151
|
Wang D, Zhao J, Zhang J, Lv C, Bao S, Gao P, He M, Li L, Zhao H, Zhang C. Targeting TNF-α: The therapeutic potential of certolizumab pegol in the early period of cerebral ischemia reperfusion injury in mice. Int Immunopharmacol 2024; 137:112498. [PMID: 38908079 DOI: 10.1016/j.intimp.2024.112498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
The neuroinflammatory response triggered by cerebral ischemia-reperfusion injury (CIRI) is characterized by the upsurge of pro-inflammatory cytokines, including TNF-α, IL-1β, and IL-6, which promote leukocyte infiltration and subsequent accumulation in the ischemic zone. This accumulation further intensifies inflammation and aggravates ischemic damage. Certolizumab pegol (CZP), a monoclonal antibody targeting TNF-α, is widely used in treating various inflammatory diseases. This study explored the therapeutic potential of CZP in a mouse model of CIRI, induced by middle cerebral artery occlusion (MCAO), focusing on its influence on the microglial inflammatory response. In vitro analyses revealed that CZP markedly inhibits TNF-α-stimulated inflammation in primary microglia with an EC50 of 1.743 ng/mL. In vivo, MCAO mice treated with CZP (10 μg/mouse, i.p.) for 3 days showed reduced infarct volume, partially improved neurological function, and diminished blood-brain barrierdisruption. Additionally, CZP treatment curtailed microglial activation and the release of pro-inflammatory mediators in the early stages of stroke. It also favorably modulated microglial M1/M2 polarization, rebalanced Th17/Treg cells dynamics, and inhibited Caspase-8-mediated GSDMD cleavage, preventing microglial pyroptosis. Collectively, this study described that the treatment with CZP reversed damaging process caused by CIRI, offering a promising therapeutic strategy for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Dexiao Wang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National Local Joint Engineering Research Center of Entomoceutics, Dali, PR China
| | - Jie Zhao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National Local Joint Engineering Research Center of Entomoceutics, Dali, PR China
| | - Jingyu Zhang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National Local Joint Engineering Research Center of Entomoceutics, Dali, PR China
| | - Changling Lv
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China
| | - Shuangyan Bao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National Local Joint Engineering Research Center of Entomoceutics, Dali, PR China
| | - Pengfei Gao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National Local Joint Engineering Research Center of Entomoceutics, Dali, PR China
| | - Miao He
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China
| | - Lijuan Li
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; School of Public Health, Dali University, Dali, PR China.
| | - Hairong Zhao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National Local Joint Engineering Research Center of Entomoceutics, Dali, PR China.
| | - Chenggui Zhang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, PR China; National Local Joint Engineering Research Center of Entomoceutics, Dali, PR China.
| |
Collapse
|
152
|
Mroziak M, Kozłowski G, Kołodziejczyk W, Pszczołowska M, Walczak K, Beszłej JA, Leszek J. Dendrimers-Novel Therapeutic Approaches for Alzheimer's Disease. Biomedicines 2024; 12:1899. [PMID: 39200363 PMCID: PMC11351976 DOI: 10.3390/biomedicines12081899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Dendrimers are covalently bonded globular nanostructures that may be used in the treatment of Alzheimer's disease (AD). Nowadays, AD therapies are focused on improving cognitive functioning and not causal treatment. However, this may change with the use of dendrimers, which are being investigated as a drug-delivery system or as a drug per se. With their ability to inhibit amyloid formation and their anti-tau properties, they are a promising therapeutic option for AD patients. Studies have shown that dendrimers may inhibit amyloid formation in at least two ways: by blocking fibril growth and by breaking already existing fibrils. Neurofibrillary tangles (NFTs) are abnormal filaments built by tau proteins that can be accumulated in the cell, which leads to the loss of cytoskeletal microtubules and tubulin-associated proteins. Cationic phosphorus dendrimers, with their anti-tau properties, can induce the aggregation of tau into amorphous structures. Drug delivery to mitochondria is difficult due to poor transport across biological barriers, such as the inner mitochondrial membrane, which is highly negatively polarized. Dendrimers may be potential nanocarriers and increase mitochondria targeting. Another considered use of dendrimers in AD treatment is as a drug-delivery system, for example, carbamazepine (CBZ) or tacrine. They can also be used to transport siRNA into neuronal tissue and to carry antioxidants and anti-inflammatory drugs to act protectively on the nervous system.
Collapse
Affiliation(s)
- Magdalena Mroziak
- Faculty of Medicine, Wrocław Medical University, 50-367 Wrocław, Poland
| | - Gracjan Kozłowski
- Faculty of Medicine, Wrocław Medical University, 50-367 Wrocław, Poland
| | | | | | - Kamil Walczak
- Faculty of Medicine, Wrocław Medical University, 50-367 Wrocław, Poland
| | - Jan Aleksander Beszłej
- Clinic of Psychiatry, Department of Psychiatry, Medical Department, Wrocław Medical University, 50-367 Wrocław, Poland
| | - Jerzy Leszek
- Clinic of Psychiatry, Department of Psychiatry, Medical Department, Wrocław Medical University, 50-367 Wrocław, Poland
| |
Collapse
|
153
|
Yang J, Tian M, Zhang L, Xin C, Huo J, Liu Q, Dong H, Li R, Liu Y. Assessment of Rab geranylgeranyltransferase subunit beta in amyotrophic lateral sclerosis. Front Neurol 2024; 15:1447461. [PMID: 39224887 PMCID: PMC11366579 DOI: 10.3389/fneur.2024.1447461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction Geranylgeranyltransferase Subunit Beta (RABGGTB) was expressed at higher levels in patients with Amyotrophic lateral sclerosis (ALS) compared with healthy controls. This study aims to observe the expression of RABGGTB in different cells from patients with ALS and different diseases. Methods In this case-control study, we collected peripheral blood from patients with ALS and healthy controls, and compared the expression of RABGGTB in natural killer cells (NK), T cells and B cells between patients with ALS and healthy controls by flow cytometry. And compared the expression of RABGGTB in monocytes and monocyte-derived macrophages from patients with ALS, Parkinson's disease (PD), acute cerebrovascular disease (ACVD), and healthy controls by flow cytometry and immunofluorescence. Then flow cytometry was used to detect the expression of RABGGTB in monocytes from SOD1G93A mice and WT mice. Results The expression of RABGGTB was not significantly changed in NK cells, cytotoxic T cells (CTL), helper T cells (Th), regulatory T cells (Treg), and B cells from patients with ALS compared to healthy controls. And the expression of RABGGTB in monocytes and monocyte-derived macrophages was higher in the ALS group than in the PD, ACVD and control group. The expression of RABGGTB was significantly higher in monocytes of SOD1G93A mice compared to WT mice. Conclusion These findings suggest that RABGGTB expression was increased in monocytes and monocyte-derived macrophages from patients with ALS, not in NK, CTL, Th, Treg, and B cells. Future studies are needed to find the clinical implication of RABGGTB in ALS.
Collapse
Affiliation(s)
- Jing Yang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, Hebei, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, China
| | - Mei Tian
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, Hebei, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, China
| | - Lei Zhang
- Department of Emergency, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Cheng Xin
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, Hebei, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, China
| | - Jia Huo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, Hebei, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, China
| | - Qi Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, Hebei, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, China
| | - Hui Dong
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, Hebei, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, China
| | - Rui Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, Hebei, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, China
| | - Yaling Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
- The Key Laboratory of Neurology, Hebei Medical University, Ministry of Education, Shijiazhuang, Hebei, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, Hebei, China
| |
Collapse
|
154
|
Flieger J, Forma A, Flieger W, Flieger M, Gawlik PJ, Dzierżyński E, Maciejewski R, Teresiński G, Baj J. Carotenoid Supplementation for Alleviating the Symptoms of Alzheimer's Disease. Int J Mol Sci 2024; 25:8982. [PMID: 39201668 PMCID: PMC11354426 DOI: 10.3390/ijms25168982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Alzheimer's disease (AD) is characterized by, among other things, dementia and a decline in cognitive performance. In AD, dementia has neurodegenerative features and starts with mild cognitive impairment (MCI). Research indicates that apoptosis and neuronal loss occur in AD, in which oxidative stress plays an important role. Therefore, reducing oxidative stress with antioxidants is a natural strategy to prevent and slow down the progression of AD. Carotenoids are natural pigments commonly found in fruits and vegetables. They include lipophilic carotenes, such as lycopene, α- and β-carotenes, and more polar xanthophylls, for example, lutein, zeaxanthin, canthaxanthin, and β-cryptoxanthin. Carotenoids can cross the blood-brain barrier (BBB) and scavenge free radicals, especially singlet oxygen, which helps prevent the peroxidation of lipids abundant in the brain. As a result, carotenoids have neuroprotective potential. Numerous in vivo and in vitro studies, as well as randomized controlled trials, have mostly confirmed that carotenoids can help prevent neurodegeneration and alleviate cognitive impairment in AD. While carotenoids have not been officially approved as an AD therapy, they are indicated in the diet recommended for AD, including the consumption of products rich in carotenoids. This review summarizes the latest research findings supporting the potential use of carotenoids in preventing and alleviating AD symptoms. A literature review suggests that a diet rich in carotenoids should be promoted to avoid cognitive decline in AD. One of the goals of the food industry should be to encourage the enrichment of food products with functional substances, such as carotenoids, which may reduce the risk of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland
| | - Alicja Forma
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (A.F.); (M.F.); (G.T.)
| | - Wojciech Flieger
- Department of Plastic Surgery, St. John’s Cancer Center, ul. Jaczewskiego 7, 20-090 Lublin, Poland; (W.F.)
| | - Michał Flieger
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (A.F.); (M.F.); (G.T.)
| | - Piotr J. Gawlik
- Department of Plastic Surgery, St. John’s Cancer Center, ul. Jaczewskiego 7, 20-090 Lublin, Poland; (W.F.)
| | - Eliasz Dzierżyński
- Department of Plastic Surgery, St. John’s Cancer Center, ul. Jaczewskiego 7, 20-090 Lublin, Poland; (W.F.)
| | - Ryszard Maciejewski
- Institute of Health Sciences, John Paul II Catholic University of Lublin, Konstantynów 1 H, 20-708 Lublin, Poland;
| | - Grzegorz Teresiński
- Department of Forensic Medicine, Medical University of Lublin, ul. Jaczewskiego 8b, 20-090 Lublin, Poland; (A.F.); (M.F.); (G.T.)
| | - Jacek Baj
- Department of Correct, Clinical and Imaging Anatomy, Medical University of Lublin, ul. Jaczewskiego 4, 20-090 Lublin, Poland;
| |
Collapse
|
155
|
Al-Huthaifi AM, Radman BA, Al-Alawi AA, Mahmood F, Liu TB. Mechanisms and Virulence Factors of Cryptococcus neoformans Dissemination to the Central Nervous System. J Fungi (Basel) 2024; 10:586. [PMID: 39194911 DOI: 10.3390/jof10080586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 07/31/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
Cryptococcosis is a prevalent fungal infection of the central nervous system (CNS) caused by Cryptococcus neoformans, a yeast with a polysaccharide capsule in the basidiomycete group. Normally, C. neoformans infects the respiratory tract and then breaches the blood-brain barrier (BBB), leading to meningitis or meningoencephalitis, which leads to hundreds of thousands of deaths each year. Although the mechanism by which C. neoformans infiltrates the BBB to invade the brain has yet to be fully understood, research has revealed that C. neoformans can cross the BBB using transcellular penetration, paracellular traversal, and infected phagocytes (the "Trojan horse" mechanism). The secretion of multiple virulence factors by C. neoformans is crucial in facilitating the spread of infection after breaching the BBB and causing brain infections. Extensive research has shown that various virulence factors play a significant role in the dissemination of infection beyond the lungs. This review explores the mechanisms of C. neoformans entering the CNS and explains how it bypasses the BBB. Additionally, it aims to understand the interplay between the regulatory mechanisms and virulence factors of C. neoformans.
Collapse
Affiliation(s)
| | - Bakeel A Radman
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
| | | | - Fawad Mahmood
- Medical Research Institute, Southwest University, Chongqing 400715, China
| | - Tong-Bao Liu
- Medical Research Institute, Southwest University, Chongqing 400715, China
- Jinfeng Laboratory, Chongqing 401329, China
- Engineering Research Center for Cancer Biomedical and Translational Medicine, Southwest University, Chongqing 400715, China
| |
Collapse
|
156
|
Chen M, He X, Fan Y, Xia L, Dong Z. Sofalcone attenuates neurodegeneration in MPTP-induced mouse model of Parkinson's disease by inhibiting oxidative stress and neuroinflammation. Mol Biol Rep 2024; 51:908. [PMID: 39141244 DOI: 10.1007/s11033-024-09852-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/08/2024] [Indexed: 08/15/2024]
Abstract
BACKGROUND Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by oxidative stress and neuroinflammation. Sofalcone (SFC), a chalcone derivative known for its antioxidative and anti-inflammatory properties, is widely used clinically as a gastric mucosa protective agent. However, its therapeutic potential in PD remains to be fully explored. In this study, we investigated the neuroprotective effects of SFC in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model. METHODS AND RESULTS We found that SFC ameliorated MPTP-induced motor impairments in mice, as assessed by the rotarod and wire tests. Moreover, SFC administration prevented the loss of dopaminergic neurons and striatal degeneration induced by MPTP. Subsequent investigations revealed that SFC reversed MPTP-induced downregulation of NRF2, reduced elevated levels of reactive oxygen species (ROS) and malondialdehyde (MDA), and increased total antioxidant capacity (TAOC). Furthermore, SFC suppressed MPTP-induced activation of microglia and astrocytes, downregulated the pro-inflammatory cytokine TNF-α, and upregulated the anti-inflammatory cytokine IL-4. Additionally, SFC ameliorated the MPTP-induced downregulation of phosphorylation of Akt at Ser473. CONCLUSIONS This study provides evidence for the neuroprotective effects of SFC, highlighting its antioxidative and anti-inflammatory properties and its role in Akt activation in the PD model. These findings underscore SFC's potential as a promising therapeutic candidate for PD, warranting further clinical investigation.
Collapse
Affiliation(s)
- Mulan Chen
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Xin He
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yepeng Fan
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Lei Xia
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Zhifang Dong
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| |
Collapse
|
157
|
Chen J, Luo R, Li S, Shao J, Wang T, Xie S, Xu L, You Q, Feng S, Feng G. A novel NIR fluorescent probe for copper(ii) imaging in Parkinson's disease mouse brain. Chem Sci 2024; 15:13082-13089. [PMID: 39148792 PMCID: PMC11323298 DOI: 10.1039/d4sc03445g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/12/2024] [Indexed: 08/17/2024] Open
Abstract
Abnormal copper ion (Cu2+) levels are considered to be one of the pathological factors of Parkinson's disease (PD), but the internal relationship between Cu2+ and PD progression remains elusive. Visualizing Cu2+ in the brain will be pivotal for comprehending the underlying pathophysiological processes of PD. In this work, a near-infrared (NIR) fluorescent probe, DDAO-Cu, capable of detecting Cu2+ with exceptional sensitivity (about 1.8 nM of detection limit) and selectivity, rapid response (<3 min), and deep tissue penetration, was designed for quantification and visualization of the Cu2+ level. It could detect not only Cu2+ in cells but also the changes in the Cu2+ level in the rotenone-induced cell and zebrafish PD models. Moreover, DDAO-Cu can cross the blood-brain barrier to image Cu2+ in the brain of PD model mice. The imaging result showed a significant increase in Cu2+ levels in brain regions of PD model mice, including the cerebral cortex, hippocampus, and striatum. Meanwhile, Cu2+ levels in the substantia nigra region were significantly reduced in PD model mice. It revealed the nuanced relationship of Cu2+ levels in different brain regions in the disease and indicated the pathological complexity of PD. Overall, DDAO-Cu represents a novel and practical tool for investigating Cu2+-related physiological and pathological processes underlying Parkinson's disease.
