151
|
Yakkala PA, Naaz F, Shafi S, Kamal A. PI3K and tankyrase inhibitors as therapeutic targets in colorectal cancer. Expert Opin Ther Targets 2024; 28:159-177. [PMID: 38497299 DOI: 10.1080/14728222.2024.2331015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 03/12/2024] [Indexed: 03/19/2024]
Abstract
INTRODUCTION The pathways like Wingless-related integration (Wnt/β-catenin) and PI3K play an important role in colorectal cancer (CRC) development; however, their roles are distinct in the process of oncogenesis. Despite their differences, these pathways interact through feedback mechanisms and regulate the common effectors both in the upstream and the downstream processes in normal and pathological conditions. Their ability to reciprocally control each other is a primary resistance mechanism for the selective inhibitors in CRC. AREA COVERED This review highlights the Wnt/β-catenin and PI3K pathways that are interrelated in CRC, recent advances and some key perspectives in developing inhibitors that could target the tankyrase enzyme and PI3K, apart from a brief description of the potential of dual inhibitors of PI3K and Tankyrases (TNKS). EXPERT OPINION Recent research has focused on overcoming the challenges particularly relating to the resistance and efficacy of dual inhibitors targeting PI3K and tankyrase proteins. Despite these challenges, PI3K as well as tankyrases remain promising therapeutic targets for the treatment of solid tumors. The design of potent inhibitors is crucial to effectively block these protein signaling pathways. Moreover, it is essential to explore the potential of dual-target inhibition of other signaling pathways in conjunction with PI3K and tankyrase.
Collapse
Affiliation(s)
- Prasanna Anjaneyulu Yakkala
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Fatima Naaz
- Department of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Syed Shafi
- Department of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Ahmed Kamal
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Medchal, India
- Environment, Forests, Science & Technology Department, Telangana State Council of Science & Technlogy, Hyderabad, India
| |
Collapse
|
152
|
Liu Y, Sun Q, Wei X. Strategies and techniques for preclinical therapeutic targeting of PI3K in oncology: where do we stand in 2024? Expert Opin Ther Targets 2024; 28:221-232. [PMID: 38646899 DOI: 10.1080/14728222.2024.2342522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 04/06/2024] [Indexed: 04/23/2024]
Abstract
INTRODUCTION The PI3K/AKT/mTOR signaling pathway is an important signaling pathway in eukaryotic cells that is activated in a variety of cancers and is also associated with treatment resistance. This signaling pathway is an important target for anticancer therapy and holds great promise for research. At the same time PI3K inhibitors have a general problem that they have unavoidable toxic side effects. AREAS COVERED This review provides an explanation of the role of PI3K in the development and progression of cancer, including several important mutations, and a table listing the cancers caused by these mutations. We discuss the current landscape of PI3K inhibitors in preclinical and clinical trials, address the mechanisms of resistance to PI3K inhibition along with their associated toxic effects, and highlight significant advancements in preclinical research of this field. Furthermore, based on our study and comprehension of PI3K, we provide a recapitulation of the key lessons learned from the research process and propose potential measures for improvement that could prove valuable. EXPERT OPINION The PI3K pathway is a biological pathway of great potential value. However, the reduction of its toxic side effects and combination therapies need to be further investigated.
Collapse
Affiliation(s)
- Yanyan Liu
- Laboratory of Aging Research and Cancer Drug Target, Department of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Sichuan, People's Republic of China
| | - Qiu Sun
- Laboratory of Aging Research and Cancer Drug Target, Department of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Sichuan, People's Republic of China
- West China Medical Publishers, West China Hospital, Sichuan University, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, Department of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Sichuan, People's Republic of China
| |
Collapse
|
153
|
Sun K, Chen P, Zhang L, Lu Z, Jin Q. Deguelin inhibits the proliferation of human multiple myeloma cells by inducing apoptosis and G2/M cell cycle arrest: Involvement of Akt and p38 MAPK signalling pathway. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2024; 74:101-115. [PMID: 38554386 DOI: 10.2478/acph-2024-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/25/2023] [Indexed: 04/01/2024]
Abstract
Deguelin exhibits antiproliferative activity against various cancer cell types. Previous studies have reported that deguelin exhibits pro-apoptotic activity against human cancer cells. The current study aimed at further elaborating the anticancer effects of deguelin against multiple myeloma cells. Cell growth estimations were made through MTT assay. Phase contrast microscopy was used for the analysis of the viability of multiple myeloma cells. Colony formation from multiple myeloma cells was studied using a clonogenic assay. Antioxidative assays for determining levels of glutathione (GSH) and superoxide dismutase (SOD) were carried out after treating multiple myeloma cells with deguelin. The apoptosis of multiple myeloma cells was studied using AO/EB and Annexin V-FITC/PI staining methods. Multiple myeloma cell cycle analysis was performed through flow cytometry. mRNA expression levels were depicted using qRT-PCR. Migration and invasion of multiple myeloma cells were determined with the wound-healing and transwell assays, respectively. Deguelin specifically inhibited the multiple myeloma cell growth while the normal plasma cells were minimally affected. Multiple myeloma cells when treated with deguelin exhibited remarkably lower viability and colony-forming ability. Multiple myeloma cells treated with deguelin produced more SOD and had higher GSH levels. The multiple myeloma cell growth, migration, and invasion were significantly declined by in vitro administration of deguelin. In conclusion, deguelin treatment, when applied in vitro, induced apoptotic cell death and resulted in mitotic cessation at the G2/M phase through modulation of cell cycle regulatory mRNAs in multiple myeloma cells.
Collapse
Affiliation(s)
- Kening Sun
- Department of Orthopedics Ward 3 The General Hospital of Ningxia Medical University, Yinchuan Ningxia, China
| | - Ping Chen
- Medical Experiment Center, General Hospital of Ningxia Medical University, Ningxia, China
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Ningxia China
| | - Liang Zhang
- Department of Orthopedics Ward 3 The General Hospital of Ningxia Medical University, Yinchuan Ningxia, China
| | - Zhidong Lu
- Department of Orthopedics Ward 3 The General Hospital of Ningxia Medical University, Yinchuan Ningxia, China
| | - Qunhua Jin
- Department of Orthopedics Ward 3 The General Hospital of Ningxia Medical University, Yinchuan Ningxia, China
| |
Collapse
|
154
|
Asano S, Ono A, Baba K, Uehara T, Sakamoto K, Hayata-Takano A, Nakazawa T, Yanamoto S, Tanimoto K, Hashimoto H, Ago Y. Blockade of vasoactive intestinal peptide receptor 2 (VIPR2) signaling suppresses cyclin D1-dependent cell-cycle progression in MCF-7 cells. J Pharmacol Sci 2024; 154:139-147. [PMID: 38395514 DOI: 10.1016/j.jphs.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/28/2023] [Accepted: 01/05/2024] [Indexed: 02/25/2024] Open
Abstract
Vasoactive intestinal peptide (VIP) receptor 2 (VIPR2) is a G protein-coupled receptor that binds to Gαs, Gαi, and Gαq proteins to regulate various downstream signaling molecules, such as protein kinase A (PKA), phosphatidylinositol 3-kinase (PI3K), and phospholipase C. In this study, we examined the role of VIPR2 in cell cycle progression. KS-133, a newly developed VIPR2-selective antagonist peptide, attenuated VIP-induced cell proliferation in MCF-7 cells. The percentage of cells in the S-M phase was decreased in MCF-7 cells treated with KS-133. KS-133 in the presence of VIP decreased the phosphorylation of extracellular signal-regulated kinase (ERK), AKT, and glycogen synthase kinase-3β (GSK3β), resulting in a decrease in cyclin D1 levels. In MCF-7 cells stably-expressing VIPR2, KS-133 decreased PI3K activity and cAMP levels. Treatment with the ERK-specific kinase (MEK) inhibitor U0126 and the class I PI3K inhibitor ZSTK474 decreased the percentage of cells in the S phase. KS-133 reduced the percentage of cells in the S phase more than treatment with U0126 or ZSTK474 alone and did not affect the effect of the mixture of these inhibitors. Our findings suggest that VIPR2 signaling regulates cyclin D1 levels through the cAMP/PKA/ERK and PI3K/AKT/GSK3β pathways, and mediates the G1/S transition to control cell proliferation.
Collapse
Affiliation(s)
- Satoshi Asano
- Department of Cellular and Molecular Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8553, Japan; School of Dentistry, Hiroshima University, Hiroshima, 734-8553, Japan.
| | - Ami Ono
- Department of Cellular and Molecular Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8553, Japan; Department of Orthodontics and Craniofacial Developmental Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8553, Japan
| | - Kaede Baba
- School of Dentistry, Hiroshima University, Hiroshima, 734-8553, Japan
| | - Teru Uehara
- Department of Cellular and Molecular Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8553, Japan; Department of Oral Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8553, Japan
| | - Kotaro Sakamoto
- Research & Development Department, Ichimaru Pharcos Company Limited, 318-1 Asagi, Motosu, Gifu, 501-0475, Japan
| | - Atsuko Hayata-Takano
- Department of Pharmacology, Graduate School of Dentistry, Osaka University, Suita, Osaka, 565-0871, Japan; Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan; Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, University of Fukui, Osaka, 565-0871, Japan
| | - Takanobu Nakazawa
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan; Laboratory of Molecular Biology, Department of Bioscience, Graduate School of Life Sciences, Tokyo University of Agriculture, Tokyo, 156-8502, Japan
| | - Souichi Yanamoto
- School of Dentistry, Hiroshima University, Hiroshima, 734-8553, Japan; Department of Oral Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8553, Japan
| | - Kotaro Tanimoto
- School of Dentistry, Hiroshima University, Hiroshima, 734-8553, Japan; Department of Orthodontics and Craniofacial Developmental Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8553, Japan
| | - Hitoshi Hashimoto
- Laboratory of Molecular Neuropharmacology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, 565-0871, Japan; Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, University of Fukui, Osaka, 565-0871, Japan; Division of Bioscience, Institute for Datability Science, Osaka University, Osaka, 565-0871, Japan; Transdimensional Life Imaging Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, 565-0871, Japan; Department of Molecular Pharmaceutical Science, Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Yukio Ago
- Department of Cellular and Molecular Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8553, Japan; School of Dentistry, Hiroshima University, Hiroshima, 734-8553, Japan.
| |
Collapse
|
155
|
Dehghani-Ghahnaviyeh S, Soylu C, Furet P, Velez-Vega C. Dissecting the Interaction Fingerprints and Binding Affinity of BYL719 Analogs Targeting PI3Kα. J Phys Chem B 2024; 128:1819-1829. [PMID: 38373112 DOI: 10.1021/acs.jpcb.3c06766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Phosphatidylinositol-3-kinase Alpha (PI3Kα) is a lipid kinase which regulates signaling pathways involved in cell proliferation. Dysregulation of these pathways promotes several human cancers, pushing for the development of anticancer drugs to target PI3Kα. One such medicinal chemistry campaign at Novartis led to the discovery of BYL719 (Piqray, Alpelicib), a PI3Kα inhibitor approved by the FDA in 2019 for treatment of HR+/HER2-advanced breast cancer with a PIK3CA mutation. Structure-based drug design played a key role in compound design and optimization throughout the discovery process. However, further characterization of potency drivers via structural dynamics and energetic analyses can be advantageous for ensuing PI3Kα programs. Here, our goal is to employ various in-silico techniques, including molecular simulations and machine learning, to characterize 14 ligands from the BYL719 analogs and predict their binding affinities. The structural insights from molecular simulations suggest that although the ligand-hinge interaction is the primary driver of ligand stability at the pocket, the R group positioning at C2 or C6 of pyridine/pyrimidine also plays a major role. Binding affinities predicted via thermodynamic integration (TI) are in good agreement with previously reported IC50s. Yet, computationally demanding techniques such as TI might not always be the most efficient approach for affinity prediction, as in our case study, fast high-throughput techniques were capable of classifying compounds as active or inactive, and one docking approach showed accuracy comparable to TI.
Collapse
Affiliation(s)
- Sepehr Dehghani-Ghahnaviyeh
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Cihan Soylu
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Pascal Furet
- Novartis Institutes for BioMedical Research, CH4002 Basel, Switzerland
| | - Camilo Velez-Vega
- Novartis Institutes for BioMedical Research, 181 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
156
|
Han HV, Efem R, Rosati B, Lu K, Maimouni S, Jiang YP, Montoya V, Van Der Velden A, Zong WX, Lin RZ. Propionyl-CoA carboxylase subunit B regulates anti-tumor T cells in a pancreatic cancer mouse model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.24.550301. [PMID: 37546948 PMCID: PMC10402106 DOI: 10.1101/2023.07.24.550301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Most human pancreatic ductal adenocarcinoma (PDAC) are not infiltrated with cytotoxic T cells and are highly resistant to immunotherapy. Over 90% of PDAC have oncogenic KRAS mutations, and phosphoinositide 3-kinases (PI3Ks) are direct effectors of KRAS. Our previous study demonstrated that ablation of Pik3ca in KPC (KrasG12D; Trp53R172H; Pdx1-Cre) pancreatic cancer cells induced host T cells to infiltrate and completely eliminate the tumors in a syngeneic orthotopic implantation mouse model. Now, we show that implantation of Pik3ca-/- KPC (named αKO) cancer cells induces clonal expansion of cytotoxic T cells infiltrating the pancreatic tumors. To identify potential molecules that can regulate the activity of these anti-tumor T cells, we conducted an in vivo genome-wide gene-deletion screen using αKO cells implanted in the mouse pancreas. The result shows that deletion of propionyl-CoA carboxylase subunit B gene (Pccb) in αKO cells (named p-αKO) leads to immune evasion, tumor progression and death of host mice. Surprisingly, p-αKO tumors are still infiltrated with clonally expanded CD8+ T cells but they are inactive against tumor cells. However, blockade of PD-L1/PD1 interaction reactivated these clonally expanded T cells infiltrating p-αKO tumors, leading to slower tumor progression and improve survival of host mice. These results indicate that Pccb can modulate the activity of cytotoxic T cells infiltrating some pancreatic cancers and this understanding may lead to improvement in immunotherapy for this difficult-to-treat cancer.
Collapse
|
157
|
Sun W, Song J, Wu Q, Deng L, Zhang T, Zhang L, Hua Y, Cao Y, Hou L. Regulator of Ribosome Synthesis 1 (RRS1) Stabilizes GRP78 and Promotes Breast Cancer Progression. Molecules 2024; 29:1051. [PMID: 38474562 DOI: 10.3390/molecules29051051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Regulator of ribosome synthesis 1 (RRS1), a crucial regulatory factor in ribosome biogenesis, exerts a remarkable impact on the progression of breast cancer (BC). However, the exact mechanisms and pathways have not yet been fully elucidated. To investigate the impact of RRS1 on BC growth and metastasis, along with its underlying mechanisms. We discovered that RRS1 is overexpressed in BC tissues and cell lines. This study aims to regulate the level of RRS1 through lentiviral transfection technology to explore its potential function in BC cells. Knockdown of RRS1 resulted in the inhibition of cell proliferation, invasion, and migration, whereas overexpression had the opposite effects. We firstly identified the interaction between RRS1 and Glucose-Regulated Protein 78 (GRP78) using Co-immunoprecipitation (Co-IP) combined with mass spectrometry analysis, providing evidences of co-localization and positive regulation between RRS1 and GRP78. We observed that RRS1 inhibited the degradation of GRP78 through the ubiquitin-proteasome pathway, resulting in the stabilization of GRP78. In addition, our findings suggested that RRS1 promoted BC progression by activating the GRP78-mediated phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway. In conclusion, this newly discovered RRS1/GRP78 signaling axis provides a molecular and theoretical basis for further exploring the mechanisms of breast cancer invasion and metastasis.
