Colangelo L, DE Martino V, Ferrone F, Biamonte F, Danese V, Sonato C, Santori R, Occhiuto M, Pepe J. FGF23 functions and disease. Minerva Endocrinol (Torino) 2022; 47:437-448. [PMID: 33792238 DOI: 10.23736/s2724-6507.21.03378-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The main function of fibroblast growth factor 23 (FGF23) is the regulation of phosphate metabolism through its action on the sodium-dependent phosphate cotransporters in the proximal renal tubules. Additionally, FGF23 interacts with vitamin D and parathyroid hormone in a complex metabolic pathway whose detailed mechanisms are still not clear in human physiology and disease. More recently, research has also focused on the understanding of mechanisms of FGF23 action on organs and system other than the kidneys and bone, as well as on its interaction with other metabolic pathways. Collectively, the new evidence are successfully used for the clinical evaluation and management of FGF23-related disorders, for which new therapies with many potential applications are now available.
Collapse
Affiliation(s)
- Cristiana Cipriani
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University, Rome, Italy -
| | - Salvatore Minisola
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University, Rome, Italy
| | - Luciano Colangelo
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University, Rome, Italy
| | - Viviana DE Martino
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University, Rome, Italy
| | - Federica Ferrone
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University, Rome, Italy
| | - Federica Biamonte
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University, Rome, Italy
| | - Vittoria Danese
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University, Rome, Italy
| | - Chiara Sonato
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University, Rome, Italy
| | - Rachele Santori
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University, Rome, Italy
| | - Marco Occhiuto
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University, Rome, Italy
| | - Jessica Pepe
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University, Rome, Italy
| |
Collapse
|
158
|
Alharbi KS, Afzal O, Altamimi ASA, Almalki WH, Kazmi I, Al-Abbasi FA, Alzarea SI, Makeen HA, Albratty M. A study of the molecular mechanism of quercetin and dasatinib combination as senolytic in alleviating age-related and kidney diseases. J Food Biochem 2022; 46:e14471. [PMID: 36268851 DOI: 10.1111/jfbc.14471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/16/2022] [Accepted: 09/26/2022] [Indexed: 01/14/2023]
Abstract
Aging is a significant risk factor for the majority of prevalent human illnesses. The chance of having severe chronic conditions grows dramatically with advancing age. Indeed, more than 90% of people over 65 get at least one chronic disease, including diabetes, heart disease, malignancy, memory loss, and kidney disease, whereas more than 70% have two or more of these ailments. Mouse and human aging lead to increased senescent cells and decreased klotho concentrations. Mice lacking the protein α-klotho show faster aging, similar to human aging. α-Klotho upregulation extends life and slows or suppresses the onset of many age-related illnesses and kidney diseases. Like the consequences of α-klotho deficiency, senescent cell accumulation is linked to tissue dysfunction in various organs and multiple age-related kidney diseases. In addition, α-klotho and cell senescence are negatively and presumably mechanistically linked. Earlier research has demonstrated that klotho exerts its protective effects in age-related and kidney disease by interacting with Wnt ligands, serving as an endogenous antagonist of Wnt/β-catenin signaling. In addition, decreasing senescent cell burden with senolytics, a class of drugs that remove senescent cells selectively and extend the life span of mice. In this work, we are studying the molecular mechanism of the combination of quercetin and dasatinib as senolytic in easing age-related chronic renal illness by altering the level of klotho/Wnt/β-catenin. PRACTICAL APPLICATIONS: There is an inverse relationship between the onset and the development of age-related disorders and cellular senescence and Klotho. Earlier attempts to suppress transforming growth factor-beta 1 (TGF-β1) in kidney disease with anti-TGF-β1 antibodies were ineffective, and this should be kept in mind. Senolytic medications may benefit from targeting senescent cells, which enhances the protective factor α-klotho. In addition, our study provides a unique, translationally feasible route for creating orally active small compounds to enhance α-klotho, which may also be a valuable biomarker for age-related kidney disease. Additionally, other aspects of aging can be affected by senolytics, such as limiting age-related mitochondrial dysfunction, lowering inflammation and fibrosis, blunting reactive oxygen species (ROS) generation, decreasing deoxyribonucleic acid (DNA) damage, and reinforcing insulin sensitivity. Senolytic agents have been shown to increase adipose progenitor and cardiac progenitor cell activity in aging animals and animals with cellular senescence-related diseases, such as heart, brain, and kidney disease.
Collapse
Affiliation(s)
- Khalid Saad Alharbi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | | | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Hafiz A Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
159
|
Triwatana W, Satirapoj B, Supasyndh O, Nata N. Effect of pioglitazone on serum FGF23 levels among patients with diabetic kidney disease: a randomized controlled trial. Int Urol Nephrol 2022; 55:1255-1262. [PMID: 36441433 DOI: 10.1007/s11255-022-03420-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022]
Abstract
AIM Elevated fibroblast growth factor-23 (FGF23) is an established marker of cardiovascular disease among patients with type 2 diabetes (T2DM) and chronic kidney disease (CKD). Recently, circulating FGF23 positively correlated with insulin resistance level among patients with CKD. Pioglitazone improves insulin sensitivity and it may have potential for treating CKD-related FGF23 overactivity. METHODS A randomized, open-label, controlled trial was performed among patients with T2DM and CKD. Eligible participants were randomly assigned to either oral 15 mg/day of pioglitazone (N = 22) or control group (N = 24) for 16 weeks. Serum FGF23 and homeostatic Model Assessment of Insulin Resistance (HOMA-IR) were measured. RESULTS Forty-six patients completed the trial. After 16 weeks of treatment, significant decreases in serum intact FGF23 level (median change - 49.01 (IQR, - 103.51 to - 24.53) vs. 1.07 (IQR, - 22.4-39.53) pg/mL, P = 0.01) and HOMA-IR (mean change - 1.41 (95% CI, - 2.24 to - 0.57) vs. - 0.05 (95% CI, - 1.00-0.89), P = 0.031) were observed in the pioglitazone group compared with the control group. HemoglobinA1C also significantly decreased in the pioglitazone group compared with the control group. No difference was found in the changes of serum phosphorus, calcium and serum intact parathyroid hormone between the two groups. Changes of FGF23 were positively associated with changes of HOMA-IR (R = 0.47) and insulin levels (R = 0.47). No serious adverse event was reported during the study. CONCLUSION This study confirmed that pioglitazone effectively reduced serum FGF23 levels and related to improved insulin sensitivity among patients with T2DM and CKD. CLINICAL TRIAL REGISTRATION TCTR20210316009.
Collapse
Affiliation(s)
- Wutipong Triwatana
- Division of Nephrology, Department of Medicine, Phramongkutklao Hospital and College of Medicine, Bangkok, 10400, Thailand
| | - Bancha Satirapoj
- Division of Nephrology, Department of Medicine, Phramongkutklao Hospital and College of Medicine, Bangkok, 10400, Thailand.
| | - Ouppatham Supasyndh
- Division of Nephrology, Department of Medicine, Phramongkutklao Hospital and College of Medicine, Bangkok, 10400, Thailand
| | - Naowanit Nata
- Division of Nephrology, Department of Medicine, Phramongkutklao Hospital and College of Medicine, Bangkok, 10400, Thailand
| |
Collapse
|
160
|
Méaux MN, Alioli C, Linglart A, Lemoine S, Vignot E, Bertholet-Thomas A, Peyruchaud O, Flammier S, Machuca-Gayet I, Bacchetta J. X-Linked Hypophosphatemia, Not Only a Skeletal Disease But Also a Chronic Inflammatory State. J Clin Endocrinol Metab 2022; 107:3275-3286. [PMID: 36112422 DOI: 10.1210/clinem/dgac543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Indexed: 02/13/2023]
Abstract
CONTEXT X-linked hypophosphatemia (XLH) is a rare genetic disease caused by a primary excess of fibroblast growth factor 23 (FGF23). FGF23 has been associated with inflammation and impaired osteoclastogenesis, but these pathways have not been investigated in XLH. OBJECTIVE This work aimed to evaluate whether XLH patients display peculiar inflammatory profile and increased osteoclastic activity. METHODS We performed a prospective, multicenter, cross-sectional study analyzing transcript expression of 8 inflammatory markers (Il6, Il8, Il1β, CXCL1, CCL2, CXCR3, Il1R, Il6R) by real-time quantitative polymerase chain reaction on peripheral blood mononuclear cells (PBMCs) purified from total blood samples extracted from patients and healthy control individuals. The effect of native/active vitamin D on osteoclast formation was also assessed in vitro from XLH patients' PBMCs. RESULTS In total, 28 XLH patients (17 children, among them 6 undergoing standard of care [SOC] and 11 burosumab therapy) and 19 controls were enrolled. Expression of most inflammatory markers was significantly increased in PBMCs from XLH patients compared to controls. No differences were observed between the burosumab and SOC subgroups. Osteoclast formation was significantly impaired in XLH patients. XLH mature osteoclasts displayed higher levels of inflammatory markers, being however lower in cells derived from the burosumab subgroup (as opposed to SOC). CONCLUSION We describe for the first time a peculiar inflammatory profile in XLH. Since XLH patients have a propensity to develop arterial hypertension, obesity, and enthesopathies, and because inflammation can worsen these clinical outcomes, we hypothesize that inflammation may play a critical role in these extraskeletal complications of XLH.
Collapse
Affiliation(s)
- Marie-Noëlle Méaux
- Service de Néphrologie, Rhumatologie et Dermatologie Pédiatriques, Centre de Référence des Maladies Rares du Calcium et du Phosphore, Centre de Référence des Maladies Rénales Rares Filières Maladies Rares ORKID, OSCAR et ERN ERK-Net, CHU de Lyon, 69 500 Bron, France
- INSERM, UMR 1033, Faculté de Médecine Lyon Est, Université Claude Bernard Lyon 1, 69 008 Lyon, France
| | - Candide Alioli
- INSERM, UMR 1033, Faculté de Médecine Lyon Est, Université Claude Bernard Lyon 1, 69 008 Lyon, France
| | - Agnès Linglart
- AP-HP, Université Paris Saclay, INSERM, Service d'endocrinologie et diabète de l'enfant, Centre de Référence des Maladies Rares du Calcium et du Phosphore, Filière de Santé Maladies Rares OSCAR, ERN endoRARE et BOND, Plateforme d'expertise des maladies rares Paris Saclay, Hôpital Bicêtre Paris-Saclay, 94 270 Le Kremlin-Bicêtre, France
| | - Sandrine Lemoine
- Département de Néphrologie, Service d'exploration Fonctionnelle rénale, Hôpital Edouard Herriot, 69 003 Lyon, France
- Faculté de Médecine Lyon Est, Université Claude Bernard Lyon 1, 69 003 Lyon, France
| | - Emmanuelle Vignot
- Faculté de Médecine Lyon Est, Université Claude Bernard Lyon 1, 69 003 Lyon, France
- Service de Rhumatologie, Hôpital Edouard Herriot, 69 003 Lyon, France
| | - Aurélia Bertholet-Thomas
- Service de Néphrologie, Rhumatologie et Dermatologie Pédiatriques, Centre de Référence des Maladies Rares du Calcium et du Phosphore, Centre de Référence des Maladies Rénales Rares Filières Maladies Rares ORKID, OSCAR et ERN ERK-Net, CHU de Lyon, 69 500 Bron, France
- INSERM, UMR 1033, Faculté de Médecine Lyon Est, Université Claude Bernard Lyon 1, 69 008 Lyon, France
| | - Olivier Peyruchaud
- INSERM, UMR 1033, Faculté de Médecine Lyon Est, Université Claude Bernard Lyon 1, 69 008 Lyon, France
| | - Sacha Flammier
- Service de Néphrologie, Rhumatologie et Dermatologie Pédiatriques, Centre de Référence des Maladies Rares du Calcium et du Phosphore, Centre de Référence des Maladies Rénales Rares Filières Maladies Rares ORKID, OSCAR et ERN ERK-Net, CHU de Lyon, 69 500 Bron, France
| | - Irma Machuca-Gayet
- INSERM, UMR 1033, Faculté de Médecine Lyon Est, Université Claude Bernard Lyon 1, 69 008 Lyon, France
| | - Justine Bacchetta
- Service de Néphrologie, Rhumatologie et Dermatologie Pédiatriques, Centre de Référence des Maladies Rares du Calcium et du Phosphore, Centre de Référence des Maladies Rénales Rares Filières Maladies Rares ORKID, OSCAR et ERN ERK-Net, CHU de Lyon, 69 500 Bron, France
- INSERM, UMR 1033, Faculté de Médecine Lyon Est, Université Claude Bernard Lyon 1, 69 008 Lyon, France
- Faculté de Médecine Lyon Est, Université Claude Bernard Lyon 1, 69 003 Lyon, France
| |
Collapse
|
161
|
High Intake of Sodium Chloride for 28 Days Causes No Effect on Serum FGF23 Concentrations in Cats. Animals (Basel) 2022; 12:ani12223195. [PMID: 36428422 PMCID: PMC9686773 DOI: 10.3390/ani12223195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND FGF23 is an acknowledged parameter to assess kidney health. As chronic kidney failure is one of the most common diseases in aging cats, dietary influences on renal health warrant investigation. The purpose of this study was therefore to investigate potential correlations between dietary sodium chloride and FGF23. METHODS In a total of two trials, 11 cats were included. In the first trial, the cats were fed a complete and balanced control diet; in the second trial, sodium chloride was added (8 g/kg/DM)). Blood, urinary, feed, and faecal samples were analysed for major minerals. FGF23 and creatinine were measured in blood and urine samples. RESULTS Serum phosphate and FGF23 were unaffected by high sodium chloride intake, thus showing no correlation between serum FGF23 and sodium concentrations. Apparent phosphorus digestibility was significantly increased, however, by high sodium chloride intake, whereas apparent digestibility of calcium was unaffected. The present study confirms differences in FGF23 and sodium chloride interaction in cats compared with other species. Further research regarding the correlation between sodium chloride and phosphate homeostasis is warranted.