Collapse
Affiliation(s)
- Jianmei Chen
- School of Pharmacy, Hubei University of Chinese Medicine Wuhan 430065 China
| | - Rongqing Luo
- School of Pharmacy, Hubei University of Chinese Medicine Wuhan 430065 China
| | - Shuang Li
- School of Pharmacy, Hubei University of Chinese Medicine Wuhan 430065 China
| | - Jinping Shao
- School of Pharmacy, Hubei University of Chinese Medicine Wuhan 430065 China
| | - Ting Wang
- School of Pharmacy, Hubei University of Chinese Medicine Wuhan 430065 China
| | - Shumei Xie
- School of Pharmacy, Hubei University of Chinese Medicine Wuhan 430065 China
| | - Li Xu
- School of Pharmacy, Hubei University of Chinese Medicine Wuhan 430065 China
- Hubei Shizhen Laboratory, Hubei University of Chinese Medicine Wuhan 430065 China
| | - Qiuyun You
- School of Pharmacy, Hubei University of Chinese Medicine Wuhan 430065 China
- Hubei Shizhen Laboratory, Hubei University of Chinese Medicine Wuhan 430065 China
- Engineering Research Center of TCM Protection Technology and New Product Development for the Elderly Brain Health, Ministry of Education Wuhan 430065 China
| | - Shumin Feng
- School of Pharmacy, Hubei University of Chinese Medicine Wuhan 430065 China
- Hubei Shizhen Laboratory, Hubei University of Chinese Medicine Wuhan 430065 China
| | - Guoqiang Feng
- Key Laboratory of Pesticide and Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University 152 Luoyu Road Wuhan 430079 PR China
| |
Collapse
|
158
|
Bian Y, Qiao N, Han S, Gao J, Lv X, Yuan L, Zhang L, Wei Z. Anti-Neuroinflammatory Effect of Ombuin from Rhamnus erythroxylon Pall. Leaves in LPS-Induced BV-2 Microglia by Targeting Src and Suppressing the PI3K-AKT/NF-κB Signaling Pathway. Int J Mol Sci 2024; 25:8789. [PMID: 39201475 PMCID: PMC11354356 DOI: 10.3390/ijms25168789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 09/02/2024] Open
Abstract
The leaves of Rhamnus erythroxylon Pall. are widely used as tea substitutes in northwest China for their fragrant aroma, anti-irritability, and digestion-enhancing properties. Ombuin, a main flavonoid compound found in the leaves, exhibited notable anti-inflammatory and antioxidant effects. However, its potential role in treating neuroinflammatory-related diseases remains unexplored. Thus, this study aims to evaluate the anti-neuroinflammatory effects of ombuin and to explore the underlying molecular mechanisms. According to our findings, ombuin dramatically reduced the release of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), IL-1β, nitric oxide (NO), and reactive oxygen species (ROS) in lipopolysaccharide (LPS)-stimulated BV-2 microglia. Further analysis, including transcriptomics, network pharmacology, molecular docking, and cellular heat transfer assays, revealed that Src was a direct target of ombuin. Western blot analysis showed that ombuin effectively suppressed Src phosphorylation and inhibited the downstream expressions of p-PI3K p85, p-AKT1, p-IKKα/β, p-IκBα, and nuclear factor κB (NF-κB). Meanwhile, the repression of Src significantly reversed the anti-neuroinflammatory activity of ombuin. Our results identified Src as a direct target of ombuin and implied that ombuin exerted an anti-neuroinflammatory effect by inhibiting Src phosphorylation and suppressing the activation of the PI3K-AKT and NF-κB pathways, which might provide an alternative therapeutic strategy for neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Linjing Zhang
- School of Life Science, Shanxi Normal University, Taiyuan 030006, China
| | - Zuofu Wei
- School of Life Science, Shanxi Normal University, Taiyuan 030006, China
| |
Collapse
|
159
|
Monda A, La Torre ME, Messina A, Di Maio G, Monda V, Moscatelli F, De Stefano M, La Marra M, Padova MD, Dipace A, Limone P, Casillo M, Monda M, Messina G, Polito R. Exploring the ketogenic diet's potential in reducing neuroinflammation and modulating immune responses. Front Immunol 2024; 15:1425816. [PMID: 39188713 PMCID: PMC11345202 DOI: 10.3389/fimmu.2024.1425816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/30/2024] [Indexed: 08/28/2024] Open
Abstract
The ketogenic diet (KD) is marked by a substantial decrease in carbohydrate intake and an elevated consumption of fats and proteins, leading to a metabolic state referred to as "ketosis," where fats become the primary source of energy. Recent research has underscored the potential advantages of the KD in mitigating the risk of various illnesses, including type 2 diabetes, hyperlipidemia, heart disease, and cancer. The macronutrient distribution in the KD typically entails high lipid intake, moderate protein consumption, and low carbohydrate intake. Restricting carbohydrates to below 50 g/day induces a catabolic state, prompting metabolic alterations such as gluconeogenesis and ketogenesis. Ketogenesis diminishes fat and glucose accumulation as energy reserves, stimulating the production of fatty acids. Neurodegenerative diseases, encompassing Alzheimer's disease, Parkinson's disease are hallmarked by persistent neuroinflammation. Evolving evidence indicates that immune activation and neuroinflammation play a significant role in the pathogenesis of these diseases. The protective effects of the KD are linked to the generation of ketone bodies (KB), which play a pivotal role in this dietary protocol. Considering these findings, this narrative review seeks to delve into the potential effects of the KD in neuroinflammation by modulating the immune response. Grasping the immunomodulatory effects of the KD on the central nervous system could offer valuable insights into innovative therapeutic approaches for these incapacitating conditions.
Collapse
Affiliation(s)
- Antonietta Monda
- Department of Human Sciences and Quality of Life Promotion of the Telematic University “San Raffaele”, Rome, Italy
| | - Maria Ester La Torre
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Antonietta Messina
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Girolamo Di Maio
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Vincenzo Monda
- Department of Exercise Sciences and Well-Being, University of Naples “Parthenope”, Naples, Italy
| | - Fiorenzo Moscatelli
- Department of Wellbeing, Nutrition and Sport, Pegaso Telematic University, Naples, Italy
| | - Marida De Stefano
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Marco La Marra
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | | | - Anna Dipace
- Department of Wellbeing, Nutrition and Sport, Pegaso Telematic University, Naples, Italy
| | - Pierpaolo Limone
- Department of Wellbeing, Nutrition and Sport, Pegaso Telematic University, Naples, Italy
| | - Maria Casillo
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Marcellino Monda
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Giovanni Messina
- Department of Experimental Medicine, Section of Human Physiology and Unit of Dietetics and Sports Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Rita Polito
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| |
Collapse
|
160
|
Tenchov R, Sasso JM, Zhou QA. Polyglutamine (PolyQ) Diseases: Navigating the Landscape of Neurodegeneration. ACS Chem Neurosci 2024; 15:2665-2694. [PMID: 38996083 PMCID: PMC11311141 DOI: 10.1021/acschemneuro.4c00184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/02/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024] Open
Abstract
Polyglutamine (polyQ) diseases are a group of inherited neurodegenerative disorders caused by expanded cytosine-adenine-guanine (CAG) repeats encoding proteins with abnormally expanded polyglutamine tract. A total of nine polyQ disorders have been identified, including Huntington's disease, six spinocerebellar ataxias, dentatorubral pallidoluysian atrophy (DRPLA), and spinal and bulbar muscular atrophy (SBMA). The diseases of this class are each considered rare, yet polyQ diseases constitute the largest group of monogenic neurodegenerative disorders. While each subtype of polyQ diseases has its own causative gene, certain pathologic molecular attributes have been implicated in virtually all of the polyQ diseases, including protein aggregation, proteolytic cleavage, neuronal dysfunction, transcription dysregulation, autophagy impairment, and mitochondrial dysfunction. Although animal models of polyQ disease are available helping to understand their pathogenesis and access disease-modifying therapies, there is neither a cure nor prevention for these diseases, with only symptomatic treatments available. In this paper, we analyze data from the CAS Content Collection to summarize the research progress in the class of polyQ diseases. We examine the publication landscape in the area in effort to provide insights into current knowledge advances and developments. We review the most discussed concepts and assess the strategies to combat these diseases. Finally, we inspect clinical applications of products against polyQ diseases with their development pipelines. The objective of this review is to provide a broad overview of the evolving landscape of current knowledge regarding the class of polyQ diseases, to outline challenges, and evaluate growth opportunities to further efforts in combating the diseases.
Collapse
Affiliation(s)
- Rumiana Tenchov
- CAS, a division of the American
Chemical Society, Columbus, Ohio 43210, United States
| | - Janet M. Sasso
- CAS, a division of the American
Chemical Society, Columbus, Ohio 43210, United States
| | | |
Collapse
|
161
|
Liu S, Zhou S. Lactate: A New Target for Brain Disorders. Neuroscience 2024; 552:100-111. [PMID: 38936457 DOI: 10.1016/j.neuroscience.2024.06.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/19/2024] [Accepted: 06/22/2024] [Indexed: 06/29/2024]
Abstract
Lactate in the brain is produced endogenously and exogenously. The primary functional cells that produce lactate in the brain are astrocytes. Astrocytes release lactate to act on neurons, thereby affecting neuronal function, through a process known as the astrocyte-neuron shuttle. Lactate affects microglial function as well and inhibits microglia-mediated neuroinflammation. Lactate also provides energy, acts as a signaling molecule, and promotes neurogenesis. This article summarizes the role of lactate in cells, animals, and humans. Lactate is a protective molecule against stress in healthy organisms and in the early stages of brain disorders. Thus, lactate may be a potential therapeutic target for brain disorders. Further research on the role of lactate in microglia may have great prospects. This article provides a new perspective and research direction for the study of lacate in brain disorders.
Collapse
Affiliation(s)
- Shunfeng Liu
- College of Pharmacy, Guilin Medical University, Guilin 541199, China; Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541199, China; Department of Physiology, School of Basic Medicine, Qingdao University, Qingdao 266071, China.
| | - Shouhong Zhou
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin 541199, China; Basic Medical College, Guilin Medical University, Guilin 541199, China.
| |
Collapse
|
162
|
Osmani WA, Gallo A, Tabor M, Eilbes M, Cook-Snyder DR, Hodges MR. Repeated seizure-induced brainstem neuroinflammation contributes to post-ictal ventilatory control dysfunction. Front Physiol 2024; 15:1413479. [PMID: 39175614 PMCID: PMC11339535 DOI: 10.3389/fphys.2024.1413479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/22/2024] [Indexed: 08/24/2024] Open
Abstract
Patients with epilepsy face heightened risk of post-ictal cardiorespiratory suppression and sudden unexpected death in epilepsy (SUDEP). Studies have shown that neuroinflammation, mediated by the activation of microglia and astrocytes, may be a cause or consequence of seizure disorders. Kcnj16 (Kir5.1) knockout rats (SS kcnj16-/- ) are susceptible to repeated audiogenic seizures and recapitulate features of human SUDEP, including post-ictal ventilatory suppression, which worsens with repeated seizures and seizure-induced mortality. In this study, we tested the hypothesis that repeated seizures cause neuroinflammation within key brainstem regions that contribute to the control of breathing. Audiogenic seizures were elicited once/day for up to 10 days in groups of adult male SS kcnj16-/- rats, from which frozen brainstem biopsies of the pre-Bötzinger complex/nucleus ambiguus (preBötC/NA), Bötzinger complex (BötC), and raphe magnus (RMg) regions were subjected to a cytokine array. Several cytokines/chemokines, including IL-1α and IL-1ß, were increased selectively in preBötC/NA after 3 or 5 days of seizures with fewer changes in other regions tested. In additional groups of male SS kcnj16-/- rats that underwent repeated seizures, we quantified microglial (IBA-1+) cell counts and morphology, specifically within the preBötC/NA region, and showed increased microglial cell counts, area, and volume consistent with microglial activation. To further test the role of inflammation in physiological responses to seizures and seizure-related mortality, additional groups of SS kcnj16-/- rats were treated with anakinra (IL-1R antagonist), ketoprofen (non-selective COX inhibitor), or saline for 3 days before and up to 10 days of seizures (1/day), and breathing was measured before, during, and after each seizure. Remarkably, IL-1R antagonism mitigated changes in post-ictal ventilatory suppression on days 7-10 but failed to prevent seizure-related mortality, whereas ketoprofen treatment exacerbated post-ictal ventilatory suppression compared to other treatment groups but prevented seizure-related mortality. These data demonstrate neuroinflammation and microglial activation within the key brainstem region of respiratory control following repeated seizures, which may functionally but differentially contribute to the pathophysiological consequences of repeated seizures.
Collapse
Affiliation(s)
- Wasif A. Osmani
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Alexander Gallo
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Madeline Tabor
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Melissa Eilbes
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Denise R. Cook-Snyder
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Matthew R. Hodges
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
163
|
Rosell MDLÁ, Quizhpe J, Ayuso P, Peñalver R, Nieto G. Proximate Composition, Health Benefits, and Food Applications in Bakery Products of Purple-Fleshed Sweet Potato ( Ipomoea batatas L.) and Its By-Products: A Comprehensive Review. Antioxidants (Basel) 2024; 13:954. [PMID: 39199200 PMCID: PMC11351671 DOI: 10.3390/antiox13080954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 09/01/2024] Open
Abstract
Ipomoea batatas (L.) Lam is a dicotyledonous plant originally from tropical regions, with China and Spain acting as the main producers from outside and within the EU, respectively. The root, including only flesh, is the edible part, and the peel, leaves, stems, or shoots are considered by-products, which are generated due to being discarded in the field and during processing. Therefore, this study aimed to perform a comprehensive review of the nutritional value, phytochemical composition, and health-promoting activities of purple-fleshed sweet potato and its by-products, which lead to its potential applications in bakery products for the development of functional foods. The methodology is applied to the selected topic and is used to conduct the search, review abstracts and full texts, and discuss the results using different general databases. The studies suggested that purple-fleshed sweet potato parts are characterized by a high content of essential minerals and bioactive compounds, including anthocyanins belonging to the cyanidin or the peonidin type. The flesh and leaves are also high in phenolic compounds and carotenoids such as lutein and β-carotene. The high content of phenolic compounds and anthocyanins provides the purple-fleshed sweet potato with high antioxidant and anti-inflammatory power due to the modulation effect of the transcription factor Nrf2 and NF-kB translocation, which may lead to protection against hepatic and neurological disorders, among others. Furthermore, purple-fleshed sweet potato and its by-products can play a dual role in food applications due to its attractive color and wide range of biological activities which enhance its nutritional profile. As a result, it is essential to harness the potential of the purple-fleshed sweet potato and its by-products that are generated during its processing through an appropriate agro-industrial valorization system.