Collapse
Affiliation(s)
- Wenjing Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao 266011, China
| | - Junying Song
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao 266011, China
| | - Qinglan Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao 266011, China
| | - Lin Deng
- Wanzhou District Center for Disease Control, Chongqing 404100, China
| | - Tenglong Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao 266011, China
| | - Li Zhang
- Experimental Center for Undergraduates of Pharmacy, School of Pharmacy, Qingdao University, Qingdao 266011, China
| | - Yanan Hua
- Chongqing Key Laboratory of Sichuan-Chongqing Co-Construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yi Cao
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao 266011, China
| | - Lin Hou
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao 266011, China
| |
Collapse
|
158
|
Jiang P, Jiang W, Li X, Zhu Q. Combination of Formononetin and Sulforaphane Natural Drug Repress the Proliferation of Cervical Cancer Cells via Impeding PI3K/AKT/mTOR Pathway. Appl Biochem Biotechnol 2024:10.1007/s12010-024-04873-y. [PMID: 38401043 DOI: 10.1007/s12010-024-04873-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2024] [Indexed: 02/26/2024]
Abstract
Natural substances have been demonstrated to be an unrivalled source of anticancer drugs in the present era of pharmacological development. Plant-based substances, together with their derivatives through analogues, play a significant character in the treatment of cancer by altering the tumor microenvironment and several signaling pathways. In this study, it was investigated whether the natural drugs, formononetin (FN) and sulforaphane (SFN), when combined, assess the efficacy of inhibiting cervical cancer cell proliferation by impeding the PI3K/Akt/mTOR signaling pathway in HeLa cells. The cells were treated with the combination of FN and SFN (FN + SFN) in various concentrations (0-50 µM) for 24 h and then analyzed for various experiments. The combination of FN + SFN-mediated cytotoxicity was analyzed by MTT assay. DCFH-DA staining was used to assess the ROS measurement, and apoptotic changes were studied by dual (AO/EtBr) staining assays. Protein expressions of cell survival, cell cycle, proliferation, and apoptosis protein were evaluated by flow cytometry and western blotting. Results showed that the cytotoxicity of FN and SFN was determined to be around 23.7 µM and 26.92 µM, respectively. Combining FN and SFN causes considerable cytotoxicity in HeLa cells, with an IC50 of 21.6 µM after 24-h incubation. Additionally, HeLa cells treated with FN and SFN together showed increased apoptotic signals and considerable ROS generation. Consequently, by preventing the production of PI3K, AKT, and mToR-mediated regulation of proliferation and cell cycle-regulating proteins, the combined use of FN + SFN has been regarded as a chemotherapeutic medication. Further research will need to be done shortly to determine how effectively the co-treatment promotes apoptosis to employ them economically.
Collapse
Affiliation(s)
- Ping Jiang
- Gynaecology and Obstetrics, Yantai Mountain Hospital, Yantai, 264005, China
| | - Wei Jiang
- Medical Department, Jinan Maternity and Child Care Hospital, Jinan, 250000, China
| | - Xiujin Li
- Delivery Room, Jinan Maternity and Child Care Hospital, Jinan, 250000, China
| | - Qiuling Zhu
- Delivery Room, Jinan Maternity and Child Care Hospital, Jinan, 250000, China.
| |
Collapse
|
159
|
Ghosh C, Hu J. Importance of targeting various cell signaling pathways in solid cancers. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 385:101-155. [PMID: 38663958 DOI: 10.1016/bs.ircmb.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Most adult human cancers are solid tumors prevailing in vital organs and lead to mortality all over the globe. Genetic and epigenetic alterations in cancer genes or genes of associated signaling pathways impart the most common characteristic of malignancy, that is, uncontrolled proliferation. Unless the mechanism of action of these cells signaling pathways (involved in cell proliferation, apoptosis, metastasis, and the maintenance of the stemness of cancer stem cells and cancer microenvironment) and their physiologic alteration are extensively studied, it is challenging to understand tumorigenesis as well as develop new treatments and precision medicines. Targeted therapy is one of the most promising strategies for treating various cancers. However, cancer is an evolving disease, and most patients develop resistance to these drugs by acquired mutations or mediation of microenvironmental factors or due to tumor heterogeneity. Researchers are striving to develop novel therapeutic options like combinatorial approaches targeting multiple responsible pathways effectively. Thus, in-depth knowledge of cell signaling and its components remains a critical topic of cancer research. This chapter summarized various extensively studied pathways in solid cancer and how they are targeted for therapeutic strategies.
Collapse
Affiliation(s)
- Chandrayee Ghosh
- Department of Surgery, Stanford University, Stanford, CA, Unites States.
| | - Jiangnan Hu
- Department of Surgery, Stanford University, Stanford, CA, Unites States
| |
Collapse
|
160
|
Xu X, Wang D, Xu W, Li H, Chen N, Li N, Yao Q, Chen W, Zhong J, Mao W. NIPBL-mediated RAD21 facilitates tumorigenicity by the PI3K pathway in non-small-cell lung cancer. Commun Biol 2024; 7:206. [PMID: 38378967 PMCID: PMC10879132 DOI: 10.1038/s42003-024-05801-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 01/10/2024] [Indexed: 02/22/2024] Open
Abstract
It is urgent to identify novel early diagnostic markers and therapeutic targets for non-small-cell lung cancer (NSCLC), which accounts for 85% of lung cancer cases and has a 5-year survival rate of 4-17%. Here, chromatin immunoprecipitation (ChIP) was used to identify DNA‒protein interactions, RNA methylation was determined by methylated RNA immunoprecipitation (MeRIP), RNA stability was tested by an RNA decay assay. We showed that RAD21, a member of the cohesin complex, is upregulated in NSCLC tissues and cell lines and found to be an independent prognostic factor for overall survival (OS) of NSCLC patients. Mechanistically, the cohesin loading factor Nipped-B-Like Protein (NIPBL) promoted RAD21 gene transcription by enhancing histone H3 lysine 27 (H3K27) demethylation via recruiting lysine demethylase 6B (KDM6B) to the RAD21 gene promoter. RAD21 enhanced phosphatidylinositol 3-kinase (PI3K) gene transcription, and NIPBL reversed the effect of enhancer of zeste 2; catalytic subunit of polycomb repressive complex 2 (EZH2) on RAD21-mediated PI3K gene transcription by disrupting the association between EZH2 and RAD21. Moreover, NIPBL level was increased by stabilization of its transcripts through mRNA methylation. These findings highlight the oncogenic role of RAD21 in NSCLC and suggest its use as a potential diagnostic marker and therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Xiaoling Xu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, 507 Zhengmin Road, Shanghai, China
| | - Ding Wang
- Key laboratory on Diagnosis and Treatment Technology on Thoracic Cancer, Zhejiang Cancer Research Institute, 38 Guangji Road, Hangzhou, China
| | - Weizhen Xu
- Key laboratory on Diagnosis and Treatment Technology on Thoracic Cancer, Zhejiang Cancer Research Institute, 38 Guangji Road, Hangzhou, China
| | - Huihui Li
- Key laboratory on Diagnosis and Treatment Technology on Thoracic Cancer, Zhejiang Cancer Research Institute, 38 Guangji Road, Hangzhou, China
- The Second Clinical Medical College of Wenzhou Medical University, 268 West Xueyue Road, Wenzhou, China
| | - Ning Chen
- The Second Clinical Medical College of Zhejiang Chinese Medical University, 548 Binwen Road, Hangzhou, China
| | - Na Li
- The Second Clinical Medical College of Wenzhou Medical University, 268 West Xueyue Road, Wenzhou, China
| | - Qifeng Yao
- The Second Clinical Medical College of Wenzhou Medical University, 268 West Xueyue Road, Wenzhou, China
| | - Wei Chen
- Key laboratory on Diagnosis and Treatment Technology on Thoracic Cancer, Zhejiang Cancer Research Institute, 38 Guangji Road, Hangzhou, China.
| | - Jianxiang Zhong
- School of Life Science and Technology, Southeast University, 2 Sipailou, Nanjing, China.
| | - Weimin Mao
- Key laboratory on Diagnosis and Treatment Technology on Thoracic Cancer, Zhejiang Cancer Research Institute, 38 Guangji Road, Hangzhou, China.
- The Second Clinical Medical College of Wenzhou Medical University, 268 West Xueyue Road, Wenzhou, China.
- Department of Thoracic Oncology, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, 1 Banshan East Road, Hangzhou, China.
| |
Collapse
|
161
|
He Z, Xu Y, Rao Z, Zhang Z, Zhou J, Zhou T, Wang H. The role of α7-nAChR-mediated PI3K/AKT pathway in lung cancer induced by nicotine. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169604. [PMID: 38157907 DOI: 10.1016/j.scitotenv.2023.169604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
Nicotine enters the environment mainly through human activity, as well as natural sources. This review article examines the increasing evidence implicating nicotine in the initiation and progression of lung cancer. Moreover, it primarily focuses on elucidating the activation mechanism of phosphoinositide 3-kinase (PI3K)/protein kinase B (PKB, also known as AKT) signaling pathway, regulated by α7 subtype nicotinic acetylcholine receptor (α7-nAChR), in relation to the proliferation, invasion, and metastasis of lung cancer cells induced by nicotine, as well as nicotine-mediated anti-apoptotic effects. This process involves PI3K/AKT phosphorylated-B-cell lymphoma-2 (Bcl-2) family proteins, PI3K/AKT/mammalian target of rapamycin (mTOR), PI3K/AKT/nuclear factor-κB (NF-κB), hepatocyte growth factor (HGF)/cellular-mesenchymal epithelial transition factor (c-Met)-induced PI3K/AKT and PI3K/AKT activated-hypoxia-inducible factor-1α (HIF-1α)/vascular endothelial growth factor (VEGF) pathways. In addition, we also deliberated on the related challenges and upcoming prospects within this field. These lay the foundation for further study on nicotine, lung tumorigenesis, and PI3K/AKT related molecular mechanisms. This work has the potential to significantly contribute to the treatment and prognosis of gastric cancer in smokers. Besides, the crucial significance of PI3K/AKT signaling pathway in multiple molecular pathways also suggests that its target antagonists may inhibit the development and progression of lung cancer, providing a possible new perspective for solving the problem of nicotine-promoted lung cancer. The emerging knowledge about the carcinogenic mechanisms of nicotine action should be considered during the environmental assessment of tobacco and other nicotine-containing products.
Collapse
Affiliation(s)
- Zihan He
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Chongqing Research Institute of Nanchang University, Tai Bai Road, Tongnan, Chongqing 402679, PR China
| | - Yuqin Xu
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Chongqing Research Institute of Nanchang University, Tai Bai Road, Tongnan, Chongqing 402679, PR China
| | - Zihan Rao
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Chongqing Research Institute of Nanchang University, Tai Bai Road, Tongnan, Chongqing 402679, PR China
| | - Zhongwei Zhang
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Chongqing Research Institute of Nanchang University, Tai Bai Road, Tongnan, Chongqing 402679, PR China
| | - Jianming Zhou
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Chongqing Research Institute of Nanchang University, Tai Bai Road, Tongnan, Chongqing 402679, PR China
| | - Tong Zhou
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Chongqing Research Institute of Nanchang University, Tai Bai Road, Tongnan, Chongqing 402679, PR China
| | - Huai Wang
- School of Public Health, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Jiangxi Provincial Key Laboratory of Preventive Medicine, Jiangxi Medical College, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, PR China; Chongqing Research Institute of Nanchang University, Tai Bai Road, Tongnan, Chongqing 402679, PR China.
| |
Collapse
|
162
|
Wang JZ, Paulus P, Niu Y, Zhu L, Morisseau C, Rawling T, Murray M, Hammock BD, Zhou F. The Role of Autophagy in Human Uveal Melanoma and the Development of Potential Disease Biomarkers and Novel Therapeutic Paradigms. Biomedicines 2024; 12:462. [PMID: 38398064 PMCID: PMC10886749 DOI: 10.3390/biomedicines12020462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/15/2024] [Accepted: 02/17/2024] [Indexed: 02/25/2024] Open
Abstract
Autophagy is a form of programmed cell degradation that enables the maintenance of homeostasis in response to extracellular stress stimuli. Autophagy is primarily activated by starvation and mediates the degradation, removal, or recycling of cell cytoplasm, organelles, and intracellular components in eukaryotic cells. Autophagy is also involved in the pathogenesis of human diseases, including several cancers. Human uveal melanoma (UM) is the primary intraocular malignancy in adults and has an extremely poor prognosis; at present there are no effective therapies. Several studies have suggested that autophagy is important in UM. By understanding the mechanisms of activation of autophagy in UM it may be possible to develop biomarkers to provide more definitive disease prognoses and to identify potential drug targets for the development of new therapeutic strategies. This article reviews the current information regarding autophagy in UM that could facilitate biomarker and drug development.
Collapse
Affiliation(s)
- Janney Z. Wang
- Molecular Drug Development Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Paus Paulus
- Molecular Drug Development Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Yihe Niu
- Molecular Drug Development Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Ling Zhu
- Save Sight Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Christophe Morisseau
- Department of Entomology and Nematology, UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, USA (B.D.H.)
| | - Tristan Rawling
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia;
| | - Michael Murray
- Molecular Drug Development Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Bruce D. Hammock
- Department of Entomology and Nematology, UCD Comprehensive Cancer Center, University of California, Davis, CA 95616, USA (B.D.H.)
| | - Fanfan Zhou
- Molecular Drug Development Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
163
|
Sharma G, Sultana A, Abdullah KM, Pothuraju R, Nasser MW, Batra SK, Siddiqui JA. Epigenetic regulation of bone remodeling and bone metastasis. Semin Cell Dev Biol 2024; 154:275-285. [PMID: 36379849 PMCID: PMC10175516 DOI: 10.1016/j.semcdb.2022.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022]
Abstract
Bone remodeling is a continuous and dynamic process of bone formation and resorption to maintain its integrity and homeostasis. Bone marrow is a source of various cell lineages, including osteoblasts and osteoclasts, which are involved in bone formation and resorption, respectively, to maintain bone homeostasis. Epigenetics is one of the elementary regulations governing the physiology of bone remodeling. Epigenetic modifications, mainly DNA methylation, histone modifications, and non-coding RNAs, regulate stable transcriptional programs without causing specific heritable alterations. DNA methylation in CpG-rich promoters of the gene is primarily correlated with gene silencing, and histone modifications are associated with transcriptional activation/inactivation. However, non-coding RNAs regulate the metastatic potential of cancer cells to metastasize at secondary sites. Deregulated or altered epigenetic modifications are often seen in many cancers and interwound with bone-specific tropism and cancer metastasis. Histone acetyltransferases, histone deacetylase, and DNA methyltransferases are promising targets in epigenetically altered cancer. High throughput epigenome mapping and targeting specific epigenetics modifiers will be helpful in the development of personalized epi-drugs for advanced and bone metastasis cancer patients. This review aims to discuss and gather more knowledge about different epigenetic modifications in bone remodeling and metastasis. Further, it provides new approaches for targeting epigenetic changes and therapy research.
