151
|
Characterization of Chicken MMP13 Expression and Genetic Effect on Egg Production Traits of Its Promoter Polymorphisms. G3-GENES GENOMES GENETICS 2016; 6:1305-12. [PMID: 26966259 PMCID: PMC4856082 DOI: 10.1534/g3.116.027755] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Extracelluar matrix undergoes constant remodeling, cell–cell, and cell–matrix interactions during chicken ovarian follicle growth, which is coordinated by matrix metalloproteinases (MMPs), and their associated endogenous inhibitors (TIMPs). Transcriptome analysis revealed upregulation of MMP13 in sexually mature chicken ovaries. In this study, we found that the expression of MMP13 in chicken ovary was stably elevated from 60 d to 159 d, and was significantly higher at 159 d than at the other three developmental stages (P < 0.05). The expression of MMP13 mRNA increased from SW (small white follicles) to F5 (fifth largest follicles), then decreased to F1 (first largest follicles), and dramatically increased again in POF1 (newly postovulatory follicles) follicles (P < 0.05). The MMP13 protein was localized in stroma cells and primordial follicles of sexually immature chicken ovaries, in the theca cell layers of all sized follicles of sexually mature chicken ovaries. Furthermore, we identified a positive element (positions –1863 to –1036) controlling chicken MMP13 transcription, and, in this region, six single nucleotide polymorphisms were found and genotyped in chicken populations. In the White Recessive Rock population, hens with A–1356-C–1079/A–1356-C–1079 genotype had earlier “age at first laying” than those with G–1356-T–1079/G–1356-T–1079 genotype (P < 0.05), and exhibited significantly lower transcriptional activity (P < 0.01). Collectively, chicken MMP13 plays an important role in ovarian follicle growth and regression, and polymorphisms in its promoter region could be used as molecular markers for improving the trait “age at first laying” in chicken breeding.
Collapse
|
152
|
Proteome Profile and Quantitative Proteomic Analysis of Buffalo (Bubalusbubalis) Follicular Fluid during Follicle Development. Int J Mol Sci 2016; 17:ijms17050618. [PMID: 27136540 PMCID: PMC4881444 DOI: 10.3390/ijms17050618] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 04/11/2016] [Accepted: 04/15/2016] [Indexed: 11/17/2022] Open
Abstract
Follicular fluid (FF) accumulates in the antrum of the ovarian follicle and provides the microenvironment for oocyte development. FF plays an important role in follicle growth and oocyte maturation. The FF provides a unique window to investigate the processes occurring during buffalo follicular development. The observed low quality of buffalo oocytes may arise from the poor follicular microenvironment. Investigating proteins found in buffalo FF (BFF) should provide insight into follicular development processes and provide further understanding of intra-follicular maturation and oocytes quality. Here, a proteomic-based approach was used to analyze the proteome of BFF. SDS-PAGE separation combined with mass spectrometry was used to generate the proteomic dataset. In total, 363 proteins were identified and classified by Gene Ontology terms. The proteins were assigned to 153 pathways, including signaling pathways. To evaluate difference in proteins expressed between BFF with different follicle size (small, <4 mm; and large, >8 mm), a quantitative proteomic analysis based on multi-dimensional liquid chromatography pre-fractionation tandem Orbitrap mass spectrometry identification was performed. Eleven differentially expressed proteins (six downregulated and five upregulated in large BFF) were identified and assigned to a variety of functional processes, including serine protease inhibition, oxidation protection and the complement cascade system. Three differentially expressed proteins, Vimentin, Peroxiredoxin-1 and SERPIND1, were verified by Western blotting, consistent with the quantitative proteomics results. Our datasets offers new information about proteins present in BFF and should facilitate the development of new biomarkers. These differentially expressed proteins illuminate the size-dependent protein changes in follicle microenvironment.
