151
|
Gyamfi J, Eom M, Koo JS, Choi J. Multifaceted Roles of Interleukin-6 in Adipocyte-Breast Cancer Cell Interaction. Transl Oncol 2018; 11:275-285. [PMID: 29413760 PMCID: PMC5884177 DOI: 10.1016/j.tranon.2017.12.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/18/2017] [Accepted: 12/18/2017] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the most common malignancy in women worldwide, with a developmental process spanning decades. The malignant cells recruit a variety of cells including fibroblasts, endothelial cells, immune cells, and adipocytes, creating the tumor microenvironment. The tumor microenvironment has emerged as active participants in breast cancer progression and response to treatment through autocrine and paracrine interaction with the malignant cells. Adipose tissue is abundant in the breast cancer microenvironment; interactions with cancer cells create cancer-associated adipocytes which produce a variety of adipokines that influence breast cancer initiation, metastasis, angiogenesis, and cachexia. Interleukin (IL)-6 has emerged as key compound significantly produced by breast cancer cells and adipocytes, with the potential of inducing proliferation, epithelial-mesenchymal phenotype, stem cell phenotype, angiogenesis, cachexia, and therapeutic resistance in breast cancer cells. Our aim is to present a brief knowledge of IL-6’s role in breast cancer. This review summarizes our current understanding of the breast microenvironment, with emphasis on adipocytes as key players in breast cancer tumorigenesis. The effects of key adipocytes such as leptin, adipokines, TGF-b, and IL-6 are discussed. Finally, we discuss the role of IL-6 in various aspects of cancer progression.
Collapse
Affiliation(s)
- Jones Gyamfi
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Korea
| | - Minseob Eom
- Department of Pathology, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Ja-Seung Koo
- Department of Pathology, Yonsei University College of Medicine.
| | - Junjeong Choi
- College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon, Korea.
| |
Collapse
|
152
|
Zhu ZY, Jia CZ, Luo JM, Wang L. Polyriboinosinic-polyribocytidylic acid facilitates interleukin-6, and interleukin-8 secretion in human dermal fibroblasts via the JAK/STAT3 and p38 MAPK signal transduction pathways. Cytokine 2018; 102:1-6. [PMID: 29245047 DOI: 10.1016/j.cyto.2017.12.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/07/2017] [Accepted: 12/09/2017] [Indexed: 02/05/2023]
Abstract
Polyriboinosinic-polyribocytidylic acid (polyI:C) is a viral dsRNA analoguethat promotes wounds healing, accelerates re-epithelialization, granulation and neovascularization, and induces pro-inflammatory cytokine release. Little is known about polyI:C mediated induction of inflammatory mediators in human dermal fibroblast (HDFs), which form the primary scaffold for epithelial cells covering the wound. Here, we found that polyI:C enhances IL-6 and IL-8 mRNA expression and induces of IL-6 and IL-8 production in a concentration-dependent and time-dependent manner in HDFs. PolyI:C treatment rapidly increased phosphorylation level of both STAT3 and p38 mitogen-activated protein kinase (MAPK). Moreover, pretreatment with AG490, a Janus kinase (JAK) inhibitor, inhibited polyI:C-induced STAT3 phosphorylation and subsequent IL-6 and IL-8 release. Conversely, pretreatment with SB203580, a selective inhibitor of p38 MAPK, blocked p38 MAPK phosphorylation and IL-6 and IL-8 expression. In conclusion, polyI:C induces IL-6 and IL-8 production in HDFs via the JAK/STAT3 and p38 MAPK signaling pathways.
Collapse
Affiliation(s)
- Zhang Ying Zhu
- Department of Pathophysiology, Shantou University Medical College, 5150412, People's Republic of China
| | - Cong Zhuo Jia
- Department of Dermatology, First Affiliated Hospital, Shantou University Medical College, 515041, People's Republic of China
| | - Jian Min Luo
- Department of Pathophysiology, Shantou University Medical College, 5150412, People's Republic of China.
| | - Li Wang
- Shenzhen University General Hospital, 518055, People's Republic of China; Department of Dermatology, First Affiliated Hospital, Shantou University Medical College, 515041, People's Republic of China; Huizhou Municipal Hospital, People's Republic of China.
| |
Collapse
|
153
|
Abstract
Multicentric Castleman’s disease (MCD), a distinct subtype of Castleman’s disease, is a rare, nonneoplastic, lymphoproliferative disorder. Patients with MCD present with systemic symptoms and multiple lymphadenopathy. Lymph node biopsy is necessary for the diagnosis of various histological MCD patterns including hyaline vascular, plasma cell, and mixed types. Human herpesvirus 8 (HHV8) infection was identified as an important etiology of MCD among immunocompromised patients such as those positive for human immunodeficiency virus. Although HHV8-negative MCD was reported in immunocompetent patients, the underlying etiology remains unknown. Several experts speculate that MCD in immunocompetent patients might be due to proinflammatory hypercytokinemia because of infection by a virus other than HHV8, inflammation, or neoplastic disease. In 2010, a distinct variant of HHV8-negative MCD reported in Japan was characterized by thrombocytopenia, anasarca, myelofibrosis, renal dysfunction, and organomegaly (TAFRO). Recent case reports and a systematic review suggest that TAFRO syndrome might have a unique pathogenesis among HHV8-negative MCD variants. This review introduces TAFRO syndrome as a subtype of HHV8-negative MCD and offers an overview of the current perspectives on this syndrome.
Collapse
Affiliation(s)
- Kentaro Sakashita
- Department of Internal Medicine, Tokyo Metropolitan Matsuzawa Hospital.,Department of Respiratory Medicine, Tokyo Metropolitan Tama Medical Center, Tokyo, Japan
| | - Kengo Murata
- Department of Respiratory Medicine, Tokyo Metropolitan Tama Medical Center, Tokyo, Japan
| | - Mikio Takamori
- Department of Respiratory Medicine, Tokyo Metropolitan Tama Medical Center, Tokyo, Japan
| |
Collapse
|
154
|
Mohamed WA, Schaalan MF. Antidiabetic efficacy of lactoferrin in type 2 diabetic pediatrics; controlling impact on PPAR-γ, SIRT-1, and TLR4 downstream signaling pathway. Diabetol Metab Syndr 2018; 10:89. [PMID: 30534206 PMCID: PMC6280363 DOI: 10.1186/s13098-018-0390-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 11/27/2018] [Indexed: 12/27/2022] Open
Abstract
The current study aims to investigate the antidiabetic efficacy of camel milk-derived lactoferrin and potential involvement of PPAR-γ and SIRT-1 via TLR-4/NFκB signaling pathway in obese diabetic pediatric population. Sixty young obese patients with type 2 diabetes were selected from the Pediatric Endocrine Metabolic Unit, Cairo University and were randomly divided among two age and sex-matched groups so as to receive either standard therapy without lactoferrin in one arm or to be treated with oral lactoferrin capsules (250 mg/day, p.o) for 3 months in the other arm. Both groups were compared to 50 control healthy volunteers. Measurements of HbA1c, lipid profile, antioxidant capacity (SOD, Nrf2), proinflammatory interleukins; (IL-1β, IL-6, IL-18), Cyclin D-1, lipocalin-2, and PPAR-γ expression levels were done at the beginning and 3 months after daily consumption of lactoferrin. The mechanistic involvement of TLR4-SIRT-1-NFκB signaling cascade was also investigated. The antidiabetic efficacy of lactoferrin was confirmed by significant improvement of the baseline levels of HbA1c, BMI and lipid profile of the obese pediatric cohort, which is evidenced by increased PPAR-γ and SIRT-1 expression. Moreover, the anti-inflammatory effect was evident by the significant decrease in serum levels of IL-1β, IL-6, IL-18, TNF-α, lipocalin 2 in type 2 diabetic post-treatment group, which corresponded by decreased NFκB downstream signaling indicators. The antioxidant efficacy was evident by stimulated SOD levels and NrF2 expression; compared with the pre-treatment group (all at P ≤ 0.001). The consumption of high concentrations of lactoferrin explains its hypoglycemic efficacy and counts for its insulin-sensitizing, anti-inflammatory and immunomodulatory effects via TLR4-NFκB-SIRT-1 signaling cascade. Recommendations on regular intake of lactoferrin could ensure better glycemic control, compared to conventional antidiabetics alone.
Collapse
Affiliation(s)
- Waleed A. Mohamed
- Department of Chemistry, Kasr El Aini Teaching Hospitals, Cairo University, Cairo, Egypt
| | - Mona F. Schaalan
- Department of Clinical Pharmacy and Pharmacy Practice, Translational Research Unit, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| |
Collapse
|
155
|
Tingelstad HC, Filion LG, Martin J, Spivock M, Tang V, Haman F. Levels of circulating cortisol and cytokines in members of the Canadian Armed Forces: associations with age, sex, and anthropometry. Appl Physiol Nutr Metab 2017; 43:445-452. [PMID: 29200312 DOI: 10.1139/apnm-2017-0551] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This study assessed blood levels of cortisol and cytokines (inflammatory and non-inflammatory) in members of the regular Canadian Armed Forces (CAF), and examined the associations between sex, age, and adiposity and circulating levels of cortisol as well as pro- and anti-inflammatory cytokines. As part of a larger ranging project, 331 blood samples were collected from a representative population of the total CAF, which included officers and noncommissioned women and men from the Air Force, Navy, and Army. The blood samples were analyzed for levels of cortisol, C-reactive protein (CRP), adiponectin, and 20 cytokines (which included interleukins, interferons, and tumor necrosis factors). Higher levels of adiponectin were found in women compared with men (median and interquartile range; 16.71 (7.68-25.32) vs 5.81 (3.52-13.19) μg/mL), and higher levels of interleukin (IL)-18 in men compared with women (89.25 (84.03-94.48) vs 75.91 (69.70-82.13) pg/mL). An association between age and levels of stress and inflammatory cytokines was observed, with CRP, IL-18, IL-2 and adiponectin all increasing with increasing age. However, contrary to trends seen in the general population, cortisol levels decreased with increasing age. Levels of CRP and IL-18 increased with an increase in adiposity, while adiponectin levels decreased. Most importantly, at the entire cohort level, a low detection rate for most of the cytokines was observed with 17 out of 22 cytokines having a detection below 10%. IN CONCLUSION In this CAF population, although an association between age and inflammatory cytokines was observed, both sex and adiposity had a small impact on levels of cortisol and cytokines.
Collapse
Affiliation(s)
- Hans Christian Tingelstad
- a School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 1A2, Canada
| | - Lionel G Filion
- b Department of Biochemistry Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Julie Martin
- a School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 1A2, Canada.,c Canadian Forces Morale and Welfare Services, Directorate of Fitness, Ottawa, ON K1J 1J8, Canada
| | - Michael Spivock
- a School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 1A2, Canada.,c Canadian Forces Morale and Welfare Services, Directorate of Fitness, Ottawa, ON K1J 1J8, Canada
| | - Vera Tang
- d University of Ottawa Flow Cytometry Core Facility, Ottawa, ON K1H 8M5, Canada
| | - François Haman
- a School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 1A2, Canada
| |
Collapse
|
156
|
Beneficial Effects of 6-Month Supplementation with Omega-3 Acids on Selected Inflammatory Markers in Patients with Chronic Kidney Disease Stages 1-3. BIOMED RESEARCH INTERNATIONAL 2017; 2017:1680985. [PMID: 29349065 PMCID: PMC5734005 DOI: 10.1155/2017/1680985] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/15/2017] [Indexed: 12/13/2022]
Abstract
Introduction Chronic kidney disease (CKD) is accompanied by inflammation. The aim of this study was to evaluate the effect of 6-month supplementation with omega-3 acids on selected markers of inflammation in patients with CKD stages 1–3. Methods Six-month supplementation with omega-3 acids (2 g/day) was administered to 87 CKD patients and to 27 healthy individuals. At baseline and after follow-up, blood was taken for C-reactive protein (CRP) and monocyte chemotactic protein-1 (MCP-1) concentration and white blood cell (WBC) count. Serum concentration of omega-3 acids—eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and alpha-linolenic acid (ALA)—was determined using gas chromatography. And 24-hour urinary collection was performed to measure MCP-1 excretion. Results After six-month omega-3 supplementation, ALA concentration increased in CKD patients and in the reference group, while EPA and DHA did not change. At follow-up, a significant decrease in urinary MCP-1 excretion in CKD (p = 0.0012) and in the reference group (p = 0.001) was found. CRP, serum MCP-1, and WBC did not change significantly. The estimated glomerular filtration rate (eGFR) did not change significantly in the CKD group. Conclusions The reduction of urinary MCP-1 excretion in the absence of MCP-1 serum concentration may suggest a beneficial effect of omega-3 supplementation on tubular MCP-1 production. Trial Registration This study was registered in ClinicalTrials.gov (identifier: NCT02147002).
Collapse
|
157
|
Kampan NC, Madondo MT, McNally OM, Stephens AN, Quinn MA, Plebanski M. Interleukin 6 Present in Inflammatory Ascites from Advanced Epithelial Ovarian Cancer Patients Promotes Tumor Necrosis Factor Receptor 2-Expressing Regulatory T Cells. Front Immunol 2017; 8:1482. [PMID: 29163543 PMCID: PMC5681739 DOI: 10.3389/fimmu.2017.01482] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/23/2017] [Indexed: 12/22/2022] Open
Abstract
Background Epithelial ovarian cancer (EOC) remains a highly lethal gynecological malignancy. Ascites, an accumulation of peritoneal fluid present in one-third of patients at presentation, is linked to poor prognosis. High levels of regulatory T cells (Tregs) in ascites are correlated with tumor progression and reduced survival. Malignant ascites harbors high levels of Tregs expressing the tumor necrosis factor receptor 2 (TNFR2), as well as pro-inflammatory factors such as interleukin 6 (IL-6) and tumor necrosis factor (TNF). IL-6 is also associated with poor prognosis. Herein, we study the effect of IL-6 and TNF present in ascites on the modulation of TNFR2 expression on T cells, and specifically Tregs. Methods Ascites and respective peripheral blood sera were collected from 18 patients with advanced EOC and soluble biomarkers, including IL-6, sTNFR2, IL-10, TGF-β, and TNF, were quantified using multiplexed bead-based immunoassay. Peripheral blood mononuclear cells (PBMC) from healthy donors were incubated with cell-free ascites for 48 h (or media as a negative control). In some experiments, IL-6 or TNF within the ascites were neutralized by using monoclonal antibodies. The phenotype of TNFR2+ Tregs and TNFR2− Tregs were characterized post incubation in ascites. In some experiments, cell sorted Tregs were utilized instead of PBMC. Results High levels of immunosuppressive (sTNFR2, IL-10, and TGF-β) and pro-inflammatory cytokines (IL-6 and TNF) were present in malignant ascites. TNFR2 expression on all T cell subsets was higher in post culture in ascites and highest on CD4+CD25hiFoxP3+ Tregs, resulting in an increased TNFR2+ Treg/effector T cell ratio. Furthermore, TNFR2+ Tregs conditioned in ascites expressed higher levels of the functional immunosuppressive molecules programmed cell death ligand-1, CTLA-4, and GARP. Functionally, TNFR2+ Treg frequency was inversely correlated with interferon-gamma (IFN-γ) production by effector T cells, and was uniquely able to suppress TNFR2+ T effectors. Blockade of IL-6, but not TNF, within ascites decreased TNFR2+ Treg frequency. Results indicating malignant ascites promotes TNFR2 expression, and increased suppressive Treg activity using PBMC were confirmed using purified Treg subsets. Conclusion IL-6 present in malignant ovarian cancer ascites promotes increased TNFR2 expression and frequency of highly suppressive Tregs.