Collapse
Affiliation(s)
| | | | | | | | - Gema Nieto
- Department of Food Technology, Nutrition and Food Science, Veterinary Faculty, University of Murcia, Regional Campus of International Excellence “Campus Mare Nostrum”, Campus de Espinardo, 30100 Murcia, Spain; (M.d.l.Á.R.); (J.Q.); (P.A.); (R.P.)
| |
Collapse
|
164
|
Salikhova DI, Shedenkova MO, Sudina AK, Belousova EV, Krasilnikova IA, Nekrasova AA, Nefedova ZA, Frolov DA, Fatkhudinov TK, Makarov AV, Surin AM, Savostyanov KV, Goldshtein DV, Bakaeva ZV. Neuroprotective and anti-inflammatory properties of proteins secreted by glial progenitor cells derived from human iPSCs. Front Cell Neurosci 2024; 18:1449063. [PMID: 39165834 PMCID: PMC11333358 DOI: 10.3389/fncel.2024.1449063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/19/2024] [Indexed: 08/22/2024] Open
Abstract
Currently, stem cells technology is an effective tool in regenerative medicine. Cell therapy is based on the use of stem/progenitor cells to repair or replace damaged tissues or organs. This approach can be used to treat various diseases, such as cardiovascular, neurological diseases, and injuries of various origins. The mechanisms of cell therapy therapeutic action are based on the integration of the graft into the damaged tissue (replacement effect) and the ability of cells to secrete biologically active molecules such as cytokines, growth factors and other signaling molecules that promote regeneration (paracrine effect). However, cell transplantation has a number of limitations due to cell transportation complexity and immune rejection. A potentially more effective therapy is using only paracrine factors released by stem cells. Secreted factors can positively affect the damaged tissue: promote forming new blood vessels, stimulate cell proliferation, and reduce inflammation and apoptosis. In this work, we have studied the anti-inflammatory and neuroprotective effects of proteins with a molecular weight below 100 kDa secreted by glial progenitor cells obtained from human induced pluripotent stem cells. Proteins secreted by glial progenitor cells exerted anti-inflammatory effects in a primary glial culture model of LPS-induced inflammation by reducing nitric oxide (NO) production through inhibition of inducible NO synthase (iNOS). At the same time, added secreted proteins neutralized the effect of glutamate, increasing the number of viable neurons to control values. This effect is a result of decreased level of intracellular calcium, which, at elevated concentrations, triggers apoptotic death of neurons. In addition, secreted proteins reduce mitochondrial depolarization caused by glutamate excitotoxicity and help maintain higher NADH levels. This therapy can be successfully introduced into clinical practice after additional preclinical studies, increasing the effectiveness of rehabilitation of patients with neurological diseases.
Collapse
Affiliation(s)
- Diana I. Salikhova
- Laboratory of Cellular Biotechnology, Research Institute of Molecular and Cellular Medicine, Medical Institute of RUDN University, Moscow, Russia
- Laboratory of Stem Cell Genetics, Research Centre for Medical Genetics, Moscow, Russia
| | - Margarita O. Shedenkova
- Laboratory of Cellular Biotechnology, Research Institute of Molecular and Cellular Medicine, Medical Institute of RUDN University, Moscow, Russia
- Laboratory of Stem Cell Genetics, Research Centre for Medical Genetics, Moscow, Russia
| | - Anastasya K. Sudina
- Laboratory of Cellular Biotechnology, Research Institute of Molecular and Cellular Medicine, Medical Institute of RUDN University, Moscow, Russia
- Laboratory of Stem Cell Genetics, Research Centre for Medical Genetics, Moscow, Russia
| | - Ekaterina V. Belousova
- Laboratory of Cellular Biotechnology, Research Institute of Molecular and Cellular Medicine, Medical Institute of RUDN University, Moscow, Russia
- Laboratory of Stem Cell Genetics, Research Centre for Medical Genetics, Moscow, Russia
| | - Irina A. Krasilnikova
- Medical Genetic Center, National Medical Research Center for Children’s Health, Moscow, Russia
| | - Anastasya A. Nekrasova
- Medical Genetic Center, National Medical Research Center for Children’s Health, Moscow, Russia
| | - Zlata A. Nefedova
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Daniil A. Frolov
- Institute of Information Technologies, MIREA-Russian Technological University, Moscow, Russia
| | - Timur Kh. Fatkhudinov
- Laboratory of Cellular Biotechnology, Research Institute of Molecular and Cellular Medicine, Medical Institute of RUDN University, Moscow, Russia
| | - Andrey V. Makarov
- Laboratory of Cellular Biotechnology, Research Institute of Molecular and Cellular Medicine, Medical Institute of RUDN University, Moscow, Russia
| | - Alexander M. Surin
- Laboratory of Fundamental and Applied Problems of Pain, Institute of General Pathology and Pathophysiology, Moscow, Russia
| | - Kirill V. Savostyanov
- Medical Genetic Center, National Medical Research Center for Children’s Health, Moscow, Russia
| | - Dmitry V. Goldshtein
- Laboratory of Cellular Biotechnology, Research Institute of Molecular and Cellular Medicine, Medical Institute of RUDN University, Moscow, Russia
- Laboratory of Stem Cell Genetics, Research Centre for Medical Genetics, Moscow, Russia
| | - Zanda V. Bakaeva
- Medical Genetic Center, National Medical Research Center for Children’s Health, Moscow, Russia
- I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
165
|
Mohamed AS, ElKaffas M, Metwally K, Abdelfattah M, Elsery EA, Elshazly A, Gomaa HE, Alsayed A, El-Desouky S, El-Gamal R, Elfarrash S. Impairment of Nrf2 signaling in the hippocampus of P301S tauopathy mice model aligns with the cognitive impairment and the associated neuroinflammation. J Inflamm (Lond) 2024; 21:29. [PMID: 39107774 PMCID: PMC11304845 DOI: 10.1186/s12950-024-00396-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/24/2024] [Indexed: 08/10/2024] Open
Abstract
Mice transgenic for human P301S tau protein exhibit many characteristics of the human tauopathies, including the formation of abundant hyperphoshorylated tau filaments, the associated neuroinflammation and disease phenotype. However, the exact underpinning mechanisms are still not fully addressed that hinder our understanding of the tauopathy diseases and the development of possible therapeutic targets.Methods: In the current study, hippocampus from three disease time points (2, 4 and 6 months) of P301S mice were further characterized in comparison to the age and sex matched control wild type mice (WT) that do not express the transgene. Different spectrum of hippocampal dependent cognitive tests, biochemical and pathological analysis were conducted to understand the disease progression and the associated changes in each stage. Results: Cognitive impairment was manifested as early as 2 months age, prior to the identification of tau aggregation and phosphorylation by immunostaining. P301S mice manifested an increased pro-inflammatory related changes at mRNA transcription level (IL-1b and IL17A) with the progression of the disease and when compared to the WT mice of the same age. Among the identified genes in the current study, the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) genes expression that is considered as the master regulator of an endogenous inducible defense system was significantly impaired in P301S mice by 4 and 6 months when compared to healthy WT controls. A data that was also supported by the immunostaining of the serial brain sections including the both brain stem and hippocampus. The current result is suggesting that the downregulation of Nrf2 gene and the impaired Nrf2 dependent anti-inflammatory mechanisms in P301S mice brain is possibly contributing -among other factors- in the neuroinflammation and tauopathy, and that modulation of Nrf2 signaling impairments can be further investigated as a promising potential therapeutic target for tauopathy.
Collapse
Affiliation(s)
- Ahmed Sabry Mohamed
- Program of Medicine, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Mahmoud ElKaffas
- Mansoura Manchester Medical Program, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Karim Metwally
- Mansoura Manchester Medical Program, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Mahmoud Abdelfattah
- Mansoura Manchester Medical Program, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Eslam Ashraf Elsery
- Mansoura Manchester Medical Program, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Ahmed Elshazly
- Mansoura Manchester Medical Program, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Hossam Eldin Gomaa
- Mansoura Manchester Medical Program, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Aziza Alsayed
- Medical Experimental Research Center (MERC), Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Sara El-Desouky
- Medical Experimental Research Center (MERC), Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Randa El-Gamal
- Medical Experimental Research Center (MERC), Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
- Department of Medical Biochemistry & Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt
- Department of Medical Biochemistry, Faculty of Medicine, Horus University, New Damietta, Egypt
- Department of Medical Biochemistry, Faculty of Medicine, New Mansoura University, Mansoura, Egypt
| | - Sara Elfarrash
- Medical Experimental Research Center (MERC), Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt.
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
166
|
Stys PK, Tsutsui S, Gafson AR, ‘t Hart BA, Belachew S, Geurts JJG. New views on the complex interplay between degeneration and autoimmunity in multiple sclerosis. Front Cell Neurosci 2024; 18:1426231. [PMID: 39161786 PMCID: PMC11330826 DOI: 10.3389/fncel.2024.1426231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/14/2024] [Indexed: 08/21/2024] Open
Abstract
Multiple sclerosis (MS) is a frequently disabling neurological disorder characterized by symptoms, clinical signs and imaging abnormalities that typically fluctuate over time, affecting any level of the CNS. Prominent lymphocytic inflammation, many genetic susceptibility variants involving immune pathways, as well as potent responses of the neuroinflammatory component to immunomodulating drugs, have led to the natural conclusion that this disease is driven by a primary autoimmune process. In this Hypothesis and Theory article, we discuss emerging data that cast doubt on this assumption. After three decades of therapeutic experience, what has become clear is that potent immune modulators are highly effective at suppressing inflammatory relapses, yet exhibit very limited effects on the later progressive phase of MS. Moreover, neuropathological examination of MS tissue indicates that degeneration, CNS atrophy, and myelin loss are most prominent in the progressive stage, when lymphocytic inflammation paradoxically wanes. Finally, emerging clinical observations such as "progression independent of relapse activity" and "silent progression," now thought to take hold very early in the course, together argue that an underlying "cytodegenerative" process, likely targeting the myelinating unit, may in fact represent the most proximal step in a complex pathophysiological cascade exacerbated by an autoimmune inflammatory overlay. Parallels are drawn with more traditional neurodegenerative disorders, where a progressive proteopathy with prion-like propagation of toxic misfolded species is now known to play a key role. A potentially pivotal contribution of the Epstein-Barr virus and B cells in this process is also discussed.
Collapse
Affiliation(s)
- Peter K. Stys
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Shigeki Tsutsui
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Arie R. Gafson
- Biogen Digital Health, Biogen, Cambridge, MA, United States
| | - Bert A. ‘t Hart
- Department of Anatomy and Neurosciences, Amsterdam University Medical Centers (location VUmc), Amsterdam, Netherlands
| | - Shibeshih Belachew
- TheraPanacea, Paris, France
- Indivi (DBA of Healios AG), Basel, Switzerland
| | - Jeroen J. G. Geurts
- Department of Anatomy and Neurosciences, Amsterdam University Medical Centers (location VUmc), Amsterdam, Netherlands
| |
Collapse
|
167
|
Du Y, An Y, Song Y, Li N, Zheng J, Lu Y. Live and pasteurized Akkermansia muciniphila ameliorates diabetic cognitive impairment by modulating gut microbiota and metabolites in db/db mice. Exp Neurol 2024; 378:114823. [PMID: 38782351 DOI: 10.1016/j.expneurol.2024.114823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/05/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
The established role of disturbances in the microbiota-gut-brain axis in the development of diabetic cognitive impairment (DCI) has long been recognized. It has shown the potential of Akkermansia muciniphila (A. muciniphila) in improving metabolic disorders and exerting anti-inflammatory effects. However, there remains a lack of comprehensive understanding regarding the specific effects and mechanisms underlying the treatment of DCI with A. muciniphila. This study aimed to evaluate the potential of A. muciniphila in alleviating DCI in db/db mice. Eleven-week-old db/db mice were administered either live or pasteurized A. muciniphila (5 × 109 CFU/200 μL) for a duration of eight weeks. Administering live A. muciniphila significantly ameliorated cognitive impairments, improved the synaptic ultrastructure, and inhibited hippocampal neuron loss in the CA1 and CA3 subregions in db/db mice. Both live and pasteurized A. muciniphila effectively mitigated neuroinflammation. Moreover, live A. muciniphila increased the relative abundance of Lactococcus and Staphylococcus, whereas pasteurized A. muciniphila increased the relative abundance of Lactobacillus, Prevotellaceae_UCG_001, and Alistipes. Supplementation of A. muciniphila also induced alterations in serum and brain metabolites, with a particular enrichment observed in tryptophan metabolism, glyoxylate and dicarboxylate metabolism, nitrogen metabolism, and pentose and glucuronate interconversions. Correlation analysis further demonstrated a direct and substantial correlation between the altered gut microbiota and the metabolites in the serum and brain tissue. In conclusion, the results indicate that live A. muciniphila demonstrated greater efficacy compared to pasteurized A. muciniphila. The observed protective effects of A. muciniphila against DCI are likely mediated through the neuroinflammation and microbiota-metabolites-brain axis.
Collapse
Affiliation(s)
- Yage Du
- School of Nursing, Peking University, Beijing 100191, China
| | - Yu An
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Ying Song
- School of Nursing, Peking University, Beijing 100191, China
| | - Nan Li
- Institute of Reproductive and Child Health, Peking University/ Key Laboratory of Reproductive Health, National Health Commission of the People's Republic of China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
| | - Jie Zheng
- School of Nursing, Peking University, Beijing 100191, China
| | - Yanhui Lu
- School of Nursing, Peking University, Beijing 100191, China.
| |
Collapse
|
168
|
Li S, Wang Z, Liu G, Chen M. Neurodegenerative diseases and catechins: (-)-epigallocatechin-3-gallate is a modulator of chronic neuroinflammation and oxidative stress. Front Nutr 2024; 11:1425839. [PMID: 39149548 PMCID: PMC11326534 DOI: 10.3389/fnut.2024.1425839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/11/2024] [Indexed: 08/17/2024] Open
Abstract
Catechins, a class of phytochemicals found in various fruits and tea leaves, have garnered attention for their diverse health-promoting properties, including their potential in combating neurodegenerative diseases. Among these catechins, (-)-epigallocatechin-3-gallate (EGCG), the most abundant polyphenol in green tea, has emerged as a promising therapeutic agent due to its potent antioxidant and anti-inflammatory effects. Chronic neuroinflammation and oxidative stress are key pathological mechanisms in neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). EGCG has neuroprotective efficacy due to scavenging free radicals, reducing oxidative stress and attenuating neuroinflammatory processes. This review discusses the molecular mechanisms of EGCG's anti-oxidative stress and chronic neuroinflammation, emphasizing its effects on autoimmune responses, neuroimmune system interactions, and focusing on the related effects on AD and PD. By elucidating EGCG's mechanisms of action and its impact on neurodegenerative processes, this review underscores the potential of EGCG as a therapeutic intervention for AD, PD, and possibly other neurodegenerative diseases. Overall, EGCG emerges as a promising natural compound for combating chronic neuroinflammation and oxidative stress, offering novel avenues for neuroprotective strategies in the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Siying Li
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
- Department of Neurology, The Yuhuan People's Hospital, Taizhou, Zhejiang, China
| | - Zaoyi Wang
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Gang Liu
- Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Meixia Chen
- Department of Neurology, The Yuhuan People's Hospital, Taizhou, Zhejiang, China
| |
Collapse
|
169
|
Kim SH, Choi HN, Jo MG, Lee B, Kim YJ, Seong H, Song C, Yoo HS, Lee JH, Seong D, Park HJ, Roh IS, Yang J, Lee MY, Kim HJ, Park SW, Kim M, Kim SJ, Kim M, Kim HJ, Hong KW, Yun SP. Activation of neurotoxic A1-reactive astrocytes by SFTS virus infection accelerates fatal brain damage in IFNAR1 -/- mice. J Med Virol 2024; 96:e29854. [PMID: 39135475 DOI: 10.1002/jmv.29854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/08/2024] [Accepted: 08/01/2024] [Indexed: 09/26/2024]
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) has a high mortality rate compared to other infectious diseases. SFTS is particularly associated with a high risk of mortality in immunocompromised individuals, while most patients who die of SFTS exhibit symptoms of severe encephalitis before death. However, the region of brain damage and mechanisms by which the SFTS virus (SFTSV) causes encephalitis remains unknown. Here, we revealed that SFTSV infects the brainstem and spinal cord, which are regions of the brain associated with respiratory function, and motor nerves in IFNAR1-/- mice. Further, we show that A1-reactive astrocytes are activated, causing nerve cell death, in infected mice. Primary astrocytes of SFTSV-infected IFNAR1-/- mice also induced neuronal cell death through the activation of A1-reactive astrocytes. Herein, we showed that SFTSV induces fatal neuroinflammation in the brain regions important for respiratory function and motor nerve, which may underlie mortality in SFTS patients. This study provides new insights for the treatment of SFTS, for which there is currently no therapeutic approach.
