151
|
Thakur N, Kanduri M, Holmgren C, Mukhopadhyay R, Kanduri C. Bidirectional silencing and DNA methylation-sensitive methylation-spreading properties of the Kcnq1 imprinting control region map to the same regions. J Biol Chem 2003; 278:9514-9. [PMID: 12511562 DOI: 10.1074/jbc.m212203200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanisms underlying the phenomenon of genomic imprinting are poorly understood. Accumulating evidence suggests that imprinting control regions (ICR) associated with the imprinted genes play an important role in creation of imprinted expression domains by propagating parent-of-origin-specific epigenetic modifications. We have recently documented that the Kcnq1 ICR unidirectionally blocks enhancer-promoter communications in a methylation-dependent manner in Hep-3B and Jurkat cell lines. In this report we show that the Kcnq1 ICR harbors bidirectional silencing and methylation-sensitive methylation-spreading properties in a lineage-specific manner. We fine map both of these functions to two critical regions, and loss of one these regions results in loss of silencing as well as methylation spreading. The cell type-specific functions of the Kcnq1 ICR suggest binding of cell type-specific factors to various cis elements within the ICR. Fine mapping of the silencing and methylation-spreading functions to the same regions explains the fact that the silencing factors associated with this region primarily repress the neighboring genes and that methylation occurs as a consequence of silencing.
Collapse
Affiliation(s)
- Noopur Thakur
- Department of Development and Genetics, Evolution Biology Centre, Uppsala University, Norbyvägen 18A, S-752 36 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
152
|
Abstract
Human cancers are caused by multiple mechanisms. Research in the last 30 years has firmly established the roles of a group of genes including oncogenes, tumor suppressor genes, and DNA repair genes in human cancers. The activation and inactivation of these cancer genes can be caused by genetic mutations or epigenetic alterations. The epigenetic changes in cancers include methylation of CpG islands, loss of imprinting, and chromatin modification. The completion of the genome sequences of many organisms including the human has transformed the traditional approach to molecular biology research into an era of functional genome research. Traditional research usually involves the study of one or a few genes (proteins) in a particular biological process in normal physiology or disease. Functional genome research takes advantage of newly available genome sequences and high-throughput genome technologies to study genes and/or proteins to inform the perspective of entire biological processes. I will focus on recent progress in the identification of imprinted genes and methylation of CpG islands through genome-wide analysis.
Collapse
Affiliation(s)
- Maxwell P Lee
- Laboratory of Population Genetics, National Cancer Institute, 41 Library Drive D702C, Bethesda, Maryland 20892, USA.
| |
Collapse
|
153
|
Ishizaki T, Yoshie M, Yaginuma Y, Tanaka T, Ogawa K. Loss of Igf2 imprinting in monoclonal mouse hepatic tumor cells is not associated with abnormal methylation patterns for the H19, Igf2, and Kvlqt1 differentially methylated regions. J Biol Chem 2003; 278:6222-8. [PMID: 12475990 DOI: 10.1074/jbc.m207627200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
IGFII, the peptide encoded by the Igf2 gene, is a broad spectrum mitogen with important roles in prenatal growth as well as cancer progression. Igf2 is transcribed from the paternally inherited allele, whereas the linked H19 is transcribed from the maternal allele. Igf2 imprinting is thought to be maintained by differentially methylated regions (DMRs) located at multiple sites such as upstream of H19 and Igf2 and within Kvlqt1 loci. Biallelic expression (loss of imprinting (LOI)) of Igf2 is frequently observed in cancers, and a subset of Wilms' and intestinal tumors have been shown to exhibit abnormal methylation at H19DMR associated with loss of maternal H19 expression, but it is not known whether such changes are common in other neoplasms. Because cancers consist of diverse cell populations with and without Igf2 LOI, we established four independent monoclonal cell lines with Igf2 LOI from mouse hepatic tumors. We here demonstrate retention of normal differential methylation at H19, Igf2, or Kvlqt1 DMR by all of the cell lines. Furthermore, H19 was found to be expressed exclusively from the maternal allele, and levels of CTCF, a multifunctional nuclear factor that has an important role in the Igf2 imprinting, were comparable with those in normal hepatic tissues with no mutational changes detected. These data indicate that Igf2 LOI in tumor cells is not necessarily linked to abnormal methylation at H19, Igf2, or Kvlqt1 loci.
Collapse
Affiliation(s)
- Tomoaki Ishizaki
- Department of Pathology, Asahikawa Medical College, 2-1-1-1 East, Midorigaoka, Asahikawa 078-8510, Japan
| | | | | | | | | |
Collapse
|
154
|
Schneider P, Olson D, Tardivel A, Browning B, Lugovskoy A, Gong D, Dobles M, Hertig S, Hofmann K, Van Vlijmen H, Hsu YM, Burkly LC, Tschopp J, Zheng TS. Identification of a new murine tumor necrosis factor receptor locus that contains two novel murine receptors for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). J Biol Chem 2003; 278:5444-54. [PMID: 12466268 DOI: 10.1074/jbc.m210783200] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Tumor necrosis factor (TNF) ligand and receptor superfamily members play critical roles in diverse developmental and pathological settings. In search for novel TNF superfamily members, we identified a murine chromosomal locus that contains three new TNF receptor-related genes. Sequence alignments suggest that the ligand binding regions of these murine TNF receptor homologues, mTNFRH1, -2 and -3, are most homologous to those of the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptors. By using a number of in vitro ligand-receptor binding assays, we demonstrate that mTNFRH1 and -2, but not mTNFRH3, bind murine TRAIL, suggesting that they are indeed TRAIL receptors. This notion is further supported by our demonstration that both mTNFRH1:Fc and mTNFRH2:Fc fusion proteins inhibited mTRAIL-induced apoptosis of Jurkat cells. Unlike the only other known murine TRAIL receptor mTRAILR2, however, neither mTNFRH2 nor mTNFRH3 has a cytoplasmic region containing the well characterized death domain motif. Coupled with our observation that overexpression of mTNFRH1 and -2 in 293T cells neither induces apoptosis nor triggers NFkappaB activation, we propose that the mTnfrh1 and mTnfrh2 genes encode the first described murine decoy receptors for TRAIL, and we renamed them mDcTrailr1 and -r2, respectively. Interestingly, the overall sequence structures of mDcTRAILR1 and -R2 are quite distinct from those of the known human decoy TRAIL receptors, suggesting that the presence of TRAIL decoy receptors represents a more recent evolutionary event.
Collapse
Affiliation(s)
- Pascal Schneider
- Department of Exploratory Sciences, Biogen, Inc., Cambridge, Massachusetts 02142, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
155
|
Abstract
Deregulation of imprinted genes has been observed in a number of human diseases such as Beckwith-Wiedemann syndrome, Prader-Willi/Angelman syndromes and cancer. Imprinting diseases are characterised by complex patterns of mutations and associated phenotypes affecting pre- and postnatal growth and neurological functions. Regulation of imprinted gene expression is mediated by allele-specific epigenetic modifications of DNA and chromatin. These modifications preferentially affect central regulatory elements that control in cis over long distances allele-specific expression of several neighbouring genes. Investigations of imprinting diseases have a strong impact on biomedical research and provide interesting models for function and mechanisms of epigenetic gene control.