Collapse
Affiliation(s)
- Nirmala Chandralega Kampan
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia.,Oncology Unit, Royal Women's Hospital, Melbourne, VIC, Australia.,Department of Obstetrics and Gynaecology, Pusat Perubatan Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Mutsa Tatenda Madondo
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
| | - Orla M McNally
- Oncology Unit, Royal Women's Hospital, Melbourne, VIC, Australia
| | - Andrew N Stephens
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia.,Epworth Research Institute, Epworth Healthcare, Richmond, VIC, Australia
| | - Michael A Quinn
- Oncology Unit, Royal Women's Hospital, Melbourne, VIC, Australia
| | - Magdalena Plebanski
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia.,School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC, Australia
| |
Collapse
|
158
|
Qi Y, Zhou Y, Chen X, Ye L, Zhang Q, Huang F, Cui B, Lin D, Ning G, Wang W, Wang S. MicroRNA-4443 Causes CD4+ T Cells Dysfunction by Targeting TNFR-Associated Factor 4 in Graves' Disease. Front Immunol 2017; 8:1440. [PMID: 29163513 PMCID: PMC5671953 DOI: 10.3389/fimmu.2017.01440] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/17/2017] [Indexed: 01/09/2023] Open
Abstract
Context Aberrant CD4+ T cell function plays a critical role in the process of Graves’ disease (GD). MicroRNAs (miRNAs) are important regulators of T cell activation, proliferation, and cytokine production. However, the contribution of miRNAs to CD4+ T cell dysfunction in GD remains unclear. Objective To investigate how certain miRNA causes aberrant CD4+ T cell function in GD patients. Methods We compared the expression pattern of miRNAs in CD4+ T cells from untreated GD (UGD) patients with those from healthy controls. The most significantly dysregulated miRNAs were selected and their correlations with clinical parameters were analyzed. The effect of miR-4443 on CD4+ T cells cytokines production and proliferation was assessed. The potential gene target was identified and validated. Results GD patients had unique pattern of miRNA expression profile in CD4+ T cells comparing to healthy subjects. miR-10a, miR-125b, and miR-4443 were the three most significantly dysregulated miRNAs. The elevated miR-4443 levels were strongly correlated with clinical parameters in an independent dataset of UGD patients (N = 40), while miR-4443 was normally expressed in GD patients with euthyroidism and negative TRAb level. We found that miR-4443 directly inhibited TNFR-associated factor (TRAF) 4 expression to increase CD4+ T cells cytokines secretion as well as proliferation through the NF-κB pathway. Furthermore, the TRAF4 levels in GD patients were inversely correlated with miR-4443, and knocking down TRAF4 had a similar effect with miR-4443 overexpression. Conclusion The increased expression of miR-4443 induced CD4+ T cells dysfunction by targeting TRAF4, which may cause GD.
Collapse
Affiliation(s)
- Yicheng Qi
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Department of Endocrinology and Metabolism, Ruijin Hospital, Affiliated to Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Yulin Zhou
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Department of Endocrinology and Metabolism, Ruijin Hospital, Affiliated to Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Xinxin Chen
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Department of Endocrinology and Metabolism, Ruijin Hospital, Affiliated to Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Lei Ye
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Department of Endocrinology and Metabolism, Ruijin Hospital, Affiliated to Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Qianwei Zhang
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Department of Endocrinology and Metabolism, Ruijin Hospital, Affiliated to Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Fengjiao Huang
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Department of Endocrinology and Metabolism, Ruijin Hospital, Affiliated to Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Bin Cui
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Department of Endocrinology and Metabolism, Ruijin Hospital, Affiliated to Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Dongping Lin
- Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Affiliated Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Guang Ning
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Department of Endocrinology and Metabolism, Ruijin Hospital, Affiliated to Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Weiqing Wang
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Department of Endocrinology and Metabolism, Ruijin Hospital, Affiliated to Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Shu Wang
- Shanghai Clinical Center for Endocrine and Metabolic Diseases, Department of Endocrinology and Metabolism, Ruijin Hospital, Affiliated to Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| |
Collapse
|
159
|
Raghunathachar Sahana K, Akila P, Prashant V, Sharath Chandra B, Nataraj Suma1 M. Quantitation of Vascular Endothelial Growth Factor and Interleukin-6 in Different Stages of Breast Cancer. Rep Biochem Mol Biol 2017; 6:33-39. [PMID: 29090227 PMCID: PMC5643458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 08/13/2016] [Indexed: 06/07/2023]
Abstract
BACKGROUND Determination of the impact of angiogenesis on tumor development and progression is essential. This study aimed to determine the serum levels of Vascular endothelial growth factor (VEGF) and Interleukin 6 (IL-6) in breast carcinoma, and to correlate them with tumor size, lymph node involvement, and cancer stage. METHODS Under aseptic precautions 5 ml of venous blood was collected from 37 breast cancer patients and 20 healthy females after obtaining due consent and ethical committee clearance. Serum levels of VEGF and IL-6 were determined by enzyme-linked immunosorbent assay (ELISA). RESULTS Serum IL-6 and VEGF levels were both significantly greater in patients than controls (P = 0.001, P = 0.001, respectively). The serum IL-6 and VEGF levels also significantly correlated with TNM staging (P = 0.001, P = 0.001). Serum IL-6 and VEGF positively correlated with each other (r2 = 0.668, P = 0.01). Serum IL-6 and VEGF levels did not correlate with tumor size (P = 0.45, P = 0.17) or lymph node metastasis (P = 0.95, P = 0.68). CONCLUSION Serum IL-6 and VEGF were greater in breast cancer patients than controls. The levels increased with advanced tumor, nodes, metastasis (TNM) staging, thus correlating with the patients' prognoses. Serum IL-6 and VEGF levels can be used as diagnostic tools and prognostic factors in breast cancer.
Collapse
Affiliation(s)
- Kabbathi Raghunathachar Sahana
- Center of Excellence in Molecular Biology and Regenerative Medicine, Department of Biochemistry, JSS Medical College, Jagadguru Sri Shivarathreeswara University, Mysore, India
| | - Prashant Akila
- Center of Excellence in Molecular Biology and Regenerative Medicine, Department of Biochemistry, JSS Medical College, Jagadguru Sri Shivarathreeswara University, Mysore, India
| | - Vishwanath Prashant
- Center of Excellence in Molecular Biology and Regenerative Medicine, Department of Biochemistry, JSS Medical College, Jagadguru Sri Shivarathreeswara University, Mysore, India
| | - Bellekere Sharath Chandra
- Department of Surgery, JSS Medical College, Jagadguru Sri Shivarathreeswara University, Mysore, India
| | - Maduvanahalli Nataraj Suma1
- Center of Excellence in Molecular Biology and Regenerative Medicine, Department of Biochemistry, JSS Medical College, Jagadguru Sri Shivarathreeswara University, Mysore, India
| |
Collapse
|
160
|
Arjuman A, Chandra NC. LOX-1: A potential target for therapy in atherosclerosis; an in vitro study. Int J Biochem Cell Biol 2017; 91:65-80. [DOI: 10.1016/j.biocel.2017.08.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 08/21/2017] [Accepted: 08/23/2017] [Indexed: 01/16/2023]
|
161
|
Clements AE, Chamberlain CS, Leiferman EM, Murphy WL, Vanderby R. Impacts of Interleukin-17 Neutralization on the Inflammatory Response in a Healing Ligament. ACTA ACUST UNITED AC 2017; 2. [PMID: 28782060 PMCID: PMC5542014 DOI: 10.4172/2576-3881.1000113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In this study, we sought to improve ligament healing by modulating the inflammatory response after acute injury through the neutralization of Interleukin-17 (IL-17), which we hypothesized would decrease inflammatory cell infiltration and cytokine production. Administration of an Interleukin-17 neutralizing antibody (IL-17 NA) immediately following a rat medial collateral ligament (MCL) transection resulted in alterations in inflammatory cell populations and cytokine expression within the healing ligament, but did not reduce inflammation. Specifically, treatment resulted in a decrease in M2 (anti-inflammatory) macrophages, an increase in T cells, and an increase in the levels of IL-2, IL-6, and IL-12 in the MCL 7 days post injury. IL-17NA treatment, and subsequent immunomodulation, did not result in improved ligament healing, as measured by collagen composition and wound size.
Collapse
Affiliation(s)
- Anna Eb Clements
- Department of Orthopedics and Rehabilitation, University of Wisconsin, Madison, Wisconsin, USA
| | - Connie S Chamberlain
- Department of Orthopedics and Rehabilitation, University of Wisconsin, Madison, Wisconsin, USA
| | - Ellen M Leiferman
- Department of Orthopedics and Rehabilitation, University of Wisconsin, Madison, Wisconsin, USA
| | - William L Murphy
- Department of Orthopedics and Rehabilitation, University of Wisconsin, Madison, Wisconsin, USA.,Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin, USA
| | - Ray Vanderby
- Department of Orthopedics and Rehabilitation, University of Wisconsin, Madison, Wisconsin, USA.,Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
162
|
A muscle-specific protein 'myoferlin' modulates IL-6/STAT3 signaling by chaperoning activated STAT3 to nucleus. Oncogene 2017; 36:6374-6382. [PMID: 28745314 PMCID: PMC5690845 DOI: 10.1038/onc.2017.245] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/08/2017] [Accepted: 06/12/2017] [Indexed: 01/03/2023]
Abstract
Myoferlin, a member of ferlin family of proteins, was first discovered as a candidate gene for muscular dystrophy and cardiomyopathy. Recently, myoferlin was shown to be also expressed in endothelial and cancer cells where it was shown to modulate vascular endothelial growth factor (VEGFR)-2 and epidermal growth factor receptor (EGFR) signaling by enhancing their stability and recycling. Based on these reports, we hypothesized that myoferlin might be regulating IL-6 signaling by modulating IL-6R stabilization and recycling. However, in our immunoprecipitation (IP) experiments, we did not observe myoferlin binding with IL-6R. Instead, we made a novel discovery that in resting cells myoferlin was bound to EHD2 protein and when cells were treated with IL-6, myoferlin dissociated from EHD2 and binds to activated STAT3. Interestingly, myoferlin depletion did not affect STAT3 phosphorylation, but completely blocked STAT3 translocation to nucleus. In addition, inhibition of STAT3 phosphorylation by phosphorylation-defective STAT3 mutants or JAK inhibitor blocked STAT3 binding to myoferlin and nuclear translocation. Myoferlin knockdown significantly decreased IL-6-mediated tumor cell migration, tumorsphere formation and ALDH-positive cancer stem cell population, in vitro. Furthermore, myoferlin knockdown significantly decreased IL-6-meditated tumor growth and tumor metastasis. Based on these results, we have proposed a novel model for the role of myoferlin in chaperoning phosphorylated STAT3 to the nucleus.
Collapse
|
163
|
Fleischmann R, van Adelsberg J, Lin Y, Castelar-Pinheiro GDR, Brzezicki J, Hrycaj P, Graham NMH, van Hoogstraten H, Bauer D, Burmester GR. Sarilumab and Nonbiologic Disease-Modifying Antirheumatic Drugs in Patients With Active Rheumatoid Arthritis and Inadequate Response or Intolerance to Tumor Necrosis Factor Inhibitors. Arthritis Rheumatol 2017; 69:277-290. [PMID: 27860410 PMCID: PMC6207906 DOI: 10.1002/art.39944] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 09/22/2016] [Indexed: 12/13/2022]
Abstract
Objective To evaluate the efficacy and safety of sarilumab plus conventional synthetic disease‐modifying antirheumatic drugs (DMARDs) in patients with active moderate‐to‐severe rheumatoid arthritis (RA) who had an inadequate response or intolerance to anti–tumor necrosis factor (anti‐TNF) therapy. Methods Patients were randomly allocated to receive sarilumab 150 mg, sarilumab 200 mg, or placebo every 2 weeks for 24 weeks with background conventional synthetic DMARDs. The co‐primary end points were the proportion of patients achieving a response according to the American College of Rheumatology 20% criteria for improvement (ACR20) at week 24, and change from baseline in the Health Assessment Questionnaire disability index (HAQ DI) at week 12. Each sarilumab dose was evaluated against placebo; differences between the 2 sarilumab doses were not assessed. Results The baseline characteristics of the treatment groups were similar. The ACR20 response rate at week 24 was significantly higher with sarilumab 150 mg and sarilumab 200 mg every 2 weeks compared with placebo (55.8%, 60.9%, and 33.7%, respectively; P < 0.0001). The mean change from baseline in the HAQ DI score at week 12 was significantly greater for sarilumab (least squares mean change: for 150 mg, −0.46 [P = 0.0007]; for 200 mg, −0.47 [P = 0.0004]) versus placebo (−0.26). Infections were the most frequently reported treatment‐emergent adverse events. Serious infections occurred in 1.1%, 0.6%, and 1.1% of patients receiving placebo, sarilumab 150 mg, and sarilumab 200 mg, respectively. Laboratory abnormalities included decreased absolute neutrophil count and increased transaminase levels in both sarilumab groups compared with placebo. In this study, reductions in the absolute neutrophil count were not associated with an increased incidence of infections or serious infections. Conclusion Sarilumab 150 mg and sarilumab 200 mg every 2 weeks plus conventional synthetic DMARDs improved the signs and symptoms of RA and physical function in patients with an inadequate response or intolerance to anti‐TNF agents. Safety data were consistent with interleukin‐6 receptor blockade and the known safety profile of sarilumab.
