151
|
Sun J, Jia H, Bao X, Wu Y, Zhu T, Li R, Zhao H. Tumor exosome promotes Th17 cell differentiation by transmitting the lncRNA CRNDE-h in colorectal cancer. Cell Death Dis 2021; 12:123. [PMID: 33495437 PMCID: PMC7835218 DOI: 10.1038/s41419-020-03376-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/15/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023]
Abstract
The T helper 17 (Th17) cells in tumor microenvironment play an important role in colorectal cancer (CRC) progression. This study investigated the mechanism of Th17 cell differentiation in CRC with a focus on the role of tumor exosome-transmitted long noncoding RNA (lncRNA). Exosomes were isolated from the CRC cells and serum of CRC patients. The role and mechanism of the lncRNA CRNDE-h transmitted by CRC exosomes in Th17 cell differentiation were assessed by using various molecular biological methods. The serum exosomal CRNDE-h level was positively correlated with the proportion of Th17 cells in the tumor-infiltrating T cells in CRC patients. CRC exosomes contained abundant CRNDE-h and transmitted them to CD4+ T cells to increase the Th17 cell proportion, RORγt expression, and IL-17 promoter activity. The underlying mechanism is that, CRNDE-h bound to the PPXY motif of RORγt and impeded the ubiquitination and degradation of RORγt by inhibiting its binding with the E3 ubiquitin ligase Itch. The in vivo experiments confirmed that the targeted silence of CRNDE-h in CD4+ T cells attenuated the CRC tumor growth in mice. The present findings demonstrated that the tumor exosome transmitted CRNDE-h promoted Th17 cell differentiation by inhibiting the Itch-mediated ubiquitination and degradation of RORγt in CRC, expanding our understanding of Th17 cell differentiation in CRC.
Collapse
Affiliation(s)
- Junfeng Sun
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Haowei Jia
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xingqi Bao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yue Wu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Tianyu Zhu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Ruixin Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Hongchao Zhao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
152
|
Extracellular vesicle-transferred long noncoding RNAs in bladder cancer. Clin Chim Acta 2021; 516:34-45. [PMID: 33450212 DOI: 10.1016/j.cca.2021.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles (EVs) secreted by a variety of cells, including cancer cells, in the tumor microenvironment play crucial roles in cancer progression by transferring molecular cargos. Emerging evidence indicates that long noncoding RNAs (lncRNAs) are important biomolecules that can be transferred by EVs to modulate cancer development. The potential clinical application of EV-transferred lncRNAs in biological fluids for cancer diagnosis has also been verified. Over the past decade, research on the biological roles and applications of EVs and their contents in human cancers has reached new heights. Therefore, a detailed discussion of the roles of EV-transferred lncRNAs in various cancers, including bladder cancer (BC), will provide a novel strategy for cancer diagnosis and therapy. In this review, we summarized and discussed the current studies on the detection technologies of EV-transferred lncRNAs. The diagnostic values of EV-transferred lncRNAs in various biological fluids, including urine, serum, and plasma, for BC diagnosis and prognosis were compared. Moreover, the biofunctional roles and clinical applications of these EV-transferred lncRNAs in BC were further discussed. In addition, we also highlighted the research directions and suggestions for future research on BC-associated EV-transferred lncRNAs. In conclusion, BC-associated EV-transferred lncRNAs show significant potential as noninvasive biomarkers or therapeutic targets for BC diagnosis and treatment.
Collapse
|
153
|
Xu Y, Jiang E, Shao Z, Shang Z. Long Noncoding RNAs in the Metastasis of Oral Squamous Cell Carcinoma. Front Oncol 2021; 10:616717. [PMID: 33520725 PMCID: PMC7845733 DOI: 10.3389/fonc.2020.616717] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 11/26/2020] [Indexed: 12/13/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a common malignant tumor worldwide. Metastasis is the main cause of the death of OSCC patients. Long noncoding RNAs (lncRNAs), one of the key factors affecting OSCC metastasis, are a subtype of RNA with a length of more than 200 nucleotides that has little or no coding potential. In recent years, the important role played by lncRNAs in biological processes, such as chromatin modification, transcription regulation, RNA stability regulation, and mRNA translation, has been gradually revealed. More and more studies have shown that lncRNAs can regulate the metastasis of various tumors including OSCC at epigenetic, transcriptional, and post-transcriptional levels. In this review, we mainly discussed the role and possible mechanisms of lncRNAs in OSCC metastasis. Most lncRNAs act as oncogenes and only a few lncRNAs have been shown to inhibit OSCC metastasis. Besides, we briefly introduced the research status of cancer-associated fibroblasts-related lncRNAs in OSCC metastasis. Finally, we discussed the research prospects of lncRNAs-mediated crosstalk between OSCC cells and the tumor microenvironment in OSCC metastasis, especially the potential research value of exosomes and lymphangiogenesis. In general, lncRNAs are expected to be used for screening, treatment, and prognosis monitoring of OSCC metastasis, but more work is still required to better understand the biological function of lncRNAs.
Collapse
Affiliation(s)
- Yuming Xu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Erhui Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhe Shao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhengjun Shang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
154
|
Han S, Qi Y, Luo Y, Chen X, Liang H. Exosomal Long Non-Coding RNA: Interaction Between Cancer Cells and Non-Cancer Cells. Front Oncol 2021; 10:617837. [PMID: 33520726 PMCID: PMC7840842 DOI: 10.3389/fonc.2020.617837] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
Exosomes are small membranous vesicles released by many kinds of cells, and are indispensable in cell-to-cell communication by delivering functional biological components both locally and systemically. Long non-coding RNAs (lncRNAs) are long transcripts over 200 nucleotides that exhibit no or limited protein-coding potentials. LncRNAs are dramatic gene expression regulators, and can be selectively sorted into exosomes. Exosomal lncRNAs derived from cancer cells and stromal cells can mediate the generation of pre-metastatic niches (PMNs) and thus promote the progression of cancer. In this review, we summarized the fundamental biology and characteristics of exosomal lncRNAs. Besides, we provided an overview of current research on functions of exosomal lncRNAs between cancer cells and non-cancer cells. A deep understanding of exosomal lncRNAs' role in cancer will be facilitated to find important implications for cancer development and treatment.
Collapse
Affiliation(s)
- Shenqi Han
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| | - Yongqiang Qi
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| | - Yiming Luo
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China.,Key Laboratory of Organ Transplantation, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Ministry of Education, Chinese Academy of Medical Sciences, Wuhan, China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| |
Collapse
|
155
|
Roles of Bile-Derived Exosomes in Hepatobiliary Disease. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8743409. [PMID: 33511212 PMCID: PMC7822672 DOI: 10.1155/2021/8743409] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/23/2020] [Accepted: 01/06/2021] [Indexed: 12/14/2022]
Abstract
Exosomes are vesicles with a diameter of 30-150 nm produced by living cells and secreted into the extracellular matrix. Exosomes mediate cellular communication by carrying active molecules, such as nucleic acids, proteins, and liposomes. Although exosomes are found in various body fluids, little is known about bile-derived exosomes. This review is the first to summarize the methods of bile storage and isolation of biliary exosomes, highlighting the roles of bile-derived exosomes, especially exosomal noncoding RNAs, in physiological and disease states and discussing their potential clinical applications.
Collapse
|
156
|
Da M, Jiang H, Xie Y, Jin W, Han S. The Biological Roles of Exosomal Long Non-Coding RNAs in Cancers. Onco Targets Ther 2021; 14:271-287. [PMID: 33488093 PMCID: PMC7814250 DOI: 10.2147/ott.s281175] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/22/2020] [Indexed: 12/15/2022] Open
Abstract
Although it has many treatment strategies, cancer is still one of the most common causes of morbidity and mortality in the world. Exosomes are small extracellular vesicles (EVs) that can be secreted by almost all cells. Exosomes can encapsulate various types of molecules, including lipids, proteins, DNA, messenger RNAs, and non-coding RNAs [microRNAs (miRNAs) and long non-coding RNAs (lncRNAs)]. Exosome release is a way of communication between cells. They act as powerful signaling molecules between cancer cells and the surrounding cells that make up the cancer microenvironment. lncRNAs are a class of non-coding P, with a length of more than 200 bp, which are differentially expressed in many cancers. lncRNAs have been widely regarded as a new medium for cancer behavior. The presence of lncRNAs in circulation can be acellular or encapsulated in exosomal bodies released by cancer cells. Exosomal lncRNAs are functional and can transmit different phenotypic patterns to neighboring cells. Here, we reviewed the molecular mechanism of exosomal lncRNAs in regulating cancer progression, angiogenesis, and chemotherapy resistance, as well as the prospective applications of exosomal lncRNAs in cancer diagnosis, treatment and prognosis. These findings potentially promote the current understanding of exosomal lncRNAs and provide a new research direction for exosomal lncRNAs in cancer prevention, diagnosis, and treatment.
Collapse
Affiliation(s)
- Miao Da
- Department of Nursing, Huzhou Third Municipal Hospital, Huzhou, Zhejiang, People's Republic of China
| | - Hao Jiang
- Department of Nursing, Huzhou Third Municipal Hospital, Huzhou, Zhejiang, People's Republic of China
| | - Yangyang Xie
- Key Laboratory of Diagnosis and Treatment of Digestive System Cancers of Zhejiang Province, Ningbo 315000, Zhejiang, People's Republic of China
| | - Weili Jin
- Department of Gastroenterology, Nanxun District People's Hospital, Huzhou, Zhejiang 313009, People's Republic of China
| | - Shuwen Han
- Department of Oncology, Huzhou Central Hospital, Affiliated Central Hospital HuZhou University, Huzhou, Zhejiang, People's Republic of China
| |
Collapse
|
157
|
Jafari R, Rahbarghazi R, Ahmadi M, Hassanpour M, Rezaie J. Hypoxic exosomes orchestrate tumorigenesis: molecular mechanisms and therapeutic implications. J Transl Med 2020; 18:474. [PMID: 33302971 PMCID: PMC7731629 DOI: 10.1186/s12967-020-02662-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 12/03/2020] [Indexed: 12/18/2022] Open
Abstract
The solid tumor microenvironment possesses a hypoxic condition, which promotes aggressiveness and resistance to therapies. Hypoxic tumor cells undergo broadly metabolic and molecular adaptations and communicate with surrounding cells to provide conditions promising for their homeostasis and metastasis. Extracellular vesicles such as exosomes originating from the endosomal pathway carry different types of biomolecules such as nucleic acids, proteins, and lipids; participate in cell-to-cell communication. The exposure of cancer cells to hypoxic conditions, not only, increases exosomes biogenesis and secretion but also alters exosomes cargo. Under the hypoxic condition, different signaling pathways such as HIFs, Rab-GTPases, NF-κB, and tetraspanin are involved in the exosomes biogenesis. Hypoxic tumor cells release exosomes that induce tumorigenesis through promoting metastasis, angiogenesis, and modulating immune responses. Exosomes from hypoxic tumor cells hold great potential for clinical application and cancer diagnosis. Besides, targeting the biogenesis of these exosomes may be a therapeutic opportunity for reducing tumorigenesis. Exosomes can serve as a drug delivery system transferring therapeutic compounds to cancer cells. Understanding the detailed mechanisms involved in biogenesis and functions of exosomes under hypoxic conditions may help to develop effective therapies against cancer.
Collapse
Affiliation(s)
- Reza Jafari
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Shafa St, Ershad Blvd, P.O. BoX: 1138, 57147, Urmia, Iran
- Department of Immunology and Genetics, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Ahmadi
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Hassanpour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Clinical Biochemistry and Laboratory Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Stem Cell and Regenerative Medicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Jafar Rezaie
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Shafa St, Ershad Blvd, P.O. BoX: 1138, 57147, Urmia, Iran.
| |
Collapse
|
158
|
Dong X, Bai X, Ni J, Zhang H, Duan W, Graham P, Li Y. Exosomes and breast cancer drug resistance. Cell Death Dis 2020; 11:987. [PMID: 33203834 PMCID: PMC7673022 DOI: 10.1038/s41419-020-03189-z] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022]
Abstract
Drug resistance is a daunting challenge in the treatment of breast cancer (BC). Exosomes, as intercellular communicative vectors in the tumor microenvironment, play an important role in BC progression. With the in-depth understanding of tumor heterogeneity, an emerging role of exosomes in drug resistance has attracted extensive attention. The functional proteins or non-coding RNAs contained in exosomes secreted from tumor and stromal cells mediate drug resistance by regulating drug efflux and metabolism, pro-survival signaling, epithelial–mesenchymal transition, stem-like property, and tumor microenvironmental remodeling. In this review, we summarize the underlying associations between exosomes and drug resistance of BC and discuss the unique biogenesis of exosomes, the change of exosome cargo, and the pattern of release by BC cells in response to drug treatment. Moreover, we propose exosome as a candidate biomarker in predicting and monitoring the therapeutic drug response of BC and as a potential target or carrier to reverse the drug resistance of BC.
