151
|
Lin Y, Sun Z. Thyroid hormone promotes insulin-induced glucose uptake by enhancing Akt phosphorylation and VAMP2 translocation in 3T3-L1 adipocytes. J Cell Physiol 2011; 226:2625-32. [PMID: 21792921 DOI: 10.1002/jcp.22613] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The purpose of this study was to test a hypothesis that T3 promotes glucose uptake via enhancing insulin-induced Akt phosphorylation and VAMP2 translocation in 3T3-L1 adipocytes. T3 significantly enhanced insulin-induced phosphorylation of Akt, cytoplasma to cell membrane translocations of vesicle-associated membrane protein 2 (VAMP2) and glucose transporter 4 (GLUT4), and glucose uptake in adipocytes. Akt inhibitor X abolished the promoting effects of T3, suggesting that Akt activation is essential for T3 to enhance these insulin-induced events in adipocytes. Knockdown of VAMP2 using siRNA abrogated the effects of T3 on insulin-induced GLUT4 translocation and glucose uptake, suggesting that VAMP2 is an important mediator of these processes. These data suggest that T3 may promote glucose uptake via enhancing insulin-induced phosphorylation of Akt and subsequent translocations of VAMP2 and GLUT4 in 3T3-L1 adipocytes. Akt phosphorylation is necessary for the promoting effects of T3 on insulin-stimulated VAMP2 translocation. Further, VAMP2 is essential for T3 to increase insulin-stimulated translocation of GLUT4 and subsequent uptake of glucose in adipocytes.
Collapse
Affiliation(s)
- Yi Lin
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73126-0901, USA
| | | |
Collapse
|
152
|
Filippin-Monteiro FB, de Oliveira EM, Sandri S, Knebel FH, Albuquerque RC, Campa A. Serum amyloid A is a growth factor for 3T3-L1 adipocytes, inhibits differentiation and promotes insulin resistance. Int J Obes (Lond) 2011; 36:1032-9. [PMID: 21986708 PMCID: PMC3419975 DOI: 10.1038/ijo.2011.193] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND/OBJECTIVES Serum amyloid A (SAA) is an acute-phase protein that has been recently correlated with obesity and insulin resistance. Therefore, we first examined whether human recombinant SAA (rSAA) could affect the proliferation, differentiation and metabolism of 3T3-L1 preadipocytes. DESIGN Preadipocytes were treated with rSAA and analyzed for changes in viability and [³H-methyl]-thymidine incorporation as well as cell cycle perturbations using flow cytometry analysis. The mRNA expression profiles of adipogenic factors during the differentiation protocol were also analyzed using real-time PCR. After differentiation, 2-deoxy-[1,2-³H]-glucose uptake and glycerol release were evaluated. RESULTS rSAA treatment caused a 2.6-fold increase in cell proliferation, which was consistent with the results from flow cytometry showing that rSAA treatment augmented the percentage of cells in the S phase (60.9±0.54%) compared with the control cells (39.8±2.2%, (***) P<0.001). The rSAA-induced cell proliferation was mediated by the ERK1/2 signaling pathway, which was assessed by pretreatment with the inhibitor PD98059. However, the exposure of 3T3-L1 cells to rSAA during the differentiation process resulted in attenuated adipogenesis and decreased expression of adipogenesis-related factors. During the first 72 h of differentiation, rSAA inhibited the differentiation process by altering the mRNA expression kinetics of adipogenic transcription factors and proteins, such as PPARγ2 (peroxisome proliferator-activated receptor γ 2), C/EBPβ (CCAAT/enhancer-binding protein β) and GLUT4. rSAA prevented the intracellular accumulation of lipids and, in fully differentiated cells, increased lipolysis and prevented 2-deoxy-[1,2-³H]-glucose uptake, which favors insulin resistance. Additionally, rSAA stimulated the secretion of proinflammatory cytokines interleukin 6 and tumor necrosis factor α, and upregulated SAA3 mRNA expression during adipogenesis. CONCLUSIONS We showed that rSAA enhanced proliferation and inhibited differentiation in 3T3-L1 preadipocytes and altered insulin sensitivity in differentiated cells. These results highlight the complex role of SAA in the adipogenic process and support a direct link between obesity and its co-morbidities such as type II diabetes.
Collapse
|
153
|
Escharectomy and allografting during shock stage reduces insulin resistance induced by major burn. J Burn Care Res 2011; 32:e59-66. [PMID: 21252690 DOI: 10.1097/bcr.0b013e31820aaf96] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Hyperglycemia and insulin resistance have long been recognized in severe burn patients. Early excision and grafting reduces cytokines and insulin resistance in burned rats. The authors hypothesized that early wound excision and grafting in patients would also reduce insulin resistance induced by major burn. Thirty-five adult surviving major burn patients (>40%TBSA burn) were recruited. The removal of dead devitalized tissue and allografting in escharectomy group was performed within 72 hours and in control group about 7 days after burn injury. The concentrations of plasma insulin, glucose, and cytokines were measured at 2 and 5 days postburn. Euglycemic-hyperinsulinemic glucose clamps were performed at 5 days after burn. The levels of phosphotyrosine, phosphoserine³¹² of insulin receptor substrate (IRS)-1, and phospho-jun N-terminal kinase (JNK) in muscle were analyzed with immunoprecipitation and Western blotting at 5 days postburn. Escharectomy and allografting during shock stage significantly reduced the levels of interleukin-6 and tumor necrosis factor-α, decreased the levels of phosphoserine³¹² and phospho-JNK, increased the level of phosphotyrosine of IRS-1, and further reduced insulin resistance at 5 days after thermal injury compared with delayed excision group. Escharectomy and allografting during shock stage seemed to have an immunomodulatory effect on the inflammatory mediators and further to reduce insulin resistance induced by major burns in patients by decreasing the phosphorylation of IRS-1 serine³¹² and JNK1/2.
Collapse
|
154
|
Abstract
It has been shown that inhibition of de novo sphingolipid synthesis increases insulin sensitivity. For further exploration of the mechanism involved, we utilized two models: heterozygous serine palmitoyltransferase (SPT) subunit 2 (Sptlc2) gene knockout mice and sphingomyelin synthase 2 (Sms2) gene knockout mice. SPT is the key enzyme in sphingolipid biosynthesis, and Sptlc2 is one of its subunits. Homozygous Sptlc2-deficient mice are embryonic lethal. However, heterozygous Sptlc2-deficient mice that were viable and without major developmental defects demonstrated decreased ceramide and sphingomyelin levels in the cell plasma membranes, as well as heightened sensitivity to insulin. Moreover, these mutant mice were protected from high-fat diet-induced obesity and insulin resistance. SMS is the last enzyme for sphingomyelin biosynthesis, and SMS2 is one of its isoforms. Sms2 deficiency increased cell membrane ceramide but decreased SM levels. Sms2 deficiency also increased insulin sensitivity and ameliorated high-fat diet-induced obesity. We have concluded that Sptlc2 heterozygous deficiency- or Sms2 deficiency-mediated reduction of SM in the plasma membranes leads to an improvement in tissue and whole-body insulin sensitivity.
Collapse
|
155
|
Kaddai V, Negro F. Current understanding of insulin resistance in hepatitis C. Expert Rev Gastroenterol Hepatol 2011; 5:503-16. [PMID: 21780897 DOI: 10.1586/egh.11.43] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Important breakthroughs have been made in recent years into understanding the close interaction between hepatitis C virus (HCV) infection and glucose homeostasis. Both cross-sectional and longitudinal studies have demonstrated that infection with HCV is associated with an increased risk of developing insulin resistance and Type 2 diabetes. A direct effect of HCV on hepatocyte insulin signaling has been shown in experimental models. Some preliminary observations seem to suggest that indirect mechanisms involving extrahepatic organs might also play a role. The interaction between HCV and glucose metabolism has significant clinical consequences. Insulin resistance and Type 2 diabetes not only accelerate the histological and clinical progression of chronic hepatitis C, but also reduce the virological response to IFN-α-based therapy. Thus, understanding the mechanisms underlying HCV-associated glucose metabolism derangements is of paramount interest in order to improve the clinical management of chronic hepatitis C. This article will focus on the studies that consistently argue in favor of an interrelation between HCV and insulin resistance and will highlight the latest discoveries in this field.
Collapse
Affiliation(s)
- Vincent Kaddai
- Department of Pathology and Immunology, Centre Médical Universitaire, Rue Michel-Servet 1, Geneva, Switzerland
| | | |
Collapse
|
156
|
Kirana H, Jali MV, Srinivasan BP. The study of aqueous extract of Ficus religiosa Linn. on cytokine TNF-α in type 2 diabetic rats. Pharmacognosy Res 2011; 3:30-4. [PMID: 21731392 PMCID: PMC3119268 DOI: 10.4103/0974-8490.79112] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2010] [Revised: 10/22/2010] [Accepted: 04/07/2011] [Indexed: 11/25/2022] Open
Abstract
Background: Chronic systemic inflammation is an early process in pathogenesis of type 2 diabetes. Hence the present study was aimed to investigate the effect of traditionally known plant Ficus religiosa on elevated glucose and inflammatory marker namely tumor necrosis factor (TNF)-α in type 2 diabetic rats. Methods: Type 2 diabetes was induced by administering streptozotocin (90 mg/kg, i.p.) in neonatal rat model. Aqueous extract of F. religiosa at a dose of 100 and 200 mg/kg was given orally to desired group of animals for a period of 4 weeks. After 4 weeks of drug treatment, parameters such as fasting blood glucose, postprandial blood glucose and TNF-α in serum were analyzed. Results: Aqueous extract of F. religiosa at both dose levels i.e., 100 and 200 mg/kg decreased the elevated glucose and TNF-α in type 2 diabetic rats. The extract at 200 mg/kg had more pronounced effect. Conclusion: Modulation of cytokine TNF-α by the aqueous extract of F. religiosa indicates that the anti-inflammatory and immunomodulatory property of the plant is related with its potential anti-diabetic activity.