Collapse
Affiliation(s)
- Roy Fleischmann
- Metroplex Clinical Research Center and University of Texas Southwestern Medical Center, Dallas
| | | | | | | | | | - Pawel Hrycaj
- Poznań University of Medical Sciences, Poznań, Poland
| | | | | | | | - Gerd R Burmester
- Charité University Medicine, Free University, and Humboldt University, Berlin, Germany
| |
Collapse
|
164
|
Potential Involvement of the IL-6/JAK/STAT3 Pathway in the Pathogenesis of Intervertebral Disc Degeneration. Spine (Phila Pa 1976) 2017; 42:E817-E824. [PMID: 27879577 DOI: 10.1097/brs.0000000000001982] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN Laboratory study. OBJECTIVE To elucidate the potential involvement of the interleukin-6 (IL-6)/Janus kinase (JAK)/signal transducers and activator of transcription (STAT3) pathway in the development of intervertebral disc (IVD) degeneration. SUMMARY OF BACKGROUND DATA IL-6 plays a crucial role in IVD degeneration; however, the downstream intracellular signaling of IL-6 in the IVD is not fully understood. METHODS The expression levels of IL-6 and suppressors of cytokine signaling 3 (SOCS3), a target gene of the IL-6/JAK/STAT3 pathway, were evaluated in rat and human degenerated IVD samples. The effects of IL-6 on primary rat annulus fibrosus (AF) cells were analyzed using quantitative PCR, immunocytochemistry, and Western blotting. The potential efficacy of a JAK inhibitor, CP690,550, in neutralizing the effect of IL-6 was evaluated in vitro. RESULTS A high expression of IL-6 and SOCS3 was observed in both rat and human degenerated IVD samples. In rat AF cells, IL-6 markedly induced the phosphorylation of STAT3 and the expression of cyclooxygenase-2 and matrix metalloprotease-13. CP690,550 significantly suppressed the phosphorylation of STAT3 and offset the catabolic effect of IL-6 in rat AF cells. CONCLUSION Our results suggest that the IL-6/JAK/STAT3 pathway is involved in the pathogenesis of IVD degeneration and that CP690,550 suppresses the catabolic effect of the IL-6 in the IVD. LEVEL OF EVIDENCE N/A.
Collapse
|
165
|
Liu Q, Yu S, Li A, Xu H, Han X, Wu K. Targeting interlukin-6 to relieve immunosuppression in tumor microenvironment. Tumour Biol 2017. [PMID: 28639898 DOI: 10.1177/1010428317712445] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Immunotolerance is one of the hallmarks of malignant tumors. Tumor cells escape from host immune surveillance through various mechanisms resulting in tumor progression and therapeutic resistance. Interlukin-6 is a proinflammatory cytokine involved in many physiological and pathological processes by integrating with multiple intracellular signaling pathways. Aberrant expression of interlukin-6 is associated with the growth, metastasis, and chemotherapeutic resistance in a wide range of cancers. Interlukin-6 exerts immunosuppressive capacity mostly by stimulating the infiltrations of myeloid-derived suppressor cells, tumor-associated neutrophils, and cancer stem-like cells via Janus-activated kinase/signal transducer and activator of transcription 3 pathway in tumor microenvironment. On this foundation, blockage of interlukin-6 signal may provide potential approaches to novel therapies. In this review, we introduced interlukin-6 pathways and summarized molecular mechanisms related to interlukin-6-induced immunosuppression of tumor cell. We also concluded recent clinical studies targeting interlukin-6 as an immune-based therapeutic intervention in patients with cancer.
Collapse
Affiliation(s)
- Qian Liu
- 1 Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shengnan Yu
- 1 Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Anping Li
- 2 Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hanxiao Xu
- 1 Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinwei Han
- 2 Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kongming Wu
- 1 Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
166
|
Gelfand EW, Joetham A, Wang M, Takeda K, Schedel M. Spectrum of T-lymphocyte activities regulating allergic lung inflammation. Immunol Rev 2017; 278:63-86. [PMID: 28658551 PMCID: PMC5501488 DOI: 10.1111/imr.12561] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Despite advances in the treatment of asthma, optimization of symptom control remains an unmet need in many patients. These patients, labeled severe asthma, are responsible for a substantial fraction of the disease burden. In these patients, research is needed to define the cellular and molecular pathways contributing to disease which in large part are refractory to corticosteroid treatment. The causes of steroid-resistant asthma are multifactorial and result from complex interactions of genetics, environmental factors, and innate and adaptive immunity. Adaptive immunity, addressed here, integrates the activities of distinct T-cell subsets and by definition is dynamic and responsive to an ever-changing environment and the influences of epigenetic modifications. These T-cell subsets exhibit different susceptibilities to the actions of corticosteroids and, in some, corticosteroids enhance their functional activation. Moreover, these subsets are not fixed in lineage differentiation but can undergo transcriptional reprogramming in a bidirectional manner between protective and pathogenic effector states. Together, these factors contribute to asthma heterogeneity between patients but also in the same patient at different stages of their disease. Only by carefully defining mechanistic pathways, delineating their sensitivity to corticosteroids, and determining the balance between regulatory and effector pathways will precision medicine become a reality with selective and effective application of targeted therapies.
Collapse
Affiliation(s)
- Erwin W Gelfand
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, CO, USA
| | - Anthony Joetham
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, CO, USA
| | - Meiqin Wang
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, CO, USA
| | - Katsuyuki Takeda
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, CO, USA
| | - Michaela Schedel
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, CO, USA
| |
Collapse
|
167
|
Gruzieva O, Merid SK, Gref A, Gajulapuri A, Lemonnier N, Ballereau S, Gigante B, Kere J, Auffray C, Melén E, Pershagen G. Exposure to Traffic-Related Air Pollution and Serum Inflammatory Cytokines in Children. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:067007. [PMID: 28669936 PMCID: PMC5714301 DOI: 10.1289/ehp460] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 10/20/2016] [Accepted: 11/07/2016] [Indexed: 05/12/2023]
Abstract
BACKGROUND Long-term exposure to ambient air pollution can lead to adverse health effects in children; however, underlying biological mechanisms are not fully understood. OBJECTIVES We evaluated the effect of air pollution exposure during different time periods on mRNA expression as well as circulating levels of inflammatory cytokines in children. METHODS We measured a panel of 10 inflammatory markers in peripheral blood samples from 670 8-y-old children in the Barn/Child, Allergy, Milieu, Stockholm, Epidemiology (BAMSE) birth cohort. Outdoor concentrations of nitrogen dioxide (NO2) and particulate matter (PM) with aerodynamic diameter <10 μm (PM10) from road traffic were estimated for residential, daycare, and school addresses using dispersion modeling. Time-weighted average exposures during infancy and at biosampling were linked to serum cytokine levels using linear regression analysis. Furthermore, gene expression data from 16-year-olds in BAMSE (n=238) were used to evaluate links between air pollution exposure and expression of genes coding for the studied inflammatory markers. RESULTS A 10 μg/m3 increase of NO2 exposure during infancy was associated with a 13.6% (95% confidence interval (CI): 0.8; 28.1%) increase in interleukin-6 (IL-6) levels, as well as with a 27.8% (95% CI: 4.6, 56.2%) increase in IL-10 levels, the latter limited to children with asthma. However, no clear associations were observed for current exposure. Results were similar using PM10, which showed a high correlation with NO2. The functional analysis identified several differentially expressed genes in response to air pollution exposure during infancy, including IL10, IL13, and TNF;. CONCLUSION Our results indicate alterations in systemic inflammatory markers in 8-y-old children in relation to early-life exposure to traffic-related air pollution. https://doi.org/10.1289/EHP460.
Collapse
Affiliation(s)
- Olena Gruzieva
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Simon Kebede Merid
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Anna Gref
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ashwini Gajulapuri
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Nathanaël Lemonnier
- European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL, Université de Lyon, Lyon, France
| | - Stéphane Ballereau
- European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL, Université de Lyon, Lyon, France
| | - Bruna Gigante
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Juha Kere
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Charles Auffray
- European Institute for Systems Biology and Medicine, CNRS-ENS-UCBL, Université de Lyon, Lyon, France
| | - Erik Melén
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Paediatrics, Sachs’ Children’s Hospital, Stockholm, Sweden
- Centre for Occupational and Environmental Medicine, Stockholm County Council, Stockholm, Sweden
| | - Göran Pershagen
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Centre for Occupational and Environmental Medicine, Stockholm County Council, Stockholm, Sweden
| |
Collapse
|
168
|
Kim D, Won HY, Hwang ES, Kim YK, Choo HYP. Synthesis of benzoxazole derivatives as interleukin-6 antagonists. Bioorg Med Chem 2017; 25:3127-3134. [DOI: 10.1016/j.bmc.2017.03.072] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 03/29/2017] [Accepted: 03/30/2017] [Indexed: 01/14/2023]
|
169
|
Wu Z, Tang Z, Shang M, Zhao L, Zhou L, Kong X, Lin Z, Sun H, Chen T, Xu J, Li X, Huang Y, Yu X. Comparative analysis of immune effects in mice model: Clonorchis sinensis cysteine protease generated from recombinant Escherichia coli and Bacillus subtilis spores. Parasitol Res 2017; 116:1811-1822. [PMID: 28502017 DOI: 10.1007/s00436-017-5445-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/12/2017] [Indexed: 01/25/2023]
Abstract
Clonorchiasis remains a nonnegligible public health problem in endemic areas. Cysteine protease of Clonorchis sinensis (CsCP) plays indispensable roles in the parasitic physiology and pathology, and has been exploited as a promising drug and vaccine candidate. In recent years, development of spore-based vaccines against multiple pathogens has attracted many investigators' interest. In previous studies, the recombinant Escherichia coli (BL21) and Bacillus subtilis spores expressing CsCP have been successfully constructed, respectively. In this study, the immune effects of CsCP protein purified from recombinant BL21 (rCsCP) and B. subtilis spores presenting CsCP (B.s-CsCP) in Balb/c mice model were conducted with comparative analysis. Levels of specific IgG, IgG1 and IgG2a were significantly increased in sera from both rCsCP and B.s-CsCP intraperitoneally immunized mice. Additionally, recombinant spores expressing abundant fusion CsCP (0.03125 pg/spore) could strongly enhance the immunogenicity of CsCP with significantly higher levels of IgG and isotypes. Compared with rCsCP alone, intraperitoneal administration of mice with spores expressing CsCP achieved a better effect of fighting against C. sinensis infection by slowing down the process of fibrosis. Our results demonstrated that a combination of Th1/Th2 immune responses could be elicited by rCsCP, while spores displaying CsCP prominently induced Th1-biased specific immune responses, and the complex cytokine network maybe mediates protective immune responses against C. sinensis. This work further confirmed that the usage of B. subtilis spores displaying CsCP is an effective way to against C. sinensis.
Collapse
Affiliation(s)
- Zhanshuai Wu
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zeli Tang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, 510080, China
| | - Mei Shang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, 510080, China
| | - Lu Zhao
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, 510080, China
| | - Lina Zhou
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, 510080, China
| | - Xiangzhan Kong
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, 510080, China
| | - Zhipeng Lin
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, 510080, China
| | - Hengchang Sun
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, 510080, China
| | - Tingjin Chen
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, 510080, China
| | - Jin Xu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, 510080, China
| | - Xuerong Li
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, 510080, China
| | - Yan Huang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China. .,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China. .,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, 510080, China.
| | - Xinbing Yu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China. .,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, China. .,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
170
|
Pons M, Ali L, Beghdadi W, Danelli L, Alison M, Madjène LC, Calvo J, Claver J, Vibhushan S, Åbrink M, Pejler G, Poli-Mérol ML, Peuchmaur M, El Ghoneimi A, Blank U. Mast Cells and MCPT4 Chymase Promote Renal Impairment after Partial Ureteral Obstruction. Front Immunol 2017; 8:450. [PMID: 28523000 PMCID: PMC5415561 DOI: 10.3389/fimmu.2017.00450] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 03/31/2017] [Indexed: 11/29/2022] Open
Abstract
Obstructive nephropathy constitutes a major cause of pediatric renal progressive disease. The mechanisms leading to disease progression are still poorly understood. Kidney fibrotic lesions are reproduced using a model of partial unilateral ureteral obstruction (pUUO) in newborn mice. Based on data showing significant mast cell (MC) infiltration in patients, we investigated the role of MC and murine MCPT4, a MC-released chymase, in pUUO using MC- (Wsh/sh), MCPT4-deficient (Mcpt4−/−), and wild-type (WT) mice. Measurement of kidney length and volume by magnetic resonance imaging (MRI) as well as postmortem kidney weight revealed hypotrophy of operated right kidneys (RKs) and compensatory hypertrophy of left kidneys. Differences between kidneys were major for WT, minimal for Wsh/sh, and intermediate for Mcpt4−/− mice. Fibrosis development was focal and increased only in WT-obstructed kidneys. No differences were noticed for local inflammatory responses, but serum CCL2 was significantly higher in WT versus Mcpt4−/− and Wsh/sh mice. Alpha-smooth muscle actin (αSMA) expression, a marker of epithelial–mesenchymal transition (EMT), was high in WT, minimal for Wsh/sh, and intermediate for Mcpt4−/− RK. Supernatants of activated MC induced αSMA in co-culture experiments with proximal tubular epithelial cells. Our results support a role of MC in EMT and parenchyma lesions after pUUO involving, at least partly, MCPT4 chymase. They confirm the importance of morphologic impairment evaluation by MRI in pUUO.