Collapse
Affiliation(s)
- Xingli Dong
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University, 150081, Harbin, Heilongjiang, China.,St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia
| | - Xupeng Bai
- St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia.,Cancer Care Centre, St. George Hospital, Kogarah, NSW, 2217, Australia
| | - Jie Ni
- St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia.,Cancer Care Centre, St. George Hospital, Kogarah, NSW, 2217, Australia
| | - Hao Zhang
- Institute of Precision Cancer Medicine and Pathology and Department of Pathology, Jinan University Medical College, 510630, Guangzhou, China
| | - Wei Duan
- School of Medicine and Centre for Molecular and Medical Research, Deakin University, Waurn Ponds, VIC, 3216, Australia
| | - Peter Graham
- St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia.,Cancer Care Centre, St. George Hospital, Kogarah, NSW, 2217, Australia
| | - Yong Li
- St George and Sutherland Clinical School, Faculty of Medicine, UNSW Sydney, Kensington, NSW, 2052, Australia. .,Cancer Care Centre, St. George Hospital, Kogarah, NSW, 2217, Australia. .,School of Basic Medicine Sciences, Zhengzhou University, 450001, Henan, China.
| |
Collapse
|
159
|
Lin G, Guo B, Wei Y, Lan T, Wen S, Li G. Impact of Long Non-coding RNAs Associated With Microenvironment on Survival for Bladder Cancer Patients. Front Genet 2020; 11:567200. [PMID: 33281872 PMCID: PMC7689372 DOI: 10.3389/fgene.2020.567200] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/14/2020] [Indexed: 01/21/2023] Open
Abstract
Background Cumulative evidence from several tumor studies, including bladder cancer, emphasizes the importance of the tumor microenvironment (TME) in tumorigenesis, development, and metastasis, which can be regulated by long non-coding RNAs (lncRNAs). This study aims to identify bladder cancer (BC) microenvironment-associated lncRNAs for their prognostic value predicting the survival of BC patients. Methods The data of BC patients regarding lncRNA expression and corresponding clinical characteristics were obtained from The Cancer Genome Atlas (TCGA). The Cox regression analysis and the least absolute shrinkage and selection operator (LASSO) regression analysis were performed to screen lncRNAs following the calculation of the immune score for each sample. For the screened lncRNAs, a risk score model was constructed to predict the survival, and 3- and 5-year overall survival (OS) rates were assessed using a nomogram. The calibration curve and concordance index (C-index) validated the performance of the nomogram. Finally, to explore the potential function related to the screened lncRNAs, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis were performed. Results The multivariate Cox regression analysis screened five TME-associated lncRNAs regarded as independent factors influencing the tumor progression. The corresponding risk score model was established as follows: (-0.15816 AC064805.1) + (0.10015 AC084033.3) + (-0.17977 AC092112.1) + (-0.05673AC103691.1) + (0.17789 AL391704.1) + (-0.16258 LINC00892). The C-index for the nomogram was 0.63 (95% CI: 0.625-0.635). Also, the calibration curve verified the predictive effectiveness by showing a good concordance between the nomogram prediction and the actual observation. GO and KEGG analysis demonstrated that six TME-associated lncRNAs were most likely linked to tumor metastasis and progression. Conclusion The present study determined six lncRNAs as independent immuno-biomarkers in the TME, constructed a nomogram to predict their prognostic value, and investigated the potential biological processes to understand their regulatory roles in the progression of BC.
Collapse
Affiliation(s)
- Gaoteng Lin
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Baoyin Guo
- Department of Urology, Tianjin Baodi Hospital, Baodi Clinical College of Tianjin Medical University, Tianjin, China
| | - Yulei Wei
- Department of Gynecology and Obstetrics, Tianjin First Central Hospital, Tianjin, China
| | - Tianjie Lan
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Simeng Wen
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Gang Li
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
160
|
Zhu L, Sun HT, Wang S, Huang SL, Zheng Y, Wang CQ, Hu BY, Qin W, Zou TT, Fu Y, Shen XT, Zhu WW, Geng Y, Lu L, Jia HL, Qin LX, Dong QZ. Isolation and characterization of exosomes for cancer research. J Hematol Oncol 2020; 13:152. [PMID: 33168028 PMCID: PMC7652679 DOI: 10.1186/s13045-020-00987-y] [Citation(s) in RCA: 252] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023] Open
Abstract
Exosomes are a subset of extracellular vesicles that carry specific combinations of proteins, nucleic acids, metabolites, and lipids. Mounting evidence suggests that exosomes participate in intercellular communication and act as important molecular vehicles in the regulation of numerous physiological and pathological processes, including cancer development. Exosomes are released by various cell types under both normal and pathological conditions, and they can be found in multiple bodily fluids. Moreover, exosomes carrying a wide variety of important macromolecules provide a window into altered cellular or tissue states. Their presence in biological fluids renders them an attractive, minimally invasive approach for liquid biopsies with potential biomarkers for cancer diagnosis, prediction, and surveillance. Due to their biocompatibility and low immunogenicity and cytotoxicity, exosomes have potential clinical applications in the development of innovative therapeutic approaches. Here, we summarize recent advances in various technologies for exosome isolation for cancer research. We outline the functions of exosomes in regulating tumor metastasis, drug resistance, and immune modulation in the context of cancer development. Finally, we discuss prospects and challenges for the clinical development of exosome-based liquid biopsies and therapeutics.
Collapse
Affiliation(s)
- Le Zhu
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Hao-Ting Sun
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Shun Wang
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Sheng-Lin Huang
- Institutes of Biomedical Sciences, Fudan University, 131 Dong An Road, Shanghai, 200032, China
- Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yan Zheng
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Chao-Qun Wang
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Bei-Yuan Hu
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Wei Qin
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Tian-Tian Zou
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Yan Fu
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Xiao-Tian Shen
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Wen-Wei Zhu
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Yan Geng
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Lu Lu
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Hu-Liang Jia
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China
| | - Lun-Xiu Qin
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China.
- Institutes of Biomedical Sciences, Fudan University, 131 Dong An Road, Shanghai, 200032, China.
| | - Qiong-Zhu Dong
- Department of General Surgery, Huashan Hospital, Cancer Metastasis Institute, Fudan University, 12 Urumqi Road (M), Shanghai, 200040, China.
- Institutes of Biomedical Sciences, Fudan University, 131 Dong An Road, Shanghai, 200032, China.
| |
Collapse
|
161
|
Zhao C, Zhang G, Liu J, Zhang C, Yao Y, Liao W. Exosomal cargoes in OSCC: current findings and potential functions. PeerJ 2020; 8:e10062. [PMID: 33194377 PMCID: PMC7646305 DOI: 10.7717/peerj.10062] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 09/08/2020] [Indexed: 02/05/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the most prevalent malignancy in head and neck cancer, with high recurrence and mortality. Early diagnosis and efficient therapeutic strategies are vital for the treatment of OSCC patients. Exosomes can be isolated from a broad range of different cell types, implicating them as important factors in the regulation of human physiological and pathological processes. Due to their abundant cargo including proteins, lipids, and nucleic acids, exosomes have played a valuable diagnostic and therapeutic role across multiple diseases, including cancer. In this review, we summarize recent findings concerning the content within and participation of exosomes relating to OSCC and their roles in tumorigenesis, proliferation, migration, invasion, metastasis, and chemoresistance. We conclude this review by looking ahead to their potential utility in providing new methods for treating OSCC to inspire further research in this field.
Collapse
Affiliation(s)
- Chengzhi Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Geru Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Jialing Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Chenghao Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yang Yao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Wen Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
162
|
Yang Y, Deng X, Li Q, Wang F, Miao L, Jiang Q. Emerging roles of long noncoding RNAs in cholangiocarcinoma: Advances and challenges. Cancer Commun (Lond) 2020; 40:655-680. [PMID: 33142045 PMCID: PMC7743012 DOI: 10.1002/cac2.12109] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/10/2020] [Accepted: 10/21/2020] [Indexed: 12/19/2022] Open
Abstract
Cholangiocarcinoma (CCA), a cancer with a relatively low incidence rate, is usually associated with poor prognosis. Current modalities for the diagnosis and treatment of CCA patients are still far from satisfactory. In recent years, numerous long noncoding RNAs (lncRNAs) have been identified as crucial players in the development of various cancers, including CCA. Abnormally expressed lncRNAs in CCA, regulated by some upstream molecules, significantly influence the biological behavior of tumor cells and are involved in tumor development through various mechanisms, including interactions with functional proteins, participation in competing for endogenous RNA (ceRNA) regulatory networks, activation of cancer‐related signaling pathways and epigenetic modification of gene expression. Furthermore, several lncRNAs are closely associated with the clinicopathological features of CCA patients, and are promising biomarkers for diagnosing and prognostication of CCA. Some of these lncRNAs play an important role in chemotherapy drug resistance. In addition, lncRNAs have also been shown to be involved in the inflammation microenvironment of CCA and malignant outcome of CCA risk factors, such as cholestatic liver diseases. In view of the difficulty of diagnosing CCA, more attention should be paid to detectable lncRNAs in the serum or bile. This review summarizes the recent knowledge on lncRNAs in CCA and provides a new outlook on the molecular mechanisms of CCA development from the perspective of lncRNAs. Moreover, we also discussed the limitations of the current studies and differential expression of lncRNAs in different types of CCA.
Collapse
Affiliation(s)
- Yang Yang
- Institute of Digestive Endoscopy and Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210000, P. R. China.,Nanjing Medical University, Nanjing, Jiangsu, 210000, P. R. China
| | - Xueting Deng
- Institute of Digestive Endoscopy and Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210000, P. R. China.,Nanjing Medical University, Nanjing, Jiangsu, 210000, P. R. China
| | - Quanpeng Li
- Institute of Digestive Endoscopy and Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210000, P. R. China.,Nanjing Medical University, Nanjing, Jiangsu, 210000, P. R. China
| | - Fei Wang
- Institute of Digestive Endoscopy and Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210000, P. R. China.,Nanjing Medical University, Nanjing, Jiangsu, 210000, P. R. China
| | - Lin Miao
- Institute of Digestive Endoscopy and Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210000, P. R. China.,Nanjing Medical University, Nanjing, Jiangsu, 210000, P. R. China
| | - Qi Jiang
- Department of Gastroenterology, Dongtai People's Hospital, Yancheng, Jiangsu, 224000, P. R. China
| |
Collapse
|
163
|
Endometrial Cancer Cells Promote M2-Like Macrophage Polarization by Delivering Exosomal miRNA-21 under Hypoxia Condition. J Immunol Res 2020; 2020:9731049. [PMID: 33110923 PMCID: PMC7579677 DOI: 10.1155/2020/9731049] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 08/18/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
Increasing evidence has demonstrated that hypoxia was an aggressive feature in endometrial cancer (EC), which is significantly associated with the tumor grade, lymph node metastasis, and tumor resistance to chemotherapy. However, the relationship between hypoxia and the immune microenvironment in EC is not very clear. Exosomes are small membrane vesicles secreted from a variety of cell types which mediate cell-to-cell communication through transported biomolecules. Here, we investigated whether exosomes can play an immunomodulatory role in intercellular communication between EC cells and macrophages. EC KEL cells were cultured under hypoxia or normoxic condition to collect exosomes. After identification, the exosomes derived from hypoxic or normoxic KEL cells were cultured with the monocyte cell line THP-1 to study the immunoregulation function of KEL cells. The results showed that the total number of exosomes produced by hypoxic KEL cells was significantly higher than that in normoxic condition. In addition, hypoxia markedly stimulated the increase in miRNA-21 expression in the exosomes. After coculture, we found that exosomal miRNA-21 could be horizontally transferred into THP-1 cells. And then, the notably enhanced mRNA expression levels of IL-10 and CD206 in THP-1 cells were observed, suggestive of M2 polarization. To further study the effect of miRNA-21-containing exosomes, we transfected miRNA-21 mimics or inhibitor into THP-1 cells. The results showed that miRNA-21 mimics promoted IL-10 and CD206 mRNA expression levels, and the miRNA-21 inhibitor significantly prevented the alteration induced by intake of hypoxic KEL cell-derived exosomes. In summary, we found that endometrial cancer KEL cells in hypoxic condition promoted monocyte THP-1 cell transformation to M2-like polarization macrophages through delivering exosomal miRNA-21, which may be a potential mechanism of the formation of the immune microenvironment in EC progression.
Collapse
|
164
|
Zhang H, Lu B. The Roles of ceRNAs-Mediated Autophagy in Cancer Chemoresistance and Metastasis. Cancers (Basel) 2020; 12:cancers12102926. [PMID: 33050642 PMCID: PMC7600306 DOI: 10.3390/cancers12102926] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 09/28/2020] [Accepted: 10/07/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Chemoresistance and metastasis are the main causes of treatment failure in cancers. Autophagy contribute to the survival and metastasis of cancer cells. Competing endogenous RNA (ceRNA), particularly long non-coding RNAs and circular RNA (circRNA), can bridge the interplay between autophagy and chemoresistance or metastasis in cancers via sponging miRNAs. This review aims to discuss on the function of ceRNA-mediated autophagy in the process of metastasis and chemoresistance in cancers. ceRNA network can sequester the targeted miRNA expression to indirectly upregulate the expression of autophagy-related genes, and thereof participate in autophagy-mediated chemoresistance and metastasis. Our clarification of the mechanism of autophagy regulation in metastasis and chemoresistance may greatly improve the efficacy of chemotherapy and survival in cancer patients. The combination of the tissue-specific miRNA delivery and selective autophagy inhibitors, such as hydroxychloroquine, is attractive to treat cancer patients in the future. Abstract Chemoresistance and metastasis are the main causes of treatment failure and unfavorable outcome in cancers. There is a pressing need to reveal their mechanisms and to discover novel therapy targets. Autophagy is composed of a cascade of steps controlled by different autophagy-related genes (ATGs). Accumulating evidence suggests that dysregulated autophagy contributes to chemoresistance and metastasis via competing endogenous RNA (ceRNA) networks including lncRNAs and circRNAs. ceRNAs sequester the targeted miRNA expression to indirectly upregulate ATGs expression, and thereof participate in autophagy-mediated chemoresistance and metastasis. Here, we attempt to summarize the roles of ceRNAs in cancer chemoresistance and metastasis through autophagy regulation.