Collapse
|
162
|
Liu M, Xia P, Tan Z, Song T, Mei K, Wang J, Ma J, Jiang Y, Zhang J, Zhao Y, Yu P, Liu X. Fibroblast growth factor-23 and the risk of cardiovascular diseases and mortality in the general population: A systematic review and dose-response meta-analysis. Front Cardiovasc Med 2022; 9:989574. [PMID: 36407457 PMCID: PMC9669381 DOI: 10.3389/fcvm.2022.989574] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/06/2022] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND In the past decade, fibroblast growth factor 23 (FGF23) has been recognized as an important biomarker of cardiovascular diseases. This study aimed to assess the relationship between FGF23 and the risk of cardiovascular diseases (CVDs) in general populations. METHODS The protocol was registered prospectively in PROSPERO (CRD42021281837) and two authors independently searched for relevant studies in the PubMed, EMBASE, and Cochrane Library databases. The random effects model was applied. RESULTS In total, 29 prospective studies involving 135,576 participants were included. In the general population, the category analysis revealed that elevated FGF23 levels were related to increased risks of myocardial infarction (MI) (RR: 1.40, 95%CI: 1.03-1.89), stroke (RR: 1.20, 95%CI: 1.02-1.43), heart failure (HF) (RR: 1.37, 95%CI: 1.23-1.52), CVD events (RR: 1.22, 95%CI: 0.99-1.51), cardiovascular mortality (RR: 1.46, 95%CI: 1.29-1.65), and all-cause mortality (RR: 1.50, 95%CI: 1.29-1.74). In the continuous analysis, per doubling of FGF23 was associated with increased risks of MI (RR: 1.08, 95%CI: 0.94-1.25), stroke (RR: 1.21, 95%CI: 0.99-1.48), HF (RR: 1.24, 95%CI: 1.14-1.35), CVD events (RR: 1.12, 95%CI: 0.99-1.27), cardiovascular mortality (RR: 1.43, 95%CI: 1.09-1.88), all-cause mortality (RR: 1.37, 95%CI: 1.15-1.62). Furthermore, the dose-response analysis demonstrated a potentially non-linear relationship between FGF23 and stroke, HF, and all-cause mortality. In contrast, a potentially linear relationship between FGF23 and cardiovascular mortality was observed (p for non-linearity = 0.73). CONCLUSION The present study suggests that increased serum FGF23 levels are positively related to CVD events and mortality in the general population. The clinical application of FGF23 levels to predict CVD risk requires further research.
Collapse
Affiliation(s)
- Menglu Liu
- Department of Cardiology, Seventh People’s Hospital of Zhengzhou, Zhengzhou, China
| | - Panpan Xia
- Department of Endocrine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ziqi Tan
- Department of Endocrine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Tiangang Song
- Department of Endocrine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Kaibo Mei
- Department of Anesthesiology, People’s Hospital of Shangrao, Shangrao, China
| | - Jingfeng Wang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jianyong Ma
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, United Status
| | - Yuan Jiang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yujie Zhao
- Department of Cardiology, Seventh People’s Hospital of Zhengzhou, Zhengzhou, China
| | - Peng Yu
- Department of Endocrine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiao Liu
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
163
|
A review of ferric citrate clinical studies, and the rationale and design of the Ferric Citrate and Chronic Kidney Disease in Children (FIT4KiD) trial. Pediatr Nephrol 2022; 37:2547-2557. [PMID: 35237863 PMCID: PMC9437144 DOI: 10.1007/s00467-022-05492-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 12/01/2022]
Abstract
Pediatric chronic kidney disease (CKD) is characterized by many co-morbidities, including impaired growth and development, CKD-mineral and bone disorder, anemia, dysregulated iron metabolism, and cardiovascular disease. In pediatric CKD cohorts, higher circulating concentrations of fibroblast growth factor 23 (FGF23) are associated with some of these adverse clinical outcomes, including CKD progression and left ventricular hypertrophy. It is hypothesized that lowering FGF23 levels will reduce the risk of these events and improve clinical outcomes. Reducing FGF23 levels in CKD may be accomplished by targeting two key stimuli of FGF23 production-dietary phosphate absorption and iron deficiency. Ferric citrate is approved for use as an enteral phosphate binder and iron replacement product in adults with CKD. Clinical trials in adult CKD cohorts have also demonstrated that ferric citrate decreases circulating FGF23 concentrations. This review outlines the possible deleterious effects of excess FGF23 in CKD, summarizes data from the adult CKD clinical trials of ferric citrate, and presents the Ferric Citrate and Chronic Kidney Disease in Children (FIT4KiD) study, a randomized, placebo-controlled trial to evaluate the effects of ferric citrate on FGF23 in pediatric patients with CKD stages 3-4 (ClinicalTrials.gov Identifier NCT04741646).
Collapse
|
164
|
Schipper HS, de Ferranti S. Atherosclerotic Cardiovascular Risk as an Emerging Priority in Pediatrics. Pediatrics 2022; 150:189711. [PMID: 36217888 DOI: 10.1542/peds.2022-057956] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/29/2022] [Indexed: 12/05/2022] Open
Abstract
Over the last decades, childhood and adolescence have emerged as an important window of opportunity to prevent atherosclerotic cardiovascular disease (ASCVD) later in life. Here, we discuss the underlying advances in the field. First, atherosclerosis development starts as early as childhood. Atherogenesis initiates in the iliac arteries and abdominal aorta and subsequently develops in higher regions of the arterial tree, as has been demonstrated in nonhuman primate studies and human autopsy studies. Obesity, hypertension, hyperlipidemia, and hyperglycemia at a young age can accelerate atherogenesis. Children and adolescents with obesity have a relative risk of ∼ 2.5 for ASCVD mortality later in life, compared to peers with a normal weight. Conversely, early prevention improves long-term cardiovascular outcomes. Second, we review disease-associated factors that add to the traditional risk factors. Various pediatric disorders carry similar or even higher risks of ASCVD than obesity, including chronic inflammatory disorders, organ transplant recipients, familial hypercholesterolemia, endocrine disorders, childhood cancer survivors, chronic kidney diseases, congenital heart diseases, and premature birth, especially after fetal growth restriction. The involved disease-associated factors that fuel atherogenesis are diverse and include inflammation, vascular, and endothelial factors. The diverse and growing list of pediatric groups at risk underscores that cardiovascular risk management has solidly entered the realm of general pediatrics. In a second review in this series, we will, therefore, focus on recent advances in cardiovascular risk assessment and management and their implications for pediatric practice.
Collapse
Affiliation(s)
- Henk S Schipper
- Department of Pediatric Cardiology.,Center for Translational Immunology, Wilhelmina Children's Hospital and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sarah de Ferranti
- Department of Cardiology, Boston Children's Hospital and Harvard University Medical School, Boston, Massachusetts
| |
Collapse
|
165
|
Bover J, Trinidad P, Jara A, Soler-Majoral J, Martín-Malo A, Torres A, Frazão J, Ureña P, Dusso A, Arana C, Graterol F, Romero-González G, Troya M, Samaniego D, D'Marco L, Valdivielso JM, Fernández E, Arenas MD, Torregrosa V, Navarro-González JF, Lloret MJ, Ballarín JA, Bosch RJ, Górriz JL, de Francisco A, Gutiérrez O, Ara J, Felsenfeld A, Canalejo A, Almadén Y. Silver jubilee: 25 years of the first demonstration of the direct effect of phosphate on the parathyroid cell. Nefrologia 2022; 42:645-655. [PMID: 36925324 DOI: 10.1016/j.nefroe.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 06/18/2023] Open
Abstract
Although phosphorus is an essential element for life, it is not found in nature in its native state but rather combined in the form of inorganic phosphates (PO43-), with tightly regulated plasma levels that are associated with deleterious effects and mortality when these are out of bounds. The growing interest in the accumulation of PO43- in human pathophysiology originated in its attributed role in the pathogenesis of secondary hyperparathyroidism (SHPT) in chronic kidney disease. In this article, we review the mechanisms by which this effect was justified and we commemorate the important contribution of a Spanish group led by Dr. M. Rodríguez, just 25 years ago, when they first demonstrated the direct effect of PO43- on the regulation of the synthesis and secretion of parathyroid hormone by maintaining the structural integrity of the parathyroid glands in their original experimental model. In addition to demonstrating the importance of arachidonic acid (AA) and the phospholipase A2-AA pathway as a mediator of parathyroid gland response, these findings were predecessors of the recent description of the important role of PO43- on the activity of the calcium sensor-receptor, and also fueled various lines of research on the importance of PO43- overload not only for the pathophysiology of SHPT but also in its systemic pathogenic role.
Collapse
Affiliation(s)
- Jordi Bover
- Servicio de Nefrología, Hospital Universitario Germans Trias i Pujol, RICORS, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Universitat Autònoma de Barcelona, Badalona (Barcelona), Spain.
| | - Pedro Trinidad
- Departamento de Nefrología, HECMN siglo XXI, IMSS, Ciudad de México, México
| | - Aquiles Jara
- Departamento de Nefrología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jordi Soler-Majoral
- Servicio de Nefrología, Hospital Universitario Germans Trias i Pujol, RICORS, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Universitat Autònoma de Barcelona, Badalona (Barcelona), Spain
| | - Alejandro Martín-Malo
- Unidad de Gestión Clinica Nefrología, Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Universidad de Córdoba, España. Red Nacional de Investigación en Nefrología (REDinREN), Instituto de Salud Carlos III, Spain
| | - Armando Torres
- Servicio de Nefrología, Hospital Universitario de Canarias, Instituto de Tecnologías Biomédicas, Universidad de La Laguna, Tenerife, Spain
| | - João Frazão
- Department of Nephrology, Centro Hospitalar Universitário São João, Institute for Innovation and Health Research (I3S), Institute of Biomedical Engineering (INEB), Nephrology and Infectious Diseases Research Group, University of Porto, Porto, Portugal
| | - Pablo Ureña
- AURA Nord Saint Ouen Dialysis Service. Saint Ouen, France and Service d'Explorations Fonctionnelles Rénales, Hôpital Necker, Université Paris V, René Descartes, Paris, France
| | - Adriana Dusso
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St Louis, MO, USA
| | - Carolt Arana
- Departamento de Nefrología y Trasplante Renal, Hospital Clínic, Barcelona, España
| | - Fredzzia Graterol
- Servicio de Nefrología, Hospital Universitario Germans Trias i Pujol, RICORS, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Universitat Autònoma de Barcelona, Badalona (Barcelona), Spain
| | - Gregorio Romero-González
- Servicio de Nefrología, Hospital Universitario Germans Trias i Pujol, RICORS, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Universitat Autònoma de Barcelona, Badalona (Barcelona), Spain
| | - Maribel Troya
- Servicio de Nefrología, Hospital Universitario Germans Trias i Pujol, RICORS, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Universitat Autònoma de Barcelona, Badalona (Barcelona), Spain
| | - Diana Samaniego
- Servicio de Nefrología, Hospital Universitario Germans Trias i Pujol, RICORS, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Universitat Autònoma de Barcelona, Badalona (Barcelona), Spain
| | - Luis D'Marco
- CEU Cardenal Herrera University, Valencia, Spain
| | - José Manuel Valdivielso
- Vascular and Renal Translational Research Group, Biomedical Research Institute, IRBLLEIDA, Lleida, España. Red Nacional de Investigación en Nefrología (REDinREN, RETIC), Instituto de Salud Carlos III, Spain
| | - Elvira Fernández
- Vascular and Renal Translational Research Group, Biomedical Research Institute, IRBLLEIDA, Lleida, España. Red Nacional de Investigación en Nefrología (REDinREN, RETIC), Instituto de Salud Carlos III, Spain; Grupo de Investigación Traslacional Vascular y Renal, Fundación Renal Jaume Arnó, Lleida, Spain
| | | | - Vicente Torregrosa
- Departamento de Nefrología y Trasplante Renal, Hospital Clínic, Barcelona, España
| | - Juan F Navarro-González
- Unidad de Investigación y Servicio de Nefrología, Hospital Universitario Nuestra Señora de la Candelaria, Instituto Universitario de Tecnologías Biomédicas, Universidad de la Laguna, Santa Cruz de Tenerife, España. Red Nacional de Investigación en Nefrología (REDinREN, RICORS), Instituto de Salud Carlos III, Spain
| | - María Jesús Lloret
- Servicio de Nefrología, Fundació Puigvert, IIB Sant Pau, Barcelona, Spain
| | - J A Ballarín
- Servicio de Nefrología, Fundació Puigvert, IIB Sant Pau, Barcelona, Spain
| | - Ricardo J Bosch
- Unidad de Fisiología, Departamento de Biología de Sistemas, Facultad de Medicina, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - José L Górriz
- Servicio de Nefrología, Hospital Clínico Universitario, INCLIVA, Universidad de Valencia, Valencia, Spain
| | | | - Orlando Gutiérrez
- Division of Nephrology, Department of Medicine, Universidad de Alabama en Birmingham, Birmingham USA
| | - Jordi Ara
- Servicio de Nefrología, Hospital Universitario Germans Trias i Pujol, RICORS, Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Universitat Autònoma de Barcelona, Badalona (Barcelona), Spain
| | - Arnold Felsenfeld
- Department of Medicine, Veterans Affairs Greater Los Angeles Healthcare System and David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Antonio Canalejo
- Departamento de Ciencias Integradas/Centro de Investigación RENSMA, Facultad de Ciencias Experimentales, Universidad de Huelva. Huelva, Spain
| | - Yolanda Almadén
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Universidad de Córdoba, Córdoba, Spain
| |
Collapse
|
166
|
Rowe PS, McCarthy EM, Yu AL, Stubbs JR. Correction of Vascular Calcification and Hyperphosphatemia in CKD Rats Treated with ASARM Peptide. KIDNEY360 2022; 3:1683-1698. [PMID: 36514737 PMCID: PMC9717652 DOI: 10.34067/kid.0002782022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 08/25/2022] [Indexed: 01/11/2023]
Abstract
Background Abnormalities in calcium, phosphorus, PTH, vitamin D metabolism, bone, and vascular calcification occur in chronic kidney disease mineral bone disorder (CKD-MBD). Calciphylaxis, involving painful, ulcerative skin lesions, is also a major problem associated with CKD-MBD. There are no quality medical interventions to address these clinical issues. Bone ASARM peptides are strong inhibitors of mineralization and induce hypophosphatemia by inhibiting phosphate uptake from the gut. We hypothesize treatment of CKD-MBD rats with ASARM peptides will reverse hyperphosphatemia, reduce soft-tissue calcification, and prevent calciphylaxis. Methods To test our hypothesis, we assessed the effects of synthetic ASARM peptide in rats that had undergone a subtotal 5/6th nephrectomy (56NEPHREX), a rodent model of CKD-MBD. All rats were fed a high phosphate diet (2% Pi) to worsen mineral metabolism defects. Changes in serum potassium, phosphate, BUN, creatinine, PTH, FGF23, and calcium were assessed in response to 28 days of ASARM peptide infusion. Also, changes in bone quality, soft-tissue calcification, and expression of gut Npt2b (Slc34a2) were studied following ASARM peptide treatment. Results Rats that had undergone 56NEPHREX treated with ASARM peptide showed major improvements in hyperphosphatemia, blood urea nitrogen (BUN), and bone quality compared with vehicle controls. Also, ASARM-infused 56NEPHREX rats displayed improved renal, brain, and cardiovascular calcification. Notably, ASARM peptide infusion prevented the genesis of subdermal medial blood vessel calcification and calciphylaxis-like lesions in 56NEPHREX rats compared with vehicle controls. Conclusions ASARM peptide infusion corrects hyperphosphatemia and improves vascular calcification, renal calcification, brain calcification, bone quality, renal function, and skin mineralization abnormalities in 56NEPHREX rats. These findings confirm our hypothesis and support the utility of ASARM peptide treatment in patients with CKD-MBD.