Collapse
Affiliation(s)
- Gunjan Sharma
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ashrafi Sultana
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - K M Abdullah
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ramesh Pothuraju
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Mohd Wasim Nasser
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Surinder Kumar Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jawed Akhtar Siddiqui
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
164
|
Papavassiliou AG, Delle Cave D. Novel Therapeutic Approaches for Colorectal Cancer Treatment. Int J Mol Sci 2024; 25:2228. [PMID: 38396903 PMCID: PMC10889277 DOI: 10.3390/ijms25042228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
According to GLOBOCAN 2020 data, colorectal cancer (CRC) represents the third most common malignancy and the second most deadly cancer worldwide [...].
Collapse
Affiliation(s)
- Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Donatella Delle Cave
- Institute of Genetics and Biophysics ‘Adriano Buzzati-Traverso’, CNR, 80131 Naples, Italy
| |
Collapse
|
165
|
Zhu X, Zhang Y, Bian R, Zhu J, Shi W, Ye Y. ANLN Promotes the Proliferation and Migration of Gallbladder Cancer Cells via STRA6-Mediated Activation of PI3K/AKT Signaling. Cancers (Basel) 2024; 16:752. [PMID: 38398143 PMCID: PMC10887181 DOI: 10.3390/cancers16040752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/05/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
The ANLN gene encodes anillin, a protein that binds to actin. Recent research has identified ANLN's function in the initiation and advancement of different cancers. However, its impact on gallbladder cancer (GBC) remains unexplored. This study aimed to elucidate its possible molecular mechanisms in GBC. ANLN expression was assessed using quantitative real-time polymerase chain reaction (QRT-PCR), Western blotting (WB), and immunohistochemistry (IHC), revealing elevated levels in GBC tissues. ANLN knockdown resulted in the inhibition of cell proliferation and migration, leading to apoptosis and cell cycle arrest. Conversely, ANLN overexpression had the opposite effects on GBC cells. In vivo experiments confirmed that ANLN knockdown inhibited GBC cell growth. RNA-seq and bioinformatics analysis revealed ANLN's function in activating the PI3K/AKT signaling pathway. We further confirmed that ANLN could upregulate STRA6 expression, which activated PI3K/AKT signaling to enhance the growth and movement of GBC cells. These findings demonstrate ANLN's involvement in GBC initiation and progression, suggesting its potential as a novel target for GBC.
Collapse
Affiliation(s)
- Xiang Zhu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China; (X.Z.); (Y.Z.)
- Shanghai Key Laboratory of Biliary Tract Disease Research, No. 1665 Kongjiang Road, Shanghai 200092, China
| | - Yong Zhang
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China; (X.Z.); (Y.Z.)
| | - Rui Bian
- Clinical Research and Innovation Center, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China
| | - Jiyue Zhu
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China; (X.Z.); (Y.Z.)
| | - Weibin Shi
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China; (X.Z.); (Y.Z.)
| | - Yuanyuan Ye
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, China; (X.Z.); (Y.Z.)
| |
Collapse
|
166
|
Shan KS, Bonano-Rios A, Theik NWY, Hussein A, Blaya M. Molecular Targeting of the Phosphoinositide-3-Protein Kinase (PI3K) Pathway across Various Cancers. Int J Mol Sci 2024; 25:1973. [PMID: 38396649 PMCID: PMC10888452 DOI: 10.3390/ijms25041973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
The dysregulation of the phosphatidylinositol-3-kinase (PI3K) pathway can lead to uncontrolled cellular growth and tumorigenesis. Targeting PI3K and its downstream substrates has been shown to be effective in preclinical studies and phase III trials with the approval of several PI3K pathway inhibitors by the Food and Drug Administration (FDA) over the past decade. However, the limited clinical efficacy of these inhibitors, intolerable toxicities, and acquired resistances limit the clinical application of PI3K inhibitors. This review discusses the PI3K signaling pathway, alterations in the PI3K pathway causing carcinogenesis, current and novel PI3K pathway inhibitors, adverse effects, resistance mechanisms, challenging issues, and future directions of PI3K pathway inhibitors.
Collapse
Affiliation(s)
- Khine S. Shan
- Division of Hematology and Oncology, Memorial Health Care, Pembroke Pines, FL 33028, USA; (A.B.-R.); (A.H.); (M.B.)
| | - Amalia Bonano-Rios
- Division of Hematology and Oncology, Memorial Health Care, Pembroke Pines, FL 33028, USA; (A.B.-R.); (A.H.); (M.B.)
| | - Nyein Wint Yee Theik
- Division of Internal Medicine, Memorial Health Care, Pembroke Pines, FL 33028, USA;
| | - Atif Hussein
- Division of Hematology and Oncology, Memorial Health Care, Pembroke Pines, FL 33028, USA; (A.B.-R.); (A.H.); (M.B.)
| | - Marcelo Blaya
- Division of Hematology and Oncology, Memorial Health Care, Pembroke Pines, FL 33028, USA; (A.B.-R.); (A.H.); (M.B.)
| |
Collapse
|
167
|
Duchatel RJ, Jackson ER, Parackal SG, Kiltschewskij D, Findlay IJ, Mannan A, Staudt DE, Thomas BC, Germon ZP, Laternser S, Kearney PS, Jamaluddin MFB, Douglas AM, Beitaki T, McEwen HP, Persson ML, Hocke EA, Jain V, Aksu M, Manning EE, Murray HC, Verrills NM, Sun CX, Daniel P, Vilain RE, Skerrett-Byrne DA, Nixon B, Hua S, de Bock CE, Colino-Sanguino Y, Valdes-Mora F, Tsoli M, Ziegler DS, Cairns MJ, Raabe EH, Vitanza NA, Hulleman E, Phoenix TN, Koschmann C, Alvaro F, Dayas CV, Tinkle CL, Wheeler H, Whittle JR, Eisenstat DD, Firestein R, Mueller S, Valvi S, Hansford JR, Ashley DM, Gregory SG, Kilburn LB, Nazarian J, Cain JE, Dun MD. PI3K/mTOR is a therapeutically targetable genetic dependency in diffuse intrinsic pontine glioma. J Clin Invest 2024; 134:e170329. [PMID: 38319732 PMCID: PMC10940093 DOI: 10.1172/jci170329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 01/11/2024] [Indexed: 02/08/2024] Open
Abstract
Diffuse midline glioma (DMG), including tumors diagnosed in the brainstem (diffuse intrinsic pontine glioma; DIPG), are uniformly fatal brain tumors that lack effective treatment. Analysis of CRISPR/Cas9 loss-of-function gene deletion screens identified PIK3CA and MTOR as targetable molecular dependencies across patient derived models of DIPG, highlighting the therapeutic potential of the blood-brain barrier-penetrant PI3K/Akt/mTOR inhibitor, paxalisib. At the human-equivalent maximum tolerated dose, mice treated with paxalisib experienced systemic glucose feedback and increased insulin levels commensurate with patients using PI3K inhibitors. To exploit genetic dependence and overcome resistance while maintaining compliance and therapeutic benefit, we combined paxalisib with the antihyperglycemic drug metformin. Metformin restored glucose homeostasis and decreased phosphorylation of the insulin receptor in vivo, a common mechanism of PI3K-inhibitor resistance, extending survival of orthotopic models. DIPG models treated with paxalisib increased calcium-activated PKC signaling. The brain penetrant PKC inhibitor enzastaurin, in combination with paxalisib, synergistically extended the survival of multiple orthotopic patient-derived and immunocompetent syngeneic allograft models; benefits potentiated in combination with metformin and standard-of-care radiotherapy. Therapeutic adaptation was assessed using spatial transcriptomics and ATAC-Seq, identifying changes in myelination and tumor immune microenvironment crosstalk. Collectively, this study has identified what we believe to be a clinically relevant DIPG therapeutic combinational strategy.
Collapse
Affiliation(s)
- Ryan J. Duchatel
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- Paediatric Stream, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine, and Wellbeing, Callaghan, New South Wales, Australia
| | - Evangeline R. Jackson
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- Paediatric Stream, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine, and Wellbeing, Callaghan, New South Wales, Australia
| | - Sarah G. Parackal
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Dylan Kiltschewskij
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- School of Biomedical Science and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
| | - Izac J. Findlay
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- Paediatric Stream, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine, and Wellbeing, Callaghan, New South Wales, Australia
| | - Abdul Mannan
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Dilana E. Staudt
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- Paediatric Stream, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine, and Wellbeing, Callaghan, New South Wales, Australia
| | - Bryce C. Thomas
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- Paediatric Stream, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine, and Wellbeing, Callaghan, New South Wales, Australia
| | - Zacary P. Germon
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Sandra Laternser
- DIPG/DMG Research Center Zurich, Children’s Research Center, Department of Pediatrics, University Children’s Hospital Zürich, Zurich, Switzerland
| | - Padraic S. Kearney
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - M. Fairuz B. Jamaluddin
- School of Biomedical Science and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
| | - Alicia M. Douglas
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Tyrone Beitaki
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Holly P. McEwen
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Mika L. Persson
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- Paediatric Stream, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine, and Wellbeing, Callaghan, New South Wales, Australia
| | - Emily A. Hocke
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Vaibhav Jain
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Michael Aksu
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Elizabeth E. Manning
- School of Biomedical Science and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
| | - Heather C. Murray
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- School of Biomedical Science and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
| | - Nicole M. Verrills
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- School of Biomedical Science and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
| | - Claire Xin Sun
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Paul Daniel
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Ricardo E. Vilain
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - David A. Skerrett-Byrne
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Brett Nixon
- Infertility and Reproduction Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Susan Hua
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- School of Biomedical Science and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
| | - Charles E. de Bock
- Children’s Cancer Institute, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine and Health, UNSW Sydney, Kensington, New South Wales, Australia
| | - Yolanda Colino-Sanguino
- Children’s Cancer Institute, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine and Health, UNSW Sydney, Kensington, New South Wales, Australia
| | - Fatima Valdes-Mora
- Children’s Cancer Institute, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine and Health, UNSW Sydney, Kensington, New South Wales, Australia
| | - Maria Tsoli
- Children’s Cancer Institute, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine and Health, UNSW Sydney, Kensington, New South Wales, Australia
| | - David S. Ziegler
- Children’s Cancer Institute, University of New South Wales (UNSW) Sydney, Kensington, New South Wales, Australia
- School of Clinical Medicine, UNSW Medicine and Health, UNSW Sydney, Kensington, New South Wales, Australia
- Kids Cancer Centre, Sydney Children’s Hospital, Randwick, New South Wales, Australia
| | - Murray J. Cairns
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- School of Biomedical Science and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
| | - Eric H. Raabe
- Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nicholas A. Vitanza
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, Washington, USA
- Department of Pediatrics, Seattle Children’s Hospital, University of Washington, Seattle, Washington, USA
| | - Esther Hulleman
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Timothy N. Phoenix
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio, USA
| | - Carl Koschmann
- Division of Pediatric Hematology/Oncology, Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | - Frank Alvaro
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- John Hunter Children’s Hospital, New Lambton Heights, New South Wales, Australia
| | - Christopher V. Dayas
- School of Biomedical Science and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
| | - Christopher L. Tinkle
- Department of Radiation Oncology, St. Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Helen Wheeler
- Department of Radiation Oncology Northern Sydney Cancer Centre, Royal North Shore Hospital, St Leonards, New South Wales, Australia
- The Brain Cancer group, St Leonards, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, Australia
| | - James R. Whittle
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Personalised Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - David D. Eisenstat
- Children’s Cancer Centre, The Royal Children’s Hospital Melbourne, Parkville, Victoria, Australia
- Neuro-Oncology Laboratory, Murdoch Children’s Research Institute, Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
| | - Ron Firestein
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Sabine Mueller
- DIPG/DMG Research Center Zurich, Children’s Research Center, Department of Pediatrics, University Children’s Hospital Zürich, Zurich, Switzerland
- Department of Neurology, Neurosurgery, and Pediatrics, University of California, San Francisco, California, USA
| | - Santosh Valvi
- Department of Paediatric and Adolescent Oncology/Haematology, Perth Children’s Hospital, Nedlands, Washington, Australia
- Brain Tumour Research Laboratory, Telethon Kids Institute, Nedlands, Washington, Australia
- Division of Paediatrics, University of Western Australia Medical School, Nedlands, Western Australia, Australia
| | - Jordan R. Hansford
- Michael Rice Centre for Hematology and Oncology, Women’s and Children’s Hospital, North Adelaide, South Australia, Australia
- South Australia Health and Medical Research Institute, Adelaide, South Australia, Australia
- South Australian Immunogenomics Cancer Institute, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - David M. Ashley
- The Preston Robert Tisch Brain Tumor Center at Duke, Department of Neurosurgery, Duke University, Durham, North Carolina, USA
| | - Simon G. Gregory
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina, USA
- The Preston Robert Tisch Brain Tumor Center at Duke, Department of Neurosurgery, Duke University, Durham, North Carolina, USA
| | - Lindsay B. Kilburn
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, USA
- The George Washington University, School of Medicine and Health Sciences, Washington, DC, USA
| | - Javad Nazarian
- DIPG/DMG Research Center Zurich, Children’s Research Center, Department of Pediatrics, University Children’s Hospital Zürich, Zurich, Switzerland
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, USA
- The George Washington University, School of Medicine and Health Sciences, Washington, DC, USA
| | - Jason E. Cain
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Matthew D. Dun
- Cancer Signalling Research Group, School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Precision Medicine Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
- Paediatric Stream, Mark Hughes Foundation Centre for Brain Cancer Research, College of Health, Medicine, and Wellbeing, Callaghan, New South Wales, Australia
| |
Collapse
|
168
|
Hu J, Fu S, Zhan Z, Zhang J. Advancements in dual-target inhibitors of PI3K for tumor therapy: Clinical progress, development strategies, prospects. Eur J Med Chem 2024; 265:116109. [PMID: 38183777 DOI: 10.1016/j.ejmech.2023.116109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/24/2023] [Accepted: 12/28/2023] [Indexed: 01/08/2024]
Abstract
Phosphoinositide 3-kinases (PI3Ks) modify lipids by the phosphorylation of inositol phospholipids at the 3'-OH position, thereby participating in signal transduction and exerting effects on various physiological processes such as cell growth, metabolism, and organism development. PI3K activation also drives cancer cell growth, survival, and metabolism, with genetic dysregulation of this pathway observed in diverse human cancers. Therefore, this target is considered a promising potential therapeutic target for various types of cancer. Currently, several selective PI3K inhibitors and one dual-target PI3K inhibitor have been approved and launched on the market. However, the majority of these inhibitors have faced revocation or voluntary withdrawal of indications due to concerns regarding their adverse effects. This article provides a comprehensive review of the structure and biological functions, and clinical status of PI3K inhibitors, with a specific emphasis on the development strategies and structure-activity relationships of dual-target PI3K inhibitors. The findings offer valuable insights and future directions for the development of highly promising dual-target drugs targeting PI3K.