Collapse
Affiliation(s)
- Jörn Walter
- FR 8.2 Genetik, Universität des Saarlandes, Postfach 151150, 66041 Saarbrücken, Germany.
| | | |
Collapse
|
156
|
Higashimoto K, Soejima H, Yatsuki H, Joh K, Uchiyama M, Obata Y, Ono R, Wang Y, Xin Z, Zhu X, Masuko S, Ishino F, Hatada I, Jinno Y, Iwasaka T, Katsuki T, Mukai T. Characterization and imprinting status of OBPH1/Obph1 gene: implications for an extended imprinting domain in human and mouse. Genomics 2002; 80:575-84. [PMID: 12504849 DOI: 10.1006/geno.2002.7006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human 11p15.5, as well as its orthologous mouse 7F4/F5, is known as the imprinting domain extending from IPL/Ipl to H19. OBPH1 and Obph1 are located beyond the presumed imprinting boundary on the IPL/Ipl side. We determined full-length cDNAs and complete genomic structures of both orthologues. We also investigated their precise imprinting and methylation status. The orthologues resembled each other in genomic structure and in the position of the 5' CpG island and were expressed ubiquitously. OBPH1 and Obph1 were predominantly expressed from the maternal allele only in placenta, with hypo- and not differentially methylated 5' CpG islands in both species. These results suggested that the imprinting domain would extend beyond the presumed imprinting boundary and that methylation of the 5' CpG island was not associated with the imprinting status in either species. It remains to be elucidated whether the gene is under the control of the KIP2/LIT1 subdomain or is regulated by a specific mechanism. Analysis of the precise genomic sequence around the region should help resolve this question.
Collapse
Affiliation(s)
- Ken Higashimoto
- Department of Biomolecular Sciences, Saga Medical School, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Yatsuki H, Joh K, Higashimoto K, Soejima H, Arai Y, Wang Y, Hatada I, Obata Y, Morisaki H, Zhang Z, Nakagawachi T, Satoh Y, Mukai T. Domain regulation of imprinting cluster in Kip2/Lit1 subdomain on mouse chromosome 7F4/F5: large-scale DNA methylation analysis reveals that DMR-Lit1 is a putative imprinting control region. Genome Res 2002; 12:1860-70. [PMID: 12466290 PMCID: PMC187562 DOI: 10.1101/gr.110702] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mouse chromosome 7F4/F5, where the imprinting domain is located, is syntenic to human 11p15.5, the locus for Beckwith-Wiedemann syndrome. The domain is thought to consist of the two subdomains Kip2 (p57(kip2))/Lit1 and Igf2/H19. Because DNA methylation is believed to be a key factor in genomic imprinting, we performed large-scale DNA methylation analysis to identify the cis-element crucial for the regulation of the Kip2/Lit1 subdomain. Ten CpG islands (CGIs) were found, and these were located at the promoter sites, upstream of genes, and within intergenic regions. Bisulphite sequencing revealed that CGIs 4, 5, 8, and 10 were differentially methylated regions (DMRs). CGIs 4, 5, and 10 were methylated paternally in somatic tissues but not in germ cells. CGI8 was methylated in oocyte and maternally in somatic tissues during development. Parental-specific DNase I hypersensitive sites (HSSs) were found near CGI8. These data indicate that CGI8, called DMR-Lit1, is not only the region for gametic methylation but might also be the imprinting control region (ICR) of the subdomain.
Collapse
Affiliation(s)
- Hitomi Yatsuki
- Department of Biochemistry, Saga Medical School, Saga, Saga 849-8501, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
158
|
Fitzpatrick GV, Soloway PD, Higgins MJ. Regional loss of imprinting and growth deficiency in mice with a targeted deletion of KvDMR1. Nat Genet 2002; 32:426-31. [PMID: 12410230 DOI: 10.1038/ng988] [Citation(s) in RCA: 358] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Genomic imprinting is an epigenetic modification that results in expression from only one of the two parental copies of a gene. Differences in methylation between the two parental chromosomes are often observed at or near imprinted genes. Beckwith-Wiedemann syndrome (BWS), which predisposes to cancer and excessive growth, results from a disruption of imprinted gene expression in chromosome band 11p15.5. One third of individuals with BWS lose maternal-specific methylation at KvDMR1, a putative imprinting control region within intron 10 of the KCNQ1 gene, and it has been proposed that this epimutation results in aberrant imprinting and, consequently, BWS1, 2. Here we show that paternal inheritance of a deletion of KvDMR1 results in the de-repression in cis of six genes, including Cdkn1c, which encodes cyclin-dependent kinase inhibitor 1C. Furthermore, fetuses and adult mice that inherited the deletion from their fathers were 20-25% smaller than their wildtype littermates. By contrast, maternal inheritance of this deletion had no effect on imprinted gene expression or growth. Thus, the unmethylated paternal KvDMR1 allele regulates imprinted expression by silencing genes on the paternal chromosome. These findings support the hypothesis that loss of methylation in BWS patients activates the repressive function of KvDMR1 on the maternal chromosome, resulting in abnormal silencing of CDKN1C and the development of BWS.
Collapse
Affiliation(s)
- Galina V Fitzpatrick
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | | | |
Collapse
|
159
|
Srivastava M, Frolova E, Rottinghaus B, Boe SP, Grinberg A, Lee E, Love PE, Pfeifer K. Imprint control element-mediated secondary methylation imprints at the Igf2/H19 locus. J Biol Chem 2002; 278:5977-83. [PMID: 12270940 DOI: 10.1074/jbc.m208437200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Understanding the molecular basis of monoallelic expression as observed at imprinted loci is helpful in understanding the mechanisms underlying epigenetic regulation. Genomic imprinting begins during gametogenesis with the establishment of epigenetic marks on the chromosomes such that paternal and maternal chromosomes are rendered distinct. During embryonic development, the primary imprint can lead to generation of secondary epigenetic modifications (secondary imprints) of the chromosomes. Eventually, either the primary imprints or the secondary imprints interfere with transcription, leading to parent-of-origin-dependent silencing of one of the two alleles. Here we investigated several aspects pertaining to the generation and functional necessity of secondary methylation imprints at the Igf2/H19 locus. At the H19 locus, these secondary imprints are, in fact, the signals mediating paternal chromosome-specific silencing of that gene. We first demonstrated that the H19 secondary methylation imprints are entirely stable through multiple cell divisions, even in the absence of the primary imprint. Second, we generated mouse mutations to determine which DNA sequences are important in mediating establishment and maintenance of the silent state of the paternal H19 allele. Finally, we analyzed the dependence of the methylation of Igf2DMR1 region on the primary methylation imprint about 90 kilobases away.
Collapse
Affiliation(s)
- Madhulika Srivastava
- Laboratory of Mammalian Genes and Development, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892,USA.
| | | | | | | | | | | | | | | |
Collapse
|
160
|
Abstract
The predominant influences on fetal growth are maternal and placental factors. Post-natal growth is regulated by a complex interaction between genetic, environmental and hormonal influences. The role of the growth hormone insulin-like growth factor (GH-IGF) system is explored, including the emerging role of IGF-2 in fetal growth. Increasing understanding of the genetics of overgrowth and short stature syndromes is contributing greatly to basic understanding of growth regulation. A range of prenatal overgrowth syndromes is discussed, including those associated with neonatal hyperinsulinism and hypoglycaemia.Post-natal overgrowth may be caused by a diverse range of normal variant conditions, endocrine disorders, chromosomal abnormalities and other genetic syndromes. An approach to diagnosis is presented and major conditions discussed in detail. Sex-steroid therapy for height limitation continues to be a controversial area with uncertainty about height prediction, benefits achieved and possible long-term side-effects.