Collapse
Affiliation(s)
- Seon-Hee Kim
- Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Ha Nyeoung Choi
- Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
- Department of Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Min Gi Jo
- Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
- Department of Pathology, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Bina Lee
- Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Young Jin Kim
- Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
- Department of Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Hyemin Seong
- Department of Ophthalmology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Chieun Song
- Department of Ophthalmology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Han Sol Yoo
- Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Jeong Hyun Lee
- Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Daseul Seong
- Division of foreign Animal Disease, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Hyun-Jin Park
- Division of foreign Animal Disease, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - In-Soon Roh
- Division of foreign Animal Disease, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
| | - Jinsung Yang
- Department of Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
- Department of Biochemistry, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Min Young Lee
- College of Pharmacy, Kyungpook National University, Daegu, South Korea
| | - Hye Jung Kim
- Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
- Department of Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Sang Won Park
- Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
- Department of Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Mingyo Kim
- Department of Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
- Department of Rheumatology Internal Medicine, Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Seong Jae Kim
- Department of Ophthalmology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | - Minkyeong Kim
- Department of Neurology, Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Hyun-Jeong Kim
- Division of foreign Animal Disease, Animal and Plant Quarantine Agency, Gimcheon, Republic of Korea
- Laboratory Animal Research Center, Central Scientific Instrumentation Facility, Gyeongsang National University, Jinju, Republic of Korea
| | - Kyung-Wook Hong
- Division of Infectious Diseases, Department of Internal Medicine, Gyeongsang National University Hospital, Gyeongsang National University College of Medicine, Jinju, Republic of Korea
| | - Seung Pil Yun
- Department of Pharmacology, Institute of Medical Sciences, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
- Department of Convergence Medical Science, College of Medicine, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
170
|
Jayawickreme DK, Ekwosi C, Anand A, Andres-Mach M, Wlaź P, Socała K. Luteolin for neurodegenerative diseases: a review. Pharmacol Rep 2024; 76:644-664. [PMID: 38904713 PMCID: PMC11294387 DOI: 10.1007/s43440-024-00610-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/22/2024]
Abstract
Neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease, Huntington's disease, and multiple sclerosis affect millions of people around the world. In addition to age, which is a key factor contributing to the development of all neurodegenerative diseases, genetic and environmental components are also important risk factors. Current methods of treating neurodegenerative diseases are mostly symptomatic and do not eliminate the cause of the disease. Many studies focus on searching for natural substances with neuroprotective properties that could be used as an adjuvant therapy in the inhibition of the neurodegeneration process. These compounds include flavonoids, such as luteolin, showing significant anti-inflammatory, antioxidant, and neuroprotective activity. Increasing evidence suggests that luteolin may confer protection against neurodegeneration. In this review, we summarize the scientific reports from preclinical in vitro and in vivo studies regarding the beneficial effects of luteolin in neurodegenerative diseases. Luteolin was studied most extensively in various models of Alzheimer's disease but there are also several reports showing its neuroprotective effects in models of Parkinson's disease. Though very limited, studies on possible protective effects of luteolin against Huntington's disease and multiple sclerosis are also discussed here. Overall, although preclinical studies show the potential benefits of luteolin in neurodegenerative disorders, clinical evidence on its therapeutic efficacy is still deficient.
Collapse
Affiliation(s)
| | - Cletus Ekwosi
- Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, Lublin, 20-033, PL, Poland
| | - Apurva Anand
- Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, Lublin, 20-033, PL, Poland
| | - Marta Andres-Mach
- Department of Experimental Pharmacology, Institute of Rural Health, Jaczewskiego 2, Lublin, 20-950, Poland
| | - Piotr Wlaź
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, Lublin, 20-033, PL, Poland
| | - Katarzyna Socała
- Department of Animal Physiology and Pharmacology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, Lublin, 20-033, PL, Poland.
| |
Collapse
|
171
|
Li Y, Shi C, Liu R, Yang J, Wang J. Alpha-synuclein affects certain iron transporters of BV2 microglia cell through its ferric reductase activity. J Neurophysiol 2024; 132:446-453. [PMID: 38919150 DOI: 10.1152/jn.00106.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024] Open
Abstract
Alpha-synuclein (α-syn) is a major component of Lewy bodies, which is a biomarker of Parkinson's disease (PD). It accumulates in substantia nigra pars compacta (SNpc) to form insoluble aggregates and cause neurotoxicity, which is often accompanied by iron deposition. We compared the iron reductase activity between monomeric α-syn (M-α-syn) and oligomeric α-syn (O-α-syn) and investigated the effect of α-syn on iron metabolism of BV2 microglia cells as well. α-syn had ferric reductase activity, and O-α-syn had stronger enzyme activity than M-α-syn. M-α-syn upregulated iron uptake protein, divalent metal transporter1 (DMT1) expression, and iron influx but did not regulate iron release protein ferroportin1 (FPN1) expression and iron efflux. O-α-syn elevated the expression of both DMT1 and FPN1 and thus increased the iron influx and efflux in BV2 microglial cells, but the expressions of iron regulatory protein1 (IRP1) and hypoxia-inducible factor 2α (HIF-2α) had no significant change. Moreover, both M-α-syn and O-α-syn could increase the mRNA expressions of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in BV2 microglia cells. Both types of α-syn can activate microglia, which leads to increased expressions of proinflammatory factors. α-syn can affect DMT1 and FPN1 expressions in BV2 microglia cells, which might be through its ferric reductase activity.NEW & NOTEWORTHY The effects of monomeric α-syn (M-α-syn) and oligomeric α-syn (O-α-syn) on the iron metabolism of BV2 microglia cells were detected by exogenous α-syn treatment. This study provides a strong experimental basis for α-syn involvement in iron metabolism in microglia.
Collapse
Affiliation(s)
- Yinghui Li
- School of Basic Medicine, Qingdao University, Qingdao, China
- Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Chengkui Shi
- School of Basic Medicine, Qingdao University, Qingdao, China
- Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Rong Liu
- School of Basic Medicine, Qingdao University, Qingdao, China
- Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Jiahua Yang
- School of Basic Medicine, Qingdao University, Qingdao, China
- Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| | - Jun Wang
- School of Basic Medicine, Qingdao University, Qingdao, China
- Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Qingdao University, Qingdao, China
| |
Collapse
|
172
|
Yang H, Shao Y, Hu Y, Qian J, Wang P, Tian L, Ni Y, Li S, Al‐Nusaif M, Liu C, Le W. Fecal microbiota from patients with Parkinson's disease intensifies inflammation and neurodegeneration in A53T mice. CNS Neurosci Ther 2024; 30:e70003. [PMID: 39161161 PMCID: PMC11333719 DOI: 10.1111/cns.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 08/21/2024] Open
Abstract
AIMS We evaluated the potential of Parkinson's disease (PD) fecal microbiota transplantation to initiate or exacerbate PD pathologies and investigated the underlying mechanisms. METHODS We transplanted the fecal microbiota from PD patients into mice by oral gavage and assessed the motor and intestinal functions, as well as the inflammatory and pathological changes in the colon and brain. Furthermore, 16S rRNA gene sequencing combined with metabolomics analysis was conducted to assess the impacts of fecal delivery on the fecal microbiota and metabolism in recipient mice. RESULTS The fecal microbiota from PD patients increased intestinal inflammation, deteriorated intestinal barrier function, intensified microglia and astrocyte activation, abnormal deposition of α-Synuclein, and dopaminergic neuronal loss in the brains of A53T mice. A mechanistic study revealed that the fecal microbiota of PD patients stimulated the TLR4/NF-κB/NLRP3 pathway in both the brain and colon. Additionally, multiomics analysis found that transplantation of fecal microbiota from PD patients not only altered the composition of the gut microbiota but also influenced the fecal metabolic profile of the recipient mice. CONCLUSION The fecal microbiota from PD patients intensifies inflammation and neurodegeneration in A53T mice. Our findings demonstrate that imbalance and dysfunction in the gut microbiome play significant roles in the development and advancement of PD.
Collapse
Affiliation(s)
- Huijia Yang
- Key Laboratory of Liaoning Province for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated HospitalDalian Medical UniversityDalianChina
| | - Yaping Shao
- Key Laboratory of Liaoning Province for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated HospitalDalian Medical UniversityDalianChina
| | - Yiying Hu
- Key Laboratory of Liaoning Province for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated HospitalDalian Medical UniversityDalianChina
- Department of Neurology, The First Affiliated HospitalDalian Medical UniversityDalianChina
| | - Jin Qian
- Department of Neurology, The First Affiliated HospitalDalian Medical UniversityDalianChina
| | - Panpan Wang
- Key Laboratory of Liaoning Province for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated HospitalDalian Medical UniversityDalianChina
| | - Lulu Tian
- Key Laboratory of Liaoning Province for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated HospitalDalian Medical UniversityDalianChina
| | - Yang Ni
- Key Laboratory of Liaoning Province for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated HospitalDalian Medical UniversityDalianChina
| | - Song Li
- Key Laboratory of Liaoning Province for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated HospitalDalian Medical UniversityDalianChina
| | - Murad Al‐Nusaif
- Key Laboratory of Liaoning Province for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated HospitalDalian Medical UniversityDalianChina
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic ChemistryChinese Academy of SciencesShanghaiChina
| | - Weidong Le
- Key Laboratory of Liaoning Province for Research on the Pathogenic Mechanisms of Neurological Diseases, The First Affiliated HospitalDalian Medical UniversityDalianChina
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu HospitalShanghaiChina
| |
Collapse
|
173
|
Qiu NZ, Hou HM, Guo TY, Lv YL, Zhou Y, Zhang FF, Zhang F, Wang XD, Chen W, Gao YF, Chen MH, Zhang XH, Zhang HT, Wang H. Phosphodiesterase 8 (PDE8): Distribution and Cellular Expression and Association with Alzheimer's Disease. Neurochem Res 2024; 49:1993-2004. [PMID: 38782837 DOI: 10.1007/s11064-024-04156-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/19/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
Phosphodiesterase 8 (PDE8), as a member of PDE superfamily, specifically promotes the hydrolysis and degradation of intracellular cyclic adenosine monophosphate (cAMP), which may be associated with pathogenesis of Alzheimer's disease (AD). However, little is currently known about potential role in the central nervous system (CNS). Here we investigated the distribution and expression of PDE8 in brain of mouse, which we believe can provide evidence for studying the role of PDE8 in CNS and the relationship between PDE8 and AD. Here, C57BL/6J mice were used to observe the distribution patterns of two subtypes of PDE8, PDE8A and PDE8B, in different sexes in vivo by western blot (WB). Meanwhile, C57BL/6J mice were also used to demonstrate the distribution pattern of PDE8 in selected brain regions and localization in neural cells by WB and multiplex immunofluorescence staining. Furthermore, the triple transgenic (3×Tg-AD) mice and wild type (WT) mice of different ages were used to investigate the changes of PDE8 expression in the hippocampus and cerebral cortex during the progression of AD. PDE8 was found to be widely expressed in multiple tissues and organs including heart, kidney, stomach, brain, and liver, spleen, intestines, and uterus, with differences in expression levels between the two subtypes of PDE8A and PDE8B, as well as two sexes. Meanwhile, PDE8 was widely distributed in the brain, especially in areas closely related to cognitive function such as cerebellum, striatum, amygdala, cerebral cortex, and hippocampus, without differences between sexes. Furthermore, PDE8A was found to be expressed in neuronal cells, microglia and astrocytes, while PDE8B is only expressed in neuronal cells and microglia. PDE8A expression in the hippocampus of both female and male 3×Tg-AD mice was gradually increased with ages and PDE8B expression was upregulated only in cerebral cortex of female 3×Tg-AD mice with ages. However, the expression of PDE8A and PDE8B was apparently increased in both cerebral cortex and hippocampus in both female and male 10-month-old 3×Tg-AD mice compared WT mice. These results suggest that PDE8 may be associated with the progression of AD and is a potential target for its prevention and treatment in the future.
Collapse
Affiliation(s)
- Nian-Zhuang Qiu
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, 271016, Shandong, China
| | - Hui-Mei Hou
- Development Planning and Discipline Construction Department, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, 271016, Shandong, China
| | - Tian-Yang Guo
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, 271016, Shandong, China
| | - Yu-Li Lv
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, 271016, Shandong, China
| | - Yao Zhou
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, 271016, Shandong, China
| | - Fang-Fang Zhang
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, 271016, Shandong, China
| | - Feng Zhang
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, 271016, Shandong, China
| | - Xiao-Dan Wang
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, 271016, Shandong, China
| | - Wei Chen
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, 271016, Shandong, China
| | - Yong-Feng Gao
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, 271016, Shandong, China
| | - Mei-Hua Chen
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, 271016, Shandong, China
| | - Xue-Hui Zhang
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, 271016, Shandong, China.
| | - Han-Ting Zhang
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, 271016, Shandong, China.
- Department of Pharmacology, Qingdao University School of Pharmacy, Qingdao, 266073, Shandong, China.
| | - Hao Wang
- Institute of Pharmacology, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, 271016, Shandong, China.
| |
Collapse
|
174
|
Gadhave DG, Sugandhi VV, Jha SK, Nangare SN, Gupta G, Singh SK, Dua K, Cho H, Hansbro PM, Paudel KR. Neurodegenerative disorders: Mechanisms of degeneration and therapeutic approaches with their clinical relevance. Ageing Res Rev 2024; 99:102357. [PMID: 38830548 DOI: 10.1016/j.arr.2024.102357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/27/2024] [Indexed: 06/05/2024]
Abstract
Neurodegenerative disorders (NDs) are expected to pose a significant challenge for both medicine and public health in the upcoming years due to global demographic changes. NDs are mainly represented by degeneration/loss of neurons, which is primarily accountable for severe mental illness. This neuronal degeneration leads to many neuropsychiatric problems and permanent disability in an individual. Moreover, the tight junction of the brain, blood-brain barrier (BBB)has a protective feature, functioning as a biological barrier that can prevent medicines, toxins, and foreign substances from entering the brain. However, delivering any medicinal agent to the brain in NDs (i.e., Multiple sclerosis, Alzheimer's, Parkinson's, etc.) is enormously challenging. There are many approved therapies to address NDs, but most of them only help treat the associated manifestations. The available therapies have failed to control the progression of NDs due to certain factors, i.e., BBB and drug-associated undesirable effects. NDs have extremely complex pathology, with many pathogenic mechanisms involved in the initiation and progression; thereby, a limited survival rate has been observed in ND patients. Hence, understanding the exact mechanism behind NDs is crucial to developing alternative approaches for improving ND patients' survival rates. Thus, the present review sheds light on different cellular mechanisms involved in NDs and novel therapeutic approaches with their clinical relevance, which will assist researchers in developing alternate strategies to address the limitations of conventional ND therapies. The current work offers the scope into the near future to improve the therapeutic approach of NDs.