Collapse
Affiliation(s)
- Jiarui Hu
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Siyu Fu
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Zixuan Zhan
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jifa Zhang
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
169
|
Sinha B, Choudhury Y. Revisiting edible insects as sources of therapeutics and drug delivery systems for cancer therapy. Front Pharmacol 2024; 15:1345281. [PMID: 38370484 PMCID: PMC10869617 DOI: 10.3389/fphar.2024.1345281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/22/2024] [Indexed: 02/20/2024] Open
Abstract
Cancer has been medicine's most formidable foe for long, and the rising incidence of the disease globally has made effective cancer therapy a significant challenge. Drug discovery is targeted at identifying efficacious compounds with minimal side effects and developments in nanotechnology and immunotherapy have shown promise in the fight against this complicated illness. Since ancient times, insects and insect-derived products have played a significant role in traditional medicine across several communities worldwide. The aim of this study was to inspect the traditional use of edible insects in various cultures and to explore their modern use in cancer therapy. Edible insects are sources of nutrients and a variety of beneficial substances with anticancer and immunomodulatory potential. Recently, insect derived bioactive-components have also been used as nanoparticles either in combination with chemotherapeutics or as a nano-cargo for the enhanced delivery of chemotherapeutic drugs due to their high biocompatibility, low bio-toxicity, and their antioxidant and anticancer effects. The crude extracts of different edible insects and their active components such as sericin, cecropin, solenopsin, melittin, antimicrobial peptides and fibroin produce anti-cancer and immunomodulatory effects by various mechanisms which have been discussed in this review.
Collapse
|
170
|
Li M, Hu Y, Wang J, Xu Y, Hong Y, Zhang L, Luo Q, Zhen Z, Lu S, Huang J, Zhu J, Zhang Y, Que Y, Sun F. The dual HDAC and PI3K inhibitor, CUDC‑907, inhibits tumor growth and stem‑like properties by suppressing PTX3 in neuroblastoma. Int J Oncol 2024; 64:14. [PMID: 38063204 PMCID: PMC10783937 DOI: 10.3892/ijo.2023.5602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/01/2023] [Indexed: 12/18/2023] Open
Abstract
Neuroblastoma (NB) is one of the common solid tumors in childhood and poses a threat to the lives of children. Patients with advanced‑stage or recurrent NB have a poor prognosis. CUDC‑907, as a novel dual‑target inhibitor of histone deacetylase (HDAC) and phosphatidylinositol‑3‑kinase (PI3K), has been proven to play an antitumor role in several types of tumors. However, the exact role of CUDC‑907 in NB remains unclear. In the present study, in vivo and in vitro assays were performed to investigate the anti‑NB activity of CUDC‑907. Pentraxin 3 (PTX3) small interfering RNA (siRNA) and PTX3 overexpression plasmid were transfected into cells to define the underlying mechanisms of CUDC‑907. Tumor tissues and clinical information were collected and immunohistochemistry (IHC) was conducted to analyze the association between the expression of HDAC1, HDAC2, HDAC3 and CD44, and the prognosis of patients with NB. The results indicated that CUDC‑907 significantly inhibited the proliferation and migration, and induced the apoptosis of NB cells, downregulating the expression level of MYCN, and suppressing the PI3K/AKT and MAPK/ERK pathways. Furthermore, CUDC‑907 suppressed the stem‑like properties of NB cells by inhibiting PTX3, a ligand and upstream protein of CD44. IHC revealed that the high expression of HDAC1, 2, 3 and CD44 was associated with a poor prognosis of patients with NB. On the whole, these findings indicate that CUDC‑907 may be developed into a possible therapeutic approach for patients with NB.
Collapse
Affiliation(s)
- Mengzhen Li
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Yang Hu
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Juan Wang
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Yanjie Xu
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Ye Hong
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Li Zhang
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Qiuyun Luo
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Zijun Zhen
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Suying Lu
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Junting Huang
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Jia Zhu
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Yizhuo Zhang
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Yi Que
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Feifei Sun
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| |
Collapse
|
171
|
Jalan A, Moyon NS. Molecular interactions and binding dynamics of Alpelisib with serum albumins: insights from multi-spectroscopic techniques and molecular docking. J Biomol Struct Dyn 2024; 42:2127-2143. [PMID: 37098825 DOI: 10.1080/07391102.2023.2203256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 04/10/2023] [Indexed: 04/27/2023]
Abstract
Alpelisib (ALP) is a potent anti-cancer drug showing promising activity against advanced breast cancers. Hence, profound understanding of its binding dynamics within the physiological system is vital. Herein, we have investigated interaction of ALP with human serum albumin (HSA) and bovine serum albumin (BSA) using spectroscopic techniques like absorption, fluorescence, time-resolved, synchronous and 3D-fluorescence, FRET, FT-IR, CD, and molecular docking studies. The intrinsic fluorescence of both BSA and HSA quenched significantly by ALP with an appreciable red shift in its emission maxima. Stern-Volmer analysis showed increase in Ksv with temperature indicating involvement of dynamic quenching process. This was further validated by no significant change in absorption spectrum of BSA and HSA (at 280 nm) upon ALP interaction, and by results of fluorescence time-resolved lifetime studies. ALP exhibited moderately strong binding affinity with BSA (of the order 106 M-1) and HSA (of the order 105 M-1), and the major forces accountable for stabilizing the interactions are hydrophobic forces. Competitive drug binding experiments and molecular docking suggested that ALP binds to site I in subdomain IIA of BSA and HSA. The Förster distance r was found to be less than 8 nm and 0.5 Ro < r < 1.5 Ro which suggests possible energy transfer between donors BSA/HSA and acceptor ALP. Synchronous and 3D-fluoresecnce, FT-IR and CD studies indicated that ALP induces conformational changes of BSA and HSA upon interaction.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ankita Jalan
- Department of Chemistry, National Institute of Technology Silchar, Cachar, Assam, India
| | - N Shaemningwar Moyon
- Department of Chemistry, National Institute of Technology Silchar, Cachar, Assam, India
| |
Collapse
|
172
|
Zhang X, Yu W, Li Y, Wang A, Cao H, Fu Y. Drug development advances in human genetics-based targets. MedComm (Beijing) 2024; 5:e481. [PMID: 38344397 PMCID: PMC10857782 DOI: 10.1002/mco2.481] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 10/28/2024] Open
Abstract
Drug development is a long and costly process, with a high degree of uncertainty from the identification of a drug target to its market launch. Targeted drugs supported by human genetic evidence are expected to enter phase II/III clinical trials or be approved for marketing more quickly, speeding up the drug development process. Currently, genetic data and technologies such as genome-wide association studies (GWAS), whole-exome sequencing (WES), and whole-genome sequencing (WGS) have identified and validated many potential molecular targets associated with diseases. This review describes the structure, molecular biology, and drug development of human genetics-based validated beneficial loss-of-function (LOF) mutation targets (target mutations that reduce disease incidence) over the past decade. The feasibility of eight beneficial LOF mutation targets (PCSK9, ANGPTL3, ASGR1, HSD17B13, KHK, CIDEB, GPR75, and INHBE) as targets for drug discovery is mainly emphasized, and their research prospects and challenges are discussed. In conclusion, we expect that this review will inspire more researchers to use human genetics and genomics to support the discovery of novel therapeutic drugs and the direction of clinical development, which will contribute to the development of new drug discovery and drug repurposing.
Collapse
Affiliation(s)
- Xiaoxia Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiShandongChina
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia MedicaYantaiShandongChina
| | - Wenjun Yu
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug DiscoveryYantaiShandongChina
| | - Yan Li
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia MedicaYantaiShandongChina
| | - Aiping Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiShandongChina
| | - Haiqiang Cao
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug DiscoveryYantaiShandongChina
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of SciencesShanghaiChina
| | - Yuanlei Fu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of ShandongYantai UniversityYantaiShandongChina
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia MedicaYantaiShandongChina
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug DiscoveryYantaiShandongChina
| |
Collapse
|
173
|
Lin H, Ai D, Liu Q, Wang X, Chen Q, Hong Z, Tao Y, Gao J, Wang L. Natural isoflavone glabridin targets PI3Kγ as an adjuvant to increase the sensitivity of MDA-MB-231 to tamoxifen and DU145 to paclitaxel. J Steroid Biochem Mol Biol 2024; 236:106426. [PMID: 37984749 DOI: 10.1016/j.jsbmb.2023.106426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/21/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023]
Abstract
Glabridin is a natural isoflavone with estrogen receptor agonism and significant anti-tumor activity. Additionally, glabridin has a regulation effect on PI3K/AKT/mTOR pathway, but its exact target remains unclear. In this study, we evaluated the antitumor activity of glabridin against breast cancer and prostate cancer cells, and further clarified its targeting to PI3K. We found that glabridin could significantly inhibit the cell viability of human breast cancer and prostate cancer cell lines. It induced caspase activation cascade and cell apoptosis through decreasing the mitochondrial transmembrane potential and increasing the intracellular reactive oxygen species (ROS). Moreover, glabridin could attenuate epithelial-mesenchymal transition (EMT) progression by inhibiting cell migration. PharmMapper calculation showed that PI3Kγ might be the most potential target protein because of the highest Normal Fit score (0.9735) and z'-score (0.9797). Molecular docking and bio-layer interferometry (BLI) analysis further demonstrated the PI3Kγ targeting of glabridin. In vivo experiments showed that glabridin can effectively inhibit the tumor growth of breast cancer xenograft model, and does not show obvious hepatorenal toxicity. Moreover, glabridin could effectively promote the anti-proliferation and pro-apoptotic effects of tamoxifen on MDA-MB-231 cell and taxol on DU145 cell. Elucidating the targeting of glabridin to PI3K may lay a theoretical foundation for the structural derivatization of glabridin, which is expected to greatly promote the application and development of glabridin in the field of cancer therapy.
Collapse
Affiliation(s)
- Hongyan Lin
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Dongxuan Ai
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Qingqing Liu
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Xinling Wang
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Qingqing Chen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Zhongbin Hong
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Yuheng Tao
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Jian Gao
- School of Medicine, Anhui University of Science and Technology, Huainan 232002, Anhui, China.
| | - Liqun Wang
- School of Pharmacy, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
174
|
Korovina I, Elser M, Borodins O, Seifert M, Willers H, Cordes N. β1 integrin mediates unresponsiveness to PI3Kα inhibition for radiochemosensitization of 3D HNSCC models. Biomed Pharmacother 2024; 171:116217. [PMID: 38286037 DOI: 10.1016/j.biopha.2024.116217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/10/2024] [Accepted: 01/22/2024] [Indexed: 01/31/2024] Open
Abstract
Phosphoinositide 3-kinase (PI3K)-α represents a key intracellular signal transducer involved in the regulation of key cell functions such as cell survival and proliferation. Excessive activation of PI3Kα is considered one of the major determinants of cancer therapy resistance. Despite preclinical and clinical evaluation of PI3Kα inhibitors in various tumor entities, including head and neck squamous cell carcinoma (HNSCC), it remains elusive how conventional radiochemotherapy can be enhanced by concurrent PI3K inhibitors and how PI3K deactivation mechanistically exerts its effects. Here, we investigated the radiochemosensitizing potential and adaptation mechanisms of four PI3K inhibitors, Alpelisib, Copanlisib, AZD8186, and Idelalisib in eight HNSCC models grown under physiological, three-dimensional matrix conditions. We demonstrate that Alpelisib, Copanlisib and AZD8186 but not Idelalisib enhance radio- and radiochemosensitivity in the majority of HNSCC cell models (= responders) in a manner independent of PIK3CA mutation status. However, Alpelisib promotes MAPK signaling in non-responders compared to responders without profound impact on Akt, NFκB, TGFβ, JAK/STAT signaling and DNA repair. Bioinformatic analyses identified unique gene mutations associated with extracellular matrix to be more frequent in non-responder cell models than in responders. Finally, we demonstrate that targeting of the cell adhesion molecule β1 integrin on top of Alpelisib sensitizes non-responders to radiochemotherapy. Taken together, our study demonstrates the sensitizing potential of Alpelisib and other PI3K inhibitors in HNSCC models and uncovers a novel β1 integrin-dependent mechanism that may prove useful in overcoming resistance to PI3K inhibitors.
Collapse
Affiliation(s)
- Irina Korovina
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | - Marc Elser
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Olegs Borodins
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany
| | - Michael Seifert
- Institute for Medical Informatics and Biometry (IMB), Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Henning Willers
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Nils Cordes
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf, Institute of Radiooncology - OncoRay, Dresden, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, German Cancer Research Center (DKFZ), Heidelberg, Germany; German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Radiotherapy and Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
175
|
Ling J, Li X, Wang M, Zhang C, Liu Y, Zhang X, Liu C, Ren Q, Zeng Y, Wang C, Chen Y, Sun C, Chen H, Zuo Y, Cao X, Deng Y, Ren B, Li D, Lu J. Novel sulfonyl-substituted tetrandrine derivatives for colon cancer treatment by inducing mitochondrial apoptosis and inhibiting PI3K/AKT/mTOR pathway. Bioorg Chem 2024; 143:107069. [PMID: 38160477 DOI: 10.1016/j.bioorg.2023.107069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
Tetrandrine (TET) possesses multiple pharmacological activities and could suppress tumor proliferation via PI3K pathway inhibition. However, inferior antitumor activity and potential toxicity limit its clinical application. In the present study, a series of 14-sulfonamide and sulfonate TET derivatives were designed, synthesized, and evaluated for biological activities. Through structural-activity relationship studies, compound 3c with α, β-unsaturated carbonyl group exhibited the most potent activity against all tested tumor cell lines (including Hela, HCT116, HepG2, MCF-7, and SHSY5Y), as well as negligible toxicity against normal cell lines LO2 and HEK293. Additionally, compound 3c effectively inhibited HCT116 and CT26 cell proliferation in vitro with increased cell proportion in the G2/M phase, activated the mitochondrial apoptosis pathway, and induced colon cancer cell apoptosis by suppressing the PI3K/AKT/mTOR pathway. The further molecular docking results confirmed that compound 3c is potentially bound to multiple residues in PI3K with a stronger binding affinity than TET. Ultimately, compound 3c dramatically suppressed tumor growth in the CT26 xenograft tumor model, without noticeable visceral toxicity detected in the high-dose group. In summary, compound 3c might present new insights for designing new PI3K inhibitors and be a potential candidate for colon cancer treatment.
Collapse
Affiliation(s)
- Jie Ling
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiao Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Maolin Wang
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou 515000, China
| | - Chaozheng Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yilan Liu
- Hematology Department, The General Hospital of the Western Theater Command PLA, Chengdu, China
| | - Xin Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Changqun Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qing Ren
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 999077, China
| | - Yingjie Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chuanqi Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ying Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chen Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hongyu Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yi Zuo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xiujun Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yun Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Bo Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Defang Li
- Yantai Key Laboratory of Pharmacology of Traditional Chinese Medicine in Tumor Metabolism, School of Integrated Traditional Chinese and Western Medicine, Binzhou Medical University, 264003 Yantai, China.
| | - Jun Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
176
|
Riaz F, Zhang J, Pan F. Forces at play: exploring factors affecting the cancer metastasis. Front Immunol 2024; 15:1274474. [PMID: 38361941 PMCID: PMC10867181 DOI: 10.3389/fimmu.2024.1274474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 01/19/2024] [Indexed: 02/17/2024] Open
Abstract
Metastatic disease, a leading and lethal indication of deaths associated with tumors, results from the dissemination of metastatic tumor cells from the site of primary origin to a distant organ. Dispersion of metastatic cells during the development of tumors at distant organs leads to failure to comply with conventional treatments, ultimately instigating abrupt tissue homeostasis and organ failure. Increasing evidence indicates that the tumor microenvironment (TME) is a crucial factor in cancer progression and the process of metastatic tumor development at secondary sites. TME comprises several factors contributing to the initiation and progression of the metastatic cascade. Among these, various cell types in TME, such as mesenchymal stem cells (MSCs), lymphatic endothelial cells (LECs), cancer-associated fibroblasts (CAFs), myeloid-derived suppressor cells (MDSCs), T cells, and tumor-associated macrophages (TAMs), are significant players participating in cancer metastasis. Besides, various other factors, such as extracellular matrix (ECM), gut microbiota, circadian rhythm, and hypoxia, also shape the TME and impact the metastatic cascade. A thorough understanding of the functions of TME components in tumor progression and metastasis is necessary to discover new therapeutic strategies targeting the metastatic tumor cells and TME. Therefore, we reviewed these pivotal TME components and highlighted the background knowledge on how these cell types and disrupted components of TME influence the metastatic cascade and establish the premetastatic niche. This review will help researchers identify these altered components' molecular patterns and design an optimized, targeted therapy to treat solid tumors and restrict metastatic cascade.