Collapse
Affiliation(s)
- Maguelonne Pons
- INSERM UMRS 1149, Paris, France.,CNRS ERL8252, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d'excellence INFLAMEX, Paris, France.,Department of Pediatric Surgery and Urology, Hôpital Robert Debré, APHP, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Liza Ali
- INSERM UMRS 1149, Paris, France.,CNRS ERL8252, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d'excellence INFLAMEX, Paris, France.,Department of Pediatric Surgery and Urology, Hôpital Robert Debré, APHP, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Walid Beghdadi
- INSERM UMRS 1149, Paris, France.,CNRS ERL8252, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d'excellence INFLAMEX, Paris, France
| | - Luca Danelli
- CNRS ERL8252, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d'excellence INFLAMEX, Paris, France
| | - Marianne Alison
- Department of Pediatric Radiology, Hôpital Robert Debré, APHP, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Lydia Celia Madjène
- INSERM UMRS 1149, Paris, France.,CNRS ERL8252, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d'excellence INFLAMEX, Paris, France
| | - Jessica Calvo
- Department of Pathology, Hôpital Robert Debré, APHP, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Julien Claver
- INSERM UMRS 1149, Paris, France.,CNRS ERL8252, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d'excellence INFLAMEX, Paris, France
| | - Shamila Vibhushan
- INSERM UMRS 1149, Paris, France.,CNRS ERL8252, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d'excellence INFLAMEX, Paris, France
| | - Magnus Åbrink
- Section of Immunology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Gunnar Pejler
- Uppsala University, Department of Medical Biochemistry and Microbiology, Uppsala, Sweden.,Swedish University of Agricultural Sciences, Department of Anatomy, Physiology and Biochemistry, Uppsala, Sweden
| | - Marie-Laurence Poli-Mérol
- Pediatric Surgery Unit, American Memorial Hospital, Université Reims Champagne Ardennes, Reims, France
| | - Michel Peuchmaur
- Department of Pathology, Hôpital Robert Debré, APHP, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Alaa El Ghoneimi
- INSERM UMRS 1149, Paris, France.,CNRS ERL8252, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d'excellence INFLAMEX, Paris, France.,Department of Pediatric Surgery and Urology, Hôpital Robert Debré, APHP, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Ulrich Blank
- INSERM UMRS 1149, Paris, France.,CNRS ERL8252, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d'excellence INFLAMEX, Paris, France
| |
Collapse
|
171
|
Jayasinghe CD, Gunasekera DS, De Silva N, Jayawardena KKM, Udagama PV. Mature leaf concentrate of Sri Lankan wild type Carica papaya Linn. modulates nonfunctional and functional immune responses of rats. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:230. [PMID: 28446195 PMCID: PMC5406937 DOI: 10.1186/s12906-017-1742-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 04/13/2017] [Indexed: 01/08/2023]
Abstract
BACKGROUND The leaf concentrate of Carica papaya is a traditionally acclaimed immunomodulatory remedy against numerous diseases; nonetheless comprehensive scientific validation of this claim is limited. The present study thus investigated the immunomodulatory potential of Carica papaya mature leaf concentrate (MLCC) of the Sri Lankan wild type cultivar using nonfunctional and functional immunological assays. METHODS Wistar rats (N = 6/ group) were orally gavaged with 3 doses (0.18, 0.36 and 0.72 ml/100g body weight) of the MLCC once daily for 3 consecutive days. Selected nonfunctional (enumeration of immune cells and cytokine levels) and functional (cell proliferation and phagocytic activity) immunological parameters, and acute toxic effects were determined using standard methods. Effect of the MLCC (31.25, 62.5, 125, 250, 500 and 1000 μg/ml) on ex vivo proliferation of bone marrow cells (BMC) and splenocytes (SC), and in vitro phagocytic activity of peritoneal macrophages (PMs), and their corresponding cytokine responses were evaluated. The phytochemical profile of the MLCC was established using liquid chromatography-mass spectrometry (LS-MS) and Gas chromatography-mass spectrometry (GC-MS). RESULTS Counts of rat platelets, total leukocytes, lymphocyte and monocyte sub populations, and BMCs were significantly augmented by oral gavage of the MLCC (p < 0.05). The highest MLCC dose tested herein significantly reduced pro inflammatory cytokines, Interleukin 6 (IL-6) and Tumor Necrosis Factor α (TNF α) levels of rats (p < 0.05). The in vivo phagocytic index of rat PMs significantly increased by oral gavage of all three doses of the MLCC (p < 0.05). In vitro phagocytic activity of rat PMs were enhanced by the MLCC and triggered a Th1 biased cytokine response. The MLCC at low concentrations elicited ex vivo proliferation of BMC (31.25 μg/ml) and SC (31.25 and 62.5 μg/ml) respectively. Conversely, high concentrations (500 and 1000 μg/ml) exhibited cytotoxicity of both BMC and SC with significant modulation of cytokines. Chemical profile of the MLCC revealed the presence of several immunomodulatory compounds. The oral gavage of the MLCC was found to be safe in terms of both hepatic and renal toxicities. CONCLUSION The present study established that the mature leaf concentrate (MLCC) of Carica papaya Sri Lankan wild type cultivar is orally active, safe and effectively modulates nonfunctional and functional immunological parameters of rats that unequivocally corroborate the traditional medical claims.
Collapse
Affiliation(s)
- Chanika Dilumi Jayasinghe
- Department of Zoology & Environment Sciences, Faculty of Science, University of Colombo, Colombo, 3 Sri Lanka
| | - Dinara S Gunasekera
- Sri Lanka Institute of Nanotechnology, Mahenwatte, Pitipana, Homagama, Sri Lanka
| | - Nuwan De Silva
- Sri Lanka Institute of Nanotechnology, Mahenwatte, Pitipana, Homagama, Sri Lanka
| | | | - Preethi Vidya Udagama
- Department of Zoology & Environment Sciences, Faculty of Science, University of Colombo, Colombo, 3 Sri Lanka
| |
Collapse
|
172
|
Tang Q, Chen LL, Wei F, Sun WL, Lei LH, Ding PH, Tan JY, Chen XT, Wu YM. Effect of 15-Deoxy-Δ 12,14-prostaglandin J 2Nanocapsules on Inflammation and Bone Regeneration in a Rat Bone Defect Model. Chin Med J (Engl) 2017; 130:347-356. [PMID: 28139520 PMCID: PMC5308019 DOI: 10.4103/0366-6999.198924] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND 15-Deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2), one of the major metabolites from prostaglandin D2 in arachidonic acid metabolic pathway, has potential anti-inflammatory properties. The objective of this study was to explore the effects of 15d-PGJ2-loaded poly(D,L-lactide-co-glycolide) nanocapsules (15d-PGJ2-NC) on inflammatory responses and bone regeneration in local bone defect. METHODS The study was conducted on 96 Wistar rats from June 2014 to March 2016. Saline, unloaded nanoparticles, free 15d-PGJ2or 15d-PGJ2-NC, were delivered through a collagen vehicle inside surgically created transcortical defects in rat femurs. Interleukin-6 (IL-6), interleukin-1 beta (IL-1β), and tumor necrosis factor-alpha (TNF-α) levels in the surrounding soft tissue were analyzed by Western blot and in the defect by quantitative real-time polymerase chain reaction over 14 days. Simultaneously, bone morphogenetic protein-6 (BMP-6) and platelet-derived growth factor-B (PDGF-B) messenger RNA (mRNA) in the defect were examined. New bone formation and EphrinB2 and osteoprotegerin (OPG) protein expression in the cortical defect were observed by Masson's Trichrome staining and immunohistochemistry over 28 days. Data were analyzed by one-way analysis of variance. Least-significant difference and Dunnett's T3 methods were used with a bilateral P< 0.05. RESULTS Application of l5d-PGJ2-NC (100 μg/ml) in the local bone defect significantly decreased IL-6, IL-1β, and TNF-α mRNA and protein, compared with saline-treated controls (P < 0.05). l5d-PGJ2-NC upregulated BMP-6 and PDGF-B mRNA (P < 0.05). New bone formation was observed in the cortical defect in l5d-PGJ2-NC-treated animals from 7th day onward (P < 0.001). Expression of EphrinB2 and OPG presented early on day 3 and persisted through day 28 in 15d-PGJ2-NC group (P < 0.05). CONCLUSION Stable l5d-PGJ2-NC complexes were prepared that could attenuate IL-6, IL-1β, and TNF-α expression, while increasing new bone formation and growth factors related to bone regeneration.
Collapse
Affiliation(s)
- Qi Tang
- Department of Oral Medicine, The Second Affiliated Hospital of School of Medicine of Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Li-Li Chen
- Department of Oral Medicine, The Second Affiliated Hospital of School of Medicine of Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Fen Wei
- Department of Oral Medicine, The Second Affiliated Hospital of School of Medicine of Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Wei-Lian Sun
- Department of Oral Medicine, The Second Affiliated Hospital of School of Medicine of Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Li-Hong Lei
- Department of Oral Medicine, The Second Affiliated Hospital of School of Medicine of Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Pei-Hui Ding
- Department of Oral Medicine, The Second Affiliated Hospital of School of Medicine of Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Jing-Yi Tan
- Department of Oral Medicine, The Second Affiliated Hospital of School of Medicine of Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Xiao-Tao Chen
- Department of Oral Medicine, The Second Affiliated Hospital of School of Medicine of Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Yan-Min Wu
- Department of Oral Medicine, The Second Affiliated Hospital of School of Medicine of Zhejiang University, Hangzhou, Zhejiang 310009, China
| |
Collapse
|
173
|
Chauhan N, Tiwari S, Iype T, Jain U. An overview of adjuvants utilized in prophylactic vaccine formulation as immunomodulators. Expert Rev Vaccines 2017; 16:491-502. [DOI: 10.1080/14760584.2017.1306440] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Nidhi Chauhan
- Amity Institute of Nanotechnology, Amity University, Noida, India
| | - Sukirti Tiwari
- Amity Institute of Nanotechnology, Amity University, Noida, India
| | - Tessy Iype
- R & D Division, MagGenome Technologies Pvt. Ltd., Kochi, India
| | - Utkarsh Jain
- Amity Institute of Nanotechnology, Amity University, Noida, India
| |
Collapse
|
174
|
Ibrahim MI, Ramy AR, Abdelhamid AS, Ellaithy MI, Omar A, Harara RM, Fathy H, Abolouz AS. Maternal serum amyloid A level as a novel marker of primary unexplained recurrent early pregnancy loss. Int J Gynaecol Obstet 2017; 136:298-303. [PMID: 28099717 DOI: 10.1002/ijgo.12076] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 10/25/2016] [Accepted: 12/05/2016] [Indexed: 11/10/2022]
Abstract
OBJECTIVE To assess maternal serum amyloid A (SAA) levels among women with primary unexplained recurrent early pregnancy loss (REPL). METHODS A prospective study was conducted among women with missed spontaneous abortion in the first trimester at Ain Shams University Maternity Hospital, Cairo, Egypt, between January 21 and December 25, 2014. Women with at least two consecutive primary unexplained REPLs and no previous live births were enrolled. A control group was formed of women with no history of REPL who had at least one previous uneventful pregnancy with no adverse outcomes. Serum samples were collected to measure SAA levels. The main outcome was the association between SAA and primary unexplained REPL. RESULTS Each group contained 96 participants. Median SAA level was significantly higher among women with REPL (50.0 μg/mL, interquartile range 26.0-69.0) than among women in the control group (11.6 μg/mL, interquartile range 6.2-15.5; P<0.001). The SAA level was an independent indicator of primary unexplained REPL, after adjusting for maternal age and gestational age (odds ratio 1.12, 95% confidence interval 1.06-1.19; P<0.001). CONCLUSION Elevated SAA levels found among women with primary unexplained REPL could represent a novel biomarker for this complication of pregnancy.
Collapse
Affiliation(s)
- Moustafa I Ibrahim
- Department of Obstetrics and Gynecology, Ain Shams University Faculty of Medicine, Cairo, Egypt
| | - Ahmed R Ramy
- Department of Obstetrics and Gynecology, Ain Shams University Faculty of Medicine, Cairo, Egypt
| | - Ahmed S Abdelhamid
- Department of Obstetrics and Gynecology, Ain Shams University Faculty of Medicine, Cairo, Egypt
| | - Mohamed I Ellaithy
- Department of Obstetrics and Gynecology, Ain Shams University Faculty of Medicine, Cairo, Egypt
| | - Amna Omar
- Department of Obstetrics and Gynecology, Ain Shams University Faculty of Medicine, Cairo, Egypt
| | - Rany M Harara
- Department of Obstetrics and Gynecology, Ain Shams University Faculty of Medicine, Cairo, Egypt
| | - Hayam Fathy
- Department of Obstetrics and Gynecology, Ain Shams University Faculty of Medicine, Cairo, Egypt
| | - Ashraf S Abolouz
- Department of Obstetrics and Gynecology, October 6th University Faculty of Medicine, Cairo, Egypt
| |
Collapse
|
175
|
Lodovicho ME, Costa TR, Bernardes CP, Menaldo DL, Zoccal KF, Carone SE, Rosa JC, Pucca MB, Cerni FA, Arantes EC, Tytgat J, Faccioli LH, Pereira-Crott LS, Sampaio SV. Investigating possible biological targets of Bj-CRP, the first cysteine-rich secretory protein (CRISP) isolated from Bothrops jararaca snake venom. Toxicol Lett 2017; 265:156-169. [DOI: 10.1016/j.toxlet.2016.12.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/22/2016] [Accepted: 12/04/2016] [Indexed: 12/13/2022]
|
176
|
Abstract
Convergent evidence indicates that abnormalities in the innate immune system may be pertinent to the pathogenesis, phenomenology, and possible treatment of several mental disorders. In keeping with this view, the targeting of interleukin-6 with the human monoclonal antibody sirukumab may represent a possible treatment and disease modification approach, for adults with brain-based disorders (e.g., major depressive disorder). A PubMed/Medline database search was performed using the following search terms: sirukumab; anti-IL-6; IL-6; major depressive disorder; inflammation. A systematic review was conducted of both preclinical and clinical trials reporting on the pharmacology of sirukumab or investigating the efficacy of targeting IL-6 signaling. Overall, sirukumab has been reported to be a safe and well-tolerated agent, capable of modulating the immune response in healthy populations as well as in subjects with inflammatory disorders (e.g., rheumatoid arthritis). Sirukumab's effects on cytokine networks as part of the innate immune system provide a coherent rationale for possible application in neuropsychiatric disorders with possible benefits across several domains of the biobehavioral Research Domain Criteria matrix (e.g., general cognitive processes, positive valence systems). Amongst individuals with complex brain-based disorders (e.g., mood disorders), the dimensions/domains most likely to benefit with sirukumab are negative valence disturbances (e.g., anxiety, depression, rumination), positive valence disturbances (e.g., anhedonia) as well as general cognitive processes. We suggest that sirukumab represents a prototype and possibly a proof-of-concept that agents that engage IL-6 targets have salutary effects in psychiatry.
Collapse
|
177
|
Cortini M, Massa A, Avnet S, Bonuccelli G, Baldini N. Tumor-Activated Mesenchymal Stromal Cells Promote Osteosarcoma Stemness and Migratory Potential via IL-6 Secretion. PLoS One 2016; 11:e0166500. [PMID: 27851822 PMCID: PMC5112800 DOI: 10.1371/journal.pone.0166500] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 10/28/2016] [Indexed: 12/20/2022] Open
Abstract
Osteosarcoma (OS) is an aggressive bone malignancy with a high relapse rate despite combined treatment with surgery and multiagent chemotherapy. As for other cancers, OS-associated microenvironment may contribute to tumor initiation, growth, and metastasis. We consider mesenchymal stromal cells (MSC) as a relevant cellular component of OS microenvironment, and have previously found that the interaction between MSC and tumor cells is bidirectional: tumor cells can modulate their peripheral environment that in turn becomes more favorable to tumor growth through metabolic reprogramming. Here, we determined the effects of MSC on OS stemness and migration, two major features associated with recurrence and chemoresistance. The presence of stromal cells enhanced the number of floating spheres enriched in cancer stem cells (CSC) of the OS cell population. Furthermore, the co-culturing with MSC stimulated the migratory capacity of OS via TGFβ1 and IL-6 secretion, and the neutralizing antibody anti-IL-6 impaired this effect. Thus, stromal cells in combination with OS spheres exploit a vicious cycle where the presence of CSC stimulates mesenchymal cytokine secretion, which in turn increases stemness, proliferation, migration, and metastatic potential of CSC, also through the increase of expression of adhesion molecules like ICAM-1. Altogether, our data corroborate the concept that a comprehensive knowledge of the interplay between tumor and stroma that also includes the stem-like fraction of tumor cells is needed to develop novel and effective anti-cancer therapies.