Collapse
Affiliation(s)
- Geoffrey Ambler
- The Children's Hospital at Westmead, Locked Bag 4001, Westmead, NSW, Australia
| |
Collapse
|
161
|
Abstract
Genomic imprinting in gametogenesis marks a subset of mammalian genes for parent-of-origin-dependent monoallelic expression in the offspring. Embryological and classical genetic experiments in mice that uncovered the existence of genomic imprinting nearly two decades ago produced abnormalities of growth or behavior, without severe developmental malformations. Since then, the identification and manipulation of individual imprinted genes has continued to suggest that the diverse products of these genes are largely devoted to controlling pre- and post-natal growth, as well as brain function and behavior. Here, we review this evidence, and link our discussion to a website (http://www.otago.ac.nz/IGC) containing a comprehensive database of imprinted genes. Ultimately, these data will answer the long-debated question of whether there is a coherent biological rationale for imprinting.
Collapse
Affiliation(s)
- Benjamin Tycko
- Institute for Cancer Genetics, Columbia University, New York, New York, USA.
| | | |
Collapse
|
162
|
Goldman M, Smith A, Shuman C, Caluseriu O, Wei C, Steele L, Ray P, Sadowski P, Squire J, Weksberg R, Rosenblum ND. Renal abnormalities in beckwith-wiedemann syndrome are associated with 11p15.5 uniparental disomy. J Am Soc Nephrol 2002; 13:2077-84. [PMID: 12138139 DOI: 10.1097/01.asn.0000023431.16173.55] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Beckwith-Wiedemann syndrome (BWS) is a somatic overgrowth syndrome characterized by a variable incidence of congenital anomalies, including hemihyperplasia and renal malformations. BWS is associated with disruption of genomic imprinting and/or mutations in one or more genes encoded on 11p15.5, including CDKN1C (p57(KIP2)). It was hypothesized that genotypic and epigenotypic abnormalities of the 11p15.5 region affecting CDKN1C were associated with renal abnormalities. Medical records for 159 individuals with BWS were reviewed. All underwent at least one abdominal ultrasonographic evaluation. Testing for paternal uniparental disomy (UPD) at 11p15.5, CDKN1C mutations, and imprinting defects at KvDMR1 was performed for 96, 32, and 47 patients, respectively. Of the 159 patients, 67 (42%) exhibited renal abnormalities, mainly nephromegaly (25%), collecting system abnormalities (11%), and renal cysts (10.5%). The frequency of renal lesions among patients who were tested for genetic abnormalities did not differ from that among patients who were not tested. Paternal UPD was demonstrated in 22 of 96 cases (23%), CDKN1C mutations in eight of 32 cases (25%), and KvDMR1 imprinting defects in 21 of 47 cases (45%). The 22 UPD-positive patients exhibited a significantly higher incidence of renal abnormalities (P = 0.0026). Surprisingly, the eight patients with CDKN1C mutations exhibited no significant increase in the incidence of renal lesions (P = 0.29). Imprinting defects at KvDMR1, which might downregulate CDKN1C, were also not associated with a significant difference in the incidence of renal disease. Whereas UPD at 11p15.5 in BWS was associated with a higher incidence of renal abnormalities, mutations at CDKN1C and KvDMR1 imprinting defects were not, suggesting that imprinted genes on 11p15.5 other than CDKN1C are critical for renal development.
Collapse
Affiliation(s)
- Michael Goldman
- Divisions of Nephrology and Clinical and Metabolic Genetics, Program in Developmental Biology, Research Institute, and Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Houtenbos I, Ossenkoppele GJ. Acute myeloid leukemia in a 23-year-old patient with Beckwith-Wiedemann syndrome. CANCER GENETICS AND CYTOGENETICS 2002; 136:90-1. [PMID: 12165460 DOI: 10.1016/s0165-4608(02)00528-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Children with Beckwith-Wiedemann syndrome (BWS) are at an increased risk of developing malignancies early in life. Several malignancies have been described in this fetal overgrowth syndrome; however, to date, only one hematological malignancy developing during early childhood has been reported. We present a patient with BWS developing acute myeloid leukemia at the age of 23. Loss of genomic imprinting of growth regulatory genes is thought to be the cause of BWS. For one of those genes, IGF2, an important role in childhood overgrowth syndromes as well as in the development of adult acute leukemia has been suggested, providing a possible explanation for our presented case.
Collapse
Affiliation(s)
- I Houtenbos
- Department of Hematology, (Br 250), VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | | |
Collapse
|
164
|
Sidhu S, Marsh DJ, Theodosopoulos G, Philips J, Bambach CP, Campbell P, Magarey CJ, Russell CFJ, Schulte KM, Röher HD, Delbridge L, Robinson BG. Comparative genomic hybridization analysis of adrenocortical tumors. J Clin Endocrinol Metab 2002; 87:3467-74. [PMID: 12107267 DOI: 10.1210/jcem.87.7.8697] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Comparative genomic hybridization (CGH) is a molecular cytogenetic technique that allows the entire genome of a tumor to be surveyed for gains and losses of DNA copy sequences. A limited number of studies reporting the use of this technique in adult adrenocortical tumors have yielded conflicting results. In this study we performed CGH analysis on 13 malignant, 18 benign, and 1 tumor of indeterminate malignant potential with the aim of identifying genetic loci consistently implicated in the development and progression of adrenocortical tumors. Tissue samples from 32 patients with histologically proven adrenocortical tumors were available for CGH analysis. CGH changes were seen in all cancers, 11 of 18 (61%) adenomas, and the 1 tumor of indeterminate malignant potential. Of the adrenal cancers, the most common gains were seen on chromosomes 5 (46%), 12 (38%), 19 (31%), and 4 (31%). Losses were most frequently seen at 1p (62%), 17p (54%), 22 (38%), 2q (31%), and 11q (31%). Of the benign adenomas, the most common change was gain of 4q (22%). Mann-Whitney analysis showed a highly significant difference between the cancer group (mean changes, 7.6) and the adenoma group (mean changes, 1.1) for the number of observed CGH changes (P < 0.01). Logistic regression analysis showed that the number of CGH changes was highly predictive of tumor type (P < 0.01). This study has identified several chromosomal loci implicated in adrenocortical tumorigenesis. Activation of a protooncogene(s) on chromosome 4 may be an early event, with progression from adenoma to carcinoma involving activation of oncogenes on chromosomes 5 and 12 and inactivation of tumor suppressor genes on chromosome arms 1p and 17p.