Collapse
Affiliation(s)
- Huilin Zhang
- Department of Surgical Pathology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310002, Zhejiang Province, China;
| | - Bingjian Lu
- Department of Surgical Pathology and Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310002, Zhejiang Province, China
- Correspondence: ; Tel.: +86-571-89991702
| |
Collapse
|
165
|
Exosomal Long Non-coding RNAs: Emerging Players in the Tumor Microenvironment. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 23:1371-1383. [PMID: 33738133 PMCID: PMC7940039 DOI: 10.1016/j.omtn.2020.09.039] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Recent advances in exosome biology have uncovered a significant role of exosomes in cancer and make them a determining factor in intercellular communication. Exosomes are types of extracellular vesicles that are involved in the communication between cells by exchanging various signaling molecules between the surrounding cells. Among various signaling molecules, long non-coding RNAs (lncRNAs), a type of non-coding RNA having a size of more than 200 nt in length and lacking protein-coding potential, have emerged as crucial regulators of intercellular communication. Tumor-derived exosomes containing various lncRNAs, known as exosomal lncRNAs, reprogram the microenvironment by regulating numerous cellular functions, including the regulation of gene transcription that favors cancer growth and progression, thus significantly determining the biological effects of exosomes. In addition, deregulated expression of lncRNAs is found in various human cancers and serves as a diagnostic biomarker to predict cancer type. The present review discusses the role of exosomal lncRNAs in the crosstalk between tumor cells and the surrounding cells of the microenvironment. Furthermore, we also discuss the involvement of exosomal lncRNAs within the tumor microenvironment in favoring tumor growth, metabolic reprogramming of tumor cells, and tumor-supportive autophagy. Therefore, lncRNAs can be used as a therapeutic target in the treatment of various human cancers.
Collapse
|
166
|
Bister N, Pistono C, Huremagic B, Jolkkonen J, Giugno R, Malm T. Hypoxia and extracellular vesicles: A review on methods, vesicular cargo and functions. J Extracell Vesicles 2020; 10:e12002. [PMID: 33304471 PMCID: PMC7710128 DOI: 10.1002/jev2.12002] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/14/2020] [Accepted: 09/27/2020] [Indexed: 12/18/2022] Open
Abstract
Hypoxia is an essential hallmark of several serious diseases such as cardiovascular and metabolic disorders and cancer. A decline in the tissue oxygen level induces hypoxic responses in cells which strive to adapt to the changed conditions. A failure to adapt to prolonged or severe hypoxia can trigger cell death. While some cell types, such as neurons, are highly vulnerable to hypoxia, cancer cells take advantage of a hypoxic environment to undergo tumour growth, angiogenesis and metastasis. Hypoxia-induced processes trigger complex intercellular communication and there are now indications that extracellular vesicles (EVs) play a fundamental role in these processes. Recent developments in EV isolation and characterization methodology have increased the awareness of the importance of EV purity in functional and cargo studies. Cell death, a hallmark of severe hypoxia, is a known source of intracellular contaminants in isolated EVs. In this review, methodological aspects of studies investigating hypoxia-induced EVs are critically evaluated. Key concerns and gaps in the current knowledge are highlighted and future directions for studies are set. To accelerate and advance research, an in-depth analysis of the functions and cargo of hypoxic EVs, compared to normoxic EVs, is provided with the focus on the altered microRNA contents of the EVs.
Collapse
Affiliation(s)
- Nea Bister
- A.I. Virtanen Institute for Molecular SciencesUniversity of Eastern FinlandKuopioFinland
| | - Cristiana Pistono
- A.I. Virtanen Institute for Molecular SciencesUniversity of Eastern FinlandKuopioFinland
| | - Benjamin Huremagic
- Department of Human GeneticsKU LeuvenLeuvenBelgium
- Department of Computer ScienceUniversity of VeronaVeronaItaly
| | - Jukka Jolkkonen
- A.I. Virtanen Institute for Molecular SciencesUniversity of Eastern FinlandKuopioFinland
- Department of NeurologyUniversity of Eastern FinlandInstitute of Clinical MedicineKuopioFinland
| | - Rosalba Giugno
- Department of Computer ScienceUniversity of VeronaVeronaItaly
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular SciencesUniversity of Eastern FinlandKuopioFinland
| |
Collapse
|
167
|
Exosomes in multidrug-resistant cancer. Curr Opin Pharmacol 2020; 54:109-120. [DOI: 10.1016/j.coph.2020.08.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/10/2020] [Accepted: 08/31/2020] [Indexed: 12/20/2022]
|
168
|
Guo Z, Wang X, Yang Y, Chen W, Zhang K, Teng B, Huang C, Zhao Q, Qiu Z. Hypoxic Tumor-Derived Exosomal Long Noncoding RNA UCA1 Promotes Angiogenesis via miR-96-5p/AMOTL2 in Pancreatic Cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 22:179-195. [PMID: 32942233 PMCID: PMC7498711 DOI: 10.1016/j.omtn.2020.08.021] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/15/2020] [Accepted: 08/18/2020] [Indexed: 02/07/2023]
Abstract
The hypoxic microenvironment, an important feature of solid tumors, promotes tumor cells to release exosomes and enhances tumor angiogenesis. However, the detailed functions of hypoxic exosomes and the mechanisms underlying their effects in pancreatic cancer (PC) remain mysterious. Here, we observed that hypoxic exosomes derived from PC cells promoted cell migration and tube formation of human umbilical vein endothelial cells (HUVECs). The long noncoding RNA (lncRNA) UCA1, a key factor, was highly expressed in exosomes derived from hypoxic PC cells and could be transferred to HUVECs through the exosomes. In addition, the expression levels of UCA1 in exosomes derived from PC patients' serum were higher than in healthy controls and were associated with poor survival of PC patients. Moreover, hypoxic exosomal UCA1 could promote angiogenesis and tumor growth both in vitro and in vivo. With respect to the functional mechanism, UCA1 acted as a sponge of microRNA (miR)-96-5p, relieving the repressive effects of miR-96-5p on the expression of its target gene AMOTL2. Collectively, these results indicate that hypoxic exosomal UCA1 could promote angiogenesis and tumor growth through the miR-96-5p/AMOTL2/ERK1/2 axis and therefore, serve as a novel target for PC treatment.
Collapse
Affiliation(s)
- Zengya Guo
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai 200080, People's Republic of China
| | - Xiaofeng Wang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai 200080, People's Republic of China
| | - Yuhan Yang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai 200080, People's Republic of China
| | - Weiwei Chen
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai 200080, People's Republic of China
| | - Kundong Zhang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai 200080, People's Republic of China
| | - Buwei Teng
- Lianyungang Clinical College of Nanjing Medical University/The First People's Hospital of Lianyungang, 6 Zhenhua East Road, Haizhou District, City of Lianyungang, Jiangsu Province 222061, People's Republic of China
| | - Chen Huang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai 200080, People's Republic of China.
| | - Qian Zhao
- Department of Pathophysiology Key Laboratory of Cell Differentiation and Apoptosis and National Ministry of Education, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, People's Republic of China.
| | - Zhengjun Qiu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Shanghai 200080, People's Republic of China.
| |
Collapse
|
169
|
Gao Q, Fang X, Chen Y, Li Z, Wang M. Exosomal lncRNA UCA1 from cancer-associated fibroblasts enhances chemoresistance in vulvar squamous cell carcinoma cells. J Obstet Gynaecol Res 2020; 47:73-87. [PMID: 32812305 DOI: 10.1111/jog.14418] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/07/2020] [Accepted: 07/12/2020] [Indexed: 12/29/2022]
Abstract
AIM In the current work, we aimed to explore whether Cancer-associated fibroblasts (CAF) exosomes played crucial roles in vulvar squamous cell carcinoma (VSCC) chemoresistance via mediating long noncoding RNAs (lncRNA). METHODS The IC50 value and cell apoptosis were assessed by the Cell Counting-8 Kit (CCK-8) assay and flow cytometry, respectively. Western blot analysis was used for the measurement of protein levels. The levels of urothelial cancer-associated 1 (UCA1), miR-103a and WEE1 G2 checkpoint kinase (WEE1) mRNA were detected by quantitative real-time polymerase chain reaction (qRT-PCR). The target relationships among miR-103a, UCA1 and WEE1 were confirmed by dual-luciferase reporter assays. Xenograft model mice were established to observe the impact of exosomal UCA1 on cisplatin (CDDP) resistance in vivo. RESULTS Our data indicated that CAF enhanced CDDP resistance of VSCC cells in vitro. Extracellular UCA1 was transferred by exosomes derived from CAF. Exosomal UCA1 derived from CAF conferred VSCC cell resistance to CDDP. Moreover, UCA1 functioned as a miR-103a sponge in VSCC cells. The promotion of exosomal UCA1 on VSCC cell resistance to CDDP was mediated by miR-103a. WEE1 was a direct target of miR-103a, and exosomal miR-103a from CAF weakened CDDP resistance of VSCC cells by WEE1. Furthermore, exosomal UCA1 regulated WEE1 expression through sponging miR-103a. Additionally, exosomal UCA1 enhanced tumor growth and CDDP resistance in vivo. CONCLUSION Our findings suggested exosomal UCA1 derived from CAF conferred VSCC cell resistance to CDDP in vitro and in vivo at least partly through the miR-103a/WEE1 axis, highlighting a novel therapeutic method for improving the clinical benefits of CDDP chemotherapy in VSCC patients.
Collapse
Affiliation(s)
- Qianqian Gao
- Department of Pathology, Changzhou Cancer Hospital Affiliated to Soochow University, Changzhou, China
| | - Xiaohui Fang
- Department of Pathology, Changzhou Cancer Hospital Affiliated to Soochow University, Changzhou, China.,Department of Orthopedics, Changzhou Cancer Hospital Affiliated to Soochow University, Changzhou, China
| | - Yufang Chen
- Department of Pathology, Changzhou Cancer Hospital Affiliated to Soochow University, Changzhou, China
| | - Ziyan Li
- Department of Pathology, Changzhou Cancer Hospital Affiliated to Soochow University, Changzhou, China
| | - Meihua Wang
- Department of Pathology, Changzhou Cancer Hospital Affiliated to Soochow University, Changzhou, China
| |
Collapse
|
170
|
The Potential Diagnostic Value of Exosomal Long Noncoding RNAs in Solid Tumors: A Meta-Analysis and Systematic Review. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6786875. [PMID: 32879887 PMCID: PMC7448226 DOI: 10.1155/2020/6786875] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/27/2020] [Accepted: 07/31/2020] [Indexed: 12/15/2022]
Abstract
Background Exosomes are defined as small membranous vesicles. After RNA content was discovered in exosomes, they emerged as a novel approach for the treatment and diagnosis of cancer. Long noncoding RNAs (lncRNA), a kind of specific RNA transcript, have been reported to function as tumor growth, metastasis, invasion, and prognosis by regulating the tumor microenvironment in exosomes. This study aims at exploring the potential diagnostic of exosomal lncRNA in solid tumors. Methods A meta-analysis conducted from January 2000 to October 2019 identified publications in the English language. We searched all relevant English literature from the Web of Science, EMBASE, and PubMed databases through October 1, 2019. The articles were strictly screened by our criteria and critiqued using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Results There were 28 studies with 19 articles (4017 patients) identified, including studies on gastric cancer, laryngeal squamous cell carcinoma, colorectal cancer, cholangiocarcinoma, breast cancer, esophageal squamous cell carcinoma, hepatocellular carcinoma, nonsmall cell lung cancer, and prostate cancer. A meta-analysis showed that the combined value of sensitivity in 29 studies was 0.74 (95% confidence interval [CI], 0.7-0.78), and the combined value of specificity in the studies was 0.81 (95% CI, 0.78-0.83). This suggests the high diagnostic efficacy of liquid exosomes in cancer patients. It is statistically insignificant in terms of sex, ethnicity, and year. The diagnostic power of urinary system tumors was found to be higher than that of digestive system tumors by several subgroup analyses. Conclusions We performed a meta-analysis and literature review of 28 studies that included 4017 patients with 10 malignant cancer types. Mechanistically, our study demonstrated that lncRNAs in exosomes could be a promising bioindicator for the diagnosis and prognosis of solid tumors. INPLASY Registration Number: INPLASY202060083.
Collapse
|
171
|
Long noncoding RNA UCA1 from hypoxia-conditioned hMSC-derived exosomes: a novel molecular target for cardioprotection through miR-873-5p/XIAP axis. Cell Death Dis 2020; 11:696. [PMID: 32826854 PMCID: PMC7442657 DOI: 10.1038/s41419-020-02783-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 06/29/2020] [Accepted: 07/09/2020] [Indexed: 12/28/2022]
Abstract
Exosomes (Exo) secreted from mesenchymal stem cells (hMSCs) are protective against myocardial injury. The purpose of the study was to investigate the role and mechanisms by which exosomes promote cardiomyocyte survival and function following myocardial infarction (MI). hMSCs were cultured under hypoxic and normoxic conditions. Hypoxia-conditioned hMSC-derived exosomes (Hypo-Exo) and normoxic-conditioned hMSC-derived exosomes (Nor-Exo) were collected and intramyocardially injected into rats with MI. The therapeutic effects of Hypo-Exo and Nor-Exo were evaluated after 4 weeks. Quantitative real-time PCR (qRT-PCR) was used to detect the expression of candidate long noncoding RNA urothelial carcinoma associated 1 (lncRNA-UCA1) in Nor-Exo and Hypo-Exo. Intramyocardial injection of lncRNA-UCA1-knockdown-Hypo-Exo in a rat model of MI was then performed and the cardiac function was characterized. The target and downstream of the molecular mechanism lncRNA-UCA1 was disclosed by luciferase reporter assays and western blot. Circulating exosomal lncRNA-UCA1 level in AMI patients and healthy volunteers was assessed. We found that (1) hMSC exosomal (from hypoxic and normoxic conditions) cardioprotection in vitro and in vivo correlated with the presence of encapsulated lncRNA-UCA1 in exosomes; (2) lncRNA-UCA1 targeted miR-873 via sponging, reducing the latter’s suppressive effects on its target XIAP, and this translated into AMPK phosphorylation and increased level of the antiapoptotic protein BCL2; and (3) plasma derived from patients with AMI contained exosomes enriched with the lncRNA-UCA1, unlike that from normal subjects. This study demonstrates that Hypo-Exo lncRNA-UCA1 plays a cardioprotective role via the miR-873-5p/XIAP axis and circulating exosomal lncRNA-UCA1 may be a promising novel biomarker for the diagnosis of AMI.