Collapse
Affiliation(s)
- Dnyandev G Gadhave
- Department of Pharmaceutics, Dattakala Shikshan Sanstha's, Dattakala College of Pharmacy (Affiliated to Savitribai Phule Pune University), Swami Chincholi, Daund, Pune, Maharashtra 413130, India; College of Pharmacy & Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Vrashabh V Sugandhi
- Department of Pharmaceutics, Dattakala Shikshan Sanstha's, Dattakala College of Pharmacy (Affiliated to Savitribai Phule Pune University), Swami Chincholi, Daund, Pune, Maharashtra 413130, India; College of Pharmacy & Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Saurav Kumar Jha
- Department of Biological Sciences and Bioengineering (BSBE), Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| | - Sopan N Nangare
- Department of Pharmaceutical Chemistry, H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur, Dhule, Maharashtra 425405, India
| | - Gaurav Gupta
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates; Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun
| | - Hyunah Cho
- College of Pharmacy & Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA.
| | - Philip M Hansbro
- Centre for Inflammation, Faculty of Science, School of Life Science, Centenary Institute and University of Technology Sydney, Sydney 2007, Australia.
| | - Keshav Raj Paudel
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun; Centre for Inflammation, Faculty of Science, School of Life Science, Centenary Institute and University of Technology Sydney, Sydney 2007, Australia.
| |
Collapse
|
175
|
Jia Y, Dang W, Zhang X, Mi Y, Guo T, Mu D, Zhou D, Chen G, Hou Y, Li N. Characteristic terpenylated coumarins from Ferula ferulaeoides as potential inhibitors on overactivation of microglia. Bioorg Chem 2024; 149:107484. [PMID: 38810482 DOI: 10.1016/j.bioorg.2024.107484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/07/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024]
Abstract
A total of 37 characteristic terpenylated coumarins (1-25), including 17 undescribed compounds (1-5, 6a/6b, 7-10, 11a/11b-13a/13b), have been isolated from the root of Ferula ferulaeoides. Meanwhile, twelve pairs of enantiomers (6a/6b, 11a/11b-15a/15b, 17a/17b, 18a/18b, 20a/20b-22a/22b, and 25a/25b) were chirally purified. The structures of these new compounds were elucidated using HRESIMS, UV, NMR, and calculated 13C NMR with a custom DP4 + analysis. The absolute configurations of all the compounds were determined for the first time using electronic circular dichroism (ECD). Then, their inhibitory effects on nitric oxide (NO) production were evaluated with LPS-induced BV-2 microglia. Compared with the positive control minocycline (IC50 = 59.3 μM), ferulaferone B (2) exhibited stronger inhibitory potency with an IC50 value of 12.4 μM. The immunofluorescence investigation indicated that ferulaferone B (2) could inhibit Iba-1 expression in LPS-stimulated BV-2 microglia.
Collapse
Affiliation(s)
- Yewen Jia
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Wen Dang
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Xueni Zhang
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Yan Mi
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110016, PR China; National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang 110016, PR China
| | - Tingting Guo
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Danyang Mu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110016, PR China; National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang 110016, PR China
| | - Di Zhou
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Gang Chen
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Yue Hou
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110016, PR China; National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang 110016, PR China.
| | - Ning Li
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| |
Collapse
|
176
|
Nona RJ, Henderson RD, McCombe PA. Neutrophil-to-lymphocyte ratio at diagnosis as a biomarker for survival of amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2024; 25:452-464. [PMID: 38745425 DOI: 10.1080/21678421.2024.2351187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/22/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024]
Abstract
INTRODUCTION The neutrophil-to-lymphocyte ratio (NLR) has previously been reported to be associated with survival in ALS. To provide further information about the role of NLR as a biomarker in ALS, we performed a systematic review, analyzed data from our local cohort of ALS subjects and performed a meta-analysis. METHODS (1) The systematic review used established methods. (2) Using data from our cohort of subjects, we analyzed the association of NLR with survival. (3) Meta-analysis was performed using previous studies and our local data. RESULTS (1) In the systematic review, higher NLR was associated with shorter survival in all studies. (2) In our subjects, survival was significantly shorter in patients in the highest NLR groups. (3) Meta-analysis showed subjects with highest NLR tertile or with NLR >3 had significantly shorter survival than other subjects. DISCUSSION This study supports NLR as a biomarker in ALS; high NLR is associated with poor survival.
Collapse
Affiliation(s)
- Robert J Nona
- University of Queensland Centre for Clinical Research, Brisbane, Queensland, Australia and
| | - Robert D Henderson
- University of Queensland Centre for Clinical Research, Brisbane, Queensland, Australia and
- Department of Neurology, The Royal Brisbane & Women's Hospital, Brisbane, Queensland, Australia
| | - Pamela A McCombe
- University of Queensland Centre for Clinical Research, Brisbane, Queensland, Australia and
- Department of Neurology, The Royal Brisbane & Women's Hospital, Brisbane, Queensland, Australia
| |
Collapse
|
177
|
Wang C, Gu L, Zhang Y, Gao Y, Jian Z, Xiong X. Bibliometric insights into the inflammation and mitochondrial stress in ischemic stroke. Exp Neurol 2024; 378:114845. [PMID: 38838802 DOI: 10.1016/j.expneurol.2024.114845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/19/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND Research in the areas of inflammation and mitochondrial stress in ischemic stroke is rapidly expanding, but a comprehensive overview that integrates bibliometric trends with an in-depth review of molecular mechanisms is lacking. OBJECTIVE To map the evolving landscape of research using bibliometric analysis and to detail the molecular mechanisms that underpin these trends, emphasizing their implications in ischemic stroke. METHODS We conducted a bibliometric analysis to identify key trends, top contributors, and focal research themes. In addition, we review recent research advances in mitochondrial stress and inflammation in ischemic stroke to gain a detailed understanding of the pathophysiological processes involved. CONCLUSION Our integrative approach not only highlights the growing research interest and collaborations but also provides a detailed exploration of the molecular mechanisms that are central to the pathology of ischemic stroke. This synthesis offers valuable insights for researchers and paves the way for targeted therapeutic interventions.
Collapse
Affiliation(s)
- Chaoqun Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China; Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yonggang Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yikun Gao
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China; Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhihong Jian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
178
|
Wang X, Hong CG, Duan R, Pang ZL, Zhang MN, Xie H, Liu ZZ. Transplantation of olfactory mucosa mesenchymal stromal cells repairs spinal cord injury by inducing microglial polarization. Spinal Cord 2024; 62:429-439. [PMID: 38849489 DOI: 10.1038/s41393-024-01004-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024]
Abstract
STUDY DESIGN Animal studies OBJECTIVES: To evaluate the therapeutic effect of olfactory mucosa mesenchymal stem cell (OM-MSCs) transplantation in mice with spinal cord injury (SCI) and to explore the mechanism by which OM-MSCs inhibit neuroinflammation and improve SCI. SETTING Xiangya Hospital, Central South University; Affiliated Hospital of Guangdong Medical University. METHODS Mice (C57BL/6, female, 6-week-old) were randomly divided into sham, SCI, and SCI + OM-MSC groups. The SCI mouse model was generated using Allen's method. OM-MSCs were immediately delivered to the lateral ventricle after SCI using stereotaxic brain injections. One day prior to injury and on days 1, 5, 7, 14, 21, and 28 post-injury, the Basso Mouse Scale and Rivlin inclined plate tests were performed. Inflammation and microglial polarization were evaluated using histological staining, immunofluorescence, and qRT-PCR. RESULTS OM-MSCs originating from the neuroectoderm have great potential in the management of SCI owing to their immunomodulatory effects. OM-MSCs administration improved motor function, alleviated inflammation, promoted the transformation of the M1 phenotype of microglia into the M2 phenotype, facilitated axonal regeneration, and relieved spinal cord injury in SCI mice. CONCLUSIONS OM-MSCs reduced the level of inflammation in the spinal cord tissue, protected neurons, and repaired spinal cord injury by regulating the M1/M2 polarization of microglia.
Collapse
Affiliation(s)
- Xin Wang
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Chun-Gu Hong
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Ran Duan
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Zhi-Lin Pang
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Min-Na Zhang
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hui Xie
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Zheng-Zhao Liu
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, 524001, China.
| |
Collapse
|
179
|
Wang X, Feng S, Deng Q, Wu C, Duan R, Yang L. The role of estrogen in Alzheimer's disease pathogenesis and therapeutic potential in women. Mol Cell Biochem 2024:10.1007/s11010-024-05071-4. [PMID: 39088186 DOI: 10.1007/s11010-024-05071-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/11/2024] [Indexed: 08/02/2024]
Abstract
Estrogens are pivotal regulators of brain function throughout the lifespan, exerting profound effects from early embryonic development to aging. Extensive experimental evidence underscores the multifaceted protective roles of estrogens on neurons and neurotransmitter systems, particularly in the context of Alzheimer's disease (AD) pathogenesis. Studies have consistently revealed a greater risk of AD development in women compared to men, with postmenopausal women exhibiting heightened susceptibility. This connection between sex factors and long-term estrogen deprivation highlights the significance of estrogen signaling in AD progression. Estrogen's influence extends to key processes implicated in AD, including amyloid precursor protein (APP) processing and neuronal health maintenance mediated by brain-derived neurotrophic factor (BDNF). Reduced BDNF expression, often observed in AD, underscores estrogen's role in preserving neuronal integrity. Notably, hormone replacement therapy (HRT) has emerged as a sex-specific and time-dependent strategy for primary cardiovascular disease (CVD) prevention, offering an excellent risk profile against aging-related disorders like AD. Evidence suggests that HRT may mitigate AD onset and progression in postmenopausal women, further emphasizing the importance of estrogen signaling in AD pathophysiology. This review comprehensively examines the physiological and pathological changes associated with estrogen in AD, elucidating the therapeutic potential of estrogen-based interventions such as HRT. By synthesizing current knowledge, it aims to provide insights into the intricate interplay between estrogen signaling and AD pathogenesis, thereby informing future research directions and therapeutic strategies for this debilitating neurodegenerative disorder.
Collapse
Affiliation(s)
- Xinyi Wang
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Shu Feng
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Qianting Deng
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Chongyun Wu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, China.
| | - Rui Duan
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou, China
| | - Luodan Yang
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
180
|
Donders Z, Skorupska IJ, Willems E, Mussen F, Broeckhoven JV, Carlier A, Schepers M, Vanmierlo T. Beyond PDE4 inhibition: A comprehensive review on downstream cAMP signaling in the central nervous system. Biomed Pharmacother 2024; 177:117009. [PMID: 38908196 DOI: 10.1016/j.biopha.2024.117009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/27/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024] Open
Abstract
Cyclic adenosine monophosphate (cAMP) is a key second messenger that regulates signal transduction pathways pivotal for numerous biological functions. Intracellular cAMP levels are spatiotemporally regulated by their hydrolyzing enzymes called phosphodiesterases (PDEs). It has been shown that increased cAMP levels in the central nervous system (CNS) promote neuroplasticity, neurotransmission, neuronal survival, and myelination while suppressing neuroinflammation. Thus, elevating cAMP levels through PDE inhibition provides a therapeutic approach for multiple CNS disorders, including multiple sclerosis, stroke, spinal cord injury, amyotrophic lateral sclerosis, traumatic brain injury, and Alzheimer's disease. In particular, inhibition of the cAMP-specific PDE4 subfamily is widely studied because of its high expression in the CNS. So far, the clinical translation of full PDE4 inhibitors has been hampered because of dose-limiting side effects. Hence, focusing on signaling cascades downstream activated upon PDE4 inhibition presents a promising strategy, offering novel and pharmacologically safe targets for treating CNS disorders. Yet, the underlying downstream signaling pathways activated upon PDE(4) inhibition remain partially elusive. This review provides a comprehensive overview of the existing knowledge regarding downstream mediators of cAMP signaling induced by PDE4 inhibition or cAMP stimulators. Furthermore, we highlight existing gaps and future perspectives that may incentivize additional downstream research concerning PDE(4) inhibition, thereby providing novel therapeutic approaches for CNS disorders.
Collapse
Affiliation(s)
- Zoë Donders
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229ER, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium
| | - Iga Joanna Skorupska
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229ER, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium; Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht 6629ER, the Netherlands
| | - Emily Willems
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229ER, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium
| | - Femke Mussen
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229ER, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium; Department of Immunology and Infection, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium
| | - Jana Van Broeckhoven
- Department of Immunology and Infection, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium; University MS Centre (UMSC) Hasselt - Pelt, Belgium
| | - Aurélie Carlier
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht 6629ER, the Netherlands
| | - Melissa Schepers
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229ER, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium; University MS Centre (UMSC) Hasselt - Pelt, Belgium
| | - Tim Vanmierlo
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6229ER, the Netherlands; Department of Neuroscience, Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt 3500, Belgium; University MS Centre (UMSC) Hasselt - Pelt, Belgium.
| |
Collapse
|
181
|
Cai P, Li W, Xu Y, Wang H. Drp1 and neuroinflammation: Deciphering the interplay between mitochondrial dynamics imbalance and inflammation in neurodegenerative diseases. Neurobiol Dis 2024; 198:106561. [PMID: 38857809 DOI: 10.1016/j.nbd.2024.106561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/24/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024] Open
Abstract
Neuroinflammation and mitochondrial dysfunction are closely intertwined with the pathophysiology of neurological disorders. Recent studies have elucidated profound alterations in mitochondrial dynamics across a spectrum of neurological disorders. Dynamin-related protein 1 (DRP1) emerges as a pivotal regulator of mitochondrial fission, with its dysregulation disrupting mitochondrial homeostasis and fueling neuroinflammation, thereby exacerbating disease severity. In addition to its role in mitochondrial dynamics, DRP1 plays a crucial role in modulating inflammation-related pathways. This review synthesizes important functions of DRP1 in the central nervous system (CNS) and the impact of epigenetic modification on the progression of neurodegenerative diseases. The intricate interplay between neuroinflammation and DRP1 in microglia and astrocytes, central contributors to neuroinflammation, is expounded upon. Furthermore, the use of DRP1 inhibitors to influence the activation of microglia and astrocytes, as well as their involvement in processes such as mitophagy, mitochondrial oxidative stress, and calcium ion transport in CNS-mediated neuroinflammation, is scrutinized. The modulation of microglia to astrocyte crosstalk by DRP1 and its role in inflammatory neurodegeneration is also highlighted. Overall, targeting DRP1 presents a promising avenue for ameliorating neuroinflammation and enhancing the therapeutic management of neurological disorders.
Collapse
Affiliation(s)
- Peiyang Cai
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Wuhao Li
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Ye Xu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China
| | - Hui Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China..
| |
Collapse
|
182
|
Jiang ST, Sun YH, Li Y, Wang MQ, Wang XY, Dong YF. Gut microbiota is necessary for pair-housing to protect against post-stroke depression in mice. Exp Neurol 2024; 378:114834. [PMID: 38789022 DOI: 10.1016/j.expneurol.2024.114834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/06/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
The goal of this study is to investigate the role of microbiota-gut-brain axis involved in the protective effect of pair-housing on post-stroke depression (PSD). PSD model was induced by occluding the middle cerebral artery (MCAO) plus restraint stress for four weeks. At three days after MCAO, the mice were restrained 2 h per day. For pair-housing (PH), each mouse was pair housed with a healthy isosexual cohabitor for four weeks. While in the other PH group, their drinking water was replaced with antibiotic water. On day 35 to day 40, anxiety- and depression-like behaviors (sucrose consumption, open field test, forced swim test, and tail-suspension test) were conducted. Results showed pair-housed mice had better performance on anxiety- and depression-like behaviors than the PSD mice, and the richness and diversity of intestinal flora were also improved. However, drinking antibiotic water reversed the effects of pair-housing. Furthermore, pair-housing had an obvious improvement in gut barrier disorder and inflammation caused by PSD. Particularly, they showed significant decreases in CD8 lymphocytes and mRNA levels of pro-inflammatory cytokines (TNF-a, IL-1β and IL-6), while IL-10 mRNA was upregulated. In addition, pair-housing significantly reduced activated microglia and increased Nissl's body in the hippocampus of PSD mice. However, all these improvements were worse in the pair-housed mice administrated with antibiotic water. We conclude that pair-housing significantly improves PSD in association with enhanced functions of microbiota-gut-brain axis, and homeostasis of gut microbiota is indispensable for the protective effect of pair-housing on PSD.