Collapse
Affiliation(s)
- Farooq Riaz
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Jing Zhang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Fan Pan
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| |
Collapse
|
177
|
Jiang Y, Bi Y, Zhou L, Zheng S, Jian T, Chen J. Tanshinone IIA inhibits proliferation and migration by downregulation of the PI3K/Akt pathway in small cell lung cancer cells. BMC Complement Med Ther 2024; 24:68. [PMID: 38297301 PMCID: PMC10829381 DOI: 10.1186/s12906-024-04363-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 01/17/2024] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Small cell lung cancer (SCLC) is the most malignant lung cancer type. Due to the high rates of metastasis and drug resistance, effective therapeutic strategies remain lacking. Tanshinone IIA (Tan IIA) has been reported to exhibit anti-tumor activity. Therefore, this study investigated the ability and underlying mechanism of Tan IIA to inhibit the metastasis and proliferation of SCLC. METHODS H1688 and H446 cells were treated in vitro with Tan IIA (0, 1, 2 and 4 µM) or LY294002 (10 µM) for 24, 48, 72 h. H1688 and H446 cell migration was evaluated in wound healing and transwell migration assays. RNA-sequencing helped assess gene expression. BALB/c nude mice were injected with H1688 cells and treated with the Tan IIA group (10 mg/kg/day) or a control. Expression of E-cadherin, vimentin and PI3K/Akt signaling pathway proteins in tumors and H1688 was investigated by immunohistochemical analysis and western blot. RESULTS Tan IIA inhibited H1688 and H446 cell proliferation without inducing apoptosis and suppressed H1688 and H446 cell migration. E-cadherin expression was increased, while vimentin expression was reduced after administration of Tan IIA. RNA-sequencing revealed that some genes related with the PI3K/Akt signaling pathway were altered using Tan IIA treatment. Furthermore, western blot helped detect PI3K and p-Akt expression was also reduced by Tan IIA treatment. Tan IIA inhibited tumor growth in vivo. Moreover, Tan IIA increased tumoral expression of E-cadherin accompanied by PI3K and p-Akt downregulation. CONCLUSION Tan IIA suppresses SCLC proliferation and metastasis by inhibiting the PI3K/Akt signaling pathway, thereby highlighting the potential of Tan IIA as a new and relatively safe drug candidate to treat SCLC.
Collapse
Affiliation(s)
- Yuxin Jiang
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, No. 481 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, China
| | - Yanli Bi
- Department of Clinical Laboratorial Examination, Air Force Hangzhou Special Service Recuperation Center Sanatorium Area 3, Hangzhou, Zhejiang, China
| | - Lingjie Zhou
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, No. 481 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, China
| | - Senwen Zheng
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, No. 481 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, China
| | - Tingting Jian
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, No. 481 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, China
| | - Jian Chen
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, No. 481 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, China.
| |
Collapse
|
178
|
Lu S, Huang J, Zhang J, Wu C, Huang Z, Tao X, You L, Stalin A, Chen M, Li J, Tan Y, Wu Z, Geng L, Li Z, Fan Q, Liu P, Lin Y, Zhao C, Wu J. The anti-hepatocellular carcinoma effect of Aidi injection was related to the synergistic action of cantharidin, formononetin, and isofraxidin through BIRC5, FEN1, and EGFR. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117209. [PMID: 37757991 DOI: 10.1016/j.jep.2023.117209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/05/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Aidi injection (ADI) is a popular anti-tumor Chinese patent medicine, widely used in clinics for the treatment of hepatocellular carcinoma (HCC) with remarkable therapeutic effects through multiple targets and pathways. However, the scientific evidence of the synergistic role of the complex chemical component system and the potential mechanism for treating diseases are ignored and remain to be elucidated. AIM OF THE STUDY This study aimed to elucidate and verify the cooperative association between the potential active ingredient of ADI, which is of significance to enlarge our understanding of its anti-HCC molecular mechanisms. MATERIALS AND METHODS Firstly, the anti-HCC effect of ADI was evaluated in various HCC cells and the zebrafish xenograft model. Subsequently, a variety of bioinformatic technologies, including network pharmacology, weighted gene co-expression network analysis (WGCNA), meta-analysis of gene expression profiles, and pathway enrichment analysis were performed to construct the competitive endogenous RNA (ceRNA) network of ADI intervention in HCC and to establish the relationship between the critical targets/pathways and the key corresponding components, which were involved in ADI against HCC in a synergistic way and were validated by molecular biology experiments. RESULTS ADI exerted remarkable anti-HCC in vitro cells and in vivo zebrafish model, especially that the Hep 3B2.1-7 cell showed substantial sensibility to ADI. The ceRNA network revealed that the EGFR/PI3K/AKT signaling pathway was identified as the promising pathway. Furthermore, the meta-analysis also demonstrated the critical role of BIRC5 and FEN1 as key targets. Finally, the synergistic effect of ADI was revealed by discovering the inhibitory effect of cantharidin on BIRC5, formononetin on FEN1 and EGFR, as well as isofraxidin on EGFR. CONCLUSION Our study unveiled that the incredible protective effect of ADI on HCC resulted from the synergistic inhibition effect of cantharidin, formononetin, and isofraxidin on multiple targets/pathways, including BIRC5, FEN1, and EGFR/PI3K/AKT, respectively, providing a scientific interpretation of ADI against HCC and a typical example of pharmacodynamic evaluation of other proprietary Chinese patent medicine.
Collapse
Affiliation(s)
- Shan Lu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Jiaqi Huang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Jingyuan Zhang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Chao Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Zhihong Huang
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Xiaoyu Tao
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Leiming You
- Department of Immunology and Microbiology, School of Life Science, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Antony Stalin
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| | - Meilin Chen
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Jiaqi Li
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Yingying Tan
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Zhishan Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Libo Geng
- Guizhou Yibai Pharmaceutical Co. Ltd, Guiyang, 550008, Guizhou, China.
| | - Zhiqi Li
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Qiqi Fan
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Pengyun Liu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Yifan Lin
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Chongjun Zhao
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China; Beijing Key Laboratory for Quality Evaluation of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Jiarui Wu
- Department of Clinical Chinese Pharmacy, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
179
|
Chen JY, Chang CF, Huang SP, Huang CY, Yu CC, Lin VC, Geng JH, Li CY, Lu TL, Bao BY. Integrated analysis identifies GABRB3 as a biomarker in prostate cancer. BMC Med Genomics 2024; 17:41. [PMID: 38287309 PMCID: PMC10826114 DOI: 10.1186/s12920-024-01816-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/23/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Treatment failure following androgen deprivation therapy (ADT) presents a significant challenge in the management of advanced prostate cancer. Thus, understanding the genetic factors influencing this process could facilitate the development of personalized treatments and innovative therapeutic strategies. The phosphoinositide 3-kinase (PI3K)/AKT signaling pathway plays a pivotal role in controlling cell growth and tumorigenesis. We hypothesized that genetic variants within this pathway may affect the clinical outcomes of patients undergoing ADT for prostate cancer. METHODS We genotyped 399 single-nucleotide polymorphisms (SNPs) across 28 core PI3K/AKT pathway genes in a cohort of 630 patients with prostate cancer undergoing ADT. We assessed the potential association of the SNPs with patient survival. Functional analyses of the implicated genes were also performed to evaluate their effects on prostate cancer. RESULTS After multivariate Cox regression analysis and multiple testing correction, GABRB3 rs12591845 exhibited the most significant association with both overall and cancer-specific survivals (P < 0.003). A comprehensive pooled analysis of 16 independent gene expression datasets revealed elevated expression of GABRB3 in prostate cancer tissues compared to that in normal tissues (P < 0.001). Furthermore, gene set enrichment analysis unveiled differential enrichment of pathways such as myogenesis, interferon γ and α responses, and the MYC proto-oncogene pathway in tumors with elevated GABRB3 expression, implying a role for GABRB3 in prostate cancer. CONCLUSION Our results suggest that rs12591845 could potentially serve as a valuable prognostic indicator for patients undergoing ADT. The potential role of GABRB3 in promoting prostate tumorigenesis is also highlighted.
Collapse
Affiliation(s)
- Jun-Yan Chen
- Department of Pharmacy, China Medical University, 100 Jingmao Road Section 1, 406, Taichung, Taiwan
| | - Chi-Fen Chang
- Department of Anatomy, School of Medicine, China Medical University, 406, Taichung, Taiwan
| | - Shu-Pin Huang
- Department of Urology, Kaohsiung Medical University Hospital, 807, Kaohsiung, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, 807, Kaohsiung, Taiwan
- Institute of Medical Science and Technology, College of Medicine , National Sun Yat-Sen University, 804, Kaohsiung, Taiwan
| | - Chao-Yuan Huang
- Department of Urology, College of Medicine, National Taiwan University Hospital, National Taiwan University, 100, Taipei, Taiwan
| | - Chia-Cheng Yu
- Division of Urology, Department of Surgery, Kaohsiung Veterans General Hospital, 813, Kaohsiung, Taiwan
- Department of Urology, School of Medicine, National Yang Ming Chiao Tung University , 112, Taipei, Taiwan
- Department of Pharmacy, Tajen University, 907, Pingtung, Taiwan
| | - Victor C Lin
- Department of Urology, E-Da Hospital, 824, Kaohsiung, Taiwan
- School of Medicine for International Students, I-Shou University, 840, Kaohsiung, Taiwan
| | - Jiun-Hung Geng
- Department of Urology, Kaohsiung Medical University Hospital, 807, Kaohsiung, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, 807, Kaohsiung, Taiwan
- Department of Urology, Kaohsiung Municipal Hsiao-Kang Hospital, 812, Kaohsiung, Taiwan
| | - Chia-Yang Li
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, 807, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, 807, Kaohsiung, Taiwan
| | - Te-Ling Lu
- Department of Pharmacy, China Medical University, 100 Jingmao Road Section 1, 406, Taichung, Taiwan
| | - Bo-Ying Bao
- Department of Pharmacy, China Medical University, 100 Jingmao Road Section 1, 406, Taichung, Taiwan.
| |
Collapse
|
180
|
Wang H, Wan X, Zhang Y, Guo J, Bai O. Advances in the treatment of relapsed/refractory marginal zone lymphoma. Front Oncol 2024; 14:1327309. [PMID: 38333686 PMCID: PMC10850340 DOI: 10.3389/fonc.2024.1327309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/09/2024] [Indexed: 02/10/2024] Open
Abstract
Marginal zone lymphoma (MZL) is the second most common subtype of inert B-cell non-Hodgkin's lymphoma, accounting for 5-15% of non-Hodgkin's lymphoma cases. Patients with MZL have a long survival period, with a median survival of >10 years, and patients treated with a combination of anti-CD20 monoclonal antibody can achieve an overall effective rate of 81%. However, 20% of patients with MZL show relapse or experience disease progression within 2 years, with a median survival of only 3-5 years. Currently, the treatment options for patients with relapsed/refractory (R/R) MZL are limited, underscoring the pressing need for novel therapeutic drugs. The advent of novel anti-CD20 monoclonal antibodies, small molecule kinase inhibitors, immunomodulators, and other therapeutic strategies has ushered in a new era in the treatment of R/R MZL. Our objective is to summarize the existing treatment strategies, including immunotherapy and the emergent targeted therapies, and to evaluate their effectiveness and safety in the management of R/R MZL. By doing so, we aim to provide a clear understanding of the therapeutic landscape for R/R MZL, and to guide future research directions toward improving the prognosis and quality of life for patients afflicted with this challenging disease.
Collapse
Affiliation(s)
| | | | | | | | - Ou Bai
- Department of Hematology, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
181
|
Hernandez KC, Shah AM, Lopez VA, Tagliabracci VS, Chen K, Xu L, Bassel-Duby R, Olson EN, Liu N. CD73 contributes to the pathogenesis of fusion-negative rhabdomyosarcoma through the purinergic signaling pathway. Proc Natl Acad Sci U S A 2024; 121:e2315925121. [PMID: 38227654 PMCID: PMC10823247 DOI: 10.1073/pnas.2315925121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/29/2023] [Indexed: 01/18/2024] Open
Abstract
Rhabdomyosarcoma (RMS) is the most common type of soft tissue sarcoma in children and adolescents. Fusion-negative RMS (FN-RMS) accounts for more than 80% of all RMS cases. The long-term event-free survival rate for patients with high-grade FN-RMS is below 30%, highlighting the need for improved therapeutic strategies. CD73 is a 5' ectonucleotidase that hydrolyzes AMP to adenosine and regulates the purinergic signaling pathway. We found that CD73 is elevated in FN-RMS tumors that express high levels of TWIST2. While high expression of CD73 contributes to the pathogenesis of multiple cancers, its role in FN-RMS has not been investigated. We found that CD73 knockdown decreased FN-RMS cell growth while up-regulating the myogenic differentiation program. Moreover, mutation of the catalytic residues of CD73 rendered the protein enzymatically inactive and abolished its ability to stimulate FN-RMS growth. Overexpression of wildtype CD73, but not the catalytically inactive mutant, in CD73 knockdown FN-RMS cells restored their growth capacity. Likewise, treatment with an adenosine receptor A2A-B agonist partially rescued FN-RMS cell proliferation and bypassed the CD73 knockdown defective growth phenotype. These results demonstrate that the catalytic activity of CD73 contributes to the pathogenic growth of FN-RMS through the activation of the purinergic signaling pathway. Therefore, targeting CD73 and the purinergic signaling pathway represents a potential therapeutic approach for FN-RMS patients.