Collapse
Affiliation(s)
- Margherita Cortini
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli (IOR), 40136, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126, Bologna, Italy
| | - Annamaria Massa
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli (IOR), 40136, Bologna, Italy
| | - Sofia Avnet
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli (IOR), 40136, Bologna, Italy
| | - Gloria Bonuccelli
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli (IOR), 40136, Bologna, Italy
| | - Nicola Baldini
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli (IOR), 40136, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126, Bologna, Italy
- * E-mail:
| |
Collapse
|
178
|
Chiang NY, Peng YM, Juang HH, Chen TC, Pan HL, Chang GW, Lin HH. GPR56/ADGRG1 Activation Promotes Melanoma Cell Migration via NTF Dissociation and CTF-Mediated Gα 12/13/RhoA Signaling. J Invest Dermatol 2016; 137:727-736. [PMID: 27818281 DOI: 10.1016/j.jid.2016.10.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 10/06/2016] [Accepted: 10/17/2016] [Indexed: 02/07/2023]
Abstract
GPR56/ADGRG1 is a versatile adhesion G protein-coupled receptor with diverse biological functions. GPR56 expression is variably detected in human melanoma cell lines and correlates inversely with the metastatic potential of melanoma lesions. GPR56 associates with the tetraspanins CD9 and CD81 on the melanoma cell surface. GPR56 activation by immobilized CG4 monoclonal antibody facilitates N-terminal fragment dissociation in a CD9/CD81-dependent manner specifically inducing IL-6 production, which promotes cell migration and invasion. Interestingly, expression of GPR56-C-terminal fragment alone recapitulates the antibody-induced receptor function, implicating a major role for the C-terminal fragment in GPR56 activation and signaling. Analysis of site-directed mutant receptors attests the importance of the conserved N-terminal residues of the C-terminal fragment for its self-activation. Finally, we show that the GPR56-induced signaling in melanoma cells is mediated by the Gα12/13/RhoA pathway. In summary, the expression and activation of GPR56 may modulate melanoma progression in part by inducing IL-6 production after N-terminal fragment dissociation and C-terminal fragment self-activation.
Collapse
Affiliation(s)
- Nien-Yi Chiang
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan, Taiwan
| | - Yen-Ming Peng
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Horng-Heng Juang
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan; Department of Anatomy, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Urology, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan
| | - Tse-Ching Chen
- Department of Anatomic Pathology, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan
| | - Hsiao-Lin Pan
- Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Gin-Wen Chang
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan, Taiwan
| | - Hsi-Hsien Lin
- Department of Microbiology and Immunology, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, Chang Gung University, Taoyuan, Taiwan; Department of Anatomic Pathology, Chang Gung Memorial Hospital-Linkou, Taoyuan, Taiwan; Chang Gung Immunology Consortium, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
179
|
Validation of Salivary Interleukin-6 and Tumor Necrosis Factor-Alpha of Healthy Adult Volunteers by Enzyme Immunoassay. Nurs Res 2016; 65:475-480. [PMID: 27801718 DOI: 10.1097/nnr.0000000000000186] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Despite the use of saliva with enzyme immunoassay (EIA) methods validated for use with blood to measure interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), there has been limited validation of saliva as a matrix for EIA of IL-6 and TNF-α. OBJECTIVES The study aims were to (a) validate one vendor's commercially available EIAs for detecting IL-6 and TNF-α in saliva as an alternative matrix to blood and (b) test the long-term stability of EIA detection of IL-6 and TNF-α after 12-month storage of saliva and plasma. METHODS Spike and recovery and linearity experiments were performed. Concentrations of IL-6 and TNF-α in saliva and plasma from 20 healthy adult volunteers (6 men and 14 women) were correlated; the assays were repeated 12 months later. RESULTS Spike and recovery and linearity performance was adequate for salivary IL-6: intra-assay percentage coefficient of variation, less than or equal to 8.4%; sensitivity, 0.11 pg/ml; mean recoveries, 81% in spiked saliva and 110% in spiked controls; and linearity, r = .995. The association between IL-6 in saliva and plasma was moderate and significant (p = .04). Spike and recovery and linearity performance was inadequate for TNF-α: intra-assay coefficient of variation, 10.8%; sensitivity, 2.3 pg/ml; mean recoveries, 44% in spiked saliva and 92% in spiked controls; and linearity, r = .950. The association between TNF-α in saliva and plasma was low and insignificant. Plasma and saliva IL-6 levels were significantly higher (p < .0001), and plasma and saliva TNF-α levels were significantly lower (p < .0001) after 12-month storage of specimens. DISCUSSION We concluded that (a) saliva can be used to assess IL-6, but not TNF-α, with an EIA validated for use with blood and (b) 12-month storage of plasma and saliva significantly changes the assay results. Validation of other EIAs would expand assay options for investigators.
Collapse
|
180
|
Zhang Y, Ma Q, Liu T, Guan G, Zhang K, Chen J, Jia N, Yan S, Chen G, Liu S, Jiang K, Lu Y, Wen Y, Zhao H, Zhou Y, Fan Q, Qiu X. Interleukin-6 suppression reduces tumour self-seeding by circulating tumour cells in a human osteosarcoma nude mouse model. Oncotarget 2016; 7:446-58. [PMID: 26623559 PMCID: PMC4808010 DOI: 10.18632/oncotarget.6371] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 10/29/2015] [Indexed: 12/12/2022] Open
Abstract
Tumour self-seeding by circulating tumour cells (CTCs) enhances tumour progression and recurrence. Previously, we demonstrated that tumour self-seeding by CTCs occurs in osteosarcoma and revealed that interleukin-6 (IL-6) may promote CTC attraction. Here, we investigated the underlying mechanisms of IL-6 in tumour self-seeding by CTCs. IL-6 suppression inhibited in vitro cell proliferation, migration, and invasion. In addition, rhIL-6 activated the Janus-activated kinase/signal transducers and activators of transcription 3 (JAK/STAT3) and mitogen-activated protein kinase/extracellular-signal regulated kinase1/2 (MAPK/ERK1/2) pathways in vitro. Both pathways increased cell proliferation, but only the JAK/STAT3 pathway promoted migration. Suppressing IL-6 inhibited in vivo tumour growth and metastasis. IL-6 suppression or JAK/STAT3 pathway inhibition reduced CTC seeding in primary tumours. Collectively, IL-6 promotes tumour self-seeding by CTCs in a nude mouse model. This finding may provide a novel strategy for future therapeutic interventions to prevent osteosarcoma progression and recurrence.
Collapse
Affiliation(s)
- Yinglong Zhang
- Orthopaedic Oncology Institute, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Qiong Ma
- Orthopaedic Oncology Institute, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Tao Liu
- Orthopaedic Oncology Institute, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Guofeng Guan
- Department of Microsurgery, Affiliated Hospital of Binzhou Medical University, Binzhou, Shandong, China
| | - Kailiang Zhang
- Department of Orthopedics, No. 88 Hospital of PLA, Tai'an, Shandong, China
| | - Jiayan Chen
- Department of Occupational and Environmental Health, School of Public Health, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Nan Jia
- Orthopaedic Oncology Institute, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Shiju Yan
- Orthopaedic Oncology Institute, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Guanyin Chen
- Orthopaedic Oncology Institute, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Shiluan Liu
- Orthopaedic Oncology Institute, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Kuo Jiang
- Orthopaedic Oncology Institute, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yao Lu
- Orthopaedic Oncology Institute, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yanhua Wen
- Orthopaedic Oncology Institute, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Haien Zhao
- Orthopaedic Oncology Institute, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yong Zhou
- Orthopaedic Oncology Institute, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Qingyu Fan
- Orthopaedic Oncology Institute, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xiuchun Qiu
- Orthopaedic Oncology Institute, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
181
|
Sindhu S, Akhter N, Shenouda S, Wilson A, Ahmad R. Plasma fetuin-A/α2-HS-glycoprotein correlates negatively with inflammatory cytokines, chemokines and activation biomarkers in individuals with type-2 diabetes. BMC Immunol 2016; 17:33. [PMID: 27671862 PMCID: PMC5037637 DOI: 10.1186/s12865-016-0171-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/19/2016] [Indexed: 01/15/2023] Open
Abstract
Background Fetuin-A/AHSH is a novel hepatokine that acts as a vascular calcification inhibitor and as an endogenous TLR-4 ligand. Fetuin-A may act as a positive or negative acute phase protein (APP) in disease conditions. The relationship between circulatory fetuin-A and inflammatory biomarkers in type-2 diabetes (T2D) remains controversial. Therefore, the purpose of this study was to determine the plasma fetuin-A levels in 53 T2D (BMI = 29.7 ± 4.5 kg/m2) and 72 non-diabetic individuals (BMI = 28.2 ± 5.8 kg/m2) using premixed 38-plex MAP human cytokine/chemokine magnetic bead immunoassays and the data (mean ± SEM) were statistically analyzed to determine Pearson’s correlation (r) between fetuin-A and detected analytes; P-values ≤0.05 were considered significant. Results The data show that plasma fetuin-A levels were comparable in both groups (P = 0.27) and in T2D individuals, fetuin-A associated negatively (P ≤ 0.05) with a large number of proinflammatory cytokines/chemokines and activation biomarkers including TNF-α, IFN-α2, IFN-γ, IL-1α, IL-1β, IL-1RA, IL-3, IL-4, IL-7, IL-9, IL-12p40/p70, IL-15, CCL-2, CCL-4, CCL-11, CCL-22, CXCL-8, CX3CL-1, EFF-2, EGF, G-CSF, GM-CSF, GRO, sCD40L, and VEGF. In non-diabetics, fetuin-A also correlated positively with certain TH2 cytokines (IL-5, IL-13) and chemokines (CCL-3, CCL-5, CCL-7). Notably, in vitro fetuin-A production was significantly suppressed in HepG2 cells treated with TNF-α, IL-1β, and IFN-γ which supported the clinical findings of a negative association between fetuin A and inflammatory mediators. Conclusions The negative association between circulatory fetuin-A and systemic inflammatory mediators in T2D patients suggests that plasma fetuin-A may have predictive significance as a negative APP in metabolic disease. Electronic supplementary material The online version of this article (doi:10.1186/s12865-016-0171-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sardar Sindhu
- Immunology & Innovative Cell Therapy Unit, Dasman Diabetes Institute (DDI), P.O. Box 1180, Dasman, 15462, Kuwait.
| | - Nadeem Akhter
- Immunology & Innovative Cell Therapy Unit, Dasman Diabetes Institute (DDI), P.O. Box 1180, Dasman, 15462, Kuwait
| | - Steve Shenouda
- Immunology & Innovative Cell Therapy Unit, Dasman Diabetes Institute (DDI), P.O. Box 1180, Dasman, 15462, Kuwait
| | - Ajit Wilson
- Immunology & Innovative Cell Therapy Unit, Dasman Diabetes Institute (DDI), P.O. Box 1180, Dasman, 15462, Kuwait
| | - Rasheed Ahmad
- Immunology & Innovative Cell Therapy Unit, Dasman Diabetes Institute (DDI), P.O. Box 1180, Dasman, 15462, Kuwait.
| |
Collapse
|
182
|
Yadav A, Kumar B, Teknos TN, Kumar P. Bazedoxifene enhances the anti-tumor effects of cisplatin and radiation treatment by blocking IL-6 signaling in head and neck cancer. Oncotarget 2016; 8:66912-66924. [PMID: 28978005 PMCID: PMC5620145 DOI: 10.18632/oncotarget.11464] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 07/27/2016] [Indexed: 11/25/2022] Open
Abstract
Recent studies have shown that IL-6 signaling plays an important role in the aggressive and metastatic phenotype of head and neck squamous cell carcinoma (HNSCC). Therefore, we hypothesized that targeting of IL-6 signaling in HNSCC could enhance the therapeutic efficacy of standard chemoradiation treatment. We used both in vitro and in vivo models to test the efficacy of Bazedoxifene (BZA), a drug that was originally developed as a newer-generation selective estrogen receptor modulator (SERM) for the treatment of postmenopausal osteoporosis. Recently, BZA was also shown to exhibit potent anti-cancer effects that were both estrogen receptor (ER)-dependent and ER-independent. Our results suggest that BZA inhibits IL-6 signaling by disrupting IL-6R/gp130 protein-protein interactions. BZA treatment of CAL27-IL-6 (IL-6 overexpressing cells) or UM-SCC-74A (naturally expressing high levels of IL-6) significantly inhibited cell proliferation, migration and colony formation ability in a dose-dependent manner. In addition, BZA significantly decreased IL-6-mediated tumorsphere formation by markedly reducing nanog expression. BZA treatment also markedly reduced chemo and radioresistance in head and neck cancer cells by downregulating ERCC-1, XRCC-1 and survivin expression. In a SCID mouse xenograft model, BZA significantly enhanced the anti-tumor effects of cisplatin and radiation treatment with no added systemic toxicity. Furthermore, combination treatments significantly decreased tumor metastasis, pSTAT3 expression and nanog expression, in vivo. Taken together, our results suggest that targeting IL-6 signaling with bazedoxifene could be an effective treatment strategy for the treatment of HNSCC patients.
Collapse
Affiliation(s)
- Arti Yadav
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Bhavna Kumar
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA.,Department of Otolaryngology-Head and Neck Surgery, The Ohio State University, Columbus, OH 43210, USA
| | - Theodoros N Teknos
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA.,Department of Otolaryngology-Head and Neck Surgery, The Ohio State University, Columbus, OH 43210, USA
| | - Pawan Kumar
- The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA.,Department of Otolaryngology-Head and Neck Surgery, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
183
|
Ocampo V, Haaland D, Legault K, Mittoo S, Aitken E. Successful treatment of recurrent pleural and pericardial effusions with tocilizumab in a patient with systemic lupus erythematous. BMJ Case Rep 2016; 2016:bcr-2016-215423. [PMID: 27503940 DOI: 10.1136/bcr-2016-215423] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A 22-year-old Caucasian man presented to hospital with pleuritic chest pain. He had had a history of a sun-sensitive rash a year prior. Workup revealed normal cardiac enzymes and chest X-ray. However, electrocardiogram revealed ST elevation and PR depression, and echocardiogram revealed a slight pericardial effusion without other findings. A diagnosis of pericarditis was made. Subsequently, he was found to be positive for antinuclear antibodies (ANAs), as well as antibodies to SSA, SSB and double-stranded DNA; C3 was low, and C4 was undetectable. A diagnosis of systemic lupus erythematosus was made. The patient initially responded to high-dose ibuprofen. One month later, he developed a new pericardial effusion, this time with concomitant massive left-sided pleural effusion, requiring three separate thoracenteses draining a total of 6 L of pleural fluid. The recurrent effusion failed to respond to high-dose corticosteroid treatment. Owing to the severity and rapidity of the recurrence of pleural and pericardial effusion, intravenous tocilizumab was administered. The patient had excellent clinical and radiographic improvement. This case shows that tocilizumab may have a role in the treatment of intractable pleuropericardial effusion and other forms of lupus-associated serositis.