Collapse
Affiliation(s)
- H Kirana
- T.V.M. College of Pharmacy, Gandhi Nagar, Bellary-583 103, India
| | | | | |
Collapse
|
157
|
Halagappa K, Girish HN, Srinivasan BP. The study of aqueous extract of Pterocarpus marsupium Roxb. on cytokine TNF-α in type 2 diabetic rats. Indian J Pharmacol 2011; 42:392-6. [PMID: 21189913 PMCID: PMC2991700 DOI: 10.4103/0253-7613.71922] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2008] [Revised: 05/07/2009] [Accepted: 08/20/2010] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVE This study was designed to investigate the effect of aqueous extract of Pterocarpus marsupium Roxb. on elevated inflammatory cytokine, tumor necrosis factor (TNF)-α in type 2 diabetic rats. MATERIALS AND METHODS Type 2 diabetes was induced by administering streptozotocin (90 mg/kg, i.p.) in a neonatal rat model. Aqueous extract of P. marsupium at a dose of 100 and 200 mg/kg was given orally to desired group of animals for a period of 4 weeks. After 4 weeks of drug treatment, parameters such as fasting blood glucose, postprandial blood glucose, and TNF-α in serum were analyzed. RESULTS Aqueous extract of P. marsupium at both doses, i.e., 100 and 200 mg/kg, decreased the fasting and postprandial blood glucose in type 2 diabetic rats. The 200 mg/kg had more pronounced effect on postprandial hyperglycemia. The drug also improved the body weight of diabetic animals. Cytokine TNF-α was found to be elevated in untreated diabetic rats due to chronic systemic inflammation. The aqueous extract at both doses significantly (P < 0.001) decreased the elevated TNF-α level in type 2 diabetic rats. CONCLUSION Modulation of cytokine TNF-α by the rasayana drug P. marsupium is related with its potential anti-diabetic activity.
Collapse
Affiliation(s)
- Kirana Halagappa
- Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), M. B. Road, Sector-III, Pushp Vihar, New Delhi - 110 017, India
| | | | | |
Collapse
|
158
|
Zhao J, Dundas J, Kachalo S, Ouyang Z, Liang J. Accuracy of functional surfaces on comparatively modeled protein structures. JOURNAL OF STRUCTURAL AND FUNCTIONAL GENOMICS 2011; 12:97-107. [PMID: 21541664 PMCID: PMC3415962 DOI: 10.1007/s10969-011-9109-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 04/20/2011] [Indexed: 12/18/2022]
Abstract
Identification and characterization of protein functional surfaces are important for predicting protein function, understanding enzyme mechanism, and docking small compounds to proteins. As the rapid speed of accumulation of protein sequence information far exceeds that of structures, constructing accurate models of protein functional surfaces and identify their key elements become increasingly important. A promising approach is to build comparative models from sequences using known structural templates such as those obtained from structural genome projects. Here we assess how well this approach works in modeling binding surfaces. By systematically building three-dimensional comparative models of proteins using MODELLER: , we determine how well functional surfaces can be accurately reproduced. We use an alpha shape based pocket algorithm to compute all pockets on the modeled structures, and conduct a large-scale computation of similarity measurements (pocket RMSD and fraction of functional atoms captured) for 26,590 modeled enzyme protein structures. Overall, we find that when the sequence fragment of the binding surfaces has more than 45% identity to that of the template protein, the modeled surfaces have on average an RMSD of 0.5 Å, and contain 48% or more of the binding surface atoms, with nearly all of the important atoms in the signatures of binding pockets captured.
Collapse
Affiliation(s)
- Jieling Zhao
- Department of Bioengineering, University of Illinois at Chicago, 851 S. Morgan Street, Room 218, SEO, MC-063, Chicago, Illinois, 60607
| | - Joe Dundas
- Department of Bioengineering, University of Illinois at Chicago, 851 S. Morgan Street, Room 218, SEO, MC-063, Chicago, Illinois, 60607
| | - Sema Kachalo
- Department of Bioengineering, University of Illinois at Chicago, 851 S. Morgan Street, Room 218, SEO, MC-063, Chicago, Illinois, 60607
| | - Zheng Ouyang
- Department of Bioengineering, University of Illinois at Chicago, 851 S. Morgan Street, Room 218, SEO, MC-063, Chicago, Illinois, 60607
| | - Jie Liang
- Department of Bioengineering, University of Illinois at Chicago, 851 S. Morgan Street, Room 218, SEO, MC-063, Chicago, Illinois, 60607
| |
Collapse
|
159
|
Sugawara K, Yugami A, Kadoya T, Hosaka K. Electrochemically monitoring the binding of concanavalin A and ovalbumin. Talanta 2011; 85:425-9. [DOI: 10.1016/j.talanta.2011.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 03/30/2011] [Accepted: 04/01/2011] [Indexed: 11/30/2022]
|
160
|
Liao L, Zheng R, Wang C, Gao J, Ying Y, Ning Q, Luo X. The influence of down-regulation of suppressor of cellular signaling proteins by RNAi on glucose transport of intrauterine growth retardation rats. Pediatr Res 2011; 69:497-503. [PMID: 21364493 DOI: 10.1203/pdr.0b013e31821769bd] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Intrauterine growth retardation (IUGR) has been linked to metabolic syndrome including insulin resistance, and overexpression of suppressors of cytokine signaling (SOCSs) proteins is thought to be associated with increased whole-body insulin sensitivity. The insulin-resistant IUGR rat model was established by maternal food restriction (about 30% of the normal rats). The weight, length, and homeostasis model assessment of insulin resistance (HOMA-IR) of IUGR-born rats was higher than the control group. Insulin receptor substrate (IRS)-1 expression decreased, whereas SOCS-1 and SOCS-3 increased in the skeletal muscle of IUGR rats compared with the control group. The recombination plasmids PGPU6/GFP/Neo-SOCS-1small hairpin RNA (shRNA) and PGPU6/GFP/Neo-SOCS-3shRNA were transfected into skeletal muscle cells, and the shRNAs efficiently inhibited the expression of SOCS-1 and SOCS-3. Insulin-stimulated glucose transporter-4 (GLUT4) translocation was also dramatically increased. In conclusion, these data provide additional information on the mechanism of insulin resistance associated with IUGR. Down-regulation of SOCS-1 and SOCS-3 ameliorates the capacity of glucose transport and provides a potential gene therapy approach to managing metabolic syndrome.
Collapse
Affiliation(s)
- Lihong Liao
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | | | | | | | | | | | | |
Collapse
|
161
|
Di Paola R, Caporarello N, Marucci A, Dimatteo C, Iadicicco C, Del Guerra S, Prudente S, Sudano D, Miele C, Parrino C, Piro S, Beguinot F, Marchetti P, Trischitta V, Frittitta L. ENPP1 affects insulin action and secretion: evidences from in vitro studies. PLoS One 2011; 6:e19462. [PMID: 21573217 PMCID: PMC3088669 DOI: 10.1371/journal.pone.0019462] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 03/30/2011] [Indexed: 12/20/2022] Open
Abstract
The aim of this study was to deeper investigate the mechanisms through which
ENPP1, a negative modulator of insulin receptor (IR) activation, plays a role on
insulin signaling, insulin secretion and eventually glucose metabolism. ENPP1
cDNA (carrying either K121 or Q121 variant) was transfected in HepG2 liver-, L6
skeletal muscle- and INS1E beta-cells. Insulin-induced IR-autophosphorylation
(HepG2, L6, INS1E), Akt-Ser473,
ERK1/2-Thr202/Tyr204 and GSK3-beta Ser9
phosphorylation (HepG2, L6), PEPCK mRNA levels (HepG2) and
2-deoxy-D-glucose uptake (L6) was studied. GLUT 4 mRNA
(L6), insulin secretion and caspase-3 activation (INS1E) were also investigated.
Insulin-induced IR-autophosphorylation was decreased in HepG2-K, L6-K, INS1E-K
(20%, 52% and 11% reduction vs. untransfected cells) and
twice as much in HepG2-Q, L6-Q, INS1E-Q (44%, 92% and 30%).
Similar data were obtained with Akt-Ser473,
ERK1/2-Thr202/Tyr204 and GSK3-beta Ser9 in
HepG2 and L6. Insulin-induced reduction of PEPCK mRNA was progressively lower in
untransfected, HepG2-K and HepG2-Q cells (65%, 54%, 23%).
Insulin-induced glucose uptake in untransfected L6 (60% increase over
basal), was totally abolished in L6-K and L6-Q cells. GLUT 4 mRNA was slightly
reduced in L6-K and twice as much in L6-Q (13% and 25% reduction
vs. untransfected cells). Glucose-induced insulin secretion was 60%
reduced in INS1E-K and almost abolished in INS1E-Q. Serum deficiency activated
caspase-3 by two, three and four folds in untransfected INS1E, INS1E-K and
INS1E-Q. Glyburide-induced insulin secretion was reduced by 50% in
isolated human islets from homozygous QQ donors as compared to those from KK and
KQ individuals. Our data clearly indicate that ENPP1, especially when the Q121
variant is operating, affects insulin signaling and glucose metabolism in
skeletal muscle- and liver-cells and both function and survival of insulin
secreting beta-cells, thus representing a strong pathogenic factor predisposing
to insulin resistance, defective insulin secretion and glucose metabolism
abnormalities.