Collapse
Affiliation(s)
- Peter S. Rowe
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Ellen M. McCarthy
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Alan L. Yu
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Jason R. Stubbs
- The Jared Grantham Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas
- Division of Nephrology and Hypertension, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
167
|
Amitani H, Chiba S, Amitani M, Michihara S, Takemoto R, Han L, Fujita N, Takahashi R, Inui A. Impact of Ninjin’yoeito on frailty and short life in klotho-hypomorphic (kl/kl) mice. Front Pharmacol 2022; 13:973897. [DOI: 10.3389/fphar.2022.973897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/03/2022] [Indexed: 11/13/2022] Open
Abstract
With the recent aging of society, the prevention of frailty has become an important issue because people desire both a long and healthy lifespan. Klotho-hypomorphic (kl/kl) mice are known to show phenotypes of premature aging. Ninjin’yoeito (NYT) is a traditional Japanese Kampo medicine used to treat patients with vulnerable constitution, fatigue or physical exhaustion caused by aging and illness. Recent studies have reported the potential efficacy of NYT against frailty. We therefore evaluated the effect of NYT on the gait function, activity, the histopathological status of organs and survival using kl/kl mice as a model of aging-related frailty. Two sets of 28-day-old male kl/kl mice were assigned to the vehicle (non-treated; NT), 3% or 5% NYT dietary groups. One set of groups (NT, n = 18; 3% NYT, n = 11; 5% NYT, n = 11) was subjected to the analysis of free walking, rotarod, and spontaneous activity tests at approximately 58 days old. Thereafter, we measured triceps surae muscles weight and myofiber cross-sectional area (CSA), and quantified its telomere content. In addition, we evaluated bone strength and performed histopathological examinations of organs. Survival was measured in the second set of groups (NT, 3% NYT and 5% NYT group, n = 8 each). In the walking test, several indicators such as gait velocity were improved in the NYT 3% group. Similar results were obtained for the latency to fall in the rotarod test and spontaneous motor activity. Triceps muscle mass, CSA and its telomere content were significantly improved in the NYT 3% group. Bone density, pulmonary alveolus destruction and testicular atrophy were also significantly improved in the NYT 3% group. Survival rate and body weight were both significantly improved in the NYT3% group compared with those in the NT group. Continuous administration of NYT from the early stage of aging improved not only gait performance, but also the survival in the aging-related frailty model. This effect may be associated with the improvements in aging-related organ changes such as muscle atrophy. Intervention with NYT against the progression of frailty may contribute to a longer, healthier life span among the elderly individuals.
Collapse
|
168
|
Boots JMM, Quax RAM. High-Dose Intravenous Iron with Either Ferric Carboxymaltose or Ferric Derisomaltose: A Benefit-Risk Assessment. Drug Saf 2022; 45:1019-1036. [PMID: 36068430 PMCID: PMC9492608 DOI: 10.1007/s40264-022-01216-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2022] [Indexed: 11/22/2022]
Abstract
The intravenous iron formulations ferric carboxymaltose (FCM) and ferric derisomaltose (FDI) offer the possibility of administering a large amount of iron in one infusion. This results in faster correction of anemia and the formulations being better tolerated than oral iron formulations. This triad of logistic advantages, improved patient convenience, and fast correction of anemia explains the fact that intravenous iron formulations nowadays are frequently prescribed worldwide in the treatment of iron deficiency anemia. However, these formulations may result in hypophosphatemia by inducing a strong increase in active fibroblast growth factor-23 (FGF-23), a hormone that stimulates renal phosphate excretion. This effect is much more pronounced with FCM than with FDI, and therefore the risk of developing hypophosphatemia is remarkably higher with FCM than with FDI. Repeated use of FCM may result in severe osteomalacia, which is characterized by bone pain, Looser zones (pseudofractures), and low-trauma fractures. Intravenous iron preparations are also associated with other adverse effects, of which hypersensitivity reactions are the most important and are usually the result of a non-allergic complement activation on nanoparticles of free labile iron-Complement Activation-Related Pseudo-Allergy (CARPA). The risk on these hypersensitivity reactions can be reduced by choosing a slow infusion rate. Severe hypersensitivity reactions were reported in < 1% of prospective trials and the incidence seems comparable between the two formulations. A practical guideline has been developed based on baseline serum phosphate concentrations and predisposing risk factors, derived from published cases and risk factor analyses from trials, in order to establish the safe use of these formulations.
Collapse
Affiliation(s)
- Johannes M M Boots
- Department of Internal Medicine, Maasstad Hospital, Maasstadweg 21, 3079 DZ, Rotterdam, The Netherlands.
| | - Rogier A M Quax
- Department of Internal Medicine, Maasstad Hospital, Maasstadweg 21, 3079 DZ, Rotterdam, The Netherlands
| |
Collapse
|
169
|
Prastaro M, Nardi E, Paolillo S, Santoro C, Parlati ALM, Gargiulo P, Basile C, Buonocore D, Esposito G, Filardi PP. Cardiorenal syndrome: Pathophysiology as a key to the therapeutic approach in an under-diagnosed disease. JOURNAL OF CLINICAL ULTRASOUND : JCU 2022; 50:1110-1124. [PMID: 36218199 PMCID: PMC9828083 DOI: 10.1002/jcu.23265] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/13/2022] [Accepted: 06/20/2022] [Indexed: 06/09/2023]
Abstract
Cardiorenal syndrome is a clinical condition that impacts both the heart and the kidneys. One organ's chronic or acute impairment can lead to the other's chronic or acute dysregulation. The cardiorenal syndrome has been grouped into five subcategories that describe the etiology, pathophysiology, duration, and pattern of cardiac and renal dysfunction. This classification reflects the large spectrum of interrelated dysfunctions and underlines the bidirectional nature of heart-kidney interactions. However, more evidence is needed to apply these early findings in medical practice. Understanding the relationship between these two organs during each organ's impairment has significant clinical implications that are relevant for therapy in both chronic and acute conditions. The epidemiology, definition, classification, pathophysiology, therapy, and outcome of each form of cardiorenal syndrome are all examined in this review.
Collapse
Affiliation(s)
- Maria Prastaro
- Department of Advanced Biomedical SciencesUniversity of Naples Federico IINaplesItaly
| | - Ermanno Nardi
- Department of Advanced Biomedical SciencesUniversity of Naples Federico IINaplesItaly
| | - Stefania Paolillo
- Department of Advanced Biomedical SciencesUniversity of Naples Federico IINaplesItaly
| | - Ciro Santoro
- Department of Advanced Biomedical SciencesUniversity of Naples Federico IINaplesItaly
| | - Antonio L. M. Parlati
- Department of Advanced Biomedical SciencesUniversity of Naples Federico IINaplesItaly
| | - Paola Gargiulo
- Department of Advanced Biomedical SciencesUniversity of Naples Federico IINaplesItaly
| | - Christian Basile
- Department of Advanced Biomedical SciencesUniversity of Naples Federico IINaplesItaly
| | - Davide Buonocore
- Department of Advanced Biomedical SciencesUniversity of Naples Federico IINaplesItaly
| | - Giovanni Esposito
- Department of Advanced Biomedical SciencesUniversity of Naples Federico IINaplesItaly
| | | |
Collapse
|
170
|
Halim A, Burney HN, Li X, Li Y, Tomkins C, Siedlecki AM, Lu TS, Kalim S, Thadhani R, Moe S, Ting SM, Zehnder D, Hiemstra TF, Lim K. FGF23 and Cardiovascular Structure and Function in Advanced Chronic Kidney Disease. KIDNEY360 2022; 3:1529-1541. [PMID: 36245643 PMCID: PMC9528374 DOI: 10.34067/kid.0002192022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/29/2022] [Indexed: 11/27/2022]
Abstract
Background Fibroblast growth factor 23 (FGF23) is a bone-derived phosphatonin that is elevated in chronic kidney disease (CKD) and has been implicated in the development of cardiovascular disease. It is unknown whether elevated FGF23 in CKD is associated with impaired cardiovascular functional capacity, as assessed by maximum exercise oxygen consumption (VO2Max). We sought to determine whether FGF23 is associated with cardiovascular functional capacity in patients with advanced CKD and after improvement of VO2Max by kidney transplantation. Methods We performed secondary analysis of 235 patients from the Cardiopulmonary Exercise Testing in Renal Failure and After Kidney Transplantation (CAPER) cohort, which recruited patients with stage 5 CKD who underwent kidney transplantation or were waitlisted and hypertensive controls. All patients underwent cardiopulmonary exercise testing (CPET) and echocardiography and were followed longitudinally for 1 year after study enrollment. Results Patients across FGF23 quartiles differed in BMI (P=0.004) and mean arterial pressure (P<0.001) but did not significantly differ in sex (P=0.5) or age (P=0.08) compared with patients with lower levels of FGF23. Patients with higher FGF23 levels had impaired VO2Max (Q1: 24.2±4.8 ml/min per kilogram; Q4: 18.6±5.2 ml/min per kilogram; P<0.001), greater left ventricular mass index (LVMI; P<0.001), reduced HR at peak exercise (P<0.001), and maximal workload (P<0.001). Kidney transplantation conferred a significant decline in FGF23 at 2 months (P<0.001) before improvement in VO2Max at 1 year (P=0.008). Multivariable regression modeling revealed that changes in FGF23 was significantly associated with VO2Max in advanced CKD (P<0.001) and after improvement after kidney transplantation (P=0.006). FGF23 was associated with LVMI before kidney transplantation (P=0.003), however this association was lost after adjustment for dialysis status (P=0.4). FGF23 was not associated with LVMI after kidney transplantation in all models. Conclusions FGF23 levels are associated with alterations in cardiovascular functional capacity in advanced CKD and after kidney transplantation. FGF23 is only associated with structural cardiac adaptations in advanced CKD but this was modified by dialysis status, and was not associated after kidney transplantation.
Collapse
Affiliation(s)
- Arvin Halim
- Division of Nephrology and Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Heather N. Burney
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, Indiana
| | - Xiaochun Li
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, Indiana
| | - Yang Li
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, Indiana
| | - Claudia Tomkins
- Biochemistry Department, Kettering General Hospital NHS Foundation Trust, Kettering, United Kingdom
| | - Andrew M. Siedlecki
- Division of Renal Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Tzong-shi Lu
- Division of Renal Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Sahir Kalim
- Nephrology Division, Massachusetts General Hospital, Boston, Massachusetts
| | - Ravi Thadhani
- Mass General Brigham, Harvard Medical School, Massachusetts
| | - Sharon Moe
- Division of Nephrology and Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Stephen M.S. Ting
- Department of Medicine, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Daniel Zehnder
- Department of Nephrology and Department of Acute Medicine, North Cumbria University Hospital NHS Trust, Carlisle, United Kingdom
| | - Thomas F. Hiemstra
- School of Clinical Medicine, University of Cambridge; Clinical Trials Unit (CTU), Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Kenneth Lim
- Division of Nephrology and Hypertension, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
171
|
Murray SL, Wolf M. Exercising the FGF23-Cardiac Axis. KIDNEY360 2022; 3:1471-1473. [PMID: 36245659 PMCID: PMC9528383 DOI: 10.34067/kid.0004962022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 08/22/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Susan L. Murray
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Myles Wolf
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
172
|
Matsiukevich D, House SL, Weinheimer C, Kovacs A, Ornitz DM. Fibroblast growth factor receptor signaling in cardiomyocytes is protective in the acute phase following ischemia-reperfusion injury. Front Cardiovasc Med 2022; 9:1011167. [PMID: 36211556 PMCID: PMC9539275 DOI: 10.3389/fcvm.2022.1011167] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/29/2022] [Indexed: 11/29/2022] Open
Abstract
Fibroblast growth factor receptors (FGFRs) are expressed in multiple cell types in the adult heart. Previous studies have shown a cardioprotective effect of some FGF ligands in cardiac ischemia-reperfusion (I/R) injury and a protective role for endothelial FGFRs in post-ischemic vascular remodeling. To determine the direct role FGFR signaling in cardiomyocytes in acute cardiac I/R injury, we inactivated Fgfr1 and Fgfr2 (CM-DCKO) or activated FGFR1 (CM-caFGFR1) in cardiomyocytes in adult mice prior to I/R injury. In the absence of injury, inactivation of Fgfr1 and Fgfr2 in adult cardiomyocytes had no effect on cardiac morphometry or function. When subjected to I/R injury, compared to controls, CM-DCKO mice had significantly increased myocyte death 1 day after reperfusion, and increased infarct size, cardiac dysfunction, and myocyte hypertrophy 7 days after reperfusion. No genotype-dependent effect was observed on post-ischemic cardiomyocyte cross-sectional area and vessel density in areas remote to the infarct. By contrast, transient activation of FGFR1 signaling in cardiomyocytes just prior to the onset of ischemia did not affect outcomes after cardiac I/R injury at 1 day and 7 days after reperfusion. These data demonstrate that endogenous cell-autonomous cardiomyocyte FGFR signaling supports the survival of cardiomyocytes in the acute phase following cardiac I/R injury and that this cardioprotection results in continued improved outcomes during cardiac remodeling. Combined with the established protective role of some FGF ligands and endothelial FGFR signaling in I/R injury, this study supports the development of therapeutic strategies that promote cardiomyocyte FGF signaling after I/R injury.