Collapse
|
172
|
Ghaemmaghami AB, Mahjoubin-Tehran M, Movahedpour A, Morshedi K, Sheida A, Taghavi SP, Mirzaei H, Hamblin MR. Role of exosomes in malignant glioma: microRNAs and proteins in pathogenesis and diagnosis. Cell Commun Signal 2020; 18:120. [PMID: 32746854 PMCID: PMC7397575 DOI: 10.1186/s12964-020-00623-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023] Open
Abstract
Malignant gliomas are the most common and deadly type of central nervous system tumors. Despite some advances in treatment, the mean survival time remains only about 1.25 years. Even after surgery, radiotherapy and chemotherapy, gliomas still have a poor prognosis. Exosomes are the most common type of extracellular vesicles with a size range of 30 to 100 nm, and can act as carriers of proteins, RNAs, and other bioactive molecules. Exosomes play a key role in tumorigenesis and resistance to chemotherapy or radiation. Recent evidence has shown that exosomal microRNAs (miRNAs) can be detected in the extracellular microenvironment, and can also be transferred from cell to cell via exosome secretion and uptake. Therefore, many recent studies have focused on exosomal miRNAs as important cellular regulators in various physiological and pathological conditions. A variety of exosomal miRNAs have been implicated in the initiation and progression of gliomas, by activating and/or inhibiting different signaling pathways. Exosomal miRNAs could be used as therapeutic agents to modulate different biological processes in gliomas. Exosomal miRNAs derived from mesenchymal stem cells could also be used for glioma treatment. The present review summarizes the exosomal miRNAs that have been implicated in the pathogenesis, diagnosis and treatment of gliomas. Moreover, exosomal proteins could also be involved in glioma pathogenesis. Exosomal miRNAs and proteins could also serve as non-invasive biomarkers for prognosis and disease monitoring. Video Abstract.
Collapse
Affiliation(s)
- Amir B. Ghaemmaghami
- grid.17063.330000 0001 2157 2938Department of Psychology, Behaviour, Genetics and Neurobiology Program, University of Toronto, Toronto, Canada
| | - Maryam Mahjoubin-Tehran
- grid.411583.a0000 0001 2198 6209Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran ,grid.411583.a0000 0001 2198 6209Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ahmad Movahedpour
- grid.412571.40000 0000 8819 4698Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran ,grid.412571.40000 0000 8819 4698Student research committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Korosh Morshedi
- grid.444768.d0000 0004 0612 1049School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Amirhossein Sheida
- grid.444768.d0000 0004 0612 1049School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Pouya Taghavi
- grid.444768.d0000 0004 0612 1049School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- grid.444768.d0000 0004 0612 1049Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R. Hamblin
- grid.38142.3c000000041936754XWellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA ,grid.412988.e0000 0001 0109 131XLaser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, Johannesburg, 2028 South Africa
| |
Collapse
|
173
|
Guo D, Yuan J, Xie A, Lin Z, Li X, Chen J. Diagnostic performance of circulating exosomes in human cancer: A meta-analysis. J Clin Lab Anal 2020; 34:e23341. [PMID: 32309888 PMCID: PMC7439344 DOI: 10.1002/jcla.23341] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/29/2020] [Accepted: 03/28/2020] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Cancer has become a public health problem with high morbidity and mortality. Recent publications have shown that exosomes can be used as potential diagnostic biomarkers of cancer. However, the diagnostic accuracy and reliability of circulating exosomes remain unclear. The present meta-analysis was conducted to comprehensively summarize the overall diagnostic performance of circulating exosomes for cancer. METHODS Eligible studies published up to June 27, 2019, on PubMed, Embase, and Cochrane Library were selected for the meta-analysis. All statistical analyses were performed by STATA 15.1 statistical software and Meta-DiSc 1.4. Quality Assessment for Studies of Diagnostic Accuracy 2 tool was used to access the quality of included studies. A bivariate mixed-effects model was applied to calculate the diagnostic indexes from included studies. RESULTS A total of 5924 participants comprising 3161 cases and 2763 controls from 42 eligible studies were analyzed. The pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, diagnostic odds ratio, and the area under the curve with 95% confidence intervals (95% CI) were as follows: 0.79 (0.75-0.82), 0.81 (0.78-0.84), 4.1 (3.5-4.8), 0.26 (0.22-0.31), 16 (12-21), and 0.87 (0.84-0.89), respectively. Sensitivity analysis suggested no study exclusively contributed to the heterogeneity, and Deeks' funnel plot asymmetry test indicated no potential publication bias (P = .09). CONCLUSIONS The meta-analysis indicated that circulating exosomes could serve as effective and minimally invasive biomarkers for diagnosis of cancer, especially in patients with hepatocellular carcinoma or ovarian cancer, serum-based samples and exosomal proteins.
Collapse
Affiliation(s)
- Dongming Guo
- Department of Gastrointestinal SurgeryThe First Affiliated Hospital of Shantou University Medical CollegeShantouChina
- Shantou University Medical CollegeShantouChina
| | - Jinpeng Yuan
- Department of Gastrointestinal SurgeryThe First Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Aosi Xie
- Department of Gastrointestinal SurgeryThe First Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Zeyin Lin
- Department of UltrasoundThe First Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Xinxin Li
- Department of Gastrointestinal SurgeryThe First Affiliated Hospital of Shantou University Medical CollegeShantouChina
| | - Juntian Chen
- Department of Gastrointestinal SurgeryThe First Affiliated Hospital of Shantou University Medical CollegeShantouChina
| |
Collapse
|
174
|
Li C, Yang J, Liu C, Wang X, Zhang L. Long non-coding RNAs in hepatocellular carcinoma: Ordering of the complicated lncRNA regulatory network and novel strategies for HCC clinical diagnosis and treatment. Pharmacol Res 2020; 158:104848. [DOI: 10.1016/j.phrs.2020.104848] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 02/07/2023]
|
175
|
Zhang W, Liu Y, Jiang J, Tang Y, Tang Y, Liang X. Extracellular vesicle long non-coding RNA-mediated crosstalk in the tumor microenvironment: Tiny molecules, huge roles. Cancer Sci 2020; 111:2726-2735. [PMID: 32437078 PMCID: PMC7419043 DOI: 10.1111/cas.14494] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/12/2020] [Accepted: 05/15/2020] [Indexed: 02/05/2023] Open
Abstract
Emerging evidence has shown that dynamic crosstalk among cells in the tumor microenvironment modulates the progression and chemotherapeutic responses of cancer. Extracellular vesicles comprise a crucial form of intracellular communication through horizontal transfer of bioactive molecules, including long non-coding RNA (lncRNA), to neighboring cells. Three main types of extracellular vesicles are exosomes, microvesicles and apoptotic bodies, exhibiting a wide range of sizes and different biogenesis. Over the last decade, dysregulation of extracellular vesicle lncRNA has been revealed to remodel the tumor microenvironment and induce aggressive phenotypes of tumor cells, thereby facilitating tumor growth and development. This review will focus on extracellular vesicle lncRNA-mediated crosstalk between tumor cells and recipient cells, including tumor cells as well as stromal cells in the tumor microenvironment, and overview the mechanisms by which lncRNA are selectively sorted into extracellular vesicles, which may pave the way for their clinical application in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Wei‐long Zhang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Yan Liu
- Affiliated Hospital of North Sichuan Medical CollegeNanchongChina
| | - Jian Jiang
- Department of Head and Neck SurgerySichuan Cancer Hospital & Institute, Sichuan Cancer CenterSchool of MedicineUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Ya‐Jie Tang
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoChina
| | - Ya‐ling Tang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Xin‐hua Liang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| |
Collapse
|
176
|
Chen C, Luo Y, He W, Zhao Y, Kong Y, Liu H, Zhong G, Li Y, Li J, Huang J, Chen R, Lin T. Exosomal long noncoding RNA LNMAT2 promotes lymphatic metastasis in bladder cancer. J Clin Invest 2020; 130:404-421. [PMID: 31593555 DOI: 10.1172/jci130892] [Citation(s) in RCA: 258] [Impact Index Per Article: 64.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 10/02/2019] [Indexed: 12/16/2022] Open
Abstract
Patients with bladder cancer (BCa) with clinical lymph node (LN) metastasis have an extremely poor prognosis. VEGF-C has been demonstrated to play vital roles in LN metastasis in BCa. However, approximately 20% of BCa with LN metastasis exhibits low VEGF-C expression, suggesting a VEGF-C-independent mechanism for LN metastasis of BCa. Herein, we demonstrate that BCa cell-secreted exosome-mediated lymphangiogenesis promoted LN metastasis in BCa in a VEGF-C-independent manner. We identified an exosomal long noncoding RNA (lncRNA), termed lymph node metastasis-associated transcript 2 (LNMAT2), that stimulated human lymphatic endothelial cell (HLEC) tube formation and migration in vitro and enhanced tumor lymphangiogenesis and LN metastasis in vivo. Mechanistically, LNMAT2 was loaded to BCa cell-secreted exosomes by directly interacting with heterogeneous nuclear ribonucleoprotein A2B1 (hnRNPA2B1). Subsequently, exosomal LNMAT2 was internalized by HLECs and epigenetically upregulated prospero homeobox 1 (PROX1) expression by recruitment of hnRNPA2B1 and increasing the H3K4 trimethylation level in the PROX1 promoter, ultimately resulting in lymphangiogenesis and lymphatic metastasis. Therefore, our findings highlight a VEGF-C-independent mechanism of exosomal lncRNA-mediated LN metastasis and identify LNMAT2 as a therapeutic target for LN metastasis in BCa.
Collapse
Affiliation(s)
- Changhao Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, State Key Laboratory of Oncology in South China, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, China
| | - Yuming Luo
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, State Key Laboratory of Oncology in South China, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, China.,Department of Pancreatobiliary Surgery, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, China
| | - Wang He
- Department of Urology, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, State Key Laboratory of Oncology in South China, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, China
| | - Yue Zhao
- Department of Interventional Oncology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | | | - Hongwei Liu
- Department of Urology, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, State Key Laboratory of Oncology in South China, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, China
| | - Guangzheng Zhong
- Department of Urology, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, State Key Laboratory of Oncology in South China, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, China
| | - Yuting Li
- Department of Medical Oncology, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, China
| | - Jun Li
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jian Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, State Key Laboratory of Oncology in South China, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, China
| | - Rufu Chen
- Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Tianxin Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, State Key Laboratory of Oncology in South China, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, China
| |
Collapse
|
177
|
Walbrecq G, Margue C, Behrmann I, Kreis S. Distinct Cargos of Small Extracellular Vesicles Derived from Hypoxic Cells and Their Effect on Cancer Cells. Int J Mol Sci 2020; 21:ijms21145071. [PMID: 32709110 PMCID: PMC7404308 DOI: 10.3390/ijms21145071] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 02/07/2023] Open
Abstract
Hypoxia is a common hallmark of solid tumors and is associated with aggressiveness, metastasis and poor outcome. Cancer cells under hypoxia undergo changes in metabolism and there is an intense crosstalk between cancer cells and cells from the tumor microenvironment. This crosstalk is facilitated by small extracellular vesicles (sEVs; diameter between 30 and 200 nm), including exosomes and microvesicles, which carry a cargo of proteins, mRNA, ncRNA and other biological molecules. Hypoxia is known to increase secretion of sEVs and has an impact on the composition of the cargo. This sEV-mediated crosstalk ultimately leads to various biological effects in the proximal tumor microenvironment but also at distant, future metastatic sites. In this review, we discuss the changes induced by hypoxia on sEV secretion and their cargo as well as their effects on the behavior and metabolism of cancer cells, the tumor microenvironment and metastatic events.
Collapse
|
178
|
Zhan Y, Zhang L, Yu S, Wen J, Liu Y, Zhang X. Long non-coding RNA CASC9 promotes tumor growth and metastasis via modulating FZD6/Wnt/β-catenin signaling pathway in bladder cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:136. [PMID: 32677984 PMCID: PMC7364562 DOI: 10.1186/s13046-020-01624-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/15/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Accumulating evidence have highlighted the importance of long noncoding RNAs (lncRNAs) in multiple cancers development and progression. Cancer susceptibility candidate 9 (CASC9) is a novel long non-coding RNA and plays important regulatory role in diverse biological processes of cancers. However, the clinical significance and molecular mechanism of CASC9 in bladder cancer is still unknown. METHODS Comprehensive lncRNAs profiling analysis were conducted to identify lncRNAs profile alterations and uncover valuable lncRNA candidates for bladder cancer. The expression level of CASC9 was determined in a total of 106 patients with bladder cancer. Loss-of-function experiments were performed to identify the functions of CASC9 in tumor growth and metastasis of bladder cancer in vitro and in vivo. Bioinformatics analysis and further experiments were performed to explore the molecular mechanisms underlying the functions of CASC9. RESULTS This study found that CASC9 expression was markedly upregulated in bladder cancer and related to histological grade, TNM stage and prognosis. Knockdown of CASC9 inhibited tumor growth and metastasis of bladder cancer in vitro and in vivo. Mechanistically, we found that CASC9 functions as a miRNA sponge to positively regulate FZD6 expression and subsequently activates Wnt/β-catenin signaling pathway, thus playing an oncogenic role in bladder cancer pathogenesis. CONCLUSION In summary, lncRNA CASC9 plays a critical regulatory role in bladder cancer. The CASC9/miR-497-5p/ FZD6 axis provides insights for regulatory mechanism of bladder cancer, and new strategies for clinical practice.