Collapse
Affiliation(s)
- Su-Ting Jiang
- Department of Medical Care, School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yao-Huan Sun
- Department of Medical Care, School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ya Li
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
| | - Meng-Qing Wang
- Department of Pathology and Pathophysiology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xu-Yang Wang
- Department of Neurosurgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China.
| | - Yin-Feng Dong
- Department of Pathology and Pathophysiology, School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
183
|
Qi Z, Peng J, Wang H, Wang L, Su Y, Ding L, Cao B, Zhao Y, Xing Q, Yang J. Modulating neuroinflammation and cognitive function in postoperative cognitive dysfunction via CCR5-GPCRs-Ras-MAPK pathway targeting with microglial EVs. CNS Neurosci Ther 2024; 30:e14924. [PMID: 39143678 PMCID: PMC11324532 DOI: 10.1111/cns.14924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/28/2024] [Accepted: 08/02/2024] [Indexed: 08/16/2024] Open
Abstract
AIMS Postoperative cognitive dysfunction (POCD) is prevalent among the elderly, characterized primarily by cognitive decline after surgery. This study aims to explore how extracellular vesicles (EVs) derived from BV2 microglial cells, with and without the C-C chemokine receptor type 5 (CCR5), affect neuroinflammation, neuronal integrity, and cognitive function in a POCD mouse model. METHODS We collected EVs from LPS-stimulated BV2 cells expressing CCR5 (EVsM1) and from BV2 cells with CCR5 knockdown (EVsM1-CCR5). These were administered to POCD-induced mice. Protein interactions between CCR5, G-protein-coupled receptors (GPCRs), and Ras were analyzed using structure-based docking and co-immunoprecipitation (Co-IP). We assessed the phosphorylation of p38 and Erk, the expression of synaptic proteins PSD95 and MAP2, and conducted Morris Water Maze tests to evaluate cognitive function. RESULTS Structure-based docking and Co-IP confirmed interactions between CCR5, GPR, and Ras, suggesting a CCR5-GPCRs-Ras-MAPK pathway involvement in neuroinflammation. EVsM1 heightened neuroinflammation, reduced synaptic integrity, and impaired cognitive function in POCD mice. In contrast, EVsM1-CCR5 reduced neuroinflammatory markers, preserved synaptic proteins, enhanced dendritic spine structure, and improved cognitive outcomes. CONCLUSION EVsM1 induced neuroinflammation via the CCR5-GPCRs-Ras-MAPK pathway, with EVsM1-CCR5 showing protective effects on POCD progression, suggesting a new therapeutic strategy for POCD management via targeted modification of microglial EVs.
Collapse
Affiliation(s)
- Zheng Qi
- Department of Anesthesiology, Pain and Perioperative MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Junlin Peng
- Department of Anesthesiology, Pain and Perioperative MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Haitao Wang
- Department of Anesthesiology, Pain and Perioperative MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Li Wang
- Biobank of The First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yu Su
- Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Lan Ding
- Department of NeurologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Bin Cao
- Department of Anesthesiology, Pain and Perioperative MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yingying Zhao
- Department of Anesthesiology, Pain and Perioperative MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Qinghe Xing
- Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| | - Jian‐jun Yang
- Department of Anesthesiology, Pain and Perioperative MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| |
Collapse
|
184
|
Wang JY, Ren P, Cui LY, Duan JY, Chen HL, Zeng ZR, Li YF. Astrocyte-specific activation of sigma-1 receptors in mPFC mediates the faster onset antidepressant effect by inhibiting NF-κB-induced neuroinflammation. Brain Behav Immun 2024; 120:256-274. [PMID: 38852761 DOI: 10.1016/j.bbi.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/29/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024] Open
Abstract
Major depressive disorder (MDD) is a global health burden characterized by persistent low mood, deprivation of pleasure, recurrent thoughts of death, and physical and cognitive deficits. The current understanding of the pathophysiology of MDD is lacking, resulting in few rapid and effective antidepressant therapies. Recent studies have pointed to the sigma-1 (σ-1) receptor as a potential rapid antidepressant target; σ-1 agonists have shown promise in a variety of preclinical depression models. Hypidone hydrochloride (YL-0919), an independently developed antidepressant by our institute with faster onset of action and low rate of side effects, has recently emerged as a highly selective σ-1 receptor agonist; however, its underlying astrocyte-specific mechanism is unknown. In this study, we investigated the effect of YL-0919 treatment on gene expression in the prefrontal cortex of depressive-like mice by single-cell RNA sequencing. Furthermore, we knocked down σ-1 receptors on astrocytes in the medial prefrontal cortex of mice to explore the effects of YL-0919 on depressive-like behavior and neuroinflammation in mice. Our results demonstrated that astrocyte-specific knockdown of σ-1 receptor resulted in depressive-like behavior in mice, which was reversed by YL-0919 administration. In addition, astrocytic σ-1 receptor deficiency led to activation of the NF-κB inflammatory pathway, and crosstalk between reactive astrocytes and activated microglia amplified neuroinflammation, exacerbating stress-induced neuronal apoptosis. Furthermore, the depressive-like behavior induced by astrocyte-specific knockdown of the σ-1 receptor was improved by a selective NF-κB inhibitor, JSH-23, in mice. Our study not only reaffirms the σ-1 receptor as a key target of the faster antidepressant effect of YL-0919, but also contributes to the development of astrocytic σ-1 receptor-based novel drugs.
Collapse
Affiliation(s)
- Jing-Ya Wang
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Peng Ren
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China.
| | - Lin-Yu Cui
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, 100850, China
| | - Jing-Yao Duan
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, 100850, China
| | - Hong-Lei Chen
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Zhi-Rui Zeng
- Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, 561113, China
| | - Yun-Feng Li
- Beijing Institute of Basic Medical Sciences, Beijing, 100850, China; Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, 100850, China.
| |
Collapse
|
185
|
Deng Q, Wu C, Parker E, Liu TCY, Duan R, Yang L. Microglia and Astrocytes in Alzheimer's Disease: Significance and Summary of Recent Advances. Aging Dis 2024; 15:1537-1564. [PMID: 37815901 PMCID: PMC11272214 DOI: 10.14336/ad.2023.0907] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 09/07/2023] [Indexed: 10/12/2023] Open
Abstract
Alzheimer's disease, one of the most common forms of dementia, is characterized by a slow progression of cognitive impairment and neuronal loss. Currently, approved treatments for AD are hindered by various side effects and limited efficacy. Despite considerable research, practical treatments for AD have not been developed. Increasing evidence shows that glial cells, especially microglia and astrocytes, are essential in the initiation and progression of AD. During AD progression, activated resident microglia increases the ability of resting astrocytes to transform into reactive astrocytes, promoting neurodegeneration. Extensive clinical and molecular studies show the involvement of microglia and astrocyte-mediated neuroinflammation in AD pathology, indicating that microglia and astrocytes may be potential therapeutic targets for AD. This review will summarize the significant and recent advances of microglia and astrocytes in the pathogenesis of AD in three parts. First, we will review the typical pathological changes of AD and discuss microglia and astrocytes in terms of function and phenotypic changes. Second, we will describe microglia and astrocytes' physiological and pathological role in AD. These roles include the inflammatory response, "eat me" and "don't eat me" signals, Aβ seeding, propagation, clearance, synapse loss, synaptic pruning, remyelination, and demyelination. Last, we will review the pharmacological and non-pharmacological therapies targeting microglia and astrocytes in AD. We conclude that microglia and astrocytes are essential in the initiation and development of AD. Therefore, understanding the new role of microglia and astrocytes in AD progression is critical for future AD studies and clinical trials. Moreover, pharmacological, and non-pharmacological therapies targeting microglia and astrocytes, with specific studies investigating microglia and astrocyte-mediated neuronal damage and repair, may be a promising research direction for future studies regarding AD treatment and prevention.
Collapse
Affiliation(s)
- Qianting Deng
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China.
| | - Chongyun Wu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China.
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China.
| | - Emily Parker
- Medical College of Georgia at Augusta University, Augusta, GA 30912, USA.
| | - Timon Cheng-Yi Liu
- Laboratory of Laser Sports Medicine, School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China.
| | - Rui Duan
- Laboratory of Regenerative Medicine in Sports Science, School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China.
| | - Luodan Yang
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
186
|
Maiuolo J, Liuzzi F, Spagnoletta A, Oppedisano F, Macrì R, Scarano F, Caminiti R, Nucera S, Serra M, Palma E, Muscoli C, Mollace V. Studies on the Comparative Response of Fibers Obtained from the Pastazzo of Citrus bergamia and Cladodes of Opuntia ficus-indica on In Vitro Model of Neuroinflammation. PLANTS (BASEL, SWITZERLAND) 2024; 13:2123. [PMID: 39124241 PMCID: PMC11313998 DOI: 10.3390/plants13152123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/08/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
Adhering to a healthy diet has a protective effect on human health, including a decrease in inflammatory diseases due to consuming fiber. The purpose of this manuscript was to obtain and compare two extracts based on fiber (BF and IF-C), derived from two plants particularly present in the Mediterranean region: bergamot (Citrus bergamia) and prickly pear (Opuntia ficus-indica). The parts used by these plants have been the "pastazzo" for the bergamot and the cladodes for the prickly pear. In addition to in vitro evaluations, the antioxidant activity was also measured on human neurons under inflammatory conditions. Furthermore, the extracts of interest were examined for their effects on the cell cycle and the regulation of pro-apoptotic proteins, caspase 9 and 3, induced by LPS. The results indicated that both extracts had a protective effect against LPS-induced damage, with BF consistently exhibiting superior functionality compared to IF-C. Moreover, the extracts can reduce inflammation, which is a common process of disease. By exploring this avenue, studying the consumption of dietary fiber could enhance our understanding of its positive effects, but additional experiments are needed to confirm this.
Collapse
Affiliation(s)
- Jessica Maiuolo
- IRC-FSH Center, Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (R.M.); (F.S.); (R.C.); (S.N.); (M.S.); (E.P.); (C.M.); (V.M.)
| | - Federico Liuzzi
- Laboratory for Techniques and Processes in Biorefineries, ENEA—Trisaia Research Centre, S.S. Jonica 106, Km 419+500, 75026 Rotondella, Italy;
| | - Anna Spagnoletta
- Laboratory “Regenerative Circular Bioeconomy”, ENEA—Trisaia Research Centre, S.S. Jonica 106, Km 419+500, 75026 Rotondella, Italy;
| | - Francesca Oppedisano
- IRC-FSH Center, Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (R.M.); (F.S.); (R.C.); (S.N.); (M.S.); (E.P.); (C.M.); (V.M.)
| | - Roberta Macrì
- IRC-FSH Center, Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (R.M.); (F.S.); (R.C.); (S.N.); (M.S.); (E.P.); (C.M.); (V.M.)
| | - Federica Scarano
- IRC-FSH Center, Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (R.M.); (F.S.); (R.C.); (S.N.); (M.S.); (E.P.); (C.M.); (V.M.)
| | - Rosamaria Caminiti
- IRC-FSH Center, Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (R.M.); (F.S.); (R.C.); (S.N.); (M.S.); (E.P.); (C.M.); (V.M.)
| | - Saverio Nucera
- IRC-FSH Center, Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (R.M.); (F.S.); (R.C.); (S.N.); (M.S.); (E.P.); (C.M.); (V.M.)
| | - Maria Serra
- IRC-FSH Center, Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (R.M.); (F.S.); (R.C.); (S.N.); (M.S.); (E.P.); (C.M.); (V.M.)
| | - Ernesto Palma
- IRC-FSH Center, Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (R.M.); (F.S.); (R.C.); (S.N.); (M.S.); (E.P.); (C.M.); (V.M.)
| | - Carolina Muscoli
- IRC-FSH Center, Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (R.M.); (F.S.); (R.C.); (S.N.); (M.S.); (E.P.); (C.M.); (V.M.)
| | - Vincenzo Mollace
- IRC-FSH Center, Department of Health Sciences, University “Magna Græcia” of Catanzaro, 88100 Catanzaro, Italy; (J.M.); (R.M.); (F.S.); (R.C.); (S.N.); (M.S.); (E.P.); (C.M.); (V.M.)
- Fondazione R. Dulbecco, 88046 Lamezia Terme, Italy
| |
Collapse
|
187
|
Zhang Y, Li D, Gao H, Zhao H, Zhang S, Li T. Rapamycin Alleviates Neuronal Injury and Modulates Microglial Activation After Cerebral Ischemia. Mol Neurobiol 2024; 61:5699-5717. [PMID: 38224443 DOI: 10.1007/s12035-023-03904-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 12/21/2023] [Indexed: 01/16/2024]
Abstract
Neurons and microglia are sensitive to cerebral microcirculation and their responses play a crucial part in the pathological processes, while they are also the main target cells of many drugs used to treat brain diseases. Rapamycin exhibits beneficial effects in many diseases; however, whether it can affect neuronal injury or alter the microglial activation after global cerebral ischemia remains unclear. In this study, we performed global cerebral ischemia combined with rapamycin treatment in CX3CR1GFP/+ mice and explored the effects of rapamycin on neuronal deficit and microglial activation. Our results showed that rapamycin reduced neuronal loss, neurodegeneration, and ultrastructural damage after ischemia by histological staining and transmission electron microscopy (TEM). Interestingly, rapamycin suppressed de-ramification and proliferation of microglia and reduced the density of microglia. Immunofluorescence staining indicated that rapamycin skewed microglial polarization toward an anti-inflammatory state. Furthermore, rapamycin as well suppressed the activation of astrocytes. Meanwhile, quantitative real-time polymerase chain reaction (qRT-PCR) analyses revealed a significant reduction of pro-inflammatory factors as well as an elevation of anti-inflammatory factors upon rapamycin treatment. As a result of these effects, behavioral tests showed that rapamycin significantly alleviated the brain injury after stroke. Together, our study suggested that rapamycin attenuated neuronal injury, altered microglial activation state, and provided a more beneficial immune microenvironment for the brain, which could be used as a promising therapeutic approach to treat ischemic cerebrovascular diseases.
Collapse
Affiliation(s)
- Yue Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, Gansu, 730000, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Donghai Li
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, Gansu, 730000, China
| | - Hao Gao
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, Gansu, 730000, China
| | - Haiyu Zhao
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, Gansu, 730000, China
| | - Shengxiang Zhang
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, Gansu, 730000, China.
| | - Ting Li
- Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, School of Life Sciences, Lanzhou University, No. 222 South Tianshui Road, Lanzhou, Gansu, 730000, China.
| |
Collapse
|
188
|
Kong W, Lu C. Role of mitochondria in neonatal hypoxic-ischemic encephalopathy. Histol Histopathol 2024; 39:991-1000. [PMID: 38314617 DOI: 10.14670/hh-18-710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Neonatal hypoxic-ischemic encephalopathy, an important cause of death as well as long-term disability in survivors, is caused by oxygen and glucose deprivation, and limited blood flow. Following hypoxic-ischemic injury in the neonatal brain, three main biochemical damages (excitotoxicity, oxidative stress, and exacerbated inflammation) are triggered. Mitochondria are involved in all three cascades. Mitochondria are the nexus of metabolic pathways to offer most of the energy that our body needs. Hypoxic-ischemic injury affects the characteristics of mitochondria, including dynamics, permeability, and ATP production, which also feed back into the process of neonatal hypoxic-ischemic encephalopathy. Mitochondria can be a cellular hub in inflammation, which is another main response of the injured neonatal brain. Some treatments for neonatal hypoxic-ischemic encephalopathy affect the function of mitochondria or target mitochondria, including therapeutic hypothermia and erythropoietin. This review presents the main roles of mitochondria in neonatal hypoxic-ischemic encephalopathy and discusses some potential treatments directed at mitochondria, which may foster the development of new therapeutic strategies for this encephalopathy.