Collapse
Affiliation(s)
- Dzmitry Matsiukevich
- Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| | - Stacey L. House
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
- Department of Emergency Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| | - Carla Weinheimer
- Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| | - Attila Kovacs
- Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| | - David M. Ornitz
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
| |
Collapse
|
173
|
Verbueken D, Moe OW. Strategies to lower fibroblast growth factor 23 bioactivity. Nephrol Dial Transplant 2022; 37:1800-1807. [PMID: 33502502 PMCID: PMC9494132 DOI: 10.1093/ndt/gfab012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Indexed: 12/26/2022] Open
Abstract
Fibroblast growth factor 23 (FGF23) is a circulating hormone derived from the bone whose release is controlled by many factors and exerts a multitude of systemic actions. There are congenital and acquired disorders of increased and decreased FGF23 levels. In chronic kidney disease (CKD), elevations of FGF23 levels can be 1000-fold above the upper physiological limit. It is still debated whether this high FGF23 in CKD is a biomarker or causally related to morbidity and mortality. Data from human association studies support pathogenicity, while experimental data are less robust. Knowledge of the biology and pathobiology of FGF23 has generated a plethora of means to reduce FGF23 bioactivity at many levels that will be useful for therapeutic translations. This article summarizes these approaches and addresses several critical questions that still need to be answered.
Collapse
Affiliation(s)
- Devin Verbueken
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | | |
Collapse
|
174
|
Epidemiology and risk of cardiovascular disease in populations with chronic kidney disease. Nat Rev Nephrol 2022; 18:696-707. [DOI: 10.1038/s41581-022-00616-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2022] [Indexed: 11/08/2022]
|
175
|
Li L, Gan H. Intact Fibroblast Growth Factor 23 Regulates Chronic Kidney Disease–Induced Myocardial Fibrosis by Activating the Sonic Hedgehog Signaling Pathway. J Am Heart Assoc 2022; 11:e026365. [DOI: 10.1161/jaha.122.026365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background
Clinically, myocardial fibrosis is one of the most common complications caused by chronic kidney disease (CKD). However, the potential mechanisms of CKD‐induced myocardial fibrosis have not been clarified.
Methods and Results
In our in vivo study, a rat model of CKD with 5/6 nephrectomy was established. The CKD model was treated with the glioma 1 (Gli‐1) inhibitor GANT‐61, and myocardial fibrosis and serum intact fibroblast growth factor 23 levels were assessed 16 weeks after nephrectomy. Finally, we found that Gli‐1 and Smoothened in the Sonic Hedgehog (Shh) signaling pathway were activated and that collagen‐1 and collagen‐3, which constitute the fibrotic index, were expressed in CKD myocardial tissue. After administering the Gli‐1 inhibitor GANT‐61, the degree of myocardial fibrosis was reduced, and Gli‐1 expression was also inhibited. We also measured blood pressure, cardiac biomarkers, and other indicators in rats and performed hematoxylin‐eosin staining of myocardial tissue. Furthermore, in vitro studies showed that intact fibroblast growth factor 23 promoted cardiac fibroblast proliferation and transdifferentiation into myofibroblasts by activating the Shh signaling pathway, thereby promoting cardiac fibrosis, as manifested by increased expression of the Shh, Patch 1, and Gli‐1 mRNAs and Shh, Smoothened, and Gli‐1 proteins in the Shh signaling pathway. The protein and mRNA levels of other fibrosis indicators, such as α‐smooth muscle actin, which are also markers of transdifferentiation, collagen‐1, and collagen‐3, were increased.
Conclusions
On the basis of these results, intact fibroblast growth factor 23 promotes CKD‐induced myocardial fibrosis by activating the Shh signaling pathway.
Collapse
Affiliation(s)
- Lanlan Li
- Department of Nephrology The First Affiliated Hospital of Chongqing Medical University Chongqing China
| | - Hua Gan
- Department of Nephrology The First Affiliated Hospital of Chongqing Medical University Chongqing China
| |
Collapse
|
176
|
Sarnak MJ, Auguste BL, Brown E, Chang AR, Chertow GM, Hannan M, Herzog CA, Nadeau-Fredette AC, Tang WHW, Wang AYM, Weiner DE, Chan CT. Cardiovascular Effects of Home Dialysis Therapies: A Scientific Statement From the American Heart Association. Circulation 2022; 146:e146-e164. [PMID: 35968722 DOI: 10.1161/cir.0000000000001088] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Cardiovascular disease is the leading cause of morbidity and mortality in patients with end-stage kidney disease. Currently, thrice-weekly in-center hemodialysis for 3 to 5 hours per session is the most common therapy worldwide for patients with treated kidney failure. Outcomes with thrice-weekly in-center hemodialysis are poor. Emerging evidence supports the overarching hypothesis that a more physiological approach to administering dialysis therapy, including in the home through home hemodialysis or peritoneal dialysis, may lead to improvement in several cardiovascular risk factors and cardiovascular outcomes compared with thrice-weekly in-center hemodialysis. The Advancing American Kidney Health Initiative, which has a goal of increasing the use of home dialysis, is aligned with the American Heart Association's 2024 mission to champion a full and healthy life and health equity. We conclude that incorporation of interdisciplinary care models to increase the use of home dialysis therapies in an equitable manner will contribute to the ultimate goal of improving outcomes for patients with kidney failure and cardiovascular disease.
Collapse
|
177
|
Junho CVC, González-Lafuente L, Neres-Santos RS, Navarro-García JA, Rodríguez-Sánchez E, Ruiz-Hurtado G, Carneiro-Ramos MS. Klotho relieves inflammation and exerts a cardioprotective effect during renal ischemia/reperfusion-induced cardiorenal syndrome. Biomed Pharmacother 2022; 153:113515. [DOI: 10.1016/j.biopha.2022.113515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 11/02/2022] Open
|
178
|
Sodium phosphate cotransporter 2a inhibitors: potential therapeutic uses. Curr Opin Nephrol Hypertens 2022; 31:486-492. [PMID: 35894284 PMCID: PMC9387751 DOI: 10.1097/mnh.0000000000000828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE OF REVIEW Targeting sodium phosphate cotransporter 2a (Npt2a) offers a novel strategy for treating hyperphosphatemia in chronic kidney disease (CKD). Here we review recent studies on the efficacy of Npt2a inhibition, its plasma phosphate (Pi)-lowering effects, as well as potential "off-target" beneficial effects on cardiovascular consequences. RECENT FINDINGS Two novel Npt2a-selective inhibitors (PF-06869206 and BAY-767) have been developed. Pharmacological Npt2a inhibition shows a significant phosphaturic effect and consequently lowers plasma Pi and parathyroid hormone (PTH) levels regardless of CKD. However, plasma fibroblast growth factor 23 (FGF23), a master regulator of Pi homeostasis, shows inconsistent responses between these two inhibitors (no effect by PF-06869206 vs. reduction by BAY-767). In addition to the effects on Pi homeostasis, Npt2a inhibition also enhances urinary excretions of Na+, Cl-, and Ca2+, which is recapitulated in animal models with reduced kidney function. The effect of Npt2a inhibition by BAY-767 on vascular calcification has been studied, with positive results showing that oral treatment with BAY-767 (10 mg kg-1) attenuated the increases in plasma Pi and Ca2+ content in the aorta under the setting of vascular calcification induced by a pan-FGF receptor inhibitor. Together, Npt2a inhibition offers a promising therapeutic approach for treating hyperphosphatemia and reducing cardiovascular complications in CKD. SUMMARY Npt2a inhibition significantly increases urinary Pi excretion and lowers plasma Pi and PTH levels; moreover, it exerts pleiotropic "off-target" effects, providing a novel treatment for hyperphosphatemia and exhibiting beneficial potential for cardiovascular complications in CKD.
Collapse
|
179
|
Castellano-Martinez A, Acuñas-Soto S, Roldan-Cano V, Rodriguez-Gonzalez M. Left Ventricular Hypertrophy in Patients with X-Linked Hypophosphataemia. J Clin Res Pediatr Endocrinol 2022; 14:344-349. [PMID: 33783172 PMCID: PMC9422913 DOI: 10.4274/jcrpe.galenos.2021.2020.0287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
X-linked hypophosphatemia (XLH) is a rare genetic disorder with X-linked dominant inheritance. Mutations in the PHEX gene increase fibroblast growth factor 23 (FGF23) concentrations, causing loss of phosphorus at the proximal tubule. Most pediatric patients debut in the first two years with short stature and bowed legs. Conventional treatment consists of oral supplements with phosphorus and calcitriol. Since 2018, burosumab has been approved as a novel therapeutic option for XLH, with promising results. The purpose of this study was to share our experience with two cases of XLH treated with burosumab. These patients presented with a broad phenotypical differences. One had the most severe radiological phenotype and developed left ventricular hypertrophy (LVH) and left ventricular dysfunction with preserved ejection fraction. Treatment with burosumab was well-tolerated and was followed by radiological stability and a striking improvement in both blood biochemistry and quality of life. The LVH was stable and left ventricular function normalized in the patient with cardiac involvement. In recent years many studies have been carried out to explain the role of FGF23 in cardiovascular damage, but the exact pathophysiological mechanisms are as yet unclear. The most intensively studied populations are patients with XLH or chronic kidney disease, as both are associated with high levels of FGF23. To date, cardiovascular involvement in XLH has been described in patients treated with conventional treatment, so it would be of interest to investigate if early use of burosumab at the time of diagnosis of XLH would prevent the occurrence of cardiovascular manifestations.
Collapse
Affiliation(s)
- Ana Castellano-Martinez
- Puerta del Mar University Hospital, Department of Pediatric Nephrology, Cadiz, Spain,* Address for Correspondence: Puerta del Mar University Hospital, Department of Pediatric Nephrology, Cadiz, Spain Phone: +34 956002700 E-mail:
| | - Silvia Acuñas-Soto
- Puerta del Mar University Hospital, Department of Pediatric Nephrology, Cadiz, Spain
| | - Virginia Roldan-Cano
- Puerta del Mar University Hospital, Department of Pediatric Nephrology, Cadiz, Spain
| | | |
Collapse
|
180
|
Chan KS, Mohan S, Shelat VG. Outcomes of patients with post-hepatectomy hypophosphatemia: A narrative review. World J Hepatol 2022; 14:1550-1561. [PMID: 36157866 PMCID: PMC9453469 DOI: 10.4254/wjh.v14.i8.1550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/31/2022] [Accepted: 07/31/2022] [Indexed: 02/06/2023] Open
Abstract
Phosphate is an essential electrolyte for proper mineralisation of bone, buffering of urine, and diverse cellular actions. Hypophosphatemia (HP) is a clinical spectrum which range from asymptomatic to severe complications such as neuromuscular and pulmonary complications, or even death. Post-hepatectomy HP (PHH) has been reported to be 55.5%-100%. Post-hepatectomy, there is rapid uptake of phosphate and increased mitotic counts to aid in regeneration of residual liver. Concurrently, PHH may be due to increased urinary phosphorous from activation of matrix extracellular phosphoglycoprotein in the injured liver, which decreases phosphate influx into hepatocytes to sustain adenosine triphosphate synthesis. A literature review was performed on PubMed till January 2022. We included 8 studies which reported on impact of PHH on post-operative outcomes. In patients with diseased liver, PHH was reported to have either beneficial or deleterious effects on post-hepatectomy liver failure (PHLF), morbidity and/or mortality in various cohorts. In living donor hepatectomy, PHLF was higher in PHH. Benefits of correction of PHH with reduced post-operative complications have been shown. Correction of PHH should be done based on extent of PHH. Existing studies were however heterogenous; further studies should be conducted to assess PHH on post-operative outcomes with standardized phosphate replacement regimes.