Collapse
Affiliation(s)
- Yonghao Zhan
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, China.,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, No. 1 Jianshe East Road, Zhengzhou, 450052, China
| | - Lianghao Zhang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, China
| | - Shuanbao Yu
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, China
| | - Jianguo Wen
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, China.
| | - Yuchen Liu
- Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, 518035, China.
| | - Xuepei Zhang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, China. .,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, No. 1 Jianshe East Road, Zhengzhou, 450052, China.
| |
Collapse
|
179
|
Li Q, Wang X, Jiang N, Xie X, Liu N, Liu J, Shen J, Peng T. Exosome-transmitted linc00852 associated with receptor tyrosine kinase AXL dysregulates the proliferation and invasion of osteosarcoma. Cancer Med 2020; 9:6354-6366. [PMID: 32673448 PMCID: PMC7476833 DOI: 10.1002/cam4.3303] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/23/2020] [Accepted: 06/27/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Receptor tyrosine kinase AXL has been found to be highly expressed in osteosarcoma and positively associated with poor prognosis. There are tumor groups with high or low AXL expression, which had different capabilities of invading vessels and forming distal metastases. Exosome-transmitted lncRNA may be transferred intercellularly to promote tumor cells' proliferation and invasion. METHODS Exosomes were detected by electron microscopy, particle size analysis, and western blotting. High-throughput sequencing helped to find the highest differentially expressed lncRNA in AXL-associated exosomes. Clone formation, wound healing, transwell assay, and xenograft model in nude mice were performed to evaluate cells' proliferation, migration, and invasion in vitro and in vivo. Lentiviral transfection was used to up- or down-regulate the lncRNA levels in cell lines. Luciferase reporter assay and RNA FISH etchelped to indicate the molecular mechanisms. The results in the cell lines were proved in the osteosarcoma tissues with clinical analysis. RESULTS The exosomes derived from donor cells with high AXL expression could promote the proliferation and invasion and upregulate AXL expression of the receiver cells with low AXL. Linc00852 was the highest differentially expressed lncRNA in AXL-associated exosomes and was also regulated by AXL expression. Although the mechanisms of linc00852 in nucleus were unrevealed, it could upregulate AXL expression partly by competitively binding to miR-7-5p. The AXL-exosome-linc00852-AXL positive feedback loop might exist between the donor cells and the receiver cells. Clinically, linc00852 was significantly highly expressed in osteosarcoma tissues and positively associated with tumor volumes and metastases, which was also obviously related with AXL mRNA expression. CONCLUSION AXL-associated exosomal linc00852 up-regulated the proliferation, migration, and invasion of osteosarcoma cells, which would be considered as a new tumor biomarker and a special therapeutic target for osteosarcoma.
Collapse
Affiliation(s)
- Qiming Li
- Department of Pathology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P. R. China
| | - Xuedi Wang
- Department of Pathology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P. R. China
| | - Nian Jiang
- Department of Pathology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P. R. China
| | - Xianbiao Xie
- Department of Musculoskeletal Oncology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P. R. China
| | - Ni Liu
- Department of Pathology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P. R. China
| | - JunFeng Liu
- Department of Pathology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P. R. China
| | - Jingnan Shen
- Department of Musculoskeletal Oncology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P. R. China
| | - Tingsheng Peng
- Department of Pathology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, P. R. China
| |
Collapse
|
180
|
Liu L, Wang Q, Qiu Z, Kang Y, Liu J, Ning S, Yin Y, Pang D, Xu S. Noncoding RNAs: the shot callers in tumor immune escape. Signal Transduct Target Ther 2020; 5:102. [PMID: 32561709 PMCID: PMC7305134 DOI: 10.1038/s41392-020-0194-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 01/17/2023] Open
Abstract
Immunotherapy, designed to exploit the functions of the host immune system against tumors, has shown considerable potential against several malignancies. However, the utility of immunotherapy is heavily limited due to the low response rate and various side effects in the clinical setting. Immune escape of tumor cells may be a critical reason for such low response rates. Noncoding RNAs (ncRNAs) have been identified as key regulatory factors in tumors and the immune system. Consequently, ncRNAs show promise as targets to improve the efficacy of immunotherapy in tumors. However, the relationship between ncRNAs and tumor immune escape (TIE) has not yet been comprehensively summarized. In this review, we provide a detailed account of the current knowledge on ncRNAs associated with TIE and their potential roles in tumor growth and survival mechanisms. This review bridges the gap between ncRNAs and TIE and broadens our understanding of their relationship, providing new insights and strategies to improve immunotherapy response rates by specifically targeting the ncRNAs involved in TIE.
Collapse
Affiliation(s)
- Lei Liu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Qin Wang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Zhilin Qiu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Yujuan Kang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Jiena Liu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Shipeng Ning
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Yanling Yin
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Da Pang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China. .,Heilongjiang Academy of Medical Sciences, Harbin, 150086, China.
| | - Shouping Xu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| |
Collapse
|
181
|
Piao HY, Guo S, Wang Y, Zhang J. Exosome-transmitted lncRNA PCGEM1 promotes invasive and metastasis in gastric cancer by maintaining the stability of SNAI1. Clin Transl Oncol 2020; 23:246-256. [PMID: 32519176 DOI: 10.1007/s12094-020-02412-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 05/25/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE Clinically, hypoxia is associated with increased distant metastasis and poor survival in gastric cancer (GC). In this study, we set out from the cellular interaction to further explain the molecular mechanism of invasion in GC cells under hypoxic conditions. METHODS Gastric cancer cells were cultured under 1% O2 (hypoxia-cultured gastric cancer cells, HGC) and 20% O2 condition (normoxic-cultured gastric cancer cells, NGC). NGC was co-cultured with HGC-medium. Scrape and Transwell were used to evaluate invasion and migration. Exosomes from GC were extracted by ultracentrifugation. Electron microscopy images, western-blot used to analyze the size distributions and the number of exosomes. RESULTS HGC-medium induced NGC dissociated. Long non-coding RNA (lncRNA) prostate cancer gene expression marker 1 (PCGEM1) was specifically expressed in HGC exosomes. HGC-derived PCGEM1-riched exosomes could promote the invasion and migration of NGC. On the mechanism, PCGEM1 maintained stability and reduced the degradation of SNAI1, which could induce the epithelial-mesenchymal transition of GC. CONCLUSION LncRNA PCGEM1 was overexpressed in GC cells. And part of the PCGEM1 can be encapsulated into exosomes. These exosomes promoted invasion and migration of other GC cells. We considered PCGEM1 might act as a "scaffold" combined with SNAI1 and prompt the invasion and migration of GC.
Collapse
Affiliation(s)
- H-Y Piao
- Medical Oncology Department of Gastrointestinal Cancer, Liaoning Province Cancer Hospital and Institute (Cancer Hospital of China Medical University), No. 44 Xiaoheyan Road, Dadong District, Shenyang, 110042, Liaoning, China
| | - S Guo
- Gastric Cancer Department, Liaoning Province Cancer Hospital and Institute (Cancer Hospital of China Medical University), No. 44 Xiaoheyan Road, Dadong District, Shenyang, 110042, Liaoning, China
| | - Y Wang
- Gastric Cancer Department, Liaoning Province Cancer Hospital and Institute (Cancer Hospital of China Medical University), No. 44 Xiaoheyan Road, Dadong District, Shenyang, 110042, Liaoning, China
| | - J Zhang
- Gastric Cancer Department, Liaoning Province Cancer Hospital and Institute (Cancer Hospital of China Medical University), No. 44 Xiaoheyan Road, Dadong District, Shenyang, 110042, Liaoning, China.
| |
Collapse
|
182
|
Exosome-Derived LINC00960 and LINC02470 Promote the Epithelial-Mesenchymal Transition and Aggressiveness of Bladder Cancer Cells. Cells 2020; 9:cells9061419. [PMID: 32517366 PMCID: PMC7349410 DOI: 10.3390/cells9061419] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 12/21/2022] Open
Abstract
Exosomes are essential for several tumor progression-related processes, including the epithelial–mesenchymal transition (EMT). Long non-coding RNAs (lncRNAs) comprise a major group of exosomal components and regulate the neoplastic development of several cancer types; however, the progressive role of exosomal lncRNAs in bladder cancer have rarely been addressed. In this study, we identified two potential aggressiveness-promoting exosomal lncRNAs, LINC00960 and LINC02470. Exosomes derived from high-grade bladder cancer cells enhanced the viability, migration, invasion and clonogenicity of recipient low-grade bladder cancer cells and activated major EMT-upstream signaling pathways, including β-catenin signaling, Notch signaling, and Smad2/3 signaling pathways. Nevertheless, LINC00960 and LINC02470 were expressed at significantly higher levels in T24 and J82 cells and their secreted exosomes than in TSGH-8301 cells. Moreover, exosomes derived from LINC00960 knockdown or LINC02470 knockdown T24 cells significantly attenuated the ability of exosomes to promote cell aggressiveness and activate EMT-related signaling pathways in recipient TSGH-8301 cells. Our findings indicate that exosome-derived LINC00960 and LINC02470 from high-grade bladder cancer cells promote the malignant behaviors of recipient low-grade bladder cancer cells and induce EMT by upregulating β-catenin signaling, Notch signaling, and Smad2/3 signaling. Both lncRNAs may serve as potential liquid biomarkers for the prognostic surveillance of bladder cancer progression.
Collapse
|
183
|
Hu W, Liu C, Bi ZY, Zhou Q, Zhang H, Li LL, Zhang J, Zhu W, Song YYY, Zhang F, Yang HM, Bi YY, He QQ, Tan GJ, Sun CC, Li DJ. Comprehensive landscape of extracellular vesicle-derived RNAs in cancer initiation, progression, metastasis and cancer immunology. Mol Cancer 2020; 19:102. [PMID: 32503543 PMCID: PMC7273667 DOI: 10.1186/s12943-020-01199-1] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/15/2020] [Indexed: 01/18/2023] Open
Abstract
Extracellular vesicles (EVs), a class of heterogeneous membrane vesicles, are generally divided into exosomes and microvesicles on basis of their origination from the endosomal membrane or the plasma membrane, respectively. EV-mediated bidirectional communication among various cell types supports cancer cell growth and metastasis. EVs derived from different cell types and status have been shown to have distinct RNA profiles, comprising messenger RNAs and non-coding RNAs (ncRNAs). Recently, ncRNAs have attracted great interests in the field of EV-RNA research, and growing numbers of ncRNAs ranging from microRNAs to long ncRNAs have been investigated to reveal their specific functions and underlying mechanisms in the tumor microenvironment and premetastatic niches. Emerging evidence has indicated that EV-RNAs are essential functional cargoes in modulating hallmarks of cancers and in reciprocal crosstalk within tumor cells and between tumor and stromal cells over short and long distance, thereby regulating the initiation, development and progression of cancers. In this review, we discuss current findings regarding EV biogenesis, release and interaction with target cells as well as EV-RNA sorting, and highlight biological roles and molecular mechanisms of EV-ncRNAs in cancer biology.
Collapse
Affiliation(s)
- Wei Hu
- Department of Preventive Medicine, School of Health Science, Wuhan University, No.115 Donghu Road, Wuhan, Hubei, 430071, People's Republic of China
| | - Cong Liu
- Department of Preventive Medicine, School of Health Science, Wuhan University, No.115 Donghu Road, Wuhan, Hubei, 430071, People's Republic of China
| | - Zhuo-Yue Bi
- Hubei Provincial Key Laboratory for Applied Toxicology (Hubei Provincial Academy for Preventive Medicine), Wuhan, Hubei, 430079, People's Republic of China
| | - Qun Zhou
- Department of Preventive Medicine, School of Health Science, Wuhan University, No.115 Donghu Road, Wuhan, Hubei, 430071, People's Republic of China
| | - Han Zhang
- Department of Preventive Medicine, School of Health Science, Wuhan University, No.115 Donghu Road, Wuhan, Hubei, 430071, People's Republic of China
| | - Lin-Lin Li
- Department of Preventive Medicine, School of Health Science, Wuhan University, No.115 Donghu Road, Wuhan, Hubei, 430071, People's Republic of China
| | - Jian Zhang
- Department of Preventive Medicine, School of Health Science, Wuhan University, No.115 Donghu Road, Wuhan, Hubei, 430071, People's Republic of China
| | - Wei Zhu
- Department of Preventive Medicine, School of Health Science, Wuhan University, No.115 Donghu Road, Wuhan, Hubei, 430071, People's Republic of China
| | - Yang-Yi-Yan Song
- Department of Preventive Medicine, School of Health Science, Wuhan University, No.115 Donghu Road, Wuhan, Hubei, 430071, People's Republic of China
| | - Feng Zhang
- Department of Preventive Medicine, School of Health Science, Wuhan University, No.115 Donghu Road, Wuhan, Hubei, 430071, People's Republic of China
| | - Hui-Min Yang
- Department of Preventive Medicine, School of Health Science, Wuhan University, No.115 Donghu Road, Wuhan, Hubei, 430071, People's Republic of China
| | - Yong-Yi Bi
- Department of Preventive Medicine, School of Health Science, Wuhan University, No.115 Donghu Road, Wuhan, Hubei, 430071, People's Republic of China
| | - Qi-Qiang He
- Department of Preventive Medicine, School of Health Science, Wuhan University, No.115 Donghu Road, Wuhan, Hubei, 430071, People's Republic of China
| | - Gong-Jun Tan
- Department of Clinical Laboratory, Zhuhai Hospital, Jinan University, 79 Kangning Road, Zhuhai, Guangdong, 519000, People's Republic of China. .,Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA.
| | - Cheng-Cao Sun
- Department of Preventive Medicine, School of Health Science, Wuhan University, No.115 Donghu Road, Wuhan, Hubei, 430071, People's Republic of China. .,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - De-Jia Li
- Department of Preventive Medicine, School of Health Science, Wuhan University, No.115 Donghu Road, Wuhan, Hubei, 430071, People's Republic of China. .,Population and Health Research Center, School of Health Sciences, Wuhan University, Wuhan, Hubei, 430071, People's Republic of China.
| |
Collapse
|
184
|
Wang W, Han Y, Jo HA, Lee J, Song YS. Non-coding RNAs shuttled via exosomes reshape the hypoxic tumor microenvironment. J Hematol Oncol 2020; 13:67. [PMID: 32503591 PMCID: PMC7275461 DOI: 10.1186/s13045-020-00893-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023] Open
Abstract
Exosomes are small extracellular vesicles secreted by almost all the cells. Molecular cargos of exosomes can partially reflect the characteristics of originating cells. Exosome-mediated cell-to-cell interactions in the microenvironment are critical in cancer progression. Hypoxia, a key pro-cancerous feature of the tumor microenvironment, alters the releasing and contents of exosomes. A growing body of evidence shows that hypoxia induces more aggressive phenotypes in cancer. Of note, non-coding RNAs shuttled in hypoxic tumor-derived exosomes have been demonstrated as fundamental molecules in regulating cancer biology and remodeling tumor microenvironment. Furthermore, these hypoxic tumor-derived exosomal non-coding RNAs can be detected in the body fluids, serving as promising diagnostic and prognostic biomarkers. The current review discusses changes in cancer behaviors regulated by exosomes-secreted non-coding RNAs under hypoxic conditions.