Collapse
Affiliation(s)
- Karla Cano Hernandez
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX75390
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Akansha M. Shah
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX75390
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Victor A. Lopez
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Vincent S. Tagliabracci
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX75390
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX75390
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX75390
- HHMI, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Kenian Chen
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Lin Xu
- Quantitative Biomedical Research Center, Peter O’Donnell Jr. School of Public Health, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Rhonda Bassel-Duby
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX75390
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Eric N. Olson
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX75390
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Ning Liu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX75390
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX75390
| |
Collapse
|
182
|
Ibrahim FAR, Hussein NA, Soliman AYM, Shalaby TI, Rashad MM, Matar NA, El-Sewedy TS. Chitosan-loaded piperlongumine nanoparticles and kaempferol enhance the anti-cancer action of doxorubicin in targeting of Ehrlich solid adenocarcinoma: in vivo and in silico modeling study. Med Oncol 2024; 41:61. [PMID: 38253759 PMCID: PMC10803394 DOI: 10.1007/s12032-023-02282-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/06/2023] [Indexed: 01/24/2024]
Abstract
Doxorubicin is a chemotherapeutic drug that generates free radical-induced toxicities. Natural agents are used to potentiate or ameliorate the toxicity of chemotherapy. None of the studies investigating whether antioxidants or prooxidants should be used with chemotherapy have addressed their efficacy in the same study. Therefore, the aim of this study was to investigate the potential synergy between doxorubicin and two natural rarely in vivo studied anticancer agents; the antioxidant "Kaempferol" and prooxidant "Piperlongumine" in Ehrlich tumor mice model. 77 albino mice were divided into 11 groups; Ehrlich ascites carcinoma cells were injected intramuscularly to develop solid tumors. After 14 days, intratumoral injections of single or combinations of free or Chitosan nanoparticles loaded with doxorubicin, Piperlongumine, and Kaempferol were performed. Tumor Characterization of nanoparticles was measured, tumors were histopathologically examined and evaluation of expression for cancer-related genes by real-time PCR. In silico molecular docking was performed to uncover potential novel targets for Piperlongumine and Kaempferol. Despite receiving half of the overall dose compared to the free drugs, the combined doxorubicin/ piperlongumine-chitosan nanoparticles treatment was the most efficient in reducing tumor volume; down-regulating Cyclin D1, and BCL2; as well as the Beclin-1, and Cyclophilin A genes modulating growth, apoptosis, autophagy, and metastasis, respectively; up-regulating the Glutathione peroxidase expression as a defense mechanism protecting from oxidative damage. When combined with doxorubicin, Kaempferol and Piperlongumine were effective against Ehrlich solid tumors. However, the combination with the Piperlongumine-loaded chitosan nanoparticles significantly enhanced its anticancer effect compared to the Kaempferol or the same free compounds.
Collapse
Affiliation(s)
- Fawziya A R Ibrahim
- Department of Applied Medical Chemistry, Medical Research Institute, Alexandria University, 165 El-Horreya Avenue, El-Hadara, Alexandria, Egypt
| | - Neveen A Hussein
- Department of Applied Medical Chemistry, Medical Research Institute, Alexandria University, 165 El-Horreya Avenue, El-Hadara, Alexandria, Egypt
| | - Aisha Y M Soliman
- Faculty of Applied Medical Sciences, Pharos University, Alexandria, Egypt
| | - Thanaa I Shalaby
- Department of Medical Biophysics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Mona M Rashad
- Department of Applied Medical Chemistry, Medical Research Institute, Alexandria University, 165 El-Horreya Avenue, El-Hadara, Alexandria, Egypt
| | - Noura A Matar
- Department of Histochemistry and Cell Biology Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Tarek S El-Sewedy
- Department of Applied Medical Chemistry, Medical Research Institute, Alexandria University, 165 El-Horreya Avenue, El-Hadara, Alexandria, Egypt.
| |
Collapse
|
183
|
Kim CW, Lee JM, Park SW. Divergent roles of the regulatory subunits of class IA PI3K. Front Endocrinol (Lausanne) 2024; 14:1152579. [PMID: 38317714 PMCID: PMC10839044 DOI: 10.3389/fendo.2023.1152579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 12/11/2023] [Indexed: 02/07/2024] Open
Abstract
The regulatory subunit of phosphatidylinositol 3-kinase (PI3K), known as p85, is a critical component in the insulin signaling pathway. Extensive research has shed light on the diverse roles played by the two isoforms of p85, namely p85α and p85β. The gene pik3r1 encodes p85α and its variants, p55α and p50α, while pik3r2 encodes p85β. These isoforms exhibit various activities depending on tissue types, nutrient availability, and cellular stoichiometry. Whole-body or liver-specific deletion of pik3r1 have shown to display increased insulin sensitivity and improved glucose homeostasis; however, skeletal muscle-specific deletion of p85α does not exhibit any significant effects on glucose homeostasis. On the other hand, whole-body deletion of pik3r2 shows improved insulin sensitivity with no significant impact on glucose tolerance. Meanwhile, liver-specific double knockout of pik3r1 and pik3r2 leads to reduced insulin sensitivity and glucose tolerance. In the context of obesity, upregulation of hepatic p85α or p85β has been shown to improve glucose homeostasis. However, hepatic overexpression of p85α in the absence of p50α and p55α results in increased insulin resistance in obese mice. p85α and p85β have distinctive roles in cancer development. p85α acts as a tumor suppressor, but p85β promotes tumor progression. In the immune system, p85α facilitates B cell development, while p85β regulates T cell differentiation and maturation. This review provides a comprehensive overview of the distinct functions attributed to p85α and p85β, highlighting their significance in various physiological processes, including insulin signaling, cancer development, and immune system regulation.
Collapse
Affiliation(s)
- Cho-Won Kim
- Division of Endocrinology, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Junsik M. Lee
- Division of Endocrinology, Boston Children’s Hospital, Boston, MA, United States
| | - Sang Won Park
- Division of Endocrinology, Boston Children’s Hospital, Boston, MA, United States
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
184
|
Zhao S, Zhao Y, Zhao Y, Wang G. Pathogenesis and signaling pathways related to iodine-refractory differentiated thyroid cancer. Front Endocrinol (Lausanne) 2024; 14:1320044. [PMID: 38313845 PMCID: PMC10836590 DOI: 10.3389/fendo.2023.1320044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/26/2023] [Indexed: 02/06/2024] Open
Abstract
Thyroid cancer is the most common malignant neoplasm within the endocrine system and the field of head and neck surgery. Although the majority of thyroid cancers, more than 90%, are well-differentiated thyroid carcinomas with a favourable prognosis, the escalating incidence of this disease has contributed to an increasing number of patients with a propensity for recurrent disease, rapid disease progression, and poor or no response to conventional treatments. These clinical challenges are commonly attributed to alterations in key thyroid oncogenes or signaling pathways, thereby initiating tumour cell dedifferentiation events, accompanied by reduced or virtually absent expression of the sodium/iodine symporter (NIS). As a result, the disease evolves into iodine-refractory differentiated thyroid cancer (RAIR-DTC), an entity that is insensitive to conventional radioiodine therapy. Despite being classified as a differentiated thyroid cancer, RAIR-DTC has an extremely poor clinical prognosis, with a 10-year survival rate of less than 10%. Therefore, it is of paramount importance to comprehensively elucidate the underlying pathogenesis of RAIR-DTC and provide specific targeted interventions. As the pathogenic mechanisms of RAIR-DTC remain elusive, here we aim to review recent advances in understanding the pathogenesis of RAIR-DTC and provide valuable insights for the development of future molecularly targeted therapeutic approaches.
Collapse
Affiliation(s)
- Simeng Zhao
- Department of Thyroid Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| | - Yuejia Zhao
- Department of Thyroid Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| | - Yongfu Zhao
- Department of Thyroid Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| | - Guangzhi Wang
- Department of Thyroid Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
185
|
Bosso M, Haddad D, Al Madhoun A, Al-Mulla F. Targeting the Metabolic Paradigms in Cancer and Diabetes. Biomedicines 2024; 12:211. [PMID: 38255314 PMCID: PMC10813379 DOI: 10.3390/biomedicines12010211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Dysregulated metabolic dynamics are evident in both cancer and diabetes, with metabolic alterations representing a facet of the myriad changes observed in these conditions. This review delves into the commonalities in metabolism between cancer and type 2 diabetes (T2D), focusing specifically on the contrasting roles of oxidative phosphorylation (OXPHOS) and glycolysis as primary energy-generating pathways within cells. Building on earlier research, we explore how a shift towards one pathway over the other serves as a foundational aspect in the development of cancer and T2D. Unlike previous reviews, we posit that this shift may occur in seemingly opposing yet complementary directions, akin to the Yin and Yang concept. These metabolic fluctuations reveal an intricate network of underlying defective signaling pathways, orchestrating the pathogenesis and progression of each disease. The Warburg phenomenon, characterized by the prevalence of aerobic glycolysis over minimal to no OXPHOS, emerges as the predominant metabolic phenotype in cancer. Conversely, in T2D, the prevailing metabolic paradigm has traditionally been perceived in terms of discrete irregularities rather than an OXPHOS-to-glycolysis shift. Throughout T2D pathogenesis, OXPHOS remains consistently heightened due to chronic hyperglycemia or hyperinsulinemia. In advanced insulin resistance and T2D, the metabolic landscape becomes more complex, featuring differential tissue-specific alterations that affect OXPHOS. Recent findings suggest that addressing the metabolic imbalance in both cancer and diabetes could offer an effective treatment strategy. Numerous pharmaceutical and nutritional modalities exhibiting therapeutic effects in both conditions ultimately modulate the OXPHOS-glycolysis axis. Noteworthy nutritional adjuncts, such as alpha-lipoic acid, flavonoids, and glutamine, demonstrate the ability to reprogram metabolism, exerting anti-tumor and anti-diabetic effects. Similarly, pharmacological agents like metformin exhibit therapeutic efficacy in both T2D and cancer. This review discusses the molecular mechanisms underlying these metabolic shifts and explores promising therapeutic strategies aimed at reversing the metabolic imbalance in both disease scenarios.
Collapse
Affiliation(s)
- Mira Bosso
- Department of Pathology, Faculty of Medicine, Health Science Center, Kuwait University, Safat 13110, Kuwait
| | - Dania Haddad
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (D.H.); (A.A.M.)
| | - Ashraf Al Madhoun
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (D.H.); (A.A.M.)
- Department of Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman 15462, Kuwait
| | - Fahd Al-Mulla
- Department of Pathology, Faculty of Medicine, Health Science Center, Kuwait University, Safat 13110, Kuwait
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman 15462, Kuwait; (D.H.); (A.A.M.)
| |
Collapse
|
186
|
Skalniak A, Trofimiuk-Müldner M, Surmiak M, Totoń-Żurańska J, Jabrocka-Hybel A, Hubalewska-Dydejczyk A. Whole-Exome Screening and Analysis of Signaling Pathways in Multiple Endocrine Neoplasia Type 1 Patients with Different Outcomes: Insights into Cellular Mechanisms and Possible Functional Implications. Int J Mol Sci 2024; 25:1065. [PMID: 38256138 PMCID: PMC10816043 DOI: 10.3390/ijms25021065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Multiple endocrine neoplasia type 1 (MEN1) is a syndrome characterized by tumors in multiple organs. Although being a dominantly inherited monogenic disease, disease phenotypes are unpredictable and differ even among members of the same family. There is growing evidence for the role of modifier genes in the alteration of the course of this disease. However, genome-wide screening data are still lacking. In our study, we addressed the different outcomes of the disease, focusing on pituitary and adrenocortical tumors. By means of exome sequencing we identified the affected signaling pathways that segregated with those symptoms. Most significantly, we identified damaging alterations in numerous structural genes responsible for cell adhesion and migration. Additionally, in the case of pituitary tumors, genes related to neuronal function, survival, and morphogenesis were repeatedly identified, while in patients with adrenocortical tumors, TLR10, which is involved in the regulation of the innate immunity, was commonly modified. Our data show that using exome screening, it is possible to find signatures which correlate with the given clinical MEN1 outcomes, providing evidence that studies addressing modifier effects in MEN1 are reasonable.
Collapse
Affiliation(s)
- Anna Skalniak
- Department of Internal Medicine, Jagiellonian University Medical College, 31-066 Krakow, Poland;
| | - Małgorzata Trofimiuk-Müldner
- Department of Endocrinology, Jagiellonian University Medical College, 30-688 Krakow, Poland; (M.T.-M.); (A.J.-H.); (A.H.-D.)
| | - Marcin Surmiak
- Department of Internal Medicine, Jagiellonian University Medical College, 31-066 Krakow, Poland;
| | - Justyna Totoń-Żurańska
- Center for Medical Genomics—OMICRON, Jagiellonian University Medical College, 31-034 Krakow, Poland;
| | - Agata Jabrocka-Hybel
- Department of Endocrinology, Jagiellonian University Medical College, 30-688 Krakow, Poland; (M.T.-M.); (A.J.-H.); (A.H.-D.)
| | - Alicja Hubalewska-Dydejczyk
- Department of Endocrinology, Jagiellonian University Medical College, 30-688 Krakow, Poland; (M.T.-M.); (A.J.-H.); (A.H.-D.)
| |
Collapse
|
187
|
Lei H, Fang F, Yang C, Chen X, Li Q, Shen X. Lifting the veils on transmembrane proteins: Potential anticancer targets. Eur J Pharmacol 2024; 963:176225. [PMID: 38040080 DOI: 10.1016/j.ejphar.2023.176225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/08/2023] [Accepted: 11/24/2023] [Indexed: 12/03/2023]
Abstract
Cancer, as a prevalent cause of mortality, poses a substantial global health burden and hinders efforts to enhance life expectancy. Nevertheless, the prognosis of patients with malignant tumors remains discouraging, owing to the lack of specific diagnostic and therapeutic targets. Therefore, the development of early diagnostic indicators and novel therapeutic drugs for the prevention and treatment of cancer is essential. Transmembrane proteins (TMEMs) are a class of proteins that can span the phospholipid bilayer and are stably anchored. They are associated with fibrotic diseases, neurodegenerative diseases, autoimmune diseases, developmental disorders, and cancer. It has been found that the expression levels of TMEMs were elevated or reduced in cancer cells, exerting pro/anticancer effects. These aberrant expression levels have also been linked to the prognostic and clinicopathological features of diverse tumors. In this review, the structures, functions, and roles of TMEMs in cancer were discussed, and the scientific perspectives were described. This review also explored the potential of TMEMs as tumor drug candidates from the perspective of targeted therapies, and the challenges that need to be overcome in a wide range of preclinical and clinical anticancer research were summarized.
Collapse
Affiliation(s)
- Huan Lei
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Fujin Fang
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Chuanli Yang
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Xiaowei Chen
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Qiong Li
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Xiaobing Shen
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China.
| |
Collapse
|
188
|
Zhang K, Huang R, Ji M, Lin S, Lai F, Wu D, Tian H, Bi J, Peng S, Hu J, Sheng L, Li Y, Chen X, Xu H. Rational design and optimization of novel 4-methyl quinazoline derivatives as PI3K/HDAC dual inhibitors with benzamide as zinc binding moiety for the treatment of acute myeloid leukemia. Eur J Med Chem 2024; 264:116015. [PMID: 38048697 DOI: 10.1016/j.ejmech.2023.116015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 12/06/2023]
Abstract
Simultaneous inhibition of PI3K and HDAC has shown promise for treating various cancers, leading to discovery and development of their dual inhibitors as novel anticancer agents. Herein, we disclose a new series of PI3K/HDAC dual inhibitors bearing a benzamide moiety as the pharmacophore of HDAC inhibition. Based on systematic structure-activity relationship study, compounds 36 and 51 featuring an alkyl and benzoyl linker respectively were identified with favorable potencies against both PI3K and HDAC. In cellular assays, compounds 36 and 51 showed significantly enhanced antiproliferative activities against various cancer cell lines relative to single-target inhibitors. Furthermore, western blotting analysis shows compounds 36 and 51 suppressed AKT phosphorylation and increased H3 acetylation in MV4-11 cells, while flow cytometry analysis reveals both compounds dose-dependently induced cell cycle arrest and cell apoptosis. Supported by pharmacokinetic studies, compounds 36 and 51 were subjected to the in vivo evaluation in a MV4-11 xenograft model, demonstrating significant and dose-dependent anticancer efficacies. Overall, this work provides a promising approach for the treatment of AML by simultaneously inhibiting PI3K and HDAC with a dual inhibitor.