Collapse
|
153
|
Proteomic analysis of preovulatory follicular fluid reveals differentially abundant proteins in less fertile dairy cows. J Proteomics 2016; 139:122-9. [PMID: 27003612 DOI: 10.1016/j.jprot.2016.03.027] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 02/23/2016] [Accepted: 03/11/2016] [Indexed: 11/23/2022]
Abstract
UNLABELLED The follicular fluid (FF) proteome can provide an indication of follicular quality. High-yielding dairy cows suffer from low fertility, which could be related to follicular function. However, the proteome of preovulatory follicles has never been described in cows. Our objectives were to: 1) define the bovine preovulatory FF proteome, and 2) examine differentially abundant proteins in FF of controls (CTL, n=10) and less fertile cows (LFC; failed to conceive following ≥6 inseminations, n=8). Follicles ≥7mm in diameter were aspirated in vivo, and estradiol (E2) and progesterone (P4) were examined. The FF from 10 preovulatory follicles (E2/P4>1) was analyzed; E2 was higher and follicle diameter tended to be larger in LFC. As aspirations were conducted at a fixed time, this suggests accelerated follicular growth in LFC. The 219 identified and quantified proteins consisted mainly of binding proteins, proteases, receptor ligands, enzymes and transporters. Differential abundance of 8 relevant proteins was found in LFC compared to CTL: SERPINA1, TIMP2, ITIH1, HSPG2, C8A, COL1A2, F2, and IL1RAP. These proteins could influence follicular function-e.g., decreased SERPINA1 may be related to accelerated follicular growth-and therefore, further examination of their roles in the etiology of LFC is warranted. SIGNIFICANCE High yielding dairy cows suffer from infertility that leads to major economic losses worldwide. In Israel, about 30% of dairy cows fail to conceive following ≥4 inseminations. The etiology of this low fertility is multifactorial and remains a serious challenge. Follicular fluid proteome can provide indication to follicular quality, yet the proteome of pre-ovulatory follicles has not been described in cows. This work examined the differential abundance of proteins in less fertile dairy cows compared to controls, and found 8 relevant novel proteins that could influence follicular function. The role of these proteins in the etiology of less fertile cows should be further examined.
Collapse
|
154
|
Attupuram NM, Kumaresan A, Narayanan K, Kumar H. Cellular and molecular mechanisms involved in placental separation in the bovine: A review. Mol Reprod Dev 2016; 83:287-97. [PMID: 26970238 DOI: 10.1002/mrd.22635] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 02/23/2016] [Indexed: 01/04/2023]
Abstract
Retention of fetal membranes (RFM), where the fetal placenta is not expelled within 8-12 hr after calving, lowers bovine productivity and fertility, resulting in significant economic loss to the dairy industry. Several risk factors that predispose an individual to RFM are known, but a unifying pathogenesis remains elusive due to its multifactorial etiology. Fetal membrane separation and expulsion after parturition involves structural and immunological changes of the bovine placentome that are governed predominantly by steroid hormones and the prostaglandin milieu of late pregnancy and parturition. Maturation of the placentome, a gradual and concerted event of late gestation, is likely initiated by the up-regulation of fetal major histocompatibility complex class I in the interplacentomal region-which increases the apoptosis of binucleate and other trophoblastic cells, the degradation of collagen in the extracellular matrix by matrix metalloproteinases, and an influx of phagocytic leukocytes. Shear force further distorts the crypt architecture of the mature placentomes when they are forced against the fetus during the second stage of labor. Cotyledon dehiscence from the caruncular crypts is completed following fetal expulsion as a result of acute shrinkage of the cotelydonary villi as well as reduced perfusion to the caruncle; the secundinae is expelled by uterine contractions. A better understanding of placentomal maturation, intra-partum, and immediate postpartum changes of the placentome should help develop strategies for the treatment and prevention of RFM. The present review proposes a model of placentome maturation and separation of fetal membranes in the dairy cow.
Collapse
Affiliation(s)
- N M Attupuram
- Theriogenology Lab, Animal Reproduction, Gynaecology and Obstetrics, National Dairy Research Institute, Karnal, Haryana, India
| | - A Kumaresan
- Theriogenology Lab, Animal Reproduction, Gynaecology and Obstetrics, National Dairy Research Institute, Karnal, Haryana, India
| | - K Narayanan
- Division of Animal Reproduction, Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| | - H Kumar
- Division of Animal Reproduction, Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, India
| |
Collapse
|
155
|
Geng J, Huang C, Jiang S. Roles and regulation of the matrix metalloproteinase system in parturition. Mol Reprod Dev 2016; 83:276-86. [PMID: 26888468 DOI: 10.1002/mrd.22626] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/10/2016] [Indexed: 12/23/2022]
Abstract
Significant tissue destruction, repair, and remodeling are involved in parturition, which involves fetal membrane rupture, cervical ripening, and uterine contraction and its subsequent involution. Extracellular matrix degradation and remodeling by proteolytic enzymes, such as matrix metalloproteinases (MMPs), are required for the final steps of parturition. MMPs participate in physiological degradation and remodeling through their proteolytic activities on specific substrates, and are balanced by the action of their inhibitors. Disruption to this balance can result in pathological stress that ends with preterm or post-term birth or pre-eclampsia. In this review, we examine the roles and regulation of the MMP system in physiological and pathological labor, and propose a model that illustrates the mechanisms by which the MMP system contributes to these processes.