Collapse
Affiliation(s)
- Stan Sidhu
- Cancer Genetics, Kolling Institute of Medical Research, Royal North Shore Hospital, St. Leonards, New South Wales 2065, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
165
|
Clark L, Wei M, Cattoretti G, Mendelsohn C, Tycko B. The Tnfrh1 (Tnfrsf23) gene is weakly imprinted in several organs and expressed at the trophoblast-decidua interface. BMC Genet 2002. [DOI: 10.1186/1471-2156-3-37] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
166
|
Clark L, Wei M, Cattoretti G, Mendelsohn C, Tycko B. The Tnfrh1 (Tnfrsf23) gene is weakly imprinted in several organs and expressed at the trophoblast-decidua interface. BMC Genet 2002; 3:11. [PMID: 12102730 PMCID: PMC117226 DOI: 10.1186/1471-2156-3-11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2002] [Accepted: 06/27/2002] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The Tnfrh1 gene (gene symbol Tnfrsf23) is located near one end of a megabase-scale imprinted region on mouse distal chromosome 7, about 350 kb distant from the nearest known imprinting control element. Within 20 kb of Tnfrh1 is a related gene called Tnfrh2 (Tnfrsf22) These duplicated genes encode putative decoy receptors in the tumor necrosis factor (TNF) receptor family. Although other genes in this chromosomal region show conserved synteny with genes on human Chr11p15.5, there are no obvious human orthologues of Tnfrh1 or Tnfrh2. RESULTS We analyzed Tnfrh1 for evidence of parental imprinting, and characterized its tissue-specific expression. Tnfrh1 mRNA is detectable in multiple adult and fetal tissues, with highest expression in placenta, where in situ hybridization reveals a distinctive population of Tnfrh1-positive cells in maternal decidua, directly beneath the trophoblast giant cells. In offspring of interspecific mouse crosses, Tnfrh1 shows a consistent parent-of-origin-dependent allelic expression bias, with relative repression, but not silencing, of the paternal allele in several organs including fetal liver and adult spleen. CONCLUSIONS Genes preferentially expressed in the placenta are predicted to evolve rapidly, and Tnfrh1 appears to be an example of this phenomenon. In view of its strong expression in cells at the fetal-maternal boundary, Tnfrh1 warrants further study as a gene that might modulate immune or trophic interactions between the invasive placental trophoblast and the maternal decidua. The preferential expression of Tnfrh1 from the maternal allele indicates weak functional imprinting of this locus in some tissues.
Collapse
Affiliation(s)
- Lorraine Clark
- Institute for Cancer Genetics, Columbia University College of Physicians and Surgeons, New York, NY, USA
- Department of Pathology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Michelle Wei
- Institute for Cancer Genetics, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Giorgio Cattoretti
- Institute for Cancer Genetics, Columbia University College of Physicians and Surgeons, New York, NY, USA
- Department of Pathology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Cathy Mendelsohn
- Department of Pathology, Columbia University College of Physicians and Surgeons, New York, NY, USA
- Department of Urology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Benjamin Tycko
- Institute for Cancer Genetics, Columbia University College of Physicians and Surgeons, New York, NY, USA
- Department of Pathology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| |
Collapse
|
167
|
de la Puente A, Hall J, Wu YZ, Leone G, Peters J, Yoon BJ, Soloway P, Plass C. Structural characterization of Rasgrf1 and a novel linked imprinted locus. Gene 2002; 291:287-97. [PMID: 12095702 DOI: 10.1016/s0378-1119(02)00601-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Imprinted genes in mammals are expressed either from the maternally or the paternally inherited allele. Previously, a genome wide scan identified novel imprinted genes based on their association with differentially methylated regions (DMRs). One of the identified genes, Rasgrf1, showed paternal expression in neonatal brain and was located on mouse chromosome 9. This gene is associated with a DMR, located about 30 kb upstream of Rasgrf1 exon 1. In order to better understand and identify novel elements involved in the regulation of this gene we have isolated and characterized genomic clones coding for mouse and human Rasgrf1 and RASGRF1, respectively. The mouse gene consists of 26 exons spanning approximately 140 kb of genomic DNA while the human gene has 28 exons. The human gene has an additional 39 bp exon inserted between exons 13 and 14 and exon 18 is split in two separate exons in human. The major transcription start site of Rasgrf1, as identified by primer extension, is 1324 bp upstream of the ATG translation start codon. Finally, a genomic region upstream of exon 1, spanning 489 bp, was determined to possess the essential promoter activity for Rasgrf1 gene. A second gene, A19, located 10 kb upstream of the DMR has been characterized. A19 is mainly expressed in testis and at lower levels in neonatal and adult brain tissue. The A19 transcript is non-coding and expressed in mouse testis and brain. A19 is imprinted with expression occurring from just the paternal allele in brain.
Collapse
Affiliation(s)
- Aránzazu de la Puente
- Division of Human Cancer Genetics, Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, 420 West 12th Avenue, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | |
Collapse
|
168
|
Frank D, Fortino W, Clark L, Musalo R, Wang W, Saxena A, Li CM, Reik W, Ludwig T, Tycko B. Placental overgrowth in mice lacking the imprinted gene Ipl. Proc Natl Acad Sci U S A 2002; 99:7490-5. [PMID: 12032310 PMCID: PMC124258 DOI: 10.1073/pnas.122039999] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The Ipl (Tssc3) gene lies in an extended imprinted region of distal mouse chromosome 7, which also contains the Igf2 gene. Expression of Ipl is highest in placenta and yolk sac, where its mRNA is derived almost entirely from the maternal allele. Ipl encodes a small cytoplasmic protein with a pleckstrin-homology (PH) domain. We constructed two lines of mice with germ-line deletions of this gene (Ipl(neo) and Ipl(loxP)) and another line deleted for the similar but nonimprinted gene Tih1. All three lines were viable. There was consistent overgrowth of the Ipl-null placentas, with expansion of the spongiotrophoblast. These larger placentas did not confer a fetal growth advantage; fetal size was normal in Ipl nulls with the Ipl(neo) allele and was decreased slightly in nulls with the Ipl(loxP) allele. When bred into an Igf2 mutant background, the Ipl deletion partially rescued the placental but not fetal growth deficiency. Neither fetal nor placental growth was affected by deletion of Tih1. These results show a nonredundant function for Ipl in restraining placental growth. The data further indicate that Ipl can act, at least in part, independently of insulin-like growth factor-2 signaling. Thus, genomic imprinting regulates multiple pathways to control placental size.
Collapse
Affiliation(s)
- Dale Frank
- Institute for Cancer Genetics, Department of Pathology, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
169
|
Kanduri C, Fitzpatrick G, Mukhopadhyay R, Kanduri M, Lobanenkov V, Higgins M, Ohlsson R. A differentially methylated imprinting control region within the Kcnq1 locus harbors a methylation-sensitive chromatin insulator. J Biol Chem 2002; 277:18106-10. [PMID: 11877438 DOI: 10.1074/jbc.m200031200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The mechanisms underlying the phenomenon of genomic imprinting remain poorly understood. In one instance, a differentially methylated imprinting control region (ICR) at the H19 locus has been shown to involve a methylation-sensitive chromatin insulator function that apparently partitions the neighboring Igf2 and H19 genes in different expression domains in a parent of origin-dependent manner. It is not known, however, if this mechanism is unique to the Igf2/H19 locus or if insulator function is a common feature in the regulation of imprinted genes. To address this question, we have studied an ICR in the Kcnq1 locus that regulates long range repression on the paternally derived p57Kip2 and Kcnq1 alleles in an imprinting domain that includes Igf2 and H19. We show that this ICR appears to possess a unidirectional chromatin insulator function in somatic cells of both mesodermal and endodermal origins. Moreover, we document that CpG methylation regulates this insulator function suggesting that a methylation-sensitive chromatin insulator is a common theme in the phenomenon of genomic imprinting.