Collapse
Affiliation(s)
- Weijing Kong
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| | - Cheng Lu
- Department of Pediatrics, Beijing Friendship Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
189
|
D'Antongiovanni V, Pellegrini C, Antonioli L, Ippolito C, Segnani C, Benvenuti L, D'Amati A, Errede M, Virgintino D, Fornai M, Bernardini N. Enteric Glia and Brain Astroglia: Complex Communication in Health and Disease along the Gut-Brain Axis. Neuroscientist 2024; 30:493-510. [PMID: 37052336 DOI: 10.1177/10738584231163460] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Several studies have provided interesting evidence about the role of the bidirectional communication between the gut and brain in the onset and development of several pathologic conditions, including inflammatory bowel diseases (IBDs), neurodegenerative diseases, and related comorbidities. Indeed, patients with IBD can experience neurologic disorders, including depression and cognitive impairment, besides typical intestinal symptoms. In parallel, patients with neurodegenerative disease, such as Parkinson disease and Alzheimer disease, are often characterized by the occurrence of functional gastrointestinal disorders. In this context, enteric glial cells and brain astrocytes are emerging as pivotal players in the initiation/maintenance of neuroinflammatory responses, which appear to contribute to the alterations of intestinal and neurologic functions observed in patients with IBD and neurodegenerative disorders. The present review was conceived to provide a comprehensive and critical overview of the available knowledge on the morphologic, molecular, and functional changes occurring in the enteric glia and brain astroglia in IBDs and neurologic disorders. In addition, our intent is to identify whether such alterations could represent a common denominator involved in the onset of comorbidities associated with the aforementioned disorders. This might help to identify putative targets useful to develop novel pharmacologic approaches for the therapeutic management of such disturbances.
Collapse
Affiliation(s)
- Vanessa D'Antongiovanni
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Carolina Pellegrini
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Luca Antonioli
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Chiara Ippolito
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Cristina Segnani
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Laura Benvenuti
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Antonio D'Amati
- Department of Basic Medical Sciences, Neuroscience, and Sensory Organs, University of Bari School of Medicine, Bari, Italy
| | - Mariella Errede
- Department of Basic Medical Sciences, Neuroscience, and Sensory Organs, University of Bari School of Medicine, Bari, Italy
| | - Daniela Virgintino
- Department of Basic Medical Sciences, Neuroscience, and Sensory Organs, University of Bari School of Medicine, Bari, Italy
| | - Matteo Fornai
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Nunzia Bernardini
- Unit of Histology and Medical Embryology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
190
|
Zhang LW, Cui CA, Liu C, Sun LP, Ouyang YN, Li LF, Zhang DL, Yu HL. Auraptene-ameliorating depressive-like behaviors induced by lipopolysaccharide combined with chronic unpredictable mild stress in mice mitigate hippocampal neuroinflammation mediated by microglia. Int Immunopharmacol 2024; 136:112330. [PMID: 38823180 DOI: 10.1016/j.intimp.2024.112330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/10/2024] [Accepted: 05/20/2024] [Indexed: 06/03/2024]
Abstract
An inflammatory response is one of the pathogeneses of depression. The anti-inflammatory and neuroprotective effects of auraptene have previously been confirmed. We established an inflammatory depression model by lipopolysaccharide (LPS) injection combined with unpredictable chronic mild stress (uCMS), aiming to explore the effects of auraptene on depressive-like behaviors in adult mice. Mice were divided into a control group, vehicle group, fluoxetine group, celecoxib group, and auraptene group. Then, behavioral tests were conducted to evaluate the effectiveness of auraptene in ameliorating depressive-like behavior. Cyclooxygenase-2 (COX-2), C-reactive protein (CRP), tumor necrosis factor (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) were examined by ELISA. Interleukin-10 (IL-10), interleukin-4 (IL-4), and transforming growth factor-β (TGF-β) were examined by protein chip technology. The morphology of microglia was observed by the immunohistochemical method. The data showed that, compared with the control group, the vehicle group mice exhibited a depressive-like behavioral phenotype, accompanied by an imbalance in inflammatory cytokines and the activation of microglia in the hippocampus. The depressive behaviors of the auraptene group's mice were significantly alleviated, along with the decrease in pro-inflammatory factors and increase in anti-inflammatory factors, while the activation of microglia was inhibited in the hippocampus. Subsequently, we investigated the role of auraptene in vitro-cultured BV-2 cells treated with LPS. The analysis showed that auraptene downregulated the expression of IL-6, TNF-α, and NO, and diminished the ratio of CD86/CD206. The results showed that auraptene reduced the excessive phagocytosis and ROS production of LPS-induced BV2 cells. In conclusion, auraptene relieved depressive-like behaviors in mice probably via modulating hippocampal neuroinflammation mediated by microglia.
Collapse
Affiliation(s)
- Lu-Wen Zhang
- Department of Functional Science, College of Medicine, Yanbian University, Yanji, Jilin, PR China
| | - Chun-Ai Cui
- Department of Anatomy, College of Medicine, Yanbian University, Yanji, Jilin, PR China
| | - Chao Liu
- Department of Neurology, Yanbian University Affiliated Hospital, Yanji, Jilin, PR China
| | - Lian-Ping Sun
- Department of Morphological Experiment, College of Medicine, Yanbian University, Yanji, Jilin, PR China
| | - Yi-Nan Ouyang
- Department of Morphological Experiment, College of Medicine, Yanbian University, Yanji, Jilin, PR China
| | - Long-Fei Li
- Department of Functional Science, College of Medicine, Yanbian University, Yanji, Jilin, PR China
| | - Dong-Liang Zhang
- Department of Functional Science, College of Medicine, Yanbian University, Yanji, Jilin, PR China
| | - Hai-Ling Yu
- Department of Functional Science, College of Medicine, Yanbian University, Yanji, Jilin, PR China.
| |
Collapse
|
191
|
Zhu Z, Chen G, He J, Xu Y. The protective effects of orexin B in neuropathic pain by suppressing inflammatory response. Neuropeptides 2024; 108:102458. [PMID: 39255695 DOI: 10.1016/j.npep.2024.102458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/19/2024] [Accepted: 07/28/2024] [Indexed: 09/12/2024]
Abstract
Chronic pain induced by pathological insults to the sensorimotor system is a typical form of neuropathic pain (NP), and the underlying mechanism is complex. Currently, there are no successful therapeutic interventions for NP. Orexin B is a neuropeptide with a wide range of biological functions. However, the pharmacological function of orexin B in chronic neuropathic pain has been less studied. Here, we aim to examine the neuroprotective effects of orexin B in chronic constriction injury (CCI)- induced NP. Firstly, we found that orexin type 2 receptor (OX2R) but not orexin type 1 receptor (OX1R) was reduced in the spinal cord (SC) of CCI-treated rats. Mechanical withdrawal threshold and thermal withdrawal latency assays display that administration of orexin B clearly ameliorated CCI-evoked neuropathic pain dose-dependently. Notably, orexin B treatment also effectively prevented microglia activation by reducing the levels of IBA1. Additionally, orexin B was also found to suppress the inflammatory response in the SC tissue by reducing the levels of IL-6, TNF-α, iNOS, and COX-2 as well as the production of NO and PGE2 in CCI-treated rats. Furthermore, orexin B administration attenuated oxidative stress (OS) by increasing the activity of SOD and the levels of GSH. Mechanically, orexin B prevented activation of JNK/NF-κB signaling in the SC of CCI-treated rats. Based on these findings, we conclude that orexin B might have a promising role in ameliorating CCI-evoked neuropathic pain through the inhibition of microglial activation and inflammatory response.
Collapse
Affiliation(s)
- Zuqing Zhu
- Department of Anesthesiology, the First People's Hospital of Linping District, Hangzhou, Zhejiang 311100, China
| | - Gang Chen
- Department of Anesthesiology, Shaoyifu Hospital Affiliated to Zhejiang University School of Medicine, Hangzhou, Zhejiang 310018, China
| | - Jiangtao He
- Department of Anesthesiology, the First People's Hospital of Linping District, Hangzhou, Zhejiang 311100, China
| | - Yuanting Xu
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 311100, China.
| |
Collapse
|
192
|
Zhu Y, Guo X, Li S, Wu Y, Zhu F, Qin C, Zhang Q, Yang Y. Naringenin ameliorates amyloid-β pathology and neuroinflammation in Alzheimer's disease. Commun Biol 2024; 7:912. [PMID: 39069528 DOI: 10.1038/s42003-024-06615-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia characterized by amyloid-β (Aβ) deposition, tau hyperphosphorylation, and neuroinflammation. Naringenin (NRG), a natural flavonoid widely present in citrus fruits, has been reported can penetrate the blood-brain barrier and exert anti-inflammatory effects in the central nervous system. Here, we investigate the protective effects of long-term NRG treatment on AD. The novel object recognition test and Morris water maze test reveal that NRG treatment can improve the learning and memory ability of APP/PS1 mice. Besides, we find that NRG can significantly reduce Aβ deposition, microglial and astrocytic activation, and pro-inflammatory cytokine levels in APP/PS1 mice. Results further show that NRG effectively decreases pro-inflammatory cytokines in LPS/Aβ-stimulated BV2 cells. Lastly, the molecular mechanistic study reveals that NRG attenuates neuroinflammatory responses via inhibition of the MAPK signaling pathway in vivo and in vitro. Overall, NRG may emerge as a promising compound for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Yueli Zhu
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
- Key Laboratory of Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaoming Guo
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China
| | - Shumin Li
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
- Key Laboratory of Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yue Wu
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
- Key Laboratory of Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Feng Zhu
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
- Key Laboratory of Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chengfan Qin
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China
- Key Laboratory of Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qin Zhang
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China.
- Key Laboratory of Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Yunmei Yang
- Department of Geriatrics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, Zhejiang, China.
- Key Laboratory of Diagnosis and Treatment of Aging and Physic-chemical Injury Diseases of Zhejiang Province, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
193
|
Wahl D, Risen SJ, Osburn SC, Emge T, Sharma S, Gilberto VS, Chatterjee A, Nagpal P, Moreno JA, LaRocca TJ. Nanoligomers targeting NF-κB and NLRP3 reduce neuroinflammation and improve cognitive function with aging and tauopathy. J Neuroinflammation 2024; 21:182. [PMID: 39068433 PMCID: PMC11283709 DOI: 10.1186/s12974-024-03182-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024] Open
Abstract
Neuroinflammation contributes to impaired cognitive function in brain aging and neurodegenerative disorders like Alzheimer's disease, which is characterized by the aggregation of pathological tau. One major driver of both age- and tau-associated neuroinflammation is the NF-κB and NLRP3 signaling axis. However, current treatments targeting NF-κB or NLRP3 may have adverse/systemic effects, and most have not been clinically translatable. In this study, we tested the efficacy of a novel, nucleic acid therapeutic (Nanoligomer) cocktail specifically targeting both NF-κB and NLRP3 in the brain for reducing neuroinflammation and improving cognitive function in old (aged 19 months) wildtype mice, and in rTg4510 tau pathology mice (aged 2 months). We found that 4 weeks of NF-κB/NLRP3-targeting Nanoligomer treatment strongly reduced neuro-inflammatory cytokine profiles in the brain and improved cognitive-behavioral function in both old and rTg4510 mice. These effects of NF-κB/NLRP3-targeting Nanoligomers were also associated with reduced glial cell activation and pathology, favorable changes in transcriptome signatures of glia-associated inflammation (reduced) and neuronal health (increased), and positive systemic effects. Collectively, our results provide a basis for future translational studies targeting both NF-κB and NLRP3 in the brain, perhaps using Nanoligomers, to inhibit neuroinflammation and improve cognitive function with aging and neurodegeneration.
Collapse
Affiliation(s)
- Devin Wahl
- Department of Health and Exercise Science, Colorado State University, 1582 Campus Delivery, Fort Collins, CO, 80523, USA
- Columbine Health Systems Center for Healthy Aging, Colorado State University, Fort Collins, CO, USA
| | - Sydney J Risen
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
- Brain Research Center, Colorado State University, Fort Collins, CO, USA
| | - Shelby C Osburn
- Department of Health and Exercise Science, Colorado State University, 1582 Campus Delivery, Fort Collins, CO, 80523, USA
- Columbine Health Systems Center for Healthy Aging, Colorado State University, Fort Collins, CO, USA
| | - Tobias Emge
- Department of Health and Exercise Science, Colorado State University, 1582 Campus Delivery, Fort Collins, CO, 80523, USA
- Columbine Health Systems Center for Healthy Aging, Colorado State University, Fort Collins, CO, USA
| | - Sadhana Sharma
- Sachi Bio, Colorado Technology Center, Louisville, CO, USA
| | | | | | | | - Julie A Moreno
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
- Brain Research Center, Colorado State University, Fort Collins, CO, USA
| | - Thomas J LaRocca
- Department of Health and Exercise Science, Colorado State University, 1582 Campus Delivery, Fort Collins, CO, 80523, USA.
- Columbine Health Systems Center for Healthy Aging, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
194
|
Ullah Z, Tao Y, Huang J. Integrated Bioinformatics-Based Identification and Validation of Neuroinflammation-Related Hub Genes in Primary Open-Angle Glaucoma. Int J Mol Sci 2024; 25:8193. [PMID: 39125762 PMCID: PMC11311784 DOI: 10.3390/ijms25158193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Glaucoma is a leading cause of permanent blindness, affecting 80 million people worldwide. Recent studies have emphasized the importance of neuroinflammation in the early stages of glaucoma, involving immune and glial cells. To investigate this further, we used the GSE27276 dataset from the GEO (Gene Expression Omnibus) database and neuroinflammation genes from the GeneCards database to identify differentially expressed neuroinflammation-related genes associated with primary open-angle glaucoma (POAG). Subsequently, these genes were submitted to Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes for pathway enrichment analyses. Hub genes were picked out through protein-protein interaction networks and further validated using the external datasets (GSE13534 and GSE9944) and real-time PCR analysis. The gene-miRNA regulatory network, receiver operating characteristic (ROC) curve, genome-wide association study (GWAS), and regional expression analysis were performed to further validate the involvement of hub genes in glaucoma. A total of 179 differentially expressed genes were identified, comprising 60 upregulated and 119 downregulated genes. Among them, 18 differentially expressed neuroinflammation-related genes were found to overlap between the differentially expressed genes and neuroinflammation-related genes, with six genes (SERPINA3, LCN2, MMP3, S100A9, IL1RN, and HP) identified as potential hub genes. These genes were related to the IL-17 signaling pathway and tyrosine metabolism. The gene-miRNA regulatory network showed that these hub genes were regulated by 118 miRNAs. Notably, GWAS data analysis successfully identified significant single nucleotide polymorphisms (SNPs) corresponding to these six hub genes. ROC curve analysis indicated that our genes showed significant accuracy in POAG. The expression of these genes was further confirmed in microglia, Müller cells, astrocytes, and retinal ganglion cells in the Spectacle database. Moreover, three hub genes, SERPINA3, IL1R1, and LCN2, were validated as potential diagnostic biomarkers for high-risk glaucoma patients, showing increased expression in the OGD/R-induced glaucoma model. This study suggests that the identified hub genes may influence the development of POAG by regulation of neuroinflammation, and it may offer novel insights into the management of POAG.