Collapse
Affiliation(s)
- Junnan Geng
- Key Laboratory of Swine Genetics and Breeding of Agricultural Ministry, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Cong Huang
- Key Laboratory of Swine Genetics and Breeding of Agricultural Ministry, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Siwen Jiang
- Key Laboratory of Swine Genetics and Breeding of Agricultural Ministry, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
156
|
Asadzadeh R, Khosravi S, Zavareh S, Ghorbanian MT, Paylakhi SH, Mohebbi SR. Vitrification affects the expression of matrix metalloproteinases and their tissue inhibitors of mouse ovarian tissue. Int J Reprod Biomed 2016. [DOI: 10.29252/ijrm.14.3.173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
157
|
Shimada M, Umehara T, Hoshino Y. Roles of epidermal growth factor (EGF)-like factor in the ovulation process. Reprod Med Biol 2016; 15:201-216. [PMID: 29259438 DOI: 10.1007/s12522-016-0236-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/01/2016] [Indexed: 12/22/2022] Open
Abstract
Luteinizing hormone (LH) surge stimulates preovulatory follicles to induce the ovulation process, including oocyte maturation, cumulus expansion, and granulosa cell luteinization. The matured oocytes surrounded by an expanded cumulus cell layer are released from follicles to the oviduct. However, LH receptors are dominantly expressed in granulosa cells, but less in cumulus cells and are not expressed in oocytes, indicating that the secondary factors expressed and secreted from LH-stimulated granulosa cells are required for the induction of the ovulation process. Prostaglandin and progesterone are well-known factors that are produced in granulosa cells and then stimulate in both granulosa and cumulus cells. The mutant mice of prostaglandin synthase (Ptgs2KO mice) or progesterone receptor (PRKO mice) revealed that the functions were essential to accomplish the ovulation process, but not to induce the ovulation process. To identify the factors initiating the transfer of the stimuli of LH surge from granulosa cells to cumulus cells, M. Conti's lab and our group performed microarray analysis of granulosa cells and identified the epidermal growth factor (EGF)-like factor, amphiregulin (AREG), epiregulin (EREG), and β-cellulin (BTC) that act on EGF receptor (EGFR) and then induce the ERK1/2 and Ca2+-PLC pathways in cumulus cells. When each of the pathways was down-regulated using a pharmacological approach or gene targeting study, the induction of cumulus expansion and oocyte maturation were dramatically suppressed, indicating that both pathways are inducers of the ovulation process. However, an in vitro culture study also revealed that the EGFR-induced unphysiological activation of PKC in cumulus cells accelerated oocyte maturation with low cytostatic activity. Thus, the matured oocytes are not arrested at the metaphase II (MII) stage and then spontaneously form pronuclei. The expression of another type of EGF-like factor, neuregulin 1 (NRG1), that does not act on EGFR, but selectively binds to ErbB3 is observed in granulosa cells after the LH surge. NRG1 supports EGFR-induced ERK1/2 phosphorylation, but reduces PKC activity to physiological level in the cumulus cells, which delays the timing of meiotic maturation of oocytes to adjust the timing of ovulation. Thus, both types of EGF-like factor are rapidly induced by LH surge and then stimulate cumulus cells to control ERK1/2 and PKC pathways, which results in the release of matured oocytes with a fertilization competence.