Collapse
Affiliation(s)
- Kai Siang Chan
- Department of General Surgery, Tan Tock Seng Hospital, Singapore 308433, Singapore
| | - Swetha Mohan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Vishal G Shelat
- Department of General Surgery, Tan Tock Seng Hospital, Singapore 308433, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| |
Collapse
|
181
|
Ferraro S, Biganzoli G, Calcaterra V, Zuccotti G, Biganzoli EM, Plebani M. Fibroblast growth factor 23: translating analytical improvement into clinical effectiveness for tertiary prevention in chronic kidney disease. Clin Chem Lab Med 2022; 60:1694-1705. [PMID: 36008874 DOI: 10.1515/cclm-2022-0635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 07/22/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Fibroblast growth factor 23 (FGF23) plays a key role in the pathophysiology of chronic kidney disease (CKD) and of the associated cardiovascular diseases, ranking on the crossroads of several evolving areas with a relevant impact on the health-care system (ageing, treatment of CKD and prevention from cardiovascular and renal events). In this review, we will critically appraise the overall issues concerning the clinical usefulness of FGF23 determination in CKD, focusing on the analytical performances of the methods, aiming to assess whether and how the clinical introduction of FGF23 may promote cost-effective health care policies in these patients. CONTENT Our comprehensive critical appraisal of the literature revealed that we are currently unable to establish the clinical usefulness of FGF23 measured by ELISA in CKD, as stability issues and suboptimal analytical performances are the major responsible for the release of misleading results. The meta-analytical approach has failed to report unambiguous evidence in face of the wide heterogeneity of the results from single studies. SUMMARY AND OUTLOOK Our review has largely demonstrated that the clinical usefulness depends on a thorough analytical validation of the assay. The recent introduction of chemiluminescent intact-FGF23 (iFGF23) assays licensed for clinical use, after passing a robust analytical validation, has allowed the actual assessment of preliminary risk thresholds for cardiovascular and renal events and is promising to capture the iFGF23 clinically relevant changes as a result of a therapeutic modulation. In this perspective, the analytical optimization of FGF23 determination may allow a marriage between physiology and epidemiology and a merging towards clinical outcomes.
Collapse
Affiliation(s)
- Simona Ferraro
- Endocrinology Laboratory Unit, "Luigi Sacco" University Hospital, Milan, Italy
| | - Giacomo Biganzoli
- Medical Statistics Unit, Department of Biomedical and Clinical Sciences L. Sacco, "Luigi Sacco" University Hospital, University of Milan, Milan, Italy
| | - Valeria Calcaterra
- Department of Internal Medicine, University of Pavia, Pavia, Italy.,Pediatric Department, "V. Buzzi" Children's Hospital, Milan, Italy
| | - Gianvincenzo Zuccotti
- Pediatric Department, "V. Buzzi" Children's Hospital, Milan, Italy.,Department of Biomedical and Clinical Science, University of Milan, Milan, Italy
| | - Elia Mario Biganzoli
- Medical Statistics Unit, Department of Biomedical and Clinical Sciences L. Sacco, "Luigi Sacco" University Hospital, University of Milan, Milan, Italy
| | - Mario Plebani
- Department of Medicine-DIMED, University of Padova, Padova, Italy
| |
Collapse
|
182
|
Ketteler M, Bover J, Mazzaferro S. Treatment of secondary hyperparathyroidism in non-dialysis CKD: an appraisal 2022s. Nephrol Dial Transplant 2022; 38:1397-1404. [PMID: 35977397 DOI: 10.1093/ndt/gfac236] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Indexed: 11/12/2022] Open
Abstract
The situation of secondary hyperparathyroidism (sHPT) in CKD patients not on dialysis (ND-CKD) is probably best characterised by the KDIGO CKD-MBD Update 2017 guideline 4.2.1 stating that the optimal PTH levels is not known in these stages. Furthermore, new caution became recommended with regard to the routine use of active vitamin D analogues in early CKD stages and moderate sHPT phenotypes, due to their potential risks for hypercalcaemia and hyperphosphataemia aggravation. Nevertheless, there is still a substantial clinical need to prevent the development of parathyroid gland autonomy with its associated consequences of bone and vascular damage including fracture risks and cardiovascular events. Therefore, we now attempt to review the current guideline-based and clinical practice management of sHPT in ND-CKD including their strengths and weaknesses, favouring individualised approaches respecting calcium and phosphate homeostasis. We further comment on extended-release calcifediol (ERC) as a new differential therapeutic option now also available in Europe, and on a potentially novel understanding of a required vitamin D saturation in more advanced CKD stages. There is no doubt, however, that knowledge gaps will remain in this issue unless powerful RCTs with hard and meaningful endpoints are performed.
Collapse
Affiliation(s)
- Markus Ketteler
- Department of General Internal Medicine and Nephrology, Robert-Bosch-Krankenhaus, Stuttgart, Germany
| | - Jordi Bover
- Nephrology Department, University Hospital Germans Trias i Pujol (HGiTP), Badalona (Barcelona), Catalonia, Spain.,REMAR-IGTP Group, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, Badalona (Barcelona), Catalonia, Spain
| | - Sandro Mazzaferro
- Department of Translational and Precision Medicine, Sapienza University of Rome, Italy
| | | |
Collapse
|
183
|
Koshi-Ito E, Inaguma D, Ishii H, Yuzawa Y, Kabata D, Shintani A, Inaba M, Emoto M, Mori K, Morioka T, Nakatani S, Shoji T. Associations of time-dependent changes in phosphorus levels with cardiovascular diseases in patients undergoing hemodialysis: Results from the Japan Dialysis Active Vitamin D (J-DAVID) randomized clinical trial. Clin Kidney J 2022; 15:2281-2291. [DOI: 10.1093/ckj/sfac172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Background
While the risk of exceeding the standard range of phosphorus levels has been investigated, the impact of the degree of fluctuations has not been investigated.
Methods
Data were derived from the Japan Dialysis Active Vitamin D trial, a 4-year prospective, randomized study involving 976 patients without secondary hyperparathyroidism undergoing hemodialysis in Japan. Laboratory data were collected every six months, and the primary outcome was the time to the occurrence of cardiovascular events. The effect of time-dependent changes in phosphorus levels was assessed using a time-varying Cox proportional hazard regression model.
Results
The median serum phosphorus levels at baseline and at the final observation were 4.70 [3.90–5.30] and 5.00 [4.20–5.80] mg/dL, respectively. Over each six-month period, phosphorus changes ranged from -7.1 to +6.7 mg/dL, with a median value of -0.1 to +0.3 mg/dL. During follow-up, composite cardiovascular events occurred in 103 of 964 patients. Although the p-value for the interaction between serum phosphorus level fluctuations and baseline phosphorus levels was insignificant, the following trends were observed. First, patients with relatively high initial phosphorus levels over a six-month period showed a trend towards a higher hazard with greater changes in the phosphorus level over the six-month period. Second, it was suggested that oral VDRAs could contribute to the relationship between fluctuating phosphorus levels and cardiovascular events.
Conclusions
Our results suggest the importance of maintaining stable phosphorus levels, not only in the normal range but also without fluctuations in the risk of cardiovascular events, among patients without secondary hyperparathyroidism undergoing maintenance hemodialysis.
Collapse
Affiliation(s)
- Eri Koshi-Ito
- Fujita Health University School of Medicine , Toyoake, Aichi , Japan
- Department of Nephrology, Internal Medicine, Nagoya University Graduate School of Medicine
| | - Daijo Inaguma
- Fujita Health University School of Medicine , Toyoake, Aichi , Japan
- The J-DAVID Investigators
- Department of Internal Medicine, Fujita Health University Bantane Hospital , Aichi , Japan
| | - Haruka Ishii
- Department of Medical Statistics, Osaka City University Graduate School of Medicine , Osaka , Japan
| | - Yukio Yuzawa
- Fujita Health University School of Medicine , Toyoake, Aichi , Japan
| | - Daijiro Kabata
- Department of Medical Statistics, Osaka City University Graduate School of Medicine , Osaka , Japan
| | - Ayumi Shintani
- Department of Medical Statistics, Osaka City University Graduate School of Medicine , Osaka , Japan
| | - Masaaki Inaba
- The J-DAVID Investigators
- Vascular Science Centre for Translational Research, Osaka City University Graduate School of Medicine , Osaka , Japan
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine , Osaka , Japan
- Department of Nephrology, Osaka City University Graduate School of Medicine , Osaka , Japan
| | - Masanori Emoto
- The J-DAVID Investigators
- Vascular Science Centre for Translational Research, Osaka City University Graduate School of Medicine , Osaka , Japan
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine , Osaka , Japan
- Department of Nephrology, Osaka City University Graduate School of Medicine , Osaka , Japan
| | - Katsuhito Mori
- Department of Nephrology, Osaka City University Graduate School of Medicine , Osaka , Japan
| | - Tomoaki Morioka
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine , Osaka , Japan
| | - Shinya Nakatani
- Department of Metabolism, Endocrinology and Molecular Medicine, Osaka City University Graduate School of Medicine , Osaka , Japan
| | - Tetsuo Shoji
- The J-DAVID Investigators
- Department of Vascular Medicine, Osaka City University Graduate School of Medicine , Osaka , Japan
- Vascular Science Centre for Translational Research, Osaka City University Graduate School of Medicine , Osaka , Japan
| |
Collapse
|
184
|
Han W, Du C, Zhu Y, Ran L, Wang Y, Xiong J, Wu Y, Lan Q, Wang Y, Wang L, Wang J, Yang K, Zhao J. Targeting Myocardial Mitochondria-STING-Polyamine Axis Prevents Cardiac Hypertrophy in Chronic Kidney Disease. JACC Basic Transl Sci 2022; 7:820-840. [PMID: 36061341 PMCID: PMC9436763 DOI: 10.1016/j.jacbts.2022.03.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 01/17/2023]
Abstract
Chronic kidney disease (CKD) is well recognized as a distinct contributor to cardiac hypertrophy, while the underlying mechanism remains incompletely understood. Here, the authors show that myocardial mitochondrial oxidative damage is early and prominent in CKD and distinctively stimulates the STING-NFκB pathway by releasing mitochondrial DNA to drive cardiac hypertrophy. Furthermore, the authors reveal that ornithine decarboxylase (ODC1)-putrescine metabolic flux is transactivated by NFκB and is required for the STING-NFκB pathway to drive cardiac hypertrophy. Finally, genetic or pharmacologic inhibition of the myocardial mitochondria-STING-NFκB-ODC1 axis significantly prevents CKD-associated cardiac hypertrophy. Therefore, targeting the myocardial mitochoandria-STING-NFκB-ODC1 axis is a promising therapeutic strategy for cardiac hypertrophy in patients with CKD.
Collapse
Key Words
- ATP, adenosine triphosphate
- CKD, chronic kidney disease
- LV, left ventricular
- MOMP, mitochondrial outer membrane permeabilization
- MPTP, mitochondrial permeability transition pore
- NRCM, primary neonatal rat cardiomyocyte
- ODC1, ornithine decarboxylase
- PUT, putrescine
- ROS, reactive oxygen species
- VDAC1, voltage-dependent anion channel 1
- cGAS-STING pathway
- cardiac hypertrophy
- chronic kidney disease
- mitochondria
- mtDNA, mitochondrial DNA
- polyamine metabolism
- siRNA, small interfering RNA
Collapse
Affiliation(s)
- Wenhao Han
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Changhong Du
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yingguo Zhu
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Li Ran
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yue Wang
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiachuan Xiong
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yiding Wu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Qigang Lan
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yaqin Wang
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
| | - Liting Wang
- Biomedical Analysis Center, Army Medical University (Third Military Medical University), Chongqing, China
| | - Junping Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Ke Yang
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Dr Ke Yang, Department of Nephrology, Xinqiao Hospital, Army Medical University, Xinqiao Road, Chongqing 400037, China.
| | - Jinghong Zhao
- Department of Nephrology, the Key Laboratory for the Prevention and Treatment of Chronic Kidney Disease of Chongqing, Chongqing Clinical Research Center of Kidney and Urology Diseases, Xinqiao Hospital, Army Medical University (Third Military Medical University), Chongqing, China
- Address for correspondence: Dr Jinghong Zhao, Department of Nephrology, Xinqiao Hospital, Army Medical University, Xinqiao Road, Chongqing 400037, China.
| |
Collapse
|
185
|
Binnenmars SH, Hoogslag GE, Yeung SMH, Brouwers FP, Bakker SJL, van Gilst WH, Gansevoort RT, Navis G, Voors AA, de Borst MH. Fibroblast Growth Factor 23 and Risk of New Onset Heart Failure With Preserved or Reduced Ejection Fraction: The PREVEND Study. J Am Heart Assoc 2022; 11:e024952. [PMID: 35876420 PMCID: PMC9375507 DOI: 10.1161/jaha.121.024952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background The role of fibroblast growth factor 23 (FGF23) in the development of new‐onset heart failure (HF) with reduced (HFrEF) or preserved ejection fraction (HFpEF) in the general population is unknown. Therefore, we set out to investigate associations of C‐terminal FGF23 with development of new‐onset HF and, more specifically, with HFrEF or HFpEF in a large, prospective, population‐based cohort. Methods and Results We studied 6830 participants (aged 53.8±12.1 years; 49.7% men; estimated glomerular filtration rate, 93.1±15.7 mL/min per 1.73 m2) in the community‐based PREVEND (Prevention of Renal and Vascular End‐Stage Disease) study who were free of HF at baseline. Cross‐sectional multivariable linear regression analysis showed that ferritin (standardized β, −0.24; P<0.001) and estimated glomerular filtration rate (standardized β, −0.13; P<0.001) were the strongest independent correlates of FGF23. Multivariable Cox proportional hazard regression was used to study the association between baseline FGF23 and incident HF, HFrEF (ejection fraction ≤40%) or HFpEF (ejection fraction ≥50%). After median follow‐up of 7.4 [IQR 6.9–7.9] years, 227 individuals (3.3%) developed new‐onset HF, of whom 132 had HFrEF and 88 had HFpEF. A higher FGF23 level was associated with an increased risk of incident HF (fully adjusted hazard ratio, 1.29 [95% CI, 1.06–1.57]) and with an increased risk of incident HFrEF (fully adjusted hazard ratio, 1.31 [95% CI, 1.01–1.69]). The association between FGF23 and incident HFpEF lost statistical significance after multivariable adjustment (hazard ratio, 1.22 [95% CI, 0.87–1.71]). Conclusions Higher FGF23 is independently associated with new‐onset HFrEF in analyses fully adjusted for cardiovascular risk factors and other potential confounders. The association between FGF23 and incident HFpEF lost statistical significance upon multivariable adjustment.