Collapse
Affiliation(s)
- Rosa Di Paola
- Research Unit of Diabetes and Endocrine
Diseases, IRCCS “Casa Sollievo della Sofferenza”, San Giovanni
Rotondo, Italy
- * E-mail: (RDP); (VT); (LF)
| | - Nunzia Caporarello
- Unit of Endocrinology, Department of Clinical
and Molecular Biomedicine, University of Catania Medical School, Garibaldi
Hospital, Catania, Italy
| | - Antonella Marucci
- Research Unit of Diabetes and Endocrine
Diseases, IRCCS “Casa Sollievo della Sofferenza”, San Giovanni
Rotondo, Italy
| | - Claudia Dimatteo
- Research Unit of Diabetes and Endocrine
Diseases, IRCCS “Casa Sollievo della Sofferenza”, San Giovanni
Rotondo, Italy
| | - Claudia Iadicicco
- Dipartimento di Biologia e Patologia Cellulare
e Molecolare and Istituto di Endocrinologia ed Oncologia Sperimentale del CNR,
Università degli Studi di Napoli Federico II, Naples, Italy
| | - Silvia Del Guerra
- Department of Endocrinology and Metabolism,
University of Pisa, Pisa, Italy
| | - Sabrina Prudente
- IRCCS “Casa Sollievo della Sofferenza,
Mendel Laboratory”, San Giovanni Rotondo, Italy
| | - Dora Sudano
- Unit of Endocrinology, Department of Clinical
and Molecular Biomedicine, University of Catania Medical School, Garibaldi
Hospital, Catania, Italy
| | - Claudia Miele
- Dipartimento di Biologia e Patologia Cellulare
e Molecolare and Istituto di Endocrinologia ed Oncologia Sperimentale del CNR,
Università degli Studi di Napoli Federico II, Naples, Italy
| | - Cristina Parrino
- Unit of Endocrinology, Department of Clinical
and Molecular Biomedicine, University of Catania Medical School, Garibaldi
Hospital, Catania, Italy
| | - Salvatore Piro
- Unit of Internal Medicine, Department of
Clinical and Molecular Biomedicine, University of Catania Medical School,
Garibaldi Hospital, Catania, Italy
| | - Francesco Beguinot
- Dipartimento di Biologia e Patologia Cellulare
e Molecolare and Istituto di Endocrinologia ed Oncologia Sperimentale del CNR,
Università degli Studi di Napoli Federico II, Naples, Italy
| | - Piero Marchetti
- Department of Endocrinology and Metabolism,
University of Pisa, Pisa, Italy
| | - Vincenzo Trischitta
- Research Unit of Diabetes and Endocrine
Diseases, IRCCS “Casa Sollievo della Sofferenza”, San Giovanni
Rotondo, Italy
- IRCCS “Casa Sollievo della Sofferenza,
Mendel Laboratory”, San Giovanni Rotondo, Italy
- Department of Experimental Medicine, Sapienza
University, Rome, Italy
- * E-mail: (RDP); (VT); (LF)
| | - Lucia Frittitta
- Unit of Endocrinology, Department of Clinical
and Molecular Biomedicine, University of Catania Medical School, Garibaldi
Hospital, Catania, Italy
- * E-mail: (RDP); (VT); (LF)
| |
Collapse
|
162
|
Narasimhan SD, Yen K, Bansal A, Kwon ES, Padmanabhan S, Tissenbaum HA. PDP-1 links the TGF-β and IIS pathways to regulate longevity, development, and metabolism. PLoS Genet 2011; 7:e1001377. [PMID: 21533078 PMCID: PMC3080858 DOI: 10.1371/journal.pgen.1001377] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 03/18/2011] [Indexed: 12/11/2022] Open
Abstract
The insulin/IGF-1 signaling (IIS) pathway is a conserved regulator of longevity, development, and metabolism. In Caenorhabditis elegans IIS involves activation of DAF-2 (insulin/IGF-1 receptor tyrosine kinase), AGE-1 (PI 3-kinase), and additional downstream serine/threonine kinases that ultimately phosphorylate and negatively regulate the single FOXO transcription factor homolog DAF-16. Phosphatases help to maintain cellular signaling homeostasis by counterbalancing kinase activity. However, few phosphatases have been identified that negatively regulate the IIS pathway. Here we identify and characterize pdp-1 as a novel negative modulator of the IIS pathway. We show that PDP-1 regulates multiple outputs of IIS such as longevity, fat storage, and dauer diapause. In addition, PDP-1 promotes DAF-16 nuclear localization and transcriptional activity. Interestingly, genetic epistasis analyses place PDP-1 in the DAF-7/TGF-β signaling pathway, at the level of the R-SMAD proteins DAF-14 and DAF-8. Further investigation into how a component of TGF-β signaling affects multiple outputs of IIS/DAF-16, revealed extensive crosstalk between these two well-conserved signaling pathways. We find that PDP-1 modulates the expression of several insulin genes that are likely to feed into the IIS pathway to regulate DAF-16 activity. Importantly, dysregulation of IIS and TGF-β signaling has been implicated in diseases such as Type 2 Diabetes, obesity, and cancer. Our results may provide a new perspective in understanding of the regulation of these pathways under normal conditions and in the context of disease.
Collapse
Affiliation(s)
- Sri Devi Narasimhan
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Kelvin Yen
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Ankita Bansal
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Eun-Soo Kwon
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Srivatsan Padmanabhan
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Heidi A. Tissenbaum
- Program in Gene Function and Expression, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
163
|
Boubekeur S, Boute N, Pagesy P, Zilberfarb V, Christeff N, Issad T. A new highly efficient substrate-trapping mutant of protein tyrosine phosphatase 1B (PTP1B) reveals full autoactivation of the insulin receptor precursor. J Biol Chem 2011; 286:19373-80. [PMID: 21487008 DOI: 10.1074/jbc.m111.222984] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
PTP1B is a protein tyrosine-phosphatase located on the cytosolic side of the endoplasmic reticulum that plays an important role in the regulation of the insulin receptor (IR). Replacement of the conserved Asp-181 by alanine is known to convert PTP1B into a substrate-trapping protein that binds to but cannot dephosphorylate its substrates. In this work, we have studied the effect of an additional mutation (Y46F) on the substrate-trapping efficiency of PTP1B-D181A. We observed that this mutation converts PTP1B-D181A into a highly efficient substrate-trapping mutant, resulting in much higher recovery of tyrosine-phosphorylated proteins coimmunoprecipitated with PTP1B. Bioluminescence resonance energy transfer (BRET) experiments were also performed to compare the dynamics of interaction of the IR with these mutants. Basal BRET, which mainly reflects the interaction of PTP1B with the IR precursor during its biosynthesis in the endoplasmic reticulum, was markedly increased with the PTP1B-D181A-Y46F mutant. In contrast, insulin-induced BRET was markedly reduced with PTP1B-D181A-Y46F. I(125) insulin binding experiments indicated that PTP1B-D181-Y46F reduced the expression of IR at the plasma membrane. Reduced expression at the cell surface was associated with higher amounts of the uncleaved IR precursor in the cell. Moreover, we observed that substantial amounts of the uncleaved IR precursor reached the Tris-phosphorylated, fully activated form in an insulin independent fashion. These results support the notion that PTP1B plays a crucial role in the control of the activity of the IR precursor during its biosynthesis. In addition, this new substrate-trapping mutant may be a valuable tool for the identification of new PTP1B substrates.
Collapse
|
164
|
Kang S, Chemaly ER, Hajjar RJ, Lebeche D. Resistin promotes cardiac hypertrophy via the AMP-activated protein kinase/mammalian target of rapamycin (AMPK/mTOR) and c-Jun N-terminal kinase/insulin receptor substrate 1 (JNK/IRS1) pathways. J Biol Chem 2011; 286:18465-73. [PMID: 21478152 DOI: 10.1074/jbc.m110.200022] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Resistin has been suggested to be involved in the development of diabetes and insulin resistance. We recently reported that resistin is expressed in diabetic hearts and promotes cardiac hypertrophy; however, the mechanisms underlying this process are currently unknown. Therefore, we wanted to elucidate the mechanisms associated with resistin-induced cardiac hypertrophy and myocardial insulin resistance. Overexpression of resistin using adenoviral vector in neonatal rat ventricular myocytes was associated with inhibition of AMP-activated protein kinase (AMPK) activity, activation of tuberous sclerosis complex 2/mammalian target of rapamycin (mTOR) pathway, and increased cell size, [(3)H]leucine incorporation (i.e. protein synthesis) and mRNA expression of the hypertrophic marker genes, atrial natriuretic factor, brain natriuretic peptide, and β-myosin heavy chain. Activation of AMPK with 5-aminoimidazole-4-carbozamide-1-β-D-ribifuranoside or inhibition of mTOR with rapamycin or mTOR siRNA attenuated these resistin-induced changes. Furthermore, resistin increased serine phosphorylation of insulin receptor substrate (IRS1) through the activation of the apoptosis signal-regulating kinase 1/c-Jun N-terminal Kinase (JNK) pathway, a module known to stimulate insulin resistance. Inhibition of JNK (with JNK inhibitor SP600125 or using dominant-negative JNK) reduced serine 307 phosphorylation of IRS1. Resistin also stimulated the activation of p70(S6K), a downstream kinase target of mTOR, and increased phosphorylation of the IRS1 serine 636/639 residues, whereas treatment with rapamycin reduced the phosphorylation of these residues. Interestingly, these in vitro signaling pathways were also operative in vivo in ventricular tissues from adult rat hearts overexpressing resistin. These data demonstrate that resistin induces cardiac hypertrophy and myocardial insulin resistance, possibly via the AMPK/mTOR/p70(S6K) and apoptosis signal-regulating kinase 1/JNK/IRS1 pathways.
Collapse
Affiliation(s)
- Soojeong Kang
- Cardiovascular Research Institute, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | | | |
Collapse
|
165
|
Arçari DP, Bartchewsky W, dos Santos TW, Oliveira KA, DeOliveira CC, Gotardo ÉM, Pedrazzoli J, Gambero A, Ferraz LFC, Carvalho PDO, Ribeiro ML. Anti-inflammatory effects of yerba maté extract (Ilex paraguariensis) ameliorate insulin resistance in mice with high fat diet-induced obesity. Mol Cell Endocrinol 2011; 335:110-5. [PMID: 21238540 DOI: 10.1016/j.mce.2011.01.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 12/21/2010] [Accepted: 01/05/2011] [Indexed: 12/16/2022]
Abstract
The aim of the present study was to evaluate the effects of yerba maté extract upon markers of insulin resistance and inflammatory markers in mice with high fat diet-induced obesity. The mice were introduced to either standard or high fat diets. After 12 weeks on a high fat diet, mice were randomly assigned to one of the two treatment conditions, water or yerba maté extract at 1.0 gkg(-1). After treatment, glucose blood level and hepatic and soleus muscle insulin response were evaluated. Serum levels of TNF-α and IL-6 were evaluated by ELISA, liver tissue was examined to determine the mRNA levels of TNF-α, IL-6 and iNOS, and the nuclear translocation of NF-κB was determined by an electrophoretic mobility shift assay. Our data show improvements in both the basal glucose blood levels and in the response to insulin administration in the treated animals. The molecular analysis of insulin signalling revealed a restoration of hepatic and muscle insulin substrate receptor (IRS)-1 and AKT phosphorylation. Our data show that the high fat diet caused an up-regulation of the TNF-α, IL-6, and iNOS genes. Although after intervention with yerba maté extract the expression levels of those genes returned to baseline through the NF-κB pathway, these results could also be secondary to the weight loss observed. In conclusion, our results indicate that yerba maté has a potential anti-inflammatory effect. Additionally, these data demonstrate that yerba maté inhibits hepatic and muscle TNF-α and restores hepatic insulin signalling in mice with high fat diet-induced obesity.