Collapse
Affiliation(s)
- Chandrasekhar Kanduri
- Department of Development and Genetics, Evolution Biology Centre, Uppsala University, Norbyvägen 18A, S-752 36 Uppsala, Sweden
| | | | | | | | | | | | | |
Collapse
|
170
|
Abstract
A wide variety of chemical and physical agents have the potential to produce adverse effects by causing heritable changes to the genome, resulting in heritable alterations in phenotype. These are often assumed to be a consequence of mutation. However, mutagenesis is not the only mechanism underlying heritable alterations to the genome. It is important to understand that there may also be an epigenetic basis for this. DNA methylation is the epigenetic mechanism that this review focuses upon. We indicate how altered methylation may play a key role in a variety of chemical-induced toxicities, including, but not limited to, carcinogenesis, and we point out how an assessment of methylation status can provide important information as a component of an overall safety assessment.
Collapse
Affiliation(s)
- Rebecca E Watson
- Department of Pharmacology and Toxicology, B-440 Life Science Building, Michigan State University, East Lansing, Michigan 48824, USA
| | | |
Collapse
|
171
|
Scelfo RAM, Schwienbacher C, Veronese A, Gramantieri L, Bolondi L, Querzoli P, Nenci I, Calin GA, Angioni A, Barbanti-Brodano G, Negrini M. Loss of methylation at chromosome 11p15.5 is common in human adult tumors. Oncogene 2002; 21:2564-72. [PMID: 11971191 DOI: 10.1038/sj.onc.1205336] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2001] [Revised: 01/10/2002] [Accepted: 01/11/2002] [Indexed: 11/09/2022]
Abstract
Chromosome 11p15 deletion is frequent in human tumors, suggesting the presence of at least one tumor suppressor gene within this region. While mutation analyses of local genes revealed only rare mutations, we have previously described a mechanism, gain of imprinting, that leads to loss of expression of genes located on the maternal 11p15 chromosome in human hepatocarcinomas. Loss of expression was often associated with loss of maternal-specific methylation at the KvDMR1 locus. Here, we show that loss of the maternal KvDMR1 methylation is common, ranging from 30 to 50%, to a variety of adult neoplasms, including liver, breast, cervical and gastric carcinomas. We found that other 11p15.5 loci were concomitantly hypomethylated, indicating that loss of KvDMR1 methylation occurred in the context of a common mechanism affecting the methylation of a large 11p15 subchromosomal domain. These epigenetic abnormalities were not detected in any normal somatic tissue. Therefore, it seems possible that, contrary to the repression of promoter activity caused by hypermethylation, loss of gene expression at 11p15.5 may result from the activation, by hypomethylation, of one or more negative regulatory elements.
Collapse
Affiliation(s)
- Rosaria A M Scelfo
- Dipartimento di Medicina Sperimentale e Diagnostica, Università di Ferrara, Via Luigi Borsari 46, 44100 Ferrara, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Davies K, Bowden L, Smith P, Dean W, Hill D, Furuumi H, Sasaki H, Cattanach B, Reik W. Disruption of mesodermal enhancers forIgf2in the minute mutant. Development 2002; 129:1657-68. [PMID: 11923202 DOI: 10.1242/dev.129.7.1657] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The radiation-induced mutation minute (Mnt) in the mouse leads to intrauterine growth retardation with paternal transmission and has been linked to the distal chromosome 7 cluster of imprinted genes. We show that the mutation is an inversion, whose breakpoint distal to H19 disrupts and thus identifies an enhancer for Igf2 expression in skeletal muscle and tongue, and separates the gene from other mesodermal and extra-embryonic enhancers. Paternal transmission of Mnt leads to drastic downregulation of Igf2 transcripts in all mesodermal tissues and the placenta. Maternal transmission leads to methylation of the H19 differentially methylated region (DMR) and silencing of H19, showing that elements 3′ of H19 can modify the maternal imprint. Methylation of the maternal DMR leads to biallelic expression of Igf2 in endodermal tissues and foetal overgrowth, demonstrating that methylation in vivo can open the chromatin boundary upstream of H19. Our work shows that most known enhancers for Igf2 are located 3′ of H19 and establishes an important genetic paradigm for the inheritance of complex regulatory mutations in imprinted gene clusters.
Collapse
Affiliation(s)
- Karen Davies
- Laboratory of Developmental Genetics and Imprinting, Developmental Genetics Programme, Babraham Institute, Cambridge CB2 4AT, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
173
|
Balint E, Phillips AC, Kozlov S, Stewart CL, Vousden KH. Induction of p57(KIP2) expression by p73beta. Proc Natl Acad Sci U S A 2002; 99:3529-34. [PMID: 11891335 PMCID: PMC122557 DOI: 10.1073/pnas.062491899] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The p53-related protein p73 has many functions similar to that of p53 including the ability to induce cell-cycle arrest and apoptosis. Both p53 and p73 function as transcription factors, and p73 activates expression of many genes that also are regulated by p53. Despite their similarities, it is evident that p53 and p73 are not interchangeable functionally, with p73 playing a role in normal growth and development that is not shared by p53. In this paper we describe the ability of p73beta but not p53 to activate expression of the cyclin-dependent kinase inhibitor p57(KIP) and KvLQT1, two genes that are coregulated in an imprinted region of the genome. Our results suggest that p73 may regulate expression of genes through mechanisms that are not shared by p53, potentially explaining the different contributions of p53 and p73 to normal development.
Collapse
Affiliation(s)
- Eva Balint
- Regulation of Cell Growth Laboratory, Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD 21702-1201, USA
| | | | | | | | | |
Collapse
|
174
|
Hannula K, Lipsanen-Nyman M, Kristo P, Kaitila I, Simola KOJ, Lenko HL, Tapanainen P, Holmberg C, Kere J. Genetic screening for maternal uniparental disomy of chromosome 7 in prenatal and postnatal growth retardation of unknown cause. Pediatrics 2002; 109:441-8. [PMID: 11875139 DOI: 10.1542/peds.109.3.441] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE Many short-statured children lack an etiologic explanation for their retarded growth. Recently, uniparental disomy (UPD), the inheritance of both chromosomes of a chromosome pair from only 1 parent, has been associated with short stature for many chromosomes. Silver-Russell syndrome (SRS) represents an extreme syndrome of intrauterine growth retardation (IUGR) and slight dysmorphic signs, and maternal UPD of human chromosome 7 (matUPD7) has been observed in approximately 10% of SRS cases. In addition, matUPD7 has been reported in patients with only slight dysmorphic features and prenatal or postnatal growth retardation. The objectives of this study were to study the role of matUPD7 in growth failure of unknown cause and in cases of SRS, and to evaluate the efficiency of genetic testing for matUPD7 as a diagnostic tool. METHODS DNA samples were studied from 205 children, 92 girls and 113 boys, with short stature of unknown cause and their parents. The patient cohort included 39 cases of SRS, 91 patients with IUGR and subsequent postnatal short stature, and 75 patients with postnatal growth retardation only. MatUPD7 was screened for by genotyping DNA samples from the patient, mother, and father with 13 chromosome-7-specific polymorphic microsatellite markers. RESULTS Six (3%) of 205 matUPD7 cases were observed exclusively among 39 (15%) SRS patients studied. Patients with IUGR and/or postnatal growth retardation and with dysmorphic features did not reveal cases of matUPD7. CONCLUSIONS Our results indicate that matUPD7 cases are predominantly observed among patients meeting the criteria of SRS, and matUPD7 is not a common cause for growth retardation. Genetic screening for cases of matUPD7 among growth-retarded patients should be focused on patients with severe IUGR and features of SRS. In addition, matUPD7 screening is advisable in individuals with cystic fibrosis and other recessive disorders mapped to chromosome 7 who have unusually short stature.