Collapse
Affiliation(s)
- Wenyu Wang
- Interdisciplinary Program in Cancer Biology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Youngjin Han
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul, 03080, Republic of Korea
| | - Hyun A Jo
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul, 03080, Republic of Korea
| | - Juwon Lee
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul, 03080, Republic of Korea
| | - Yong Sang Song
- Interdisciplinary Program in Cancer Biology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Biomodulation, Department of Agricultural Biotechnology, Seoul National University, Seoul, 03080, Republic of Korea.
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| |
Collapse
|
185
|
de Oliveira MC, Caires HR, Oliveira MJ, Fraga A, Vasconcelos MH, Ribeiro R. Urinary Biomarkers in Bladder Cancer: Where Do We Stand and Potential Role of Extracellular Vesicles. Cancers (Basel) 2020; 12:E1400. [PMID: 32485907 PMCID: PMC7352974 DOI: 10.3390/cancers12061400] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/23/2020] [Accepted: 05/28/2020] [Indexed: 12/24/2022] Open
Abstract
Extracellular vesicles (EVs) are small membrane vesicles released by all cells and involved in intercellular communication. Importantly, EVs cargo includes nucleic acids, lipids, and proteins constantly transferred between different cell types, contributing to autocrine and paracrine signaling. In recent years, they have been shown to play vital roles, not only in normal biological functions, but also in pathological conditions, such as cancer. In the multistep process of cancer progression, EVs act at different levels, from stimulation of neoplastic transformation, proliferation, promotion of angiogenesis, migration, invasion, and formation of metastatic niches in distant organs, to immune escape and therapy resistance. Moreover, as products of their parental cells, reflecting their genetic signatures and phenotypes, EVs hold great promise as diagnostic and prognostic biomarkers. Importantly, their potential to overcome the current limitations or the present diagnostic procedures has created interest in bladder cancer (BCa). Indeed, cystoscopy is an invasive and costly technique, whereas cytology has poor sensitivity for early staged and low-grade disease. Several urine-based biomarkers for BCa were found to overcome these limitations. Here, we review their potential advantages and downfalls. In addition, recent literature on the potential of EVs to improve BCa management was reviewed and discussed.
Collapse
Affiliation(s)
- Manuel Castanheira de Oliveira
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; (H.R.C.); (M.J.O.); (A.F.); (M.H.V.)
- Tumor & Microenvironment Interactions Group, INEB - Institute of Biomedical Engineering, University of Porto, 4200-135 Porto, Portugal
- Department of Urology, Centro Hospitalar e Universitário do Porto, 4099-001 Porto, Portugal
- ICBAS-Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
| | - Hugo R. Caires
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; (H.R.C.); (M.J.O.); (A.F.); (M.H.V.)
- Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
| | - Maria J. Oliveira
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; (H.R.C.); (M.J.O.); (A.F.); (M.H.V.)
- Tumor & Microenvironment Interactions Group, INEB - Institute of Biomedical Engineering, University of Porto, 4200-135 Porto, Portugal
- Department of Pathology, Faculty of Medicine, University of Porto, 4200-450 Porto, Portugal
| | - Avelino Fraga
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; (H.R.C.); (M.J.O.); (A.F.); (M.H.V.)
- Tumor & Microenvironment Interactions Group, INEB - Institute of Biomedical Engineering, University of Porto, 4200-135 Porto, Portugal
- Department of Urology, Centro Hospitalar e Universitário do Porto, 4099-001 Porto, Portugal
- ICBAS-Institute of Biomedical Sciences Abel Salazar, University of Porto, 4050-313 Porto, Portugal
| | - M. Helena Vasconcelos
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; (H.R.C.); (M.J.O.); (A.F.); (M.H.V.)
- Cancer Drug Resistance Group, IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, 4200-135 Porto, Portugal
- Department of Biological Sciences, FFUP—Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Ricardo Ribeiro
- i3S—Instituto de Investigação e Inovação em Saúde, University of Porto, 4200-135 Porto, Portugal; (H.R.C.); (M.J.O.); (A.F.); (M.H.V.)
- Tumor & Microenvironment Interactions Group, INEB - Institute of Biomedical Engineering, University of Porto, 4200-135 Porto, Portugal
- Laboratory of Genetics and Instituto de Saúde Ambiental, Faculdade de Medicina, University of Lisbon, 1649-028 Lisbon, Portugal
- Department of Clinical Pathology, Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal
| |
Collapse
|
186
|
Wang J, Gao Y, Wang X, Gao Y, Li L, Zhang J, Zhang L, Che F. Circulating lncRNAs as noninvasive biomarkers in bladder cancer: A diagnostic meta-analysis based on 15 published articles. Int J Biol Markers 2020; 35:40-48. [PMID: 32460591 DOI: 10.1177/1724600820926685] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Owing to inconsistency between reports, a meta-analysis was designed to appraise the clinical implications of long non-coding RNAs (lncRNAs) in urine and blood for the diagnosis of bladder cancer. METHODS Studies that met the criteria were acquired by bibliographic retrieval through PubMed, Embase, and the Cochrane Library. The pooled diagnostic performance was evaluated by calculating the area under the summary receiver operator characteristic (SROC) curve. The potential sources of heterogeneity were approached through meta-regression and subgroup analyses. All statistical analyses and plots were performed by RevMan 5.3, Meta-DiSc 1.4, and STATA 12.0. RESULTS A total of 43 studies from 15 articles consisting of 3370 bladder cancer patients and 3212 controls were incorporated in our meta-analysis. lncRNAs in urine and blood performed relatively well in diagnosing bladder cancer, with a pooled sensitivity of 0.78, a specificity of 0.79, and an area under the SROC curve (AUC) of 0.86. H19 displayed the best diagnostic accuracy with a pooled AUC of 0.90, followed by UCA1 and MALAT1. The heterogeneity among studies was partly conducted by sample size, lncRNA existence form (cell-free or intracellular lncRNA), lncRNA origin (exosome- or non-exosome-based lncRNA), lncRNA profiling (single- or multiple-lncRNA), specimen types, and ethnicity. CONCLUSIONS lncRNAs in urine and blood may serve as noninvasive diagnostic biomarkers with great promise for bladder cancer, while their clinical values need to be examined through further synthetic forward-looking studies.
Collapse
Affiliation(s)
- Jinfeng Wang
- Department of Clinical Laboratory, Linyi People's Hospital, Shandong University, Linyi, Shandong Province, China.,Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong Province, China
| | - Yongli Gao
- Department of Oncology, Linyi People's Hospital, Shandong University, Linyi, Shandong Province, China
| | - Xiaohua Wang
- Department of General Internal Medicine, Linyi People's Hospital, Shandong University, Linyi, Shandong Province, China
| | - Yisheng Gao
- Department of Urology, Linyi People's Hospital, Shandong University, Linyi, Shandong Province, China
| | - Luning Li
- Department of Gastroenterology, Linyi People's Hospital, Shandong University, Linyi, Shandong Province, China
| | - Jinling Zhang
- Department of Oncology, Linyi People's Hospital, Shandong University, Linyi, Shandong Province, China
| | - Lining Zhang
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong Province, China
| | - Fengyuan Che
- Department of Neurology, Linyi People's Hospital, Shandong University, Linyi, Shandong Province, China
| |
Collapse
|
187
|
Kumar A, Deep G. Exosomes in hypoxia-induced remodeling of the tumor microenvironment. Cancer Lett 2020; 488:1-8. [PMID: 32473240 DOI: 10.1016/j.canlet.2020.05.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/06/2020] [Accepted: 05/17/2020] [Indexed: 12/13/2022]
Abstract
Exosomes are structurally and functionally pleiotropic nano-sized (~30-150 nm in diameter) extracellular vesicles (EVs) with endosomal origin. These vesicles are secreted by almost all cells and play a significant role in intercellular communication and bio-waste disposal. To a great extent, exosomes represent biological "snapshot" of parent cells, and their cargos (protein, nucleotides, lipids, and metabolites) are loaded uniquely under different pathophysiological conditions. For example, most cancerous cells secrete a higher amount of exosomes loaded with distinct cargos under stressful low oxygen condition i.e. hypoxia, a key characteristic of solid tumors responsible for disease aggressiveness and poor survival. Exosomes secreted under hypoxia (ExoHypoxic) play a vital role in aiding cancer cells crosstalk with its microenvironment constituents to create conditions advantageous for cancer growth and metastatic spread. In this review article, we have highlighted the effects of ExoHypoxic on various tumor microenvironment components involved in angiogenesis, survival, proliferation, pre-metastatic niches preparation, immunomodulation, epithelial-to-mesenchymal transition, invasion, metastasis, and drug resistance. We have also described key ExoHypoxic cargos (miRNA, proteins, etc) and their targets in the receipt cells, responsible for various biological effects. Finally, we have emphasized the applicability of ExoHypoxic as a biomarker of tumor hypoxia and disease prognosis.
Collapse
Affiliation(s)
- Ashish Kumar
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
| | - Gagan Deep
- Department of Cancer Biology, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA; Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA; Department of Urology, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|
188
|
Labani-Motlagh A, Ashja-Mahdavi M, Loskog A. The Tumor Microenvironment: A Milieu Hindering and Obstructing Antitumor Immune Responses. Front Immunol 2020; 11:940. [PMID: 32499786 PMCID: PMC7243284 DOI: 10.3389/fimmu.2020.00940] [Citation(s) in RCA: 431] [Impact Index Per Article: 107.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 04/22/2020] [Indexed: 12/20/2022] Open
Abstract
The success of cancer immunotherapy relies on the knowledge of the tumor microenvironment and the immune evasion mechanisms in which the tumor, stroma, and infiltrating immune cells function in a complex network. The potential barriers that profoundly challenge the overall clinical outcome of promising therapies need to be fully identified and counteracted. Although cancer immunotherapy has increasingly been applied, we are far from understanding how to utilize different strategies in the best way and how to combine therapeutic options to optimize clinical benefit. This review intends to give a contemporary and detailed overview of the different roles of immune cells, exosomes, and molecules acting in the tumor microenvironment and how they relate to immune activation and escape. Further, current and novel immunotherapeutic options will be discussed.
Collapse
Affiliation(s)
| | | | - Angelica Loskog
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
189
|
Avgeris M, Tsilimantou A, Levis PK, Rampias T, Papadimitriou MA, Panoutsopoulou K, Stravodimos K, Scorilas A. Unraveling UCA1 lncRNA prognostic utility in urothelial bladder cancer. Carcinogenesis 2020; 40:965-974. [PMID: 30815670 DOI: 10.1093/carcin/bgz045] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/02/2019] [Accepted: 02/26/2019] [Indexed: 12/18/2022] Open
Abstract
In the era of precision oncology, bladder cancer (BlCa) is characterized by generic patient management and lack of personalized prognosis and surveillance. Herein, we have studied the clinical significance of urothelial cancer associated 1 (UCA1) lncRNA in improving patients' risk stratification and prognosis. A screening cohort of 176 BlCa patients was used for UCA1 quantification. The Hedegaard et al. (n = 476) and The Cancer Genome Atlas (TCGA) provisional (n = 413) were analyzed as validation cohorts for non-muscle-invasive bladder cancer (NMIBC) and muscle-invasive bladder cancer (MIBC), respectively. Patients' survival outcome was assessed using recurrence and progression for NMIBC or death for MIBC as clinical endpoint events. Bootstrap analysis was performed for internal validation of Cox regression analysis, whereas the clinical benefit of disease prognosis was assessed by decision curve analysis. UCA1 was significantly overexpressed in bladder tumors compared with normal urothelium, which was confirmed only in the case of NMIBC. Interestingly, reduced expression of UCA1 was correlated with muscle-invasive disease as well as with tumors of higher stage and grade. UCA1 loss was strongly associated with higher risk of short-term relapse [hazard ratio (HR) = 1.974; P = 0.032] and progression to invasive stages (HR = 3.476; P = 0.023) in NMIBC. In this regard, Hedegaard et al. and TCGA validation cohorts confirmed the unfavorable prognostic nature of UCA1 loss in BlCa. Finally, prognosis prediction models integrating UCA1 underexpression and established clinical disease markers contributed to improved stratification specificity and superior clinical benefit for NMIBC prognosis. Underexpression of UCA1 correlates with worse disease outcome in NMIBC and contributes to superior prediction of disease early relapse and progression as well as improved patient stratification specificity.