Collapse
Affiliation(s)
- Masayuki Shimada
- Laboratory of Reproductive Endocrinology, Graduate School of Biosphere Science Hiroshima University Higashi-Hiroshima 739-8528 Hiroshima Japan
| | - Takashi Umehara
- Laboratory of Reproductive Endocrinology, Graduate School of Biosphere Science Hiroshima University Higashi-Hiroshima 739-8528 Hiroshima Japan
| | - Yumi Hoshino
- Laboratory of Reproductive Endocrinology, Graduate School of Biosphere Science Hiroshima University Higashi-Hiroshima 739-8528 Hiroshima Japan
| |
Collapse
|
158
|
Pohóczky K, Kun J, Szalontai B, Szőke É, Sághy É, Payrits M, Kajtár B, Kovács K, Környei JL, Garai J, Garami A, Perkecz A, Czeglédi L, Helyes Z. Estrogen-dependent up-regulation of TRPA1 and TRPV1 receptor proteins in the rat endometrium. J Mol Endocrinol 2016; 56:135-49. [PMID: 26643912 DOI: 10.1530/jme-15-0184] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/04/2015] [Indexed: 01/15/2023]
Abstract
Transient receptor potential ankyrin 1 (TRPA1) and vanilloid 1 (TRPV1) receptors expressed predominantly in sensory nerves are activated by inflammatory stimuli and mediate inflammation and pain. Although they have been shown in the human endometrium, their regulation and function are unknown. Therefore, we investigated their estrogen- and progesterone-dependent alterations in the rat endometrium in comparison with the estrogen-regulated inflammatory cytokine macrophage migration inhibitory factor (MIF). Four-week-old (sexually immature) and four-month-old (sexually mature) female rats were treated with the non-selective estrogen receptor (ER) agonist diethylstilboestrol (DES), progesterone and their combination, or ovariectomized. RT-PCR and immunohistochemistry were performed to determine mRNA and protein expression levels respectively. Channel function was investigated with ratiometric [Ca(2+)]i measurement in cultured primary rat endometrial cells. Both TRP receptors and MIF were detected in the endometrium at mRNA and protein levels, and their localizations were similar. Immunostaining was observed in the immature epithelium, while stromal, glandular and epithelial positivity were observed in adults. Functionally active TRP receptor proteins were shown in endometrial cells by activation-induced calcium influx. In adults, Trpa1 and Trpv1 mRNA levels were significantly up-regulated after DES treatment. TRPA1 increased after every treatment, but TRPV1 remained unchanged following the combined treatment and ovariectomy. In immature rats, DES treatment resulted in increased mRNA expression of both channels and elevated TRPV1 immunopositivity. MIF expression changed in parallel with TRPA1/TRPV1 in most cases. DES up-regulated Trpa1, Trpv1 and Mif mRNA levels in endometrial cell cultures, but 17β-oestradiol having ERα-selective potency increased only the expression of Trpv1. We provide the first evidence for TRPA1/TRPV1 expression and their estrogen-induced up-regulation in the rat endometrium in correlation with the MIF.
Collapse
Affiliation(s)
- Krisztina Pohóczky
- Department of Pharmacology and PharmacotherapyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryJanos Szentagothai Research CentreUniversity of Pécs, Ifjúság Street 20, H-7624 Pécs, HungaryDepartments of PathologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of PhysiologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of Pathophysiology and GerontologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryMTA-PTE NAP B Chronic Pain Research GroupHungary, Szigeti Street 12, H-7624 Pécs, HungaryInstitute of Animal ScienceCentre for Agricultural and Applied Economic Sciences, University of Debrecen, PO Box 36, H-4015 Debrecen, Hungary Department of Pharmacology and PharmacotherapyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryJanos Szentagothai Research CentreUniversity of Pécs, Ifjúság Street 20, H-7624 Pécs, HungaryDepartments of PathologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of PhysiologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of Pathophysiology and GerontologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryMTA-PTE NAP B Chronic Pain Research GroupHungary, Szigeti Street 12, H-7624 Pécs, HungaryInstitute of Animal ScienceCentre for Agricultural and Applied Economic Sciences, University of Debrecen, PO Box 36, H-4015 Debrecen, Hungary
| | - József Kun