Collapse
Affiliation(s)
- Demétrius P Arçari
- Unidade Integrada de Farmacologia e Gastroenterologia, Universidade São Francisco, Bragança Paulista, SP, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Muslin AJ. Akt2: a critical regulator of cardiomyocyte survival and metabolism. Pediatr Cardiol 2011; 32:317-22. [PMID: 21279637 DOI: 10.1007/s00246-010-9879-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 12/17/2010] [Indexed: 01/09/2023]
Abstract
Akt proteins are serine/threonine protein kinases that participate in several important intracellular signal transduction cascades. Akt1 and Akt2 are expressed in cardiomyocytes, and both are activated by the action of a variety of growth factors and extracellular ligands. In work with genetically modified mice that had targeted disruption of the genes encoding Akt1 or Akt2, findings showed that Akt1 specifically regulated the physiologic growth of cardiomyocytes that occurred in response to exercise training. In contrast, Akt2 does not regulate physiologic growth but instead regulates glucose metabolism in response to insulin stimulation in cardiomyocytes. Furthermore, Akt2 plays a critical role in antagonizing cardiomyocyte apoptosis that occurs in response to a variety of stimuli, including pathologic remodeling after experimental myocardial infarction. In addition, the protein tribbles 3 (TRB3), an Akt antagonist, was found to be expressed in cardiomyocytes and to be induced by stimuli that cause endoplasmic reticulum stress. Endoplasmic reticulum stress-mediated antagonism of Akt signaling in cardiomyocytes was dependent on TRB3 induction. Finally, myocardial infarction caused endoplasmic reticulum stress in the infarct border zone that was associated with TRB3 induction. These results demonstrate the differential roles of Akt family members and the importance of Akt2 in cardiomyocyte survival.
Collapse
Affiliation(s)
- Anthony J Muslin
- Center for Cardiovascular Research, Washington University School of Medicine, 660 South Euclid Avenue, Box 8086, St. Louis, MO 63110, USA.
| |
Collapse
|
167
|
Insights into structure and function of SHIP2-SH2: homology modeling, docking, and molecular dynamics study. J Chem Biol 2011; 4:149-58. [PMID: 22328908 DOI: 10.1007/s12154-011-0057-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 01/27/2011] [Indexed: 01/18/2023] Open
Abstract
SRC homology 2 (SH2)-containing inositol 5'-phosphatase protein (SHIP2) is a potential target for type 2 diabetes. Its ability to dephosphorylate the lipid messenger phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P3], important for insulin signaling, makes it an important target against type 2 diabetes. The insulin-induced SHIP2 interaction with Shc is very important for the membrane localization and functioning of SHIP2. There is a bidentate relationship between the two proteins where two domains each from SHIP2 and Shc are involved in mutual binding. However in the present study, the SHIP2-SH2 domain binding with the phosphorylated tyrosine 317 on the collagen-homology (CH) domain of Shc, has been studied due to the indispensability of this interaction in SHIP2 localization. In the absence of the crystal structure of SHIP2-SH2, its structural model was developed followed by tracking its molecular interactions with Shc through molecular docking and dynamics studies. This study revealed much about the structural interactions between the SHIP2-SH2 and Shc-CH. Finally, docking study of a nonpeptide inhibitor into the SHIP2-SH2 domain further confirmed the structural interactions involved in ligand binding and also proposed the inhibitor as a major starting point against SHIP2-SH2 inhibition. The insights gained from the current study should prove useful in the design of more potent inhibitors against type 2 diabetes.
Collapse
|
168
|
mTOR partly mediates insulin resistance by phosphorylation of insulin receptor substrate-1 on serine307 residues after burn. Burns 2011; 37:86-93. [DOI: 10.1016/j.burns.2010.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 02/09/2010] [Accepted: 04/05/2010] [Indexed: 11/20/2022]
|
169
|
Davis JN, Ventura EE, Shaibi GQ, Byrd-Williams CE, Alexander KE, Vanni AK, Meija MR, Weigensberg MJ, Spruijt-Metz D, Goran MI. Interventions for improving metabolic risk in overweight Latino youth. ACTA ACUST UNITED AC 2011; 5:451-5. [PMID: 20387989 PMCID: PMC3752963 DOI: 10.3109/17477161003770123] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
This review highlights various components of interventions that reduced obesity and type 2 diabetes risk factors among overweight Latino youth. A total of 114 overweight Latino adolescents completed one of four randomized controlled trials: 1) strength training (ST; boys only); 2) modified carbohydrate nutrition program (N); 3) combination of N+ST; or 4) N + Combination of Aerobic and ST (N+CAST; girls only). Measures included: strength by 1-repetition max, dietary intake by 3-d records, body composition by DEXA/MRI, glucose/insulin indices by oral and IV glucose tolerance tests. ST improved insulin sensitivity by 45% in Latino boys, and N, N+ST, and N+CAST improved glucose control in Latino boys and girls. The CAST approach reduced all adiposity measures by ∼3% in Latina girls. Participants who decreased added sugar, increased dietary fiber, and had increased parental attendance, regardless of intervention group, improved insulin action and reduced visceral adipose tissue. In conclusion, ST, CAST, and a modified carbohydrate nutrition program with separate parental classes were all successful components of the interventions that decreased obesity and related metabolic diseases.
Collapse
Affiliation(s)
- Jaimie N Davis
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
170
|
Yang X, Zhang Y, Wu X, Bae CS, Hou L, Kuang H, Wang Y, Stener-Victorin E. Cryptotanshinone reverses reproductive and metabolic disturbances in prenatally androgenized rats via regulation of ovarian signaling mechanisms and androgen synthesis. Am J Physiol Regul Integr Comp Physiol 2011; 300:R869-75. [PMID: 21228340 DOI: 10.1152/ajpregu.00334.2010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This trial explores 1) prenatally androgenized (PNA) rats as a model of polycystic ovary syndrome (PCOS) and 2) reproductive and metabolic effects of cryptotanshinone in PNA ovaries. On days 16-18 of pregnancy, 10 rats were injected with testosterone propionate (PNA mothers) and 10 with sesame oil (control mothers). At age 3 mo, 12 female offspring from each group were randomly assigned to receive saline and 12 cryptotanshinone treatment during 2 wk. Before treatment, compared with the 24 controls, the 24 PNA rats had 1) disrupted estrous cycles, 2) higher 17-hydroxyprogesterone (P = 0.030), androstenedione (P = 0.016), testosterone and insulin (P values = 0.000), and glucose (P = 0.047) levels, and 3) higher areas under the curve (AUC) for glucose (AUC-Glu, P = 0.025) and homeostatic model assessment for insulin resistance (HOMA-IR, P = 0.008). After treatment, compared with vehicle-treated PNA rats, cryptotanshinone-treated PNA rats had 1) improved estrous cycles (P = 0.045), 2) reduced 17-hydroxyprogesterone (P = 0.041), androstenedione (P = 0.038), testosterone (P = 0.003), glucose (P = 0.036), and insulin (P = 0.041) levels, and 3) lower AUC-Glu (P = 0.045) and HOMA-IR (P = 0.024). Western blot showed that cryptotanshinone reversed the altered protein expressions of insulin receptor substrate-1 and -2, phosphatidylinositol 3-kinase p85α, glucose transporter-4, ERK-1, and 17α-hydroxylase within PNA ovaries. We conclude that PNA model rats exhibit reproductive and metabolic phenotypes of human PCOS and that regulation of key molecules in insulin signaling and androgen synthesis within PNA ovaries may explain cryptotanshinone's therapeutic effects.
Collapse
Affiliation(s)
- Xinming Yang
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | | | | | | | | | | | | | | |
Collapse
|
171
|
The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat Med 2011; 17:179-88. [PMID: 21217695 PMCID: PMC3076025 DOI: 10.1038/nm.2279] [Citation(s) in RCA: 1987] [Impact Index Per Article: 141.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 11/18/2010] [Indexed: 12/12/2022]
Abstract
Emergence of chronic ‘sterile’ inflammation during obesity in absence of overt infection or autoimmune process is a puzzling phenomenon. The Nod Like Receptor (NLR) family of innate immune cell sensors like the Nlrp3 inflammasome are implicated in recognizing certain non-microbial origin ‘danger–signals’ leading to caspase-1 activation and subsequent IL-1β and IL-18 secretion. We show that reduction in adipose tissue expression of Nlrp3 is coupled with decreased inflammation and improved insulin–sensitivity in obese type-2 diabetic patients. The Nlrp3 inflammasome senses the lipotoxicity–associated ceramide to induce caspase-1 cleavage in macrophages and adipose tissue. Ablation of Nlrp3 prevented the obesity–induced inflammasome activation in fat depots and liver together with enhanced insulin–signalling. Furthermore, elimination of Nlrp3 in obesity reduced IL-18 and adipose tissue IFNγ along with an increase in naïve and reduction in effector adipose tissue T cells. Collectively, these data establish that Nlrp3 inflammasome senses obesity–associated ‘danger–signals’ and contributes to obesity–induced inflammation and insulin–resistance.
Collapse
|
172
|
Häussinger D, Reinehr R. Osmotic Regulation of Bile Acid Transport, Apoptosis and Proliferation in Rat Liver. Cell Physiol Biochem 2011; 28:1089-98. [DOI: 10.1159/000335845] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2011] [Indexed: 01/04/2023] Open
|
173
|
Inokuchi JI. Physiopathological function of hematoside (GM3 ganglioside). PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2011; 87:179-98. [PMID: 21558756 PMCID: PMC3149380 DOI: 10.2183/pjab.87.179] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Since I was involved in the molecular cloning of GM3 synthase (SAT-I), which is the primary enzyme for the biosynthesis of gangliosides in 1998, my research group has been concentrating on our efforts to explore the physiological and pathological implications of gangliosides especially for GM3. During the course of study, we demonstrated the molecular pathogenesis of type 2 diabetes and insulin resistance focusing on the interaction between insulin receptor and gangliosides in membrane microdomains and propose a new concept: Life style-related diseases, such as type 2 diabetes, are a membrane microdomain disorder caused by aberrant expression of gangliosides. We also encountered an another interesting aspect indicating the indispensable role of gangliosides in auditory system. After careful behavioral examinations of SAT-I knockout mice, their hearing ability was seriously impaired with selective degeneration of the stereocilia of hair cells in the organ of Corti. This is the first observation demonstrating a direct link between gangliosides and hearing functions.
Collapse
Affiliation(s)
- Jin-ichi Inokuchi
- Division of Glycopathology, Institute of Molecular Biomembranes and Glycobiology, Tohoku Pharmaceutical University, Miyagi, Japan.
| |
Collapse
|
174
|
Inhibition of ganglioside biosynthesis as a novel therapeutic approach in insulin resistance. Handb Exp Pharmacol 2011:165-78. [PMID: 21484572 DOI: 10.1007/978-3-642-17214-4_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A new concept "Life style-related diseases, such as type 2 diabetes, are a membrane microdomain disorder caused by aberrant expression of gangliosides" has arisen. By examining this working hypothesis, we demonstrate the molecular pathogenesis of type 2 diabetes and insulin resistance focusing on the interaction between insulin receptor and gangliosides in microdomains microdomains and propose the new therapeutic strategy "membrane microdomain ortho-signaling therapy".