Collapse
Affiliation(s)
- Margaritis Avgeris
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasia Tsilimantou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis K Levis
- First Department of Urology, 'Laiko' General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Theodoros Rampias
- Biomedical Research Foundation Academy of Athens, Basic Research Center, Athens, Greece
| | - Maria-Alexandra Papadimitriou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantina Panoutsopoulou
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Stravodimos
- First Department of Urology, 'Laiko' General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
190
|
Liang Y, Song X, Li Y, Chen B, Zhao W, Wang L, Zhang H, Liu Y, Han D, Zhang N, Ma T, Wang Y, Ye F, Luo D, Li X, Yang Q. LncRNA BCRT1 promotes breast cancer progression by targeting miR-1303/PTBP3 axis. Mol Cancer 2020; 19:85. [PMID: 32384893 PMCID: PMC7206728 DOI: 10.1186/s12943-020-01206-5] [Citation(s) in RCA: 274] [Impact Index Per Article: 68.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/23/2020] [Indexed: 12/28/2022] Open
Abstract
Background Long noncoding RNAs (lncRNAs) play crucial roles in tumor progression and are aberrantly expressed in various cancers. However, the functional roles of lncRNAs in breast cancer remain largely unknown. Methods Based on public databases and integrating bioinformatics analyses, the overexpression of lncRNA BCRT1 in breast cancer tissues was detected and further validated in a cohort of breast cancer tissues. The effects of lncRNA BCRT1 on proliferation, migration, invasion and macrophage polarization were determined by in vitro and in vivo experiments. Luciferase reporter assay and RNA immunoprecipitation (RIP) were carried out to reveal the interaction between lncRNA BCRT1, miR-1303, and PTBP3. Chromatin immunoprecipitation (ChIP) and RT-PCR were used to evaluate the regulatory effect of hypoxia-inducible factor-1α (HIF-1α) on lncRNA BCRT1. Results LncRNA BCRT1 was significantly upregulated in breast cancer tissues, which was correlated with poor prognosis in breast cancer patients. LncRNA BCRT1 knockdown remarkably suppressed tumor growth and metastasis in vitro and in vivo. Mechanistically, lncRNA BCRT1 could competitively bind with miR-1303 to prevent the degradation of its target gene PTBP3, which acts as a tumor-promoter in breast cancer. LncRNA BCRT1 overexpression could promote M2 polarization of macrophages, mediated by exosomes, which further accelerated breast cancer progression. Furthermore, lncRNA BCRT1 was upregulated in response to hypoxia, which was attributed to the binding of HIF-1α to HREs in the lncRNA BCRT1 promoter. Conclusions Collectively, these results reveal a novel HIF-1α/lncRNA BCRT1/miR-1303/PTBP3 pathway for breast cancer progression and suggest that lncRNA BCRT1 might be a potential biomarker and therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Yiran Liang
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Xiaojin Song
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Yaming Li
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Bing Chen
- Pathology Tissue Bank, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Wenjing Zhao
- Pathology Tissue Bank, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Lijuan Wang
- Pathology Tissue Bank, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Hanwen Zhang
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Ying Liu
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Dianwen Han
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Ning Zhang
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Tingting Ma
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Yajie Wang
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Fangzhou Ye
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Dan Luo
- Pathology Tissue Bank, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Xiaoyan Li
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China
| | - Qifeng Yang
- Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China. .,Pathology Tissue Bank, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, People's Republic of China.
| |
Collapse
|
191
|
Liu X, Ke J, Gu L, Tang H, Luo X. Long non-coding RNA LINC00675 is associated with bladder cancer metastasis and patient survival. J Gene Med 2020; 22:e3210. [PMID: 32367602 DOI: 10.1002/jgm.3210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Muscle-invasive bladder cancer (MIBC), a bladder cancer that spreads into the detrusor muscle of the bladder, leads to a poor outcome. Long noncoding RNA LINC00675 has been reported to play import roles in several cancer types, although its biological function and underlying mechanism in MIBC remain largely unclear. METHODS Eighty-nine patients with MIBC were enrolled in the present study. RNA expression was measured using a quantitative reverse transcription-polymerase chain reaction. Protein expression was detected using western blotting. Transwell assays were performed to analyze the abilities of bladder cancer cells to migrate and invade. An RNA microarray was carried out to analyze LINC00675-regulated mRNAs in bladder cancer cells. RESULTS We found that LINC00675 expression was decreased in MIBC tissues compared to matched normal tissues, and was correlated with lymph node-metastatic MIBC. MIBC patients with low expression of LINC00675 had worse survival rates than those with high expression. Functional investigation showed that ectopic expression of LINC00675 inhibited bladder cancer cell migration, invasion and proliferation, whereas LINC00675 knockdown presented an opposite effect. Mechanistically, we found that LINC00675 inhibited β-catenin and its downstream gene expression. CONCLUSIONS The findings of the present study suggest that LINC00675 regulates β-catenin expression, and is associated with bladder cancer metastasis and patient survival.
Collapse
Affiliation(s)
- Xing Liu
- Department of Urology, Hospital (T·C·M) Affiliated to Southwest Medical University, Sichuan, China
| | - Jingwei Ke
- Department of Urology, Hospital (T·C·M) Affiliated to Southwest Medical University, Sichuan, China
| | - Li Gu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Sichuan, China
| | - Hai Tang
- Department of Urology, Hospital (T·C·M) Affiliated to Southwest Medical University, Sichuan, China
| | - Xiaoqin Luo
- Department of Otolaryngology, Hospital (T·C·M) Affiliated to Southwest Medical University, Sichuan, China
| |
Collapse
|
192
|
Kuo TC, Kung HJ, Shih JW. Signaling in and out: long-noncoding RNAs in tumor hypoxia. J Biomed Sci 2020; 27:59. [PMID: 32370770 PMCID: PMC7201962 DOI: 10.1186/s12929-020-00654-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/22/2020] [Indexed: 02/07/2023] Open
Abstract
Over the past few years, long non-coding RNAs (lncRNAs) are recognized as key regulators of gene expression at chromatin, transcriptional and posttranscriptional level with pivotal roles in various biological and pathological processes, including cancer. Hypoxia, a common feature of the tumor microenvironment, profoundly affects gene expression and is tightly associated with cancer progression. Upon tumor hypoxia, the central regulator HIF (hypoxia-inducible factor) is upregulated and orchestrates transcription reprogramming, contributing to aggressive phenotypes in numerous cancers. Not surprisingly, lncRNAs are also transcriptional targets of HIF and serve as effectors of hypoxia response. Indeed, the number of hypoxia-associated lncRNAs (HALs) identified has risen sharply, illustrating the expanding roles of lncRNAs in hypoxia signaling cascade and responses. Moreover, through extra-cellular vesicles, lncRNAs could transmit hypoxia responses between cancer cells and the associated microenvironment. Notably, the aberrantly expressed cellular or exosomal HALs can serve as potential prognostic markers and therapeutic targets. In this review, we provide an update of the current knowledge about the expression, involvement and potential clinical impact of lncRNAs in tumor hypoxia, with special focus on their unique molecular regulation of HIF cascade and hypoxia-induced malignant progression.
Collapse
Affiliation(s)
- Tse-Chun Kuo
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, 35053, Taiwan, ROC
| | - Hsing-Jien Kung
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan, Miaoli County, 35053, Taiwan, ROC.,Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan, ROC.,Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan, ROC.,Department of Biochemistry and Molecular Medicine, Comprehensive Cancer Center, University of California at Davis, Sacramento, CA, 95817, USA.,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, 110, Taiwan, ROC
| | - Jing-Wen Shih
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan, ROC. .,Ph.D. Program for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan, ROC. .,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, 110, Taiwan, ROC. .,Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan, ROC.
| |
Collapse
|
193
|
Zang X, Gu J, Zhang J, Shi H, Hou S, Xu X, Chen Y, Zhang Y, Mao F, Qian H, Zhu T, Xu W, Zhang X. Exosome-transmitted lncRNA UFC1 promotes non-small-cell lung cancer progression by EZH2-mediated epigenetic silencing of PTEN expression. Cell Death Dis 2020; 11:215. [PMID: 32242003 PMCID: PMC7118073 DOI: 10.1038/s41419-020-2409-0] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 12/18/2022]
Abstract
Long non-coding RNAs (LncRNAs) have been suggested as important regulators of cancer development and progression in non-small cell lung cancer (NSCLC). Nevertheless, the biological roles and clinical significance of lncRNA UFC1 in NSCLC remain unclear. We detected the expression of UFC1 in tumor tissues, serum, and serum exosomes of NSCLC patients by qRT-PCR. Gene overexpression or silencing were used to examine the biological roles of UFC1 in NSCLC. RNA immunoprecipitation and ChIP assays were performed to evaluate the interaction between UFC1 and enhancer of zeste homolog 2 (EZH2) and the binding of EZH2 to PTEN gene promoter. Rescue study was used to access the importance of PTEN regulation by UFC1 in NSCLC progression. UFC1 expression was upregulated in tumor tissues, serum, and serum exosomes of NSCLC patients and high level of UFC1 was associated with tumor infiltration. UFC1 knockdown inhibited NSCLC cell proliferation, migration and invasion while promoted cell cycle arrest and apoptosis. UFC1 overexpression led to the opposite effects. Mechanistically, UFC1 bound to EZH2 and mediated its accumulation at the promoter region of PTEN gene, resulting in the trimethylation of H3K27 and the inhibition of PTEN expression. UFC1 knockdown inhibited NSCLC growth in mouse xenograft tumor models while the simultaneous depletion of PTEN reversed this effect. NSCLC cells derived exosomes could promote NSCLC cell proliferation, migration and invasion through the transfer of UFC1. Moreover, Exosome-transmitted UFC1 promotes NSCLC progression by inhibiting PTEN expression via EZH2-mediated epigenetic silencing. Exosome-mediated transmit of UFC1 may represent a new mechanism for NSCLC progression and provide a potential marker for NSCLC diagnosis.
Collapse
Affiliation(s)
- Xueyan Zang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, 212013, Zhenjiang, Jiangsu, China
| | - Jianmei Gu
- Departmemt of Clinical Laboratory Medicine, Nantong Tumor Hospital, 30 Tongyang North Road, 226361, Nantong, Jiangsu, China
| | - Jiayin Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, 212013, Zhenjiang, Jiangsu, China
| | - Hui Shi
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, 212013, Zhenjiang, Jiangsu, China
| | - Sinan Hou
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, 212013, Zhenjiang, Jiangsu, China
| | - Xueying Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, 212013, Zhenjiang, Jiangsu, China
| | - Yanke Chen
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, 212013, Zhenjiang, Jiangsu, China
| | - Yu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, 212013, Zhenjiang, Jiangsu, China
| | - Fei Mao
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, 212013, Zhenjiang, Jiangsu, China
| | - Hui Qian
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, 212013, Zhenjiang, Jiangsu, China
| | - Taofeng Zhu
- Department of Respiratory Medicine, the Affiliated Yixing Hospital of Jiangsu University, 75 Tongzhenguan Road, 214200, Yixing, Jiangsu, China.
| | - Wenrong Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, 212013, Zhenjiang, Jiangsu, China.
| | - Xu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, 212013, Zhenjiang, Jiangsu, China.
| |
Collapse
|
194
|
Yaghoubi S, Najminejad H, Dabaghian M, Karimi MH, Abdollahpour-Alitappeh M, Rad F, Mahi-Birjand M, Mohammadi S, Mohseni F, Sobhani Lari M, Teymouri GH, Rigi Yousofabadi E, Salmani A, Bagheri N. How hypoxia regulate exosomes in ischemic diseases and cancer microenvironment? IUBMB Life 2020; 72:1286-1305. [PMID: 32196941 DOI: 10.1002/iub.2275] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/08/2020] [Indexed: 12/14/2022]
Abstract
Exosomes, as natural occurring vesicles, play highly important roles in the behavior and fate of ischemic diseases and different tumors. Secretion, composition, and function of exosomes are remarkably influenced by hypoxia in ischemic diseases and tumor microenvironment. Exosomes secreted from hypoxic cells affect development, growth, angiogenesis, and progression in ischemic diseases and tumors through a variety of signaling pathways. In this review article, we discuss how hypoxia affects the quantity and quality of exosomes, and review the mechanisms by which hypoxic cell-derived exosomes regulate ischemic cell behaviors in both cancerous and noncancerous cells.
Collapse
Affiliation(s)
- Sajad Yaghoubi
- Department of Clinical Microbiology, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Hamid Najminejad
- Department of Medical Genetics, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mehran Dabaghian
- Research and Development Department, Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | | | | | - Fariba Rad
- Cellular and Molecular Research Center, Yasuj University of Medical Sciences, Yasuj, Iran
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Motahareh Mahi-Birjand
- Infectious Disease Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Shiva Mohammadi
- Department of Biotechnology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Mohammad Sobhani Lari
- Cellular and Molecular Biology Research Center, Larestan University of Medical Sciences, Larestan, Iran
| | | | | | | | - Nader Bagheri
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
195
|
Cui X, Piao C, Lv C, Lin X, Zhang Z, Liu X. ZNFX1 anti-sense RNA 1 promotes the tumorigenesis of prostate cancer by regulating c-Myc expression via a regulatory network of competing endogenous RNAs. Cell Mol Life Sci 2020; 77:1135-1152. [PMID: 31321444 PMCID: PMC11104963 DOI: 10.1007/s00018-019-03226-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 07/05/2019] [Accepted: 07/09/2019] [Indexed: 12/24/2022]
Abstract
ZNFX1 anti-sense RNA 1 (ZFAS1) has been indicated in the tumorigenesis of various human cancers. However, the role of ZFAS1 in prostate cancer (PCa) progression and the underlying mechanisms remain incompletely understood. In the present study, we discovered that ZFAS1 is upregulated in PCa and that ZFAS1 overexpression predicted poor clinical outcomes. ZFAS1 overexpression notably promoted the proliferation, invasion, and epithelial-mesenchymal transition of PCa cells. Furthermore, we not only discovered that miR-27a/15a/16 are targeted by ZFAS1, which binds to their miRNA-response elements, but also revealed their tumor suppressor roles in PCa. We also identified that the Hippo pathway transducer YAP1, as well as its cooperator, TEAD1, are common downstream targets of miR-27a/15a/16. In addition, H3K9 demethylase KDM3A was found to be another target gene of miR-27a. Importantly, YAP1, TEAD1, and KDM3A all act as strong c-Myc inducers in an androgen-independent manner. Taken together, we suggest a regulatory network in which ZFAS1 is capable of enhancing c-Myc expression by inducing the expression of YAP1, TEAD1, and KDM3A through crosstalk with their upstream miRNAs, thereby globally promoting prostate cancer tumorigenesis.