Collapse
Affiliation(s)
- Kehui Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China; Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China; Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences, Beijing, 100050, China
| | - Rui Huang
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin, 301617, China; School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Ming Ji
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China; Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences, Beijing, 100050, China
| | - Songwen Lin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China; Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China; Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences, Beijing, 100050, China
| | - Fangfang Lai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China; Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences, Beijing, 100050, China
| | - Deyu Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China; Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China; Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences, Beijing, 100050, China
| | - Hua Tian
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China; Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China; Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences, Beijing, 100050, China
| | - Jinhui Bi
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China; Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China; Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences, Beijing, 100050, China
| | - Shouguo Peng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China; Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China; Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences, Beijing, 100050, China
| | - Jiaqi Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China; Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China; Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences, Beijing, 100050, China
| | - Li Sheng
- Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yan Li
- Beijing Key Laboratory of Non-Clinical Drug Metabolism and PK/PD Study, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Xiaoguang Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China; Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences, Beijing, 100050, China.
| | - Heng Xu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China; Beijing Key Laboratory of Active Substances Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China; Key Laboratory of Small Molecule Immuno-Oncology Drug Discovery, Chinese Academy of Medical Sciences, Beijing, 100050, China.
| |
Collapse
|
189
|
Gao M, Tuo Z, Jiang Z, Chen Z, Wang J. Dysregulated ANLN reveals immune cell landscape and promotes carcinogenesis by regulating the PI3K/Akt/mTOR pathway in clear cell renal cell carcinoma. Heliyon 2024; 10:e23522. [PMID: 38173514 PMCID: PMC10761583 DOI: 10.1016/j.heliyon.2023.e23522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/17/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
Background Abnormal anillin (ANLN) expression has been observed in multiple tumours and is closely associated with patient prognosis and clinical features. In this study, we systematically elucidated the clinical significance and biological roles of ANLN in patients with clear cell renal cell carcinoma (ccRCC). Methods We obtained transcriptome and clinical data of patients with ccRCC from public databases. Multi-omics data and clinical samples were combined to analyse the correlation between ANLN expression and the clinical characteristics of patients with renal cancer. Additionally, the immune cell landscape of ANLN expression was evaluated using different immune algorithms in the tumour microenvironment. The tumour-promoting potential of ANLN was confirmed using in vitro assays, including CCK8 and Transwell assays. Results Bioinformatics analysis showed that ANLN is over-expressed in patients with ccRCC, as validated by clinical samples. Publicly available clinical data suggest that high ANLN expression may indicate poor outcomes in patients with ccRCC. Moreover, biological function analysis revealed a marked enrichment of the cell cycle and PI3K-Akt pathways. The distribution of immune cells, particularly M2 macrophages, differed in patients with ccRCC. Furthermore, ANLN silencing inhibited the proliferation, migration, and invasion of renal cancer cells in vitro. After ANLN expression was knocked down in 786-O cells, the protein levels of important PI3K signalling pathway components, including PI3K, Akt, and mTOR, drastically decreased. Conclusions These findings suggest that ANLN is dysregulated in renal cancer tissues and promotes tumour progression by activating the PI3K/Akt/mTOR signalling pathway.
Collapse
Affiliation(s)
- Mingzhu Gao
- Department of Oncology, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Zhouting Tuo
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Zhiwei Jiang
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Zhendong Chen
- Department of Oncology, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Jinyou Wang
- Department of Urology, Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| |
Collapse
|
190
|
Di X, Pan Y, Yan J, Liu J, Wen D, Jiang H, Zhang S. Therapeutic potential of anti-PIK3CG treatment for multiple myeloma via inhibiting c-Myc pathway. Heliyon 2024; 10:e23165. [PMID: 38163179 PMCID: PMC10756980 DOI: 10.1016/j.heliyon.2023.e23165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024] Open
Abstract
Multiple myeloma (MM) is a malignant plasma cell disease. The activity of PIK3CG (PI3K catalytic subunit γ) is regulated directly by G-protein-coupled receptor and has been confirmed to be highly expressed in MM cells. This study aimed to determine the effect of pharmacological inhibition of PIK3CG on MM. We found that different concentrations of the PIK3CG inhibitor AS-605240 could suppress the growth of MM cell lines and the expression of c-Myc. The combination of PIK3CG inhibitor and the chemotherapy Melphalan could effectively inhibit the proliferation and migration of MM cells, promote the cell apoptosis, and decrease the ratio of Bcl-2/Bax and the expression of vimentin. The expression of proto-oncogene c-Myc was decreased and the sensitivity of cells to chemotherapeutic drugs was enhanced. Collectively, PIK3CG regulates growth of MM via c-Myc pathway, thus emerging as a promising molecular targeted therapy.
Collapse
Affiliation(s)
- Xiaotang Di
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Yiwen Pan
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan, 410013, China
- The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shanxi, 710061, China
| | - Jinhua Yan
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Jing Liu
- Molecular Biology Research Center, School of Life Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Doudou Wen
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Hao Jiang
- Department of Biomedical Informatics, School of Life Sciences, Central South University, Changsha, Hunan, 410013, China
| | - Shubing Zhang
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, Hunan, 410013, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, Hunan, 410013, China
| |
Collapse
|
191
|
Perry JR, Genenger B, Thind AS, Ashford B, Ranson M. PIK Your Poison: The Effects of Combining PI3K and CDK Inhibitors against Metastatic Cutaneous Squamous Cell Carcinoma In Vitro. Cancers (Basel) 2024; 16:370. [PMID: 38254859 PMCID: PMC10814950 DOI: 10.3390/cancers16020370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) is a very common skin malignancy with poor prognosis for patients with locally advanced or metastatic cSCC (mcSCC). PI3K/AKT/mTOR and cell cycle signalling pathways are often dysregulated in mcSCC. A combination drug approach has been theorised to overcome the underwhelming clinical performance of targeted inhibitors as single agents. This study investigates the potential of targeted inhibition of the p110α-subunit of PI3K with PIK-75 or BGT226 (P13Ki), and of CDK1/2/5/9 with dinaciclib (CDKi) as single agents and in combination. The patient-derived mcSCC cell lines, UW-CSCC1 and UW-CSCC2, were used to assess cell viability, migration, cell signalling, cell cycle distribution, and apoptosis. PIK-75, BGT226, and dinaciclib exhibited strong cytotoxic potency as single agents. Notably, the non-malignant HaCaT cell line was unaffected. In 2D cultures, PIK-75 synergistically enhanced the cytotoxic effects of dinaciclib in UW-CSCC2, but not UW-CSCC1. Interestingly, this pattern was reversed in 3D spheroid models. Despite the combination of PIK-75 and dinaciclib resulting in an increase in cell cycle arrest and apoptosis, and reduced cell motility, these differences were largely negligible compared to their single-agent counterpart. The differential responses between the cell lines correlated with driver gene mutation profiles. These findings suggest that personalised medicine approaches targeting PI3K and CDK pathways in combination may yield some benefit for mcSCC, and that more complex 3D models should be considered for drug responsiveness studies in this disease.
Collapse
Affiliation(s)
- Jay R. Perry
- School of Chemistry and Molecular Bioscience, Molecular Horizon, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia; (B.G.); (A.S.T.)
| | - Benjamin Genenger
- School of Chemistry and Molecular Bioscience, Molecular Horizon, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia; (B.G.); (A.S.T.)
| | - Amarinder Singh Thind
- School of Chemistry and Molecular Bioscience, Molecular Horizon, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia; (B.G.); (A.S.T.)
- Illawarra Shoalhaven Local Health District, Wollongong, NSW 2500, Australia;
| | - Bruce Ashford
- Illawarra Shoalhaven Local Health District, Wollongong, NSW 2500, Australia;
- Graduate School of Medicine, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Marie Ranson
- School of Chemistry and Molecular Bioscience, Molecular Horizon, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, NSW 2522, Australia; (B.G.); (A.S.T.)
| |
Collapse
|
192
|
Sharma P, Chaturvedi S, Khan MA, Rai Y, Bhatt AN, Najmi AK, Akhtar M, Mishra AK. Nanoemulsion potentiates the anti-cancer activity of Myricetin by effective inhibition of PI3K/AKT/mTOR pathway in triple-negative breast cancer cells. Med Oncol 2024; 41:56. [PMID: 38218749 DOI: 10.1007/s12032-023-02274-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 11/28/2023] [Indexed: 01/15/2024]
Abstract
Triple-negative breast cancer (TNBC) is a heterogeneous tumor with a poor prognosis and high metastatic potential, resulting in poor clinical outcomes, necessitating investigation to devise effective therapeutic strategies. Multiple studies have substantiated the anti-cancer properties of the naturally occurring flavonoid "Myricetin" in various malignancies. However, the therapeutic application of Myricetin is impeded by its poor water solubility and low oral bioavailability. To overcome this limitation, we aimed to develop nanoemulsion of Myricetin (Myr-NE) and evaluate its advantage over Myricetin alone in TNBC cells. The nanoemulsion was formulated using Capryol 90 (oil), Tween 20 (surfactant), and Transcutol HP (co-surfactant). The optimized nano-formulation underwent an evaluation to determine its size, zeta potential, morphology, stability, drug encapsulation efficiency, and in vitro release properties. The anti-cancer activity of Myr-NE was further studied to examine its distinct impact on intracellular drug uptake, cell-viability, anti-tumor signaling, oxidative stress, clonogenicity, and cell death, compared with Myricetin alone in MDA-MB-231 (TNBC) cells. The in vitro drug release and intracellular drug uptake of Myricetin was significantly increased in Myr-NE formulation as compared to Myricetin alone. Moreover, Myr-NE exhibited significant inhibition of cell proliferation, clonogenicity, and increased apoptosis with ~ 2.5-fold lower IC50 as compared to Myricetin. Mechanistic investigation revealed that nanoemulsion augmented the anti-cancer efficacy of Myricetin, most likely by inhibiting the PI3K/AKT/mTOR pathway, eventually leading to enhanced cell death in TNBC cells. The study provides substantial experimental evidence to support the notion that the Myr-NE formulation has the potential to be an effective therapeutic drug for TNBC treatment.
Collapse
Affiliation(s)
- Preeti Sharma
- Department of Pharmacology, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard (Hamdard University), New Delhi, 110062, India
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Timarpur, Delhi, 110054, India
| | - Shubhra Chaturvedi
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Timarpur, Delhi, 110054, India
| | - Mohammad Ahmed Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard (Hamdard University), New Delhi, 110062, India
| | - Yogesh Rai
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Timarpur, Delhi, 110054, India
| | - Anant Narayan Bhatt
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Timarpur, Delhi, 110054, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard (Hamdard University), New Delhi, 110062, India
| | - Mohd Akhtar
- Department of Pharmacology, School of Pharmaceutical Education and Research (SPER), Jamia Hamdard (Hamdard University), New Delhi, 110062, India.
| | - Anil Kumar Mishra
- Division of Cyclotron and Radiopharmaceutical Sciences, Institute of Nuclear Medicine and Allied Sciences (INMAS), DRDO, Timarpur, Delhi, 110054, India.
| |
Collapse
|
193
|
Das S, Halder D, Jeyaprakash RS. Computational-guided approach for identification of PI3K alpha inhibitor in the treatment of hepatocellular carcinoma by virtual screening and water map analysis. J Biomol Struct Dyn 2024:1-23. [PMID: 38197431 DOI: 10.1080/07391102.2023.2300131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/22/2023] [Indexed: 01/11/2024]
Abstract
Hepatocellular carcinoma (HCC) is one of the most deadly disorders, with a relative survival rate of 36% in the last 5 years. After an extensive literature survey and pathophysiology analysis, PI3Kα was found to be a promising biological target as PIK3CA gene upregulation was observed in HCC, resulting in the loss of apoptosis of cells, which leads to uncontrollable growth and proliferation. Due to superior selectivity and promising therapeutic activity, the PI3K-targeted molecule library was selected, and the ligand preparation was executed. The study mainly focused on e-pharmacophore development, virtual screening and receptor-ligand docking analysis. Then, MMGBSA and ADME prediction analysis was performed with the top 10 molecules; for further analysis of ligand-receptor binding affinity at the catalytic binding site, induced fit docking was performed with the top two molecules. The analysis of quantum chemical stability descriptors, i.e., frontier molecular orbital analysis, was performed followed by molecular dynamics simulation of 100 ns to better understand the ligand-receptor binding. In this study, water map analysis played a significant role in the hit optimization and analysis of the thermodynamic properties of the receptor-ligand complex. The two hit molecules K894-1435 and K894-1045 represented superior docking scores, enhanced stability, and inhibitory action targeting Valine 851 amino acid residue at the catalytic binding site. Hence, the study has significance for the quest for selective PI3Kα inhibitors through the process of hit-to-lead optimization.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Subham Das
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Debojyoti Halder
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - R S Jeyaprakash
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
194
|
Desai SA, Patel VP, Bhosle KP, Nagare SD, Thombare KC. The tumor microenvironment: shaping cancer progression and treatment response. J Chemother 2024:1-30. [PMID: 38179655 DOI: 10.1080/1120009x.2023.2300224] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/21/2023] [Indexed: 01/06/2024]
Abstract
The tumor microenvironment (TME) plays a crucial role in cancer progression and treatment response. It comprises a complex network of stromal cells, immune cells, extracellular matrix, and blood vessels, all of which interact with cancer cells and influence tumor behaviour. This review article provides an in-depth examination of the TME, focusing on stromal cells, blood vessels, signaling molecules, and ECM, along with commonly available therapeutic compounds that target these components. Moreover, we explore the TME as a novel strategy for discovering new anti-tumor drugs. The dynamic and adaptive nature of the TME offers opportunities for targeting specific cellular interactions and signaling pathways. We discuss emerging approaches, such as combination therapies that simultaneously target cancer cells and modulate the TME. Finally, we address the challenges and future prospects in targeting the TME. Overcoming drug resistance, improving drug delivery, and identifying new therapeutic targets within the TME are among the challenges discussed. We also highlight the potential of personalized medicine and the integration of emerging technologies, such as immunotherapy and nanotechnology, in TME-targeted therapies. This comprehensive review provides insights into the TME and its therapeutic implications. Understanding the TME's complexity and targeting its components offer promising avenues for the development of novel anti-tumor therapies and improved patient outcomes.