Collapse
Affiliation(s)
- Katariina Hannula
- Department of Medical Genetics, University of Helsinki, Helsinki, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
175
|
Yoon G, Graham G, Weksberg R, Gaul HP, DeBaun MR, Coppes MJ. Neuroblastoma in a patient with the Beckwith-Wiedemann syndrome (BWS). MEDICAL AND PEDIATRIC ONCOLOGY 2002; 38:193-9. [PMID: 11836721 DOI: 10.1002/mpo.1310] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Grace Yoon
- Alberta Children's Hospital, Calgary, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
176
|
Chiao E, Fisher P, Crisponi L, Deiana M, Dragatsis I, Schlessinger D, Pilia G, Efstratiadis A. Overgrowth of a mouse model of the Simpson-Golabi-Behmel syndrome is independent of IGF signaling. Dev Biol 2002; 243:185-206. [PMID: 11846487 DOI: 10.1006/dbio.2001.0554] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The type 1 Simpson-Golabi-Behmel overgrowth syndrome (SGBS1) is caused by loss-of-function mutations of the X-linked GPC3 gene encoding glypican-3, a cell-surface heparan sulfate proteoglycan that apparently plays a negative role in growth control by an unknown mechanism. Mice carrying a Gpc3 gene knockout exhibited several phenotypic features that resemble clinical hallmarks of SGBS1, including somatic overgrowth, renal dysplasia, accessory spleens, polydactyly, and placentomegaly. In Gpc3/DeltaH19 double mutants (lacking GPC3 and also carrying a deletion around the H19 gene region that causes bialellic expression of the closely linked Igf2 gene by imprint relaxation), the Gpc3-null phenotype was exacerbated, while additional SGBS1 features (omphalocele and skeletal defects) were manifested. However, results from a detailed comparative analysis of growth patterns in double mutants lacking GPC3 and also IGF2, IGF1, or the type 1 IGF receptor (IGF1R) provided conclusive genetic evidence inconsistent with the hypothesis that GPC3 acts as a growth suppressor by sequestering or downregulating an IGF ligand. Nevertheless, our data are compatible with a model positing that there is downstream convergence of the independent signaling pathways in which either IGFs or (indirectly) GPC3 participate.
Collapse
Affiliation(s)
- Eric Chiao
- Department of Genetics and Development, Columbia University, New York, New York 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|
177
|
Abstract
The past decade has witnessed substantial growth in our knowledge of the genes and loci that are altered in Wilms tumor. Although Wilms tumor was one of the original paradigms of Knudson's two-hit model of cancer formation, it has become apparent that several genetic events contribute to Wilms tumorigenesis. Recent research has identified targets and regulators of the first Wilms tumor gene, WT1, has uncovered several candidate genes at the second Wilms tumor locus, WT2, and has identified two familial Wilms tumor loci, FWT1 and FWT2. The recent discovery of activating beta-catenin mutations in some Wilms tumors has also implicated the Wnt signaling pathway in this neoplasm. Recurrent abnormalities of other loci, including 16q, 1p, and 7p, have indicated that these sites may harbor Wilms tumor genes. An enhanced understanding of these and other genetic lesions will provide the foundation for novel targeted Wilms tumor therapies.
Collapse
Affiliation(s)
- Jeffrey S Dome
- Department of Hematology and Oncology, St. Jude Children's Research Hospital, Tennessee 38105-2794, USA.
| | | |
Collapse
|
178
|
Cleary MA, van Raamsdonk CD, Levorse J, Zheng B, Bradley A, Tilghman SM. Disruption of an imprinted gene cluster by a targeted chromosomal translocation in mice. Nat Genet 2001; 29:78-82. [PMID: 11528397 DOI: 10.1038/ng715] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Genomic imprinting is an epigenetic process in which the activity of a gene is determined by its parent of origin. Mechanisms governing genomic imprinting are just beginning to be understood. However, the tendency of imprinted genes to exist in chromosomal clusters suggests a sharing of regulatory elements. To better understand imprinted gene clustering, we disrupted a cluster of imprinted genes on mouse distal chromosome 7 using the Cre/loxP recombination system. In mice carrying a site-specific translocation separating Cdkn1c and Kcnq1, imprinting of the genes retained on chromosome 7, including Kcnq1, Kcnq1ot1, Ascl2, H19 and Igf2, is unaffected, demonstrating that these genes are not regulated by elements near or telomeric to Cdkn1c. In contrast, expression and imprinting of the translocated Cdkn1c, Slc22a1l and Tssc3 on chromosome 11 are affected, consistent with the hypothesis that elements regulating both expression and imprinting of these genes lie within or proximal to Kcnq1. These data support the proposal that chromosomal abnormalities, including translocations, within KCNQ1 that are associated with the human disease Beckwith-Wiedemann syndrome (BWS) may disrupt CDKN1C expression. These results underscore the importance of gene clustering for the proper regulation of imprinted genes.
Collapse
Affiliation(s)
- M A Cleary
- Howard Hughes Medical Institute and Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | | | | | | | | | | |
Collapse
|
179
|
Kotzot D. Complex and segmental uniparental disomy (UPD): review and lessons from rare chromosomal complements. J Med Genet 2001; 38:497-507. [PMID: 11483637 PMCID: PMC1734925 DOI: 10.1136/jmg.38.8.497] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVE To review all cases with segmental and/or complex uniparental disomy (UPD), to study aetiology and mechanisms of formation, and to draw conclusions. DESIGN Searching published reports in Medline. RESULTS The survey found at least nine cases with segmental UPD and a normal karyotype, 22 cases with UPD of a whole chromosome and a simple or a non-homologous Robertsonian translocation, eight cases with UPD and two isochromosomes, one of the short arm and one of the long arm of a non-acrocentric chromosome, 39 cases with UPD and an isochromosome of the long arm of two homologous acrocentric chromosomes, one case of UPD and an isochromosome 8 associated with a homozygous del(8)(p23.3pter), and 21 cases with UPD of a whole or parts of a chromosome associated with a complex karyotype. Segmental UPD is formed by somatic recombination (isodisomy) or by trisomy rescue. In the latter mechanism, a meiosis I error is associated with meiotic recombination and an additional somatic exchange between two non-uniparental chromatids. Subsequently, the chromatid that originated from the disomic gamete is lost (iso- and heterodisomy). In cases of UPD associated with one isochromosome of the short arm and one isochromosome of the long arm of a non-acrocentric chromosome and in cases of UPD associated with a true isochromosome of an acrocentric chromosome, mitotic complementation is assumed. This term describes the formation by misdivision at the centromere during an early mitosis of a monosomic zygote. In cases of UPD associated with an additional marker chromosome, either mitotic formation of the marker chromosome in a trisomic zygote or fertilisation of a gamete with a marker chromosome formed in meiosis by a disomic gamete or by a normal gamete and subsequent duplication are possible. CONCLUSIONS Research in the field of segmental and/or complex UPD may help to explain undiagnosed non-Mendelian disorders, to recognise hotspots for meiotic and mitotic recombinations, and to show that chromosomal segregation is more complex than previously thought. It may also be helpful to map autosomal recessively inherited genes, genes/regions of genomic imprinting, and dysmorphic phenotypes. Last but not least it would improve genetic counselling.