Collapse
Affiliation(s)
- Xiaolu Cui
- Department of Urology, First Hospital of China Medical University, Shenyang, 110001, China
| | - Chiyuan Piao
- Department of Urology, First Hospital of China Medical University, Shenyang, 110001, China
| | - Chengcheng Lv
- Department of Urology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, 110042, China
| | - Xuyong Lin
- Department of Pathology, The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, 110001, China
| | - Zhe Zhang
- Department of Urology, First Hospital of China Medical University, Shenyang, 110001, China
| | - Xiankui Liu
- Department of Urology, First Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
196
|
Zhang D, Li D, Shen L, Hu D, Tang B, Guo W, Wang Z, Zhang Z, Wei G, He D. Exosomes derived from Piwil2‑induced cancer stem cells transform fibroblasts into cancer‑associated fibroblasts. Oncol Rep 2020; 43:1125-1132. [PMID: 32323829 PMCID: PMC7057936 DOI: 10.3892/or.2020.7496] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 01/16/2020] [Indexed: 12/13/2022] Open
Abstract
Recently, several studies have demonstrated that cancer cell‑derived exosomes can facilitate tumor development and metastasis formation. However, the detailed function of exosomes released by cancer stem cells (CSCs) requires further investigation. The aim of the present study was to investigate the role of CSC‑derived exosomes in tumor development. For this purpose, Piwil2‑induced cancer stem cells (Piwil2‑iCSCs) were used as exosome‑generating cells, while fibroblasts (FBs) served as recipient cells. Exosomes were isolated by the ultracentrifugation of Piwil2‑iCSC‑conditioned medium and identified by transmission electron microscopy, nanoparticle tracking analysis and western blot analysis. To evaluate the effects of the exosomes on cell proliferation, migration and invasion, cell counting assay (CCK‑8), a wound healing assay and a Transwell assay were performed. Protein expression [matrix metalloproteinase (MMP)2, MMP9, α‑smooth muscle actin (α‑SMA) and vimentin and fibroblast‑activating protein (FAP)] was examined in FBs by western blot analysis. It was found that the Piwil2‑iCSC‑derived exosomes (Piwil2‑iCSC‑Exo) were oval or spherical, membrane‑coated vesicles with a uniform size (30‑100 nm in diameter). They are characterized by the surface expression of CD9, CD63, Hsp70 and Piwil2 proteins. Additional results from functional analyses revealed that Piwil2‑iCSC‑Exo enhanced the proliferative, migratory and invasive abilities of FBs, accompanied by the upregulated expression of MMP2 and MMP9. In addition, the increased expression of α‑SMA (P<0.05), vimentin (P<0.01 vs. control group, P<0.05 vs. PBS group) and FAP (P<0.001 vs. control group, P<0.01 vs. PBS group) following exposure to Piwil2‑iCSC‑Exo suggested that the exosomes induced FB transformation into cancer‑associated fibroblasts (CAFs). On the whole, the findings of this study demonstrate that Piwil2‑iCSC‑Exo induce the cancer‑associated phenotype in fibroblasts in vitro, suggesting that CSCs can promote tumor development through the modulation of the tumor microenvironment.
Collapse
Affiliation(s)
- Dan Zhang
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, P.R. China
| | - Dian Li
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, P.R. China
| | - Lianju Shen
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, P.R. China
| | - Dong Hu
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, P.R. China
| | - Bo Tang
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, P.R. China
| | - Wenhao Guo
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, P.R. China
| | - Zhang Wang
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, P.R. China
| | - Zhaoxia Zhang
- Chongqing Key Laboratory of Children Urogenital Development and Tissue Engineering, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, P.R. China
| | - Guanghui Wei
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| | - Dawei He
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing 400014, P.R. China
| |
Collapse
|
197
|
Song Y, Li H, Ren X, Li H, Feng C. SNHG9, delivered by adipocyte-derived exosomes, alleviates inflammation and apoptosis of endothelial cells through suppressing TRADD expression. Eur J Pharmacol 2020; 872:172977. [PMID: 32007500 DOI: 10.1016/j.ejphar.2020.172977] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/18/2020] [Accepted: 01/29/2020] [Indexed: 01/15/2023]
Abstract
Exosomes are membrane-derived vesicles and play a critical role in cell signaling by transferring RNAs and proteins to target cells through fusion with the cell membrane. Long non-coding RNA-small nucleolar RNA host gene 9 (lncRNA-SNHG9) was proven to be an important element in lncRNA-mRNA interaction networks during adipocyte differentiation, suggesting its potential involvement in the development of obesity, an important risk factor of cardiovascular and cerebrovascular endothelial dysfunction. However, the role of lncRNA-SNHG9 within the exosome in endothelial dysfunction of obese patients is largely unknown. In this study, we proved that adipocytes-derived exosomal SNHG9 were downregulated in obese persons and further decreased in obese individuals with endothelial dysfunction. Functional experimentations demonstrated that adipocytes-derived exosomal SNHG9 alleviated inflammation and apoptosis in endothelial cells. Bioinformatic analysis revealed that there was a potential interaction between SNHG9 and the TNF receptor type 1-associated death domain protein (TRADD) mRNA. Then, RNA-binding protein immunoprecipitation assay based on Ago2 antibody and ribonuclease protection assay demonstrated that exosomal SNHG9 directly bound to a specific region in TRADD mRNA sequence and formed an RNA dimeric inducible silencing complex. Moreover, knockdown of TRADD markedly inhibited inflammation and apoptosis in human umbilical vein endothelial cells (HUVECs), whereas overexpression of TRADD dramatically neutralized the protective effect of exosomal SNHG9 on epithelial dysfunction. Therefore, SNHG9 could prevent endothelial dysfunction in obese patients by suppressing inflammation and apoptosis, indicating that SNHG9 may be a potential therapeutic target for obese patients with endothelial dysfunction.
Collapse
Affiliation(s)
- Yanbin Song
- Department of Cardiology, Yan'an University Affiliated Hospital, Yan'an, 716000, China
| | - Hua Li
- Department of Obstetrics, Yan'an University Affiliated Hospital, Yan'an, 716000, China
| | - Xiaoyue Ren
- Department of Oncology, Yan'an University Affiliated Hospital, Yan'an, 716000, China
| | - Hongmei Li
- Department of Obstetrics, Yan'an University Affiliated Hospital, Yan'an, 716000, China
| | - Chuanjie Feng
- Emergency Department, Yan'an University Affiliated Hospital, Yan'an, 716000, China.
| |
Collapse
|
198
|
Beylerli OA, Gareev IF, Pavlov VN, Shiguang Z, Xin C, Kudriashov VV. Exosomal Long NonCoding Rnas as Cancer Biomarkers and Therapeutic Targets. CREATIVE SURGERY AND ONCOLOGY 2020. [DOI: 10.24060/2076-3093-2019-9-4-297-304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Extensive study of extracellular vesicles began about ten years ago. Exosomes are extracellular membrane vesicles 30–100 nm in diameter secreted by various types of cells and present in most biological fluids. For a long time they were considered non-functional cellular components. However, it has been proven that they serve as a means of intercellular exchange of information. They can move bioactive molecules such as proteins, lipids, RNA, and DNA. Several studies have shown that their contents, including proteins and non-coding nucleic acids, may be of particular interest as biomarkers of diseases. The most promising of all these molecules are non-coding RNAs (ncRNAs), including microRNAs and long non-coding RNAs (lncRNAs). LncRNAs are a large group of non-coding RNAs (ncRNAs) longer than 200 nucleotides. As regulatory factors lncRNAs play an important role in complex cellular processes, such as apoptosis, growth, differentiation, proliferation, etc. Despite many advances in diagnosis and treatment (surgery, radiation therapy, chemotherapy), cancer remains one of the most important public healthcare problems worldwide. Every day brings a better understanding of the role of exosomes in the development of cancer and metastases. Liquid biopsy has been developed as a method for the detection of cancer at an early stage. This is a series of minimally invasive tests of bodily fluids offering the advantage of real-time tracking of the tumour development. In fact, circulating exosomal lncRNAs have been found to be closely linked to processes of oncogenesis, metastasis and treatment. In this paper we review current studies into the functional role of exosomal lncRNAs in cancer and discuss their potential clinical use as diagnostic biomarkers and therapeutic targets for cancer.
Collapse
|
199
|
Cao Y, Tian T, Li W, Xu H, Zhan C, Wu X, Wang C, Wu X, Wu W, Zheng S, Xie K. Long non-coding RNA in bladder cancer. Clin Chim Acta 2020; 503:113-121. [PMID: 31940466 DOI: 10.1016/j.cca.2020.01.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 02/07/2023]
Abstract
Bladder cancer (BC) is the ninth most common malignant disease and ranks fourteenth in cancer mortality worldwide. Moreover, among cancers, the incidence and mortality of BC in males increased to the 6th and 9th place, respectively. The overall survival (OS) declines dramatically as the cancer progresses, especially when urothelial cells transition from noninvasive to invasive. It is well known that epithelial cells can acquire invasive properties and a propensity to metastasize through the epithelial-to-mesenchymal transition (EMT) process in tumourigenesis and progression. However, the potential molecular mechanisms and key pathways are still unclear. As the sequencing technology advances, long non-coding RNAs (lncRNAs) have been proven to play an important role in regulating biological processes and cellular pathways. Here, we reviewed important lncRNAs, such as H19, UCA1 and MALAT1, that participate in the malignant phenotype of BC and regulate EMT signalling networks in the invasion-metastasis cascade during BC development. We further discuss MALAT1, PCAT-1 and SPRY4-IT1, and also urine and blood exosomal H19 and PTENP as potential noninvasive biomarkers. Moreover, antisense oligonucleotides (ASOs) and a double-stranded DNA plasmid (BC-819) have been designed for use in preclinical cancer models and clinical trials in patients. Therefore, the results of investigations have gradually prompted the utility of lncRNAs.
Collapse
Affiliation(s)
- Yuepeng Cao
- Department of Critical Care Medicine, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China; Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing, China
| | - Tian Tian
- Department of Child Health Care, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Weijian Li
- Department of Urology, Drum Tower Hospital, Medical School of Nanjing University, Institute of Urology, Nanjing University, Nanjing, China
| | - Hanzi Xu
- Department of Radiotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| | - Chuanfei Zhan
- Department of Critical Care Medicine, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| | - Xuhong Wu
- Department of Critical Care Medicine, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| | - Chao Wang
- Department of Critical Care Medicine, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China
| | - Xiaoli Wu
- Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing, China
| | - Wanke Wu
- Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing, China
| | - Shuyun Zheng
- Department of Critical Care Medicine, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China.
| | - Kaipeng Xie
- Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
200
|
Qiu JJ, Lin YY, Tang XY, Ding Y, Yi XF, Hua KQ. Extracellular vesicle-mediated transfer of the lncRNA-TC0101441 promotes endometriosis migration/invasion. Exp Cell Res 2020; 388:111815. [PMID: 31911152 DOI: 10.1016/j.yexcr.2020.111815] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 12/14/2019] [Accepted: 01/03/2020] [Indexed: 01/09/2023]
Abstract
Extracellular vesicular long noncoding RNAs (lncRNAs) to influence recipient cells is emerging as a novel mechanism for disease progression. TC0101441 is a newly identified metastasis-related lncRNA involved in cancer. Since endometriosis exhibits prometastasis behavior similar to those observed in cancer, we aimed to investigate whether TC0101441 is involved in endometriosis and, if so, whether extracellular vesicular TC0101441 contributes to the migration/invasion of endometriotic cyst stromal cells (ECSCs). Clinically, we found that TC0101441 was highly expressed in ectopic endometria than in the eutopic and normal endometria. Serum extracellular vesicular TC0101441 levels were substantially increased in patients at stage III/IV endometriosis in comparison with stage I/II endometriosis and controls. In vitro, using TC0101441-high-expression ECSCs (ECSCs-H) as extracellular vesicles (EVs)-generating cells and TC0101441-low-expression ECSCs (ECSCs-L) as recipient cells, we observed that the PKH67-labeled ECSCs-H-derived EVs were effectively internalized by ECSCs-L. ECSCs-H-derived EVs shuttling TC0101441 were transferred to ECSCs-L, modulating their migratory/invasive abilities partially by regulating certain metastasis-related proteins, which eventually facilitated endometriosis migration/invasion. This study elucidates a potential crosstalk between ECSCs via EVs in endometriotic milieus, suggests a novel mechanism for endometriosis migration/invasion from the perspective of the "extracellular vesicular transfer of lncRNAs" and highlights the potential of circulating extracellular vesicular TC0101441 as a biomarker for endometriosis.
Collapse
Affiliation(s)
- Jun-Jun Qiu
- Department of Gynaecology, Obstetrics and Gynaecology Hospital, Fudan University, 419 Fangxie Road, Shanghai, 200011, China; Department of Obstetrics and Gynaecology of Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China; Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, 413 Zhaozhou Road, Shanghai, 200011, China
| | - Ying-Ying Lin
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, 200127, China
| | - Xiao-Yan Tang
- Department of Gynaecology, Obstetrics and Gynaecology Hospital, Fudan University, 419 Fangxie Road, Shanghai, 200011, China; Department of Obstetrics and Gynaecology of Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China; Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, 413 Zhaozhou Road, Shanghai, 200011, China
| | - Yan Ding
- Department of Gynaecology, Obstetrics and Gynaecology Hospital, Fudan University, 419 Fangxie Road, Shanghai, 200011, China; Department of Obstetrics and Gynaecology of Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China; Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, 413 Zhaozhou Road, Shanghai, 200011, China
| | - Xiao-Fang Yi
- Department of Gynaecology, Obstetrics and Gynaecology Hospital, Fudan University, 419 Fangxie Road, Shanghai, 200011, China; Department of Obstetrics and Gynaecology of Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China; Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, 413 Zhaozhou Road, Shanghai, 200011, China.
| | - Ke-Qin Hua
- Department of Gynaecology, Obstetrics and Gynaecology Hospital, Fudan University, 419 Fangxie Road, Shanghai, 200011, China; Department of Obstetrics and Gynaecology of Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China; Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, 413 Zhaozhou Road, Shanghai, 200011, China.
| |
Collapse
|