Collapse
Affiliation(s)
- Vanessa Ocampo
- Internal Medicine Program, McMaster University, Hamilton, Ontario, Canada
| | - Derek Haaland
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada The Waterside Clinic, Barrie, Ontario, Canada
| | - K Legault
- Division of Rheumatology, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Shika Mittoo
- Division of Rheumatology, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
184
|
Fernández-Santoscoy M, Wenzel UA, Persson E, Yrlid U, Agace W, Wick MJ. A reduced population of CD103+CD11b+ dendritic cells has a limited impact on oral Salmonella infection. Immunol Lett 2016; 176:72-80. [DOI: 10.1016/j.imlet.2016.05.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/21/2016] [Accepted: 05/19/2016] [Indexed: 12/23/2022]
|
185
|
Parkunan SM, Randall CB, Astley RA, Furtado GC, Lira SA, Callegan MC. CXCL1, but not IL-6, significantly impacts intraocular inflammation during infection. J Leukoc Biol 2016; 100:1125-1134. [PMID: 27286792 DOI: 10.1189/jlb.3a0416-173r] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 05/26/2016] [Indexed: 12/24/2022] Open
Abstract
During intraocular bacterial infections, the primary innate responders are neutrophils, which may cause bystander damage to the retina or perturb the clarity of the visual axis. We hypothesized that cytokine IL-6 and chemokine CXCL1 contributed to rapid neutrophil recruitment during Bacillus cereus endophthalmitis, a severe form of intraocular infection that is characterized by explosive inflammation and retinal damage that often leads to rapid vision loss. To test this hypothesis, we compared endophthalmitis pathogenesis in C57BL/6J, IL-6-/-, and CXCL1-/- mice. Bacterial growth in eyes of CXCL1-/-, IL-6-/-, and C67BL/6J mice was similar. Retinal function retention was greater in eyes of IL-6-/- and CXCL1-/- mice compared with that of C57BL/6J, despite these eyes having similar bacterial burdens. Neutrophil influx into eyes of CXCL1-/- mice was reduced to a greater degree compared with that of eyes of IL6-/- mice. Histology confirmed significantly less inflammation in eyes of CXCL1-/- mice, but similar degrees of inflammation in IL6-/- and C57BL/6J eyes. Because inflammation was reduced in eyes of infected CXCL1-/- mice, we tested the efficacy of anti-CXCL1 in B. cereus endophthalmitis. Retinal function was retained to a greater degree and there was less overall inflammation in eyes treated with anti-CXCL1, which suggested that anti-CXCL1 may have therapeutic efficacy in limiting inflammation during B. cereus endophthalmitis. Taken together, our results indicate that absence of IL-6 did not affect overall pathogenesis of endophthalmitis. In contrast, absence of CXCL1, in CXCL1-/- mice or after anti-CXCL1 treatment, led to an improved clinical outcome. Our findings suggest a potential benefit in targeting CXCL1 to control inflammation during B. cereus and perhaps other types of intraocular infections.
Collapse
Affiliation(s)
- Salai Madhumathi Parkunan
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - C Blake Randall
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Roger A Astley
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Glaucia C Furtado
- Immunology Institute, Icahn School of Medicine, Mount Sinai, New York, New York, USA; and
| | - Sergio A Lira
- Immunology Institute, Icahn School of Medicine, Mount Sinai, New York, New York, USA; and
| | - Michelle C Callegan
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA; .,Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA.,Dean McGee Eye Institute, Oklahoma City, Oklahoma, USA
| |
Collapse
|
186
|
Kremer JM, Lawrence DA, Hamilton R, McInnes IB. Long-term study of the impact of methotrexate on serum cytokines and lymphocyte subsets in patients with active rheumatoid arthritis: correlation with pharmacokinetic measures. RMD Open 2016; 2:e000287. [PMID: 27335660 PMCID: PMC4913203 DOI: 10.1136/rmdopen-2016-000287] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 05/03/2016] [Accepted: 05/13/2016] [Indexed: 11/09/2022] Open
Abstract
Objective To describe changes in immune parameters observed during long-term methotrexate (MTX) therapy in patients with active rheumatoid arthritis (RA) and explore correlations with simultaneously measured MTX pharmacokinetic (PKC) parameters. Design Prospective, open-label, long-term mechanism of action study. Setting University clinic. Methods MTX was initiated at a single weekly oral dose of 7.5 mg and dose adjusted for efficacy and toxicity for the duration of the study. Standard measures of disease activity were performed at baseline and every 6–36 months. Serum cytokine measurements in blood together with lymphocyte surface immunophenotypes and stimulated peripheral blood mononuclear cell (PBMC) cytokine production were assessed at each clinical evaluation. Results Cytokine concentrations exhibited multiple significant correlations with disease activity measures over time. The strongest correlations observed were for interleukin (IL)-6 (r=0.45, p<0.0001 for swollen joints and r=0.32, p=0.002 for tender joints) and IL-8 (r=0.25, p=0.01 for swollen joints). Significant decreases from baseline were observed in serum IL-1B, IL-6 and IL-8 concentrations. The most significant changes were observed for IL-6 (p<0.001). Significant increases from baseline were observed in IL-2 release from PBMCs ex vivo (p<0.01). In parallel, multiple statistically significant correlations were observed between MTX PKC measures and immune parameters. The change in swollen joint count correlated inversely with the change in area under the curve (AUC) for MTX (r=−0.63, p=0.007). Conclusions MTX therapy of patients with RA is accompanied by a variety of changes in serum cytokine expression, which in turn correlate strongly with clinical disease activity and MTX pharmacokinetics (PKCs). These data strongly support the notion that MTX mediates profound and functionally relevant effects on the immunological hierarchy in the RA lesion.
Collapse
Affiliation(s)
- Joel M Kremer
- Division of Rheumatology, Department of Medicine , Albany Medical College, and The Center for Rheumatology (JMK), The New York State Department of Health (DAL) the Albany College of Pharmacy (RH), and The University of Glasgow (IBM) , Albany, New York , USA
| | - David A Lawrence
- Division of Rheumatology, Department of Medicine , Albany Medical College, and The Center for Rheumatology (JMK), The New York State Department of Health (DAL) the Albany College of Pharmacy (RH), and The University of Glasgow (IBM) , Albany, New York , USA
| | - Robert Hamilton
- Division of Rheumatology, Department of Medicine , Albany Medical College, and The Center for Rheumatology (JMK), The New York State Department of Health (DAL) the Albany College of Pharmacy (RH), and The University of Glasgow (IBM) , Albany, New York , USA
| | - Iain B McInnes
- Division of Rheumatology, Department of Medicine , Albany Medical College, and The Center for Rheumatology (JMK), The New York State Department of Health (DAL) the Albany College of Pharmacy (RH), and The University of Glasgow (IBM) , Albany, New York , USA
| |
Collapse
|
187
|
Prakash J, Williams FMK, Trofimov S, Surdulescu G, Spector T, Livshits G. Quantitative genetics of circulating Dickkopf-related protein 1 (DKK1) in community-based sample of UK twins. Osteoporos Int 2016; 27:2065-75. [PMID: 26762129 DOI: 10.1007/s00198-016-3486-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 01/05/2016] [Indexed: 12/19/2022]
Abstract
UNLABELLED Dickkopf-related protein 1 (DKK1) is a major inhibitor of Wnt signalling pathway but also plays an important role in bone formation. Its circulating levels appear to correlate significantly with plasma levels of inflammatory factors, fractalkine and IL-6. This study, using a large sample of UK twins, showed that the variation of each of these factors and correlation between them was explained by the genetic factors, and indicated possible association with DKK1 gene variants. INTRODUCTION DKK1 is involved in the development of several inflammatory conditions related to bone and joint degradation. Our objectives were to explore the genetic contribution (heritability) to circulating DKK1 variation and its correlation with other inflammatory cytokines, interleukin 6 (IL-6) and fractalkine, and to test whether the DKK1 heritability could be attributable to single nucleotide polymorphisms (SNPs) mapped to DKK1, IL-6 and FRCT genes. METHODS The study included a large community-based sample of 4939 women drawn from the general UK population. Plasma samples were analysed for circulating levels of DKK1, IL-6 and fractalkine (FRCT); 65 SNPs of DKK1, IL-6 and FRCT candidate genes, with MAF >0.1, were examined. We applied variance component analysis to evaluate contribution of putative genetic (including above SNPs) and environmental factors to variation of DKK1, and its correlation with IL-6 and FRCT. RESULTS Putative genetic factors explained 42.2 ± 2 % of the total variation of circulating DKK1 levels, and were also significant for fractalkine and IL-6 variations. Most importantly, we report significant phenotypic (0.208 ± 0.006-0.459 ± 0.007) and genetic (0.338 ± 0.069-0.617 ± 0.033) correlations between these molecules. We found evidence suggestive of association between the DKK1 and its structural genes variants. CONCLUSIONS Circulating DKK1 levels correlated significantly with levels of IL-6 and FRCT, known risk factors for several inflammatory processes suggesting a potential role of DKK1 in inflammation and tissue injury. Our results suggest the contribution of genetic factors in inter-individual variation of DKK1 levels in human population. However, further studies are required to determine genetic polymorphisms affecting DKK1 variation and its correlation with IL-6 and FRCT.
Collapse
Affiliation(s)
- J Prakash
- Human Population Biology Research Unit, Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - F M K Williams
- Department of Twin Research and Genetic Epidemiology, King's College London, Strand, London, UK
| | - S Trofimov
- Human Population Biology Research Unit, Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - G Surdulescu
- Department of Twin Research and Genetic Epidemiology, King's College London, Strand, London, UK
| | - T Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, Strand, London, UK
| | - G Livshits
- Human Population Biology Research Unit, Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.
- Department of Twin Research and Genetic Epidemiology, King's College London, Strand, London, UK.
- Lilian and Marcel Pollak Chair of Biological Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
188
|
Shi X, Liu J, Yang T, Zhang Y, Li T, Chen J. TLR2/NFκB signalling regulates endogenous IL-6 release from marrow-derived mesenchymal stromal cells to suppress the apoptosis of PC12 cells injured by oxygen and glucose deprivation. Mol Med Rep 2016; 13:5358-64. [PMID: 27108485 DOI: 10.3892/mmr.2016.5158] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 03/29/2016] [Indexed: 11/06/2022] Open
Abstract
Two previous studies published by our group identified that mesenchymal stromal cells (MSCs) conferred neuroprotection in a rat model of hypoxic-ischaemic brain damage (HIBD), and that MSCs secreted abundant interleukin-6 (IL‑6) when co‑cultured with oxygen and glucose deprivation (OGD)‑injured PC12 cells. The present study has further investigated the role of IL‑6, and explored potential signalling pathways in vitro. In vitro models were established by co‑culturing OGD‑injured PC12 cells with MSCs. Subsequently, the expression levels of the signalling molecules, Toll‑like receptor 2 (TLR2)/nuclear factor κB (NFκB), and IL‑6 were altered separately in this in vitro model by treatment with an agonist, antagonist, siRNA or overexpression adenovirus. The expression levels of B cell lymphoma‑associated X (Bax), TLR2, NFκB and IL‑6 were detected by western blot analysis, real‑time polymerase chain reaction or ELISA. The resting membrane potential (RMP) of the PC12 cells was analysed by whole‑cell patch‑clamp recordings. Compared with controls or the PC12 co‑culture group, the MSC co‑cultured group induced less expression of Bax, but more IL‑6 secretion. Up- or down-regulation of the TLR2/NFκB signalling pathway resulted in a corresponding increase or decrease in the IL‑6 expression level in the MSCs. Co‑culture with siIL‑6‑MSCs increased the expression levels of Bax and increased the RMP in the OGD PC12 cells. In conclusion, the release of IL‑6 from MSCs was regulated via the TLR2/NFκB signalling pathway. Endogenous IL‑6 reduced apoptosis and protected OGD‑injured PC12 cells when they were co‑cultured with MSCs. The present study has reported a novel immunomodulatory effect of the microenvironment of neural damage during MSC cytotherapy.
Collapse
Affiliation(s)
- Xia Shi
- Children's Nutrition Research Centre, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Jingjing Liu
- Children's Nutrition Research Centre, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Ting Yang
- Children's Nutrition Research Centre, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Yun Zhang
- Children's Nutrition Research Centre, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Tingyu Li
- Children's Nutrition Research Centre, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Jie Chen
- Children's Nutrition Research Centre, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| |
Collapse
|
189
|
Fujiwara Y, Yang L, Takaiwa F, Sekikawa K. Expression and Purification of Recombinant Mouse Interleukin-4 and -6 from Transgenic Rice Seeds. Mol Biotechnol 2016; 58:223-31. [PMID: 26876890 DOI: 10.1007/s12033-016-9920-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Transgenic rice seed can be utilized as a bioreactor to produce high-value recombinant proteins. Mouse interleukin 4 (mIL-4) and mIL-6 were specifically expressed as secretory proteins in rice endosperm by ligating the N-terminal glutelin B-1 (GluB-1) signal peptide and the C-terminal KDEL endoplasmic reticulum retention signal under control of the endosperm-specific GluB-1 promoter. In the transgenic rice seed, mIL-4 and mIL-6 accumulated in levels up to 0.43 mg/g grain and 0.16 mg/g grain, respectively. The reducing agents and detergents required for extraction from the transgenic rice seeds differed between the two proteins, indicating differences in their intracellular localization within the endosperm cell. Purified mIL-4 and mIL-6 exhibited high activity and very low endotoxin contamination.
Collapse
Affiliation(s)
| | - Lijun Yang
- Transgenic Crop Research and Development Center, National Institute of Agrobiological Sciences, Kannondai 3-1-3, Tsukuba, Ibaraki, 305-8604, Japan
| | - Fumio Takaiwa
- Transgenic Crop Research and Development Center, National Institute of Agrobiological Sciences, Kannondai 3-1-3, Tsukuba, Ibaraki, 305-8604, Japan
| | - Kenji Sekikawa
- Preventec, Inc., 1-2 Owashi, Tsukuba, Ibaraki, 305-8634, Japan
| |
Collapse
|
190
|
Sharma AR, Sharma G, Lee SS, Chakraborty C. miRNA-Regulated Key Components of Cytokine Signaling Pathways and Inflammation in Rheumatoid Arthritis. Med Res Rev 2016; 36:425-39. [PMID: 26786912 DOI: 10.1002/med.21384] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Revised: 12/10/2015] [Accepted: 12/19/2015] [Indexed: 12/27/2022]
Abstract
Rheumatoid arthritis (RA) is an inflammatory disease that primarily affects joints. This autoimmune disease pathogenesis is related to cytokine signaling. In this review, we have described the existence of various microRNAs (miRNAs) involved in regulation of major protein cascades of cytokine signaling associated with RA. Moreover, we have tried to portray the role of various miRNAs in different cytokines such as TNF-α, IL-1, IL-6, IL-10, IL-17, IL-18, IL-21, and granulocyte macrophage colony-stimulating factor (GMCSF). Along with this, we have also discussed the miRNA regulation in T cells and synovial tissue. From the analyzed data, we suggest that miR-146a and miR-155 might be the potential therapeutic target for treating RA. The insight illustrated in this review will offer a better understanding of the role of miRNA in cytokine signaling pathways and inflammation during RA and could project them as diagnostic or therapeutic agents in near future.