- Department of Pharmacology and PharmacotherapyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryJanos Szentagothai Research CentreUniversity of Pécs, Ifjúság Street 20, H-7624 Pécs, HungaryDepartments of PathologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of PhysiologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of Pathophysiology and GerontologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryMTA-PTE NAP B Chronic Pain Research GroupHungary, Szigeti Street 12, H-7624 Pécs, HungaryInstitute of Animal ScienceCentre for Agricultural and Applied Economic Sciences, University of Debrecen, PO Box 36, H-4015 Debrecen, Hungary Department of Pharmacology and PharmacotherapyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryJanos Szentagothai Research CentreUniversity of Pécs, Ifjúság Street 20, H-7624 Pécs, HungaryDepartments of PathologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of PhysiologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of Pathophysiology and GerontologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryMTA-PTE NAP B Chronic Pain Research GroupHungary, Szigeti Street 12, H-7624 Pécs, HungaryInstitute of Animal ScienceCentre for Agricultural and Applied Economic Sciences, University of Debrecen, PO Box 36, H-4015 Debrecen, Hungary Department of Pharmacology and PharmacotherapyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryJanos Szentagothai Research CentreUniversity of Pécs, Ifjúság Street 20, H-7624 Pécs, HungaryDepartments of PathologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of PhysiologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of Pathophysiology and Ger
| | - Bálint Szalontai
- Department of Pharmacology and PharmacotherapyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryJanos Szentagothai Research CentreUniversity of Pécs, Ifjúság Street 20, H-7624 Pécs, HungaryDepartments of PathologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of PhysiologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of Pathophysiology and GerontologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryMTA-PTE NAP B Chronic Pain Research GroupHungary, Szigeti Street 12, H-7624 Pécs, HungaryInstitute of Animal ScienceCentre for Agricultural and Applied Economic Sciences, University of Debrecen, PO Box 36, H-4015 Debrecen, Hungary
| | - Éva Szőke
- Department of Pharmacology and PharmacotherapyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryJanos Szentagothai Research CentreUniversity of Pécs, Ifjúság Street 20, H-7624 Pécs, HungaryDepartments of PathologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of PhysiologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of Pathophysiology and GerontologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryMTA-PTE NAP B Chronic Pain Research GroupHungary, Szigeti Street 12, H-7624 Pécs, HungaryInstitute of Animal ScienceCentre for Agricultural and Applied Economic Sciences, University of Debrecen, PO Box 36, H-4015 Debrecen, Hungary Department of Pharmacology and PharmacotherapyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryJanos Szentagothai Research CentreUniversity of Pécs, Ifjúság Street 20, H-7624 Pécs, HungaryDepartments of PathologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of PhysiologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of Pathophysiology and GerontologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryMTA-PTE NAP B Chronic Pain Research GroupHungary, Szigeti Street 12, H-7624 Pécs, HungaryInstitute of Animal ScienceCentre for Agricultural and Applied Economic Sciences, University of Debrecen, PO Box 36, H-4015 Debrecen, Hungary Department of Pharmacology and PharmacotherapyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryJanos Szentagothai Research CentreUniversity of Pécs, Ifjúság Street 20, H-7624 Pécs, HungaryDepartments of PathologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of PhysiologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of Pathophysiology and Ger
| | - Éva Sághy
- Department of Pharmacology and PharmacotherapyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryJanos Szentagothai Research CentreUniversity of Pécs, Ifjúság Street 20, H-7624 Pécs, HungaryDepartments of PathologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of PhysiologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of Pathophysiology and GerontologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryMTA-PTE NAP B Chronic Pain Research GroupHungary, Szigeti Street 12, H-7624 Pécs, HungaryInstitute of Animal ScienceCentre for Agricultural and Applied Economic Sciences, University of Debrecen, PO Box 36, H-4015 Debrecen, Hungary Department of Pharmacology and PharmacotherapyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryJanos Szentagothai Research CentreUniversity of Pécs, Ifjúság Street 20, H-7624 Pécs, HungaryDepartments of PathologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of PhysiologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of Pathophysiology and GerontologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryMTA-PTE NAP B Chronic Pain Research GroupHungary, Szigeti Street 12, H-7624 Pécs, HungaryInstitute of Animal ScienceCentre for Agricultural and Applied Economic Sciences, University of Debrecen, PO Box 36, H-4015 Debrecen, Hungary
| | - Maja Payrits