Collapse
Affiliation(s)
| | | | - Jufang Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha 410013, China; (Z.U.); (Y.T.)
| |
Collapse
|
195
|
Jantsch J, da Silva Rodrigues F, Silva Dias V, de Farias Fraga G, Eller S, Giovenardi M, Guedes RP. Calorie Restriction Attenuates Memory Impairment and Reduces Neuroinflammation in Obese Aged Rats. Mol Neurobiol 2024:10.1007/s12035-024-04360-9. [PMID: 39037530 DOI: 10.1007/s12035-024-04360-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 07/09/2024] [Indexed: 07/23/2024]
Abstract
Obesity and aging collectively potentiate inflammatory responses, particularly within the central nervous system. Managing obesity presents a significant challenge, even more so considering the context of aging. Caloric restriction (CR) has been extensively documented in the literature for its multiple health benefits. Motivated by these findings, we hypothesized that CR could serve as a valuable intervention to address the brain alterations and cognitive decline associated with obesity in aged rats. Our investigation revealed that cafeteria diet increased hippocampal and hypothalamic transcripts related to neuroinflammation, along with cognitive deficits determined in the object recognition test in 18-month-old male rats. Western blot data indicate that the obesogenic diet may disrupt the blood-brain barrier and lead to an increase in Toll-like receptor 4 in the hippocampus, events that could contribute to the cognitive deficits observed. Implementing CR after the onset of obesity mitigated neuroinflammatory changes and cognitive impairments. We found that CR increases GABA levels in the hippocampus of aged animals, as demonstrated by liquid chromatography coupled with mass spectrometry analysis. These findings underscore the potential of CR as a therapeutic opportunity to ameliorate the neuroinflammatory and cognitive alterations of obesity, especially in the context of aging.
Collapse
Affiliation(s)
- Jeferson Jantsch
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, 90050-170, Brazil
| | - Fernanda da Silva Rodrigues
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, 90050-170, Brazil
| | - Victor Silva Dias
- Biomedical Science Undergraduate Program, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, 90050-170, Brazil
| | - Gabriel de Farias Fraga
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, 90050-170, Brazil
| | - Sarah Eller
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, 90050-170, Brazil
| | - Márcia Giovenardi
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, 90050-170, Brazil
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, 90050-170, Brazil
| | - Renata Padilha Guedes
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, 90050-170, Brazil.
- Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, 90050-170, Brazil.
| |
Collapse
|
196
|
Shao Y, Chen Y, Lan X, Lu J, Tang G, Tang S, Zhai R, Chen C, Xiong X, Shi J. Morin Regulates M1/M2 Microglial Polarization via NF-κB p65 to Alleviate Vincristine-Induced Neuropathic Pain. Drug Des Devel Ther 2024; 18:3143-3156. [PMID: 39071815 PMCID: PMC11278053 DOI: 10.2147/dddt.s459757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/14/2024] [Indexed: 07/30/2024] Open
Abstract
Background Morin can alleviate vincristine-induced neuropathic pain via inhibiting neuroinflammation. Microglial cells play an important role in initiating and maintenance of pain and neuroinflammation. It remains unclear whether morin exerts antinociceptive properties through the regulation of microglial cells. This study aimed to elucidate the mechanisms of morin against neuropathic pain focusing on microglial cells. Methods The thermal withdrawal latency and mechanical withdrawal threshold were used as measures of pain behaviours. Histological abnormalities of the sciatic nerve were observed with transmission electron microscopy. The sciatic functional index and the sciatic nerve conduction velocity were used as measures of the functional deficits of the sciatic nerve. Inflammatory factors were detected using ELISA. The expression of M1/M2 polarization markers of microglia and nuclear factor κB (NF-κB) p65 were measured by immunofluorescence, real-time quantitative PCR and Western blotting. Results Morin alleviated vincristine-induced abnormal pain, sciatic nerve injury, and neuroinflammatory response in rats. Furthermore, morin decreased the expression of NF-κB P65 and M1 activation markers, increased the expression of M2 activation markers. Additionally, phorbol 12-myristate 13-acetate reversed the effects of morin on microglial polarization, the production of inflammatory factors and neuropathic pain, while ammonium pyrrolidine dithiocarbamate showed the opposite effects. Conclusion Our results demonstrate that morin inhibits neuroinflammation to alleviate vincristine-induced neuropathic pain via inhibiting the NF-κB signalling pathway to regulate M1/M2 microglial polarization.
Collapse
Affiliation(s)
- Yi Shao
- Department of Anesthesiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550001, People’s Republic of China
| | - Yunfu Chen
- Department of Anesthesiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550001, People’s Republic of China
| | - Xin Lan
- Department of Anesthesiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550001, People’s Republic of China
| | - Jun Lu
- Department of Anesthesiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550001, People’s Republic of China
| | - Guangling Tang
- Department of Anesthesiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550001, People’s Republic of China
| | - Sijie Tang
- Department of Anesthesiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550001, People’s Republic of China
| | - Ruixue Zhai
- Department of Anesthesiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550001, People’s Republic of China
| | - Chao Chen
- Department of Anesthesiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550001, People’s Republic of China
| | - Xinglong Xiong
- Department of Anesthesiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550001, People’s Republic of China
| | - Jing Shi
- Department of Anesthesiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, 550001, People’s Republic of China
| |
Collapse
|
197
|
Nuszkiewicz J, Kukulska-Pawluczuk B, Piec K, Jarek DJ, Motolko K, Szewczyk-Golec K, Woźniak A. Intersecting Pathways: The Role of Metabolic Dysregulation, Gastrointestinal Microbiome, and Inflammation in Acute Ischemic Stroke Pathogenesis and Outcomes. J Clin Med 2024; 13:4258. [PMID: 39064298 PMCID: PMC11278353 DOI: 10.3390/jcm13144258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/13/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024] Open
Abstract
Acute ischemic stroke (AIS) remains a major cause of mortality and long-term disability worldwide, driven by complex and multifaceted etiological factors. Metabolic dysregulation, gastrointestinal microbiome alterations, and systemic inflammation are emerging as significant contributors to AIS pathogenesis. This review addresses the critical need to understand how these factors interact to influence AIS risk and outcomes. We aim to elucidate the roles of dysregulated adipokines in obesity, the impact of gut microbiota disruptions, and the neuroinflammatory cascade initiated by lipopolysaccharides (LPS) in AIS. Dysregulated adipokines in obesity exacerbate inflammatory responses, increasing AIS risk and severity. Disruptions in the gut microbiota and subsequent LPS-induced neuroinflammation further link systemic inflammation to AIS. Advances in neuroimaging and biomarker development have improved diagnostic precision. Here, we highlight the need for a multifaceted approach to AIS management, integrating metabolic, microbiota, and inflammatory insights. Potential therapeutic strategies targeting these pathways could significantly improve AIS prevention and treatment. Future research should focus on further elucidating these pathways and developing targeted interventions to mitigate the impacts of metabolic dysregulation, microbiome imbalances, and inflammation on AIS.
Collapse
Affiliation(s)
- Jarosław Nuszkiewicz
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland;
| | - Beata Kukulska-Pawluczuk
- Department of Neurology, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 9 M. Skłodowskiej—Curie St., 85-094 Bydgoszcz, Poland; (B.K.-P.); (K.P.)
| | - Katarzyna Piec
- Department of Neurology, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 9 M. Skłodowskiej—Curie St., 85-094 Bydgoszcz, Poland; (B.K.-P.); (K.P.)
| | - Dorian Julian Jarek
- Student Research Club of Medical Biology and Biochemistry, Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland;
| | - Karina Motolko
- Student Research Club of Neurology, Department of Neurology, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 9 M. Skłodowskiej—Curie St., 85-094 Bydgoszcz, Poland;
| | - Karolina Szewczyk-Golec
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland;
| | - Alina Woźniak
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 24 Karłowicza St., 85-092 Bydgoszcz, Poland;
| |
Collapse
|
198
|
Gáll Z, Csüdör Á, Sável IG, Kelemen K, Kolcsár M. Cholecalciferol Supplementation Impacts Behavior and Hippocampal Neuroglial Reorganization in Vitamin D-Deficient Rats. Nutrients 2024; 16:2326. [PMID: 39064769 PMCID: PMC11279879 DOI: 10.3390/nu16142326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/14/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Vitamin D deficiency (VDD) is widespread around the world and has been extensively documented to affect various health conditions, including the cognitive functioning of the brain. Serum 25-hydroxylated forms of vitamin D are traditionally used to determine vitamin D status. However, there is now evidence that cholecalciferol activation can occur and be controlled by locally expressed enzymes in the brain. This study aimed to investigate the effects of cholecalciferol supplementation on cognitive function in rats who underwent transient VDD in adulthood. Thirty-six adult Wistar rats were administered paricalcitol (seven doses of 32 ng injected every other day) along with a "vitamin D-free" diet to induce VDD, which was confirmed using a LC-MS/MS serum analysis of the cholecalciferol and 25-hydroxyvitamin D3 levels. Treatment was performed by including 1000 IU/kg and 10,000 IU/kg cholecalciferol in the diet. Cognitive performance was evaluated using the novel object recognition (NOR), Morris water maze (MWM), and radial arm maze (RAM) tests. An immunohistochemical analysis of the brain regions involved in learning and memory was performed by quantifying the neurons, astrocytes, and microglia labelled with anti-neuronal nuclei (NeuN), glial fibrillary acidic protein (GFAP), and ionized calcium-binding adaptor molecule 1 (Iba-1) antibodies, respectively. The vitamin D deficient group showed the lowest performance in both the MWM and RAM tests. In contrast, the cholecalciferol-treated groups exhibited a faster learning curve. However, no difference was detected between the groups in the NOR test. On the other hand, differences in the cellular organization of the hippocampus and amygdala were observed between the groups. Cholecalciferol supplementation decreased the density of the Iba-1- and GFAP-labeled cells in the hilus and cornu Ammonis 3 (CA3) regions of the hippocampus and in the amygdala. These results support vitamin D's substantial role in learning and memory. They also highlight that subtle changes of cognitive function induced by transient VDD could be reversed by cholecalciferol supplementation. Further studies are needed to better understand VDD and cholecalciferol's effects on the brain structure and function.
Collapse
Affiliation(s)
- Zsolt Gáll
- Department of Pharmacology and Clinical Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Târgu Mureș, Romania;
| | - Ágnes Csüdör
- Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Târgu Mureș, Romania;
| | - István-Gábor Sável
- Faculty of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Târgu Mureș, Romania;
| | - Krisztina Kelemen
- Department of Physiology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Târgu Mureș, Romania;
| | - Melinda Kolcsár
- Department of Pharmacology and Clinical Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Târgu Mureș, Romania;
| |
Collapse
|
199
|
Sun W, Gong J, Li S, Wang P, Han X, Xu C, Luan H, Li R, Wen B, Wei C. Bibliometric analysis of neuroinflammation and Alzheimer's disease. Front Aging Neurosci 2024; 16:1423139. [PMID: 39076205 PMCID: PMC11284157 DOI: 10.3389/fnagi.2024.1423139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/02/2024] [Indexed: 07/31/2024] Open
Abstract
Background Alzheimer's disease (AD) is the predominant cause of dementia on a global scale, significantly impacting the health of the elderly population. The pathogenesis of AD is closely linked to neuroinflammation. The present study employs a bibliometric analysis to examine research pertaining to neuroinflammation and AD within the last decade, with the objective of providing a comprehensive overview of the current research profile, hotspots and trends. Methods This research conducted a comprehensive review of publications within the Science Citation Index Expanded of the Web of Science Core Collection Database spanning the years 2014 to 2024. Bibliometric analyses were performed using VOSviewer (version 1.6.19) and CiteSpace (version 6.3.R1) software to visualize data on countries, institutions, authors, journals, keywords, and references. Results A total of 3,833 publications on neuroinflammation and AD were included from January 2014 to January 2024. Publications were mainly from the United States and China. Zetterberg, Henrik emerged as the author with the highest publication output, while Edison, Paul was identified as the most cited author. The most productive journal was Journal of Alzheimers Disease, and the most co-cited was Journal of Neuroinflammation. Research hotspot focused on microglia, mouse models, oxidative stress, and amyloid-beta through keyword analysis. Additionally, keywords such as blood-brain barrier and tau protein exhibited prolonged citation bursts from 2022 to 2024. Conclusion This study provides a comprehensive review of the last 10 years of research on neuroinflammation and AD, including the number and impact of research findings, research hotspots, and future trends. The quantity of publications in this field is increasing, mainly in the United States and China, and there is a need to further strengthen close cooperation with different countries and institutions worldwide. Presently, research hotspots are primarily concentrated on microglia, with a focus on inhibiting their pro-inflammatory responses and promoting their anti-inflammatory functions as a potential direction for future investigations.
Collapse
Affiliation(s)
- Wenxian Sun
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Jin Gong
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Shaoqi Li
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Pin Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Xiaodong Han
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Chang Xu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Heya Luan
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Ruina Li
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Boye Wen
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Cuibai Wei
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, China
| |
Collapse
|
200
|
Ou X, Wang H, Shen Y, Zhang W, Sun J, Liu S. SENP1 regulates intermittent hypoxia-induced microglia mediated inflammation and cognitive dysfunction via wnt/β-catenin pathway. Eur J Pharmacol 2024; 975:176659. [PMID: 38762158 DOI: 10.1016/j.ejphar.2024.176659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/20/2024]
Abstract
Obstructive sleep apnea syndrome (OSAS), characterized by repeated narrow or collapse of the upper airway during sleep, resulting in periodic reductions or cessations in ventilation, consequent hypoxia, hypercapnia, increased sympathetic activity and sleep fragmentation, places a serious burden on society and health care. Intermittent hypoxia (IH), which cause central nervous system (CNS) inflammation, and ultimately lead to neuropathy, is thought to be a crucial contributor to cognitive impairment in OSAS. Wnt signaling pathway exerts an important role in the regulation of CNS disorders. Particularly, it may be involved in the regulation of neuroinflammation and cognitive dysfunction. However, its underlying mechanism remains poorly understood. Accumulating evidence demonstrated that Wnt signaling pathway may inhibited in a variety of neurological disorders. Recently studies revealed that SUMOylation was participated in the regulation of neuroinflammation. Members of Wnt/β-catenin pathway may be targets of SUMOylation. In vitro and in vivo molecular biology experiments explored the regulatory mechanism of SUMOylation on Wnt/β-catenin in IH-induced neuroinflammation and neuronal injury, which demonstrated that IH induced the SUMOylation of β-catenin, microglia mediated inflammation and neuronal damage. Moreover, SENP1 regulated the de-SUMOylation of β-catenin, triggered Wnt/β-catenin pathway, and alleviated neuroinflammation and neuronal injury, thus improving IH-related mice cognitive dysfunction.
Collapse
Affiliation(s)
- Xiwen Ou
- Department of Respiratory Medicine and Sleep Lab, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Hongwei Wang
- Department of Respiratory Medicine and Sleep Lab, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yubin Shen
- Department of Respiratory Medicine and Sleep Lab, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Weiyu Zhang
- Department of Respiratory Medicine and Sleep Lab, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Jinyuan Sun
- Department of Respiratory Medicine and Sleep Lab, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Song Liu
- Department of Respiratory Medicine and Sleep Lab, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China.
| |
Collapse
|