Collapse
Affiliation(s)
- Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Chuncheon Sacred Heart Hospital, Hallym University, Chuncheon, 200704, Republic of Korea
| | - Garima Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Chuncheon Sacred Heart Hospital, Hallym University, Chuncheon, 200704, Republic of Korea
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopedic Surgery, Chuncheon Sacred Heart Hospital, Hallym University, Chuncheon, 200704, Republic of Korea
| | - Chiranjib Chakraborty
- Institute for Skeletal Aging & Orthopedic Surgery, Chuncheon Sacred Heart Hospital, Hallym University, Chuncheon, 200704, Republic of Korea.,Department of Bioinformatics, School of Computer Sciences, Galgotias University, Greater Noida, 203201, Uttar Pradesh, India
| |
Collapse
|
191
|
Lan T, Chang L, Wu L, Yuan YF. IL-6 Plays a Crucial Role in HBV Infection. J Clin Transl Hepatol 2015; 3:271-6. [PMID: 26807383 PMCID: PMC4721895 DOI: 10.14218/jcth.2015.00024] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 09/17/2015] [Accepted: 10/11/2015] [Indexed: 01/05/2023] Open
Abstract
Interleukin-6 (IL-6), a cytokine mainly produced by activated monocytes, has broad pleiotropic actions that affect the functions of a variety of lymphoid cells. The roles of IL-6 in regulating immunity to infections are currently being defined. Remarkably, IL-6-mediated cellular and humoral immune responses play a crucial role in determining the outcome of viral infection. This article reviews the current knowledge on the critical role of IL-6 in hepatitis B virus (HBV) infection. As a competent intermediary, IL-6 derived from activated monocytes plays an important role in promoting lymphocytes responses that are essential for effective viral control. However, as a mediator of inflammation, IL-6 is also involved in the development of HBV-induced liver cirrhosis and exacerbating liver injury. Overall, the current data point to IL-6 as an immunoregulatory cytokine in HBV infection. Immunotherapeutic strategies aimed at optimizing the beneficial effects of IL-6 in HBV infection may prove to be an ordeal in the future, as they should foster the strengths of IL-6 while circumventing potential drawbacks.
Collapse
Affiliation(s)
- Tian Lan
- Zhongnan Hospital of Wuhan University, Department of Hepatobiliary Surgery, Wuhan University, Wuhan, China
| | - Lei Chang
- Zhongnan Hospital of Wuhan University, Department of Hepatobiliary Surgery, Wuhan University, Wuhan, China
| | - Long Wu
- Zhongnan Hospital of Wuhan University, Department of Hepatobiliary Surgery, Wuhan University, Wuhan, China
| | - Yu-Feng Yuan
- Zhongnan Hospital of Wuhan University, Department of Hepatobiliary Surgery, Wuhan University, Wuhan, China
- Correspondence to: Yu-Feng Yuan, Zhongnan Hospital of Wuhan University, Department of Hepatobiliary Surgery, Wuhan University, Wuhan 430071, Hubei, China. Tel: +86-027-67812888, Fax: +86-027-67812892, E-mail:
| |
Collapse
|
192
|
Jiang GX, Cao LP, Kang PC, Zhong XY, Lin TY, Cui YF. Interleukin‑6 induces epithelial‑mesenchymal transition in human intrahepatic biliary epithelial cells. Mol Med Rep 2015; 13:1563-9. [PMID: 26708270 PMCID: PMC4732846 DOI: 10.3892/mmr.2015.4706] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 10/05/2015] [Indexed: 12/13/2022] Open
Abstract
The aim of the present study was to determine the role of interleukin-6 (IL-6) in the epithelial-mesenchymal transition (EMT) of human intrahepatic biliary epithelial cell (HIBEC) lines in vitro. HIBECs were stimulated with IL-6 at concentrations of 0, 10, 20, 50 and 100 µg/l for 24 h. A wound healing and Transwell assay were performed to determine the migratory and invasive capacity of HIBECs, respectively. Following 24 h of incubation, IL-6 at 10 and 20 µg/l significantly increased the number of migrated and invaded cells (P<0.05), while stimulation with 50 and 100 µg/l IL-6 resulted in a further increase of the migratory and invasive capacity compared to that in all other groups (P<0.05). Furthermore, reverse-transcription quantitative polymerase chain reaction and western blot analyses were used to detect the mRNA and protein expression of EMT markers E-cadherin and vimentin in HIBECs. Decreased mRNA levels of E-cadherin accompanied by higher mRNA levels of vimentin were observed in the 10, 20, 50, 100 µg/l IL-6 groups compared to those in the 0 µg/l group (all P<0.05). Furthermore, the protein expression of E-cadherin was decreased, while that of vimentin was increased in the 50 and 100 µg/l IL-6 groups compared to those in the 0, 10 and 20 µg/l IL-6 groups (all P<0.05). The present study therefore indicated that IL-6 promoted the process of EMT in HIBECs as characterized by increased migration and invasion of HIBECs and the typical changes in mRNA and protein expression of the EMT markers E-cadherin and vimentin.
Collapse
Affiliation(s)
- Gui-Xing Jiang
- Department of Hepatopancreatobiliary Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Li-Ping Cao
- Department of Hepatopancreatobiliary Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Peng-Cheng Kang
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Xiang-Yu Zhong
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Tian-Yu Lin
- Department of Hepatopancreatobiliary Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310000, P.R. China
| | - Yun-Fu Cui
- Department of Hepatopancreatobiliary Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
193
|
Gottschalk TA, Tsantikos E, Hibbs ML. Pathogenic Inflammation and Its Therapeutic Targeting in Systemic Lupus Erythematosus. Front Immunol 2015; 6:550. [PMID: 26579125 PMCID: PMC4623412 DOI: 10.3389/fimmu.2015.00550] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 10/14/2015] [Indexed: 12/16/2022] Open
Abstract
Systemic lupus erythematosus (SLE, lupus) is a highly complex and heterogeneous autoimmune disease that most often afflicts women in their child-bearing years. It is characterized by circulating self-reactive antibodies that deposit in tissues, including skin, kidneys, and brain, and the ensuing inflammatory response can lead to irreparable tissue damage. Over many years, clinical trials in SLE have focused on agents that control B- and T-lymphocyte activation, and, with the single exception of an agent known as belimumab which targets the B-cell survival factor BAFF, they have been disappointing. At present, standard therapy for SLE with mild disease is the agent hydroxychloroquine. During disease flares, steroids are often used, while the more severe manifestations with major organ involvement warrant potent, broad-spectrum immunosuppression with cyclophosphamide or mycophenolate. Current treatments have severe and dose-limiting toxicities and thus a more specific therapy targeting a causative factor or signaling pathway would be greatly beneficial in SLE treatment. Moreover, the ability to control inflammation alongside B-cell activation may be a superior approach for disease control. There has been a recent focus on the innate immune system and associated inflammation, which has uncovered key players in driving the pathogenesis of SLE. Delineating some of these intricate inflammatory mechanisms has been possible with studies using spontaneous mouse mutants and genetically engineered mice. These strains, to varying degrees, exhibit hallmarks of the human disease and therefore have been utilized to model human SLE and to test new drugs. Developing a better understanding of the initiation and perpetuation of disease in SLE may uncover suitable novel targets for therapeutic intervention. Here, we discuss the involvement of inflammation in SLE disease pathogenesis, with a focus on several key proinflammatory cytokines and myeloid growth factors, and review the known outcomes or the potential for targeting these factors in SLE.
Collapse
Affiliation(s)
- Timothy A Gottschalk
- Leukocyte Signalling Laboratory, Department of Immunology and Pathology, Alfred Medical Research and Education Precinct, Monash University , Melbourne, VIC , Australia
| | - Evelyn Tsantikos
- Leukocyte Signalling Laboratory, Department of Immunology and Pathology, Alfred Medical Research and Education Precinct, Monash University , Melbourne, VIC , Australia
| | - Margaret L Hibbs
- Leukocyte Signalling Laboratory, Department of Immunology and Pathology, Alfred Medical Research and Education Precinct, Monash University , Melbourne, VIC , Australia
| |
Collapse
|
194
|
Chang L, Lan T, Wu L, Li C, Yuan Y, Liu Z. The association between three IL-6 polymorphisms and HBV-related liver diseases: a meta-analysis. Int J Clin Exp Med 2015; 8:17036-17045. [PMID: 26770294 PMCID: PMC4694194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 10/05/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND A quantity of case-control studies have been performed to address the association between the three interleukin-6 (IL-6) polymorphisms (-572G/C, -597G/A and -174G/C) and the risk of HBV related liver diseases. However, previous research results are inconsistent. We conducted this meta-analysis to clarify the correlation between these IL-6 polymorphisms and HBV related liver diseases. METHODS We searched in PubMed, EMBASE, Cochrane Library as well as Chinese databases including China National Knowledge Infrastructure (CNKI) and WanFang database for all the relevant studies up to April 15, 2015. The data were extracted by two independent authors. Odds ratios (ORs) and 95% confidence intervals (95% CI) were calculated. RESULTS A total of 10 studies consisting of 3879 cases and 2812 controls were included in this metaanalysis. For IL-6 polymorphism -572G/C, an association with increased chronic hepatitis B (CHB) risk was observed under in allelic, homozygous, heterozygous, dominant and recessive model. However, IL-6 polymorphisms (-572G/C) were not related to Inactive Carrier (IC), Liver Cirrhosis (LC) and Hepatocellular Carcinoma (HCC) risk in this study. We also found that IL-6 polymorphisms (-597G/A) were related to CHB in allelic, heterozygous, recessive model. For IL-6 polymorphism -174G/C, we did not find any association with CHB risk. CONCLUSION The present meta-analysis indicated that IL-6 polymorphisms -572G/C and -597G/A significantly associate with CHB risk, but might not be significantly related to the progressive HBV such as LC and HCC. IL-6 polymorphisms -174G/C might not significantly associate with HBV related liver diseases.
Collapse
Affiliation(s)
- Lei Chang
- Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan University Wuhan 430071, P. R. China
| | - Tian Lan
- Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan University Wuhan 430071, P. R. China
| | - Long Wu
- Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan University Wuhan 430071, P. R. China
| | - Cuicui Li
- Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan University Wuhan 430071, P. R. China
| | - Yufeng Yuan
- Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan University Wuhan 430071, P. R. China
| | - Zhisu Liu
- Department of General Surgery, Research Center of Digestive Diseases, Zhongnan Hospital of Wuhan University Wuhan 430071, P. R. China
| |
Collapse
|
195
|
Zergoun AA, Zebboudj A, Sellam SL, Kariche N, Djennaoui D, Ouraghi S, Kerboua E, Amir-Tidadini ZC, Chilla D, Asselah F, Touil-Boukoffa C, Merghoub T, Bourouba M. IL-6/NOS2 inflammatory signals regulate MMP-9 and MMP-2 activity and disease outcome in nasopharyngeal carcinoma patients. Tumour Biol 2015; 37:3505-14. [PMID: 26453114 DOI: 10.1007/s13277-015-4186-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/01/2015] [Indexed: 12/27/2022] Open
Abstract
The role of nitric oxide (NO)(·) in the development of the metastatic properties of nasopharyngeal carcinoma (NPC) is not fully understood. Previous studies proposed that interleukin-6 (IL-6) would act as regulator of matrix metalloprotease activation in NPC. Recently, we showed that (NO)(·) was a critical mediator of tumor growth in patients. The aim of this study was to determine the implication of IL-6 in the progression of NPC pathology via metalloprotease (MMP) activation and their possible correlation with (NO)(·) production. We observed a significant increase in IL-6 and nitrite (NO2 (-)) synthesis in patients (n = 17) as well as a strong expression of IL-6 and nitric oxide synthase 2 (NOS2) in the analyzed tumors (n = 8). In patients' plasma, a negative correlation associated IL-6 with circulating nitrites (r = -0.33). A negative correlation associated the H-scores of these signals in the tumors (r = -0.47). In patients' plasma, nitrite synthesis was positively associated with MMP-9 activation (r = 0.45), pro-MMP-2 expression (r = 0.37), and negatively correlated with MMP-2 activation (r = -0.51). High nitrite levels was associated with better recurrence-free survival (RFS) (p = 0.02). Overall, our results suggest that the IL-6/NOS2 inflammatory signals are involved in the regulation of MMP-9- and MMP-2-dependent metastatic activity and that high circulating nitrite levels in NPC patients may constitute a prognostic predictor for survival.
Collapse
Affiliation(s)
- Ahmed-Amine Zergoun
- Department of Cell and Molecular Biology, Team Cytokines and Nitric oxide synthases. Faculty of Biology, University Houari Boumediene USTHB, Bab-Ezzouar, Algiers, Algeria
| | - Abderezak Zebboudj
- Department of Cell and Molecular Biology, Team Cytokines and Nitric oxide synthases. Faculty of Biology, University Houari Boumediene USTHB, Bab-Ezzouar, Algiers, Algeria
| | - Sarah Leila Sellam
- Department of Cell and Molecular Biology, Team Cytokines and Nitric oxide synthases. Faculty of Biology, University Houari Boumediene USTHB, Bab-Ezzouar, Algiers, Algeria
| | - Nora Kariche
- Department of Cell and Molecular Biology, Team Cytokines and Nitric oxide synthases. Faculty of Biology, University Houari Boumediene USTHB, Bab-Ezzouar, Algiers, Algeria
| | - Djamel Djennaoui
- Oto-rhyno-laryngology Department, Mustapha Pacha Hospital, Algiers, Algeria
| | - Samir Ouraghi
- Oto-rhyno-laryngology Department, Mustapha Pacha Hospital, Algiers, Algeria
| | - Esma Kerboua
- Oncology Department, Centre Pierre et Marie Curie, Algiers, Algeria
| | | | - Dalia Chilla
- Central Laboratory for Anatomopathology, Mustapha Pacha Hospital, Algiers, Algeria
| | - Fatima Asselah
- Central Laboratory for Anatomopathology, Mustapha Pacha Hospital, Algiers, Algeria
| | - Chafia Touil-Boukoffa
- Department of Cell and Molecular Biology, Team Cytokines and Nitric oxide synthases. Faculty of Biology, University Houari Boumediene USTHB, Bab-Ezzouar, Algiers, Algeria
| | - Taha Merghoub
- Ludwig Collaborative Laboratory, Memorial Sloan-Kettering Cancer Center, New York, NY, 10065, USA
| | - Mehdi Bourouba
- Department of Cell and Molecular Biology, Team Cytokines and Nitric oxide synthases. Faculty of Biology, University Houari Boumediene USTHB, Bab-Ezzouar, Algiers, Algeria.
| |
Collapse
|
196
|
Sainoh T, Orita S, Miyagi M, Sakuma Y, Yamauchi K, Suzuki M, Kubota G, Oikawa Y, Inage K, Sato J, Fujimoto K, Shiga Y, Inoue G, Aoki Y, Takahashi K, Ohtori S. Interleukin-6 and interleukin-6 receptor expression, localization, and involvement in pain-sensing neuron activation in a mouse intervertebral disc injury model. J Orthop Res 2015; 33:1508-14. [PMID: 26010074 DOI: 10.1002/jor.22925] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 04/02/2015] [Indexed: 02/04/2023]
Abstract
The pathological mechanism of intractable low back pain is unclear. However, intervertebral disc (IVD) degeneration is a primary cause of low back pain, and pain-related mediators, such as interleukin-6 (IL-6), have been correlated with discogenic pain. The objective of this study is to elucidate the mechanism of local IL-6 and IL-6 receptor (IL-6R) expression after IVD injury as well as determine the involvement of IL-6/IL-6 signaling in discogenic pain. To do this, quantitative and immunohistological analyses in a mouse model of IVD injury were performed. Firstly, we measured the local expression levels of IL-6 and IL-6R in IVDs by enzyme-linked immunosorbent assay (ELISA). Secondly, we immunohistochemically confirmed their localization in injured IVDs. Lastly, we evaluated the effects of intradiscal injection of an IL-6 inhibitor by evaluating pain-related protein, calcitonin gene-related peptide (CGRP), expression in dorsal root ganglia (DRG) neurons that innervate IVDs. Injured IVDs showed increased production of IL-6 and IL-6R. IL-6 and IL-6R expression in the injured IVD were predominantly localized in the annulus fibrosus and endplate, and intradiscal injection of the IL-6 inhibitor suppressed CGRP expression in the DRG neurons. These results show that IL-6 and IL-6R expression levels are responsive to IVD injury and that inhibition of IL-6/IL-6R signaling may be a promising analgesic treatment for degenerative disc diseases.