Collapse
Affiliation(s)
- S Heleen Binnenmars
- Department of Internal Medicine, Division of Nephrology University of Groningen, University Medical Center Groningen Groningen The Netherlands
| | - Georgette E Hoogslag
- Department of Internal Medicine, Division of Nephrology University of Groningen, University Medical Center Groningen Groningen The Netherlands
| | - Stanley M H Yeung
- Department of Internal Medicine, Division of Nephrology University of Groningen, University Medical Center Groningen Groningen The Netherlands
| | - Frank P Brouwers
- Department of Cardiology University of Groningen, University Medical Center Groningen Groningen The Netherlands
| | - Stephan J L Bakker
- Department of Internal Medicine, Division of Nephrology University of Groningen, University Medical Center Groningen Groningen The Netherlands
| | - Wiek H van Gilst
- Department of Cardiology University of Groningen, University Medical Center Groningen Groningen The Netherlands
| | - Ron T Gansevoort
- Department of Internal Medicine, Division of Nephrology University of Groningen, University Medical Center Groningen Groningen The Netherlands
| | - Gerjan Navis
- Department of Internal Medicine, Division of Nephrology University of Groningen, University Medical Center Groningen Groningen The Netherlands
| | - Adriaan A Voors
- Department of Cardiology University of Groningen, University Medical Center Groningen Groningen The Netherlands
| | - Martin H de Borst
- Department of Internal Medicine, Division of Nephrology University of Groningen, University Medical Center Groningen Groningen The Netherlands
| |
Collapse
|
186
|
Rubio-Aliaga I, Krapf R. Phosphate intake, hyperphosphatemia, and kidney function. Pflugers Arch 2022; 474:935-947. [PMID: 35511366 PMCID: PMC9338892 DOI: 10.1007/s00424-022-02691-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 12/25/2022]
Abstract
Phosphate is essential in living organisms and its blood levels are regulated by a complex network involving the kidneys, intestine, parathyroid glands, and the skeleton. The crosstalk between these organs is executed primarily by three hormones, calcitriol, parathyroid hormone, and fibroblast growth factor 23. Largely due to a higher intake of ultraprocessed foods, dietary phosphate intake has increased in the last decades. The average intake is now about twice the recommended dietary allowance. Studies investigating the side effect of chronic high dietary phosphate intake suffer from incomplete dietary phosphate assessment and, therefore, often make data interpretation difficult. Renal excretion is quickly adapted to acute and chronic phosphate intake. However, at the high ends of dietary intake, renal adaptation, even in pre-existing normal kidney function, apparently is not perfect. Experimental intervention studies suggest that chronic excess of dietary phosphate can result in sustained higher blood phosphate leading to hyperphosphatemia. Evidence exists that the price of the homeostatic response (phosphaturia in response to phosphate loading/hyperphosphatemia) is an increased risk for declining kidney function, partly due by intraluminal/tubular calcium phosphate particles that provoke renal inflammation. High dietary phosphate intake and hyperphosphatemia are progression factors for declining kidney function and are associated with higher cardiovascular disease and mortality risk. This is best established for pre-existing chronic kidney disease, but epidemiological and experimental data strongly suggest that this holds true for subjects with normal renal function as well. Here, we review the latest advances in phosphate intake and kidney function decline.
Collapse
Affiliation(s)
- Isabel Rubio-Aliaga
- Institute of Physiology, National Center of Competence in Research NCCR Kidney.CH, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| | - Reto Krapf
- Synlab Suisse, 6002, Lucerne, Switzerland
- Department of Medicine, University of Basel, 4056, Basel, Switzerland
| |
Collapse
|
187
|
Yanucil C, Kentrup D, Campos I, Czaya B, Heitman K, Westbrook D, Osis G, Grabner A, Wende AR, Vallejo J, Wacker MJ, Navarro-Garcia JA, Ruiz-Hurtado G, Zhang F, Song Y, Linhardt RJ, White K, Kapiloff M, Faul C. Soluble α-klotho and heparin modulate the pathologic cardiac actions of fibroblast growth factor 23 in chronic kidney disease. Kidney Int 2022; 102:261-279. [PMID: 35513125 PMCID: PMC9329240 DOI: 10.1016/j.kint.2022.03.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 03/14/2022] [Accepted: 03/29/2022] [Indexed: 01/03/2023]
Abstract
Fibroblast growth factor (FGF) 23 is a phosphate-regulating hormone that is elevated in patients with chronic kidney disease and associated with cardiovascular mortality. Experimental studies showed that elevated FGF23 levels induce cardiac hypertrophy by targeting cardiac myocytes via FGF receptor isoform 4 (FGFR4). A recent structural analysis revealed that the complex of FGF23 and FGFR1, the physiologic FGF23 receptor in the kidney, includes soluble α-klotho (klotho) and heparin, which both act as co-factors for FGF23/FGFR1 signaling. Here, we investigated whether soluble klotho, a circulating protein with cardio-protective properties, and heparin, a factor that is routinely infused into patients with kidney failure during the hemodialysis procedure, regulate FGF23/FGFR4 signaling and effects in cardiac myocytes. We developed a plate-based binding assay to quantify affinities of specific FGF23/FGFR interactions and found that soluble klotho and heparin mediate FGF23 binding to distinct FGFR isoforms. Heparin specifically mediated FGF23 binding to FGFR4 and increased FGF23 stimulatory effects on hypertrophic growth and contractility in isolated cardiac myocytes. When repetitively injected into two different mouse models with elevated serum FGF23 levels, heparin aggravated cardiac hypertrophy. We also developed a novel procedure for the synthesis and purification of recombinant soluble klotho, which showed anti-hypertrophic effects in FGF23-treated cardiac myocytes. Thus, soluble klotho and heparin act as independent FGF23 co-receptors with opposite effects on the pathologic actions of FGF23, with soluble klotho reducing and heparin increasing FGF23-induced cardiac hypertrophy. Hence, whether heparin injections during hemodialysis in patients with extremely high serum FGF23 levels contribute to their high rates of cardiovascular events and mortality remains to be studied.
Collapse
Affiliation(s)
- Christopher Yanucil
- Division of Nephrology and Hypertension, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Dominik Kentrup
- Division of Nephrology and Hypertension, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA.,Division of Nephrology and Hypertension, Center for Translational Metabolism and Health, Feinberg Cardiovascular and Renal Research Institute, Northwestern University, Chicago, IL, USA
| | - Isaac Campos
- Division of Nephrology and Hypertension, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Brian Czaya
- Division of Nephrology and Hypertension, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kylie Heitman
- Division of Nephrology and Hypertension, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - David Westbrook
- Division of Nephrology and Hypertension, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gunars Osis
- Division of Nephrology and Hypertension, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Alexander Grabner
- Division of Nephrology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Adam R. Wende
- Division of Molecular & Cellular Pathology, Department of Pathology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Julian Vallejo
- Department of Molecular Biosciences, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Michael J. Wacker
- Department of Molecular Biosciences, University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Jose Alberto Navarro-Garcia
- Cardiorenal Translational Laboratory, Institute of Research, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Gema Ruiz-Hurtado
- Cardiorenal Translational Laboratory, Institute of Research, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Fuming Zhang
- Departments of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Yuefan Song
- Departments of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Robert J. Linhardt
- Departments of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA.,Departments of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Kenneth White
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Michael Kapiloff
- Departments of Ophthalmology and Medicine, Stanford Cardiovascular Institute, Stanford University, Palo Alto, CA, USA
| | - Christian Faul
- Division of Nephrology, Department of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA.
| |
Collapse
|
188
|
Martinez-Calle M, David V. Heparin, klotho, and FGF23: the 3-beat waltz of the discordant heart. Kidney Int 2022; 102:228-230. [PMID: 35870810 DOI: 10.1016/j.kint.2022.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/02/2022] [Accepted: 05/11/2022] [Indexed: 10/17/2022]
Abstract
Excess fibroblast growth factor (FGF) 23 signaling in patients with chronic kidney disease induces left ventricular hypertrophy. In this issue, Yanucil et al. investigated the interaction of soluble klotho and heparin with FGF23 and FGF receptor isoforms. They concluded that heparin promotes the FGF23-FGF receptor isoform 4 interaction and FGF23 pathogenic effects, supporting an important role of heparin in the pathogenesis of FGF23-mediated left ventricular hypertrophy in chronic kidney disease.
Collapse
Affiliation(s)
- Marta Martinez-Calle
- Division of Nephrology and Hypertension, Department of Medicine, and Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Valentin David
- Division of Nephrology and Hypertension, Department of Medicine, and Center for Translational Metabolism and Health, Institute for Public Health and Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
| |
Collapse
|
189
|
Hu SM, Bai YJ, Li YM, Tao Y, Wang XD, Lin T, Wang LL, Shi YY. Cholecalciferol supplementation effectively improved tertiary hyperparathyroidism, FGF23 resistance and lowered coronary calcification score: a prospective study. Endocr Connect 2022; 11:e220123. [PMID: 35904219 PMCID: PMC9346334 DOI: 10.1530/ec-22-0123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 06/30/2022] [Indexed: 02/05/2023]
Abstract
Introduction Tertiary hyperparathyroidism (THPT) and vitamin D deficiency are commonly seen in kidney transplant recipients, which may result in persistently elevated fibroblast growth factor 23 (FGF23) level after transplantation and decreased graft survival. The aim of this study is to evaluate the effect of vitamin D supplementation on THPT, FGF23-alpha Klotho (KLA) axis and cardiovascular complications after transplantation. Materials and methods Two hundred nine kidney transplant recipients were included and further divided into treated and untreated groups depending on whether they received vitamin D supplementation. We tracked the state of THPT, bone metabolism and FGF23-KLA axis within 12 months posttransplant and explored the predictors and risk factors for intact FGF23 levels, KLA levels, THPT and cardiovascular complications in recipients. Results Vitamin D supplementation significantly improved FGF23 resistance, THPT and high bone turnover status, preserved better graft function and prevented coronary calcification in the treated group compared to the untreated group at month 12. The absence of vitamin D supplementation was an independent risk factor for THPT and a predictor for intact FGF23 and KLA levels at month 12. Age and vitamin D deficiency were independent risk factors for coronary calcification in recipients at month 12. Conclusion Vitamin D supplementation effectively improved THPT, FGF23 resistance and bone metabolism, preserved graft function and prevented coronary calcification after transplantation.
Collapse
Affiliation(s)
- Shu-Meng Hu
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yang-Juan Bai
- Department of Laboratory Medicine/Research Centre of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ya-Mei Li
- Department of Laboratory Medicine/Research Centre of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ye Tao
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xian-Ding Wang
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tao Lin
- Department of Urology/Institute of Urology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lan-Lan Wang
- Department of Laboratory Medicine/Research Centre of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yun-Ying Shi
- Department of Nephrology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
190
|
Akwo E, Pike MM, Ertuglu LA, Vartanian N, Farber-Eger E, Lipworth L, Perwad F, Siew E, Hung A, Bansal N, de Boer I, Kestenbaum B, Cox NJ, Ikizler TA, Wells Q, Robinson-Cohen C. Association of Genetically Predicted Fibroblast Growth Factor-23 with Heart Failure: A Mendelian Randomization Study. Clin J Am Soc Nephrol 2022; 17:1183-1193. [PMID: 35902130 PMCID: PMC9435988 DOI: 10.2215/cjn.00960122] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 05/31/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND AND OBJECTIVES Elevated fibroblast growth factor-23 (FGF23) has been consistently associated with heart failure, particularly heart failure with preserved ejection fraction, among patients with CKD and in the general population. FGF23 may directly induce cardiac remodeling and heart failure. However, biases affecting observational studies impede robust causal inferences. Mendelian randomization leverages genetic determinants of a risk factor to examine causality. We performed a two-sample Mendelian randomization to assess causal associations between FGF23 and heart failure. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS Genetic instruments were genome-wide significant genetic variants associated with FGF23, including variants near PIP5K1B, RGS14, LINC01229, and CYP24A1. We analyzed data from the Heart Failure Molecular Epidemiology for Therapeutic Targets and BioVU biobanks to examine associations of the four variants with overall heart failure, heart failure with preserved ejection fraction, and heart failure with reduced and mid-range ejection fraction. We developed an eGFR polygenic risk score using summary statistics from the Chronic Kidney Disease Genetics Consortium (CKDGen) genome-wide association study of eGFR in >1 million individuals and performed stratified analyses across eGFR polygenic risk score strata. RESULTS Genetically determined FGF23 was not associated with overall heart failure in the Heart Failure Molecular Epidemiology for Therapeutic Targets consortium (odds ratio, 1.13; 95% confidence interval, 0.89 to 1.42 per unit higher genetically predicted log FGF23) and the full BioVU sample (odds ratio, 1.32; 95% confidence interval, 0.95 to 1.84). In stratified analyses in BioVU, higher FGF23 was associated with overall heart failure (odds ratio, 3.09; 95% confidence interval, 1.38 to 6.91) among individuals with low eGFR-polygenic risk score (<1 SD below the mean), but not those with high eGFR-polygenic risk score (P interaction = 0.02). Higher FGF23 was also associated with heart failure with preserved ejection fraction among all BioVU participants (odds ratio, 1.47; 95% confidence interval, 1.01 to 2.14) and individuals with low eGFR-polygenic risk score (odds ratio, 7.20; 95% confidence interval, 2.80 to 18.49), but not those high eGFR-polygenic risk score (P interaction = 2.25 × 10-4). No significant associations were observed with heart failure with reduced and midrange ejection fraction. CONCLUSION We found no association between genetically predicted FGF23 and heart failure in the Heart Failure Molecular Epidemiology for Therapeutic Targets consortium. In BioVU, genetically elevated FGF23 was associated with higher heart failure risk, specifically heart failure with preserved ejection fraction, particularly among individuals with low genetically predicted eGFR. PODCAST This article contains a podcast at https://www.asn-online.org/media/podcast/CJASN/2022_07_28_CJN00960122.mp3.