Collapse
|
175
|
Yang SJ, Xu CQ, Wu JW, Yang GS. SOCS3 inhibits insulin signaling in porcine primary adipocytes. Mol Cell Biochem 2010; 345:45-52. [PMID: 20683642 DOI: 10.1007/s11010-010-0558-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 07/24/2010] [Indexed: 10/19/2022]
Abstract
Insulin resistance is a major player in the pathogenesis of type II diabetes, the metabolic syndrome, and obesity. SOCS3 plays an important role in the development of insulin resistance. To investigate the role of SOCS3 in porcine adipocyte insulin signaling, we first detected the effect of insulin on SOCS3 mRNA and protein expression in porcine primary adipocytes by real-time RT-PCR and Western blotting. Then, we constructed a recombinant adenovirus encoding SOCS3 gene (Ad-SOCS3) which was used to infect differentiated porcine primary adipocytes for 3 days. The expression and phosphorylation of main insulin signaling components were detected by Western blotting. The results showed that 100 nM insulin could induce SOCS3 mRNA expression but not protein expression, and overexpression of SOCS3 decreased IRS1 protein level, insulin-stimulated IRS1 tyrosine phosphorylation, PI3K activation, and Akt phosphorylation, but increased IRS1 serine phosphorylation in porcine primary adipocytes. These results indicate that SOCS3 is an important negative regulator of insulin signaling in porcine adipocytes. Thus, SOCS3 may be a novel therapeutic target for the prevention or treatment of insulin resistance and type II diabetes.
Collapse
Affiliation(s)
- Shuang-Juan Yang
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi Province, People's Republic of China
| | | | | | | |
Collapse
|
176
|
Zhao J, Zhou G, Li M, Li W, Lü J, Xiong L, Liang L, Zhao Y, Xu D, Yu J. A novel non-alcoholic steatohepatitis animal model featured with insulin resistance, hepatic inflammation and fibrosis. Scand J Gastroenterol 2010; 45:1360-71. [PMID: 20560816 DOI: 10.3109/00365521.2010.497938] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE There is no animal model that displays the features of non-alcoholic steatohepatitis (NASH) characterized by insulin resistance (IR) and fibrosing steatohepatitis. This study aimed to develop a novel IR-associated rat model of NASH. MATERIAL AND METHODS Male Sprague-Dawley rats were fed with the high-fat diet (HFD) supplemented with 0.25% propylthiouracil for 2, 4, 6, 8 and 12 weeks. The IR-associated metabolic parameters, histological assessment and the expression of key insulin signaling molecules were determined. The circulating and tissue pro-inflammatory factors and adipocytokines were examined. RESULTS In the HFD-fed rats, the systemic and multiple-organ IR was developed after 4 weeks, whereas the histological changes characterized by steatohepatitis, inflammatory response in the visceral adipose tissue and proliferative pancreatic islet β-cells appeared after 6 weeks, concomitant with altered expression of key insulin signaling molecules. In addition, the elevated levels of serum tumor necrosis factor α (TNF-α), soluble TNF receptor2, interleukin (IL)-6, CC-chemokine ligand (CCL)2 and resistin were parallel with the severity of hepatic inflammation, while the levels of serum adiponectin, leptin and TNF-α, but not resistin, were correlated with IR. CONCLUSIONS We have developed a systemic IR-associated NASH model of rats, with impaired insulin signaling, systemic inflammation and appropriate pathology characterized by human NASH, and provided a realistic experimental model for elucidating the association between IR and the pathogenesis of NASH.
Collapse
Affiliation(s)
- Jingmin Zhao
- Department of Pathology and Hepatology, Beijing 302 Hospital, Beijing, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
177
|
Ghosh R, Karmohapatra SK, Bhattacharya G, Kumar Sinha A. The glucose-induced synthesis of insulin in liver. Endocrine 2010; 38:294-302. [PMID: 20972731 DOI: 10.1007/s12020-010-9388-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Accepted: 08/20/2010] [Indexed: 01/13/2023]
Abstract
Pancreatic β cells, stimulated by glucose, are known to synthesize and secrete insulin. As liver diseases are reported to cause diabetes mellitus, studies were conducted to determine the possibility of glucose-induced insulin synthesis in the liver cells. The glucose-induced insulin synthesis was determined by in vitro translation of mRNA from the hepatocytes. The cDNA from mRNA was prepared and sequence analysis was performed. Incubation of hepatocytes from the liver of adult mice (n=10) with glucose (0.02 M) resulted in the insulin synthesis [0.03 (mean)±0.006 (S.D.) μunits/mg/h] compared to the pancreatic β cells [0.04±0.004 μunits/mg/h]. Immunohistochemical study also demonstrated the glucose-induced synthesis of insulin in liver cells. Incubation of the mice hepatocytes with glucose resulted in the synthesis of insulin mRNA. The purified mRNA which was used to prepare cDNA resulted in the formation of proinsulin I and proinsulin II genes corresponding to 182 and 188 base pairs, respectively. Sequence analysis of the cDNA indicated that proinsulin I as well as proinsulin II gene could be involved in the synthesis of insulin by hepatocytes. These results suggested that insulin synthesis in both hepatic and pancreatic cells could be involved in the control of diabetes mellitus.
Collapse
Affiliation(s)
- Rajeshwary Ghosh
- Sinha Institute of Medical Science and Technology, 288, Kendua Main Road, Garia, Calcutta, 700 084, India
| | | | | | | |
Collapse
|
178
|
Reinehr R, Sommerfeld A, Häussinger D. Insulin induces swelling-dependent activation of the epidermal growth factor receptor in rat liver. J Biol Chem 2010; 285:25904-12. [PMID: 20571033 PMCID: PMC2923979 DOI: 10.1074/jbc.m110.125781] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 05/28/2010] [Indexed: 11/06/2022] Open
Abstract
The aim of the study was to analyze whether the proliferative effects of insulin in rat liver involve cross-signaling toward the epidermal growth factor receptor (EGFR) and whether this is mediated by insulin-induced hepatocyte swelling. Studies were performed in the perfused rat liver and in primary rat hepatocytes. Insulin (35 nmol/liter) induced phosphorylation of the EGFR at position Tyr(845) and Tyr(1173), but not at Tyr(1045), suggesting that EGF is not involved in insulin-induced EGFR activation. Insulin-induced EGFR phosphorylation and subsequent ERK1/2 phosphorylation were sensitive to bumetanide, indicating an involvement of insulin-induced hepatocyte swelling. In line with this, hypoosmotic (225 mosmol/liter) hepatocyte swelling also induced EGFR and ERK1/2 activation. Insulin- and hypoosmolarity-induced EGFR activation were sensitive to inhibition by an integrin-antagonistic RGD peptide, an integrin beta1 subtype-blocking antibody, and the c-Src inhibitor PP-2, indicating the involvement of the recently described integrin-dependent osmosensing/signaling pathway (Schliess, F., Reissmann, R., Reinehr, R., vom Dahl, S., and Häussinger, D. (2004) J. Biol. Chem. 279, 21294-21301). As shown by immunoprecipitation studies, insulin and hypoosmolarity induced a rapid, RGD peptide-, integrin beta1-blocking antibody and PP-2-sensitive association of c-Src with the EGFR. As for control, insulin-induced insulin receptor substrate-1 phosphorylation remained unaffected by the RGD peptide, PP-2, or inhibition of the EGFR tyrosine kinase activity by AG1478. Both insulin and hypoosmolarity induced a significant increase in BrdU uptake in primary rat hepatocytes, which was sensitive to RGD peptide-, integrin beta1-blocking antibody, PP-2, AG1478, and PD098059. It is concluded that insulin- or hypoosmolarity-induced hepatocyte swelling triggers an integrin- and c-Src kinase-dependent EGFR activation, which may explain the proliferative effects of insulin.
Collapse
Affiliation(s)
- Roland Reinehr
- From the Clinic for Gastroenterology, Hepatology, and Infectious Diseases, Heinrich-Heine-University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Annika Sommerfeld
- From the Clinic for Gastroenterology, Hepatology, and Infectious Diseases, Heinrich-Heine-University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Dieter Häussinger
- From the Clinic for Gastroenterology, Hepatology, and Infectious Diseases, Heinrich-Heine-University Düsseldorf, D-40225 Düsseldorf, Germany
| |
Collapse
|
179
|
Sommer G, Kralisch S, Kloting N, Kamprad M, Schrock K, Kratzsch J, Tonjes A, Lossner U, Bluher M, Stumvoll M, Fasshauer M. Visfatin is a positive regulator of MCP-1 in human adipocytes in vitro and in mice in vivo. Obesity (Silver Spring) 2010; 18:1486-92. [PMID: 20035281 DOI: 10.1038/oby.2009.462] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Visfatin is a proinflammatory and potentially insulin-mimetic adipokine contributing to whole body glucose and lipid metabolism, as well as atherosclerosis. Monocyte chemoattractant protein (MCP)-1 is an adipocyte-secreted protein which might play a crucial role in metabolic and vascular disease. MCP-1 expression and secretion after visfatin treatment were determined by quantitative real-time reverse transcription-PCR and enzyme-linked immunosorbent assay (ELISA) in fully differentiated human mesenchymal stem cell-derived adipocytes (hMSC-Ads) in vitro. In addition, circulating levels of MCP-1 and visfatin were quantified by ELISA in 60 patients (30 nondiabetic, 30 diabetic) and MCP-1 serum levels in mice were determined after visfatin treatment in vivo. Interestingly, protein secretion and mRNA production of MCP-1 were induced significantly in hMSC-Ads after visfatin stimulation. Visfatin-induced MCP-1 secretion 1.9-fold after 8 h and 2.5-fold after 24 h relative to untreated cells (P < 0.05). MCP-1 mRNA synthesis was significantly stimulated by visfatin with maximal upregulation detectable at 250 ng/ml visfatin and after 4 h of treatment. Signaling studies suggested that p44/42 mitogen-activated protein (MAP) kinase is involved in visfatin-induced MCP-1 mRNA expression in hMSC-Ads. Detectability of visfatin in serum predicted circulating MCP-1 independent of age and gender in humans in vivo. MCP-1 serum levels were significantly increased more than twofold after visfatin treatment in mice in vivo. Taken together, our results demonstrate that visfatin upregulates MCP-1 supporting a possible role of MCP-1 in mediating the proinflammatory effects of visfatin.