Collapse
Affiliation(s)
- Takeshi Sainoh
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Sumihisa Orita
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masayuki Miyagi
- Department of Orthopaedic Surgery, Kitasato University, Kanagawa, Japan
| | - Yoshihiro Sakuma
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kazuyo Yamauchi
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Miyako Suzuki
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Go Kubota
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yasuhiro Oikawa
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kazuhide Inage
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Jun Sato
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kazuki Fujimoto
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yasuhiro Shiga
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Gen Inoue
- Department of Orthopaedic Surgery, Kitasato University, Kanagawa, Japan
| | - Yasuchika Aoki
- Department of Orthopaedic Surgery, Eastern Chiba Medical Center, Chiba, Japan
| | - Kazuhisa Takahashi
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Seiji Ohtori
- Department of Orthopaedic Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
197
|
Inhibition of interleukin-6 abolishes the promoting effects of pair housing on post-stroke neurogenesis. Neuroscience 2015; 307:160-70. [DOI: 10.1016/j.neuroscience.2015.08.055] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/25/2015] [Accepted: 08/22/2015] [Indexed: 11/18/2022]
|
198
|
Pelekanou V, Kampa M, Kiagiadaki F, Deli A, Theodoropoulos P, Agrogiannis G, Patsouris E, Tsapis A, Castanas E, Notas G. Estrogen anti-inflammatory activity on human monocytes is mediated through cross-talk between estrogen receptor ERα36 and GPR30/GPER1. J Leukoc Biol 2015; 99:333-47. [PMID: 26394816 DOI: 10.1189/jlb.3a0914-430rr] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 09/02/2015] [Indexed: 12/22/2022] Open
Abstract
Estrogens are known modulators of monocyte/macrophage functions; however, the underlying mechanism has not been clearly defined. Recently, a number of estrogen receptor molecules and splice variants were identified that exert different and sometimes opposing actions. We assessed the expression of estrogen receptors and explored their role in mediating estrogenic anti-inflammatory effects on human primary monocytes. We report that the only estrogen receptors expressed are estrogen receptor-α 36-kDa splice variant and G-protein coupled receptor 30/G-protein estrogen receptor 1, in a sex-independent manner. 17-β-Estradiol inhibits the LPS-induced IL-6 inflammatory response, resulting in inhibition of NF-κB transcriptional activity. This is achieved via a direct physical interaction of ligand-activated estrogen receptor-α 36-kDa splice variant with the p65 component of NF-κB in the nucleus. G-protein coupled receptor 30/G-protein estrogen receptor 1, which also physically interacts with estrogen receptor-α 36-kDa splice variant, acts a coregulator in this process, because its inhibition blocks the effect of estrogens on IL-6 expression. However, its activation does not mimic the effect of estrogens, on neither IL-6 nor NF-κB activity. Finally, we show that the estrogen receptor profile observed in monocytes is not modified during their differentiation to macrophages or dendritic cells in vitro and is shared in vivo by macrophages present in atherosclerotic plaques. These results position estrogen receptor-α 36-kDa splice variant and G-protein coupled receptor 30 as important players and potential therapeutic targets in monocyte/macrophage-dependent inflammatory processes.
Collapse
Affiliation(s)
- Vasiliki Pelekanou
- Laboratories of *Experimental Endocrinology, Pathology, and Biochemistry, University of Crete School of Medicine, Heraklion, Crete, Greece; First Department of Pathology, National and Kapodistrian University of Athens School of Medicine, Athens, Greece; INSERM U976, Hôpital Saint Louis, Paris, France; and University Paris Diderot, Paris, France
| | - Marilena Kampa
- Laboratories of *Experimental Endocrinology, Pathology, and Biochemistry, University of Crete School of Medicine, Heraklion, Crete, Greece; First Department of Pathology, National and Kapodistrian University of Athens School of Medicine, Athens, Greece; INSERM U976, Hôpital Saint Louis, Paris, France; and University Paris Diderot, Paris, France
| | - Foteini Kiagiadaki
- Laboratories of *Experimental Endocrinology, Pathology, and Biochemistry, University of Crete School of Medicine, Heraklion, Crete, Greece; First Department of Pathology, National and Kapodistrian University of Athens School of Medicine, Athens, Greece; INSERM U976, Hôpital Saint Louis, Paris, France; and University Paris Diderot, Paris, France
| | - Alexandra Deli
- Laboratories of *Experimental Endocrinology, Pathology, and Biochemistry, University of Crete School of Medicine, Heraklion, Crete, Greece; First Department of Pathology, National and Kapodistrian University of Athens School of Medicine, Athens, Greece; INSERM U976, Hôpital Saint Louis, Paris, France; and University Paris Diderot, Paris, France
| | - Panayiotis Theodoropoulos
- Laboratories of *Experimental Endocrinology, Pathology, and Biochemistry, University of Crete School of Medicine, Heraklion, Crete, Greece; First Department of Pathology, National and Kapodistrian University of Athens School of Medicine, Athens, Greece; INSERM U976, Hôpital Saint Louis, Paris, France; and University Paris Diderot, Paris, France
| | - George Agrogiannis
- Laboratories of *Experimental Endocrinology, Pathology, and Biochemistry, University of Crete School of Medicine, Heraklion, Crete, Greece; First Department of Pathology, National and Kapodistrian University of Athens School of Medicine, Athens, Greece; INSERM U976, Hôpital Saint Louis, Paris, France; and University Paris Diderot, Paris, France
| | - Efstratios Patsouris
- Laboratories of *Experimental Endocrinology, Pathology, and Biochemistry, University of Crete School of Medicine, Heraklion, Crete, Greece; First Department of Pathology, National and Kapodistrian University of Athens School of Medicine, Athens, Greece; INSERM U976, Hôpital Saint Louis, Paris, France; and University Paris Diderot, Paris, France
| | - Andreas Tsapis
- Laboratories of *Experimental Endocrinology, Pathology, and Biochemistry, University of Crete School of Medicine, Heraklion, Crete, Greece; First Department of Pathology, National and Kapodistrian University of Athens School of Medicine, Athens, Greece; INSERM U976, Hôpital Saint Louis, Paris, France; and University Paris Diderot, Paris, France
| | - Elias Castanas
- Laboratories of *Experimental Endocrinology, Pathology, and Biochemistry, University of Crete School of Medicine, Heraklion, Crete, Greece; First Department of Pathology, National and Kapodistrian University of Athens School of Medicine, Athens, Greece; INSERM U976, Hôpital Saint Louis, Paris, France; and University Paris Diderot, Paris, France
| | - George Notas
- Laboratories of *Experimental Endocrinology, Pathology, and Biochemistry, University of Crete School of Medicine, Heraklion, Crete, Greece; First Department of Pathology, National and Kapodistrian University of Athens School of Medicine, Athens, Greece; INSERM U976, Hôpital Saint Louis, Paris, France; and University Paris Diderot, Paris, France
| |
Collapse
|
199
|
Kobayashi T, Tanaka K, Fujita T, Umezawa H, Amano H, Yoshioka K, Naito Y, Hatano M, Kimura S, Tatsumi K, Kasuya Y. Bidirectional role of IL-6 signal in pathogenesis of lung fibrosis. Respir Res 2015; 16:99. [PMID: 26289430 PMCID: PMC4546032 DOI: 10.1186/s12931-015-0261-z] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 08/12/2015] [Indexed: 02/08/2023] Open
Abstract
Background Various signals are known to participate in the pathogenesis of lung fibrosis. Our aim was to determine which signal is predominantly mobilized in the early inflammatory phase and thereafter modulates the development of lung fibrosis. Methods Mice received a single dose of 3 mg/kg body weight of bleomycin (BLM) and were sacrificed at designated days post-instillation (dpi). Lung homogenates and sections from mice in the early inflammatory phase were subjected to phospho-protein array analysis and immunofluorescence studies, respectively. Bronchoalveolar lavage fluid (BALF) from mice was subjected to an enzyme-linked immunosorbent assay (EIA) for interleukin (IL)-6 and evaluation of infiltrated cell populations. The effects of endogenous and exogenous IL-6 on the BLM-induced apoptotic signal in A549 cells and type 2 pneumocytes were elucidated. In addition, the effect of IL-6-neutralizing antibody on BLM-induced lung injury was evaluated. Results Phospho-protein array revealed that BLM induced phosphorylation of molecules downstream of the IL-6 receptor such as Stat3 and Akt in the lung at 3 dpi. At 3 dpi, immunofluorescence studies showed that signals of phospho-Stat3 and -Akt were localized in type 2 pneumocytes, and that BLM-induced IL-6-like immunoreactivity was predominantly observed in type 2 pneumocytes. Activation of caspases in BLM-treated A549 cells and type 2 pneumocytes was augmented by application of IL-6-neutralizing antibody, a PI3K inhibitor or a Stat3 inhibitor. EIA revealed that BLM-induced IL-6 in BALF was biphasic, with the first increase from 0.5 to 3 dpi followed by the second increase from 8 to 10 dpi. Blockade of the first increase of IL-6 by IL-6-neutralizing antibody enhanced apoptosis of type 2 pneumocytes and neutrophilic infiltration and markedly accelerated fibrosis in the lung. In contrast, blockade of the second increase of IL-6 by IL-6-neutralizing antibody ameliorated lung fibrosis. Conclusions The present study demonstrated that IL-6 could play a bidirectional role in the pathogenesis of lung fibrosis. In particular, upregulation of IL-6 at the early inflammatory stage of BLM-injured lung has antifibrotic activity through regulating the cell fate of type 2 pneumocytes in an autocrine/paracrine manner. Electronic supplementary material The online version of this article (doi:10.1186/s12931-015-0261-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Takeshi Kobayashi
- Department of Biochemistry and Molecular Pharmacology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan. .,Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan.
| | - Kensuke Tanaka
- Department of Biochemistry and Molecular Pharmacology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan. .,Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan.
| | - Tetsuo Fujita
- Department of Biochemistry and Molecular Pharmacology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan. .,Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan.
| | - Hiroki Umezawa
- Department of Biochemistry and Molecular Pharmacology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan. .,Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan.
| | - Hiroyuki Amano
- Department of Biochemistry and Molecular Pharmacology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan. .,Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan.
| | - Kento Yoshioka
- Department of Biochemistry and Molecular Pharmacology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan. .,Department of Biomedical Science, Graduate School of Medicine, Chiba University, Chiba, Japan.
| | - Yusuke Naito
- Department of Biochemistry and Molecular Pharmacology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan. .,Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan.
| | - Masahiko Hatano
- Department of Biomedical Science, Graduate School of Medicine, Chiba University, Chiba, Japan.
| | - Sadao Kimura
- Department of Biochemistry and Molecular Pharmacology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.
| | - Koichiro Tatsumi
- Department of Respirology, Graduate School of Medicine, Chiba University, Chiba, Japan.
| | - Yoshitoshi Kasuya
- Department of Biochemistry and Molecular Pharmacology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan. .,Department of Biomedical Science, Graduate School of Medicine, Chiba University, Chiba, Japan.
| |
Collapse
|
200
|
Kamińska K, Czarnecka AM, Escudier B, Lian F, Szczylik C. Interleukin-6 as an emerging regulator of renal cell cancer. Urol Oncol 2015; 33:476-85. [PMID: 26296264 DOI: 10.1016/j.urolonc.2015.07.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 07/10/2015] [Accepted: 07/11/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND Our knowledge on the molecular basis of kidney cancer metastasisis still relatively low. About 25-30% of patients suffering from clear cell renal cell carcinoma (ccRCC)present metastatic disease at the time of primary diagnosis. Only 10% of patients diagnosed with stage IV disease survive 5 years and 20-50% of patients diagnosed with localized tumor develop metastases within 3 years. High mortality of patients with this cancer is associated with a large potential for metastasis and resistance to oncologic treatments such as chemo- and radiotherapy. Literature data based on studies conducted on other types of cancers suggest that in metastatic ccRCC, the complex of interleukin-6 (IL-6) and its soluble receptor (sIL-6R; complex IL-6/sIL-6R) and the signal transduction pathway (gp130/STAT3) might play a key role in this process. PURPOSE Therefore, in this review we focus on the role of IL-6 and its signaling pathways as a factor for development and spread of RCC. Analyzing the molecular basis of cancer spreading will enable the development of prognostic tests, evaluate individual predisposition for metastasis, and produce drugs that target metastases. As the development of effective systemic treatments evolve from advancements in molecular biology, continued studies directed at understanding the genetic and molecular complexities of this disease are critical to improve RCC treatment options.
Collapse
Affiliation(s)
| | - Anna M Czarnecka
- Department of Oncology, Military Institute of Medicine, Warsaw, Poland
| | - Bernard Escudier
- Medical Oncology Department, Institut Gustave Roussy, Villejuif, France
| | - Fei Lian
- Emory University School of Medicine, Atlanta, GA
| | - Cezary Szczylik
- Department of Oncology, Military Institute of Medicine, Warsaw, Poland
| |
Collapse
|