Collapse
Affiliation(s)
- Elvis Akwo
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Mindy M. Pike
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee,Division of Cardiovascular Medicine, Division of Epidemiology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lale A. Ertuglu
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Nicholas Vartanian
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Eric Farber-Eger
- Division of Cardiovascular Medicine, Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University Medical Center, Nashville, Tennessee,Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Loren Lipworth
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee,Division of Cardiovascular Medicine, Division of Epidemiology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Farzana Perwad
- Division of Pediatric Nephrology, University of California San Francisco, San Francisco, California
| | - Edward Siew
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee,Division of Nephrology, Vanderbilt Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Adriana Hung
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee,Division of Nephrology, Vanderbilt Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Nisha Bansal
- Division of Nephrology, Vanderbilt Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Ian de Boer
- Division of Nephrology, University of Washington, Seattle, Washington
| | - Bryan Kestenbaum
- Division of Nephrology, University of Washington, Seattle, Washington
| | - Nancy J. Cox
- Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - T. Alp Ikizler
- Division of Nephrology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Quinn Wells
- Division of Cardiovascular Medicine, Vanderbilt Translational and Clinical Cardiovascular Research Center, Vanderbilt University Medical Center, Nashville, Tennessee,Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | | |
Collapse
|
191
|
Oto OA, Edelstein CL. The Pathophysiology of Left Ventricular Hypertrophy, beyond Hypertension, in Autosomal Dominant Polycystic Kidney Disease. Nephron Clin Pract 2022; 148:215-223. [PMID: 35896062 DOI: 10.1159/000525944] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 07/04/2022] [Indexed: 11/19/2022] Open
Abstract
Heart disease is one of the leading causes of death in autosomal dominant polycystic kidney disease (ADPKD) patients. Left ventricular hypertrophy (LVH) is an early and severe complication in ADPKD patients. Two decades ago, the prevalence of LVH on echocardiography in hypertensive ADPKD patients was shown to be as high as 46%. Recent studies using cardiac magnetic resonance imaging have shown that the prevalence of LVH in ADPKD patients may be lower. The true prevalence of LVH in ADPKD patients is controversial. There is evidence that factors other than hypertension contribute to LVH in ADPKD patients. Studies have shown that young normotensive ADPKD adults and children have a higher left ventricular mass index compared to controls and that the prevalence of LVH is high in patients with ADPKD whose blood pressure is well controlled. Polycystin-1 (PC-1) and polycystin-2 (PC-2) control intracellular signaling pathways that can influence cardiac function. Perturbations of PC-1 or PC-2 in the heart can lead to profound changes in cardiac structure and function independently of kidney function or blood pressure. PC-1 can influence mammalian target of rapamycin and mitophagy and PC-2 can influence autophagy, processes that play a role in LVH. Polymorphisms in the angiotensin-converting enzyme gene may play a role in LVH in ADPKD. This review will detail the pathophysiology of LVH, beyond hypertension, in ADPKD.
Collapse
Affiliation(s)
- Ozgur A Oto
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA,
| | - Charles L Edelstein
- Division of Renal Diseases and Hypertension, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
192
|
The Interplay between Dietary Phosphorous, Protein Intake, and Mortality in a Prospective Hemodialysis Cohort. Nutrients 2022; 14:nu14153070. [PMID: 35893923 PMCID: PMC9330827 DOI: 10.3390/nu14153070] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/03/2022] [Accepted: 07/12/2022] [Indexed: 12/10/2022] Open
Abstract
(1) Background: Current dietary recommendations for dialysis patients suggest that high phosphorus diets may be associated with adverse outcomes such as hyperphosphatemia and death. However, there has been concern that excess dietary phosphorus restriction may occur at the expense of adequate dietary protein intake in this population. We hypothesized that higher dietary phosphorus intake is associated with higher mortality risk among a diverse cohort of hemodialysis patients. (2) Methods: Among 415 patients from the multi-center prospective Malnutrition, Diet, and Racial Disparities in Kidney Disease Study, we examined the associations of absolute dietary phosphorus intake (mg/day), ascertained by food frequency questionnaires, with all-cause mortality using multivariable Cox models. In the secondary analyses, we also examined the relationship between dietary phosphorus scaled to 1000 kcal of energy intake (mg/kcal) and dietary phosphorus-to-protein ratio (mg/g) with survival. (3) Results: In expanded case-mix + laboratory + nutrition adjusted analyses, the lowest tertile of dietary phosphorus intake was associated with higher mortality risk (ref: highest tertile): adjusted HR (aHR) (95% CI) 3.33 (1.75–6.33). In the analyses of dietary phosphorus scaled to 1000 kcal of energy intake, the lowest tertile of intake was associated with higher mortality risk compared to the highest tertile: aHR (95% CI) 1.74 (1.08, 2.80). Similarly, in analyses examining the association between dietary phosphorus-to-protein ratio, the lowest tertile of intake was associated with higher mortality risk compared to the highest tertile: aHR (95% CI) 1.67 (1.02–2.74). (4) Conclusions: A lower intake of dietary phosphorus was associated with higher mortality risk in a prospective hemodialysis cohort. Further studies are needed to clarify the relationship between specific sources of dietary phosphorus intake and mortality in this population.
Collapse
|
193
|
Vergara N, de Mier MVPR, Rodelo-Haad C, Revilla-González G, Membrives C, Díaz-Tocados JM, Martínez-Moreno JM, Torralbo AI, Herencia C, Rodríguez-Ortiz ME, López-Baltanás R, Richards WG, Felsenfeld A, Almadén Y, Martin-Malo A, Ureña J, Santamaría R, Soriano S, Rodríguez M, Muñoz-Castañeda JR. The direct effect of fibroblast growth factor 23 on vascular smooth muscle cell phenotype and function. Nephrol Dial Transplant 2022; 38:322-343. [PMID: 35867864 PMCID: PMC9923714 DOI: 10.1093/ndt/gfac220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND In chronic kidney disease (CKD) patients, increased levels of fibroblast growth factor 23 (FGF23) are associated with cardiovascular mortality. The relationship between FGF23 and heart hypertrophy has been documented, however, it is not known whether FGF23 has an effect on vasculature. Vascular smooth muscle cells VSMCs may exhibit different phenotypes; our hypothesis is that FGF23 favours a switch from a contractile to synthetic phenotype that may cause vascular dysfunction. Our objective was to determine whether FGF23 may directly control a change in VSMC phenotype. METHODS This study includes in vitro, in vivo and ex vivo experiments and evaluation of patients with CKD stages 2-3 studying a relationship between FGF23 and vascular dysfunction. RESULTS In vitro studies show that high levels of FGF23, by acting on its specific receptor FGFR1 and Erk1/2, causes a change in the phenotype of VSMCs from contractile to synthetic. This change is mediated by a downregulation of miR-221/222, which augments the expression of MAP3K2 and PAK1. miR-221/222 transfections recovered the contractile phenotype of VSMCs. Infusion of recombinant FGF23 to rats increased vascular wall thickness, with VSMCs showing a synthetic phenotype with a reduction of miR-221 expression. Ex-vivo studies on aortic rings demonstrate also that high FGF23 increases arterial stiffening. In CKD 2-3 patients, elevation of FGF23 was associated with increased pulse wave velocity and reduced plasma levels of miR-221/222. CONCLUSION In VSMCs, high levels of FGF23, through the downregulation of miR-221/222, causes a change to a synthetic phenotype. This change in VSMCs increases arterial stiffening and impairs vascular function, which might ultimately worsen cardiovascular disease.
Collapse
Affiliation(s)
| | | | | | - Gonzalo Revilla-González
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Departemento de Fisiología Médica y Biofísica, Sevilla, Spain
| | - Cristina Membrives
- Maimonides Institute for Biomedical Research of Cordoba, Cordoba, Spain,University of Cordoba, Spain
| | - Juan M Díaz-Tocados
- Maimonides Institute for Biomedical Research of Cordoba, Cordoba, Spain,University of Cordoba, Spain
| | - Julio M Martínez-Moreno
- Maimonides Institute for Biomedical Research of Cordoba, Cordoba, Spain,University of Cordoba, Spain
| | - Ana I Torralbo
- Maimonides Institute for Biomedical Research of Cordoba, Cordoba, Spain,University of Cordoba, Spain
| | - Carmen Herencia
- Maimonides Institute for Biomedical Research of Cordoba, Cordoba, Spain,University of Cordoba, Spain
| | | | - Rodrigo López-Baltanás
- Maimonides Institute for Biomedical Research of Cordoba, Cordoba, Spain,University of Cordoba, Spain
| | | | - Arnold Felsenfeld
- Department of Medicine, Veterans Affairs Greater Los Angeles Healthcare System and the David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Yolanda Almadén
- Maimonides Institute for Biomedical Research of Cordoba, Cordoba, Spain,Internal Medicine Service, Reina Sofia University Hospital, Cordoba, Spain,Spanish Biomedical Research Networking Centre consortium for the area of Physiopathology of Obesity and Nutrition, Institute of Health Carlos III, Madrid, Spain
| | - Alejandro Martin-Malo
- Maimonides Institute for Biomedical Research of Cordoba, Cordoba, Spain,University of Cordoba, Spain,Nephrology Service, Reina Sofia University Hospital, Cordoba, Spain,Spanish Renal Research Network (REDinREN), Institute of Health Carlos III, Madrid, Spain, and the European Uremic Toxins group
| | - Juan Ureña
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Departemento de Fisiología Médica y Biofísica, Sevilla, Spain
| | | | - Sagrario Soriano
- Maimonides Institute for Biomedical Research of Cordoba, Cordoba, Spain,University of Cordoba, Spain,Nephrology Service, Reina Sofia University Hospital, Cordoba, Spain,Spanish Renal Research Network (REDinREN), Institute of Health Carlos III, Madrid, Spain, and the European Uremic Toxins group
| | | | | |
Collapse
|
194
|
NT-proBNP Levels Influence the Prognostic Value of Mineral Metabolism Biomarkers in Coronary Artery Disease. J Clin Med 2022; 11:jcm11144153. [PMID: 35887917 PMCID: PMC9319637 DOI: 10.3390/jcm11144153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 12/10/2022] Open
Abstract
Background. Mineral metabolism (MM) system and N-terminal pro-brain natriuretic peptide (NT-ProBNP) have been shown to add prognostic value in patients with stable coronary artery disease (SCAD). However, the influence of NT-ProBNP on the prognostic role of MM in patients with SCAD has not been shown yet. The objective of this study is to assess the influence of NT-ProBNP on the prognostic role of MM markers in patients with SCAD. Methods: We analyzed the prognostic value of MM markers (parathormone (PTH), klotho, phosphate, calcidiol (25-hydroxyvitamin D3), and fibroblast growth factor-23) in 964 patients with SCAD and NT-ProBNP > 125 pg/mL vs. patient with NT-ProBNP ≤ 125 pg/mL included in five hospitals in Spain. The main outcome was the combination of death, heart failure, and ischemic events (any acute coronary syndrome, ischemic stroke, or transient ischemic attack). Results: A total of 622 patients had NT-proBNP > 125 pg/mL and 342 patients had NT-ProBNP ≤ 125 pg/mL. The median follow-up was 5.1 years. In the group of NT-proBNP > 125 pg/mL, the patients were older, and there were more females and smokers than in the group of patients with normal NT-proBNP. Additionally, the proportion of patients with hypertension, atrial fibrillation, ejection fraction < 40%, cerebrovascular attack, or prior coronary artery bypass graft was higher in the high NT-proBNP group. In the high NT-proBNP patients, the predictors of poor prognosis were PTH (HR = 1.06 (1.01−1.10), p < 0.001) and NT-proBNP (HR = 1.02 (1.01−1.03), p = 0.011), along with age (HR = 1.039 (1.02−1.06), p < 0.001), prior coronary artery bypass graft (HR = 1.624 (1.02−2.59), p = 0.041), treatment with statins (HR = 0.32 (0.19−0.53), p < 0.001), insulin (HR = 2.49 (1.59−4.09), p < 0.001), angiotensin receptor blockers (HR = 1.73 (1.16−2.56), p = 0.007), nitrates (HR = 1.65 (1.10−2.45), p = 0.014), and proton pump inhibitors (HR = 2.75 (1.74−4.36), p < 0.001). In the NT-proBNP ≤ 125 pg/mL subgroup, poor prognosis predictors were plasma levels of non-high-density lipoprotein (non-HDL) cholesterol (HR = 1.01 (1.00−1.02), p = 0.014) and calcidiol (HR = 0.96 (0.92−0.99), p = 0.045), as well as treatment with verapamil (HR = 11.28 (2.54−50.00), p = 0.001), and dihydropyridines (HR = 3.16 (1.63−6.13), p = 0.001). Conclusion: In patients with SCAD and NT-ProBNP > 125 pg/mL, PTH and NT-ProBNP, which are markers related to ventricular damage, are predictors of poor outcome. In the subgroup of patients with NT-ProBNP ≤ 125 pgm/L, calcidiol and non-HDL cholesterol, which are more related to vascular damage, are the independent predictors of poor outcome. Then, in patients with SCAD, baseline NT-ProBNP may influence the type of biomarker that is effective in risk prediction.