Collapse
Affiliation(s)
- D Kotzot
- Institut für Humangenetik, Technische Universität München, Trogerstrasse 32, D-81675 München, Germany.
| |
Collapse
|
180
|
Gaston V, Le Bouc Y, Soupre V, Burglen L, Donadieu J, Oro H, Audry G, Vazquez MP, Gicquel C. Analysis of the methylation status of the KCNQ1OT and H19 genes in leukocyte DNA for the diagnosis and prognosis of Beckwith-Wiedemann syndrome. Eur J Hum Genet 2001; 9:409-18. [PMID: 11436121 DOI: 10.1038/sj.ejhg.5200649] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2000] [Revised: 03/05/2001] [Accepted: 03/07/2001] [Indexed: 12/12/2022] Open
Abstract
Beckwith-Wiedemann syndrome (BWS) is an overgrowth disorder involving developmental abnormalities, tissue and organ hyperplasia and an increased risk of embryonal tumours (most commonly Wilms tumour). This multigenic disorder is caused by dysregulation of the expression of imprinted genes in the 11p15 chromosomal region. Molecular diagnosis of BWS is currently difficult, mostly due to the large spectrum of genetic and epigenetic abnormalities. The other difficulty in managing BWS is the identification of patients at risk of tumour. An imprinted antisense transcript within KCNQ1, called KCNQ1OT (also known as LIT1), was recently shown to be normally expressed from the paternal allele. A loss of imprinting of the KCNQ1OT gene, associated with the loss of maternal allele-specific methylation of the differentially methylated region KvDMR1 has been described in BWS patients. The principal aim of this study was to evaluate the usefulness of KvDMR1 methylation analysis of leukocyte DNA for the diagnosis of BWS. The allelic status of the 11p15 region and the methylation status of the KCNQ1OT and H19 genes were investigated in leukocyte DNA from 97 patients referred for BWS and classified into two groups according to clinical data: complete BWS (CBWS) (n=61) and incomplete BWS (IBWS) (n=36). Fifty-eight (60%) patients (39/61 CBWS and 19/36 IBWS) displayed abnormal demethylation of KvDMR1. In 11 of the 56 informative cases, demethylation of KvDMR1 was related to 11p15 uniparental disomy (UPD) (nine CBWS and two IBWS). Thirteen of the 39 patients with normal methylation of KvDMR1 displayed hypermethylation of the H19 gene. These 13 patients included two siblings with 11p15 trisomy. These results show that analysis of the methylation status of KvDMR1 and the H19 gene in leukocyte DNA is useful in the diagnosis of 11p15-related overgrowth syndromes, resulting in the diagnosis of BWS in more than 70% of investigated patients. We also evaluated clinical and molecular features as prognostic factors for tumour and showed that mosaicism for 11p15 UPD and hypermethylation of the H19 gene in blood cells were associated with an increased risk of tumour.
Collapse
Affiliation(s)
- V Gaston
- Laboratoire d'Explorations Fonctionnelles Endocriniennes, Hôpital Trousseau, AP-HP, Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
181
|
Abstract
DNA methylation is not just for basic scientists any more. There is a growing awareness in the medical field that having the correct pattern of genomic methylation is essential for healthy cells and organs. If methylation patterns are not properly established or maintained, disorders as diverse as mental retardation, immune deficiency, and sporadic or inherited cancers may follow. Through inappropriate silencing of growth regulating genes and simultaneous destabilisation of whole chromosomes, methylation defects help create a chaotic state from which cancer cells evolve. Methylation defects are present in cells before the onset of obvious malignancy and therefore cannot be explained simply as a consequence of a deregulated cancer cell. Researchers are now able to detect with exquisite sensitivity the cells harbouring methylation defects, sometimes months or years before the time when cancer is clinically detectable. Furthermore, aberrant methylation of specific genes has been directly linked with the tumour response to chemotherapy and patient survival. Advances in our ability to observe the methylation status of the entire cancer cell genome have led us to the unmistakable conclusion that methylation abnormalities are far more prevalent than expected. This methylomics approach permits the integration of an ever growing repertoire of methylation defects with the genetic alterations catalogued from tumours over the past two decades. Here we discuss the current knowledge of DNA methylation in normal cells and disease states, and how this relates directly to our current understanding of the mechanisms by which tumours arise.
Collapse
Affiliation(s)
- J F Costello
- The Brain Tumor Research Center and the Department of Neurological Surgery, University of California, 2340 Sutter, Room N261, San Francisco, San Francisco, CA 94143-0875, USA.
| | | |
Collapse
|
182
|
Schofield PN, Joyce JA, Lam WK, Grandjean V, Ferguson-Smith A, Reik W, Maher ER. Genomic imprinting and cancer; new paradigms in the genetics of neoplasia. Toxicol Lett 2001; 120:151-60. [PMID: 11323172 DOI: 10.1016/s0378-4274(01)00294-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The role of epigenetic modification of gene expression is becoming increasingly important in how we understand the loss of tumour suppressor gene function in a variety of tumours and tumour predisposing syndromes. This review explores the importance of epimutation in Beckwith-Wiedemann syndrome and Wilms' tumour and focuses on genomic methylation in both imprinted and non-imprinted genes as a key mechanism in the development of cancer.
Collapse
Affiliation(s)
- P N Schofield
- Laboratory of Stem Cell Biology, Department of Anatomy, University of Cambridge, Downing Street, CB2 3DY, Cambridge, UK.
| | | | | | | | | | | | | |
Collapse
|
183
|
Thompson SL, Konfortova G, Gregory RI, Reik W, Dean W, Feil R. Environmental effects on genomic imprinting in mammals. Toxicol Lett 2001; 120:143-50. [PMID: 11323171 DOI: 10.1016/s0378-4274(01)00292-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Genomic imprinting is an epigenetic marking mechanism by which certain genes become repressed on one of the two parental alleles. Imprinting plays important roles in mammalian development, and in humans its deregulation may result in disease and carcinogenesis. During different medical, technological and scientific interventions, pre-implantation embryos and cells are taken from their natural environment and subjected to culture in artificial media. Studies in the mouse demonstrate that environmental stress, such as in vitro culture, can affect the somatic maintenance of epigenetic marks at imprinted loci. These effects are associated with aberrant growth and morphology at fetal and perinatal stages of development.