Collapse
Affiliation(s)
- Grit Sommer
- Department of Internal Medicine III, University of Leipzig, Leipzig, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
180
|
Leng S, Zhang W, Zheng Y, Liberman Z, Rhodes CJ, Eldar-Finkelman H, Sun XJ. Glycogen synthase kinase 3 beta mediates high glucose-induced ubiquitination and proteasome degradation of insulin receptor substrate 1. J Endocrinol 2010; 206:171-81. [PMID: 20466847 PMCID: PMC3072280 DOI: 10.1677/joe-09-0456] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
High glucose (HG) has been shown to induce insulin resistance in both type 1 and type 2 diabetes. However, the molecular mechanism behind this phenomenon is unknown. Insulin receptor substrate (IRS) proteins are the key signaling molecules that mediate insulin's intracellular actions. Genetic and biological studies have shown that reductions in IRS1 and/or IRS2 protein levels are associated with insulin resistance. In this study we have shown that proteasome degradation of IRS1, but not of IRS2, is involved in HG-induced insulin resistance in Chinese hamster ovary (CHO) cells as well as in primary hepatocytes. To further investigate the molecular mechanism by which HG induces insulin resistance, we examined various molecular candidates with respect to their involvement in the reduction in IRS1 protein levels. In contrast to the insulin-induced degradation of IRS1, HG-induced degradation of IRS1 did not require IR signaling or phosphatidylinositol 3-kinase/Akt activity. We have identified glycogen synthase kinase 3beta (GSK3 beta or GSK3B as listed in the MGI Database) as a kinase required for HG-induced serine(332) phosphorylation, ubiquitination, and degradation of IRS1. Overexpression of IRS1 with mutation of serine(332) to alanine partially prevents HG-induced IRS1 degradation. Furthermore, overexpression of constitutively active GSK3 beta was sufficient to induce IRS1 degradation. Our data reveal the molecular mechanism of HG-induced insulin resistance, and support the notion that activation of GSK3 beta contributes to the induction of insulin resistance via phosphorylation of IRS1, triggering the ubiquitination and degradation of IRS1.
Collapse
Affiliation(s)
- Sanhua Leng
- The Section of Endocrinology, The University of Chicago, 900 East 57th Street, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | |
Collapse
|
181
|
Kempná P, Hirsch A, Hofer G, Mullis PE, Flück CE. Impact of differential P450c17 phosphorylation by cAMP stimulation and by starvation conditions on enzyme activities and androgen production in NCI-H295R cells. Endocrinology 2010; 151:3686-96. [PMID: 20534731 DOI: 10.1210/en.2010-0093] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CYP17A1 plays a pivotal role in the biosynthesis of androgens in the adrenals and the gonads. Although this enzyme catalyzes two different reactions on one single active site, its specific activities are regulated independently. Although the 17alpha-hydroxylase activity is rather constant and regulated by gene expression, the 17,20-lyase activity varies significantly with the amount of cofactors or by protein phosphorylation. cAMP increases CYP17A1 expression, P450c17 phosphorylation, and androgen production. However, the exact mechanism(s) and the specific regulators of CYP17A1 remain unknown. Therefore, we studied the regulation of adrenal androgen biosynthesis in human adrenal H295R cells focusing on CYP17A1. We analyzed androgen production and P450c17 activities in H295R cells grown under normal and serum-free conditions and/or after stimulation with 8-bromoadenosine-cAMP. H295R cells grown in starvation medium produced more androgens and had decreased HSD3B2 expression and activity but increased P450c17-17,20-lyase activity and serine phosphorylation. Although starvation increased serine phosphorylation of P450c17 specifically, cAMP stimulation enhanced threonine phosphorylation exclusively. Time-course experiments revealed that a short cAMP stimulation augmented threonine phosphorylation of P450c17 but did not increase 17,20-lyase activity. By contrast, long cAMP stimulation increased androgen production through increased P450c17 activities by enhancing CYP17A1 gene expression. We conclude that serum withdrawal shifts steroidogenesis of H295R cells towards androgen production, providing a suitable model for detailed studies of androgen regulation. In addition, our study shows that starvation and cAMP stimulation regulate P450c17 phosphorylation differentially and that an increase in P450c17 phosphorylation does not necessarily lead to enhanced enzyme activity and androgen production.
Collapse
Affiliation(s)
- Petra Kempná
- Department of Pediatrics, Division of Pediatric Endocrinology, Diabetology and Metabolism, University of Bern, 3010 Bern, Switzerland
| | | | | | | | | |
Collapse
|
182
|
Yang H, Youm YH, Vandanmagsar B, Ravussin A, Gimble JM, Greenway F, Stephens JM, Mynatt RL, Dixit VD. Obesity increases the production of proinflammatory mediators from adipose tissue T cells and compromises TCR repertoire diversity: implications for systemic inflammation and insulin resistance. THE JOURNAL OF IMMUNOLOGY 2010; 185:1836-45. [PMID: 20581149 DOI: 10.4049/jimmunol.1000021] [Citation(s) in RCA: 347] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Emerging evidence suggests that increases in activated T cell populations in adipose tissue may contribute toward obesity-associated metabolic syndrome. The present study investigates three unanswered questions: 1) Do adipose-resident T cells (ARTs) from lean and obese mice have altered cytokine production in response to TCR ligation?; 2) Do the extralymphoid ARTs possess a unique TCR repertoire compared with lymphoid-resident T cells and whether obesity alters the TCR diversity in specific adipose depots?; and 3) Does short-term elimination of T cells in epididymal fat pad without disturbing the systemic T cell homeostasis regulate inflammation and insulin-action during obesity? We found that obesity reduced the frequency of naive ART cells in s.c. fat and increased the effector-memory populations in visceral fat. The ARTs from diet-induced obese (DIO) mice had a higher frequency of IFN-gamma(+), granzyme B(+) cells, and upon TCR ligation, the ARTs from DIO mice produced increased levels of proinflammatory mediators. Importantly, compared with splenic T cells, ARTs exhibited markedly restricted TCR diversity, which was further compromised by obesity. Acute depletion of T cells from epididymal fat pads improved insulin action in young DIO mice but did not reverse obesity-associated feed forward cascade of chronic systemic inflammation and insulin resistance in middle-aged DIO mice. Collectively, these data establish that ARTs have a restricted TCR-Vbeta repertoire, and T cells contribute toward the complex proinflammatory microenvironment of adipose tissue in obesity. Development of future long-term T cell depletion protocols specific to visceral fat may represent an additional strategy to manage obesity-associated comorbidities.
Collapse
Affiliation(s)
- Hyunwon Yang
- Laboratory of Neuroendocrine-Immunology, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
183
|
Ohno-Iwashita Y, Shimada Y, Hayashi M, Inomata M. Plasma membrane microdomains in aging and disease. Geriatr Gerontol Int 2010; 10 Suppl 1:S41-52. [DOI: 10.1111/j.1447-0594.2010.00600.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
184
|
Nosrati N, Aghazadeh S, Yazdanparast R. Effects of Teucrium polium on Insulin Resistance in Nonalcoholic Steatohepatitis. J Acupunct Meridian Stud 2010; 3:104-10. [DOI: 10.1016/s2005-2901(10)60019-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 03/11/2010] [Indexed: 12/11/2022] Open
|
185
|
Shankar K, Kang P, Harrell A, Zhong Y, Marecki JC, Ronis MJJ, Badger TM. Maternal overweight programs insulin and adiponectin signaling in the offspring. Endocrinology 2010; 151:2577-89. [PMID: 20371699 PMCID: PMC2875830 DOI: 10.1210/en.2010-0017] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Gestational exposure to maternal overweight (OW) influences the risk of obesity in adult life. Male offspring from OW dams gain greater body weight and fat mass and develop insulin resistance when fed high-fat diets (45% fat). In this report, we identify molecular targets of maternal OW-induced programming at postnatal d 21 before challenge with the high-fat diet. We conducted global transcriptome profiling, gene/protein expression analyses, and characterization of downstream signaling of insulin and adiponectin pathways in conjunction with endocrine and biochemical characterization. Offspring born to OW dams displayed increased serum insulin, leptin, and resistin levels (P < 0.05) at postnatal d 21 preceding changes in body composition. A lipogenic transcriptome signature in the liver, before development of obesity, was evident in OW-dam offspring. A coordinated locus of 20 sterol regulatory element-binding protein-1-regulated target genes was induced by maternal OW. Increased nuclear levels of sterol regulatory element-binding protein-1 and recruitment to the fatty acid synthase promoter were confirmed via ELISA and chromatin immunoprecipitation analyses, respectively. Higher fatty acid synthase and acetyl coenzyme A carboxylase protein and pAKT (Thr(308)) and phospho-insulin receptor-beta were confirmed via immunoblotting. Maternal OW also attenuated AMP kinase/peroxisome proliferator-activated receptor-alpha signaling in the offspring liver, including transcriptional down-regulation of several peroxisome proliferator-activated receptor-alpha-regulated genes. Hepatic mRNA and circulating fibroblast growth factor-21 levels were significantly lower in OW-dam offspring. Furthermore, serum levels of high-molecular-weight adiponectin (P < 0.05) were decreased in OW-dam offspring. Phosphorylation of hepatic AMP-kinase (Thr(172)) was significantly decreased in OW-dam offspring, along with lower AdipoR1 mRNA. Our results strongly suggest that gestational exposure to maternal obesity programs multiple aspects of energy-balance regulation in the offspring.
Collapse
Affiliation(s)
- Kartik Shankar
- Arkansas Children's Nutrition Center, 15 Children's Way, Slot 512-20B, Little Rock, Arkansas 72202, USA.
| | | | | | | | | | | | | |
Collapse
|
186
|
Bortoff KD, Keeton AB, Franklin JL, Messina JL. Anti-Inflammatory Action of Insulin via Induction of Gadd45-β Transcription by the mTOR Signaling Pathway. Hepat Med 2010; 2001:79-85. [PMID: 21286247 PMCID: PMC3030126 DOI: 10.2147/hmer.s7083] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Insulin regulates a large number of genes in a tissue-specific manner. We have previously identified genes modulated by insulin in the liver and in liver-derived cells that have not yet been characterized as insulin regulated, and results of these previous studies indicated that numerous genes are induced by insulin via the MEK-ERK pathway. We now describe new studies indicating that Gadd45-β can be induced by acute insulin treatment. Although other regulators of Gadd45-β expression may utilize the MEK-ERK pathway, the data indicate that insulin utilizes signaling pathways separate from either MEK-ERK, PI3-K, or p38 signaling pathways in the regulation of Gadd45-β transcription. Our findings show that activation of a downstream effector of multiple signaling pathways, mTOR, was required for insulin-induction of Gadd45-β gene transcription. Increased expression of Gadd45-β can inhibit c-Jun N-terminal kinase (JNK) activity. Since TNFα is increased during inflammation, and acts, at least in part, via the JNK signaling pathway, insulin induction of Gadd45-β suggests a mechanism for the anti-inflammatory actions of insulin.