Collapse
|
195
|
Latic N, Zupcic A, Frauenstein D, Erben RG. Activation of RAAS Signaling Contributes to Hypertension in Aged Hyp Mice. Biomedicines 2022; 10:biomedicines10071691. [PMID: 35884995 PMCID: PMC9313116 DOI: 10.3390/biomedicines10071691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/05/2022] [Accepted: 07/09/2022] [Indexed: 12/12/2022] Open
Abstract
High circulating levels of fibroblast growth factor-23 (FGF23) are associated with left ventricular hypertrophy as well as increased morbidity and mortality in patients suffering from chronic kidney disease. However, the mechanisms underlying this association are controversial. Here, we aimed to further characterize the cardiovascular sequelae of long term endogenous FGF23 hypersecretion using 14-month-old male Hyp mice as a model of FGF23 excess. Hyp mice were characterized by a ~10-fold increase in circulating intact FGF23, hypophosphatemia, increased serum aldosterone, but normal kidney function, relative to wildtype (WT) controls. Cardiovascular phenotyping did not reveal any evidence of left ventricular hypertrophy or functional impairment in 14-month-old Hyp mice. Fractional shortening, ejection fraction, molecular markers of hypertrophy (Anp, Bnp), and intracardiac markers of contractility and diastolic function were all unchanged in these animals. However, intraarterial catheterization revealed an increase in systolic, diastolic, and mean arterial pressure of ~12 mm Hg in aged Hyp mice relative to WT controls. Hypertension in Hyp mice was associated with increased peripheral vascular resistance. To test the hypothesis that a stimulation of the renin–angiotensin–aldosterone system (RAAS) contributes to hypertension in aged Hyp mice, we administered the angiotensin receptor blocker losartan (30 mg/kg twice daily) or the mineralocorticoid receptor antagonist canrenone (30 mg/kg once daily) to aged Hyp and WT mice over 5 days. Both drugs had minor effects on blood pressure in WT mice, but reduced blood pressure and peripheral vascular resistance in Hyp mice, suggesting that a stimulation of the RAAS contributes to hypertension in aged Hyp mice.
Collapse
|
196
|
Bao JF, Hu PP, She QY, Zhang D, Mo JJ, Li A. A Bibliometric and Visualized Analysis of Uremic Cardiomyopathy From 1990 to 2021. Front Cardiovasc Med 2022; 9:908040. [PMID: 35903671 PMCID: PMC9314665 DOI: 10.3389/fcvm.2022.908040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundUremic cardiomyopathy is commonly presented in chronic kidney disease (CKD), and it severely affects the prognosis of patients with CKD. In the past few decades, the investigation of uremic cardiomyopathy has developed rapidly. However, no report has summarized the situation of uremic cardiomyopathy research to date. This study aimed to evaluate the state of uremic cardiomyopathy research in the last 30 years and identify important topics and achievements, as well as emerging trends through bibliometric analysis.Materials and MethodsPublications related to uremic cardiomyopathy were collected from Science Citation Index Expanded. HistCite, VOSviewer, CiteSpace, and the Bibliometrix Package were used for bibliometric analysis and visualization, including the analysis of the overall distribution of the annual publication, leading countries, and active institutions and authors, core journals, co-cited references, and keywords.ResultsA total of 2,403 studies related to uremic cardiomyopathy were obtained, and progress related to uremic cardiomyopathy was slower in past 3 years. A total of 10,077 authors from 2,697 institutions in 89 countries or regions reported investigations on uremic cardiomyopathy. The United States of America was the most productive and the most cited country. Myles Wolf, Joseph I Shapiro, and Carmine Zoccali published most articles in uremic cardiomyopathy, and journals in nephrology possessed core status in the field. Phosphate metabolism was the hotspot in uremic cardiomyopathy research in recent years, and future progress may concentrate on phosphate metabolism, endogenous natriuretic factors, and novel biomarkers.ConclusionThe United States of America and European countries played central roles in uremic cardiomyopathy research, while Chinese scholars should be more involved in this field. Global publications on uremic cardiomyopathy have entered platform stage, and the fibroblast growth factor-23-klotho axis remained a hotspot in this field. Endogenous natriuretic factors and novel biomarkers may be potential directions in future investigations.
Collapse
Affiliation(s)
- Jing-Fu Bao
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Pan-Pan Hu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Qin-Ying She
- Department of Nephrology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Difei Zhang
- Department of Nephrology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Jia-Ju Mo
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
| | - Aiqing Li
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Renal Failure Research, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou, China
- *Correspondence: Aiqing Li,
| |
Collapse
|
197
|
Kim HJ, Kim Y, Kang M, Kim S, Park SK, Sung S, Hyun YY, Jung JY, Ahn C, Oh KH. Low Klotho/Fibroblast Growth Factor 23 Ratio Is an Independent Risk Factor for Renal Progression in Chronic Kidney Disease: Finding From KNOW-CKD. Front Med (Lausanne) 2022; 9:904963. [PMID: 35872753 PMCID: PMC9304693 DOI: 10.3389/fmed.2022.904963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 06/07/2022] [Indexed: 11/21/2022] Open
Abstract
Background We aimed to evaluate soluble Klotho and circulating fibroblast growth factor 23 (FGF23) ratio as a risk factor for renal progression, cardiovascular (CV) events, and mortality in chronic kidney disease (CKD). Methods We analyzed 2,099 subjects from a CKD cohort whose soluble Klotho and C-terminal FGF23 levels were measured at enrollment. The Klotho to FGF23 ratio was calculated as Klotho values divided by FGF23 values + 1 (hereinafter called the Klotho/FGF23 ratio). Participants were categorized into quartiles according to Klotho/FGF23 ratio. The primary outcome was renal events, defined as the doubling of serum creatinine, 50% reduction of estimated glomerular filtration rate from the baseline values, or development of end-stage kidney disease. The secondary outcomes consisted of CV events and death. Changes in CV parameters at the time of enrollment and during follow-up according to the Klotho/FGF23 ratio were also examined. Results During the follow-up period of 64.0 ± 28.2 months, 735 (35.1%) and 273 (13.0%) subjects developed renal events and composite outcomes of CV events and death, respectively. After adjustment, the first (HR: 1.36; 95% CI: 1.08–1.72, P = 0.010) and second (HR: 1.45; 95% CI: 1.15–1.83, P = 0.002) quartiles with regard to the Klotho/FGF23 ratio showed elevated risk of renal events as compared to the fourth quartile group. There was no significant association between Klotho/FGF23 ratio and the composite outcome of CV events and death. The prevalence of left ventricular hypertrophy and vascular calcification was higher in the low Klotho/FGF23 ratio quartiles at baseline and at the fourth-year follow-up. Conclusions Low Klotho/FGF23 ratio was significantly associated with increased renal events in the cohort of Korean predialysis CKD patients.
Collapse
Affiliation(s)
- Hyo Jin Kim
- Department of Internal Medicine, Pusan National University School of Medicine, Busan, South Korea
- Biomedical Research Institute, Pusan National University Hospital, Busan, South Korea
| | - Yunmi Kim
- Department of Internal Medicine, Inje University Busan Paik Hospital, Busan, South Korea
| | - Minjung Kang
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Seonmi Kim
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
| | - Sue Kyung Park
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Suah Sung
- Department of Internal Medicine, Eulji Medical Center, Eulji University, Seoul, South Korea
| | - Young Youl Hyun
- Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Ji Yong Jung
- Department of Internal Medicine, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon, South Korea
| | - Curie Ahn
- Department of Internal Medicine, National Medical Center, Seoul, South Korea
| | - Kook-Hwan Oh
- Department of Internal Medicine, Seoul National University Hospital, Seoul, South Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
- *Correspondence: Kook-Hwan Oh
| |
Collapse
|
198
|
Ornitz DM, Itoh N. New developments in the biology of fibroblast growth factors. WIREs Mech Dis 2022; 14:e1549. [PMID: 35142107 PMCID: PMC10115509 DOI: 10.1002/wsbm.1549] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 01/28/2023]
Abstract
The fibroblast growth factor (FGF) family is composed of 18 secreted signaling proteins consisting of canonical FGFs and endocrine FGFs that activate four receptor tyrosine kinases (FGFRs 1-4) and four intracellular proteins (intracellular FGFs or iFGFs) that primarily function to regulate the activity of voltage-gated sodium channels and other molecules. The canonical FGFs, endocrine FGFs, and iFGFs have been reviewed extensively by us and others. In this review, we briefly summarize past reviews and then focus on new developments in the FGF field since our last review in 2015. Some of the highlights in the past 6 years include the use of optogenetic tools, viral vectors, and inducible transgenes to experimentally modulate FGF signaling, the clinical use of small molecule FGFR inhibitors, an expanded understanding of endocrine FGF signaling, functions for FGF signaling in stem cell pluripotency and differentiation, roles for FGF signaling in tissue homeostasis and regeneration, a continuing elaboration of mechanisms of FGF signaling in development, and an expanding appreciation of roles for FGF signaling in neuropsychiatric diseases. This article is categorized under: Cardiovascular Diseases > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology Congenital Diseases > Stem Cells and Development Cancer > Stem Cells and Development.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nobuyuki Itoh
- Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| |
Collapse
|
199
|
Hsieh MC, Hsiao PJ, Liao MT, Hou YC, Chang YC, Chiang WF, Wu KL, Chan JS, Lu KC. The Role of Vitamin D in SARS-CoV-2 Infection and Acute Kidney Injury. Int J Mol Sci 2022; 23:7368. [PMID: 35806377 PMCID: PMC9266309 DOI: 10.3390/ijms23137368] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 02/04/2023] Open
Abstract
Vitamin D has been described as an essential nutrient and hormone, which can cause nuclear, non-genomic, and mitochondrial effects. Vitamin D not only controls the transcription of thousands of genes, directly or indirectly through the modulation of calcium fluxes, but it also influences the cell metabolism and maintenance specific nuclear programs. Given its broad spectrum of activity and multiple molecular targets, a deficiency of vitamin D can be involved in many pathologies. Vitamin D deficiency also influences mortality and multiple outcomes in chronic kidney disease (CKD). Active and native vitamin D serum levels are also decreased in critically ill patients and are associated with acute kidney injury (AKI) and in-hospital mortality. In addition to regulating calcium and phosphate homeostasis, vitamin D-related mechanisms regulate adaptive and innate immunity. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections have a role in excessive proinflammatory cell recruitment and cytokine release, which contribute to alveolar and full-body endothelial damage. AKI is one of the most common extrapulmonary manifestations of severe coronavirus disease 2019 (COVID-19). There are also some correlations between the vitamin D level and COVID-19 severity via several pathways. Proper vitamin D supplementation may be an attractive therapeutic strategy for AKI and has the benefits of low cost and low risk of toxicity and side effects.
Collapse
Affiliation(s)
- Ming-Chun Hsieh
- Department of Internal Medicine, Taoyuan Armed Forces General Hospital, Taoyuan 235, Taiwan;
| | - Po-Jen Hsiao
- Division of Nephrology, Department of Internal Medicine, Taoyuan Armed Forces General Hospital, Taoyuan 235, Taiwan; (Y.-C.C.); (W.-F.C.); (K.-L.W.); (J.-S.C.)
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
- Department of Life Sciences, National Central University, Taoyuan 320, Taiwan
- School of Medicine, Fu-Jen Catholic University, New Taipei City 242, Taiwan;
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Min-Tser Liao
- School of Medicine, Fu-Jen Catholic University, New Taipei City 242, Taiwan;
- Department of Pediatrics, Taoyuan Armed Forces General Hospital, Taoyuan 325, Taiwan
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Yi-Chou Hou
- Department of Medicine, Cardinal Tien Hospital, School of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan;
| | - Ya-Chieh Chang
- Division of Nephrology, Department of Internal Medicine, Taoyuan Armed Forces General Hospital, Taoyuan 235, Taiwan; (Y.-C.C.); (W.-F.C.); (K.-L.W.); (J.-S.C.)
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Wen-Fang Chiang
- Division of Nephrology, Department of Internal Medicine, Taoyuan Armed Forces General Hospital, Taoyuan 235, Taiwan; (Y.-C.C.); (W.-F.C.); (K.-L.W.); (J.-S.C.)
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Kun-Lin Wu
- Division of Nephrology, Department of Internal Medicine, Taoyuan Armed Forces General Hospital, Taoyuan 235, Taiwan; (Y.-C.C.); (W.-F.C.); (K.-L.W.); (J.-S.C.)
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Jenq-Shyong Chan
- Division of Nephrology, Department of Internal Medicine, Taoyuan Armed Forces General Hospital, Taoyuan 235, Taiwan; (Y.-C.C.); (W.-F.C.); (K.-L.W.); (J.-S.C.)
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Kuo-Cheng Lu
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
- Division of Nephrology, Department of Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
- Division of Nephrology, Department of Medicine, Fu-Jen Catholic University Hospital, School of Medicine, Fu-Jen Catholic University, New Taipei City 242, Taiwan
| |
Collapse
|
200
|
Dörr K, Kainz A, Oberbauer R. Lessons from effect of etelcalcetide on left ventricular hypertrophy in patients with end-stage kidney disease. Curr Opin Nephrol Hypertens 2022; 31:339-343. [PMID: 35703173 PMCID: PMC9394497 DOI: 10.1097/mnh.0000000000000799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Patients with end-stage kidney disease (ESKD) frequently develop left ventricular hypertrophy (LVH), which is associated with an exceptionally high risk of cardiovascular events and mortality. This review focuses on interventional studies that modify levels of fibroblast growth factor 23 (FGF23) and examine effects on myocardial hypertrophy, cardiovascular events and mortality. RECENT FINDINGS Quantitative evaluations of trials of calcimimetics found no effects on cardiovascular events and cardiovascular and all-cause mortality when compared with placebo. However, a recent randomized, controlled trial of etelcalcetide versus alfacalcidol showed that etelcalcetide effectively inhibited the progression of LVH in comparison to vitamin D in patients on haemodialysis after 1 year of treatment. Prior to that, oral calcimimetic treatment has already been shown to reduce left ventricular mass in patients on haemodialysis, whereas treatment with active vitamin D or mineralocorticoids was ineffective in patients with ESKD. SUMMARY Data from a recent trial of etelcalcetide on LVH suggest that FGF23 may be a possible therapeutic target for cardiac risk reduction in patients on haemodialysis. If these findings are confirmed by further research, it might be speculated that a treatment shift from active vitamin D towards FGF23-lowering therapy may occur in patients on haemodialysis.
Collapse
|