Collapse
Affiliation(s)
- S L Thompson
- Programme in Developmental Genetics, The Babraham Institute, CB2 4AT, Cambridge, UK
| | | | | | | | | | | |
Collapse
|
184
|
Khosla S, Dean W, Brown D, Reik W, Feil R. Culture of preimplantation mouse embryos affects fetal development and the expression of imprinted genes. Biol Reprod 2001; 64:918-26. [PMID: 11207209 DOI: 10.1095/biolreprod64.3.918] [Citation(s) in RCA: 447] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Culture of preimplantation mammalian embryos and cells can influence their subsequent growth and differentiation. Previously, we reported that culture of mouse embryonic stem cells is associated with deregulation of genomic imprinting and affects the potential for these cells to develop into normal fetuses. The purpose of our current study was to determine whether culture of preimplantation mouse embryos in a chemically defined medium (M16) with or without fetal calf serum (FCS) can affect their subsequent development and imprinted gene expression. Only one third of the blastocysts that had been cultured from two-cell embryos in M16 medium complemented with FCS developed into viable Day 14 fetuses after transfer into recipients. These M16 + FCS fetuses were reduced in weight as compared with controls and M16 fetuses and had decreased expression of the imprinted H19 and insulin-like growth factor 2 genes associated with a gain of DNA methylation at an imprinting control region upstream of H19. They also displayed increased expression of the imprinted gene Grb10. The growth factor receptor binding gene Grb7, in contrast, was strongly reduced in its expression in most of the M16 + FCS fetuses. No alterations were detected for the imprinted gene MEST: Preimplantation culture in the presence of serum can influence the regulation of multiple growth-related imprinted genes, thus leading to aberrant fetal growth and development.
Collapse
Affiliation(s)
- S Khosla
- Laboratory of Developmental Genetics and Imprinting and Laboratory of Computational Neuroscience, The Babraham Institute, Babraham, Cambridge CB2 4AT, United Kingdom
| | | | | | | | | |
Collapse
|
185
|
Rommel D, Pirson Y. Medullary sponge kidney--part of a congenital syndrome. Nephrol Dial Transplant 2001; 16:634-6. [PMID: 11239047 DOI: 10.1093/ndt/16.3.634] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- D Rommel
- Cliniques Universitaires St-Luc, Department of Nephrology, Université Catholique de Louvain, Brussels, Belgium
| | | |
Collapse
|
186
|
Hanel ML, Wevrick R. The role of genomic imprinting in human developmental disorders: lessons from Prader-Willi syndrome. Clin Genet 2001; 59:156-64. [PMID: 11260224 DOI: 10.1034/j.1399-0004.2001.590303.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Normal human development involves a delicate interplay of gene expression in specific tissues at narrow windows of time. Temporally and spatially regulated gene expression is controlled both by gene-specific factors and chromatin-specific factors. Genomic imprinting is the expression of specific genes primarily from only one allele at particular times during development, and is one mechanism implicated in the intricate control of gene expression. Two human genetic disorders, Prader-Willi syndrome (PWS, MIM 176270) and Angelman syndrome (AS, MIM 105830), result from rearrangements of chromosome 15q11-q13, an imprinted region of the human genome. Despite their rarity, disorders such as PWS and AS can give focused insight into the role of genomic imprinting and imprinted genes in human development.
Collapse
Affiliation(s)
- M L Hanel
- Department of Medical Genetics, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
187
|
Abstract
Genomic imprinting affects several dozen mammalian genes and results in the expression of those genes from only one of the two parental chromosomes. This is brought about by epigenetic instructions--imprints--that are laid down in the parental germ cells. Imprinting is a particularly important genetic mechanism in mammals, and is thought to influence the transfer of nutrients to the fetus and the newborn from the mother. Consistent with this view is the fact that imprinted genes tend to affect growth in the womb and behaviour after birth. Aberrant imprinting disturbs development and is the cause of various disease syndromes. The study of imprinting also provides new insights into epigenetic gene modification during development.
Collapse
Affiliation(s)
- W Reik
- Laboratory of Developmental Genetics and Imprinting, Developmental Genetics Programme, Babraham Institute, Cambridge CB2 4AT, UK.
| | | |
Collapse
|
188
|
del Campo Casanelles M, Pérez Jurado L. Genética no mendeliana y crecimiento. El síndrome de Russel-Silver. An Pediatr (Barc) 2001. [DOI: 10.1016/s1695-4033(01)77589-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
189
|
Engel JR, Smallwood A, Harper A, Higgins MJ, Oshimura M, Reik W, Schofield PN, Maher ER. Epigenotype-phenotype correlations in Beckwith-Wiedemann syndrome. J Med Genet 2000; 37:921-6. [PMID: 11106355 PMCID: PMC1734494 DOI: 10.1136/jmg.37.12.921] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Beckwith-Wiedemann syndrome (BWS) is a model imprinting disorder resulting from mutations or epigenetic events involving imprinted genes at chromosome 11p15.5. Thus, germline mutations in CDKN1C, uniparental disomy (UPD), and loss of imprinting of IGF2 and other imprinted genes have been implicated. Many familial BWS cases have germline CDKN1C mutations. However, most BWS cases are sporadic and UPD or putative imprinting errors predominate in this group. We have identified previously a subgroup of sporadic cases with loss of imprinting (LOI) of IGF2 and epigenetic silencing of H19 proposed to be caused by a defect in a distal 11p15.5 imprinting control element (designated BWSIC1). However, many sporadic BWS patients show biallelic IGF2 expression in the presence of normal H19 methylation and expression patterns. This and other evidence suggested the existence of a further imprinting control element (BWSIC2) at 11p15. 5. Recently, we showed that a subgroup of BWS patients have loss of methylation (LOM) at a differentially methylated region (KvDMR1) within the KCNQ1 gene centromeric to the IGF2 and H19 genes. We have now analysed a large series of sporadic cases to define the frequency and phenotypic correlates of epigenetic abnormalities in BWS. LOM at KvDMR1 was detected by Southern analysis or a novel PCR based method in 35 of 69 (51%) sporadic BWS without UPD. LOM at KvDMR1 was often, but not invariably associated with LOI of IGF2. KvDMR1 LOM was not detected in BWS patients with putative BWSIC1 defects and cases with KvDMR1 LOM (that is, putative BWSIC2 defects) invariably had a normal H19 methylation pattern. The incidence of exomphalos in putative BWSIC2 defect patients was not significantly different from that in patients with germline CDKN1C mutations (20/29 and 13/15 respectively), but was significantly greater than that in patients with putative BWSIC1 defects (0/5, p=0.007) and UPD (0/22, p<0.0001). These findings are consistent with the hypothesis that LOM of KvDMR1 (BWSIC2 defect) results in epigenetic silencing of CDKN1C and variable LOI of IGF2. BWS patients with embryonal tumours have UPD or a BWSIC1 defect but not LOM of KvDMR1. This study has further shown how (1) variations in phenotypic expression of BWS may be linked to specific molecular subgroups and (2) molecular analysis of BWS can provide insights into mechanisms of imprinting regulation.
Collapse
Affiliation(s)
- J R Engel
- Section of Medical and Molecular Genetics, Department of Paediatrics and Child Health, University of Birmingham, Birmingham Women's Hospital, Edgbaston, Birmingham B15 2TT, UK
| | | | | | | | | | | | | | | |
Collapse
|
190
|
|