Collapse
Affiliation(s)
- Katherine D Bortoff
- Department of Pathology, Division of Molecular and Cellular Pathology, The University of Alabama at Birmingham, Birmingham, Alabama, 35294-0019
| | | | | | | |
Collapse
|
187
|
Pathogenesis of insulin resistance in skeletal muscle. J Biomed Biotechnol 2010; 2010:476279. [PMID: 20445742 PMCID: PMC2860140 DOI: 10.1155/2010/476279] [Citation(s) in RCA: 378] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Accepted: 01/20/2010] [Indexed: 12/16/2022] Open
Abstract
Insulin resistance in skeletal muscle is manifested by decreased insulin-stimulated glucose uptake and results from impaired insulin signaling and multiple post-receptor intracellular defects including impaired glucose transport, glucose phosphorylation, and reduced glucose oxidation and glycogen synthesis. Insulin resistance is a core defect in type 2 diabetes, it is also associated with obesity and the metabolic syndrome. Dysregulation of fatty acid metabolism plays a pivotal role in the pathogenesis of insulin resistance in skeletal muscle. Recent studies have reported a mitochondrial defect in oxidative phosphorylation in skeletal muscle in variety of insulin resistant states. In this review, we summarize the cellular and molecular defects that contribute to the development of insulin resistance in skeletal muscle.
Collapse
|
188
|
Xu X, Zhao CX, Wang L, Tu L, Fang X, Zheng C, Edin ML, Zeldin DC, Wang DW. Increased CYP2J3 expression reduces insulin resistance in fructose-treated rats and db/db mice. Diabetes 2010; 59:997-1005. [PMID: 20068141 PMCID: PMC2844847 DOI: 10.2337/db09-1241] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
OBJECTIVE Accumulating evidence suggests that cytochrome P450 (CYP) epoxygenases metabolize arachidonic acid into epoxyeicosatrienoic acids (EETs), which play crucial and diverse roles in cardiovascular homeostasis. The anti-inflammatory, antihypertensive, and pro-proliferative effects of EETs suggest a possible beneficial role for EETs on insulin resistance and diabetes. RESEARCH DESIGN AND METHODS This study investigated the effects of CYP2J3 epoxygenase gene therapy on insulin resistance and blood pressure in diabetic db/db mice and in a model of fructose-induced hypertension and insulin resistance in rats. RESULTS CYP2J3 gene delivery in vivo increased EET generation, reduced blood pressure, and reversed insulin resistance as determined by plasma glucose levels, homeostasis model assessment insulin resistance index, and glucose tolerance test. Furthermore, CYP2J3 treatment prevented fructose-induced decreases in insulin receptor signaling and phosphorylation of AMP-activated protein kinases (AMPKs) in liver, muscle, heart, kidney, and aorta. Thus, overexpression of CYP2J3 protected against diabetes and insulin resistance in peripheral tissues through activation of insulin receptor and AMPK pathways. CONCLUSIONS These results highlight the beneficial roles of the CYP epoxygenase-EET system in diabetes and insulin resistance.
Collapse
Affiliation(s)
- Xizhen Xu
- Department of Internal Medicine and The Institute of Hypertension, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Chun Xia Zhao
- Department of Internal Medicine and The Institute of Hypertension, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Luyun Wang
- Department of Internal Medicine and The Institute of Hypertension, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Ling Tu
- Department of Internal Medicine and The Institute of Hypertension, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xiaosai Fang
- Department of Internal Medicine and The Institute of Hypertension, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Changlong Zheng
- Department of Internal Medicine and The Institute of Hypertension, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Matthew L. Edin
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Darryl C. Zeldin
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Dao Wen Wang
- Department of Internal Medicine and The Institute of Hypertension, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Corresponding author: Dao Wen Wang,
| |
Collapse
|
189
|
Hepatitis C virus differentially modulates activation of forkhead transcription factors and insulin-induced metabolic gene expression. J Virol 2010; 84:5936-46. [PMID: 20357092 DOI: 10.1128/jvi.02344-09] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Chronic hepatitis C virus (HCV) infection is often associated with insulin resistance and hepatic steatosis. Insulin regulates gene expression of key enzymes in glucose and lipid metabolism by modulating the activity of specific Forkhead box transcriptional regulators (FoxO1 and FoxA2) via the phosphatidylinositol 3-kinase (PI3K)-Akt signaling pathway in the liver. In this study, we observed that HCV infection of human hepatocytes impaired insulin-induced FoxO1 translocation from the nucleus to the cytoplasm and significantly reduced accumulation of FoxA2 in the nucleus. Phosphorylation of FoxO1 at Ser(256), a downstream target for Akt, was inhibited in hepatocytes infected with HCV or expressing the core protein or full-length (FL) genome of HCV. Further, an interaction between FoxO1 and 14-3-3 protein, important for FoxO1 translocation, was inhibited in HCV core-expressing cells. Hepatocytes infected with HCV, expressing the core protein alone or polyprotein displayed an increased level of glucose-6-phosphatase (G6P) mRNA. On the other hand, microsomal triglycerol transfer protein (MTP) activity and apolipoprotein B (ApoB) secretion were significantly reduced in hepatocytes expressing HCV proteins. Together, these observations suggest that HCV infection or ectopic expression of the core protein either alone or together with other viral proteins from an FL gene construct differentially modulates FoxO1 and FoxA2 activation and affects insulin-induced metabolic gene regulation in human hepatocytes.
Collapse
|
190
|
Vanhorebeek I, Langouche L. Molecular mechanisms behind clinical benefits of intensive insulin therapy during critical illness: glucose versus insulin. Best Pract Res Clin Anaesthesiol 2010; 23:449-59. [PMID: 20108584 DOI: 10.1016/j.bpa.2009.08.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
High blood glucose levels have been associated with morbidity and poor outcome in critically ill patients, irrespective of underlying pathology. In a large, randomised, controlled study the use of insulin therapy to maintain normoglycaemia for at least a few days improved survival and reduced morbidity of patients who are in a surgical intensive care unit (ICU). Since the publication of this landmark study, several other investigators have provided support for, whereas others have questioned, the beneficial effects of intensive insulin therapy. In this review, we discuss the investigated potential molecular mechanisms behind the clinical benefits of intensive insulin therapy. We first describe the molecular origin of hyperglycaemia and the impact of the therapy on insulin sensitivity. Next, the molecular basis of glucose toxicity in critical illness and the impact of intensive insulin therapy hereon are described, as well as other non-glucose-toxicity-related metabolic effects of intensive insulin therapy.
Collapse
Affiliation(s)
- Ilse Vanhorebeek
- Department of Intensive Care Medicine, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium.
| | | |
Collapse
|
191
|
Wang J, Ma H, Tong C, Zhang H, Lawlis GB, Li Y, Zang M, Ren J, Nijland MJ, Ford SP, Nathanielsz PW, Li J. Overnutrition and maternal obesity in sheep pregnancy alter the JNK-IRS-1 signaling cascades and cardiac function in the fetal heart. FASEB J 2010; 24:2066-76. [PMID: 20110268 DOI: 10.1096/fj.09-142315] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Maternal obesity in pregnancy predisposes offspring to insulin resistance and associated cardiovascular disease. Here, we used a well-established sheep model to investigate the effects of maternal obesity on cardiac functions. Multiparous ewes were assigned to a control (CON) diet [100% of National Research Council (NRC) recommendations] or an obesogenic (OB) diet (150% of NRC recommendations) from 60 d before conception to necropsy on d 135 of pregnancy. Fetal blood glucose and insulin were increased (P<0.01, n=8) in OB (35.09+/-2.03 mg/dl and 3.40+/-1.43 microU/ml, respectively) vs. CON ewes (23.80+/-1.38 mg/dl and 0.769+/-0.256 microU/ml). Phosphorylation of AMP-activated protein kinase (AMPK), a cardioprotective signaling pathway, was reduced (P<0.05), while the stress signaling pathway, p38 MAPK, was up-regulated (P<0.05) in OB maternal and fetal hearts. Phosphorylation of c-Jun N-terminal kinase (JNK) and insulin receptor substrate-1 (IRS-1) at Ser-307 were increased (P<0.05) in OB fetal heart associated with lower downstream PI3K-Akt activity (P<0.05), indicating impaired cardiac insulin signaling. Although OB fetal hearts exhibited a normal contractile function vs. CON fetal hearts during basal perfusion, they developed an impaired heart-rate-left-ventricular-developed pressure product in response to high workload stress. Taken together, fetuses of OB mothers demonstrate alterations in cardiac PI3K-Akt, AMPK, and JNK-IRS-1 signaling pathways that would predispose them to insulin resistance and cardiac dysfunction.
Collapse
Affiliation(s)
- Jingying Wang
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, University at Buffalo-SUNY, Buffalo, NY 14214, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
192
|
Furuhata Y, Nishihara M, Takahashi M. Effects of pulsatile secretion of growth hormone (GH) on fat deposition in human GH transgenic rats. Nutr Res Rev 2009; 15:231-44. [PMID: 19087406 DOI: 10.1079/nrr200243] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Growth hormone (GH) is an endocrine regulator of glucose and lipid metabolism as well as body growth. GH levels are decreased and a unique pulsatile secretory pattern becomes obvious after puberty particularly in males. Coincidentally with this, males tend to deposit body fat. Experimental and clinical evidence has accumulated that obesity is associated with a decrease in GH levels. A strain of transgenic rats has been generated with severe obesity but normal nose-to-tail length, which has low circulating GH levels without pulsatility (human growth hormone (hGH) transgenic rats). The present review mainly focuses on recent and current work analysing the relationship between the occurrence of obesity and low GH levels and/or the absence of GH pulsatility in this transgenic animal model. This model has elevated blood glucose, non-esterified fatty acid, insulin and leptin levels associated with hyperphagia, suggesting that these rats also carry insulin- and leptin-resistant characteristics. hGH transgenic rats were subjected to a pair-feeding treatment to normalize food intake and chronic GH replacement to normalize GH levels. While the pair-feeding for 8 weeks successfully suppressed body-weight gain, the fat pad : body weight ratio remained very similar to freely-eating control hGH transgenic rats, which indicates the hyperphagia is not the sole contributor to the excess fat accumulation in this model. However, continuous elevation of peripheral hGH levels (approximately 2-fold) for 8 weeks by means of a slow-release vehicle resulted in a significant decrease in the fat mass : body weight ratios by 30 %. This GH treatment altered neither food intake nor body-weight gain. Thus, two characteristic phenotypes observed in the hGH transgenic rats, hyperphagia and obesity, seem to be closely related to GH levels and GH secretory pattern. This relationship might be working in the regulation of changes in seasonal body composition in wild animals.