Collapse
Affiliation(s)
- Sharav A Desai
- Department of Pharmaceutical Biotechnology, Sanjivani College of Pharmaceutical Education & Research, Kopargaon, India
| | - Vipul P Patel
- Department of Pharmaceutical Biotechnology, Sanjivani College of Pharmaceutical Education & Research, Kopargaon, India
| | - Kunal P Bhosle
- Department of Pharmaceutical Biotechnology, Sanjivani College of Pharmaceutical Education & Research, Kopargaon, India
| | - Sandip D Nagare
- Department of Pharmaceutical Biotechnology, Sanjivani College of Pharmaceutical Education & Research, Kopargaon, India
| | - Kirti C Thombare
- Department of Pharmaceutical Biotechnology, Sanjivani College of Pharmaceutical Education & Research, Kopargaon, India
| |
Collapse
|
195
|
Ke CH, Lin CN, Lin CS. Hormone, Targeted, and Combinational Therapies for Breast Cancers: From Humans to Dogs. Int J Mol Sci 2024; 25:732. [PMID: 38255807 PMCID: PMC10815110 DOI: 10.3390/ijms25020732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Breast cancer (BC) is the most frequent cancer in women. In female dogs, canine mammary gland tumor (CMT) is also the leading neoplasm. Comparative oncology indicates similar tumor behaviors between human BCs (HBCs) and CMTs. Therefore, this review summarizes the current research in hormone and targeted therapies and describes the future prospects for HBCs and CMTs. For hormone receptor-expressing BCs, the first medical intervention is hormone therapy. Monoclonal antibodies against Her2 are proposed for the treatment of Her2+ BCs. However, the major obstacle in hormone therapy or monoclonal antibodies is drug resistance. Therefore, increasing alternatives have been developed to overcome these difficulties. We systemically reviewed publications that reported inhibitors targeting certain molecules in BC cells. The various treatment choices for humans decrease mortality in females with BC. However, the development of hormone or targeted therapies in veterinary medicine is still limited. Even though some clinical trials have been proposed, severe side effects and insufficient case numbers might restrict further explorations. This difficulty highlights the urgent need to develop updated hormone/targeted therapy or novel immunotherapies. Therefore, exploring new therapies to provide more precise use in dogs with CMTs will be the focus of future research. Furthermore, due to the similarities shared by humans and dogs, well-planned prospective clinical trials on the use of combinational or novel immunotherapies in dogs with CMTs to obtain solid results for both humans and dogs can be reasonably anticipated in the future.
Collapse
Affiliation(s)
- Chiao-Hsu Ke
- Sustainable Swine Research Center, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan; (C.-H.K.); (C.-N.L.)
- Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Chao-Nan Lin
- Sustainable Swine Research Center, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan; (C.-H.K.); (C.-N.L.)
- Animal Disease Diagnostic Center, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Chen-Si Lin
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
196
|
Chen Q, Jia G, Zhang X, Ma W. Targeting HER3 to overcome EGFR TKI resistance in NSCLC. Front Immunol 2024; 14:1332057. [PMID: 38239350 PMCID: PMC10794487 DOI: 10.3389/fimmu.2023.1332057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/13/2023] [Indexed: 01/22/2024] Open
Abstract
Receptor tyrosine kinases (RTKs) play a crucial role in cellular signaling and oncogenic progression. Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR TKIs) have become the standard treatment for advanced non-small cell lung cancer (NSCLC) patients with EGFR-sensitizing mutations, but resistance frequently emerges between 10 to 14 months. A significant factor in this resistance is the role of human EGFR 3 (HER3), an EGFR family member. Despite its significance, effective targeting of HER3 is still developing. This review aims to bridge this gap by deeply examining HER3's pivotal contribution to EGFR TKI resistance and spotlighting emerging HER3-centered therapeutic avenues, including monoclonal antibodies (mAbs), TKIs, and antibody-drug conjugates (ADCs). Preliminary results indicate combining HER3-specific treatments with EGFR TKIs enhances antitumor effects, leading to an increased objective response rate (ORR) and prolonged overall survival (OS) in resistant cases. Embracing HER3-targeting therapies represents a transformative approach against EGFR TKI resistance and emphasizes the importance of further research to optimize patient stratification and understand resistance mechanisms.
Collapse
Affiliation(s)
- Qiuqiang Chen
- Key Laboratory for Translational Medicine, The First Affiliated Hospital, Huzhou University, Huzhou, Zhejiang, China
| | - Gang Jia
- Department of Medical Oncology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xilin Zhang
- Key Laboratory for Translational Medicine, The First Affiliated Hospital, Huzhou University, Huzhou, Zhejiang, China
| | - Wenxue Ma
- Department of Medicine, Moores Cancer Center, and Sanford Stem Cell Institute, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
197
|
Tufail M, Hu JJ, Liang J, He CY, Wan WD, Huang YQ, Jiang CH, Wu H, Li N. Predictive, preventive, and personalized medicine in breast cancer: targeting the PI3K pathway. J Transl Med 2024; 22:15. [PMID: 38172946 PMCID: PMC10765967 DOI: 10.1186/s12967-023-04841-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/27/2023] [Indexed: 01/05/2024] Open
Abstract
Breast cancer (BC) is a multifaceted disease characterized by distinct molecular subtypes and varying responses to treatment. In BC, the phosphatidylinositol 3-kinase (PI3K) pathway has emerged as a crucial contributor to the development, advancement, and resistance to treatment. This review article explores the implications of the PI3K pathway in predictive, preventive, and personalized medicine for BC. It emphasizes the identification of predictive biomarkers, such as PIK3CA mutations, and the utility of molecular profiling in guiding treatment decisions. The review also discusses the potential of targeting the PI3K pathway for preventive strategies and the customization of therapy based on tumor stage, molecular subtypes, and genetic alterations. Overcoming resistance to PI3K inhibitors and exploring combination therapies are addressed as important considerations. While this field holds promise in improving patient outcomes, further research and clinical trials are needed to validate these approaches and translate them into clinical practice.
Collapse
Affiliation(s)
- Muhammad Tufail
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Jia-Ju Hu
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Liang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Cai-Yun He
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Wen-Dong Wan
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Yu-Qi Huang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
| | - Can-Hua Jiang
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China
- Institute of Oral Precancerous Lesions, Central South University, Changsha, China
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hong Wu
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, China
| | - Ning Li
- Department of Oral and Maxillofacial Surgery, Center of Stomatology, Xiangya Hospital, Central South University, Changsha, China.
- Institute of Oral Precancerous Lesions, Central South University, Changsha, China.
- Research Center of Oral and Maxillofacial Tumor, Xiangya Hospital, Central South University, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
198
|
Trigueiros BAFDS, Santos IJS, Pimenta FP, Ávila AR. A Long Way to Go: A Scenario for Clinical Trials of PI3K Inhibitors in Treating Cancer. Cancer Control 2024; 31:10732748241238047. [PMID: 38494880 PMCID: PMC10946074 DOI: 10.1177/10732748241238047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/02/2024] [Accepted: 02/14/2024] [Indexed: 03/19/2024] Open
Abstract
BACKGROUND Alterations in PI3K function are directly related to cancer, making PI3K inhibitors suitable options for anticancer therapies. Information on therapy using different types of PI3K inhibitors is available in literature, providing indications of trends in developing new therapies. Although some studies on PI3K inhibitors for cancer treatment provide clinical evidence, they do not allow a careful search for potential PI3K inhibitors conducted by development indicators. Here, we performed a foresight study of clinical trials involving PI3K inhibitors from the past 11 years using indicators of clinical evolution to identify technological trends and provide data for supporting recommendations for new study designs. METHODS A comprehensive foresight study was designed based on documents from clinical trials on PI3K inhibitors to perform a systematic and comparative analysis, in order to identify technological trends on new cancer therapies. RESULTS Our results demonstrate that total number of clinical trials has decreased over the years and, currently, there is a clear prevalence of studies using isoform-specific inhibitors in combined interventions. Clinical trials in Phases I and II were the most frequently found in the database, whereas Phase III trials correspond to 7% of studies. The measurement of clinical trials progression using indicators (drugs in Phase III profile, top-10 drugs, and top-10 combined drugs) demonstrated that the 3 new medicines BKM120, IBI-376, and PF-05212384 have a high potential to provide more efficient cancer treatment in combined interventions. These data also include the groups of targets for each drug, providing a useful and reliable source for design new combinations to overcome the resistance and the poor tolerability observed in some PI3K therapies. CONCLUSIONS The establishment of development indicators based on clinical trials for cancer treatment was useful to highlight the clinical investment in 3 new PI3K drugs and the advantages of combine therapy using FDA-approved drugs.
Collapse
Affiliation(s)
| | | | - Fabricia Pires Pimenta
- Instituto Carlos Chagas - Fiocruz Paraná, Fundação Oswaldo Cruz - Fiocruz, Curitiba, Brasil
| | - Andréa Rodrigues Ávila
- Instituto Carlos Chagas - Fiocruz Paraná, Fundação Oswaldo Cruz - Fiocruz, Curitiba, Brasil
| |
Collapse
|
199
|
Bardhan M, Dey D, Suresh V, Javed B, Venur VA, Joe N, Kalidindi R, Ozair A, Khan M, Mahtani R, Lo S, Odia Y, Ahluwalia MS. An overview of the therapeutic strategies for neoplastic meningitis due to breast cancer: when and why? Expert Rev Neurother 2024; 24:77-103. [PMID: 38145503 DOI: 10.1080/14737175.2023.2293223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/06/2023] [Indexed: 12/27/2023]
Abstract
INTRODUCTION Neoplastic meningitis (NM), also known as leptomeningeal carcinomatosis, is characterized by the infiltration of tumor cells into the meninges, and poses a significant therapeutic challenge owing to its aggressive nature and limited treatment options. Breast cancer is a common cause of NM among solid tumors, further highlighting the urgent need to explore effective therapeutic strategies. This review aims to provide insights into the evolving landscape of NM therapy in breast cancer by collating existing research, evaluating current treatments, and identifying potential emerging therapeutic options. AREAS COVERED This review explores the clinical features, therapeutic strategies, recent advances, and challenges of managing NM in patients with breast cancer. Its management includes multimodal strategies, including systemic and intrathecal chemotherapy, radiation therapy, and supportive care. This review also emphasizes targeted drug options and optimal drug concentrations, and discusses emerging therapies. Additionally, it highlights the variability in treatment outcomes and the potential of combination regimens to effectively manage NM in breast cancer. EXPERT OPINION Challenges in treating NM include debates over clinical trial end points and the management of adverse effects. Drug resistance and low response rates are significant hurdles, particularly inHER2-negative breast cancer. The development of more precise and cost-effective medications with improved selectivity is crucial. Additionally, global efforts are needed for infrastructure development and cancer control considering the diverse nature of the disease.
Collapse
Affiliation(s)
- Mainak Bardhan
- Department of Medical Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA
| | | | - Vinay Suresh
- King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Binish Javed
- Atal Bihari Vajpayee Institute of Medical Sciences and Dr. Ram Manohar Lohia Hospital, New Delhi, India
| | - Vyshak Alva Venur
- Seattle Cancer Care Alliance, Fred Hutchinson Cancer Center, University of Washington, Seattle, WA, USA
| | - Neha Joe
- St John's Medical College Hospital, Bengaluru, India
| | | | - Ahmad Ozair
- Department of Medical Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | - Reshma Mahtani
- Department of Medical Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA
| | - Simon Lo
- Department of Radiation Oncology, University of Washington School of Medicine, Seattle, WA, USA
| | - Yazmin Odia
- Department of Medical Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA
| | - Manmeet S Ahluwalia
- Department of Medical Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| |
Collapse
|
200
|
Tan X, Luo Q, Hua Y, Zhou S, Peng G, Zhu R, Chen W, Li Y. Experimental Verification of Erchen Decoction Plus Huiyanzhuyu Decoction in the Treatment of Laryngeal Squamous Cell Carcinoma Based on Network Pharmacology. Integr Cancer Ther 2024; 23:15347354241259182. [PMID: 38845538 PMCID: PMC11159533 DOI: 10.1177/15347354241259182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 04/30/2024] [Accepted: 05/19/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND The prescription of Chinese herbal medicine (CHM) consists of multiple herbs that exhibit synergistic effects due to the presence of multiple components targeting various pathways. In clinical practice, the combination of Erchen decoction and Huiyanzhuyu decoction (EHD) has shown promising outcomes in treating patients with laryngeal squamous cell carcinoma (LSCC). However, the underlying mechanism by which EHD exerts its therapeutic effects in LSCC remains unknown. METHODS Online databases were utilized for the analysis and prediction of the active constituents, targets, and key pathways associated with EHD in the treatment of LSCC. The protein-protein interaction (PPI) network of common targets was constructed and visualized using Cytoscape 3.8.1 software. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to investigate the functional roles of core targets within the PPI network. Protein clustering was conducted utilizing the MCODE plug-in. The obtained results highlight the principal targets and pathways involved. Subsequently, clinical samples were collected to validate alterations in the levels of these main targets through Western blotting (WB) and immunohistochemistry (IHC). Furthermore, both in vivo and in vitro experiments were conducted to investigate the therapeutic effects of EHD on healing LSCC and elucidate its underlying mechanism. Additionally, to ensure experimental reliability and reproducibility, quality control measures utilizing HPLC were implemented for EHD herbal medicine. RESULTS The retrieval and analysis of databases in EHD medicine and LSCC disease yielded a total of 116 overlapping targets. The MCODE plug-in methods were utilized to acquire 8 distinct protein clusters through protein clustering. The findings indicated that both the first and second clusters exhibited a size greater than 6 scores, with key genes PI3K and ErbB occupying central positions, while the third and fourth clusters were associated with proteins in the PI3K, STAT3, and Foxo pathways. GO functional analysis reported that these targets had associations mainly with the pathway of p53 mediated DNA damage and negative regulation of cell cycle in terms of biological function; the death-induced signaling complex in terms of cell function; transcription factor binding and protein kinase activity in terms of molecular function. The KEGG enrichment analysis demonstrated that these targets were correlated with several signaling pathways, including PI3K-Akt, FoxO, and ErbB2 signaling pathway. On one hand, we observed higher levels of key genes such as P-STAT3, P-PDK1, P-Akt, PI3K, and ErbB2 in LSCC tumor tissues compared to adjacent tissues. Conversely, FOXO3a expression was lower in LSCC tumor tissues. On the other hand, the key genes mentioned above were also highly expressed in both LSCC xenograft nude mice tumors and LSCC cell lines, while FOXO3a was underexpressed. In LSCC xenograft nude mice models, EHD treatment resulted in downregulation of P-STAT3, P-PDK1, PI3K, P-AKT, and ErbB2 protein levels but upregulated FOXO3a protein level. EHD also affected the levels of P-STAT3, P-PDK1, PI3K, P-AKT, FOXO3a, and ErbB2 proteins in vitro: it inhibited P-STAT3, P-AKT, and ErbB2, while promoting FOXO3a; however, it had no effect on PDK1 protein. In addition, HPLC identified twelve compounds accounting for more than 30% within EHD. The findings from this study can serve as valuable guidance for future experimental investigations. CONCLUSION The possible mechanism of EHD medicine action on LSCC disease is speculated to be closely associated with the ErbB2/PI3K/AKT/FOXO3a signaling pathway.
Collapse
Affiliation(s)
- Xi Tan
- Otolaryngology-Head and Neck Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Otolaryngology-Head and Neck Department, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Qiulan Luo
- Otolaryngology-Head and Neck Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Otolaryngology-Head and Neck Department, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yiwei Hua
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shiqing Zhou
- Otolaryngology-Head and Neck Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Otolaryngology-Head and Neck Department, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Guiyuan Peng
- Otolaryngology-Head and Neck Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Otolaryngology-Head and Neck Department, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Renliang Zhu
- Otolaryngology-Head and Neck Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Otolaryngology-Head and Neck Department, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Wenyong Chen
- Otolaryngology-Head and Neck Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Otolaryngology-Head and Neck Department, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Yunying Li
- Otolaryngology-Head and Neck Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Otolaryngology-Head and Neck Department, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|