Collapse
Affiliation(s)
- Yasufumi Furuhata
- Department of Veterinary Physiology, Veterinary Medical Science, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | | |
Collapse
|
193
|
Yan M, Wang J, Wu X, Hou L, Kuang H, Wang Y. Induction of insulin resistance by phosphatidylinositol-3-kinase inhibitor in porcine granulosa cells. Fertil Steril 2009; 92:2119-21. [DOI: 10.1016/j.fertnstert.2009.06.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 05/24/2009] [Accepted: 06/07/2009] [Indexed: 12/01/2022]
|
194
|
Scioscia M, Gumaa K, Rademacher TW. The link between insulin resistance and preeclampsia: new perspectives. J Reprod Immunol 2009; 82:100-5. [DOI: 10.1016/j.jri.2009.04.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 04/06/2009] [Accepted: 04/20/2009] [Indexed: 12/24/2022]
|
195
|
Is there a link between insulin resistance and inflammatory activation in preeclampsia? Med Hypotheses 2009; 73:813-7. [DOI: 10.1016/j.mehy.2009.01.057] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 01/27/2009] [Accepted: 01/28/2009] [Indexed: 12/24/2022]
|
196
|
Muthusamy T, Murugesan P, Balasubramanian K. Sex steroids deficiency impairs glucose transporter 4 expression and its translocation through defective Akt phosphorylation in target tissues of adult male rat. Metabolism 2009; 58:1581-92. [PMID: 19615701 DOI: 10.1016/j.metabol.2009.05.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 05/07/2009] [Accepted: 05/15/2009] [Indexed: 12/27/2022]
Abstract
There is a substantial body of evidence suggesting that altered level of sex steroids in male is associated with insulin resistance and type 2 diabetes mellitus. However, the mechanism of this effect is not apparent. Our recent study indicated that testosterone deprivation decreases insulin receptor expression and glucose oxidation in insulin target tissues. The present study was designed to assess the impact of deficiency of testosterone and estradiol on Akt phosphorylation, glucose transporter expression, and glucose uptake in skeletal muscle, adipose tissue, and liver of adult male rat. Adult male albino rats of Wistar strain were orchidectomized and supplemented with testosterone (100 microg/100 g body weight per day), estradiol (5 microg/100 g body weight per day), and their combination (100 microg testosterone plus 5 microg estradiol per 100 g body weight per day) for 15 days from the 11th day postorchidectomy. On the day after the last treatment, animals were perfused; and blood was collected for the assay of plasma glucose, serum insulin, testosterone, and estradiol. Gastrocnemius muscle, adipose tissue, and liver were dissected out and used for the assay of various parameters such as Akt phosphorylation, glucose transporter (GLUT) 2 and 4 expression, glucose uptake, and glycogenic and glycogenolytic enzymes activity. Castration elevated the blood glucose level, which was accompanied by inhibitory effect on serum insulin, Akt phosphorylation, GLUT4 expression and its plasma membrane population, glucose uptake, glycogen and glycogen synthase activity, and stimulatory effect on GLUT2 expression and glycogen phosphorylase activity in tissues studied. After testosterone and its combination with estradiol supplementation to castrated rats, a normal pattern of all these parameters was restored. Estradiol administration to castrated rats increased the Akt phosphorylation without altering other parameters studied. It is concluded from the present study that sex steroids deficiency-induced defective glucose uptake in skeletal muscle and adipose tissue is mediated through defective Akt phosphorylation and GLUT4 expression in plasma membrane.
Collapse
Affiliation(s)
- Thirupathi Muthusamy
- Department of Endocrinology, Dr ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai 600 113, Tamil Nadu, India
| | | | | |
Collapse
|
197
|
He HJ, Zong Y, Bernier M, Wang L. Sensing the insulin signaling pathway with an antibody array. Proteomics Clin Appl 2009; 3:1440-50. [PMID: 21136963 DOI: 10.1002/prca.200900020] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 06/24/2009] [Accepted: 09/04/2009] [Indexed: 02/06/2023]
Abstract
The development of insulin resistance and type 2 diabetes is determined by various factors, including defects within the insulin signaling pathway. Mediators of insulin resistance operate through activation of various protein kinase C isoforms, IκB kinase β (IKKβ), and/or c-Jun N-terminal kinase, and subsequent inhibition of the proximal insulin signaling pathway via the insulin receptor substrate 1 and Akt. These mechanisms are still largely unresolved because of the complexity of the molecular events. In this study, an expression and activation state profiling of multiple known key signaling biomolecules involved in insulin metabolic and mitogenic signaling pathways was evaluated using a phosphospecific antibody array platform. The results of the arrayed antibodies were verified by the multiplexed bead array assay and conventional Western blot analysis, and confirmed the well-known inhibitory effects of phorbol esters on insulin signaling pathway activation. Of interest, the increase in protein kinase C signaling responses with phorbol esters was associated with activation of the lipid phosphatase PTEN and a 27 kDa HSP. Thus, this insulin signaling antibody array provides a powerful and effective way to investigate the mechanism of insulin resistance and likely assist the development of innovative therapeutic drugs for type 2 diabetes.
Collapse
Affiliation(s)
- Hua-Jun He
- Biochemical Science Division, National Institute of Standards and Technology, Gaithersburg, MD, USA
| | | | | | | |
Collapse
|
198
|
Inokuchi JI. Membrane microdomains and insulin resistance. FEBS Lett 2009; 584:1864-71. [PMID: 19822143 DOI: 10.1016/j.febslet.2009.10.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 10/03/2009] [Accepted: 10/06/2009] [Indexed: 11/18/2022]
Abstract
A new concept, that "metabolic disorders, such as type 2 diabetes, are membrane microdomain disorders caused by aberrant expression of gangliosides", has arisen. By examining this working hypothesis, we demonstrate the molecular pathogenesis of type 2 diabetes and insulin resistance focusing on the interaction between insulin receptor and gangliosides in microdomains and propose the new therapeutic strategy "membrane microdomain ortho-signaling therapy".
Collapse
Affiliation(s)
- Jin-ichi Inokuchi
- Division of Glycopathology, Institute of Molecular Biomembranes and Glycobiology, Tohoku Pharmaceutical University, Aoba-ku, Sendai, Miyagi, Japan.
| |
Collapse
|
199
|
Liu HY, Cao SY, Hong T, Han J, Liu Z, Cao W. Insulin is a stronger inducer of insulin resistance than hyperglycemia in mice with type 1 diabetes mellitus (T1DM). J Biol Chem 2009; 284:27090-100. [PMID: 19654321 PMCID: PMC2785638 DOI: 10.1074/jbc.m109.016675] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 07/22/2009] [Indexed: 12/13/2022] Open
Abstract
Subjects with type 1 diabetes mellitus (T1DM) eventually develop insulin resistance and other features of T2DM such as cardiovascular disorders. The exact mechanism has been not been completely understood. In this study, we tested the hypothesis that excessive or inappropriate exposure to insulin is a primary mediator of insulin resistance in T1DM. We found that continuous exposure of mice with non-obese diabetes to insulin detemir, which is similar to some current conventional treatment of human T1DM, induced severe insulin resistance, whereas untreated hyperglycemia for the same amount of time (2 weeks) did not cause obvious insulin resistance. Insulin resistance was accompanied by decreased mitochondrial production as evaluated by mitochondrial DNA and levels of transcripts and proteins of mitochondrion-associated genes, increased ectopic fat accumulation in liver and skeletal muscle (gastrocnemius) evaluated by measurements of triglyceride content, and elevated oxidative stress detected by the GSH/GSSG ratio. Prolonged exposure of cultured hepatocytes to insulin induced significant insulin resistance, whereas the same length of exposure to a high level of glucose (33 mm) did not cause obvious insulin resistance. Furthermore, our results showed that prolonged exposure to insulin caused oxidative stress, and blockade of mitochondrion-derived oxidative stress by overexpression of manganese-superoxide dismutase prevented insulin resistance induced by the prolonged exposure to insulin. Together, our results show that excessive exposure to insulin is a primary inducer of insulin resistance in T1DM in mice.
Collapse
Affiliation(s)
- Hui-Yu Liu
- From the Division of Translational Biology, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709
| | - Sophia Y. Cao
- From the Division of Translational Biology, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709
| | - Tao Hong
- From the Division of Translational Biology, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709
| | - Jianmin Han
- From the Division of Translational Biology, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709
| | - Zhenqi Liu
- Department of Medicine (Endocrinology), University of Virginia Medical Science Center, Charlottesville, Virginia 22908, and
| | - Wenhong Cao
- From the Division of Translational Biology, The Hamner Institutes for Health Sciences, Research Triangle Park, North Carolina 27709
- Department of Internal Medicine (Endocrinology), Duke University Medical System, Durham, North Carolina 27705
| |
Collapse
|
200
|
de la Monte SM, Longato L, Tong M, Wands JR. Insulin resistance and neurodegeneration: roles of obesity, type 2 diabetes mellitus and non-alcoholic steatohepatitis. CURRENT OPINION IN INVESTIGATIONAL DRUGS (LONDON, ENGLAND : 2000) 2009; 10:1049-60. [PMID: 19777393 PMCID: PMC4600072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Recent studies have linked obesity, type 2 diabetes mellitus (T2DM) or non-alcoholic steatohepatitis (NASH) to insulin resistance in the brain, cognitive impairment and neurodegeneration. Insulin resistance compromises cell survival, metabolism and neuronal plasticity, and increases oxidative stress, cytokine activation and apoptosis. T2DM/NASH has been demonstrated to be associated with increased ceramide generation, suggesting a mechanistic link between peripheral insulin resistance and neurodegeneration because ceramides mediate insulin resistance and can cross the blood-brain barrier (BBB). Peripheral insulin resistance diseases may potentially cause brain insulin resistance via a liver-brain axis of neurodegeneration as a result of the trafficking of ceramides across the BBB. Therapy that includes insulin-sensitizing agents may help prevent brain insulin resistance-mediated cognitive impairment.
Collapse
|