- Department of Pharmacology and PharmacotherapyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryJanos Szentagothai Research CentreUniversity of Pécs, Ifjúság Street 20, H-7624 Pécs, HungaryDepartments of PathologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of PhysiologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of Pathophysiology and GerontologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryMTA-PTE NAP B Chronic Pain Research GroupHungary, Szigeti Street 12, H-7624 Pécs, HungaryInstitute of Animal ScienceCentre for Agricultural and Applied Economic Sciences, University of Debrecen, PO Box 36, H-4015 Debrecen, Hungary Department of Pharmacology and PharmacotherapyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryJanos Szentagothai Research CentreUniversity of Pécs, Ifjúság Street 20, H-7624 Pécs, HungaryDepartments of PathologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of PhysiologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of Pathophysiology and GerontologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryMTA-PTE NAP B Chronic Pain Research GroupHungary, Szigeti Street 12, H-7624 Pécs, HungaryInstitute of Animal ScienceCentre for Agricultural and Applied Economic Sciences, University of Debrecen, PO Box 36, H-4015 Debrecen, Hungary
| | - Béla Kajtár
- Department of Pharmacology and PharmacotherapyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryJanos Szentagothai Research CentreUniversity of Pécs, Ifjúság Street 20, H-7624 Pécs, HungaryDepartments of PathologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of PhysiologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of Pathophysiology and GerontologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryMTA-PTE NAP B Chronic Pain Research GroupHungary, Szigeti Street 12, H-7624 Pécs, HungaryInstitute of Animal ScienceCentre for Agricultural and Applied Economic Sciences, University of Debrecen, PO Box 36, H-4015 Debrecen, Hungary
| | - Krisztina Kovács
- Department of Pharmacology and PharmacotherapyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryJanos Szentagothai Research CentreUniversity of Pécs, Ifjúság Street 20, H-7624 Pécs, HungaryDepartments of PathologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of PhysiologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of Pathophysiology and GerontologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryMTA-PTE NAP B Chronic Pain Research GroupHungary, Szigeti Street 12, H-7624 Pécs, HungaryInstitute of Animal ScienceCentre for Agricultural and Applied Economic Sciences, University of Debrecen, PO Box 36, H-4015 Debrecen, Hungary
| | - József László Környei
- Department of Pharmacology and PharmacotherapyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryJanos Szentagothai Research CentreUniversity of Pécs, Ifjúság Street 20, H-7624 Pécs, HungaryDepartments of PathologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of PhysiologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of Pathophysiology and GerontologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryMTA-PTE NAP B Chronic Pain Research GroupHungary, Szigeti Street 12, H-7624 Pécs, HungaryInstitute of Animal ScienceCentre for Agricultural and Applied Economic Sciences, University of Debrecen, PO Box 36, H-4015 Debrecen, Hungary
| | - János Garai
- Department of Pharmacology and PharmacotherapyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryJanos Szentagothai Research CentreUniversity of Pécs, Ifjúság Street 20, H-7624 Pécs, HungaryDepartments of PathologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of PhysiologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of Pathophysiology and GerontologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryMTA-PTE NAP B Chronic Pain Research GroupHungary, Szigeti Street 12, H-7624 Pécs, HungaryInstitute of Animal ScienceCentre for Agricultural and Applied Economic Sciences, University of Debrecen, PO Box 36, H-4015 Debrecen, Hungary
| | - András Garami
- Department of Pharmacology and PharmacotherapyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryJanos Szentagothai Research CentreUniversity of Pécs, Ifjúság Street 20, H-7624 Pécs, HungaryDepartments of PathologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of PhysiologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of Pathophysiology and GerontologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryMTA-PTE NAP B Chronic Pain Research GroupHungary, Szigeti Street 12, H-7624 Pécs, HungaryInstitute of Animal ScienceCentre for Agricultural and Applied Economic Sciences, University of Debrecen, PO Box 36, H-4015 Debrecen, Hungary
| | - Anikó Perkecz
- Department of Pharmacology and PharmacotherapyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryJanos Szentagothai Research CentreUniversity of Pécs, Ifjúság Street 20, H-7624 Pécs, HungaryDepartments of PathologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of PhysiologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of Pathophysiology and GerontologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryMTA-PTE NAP B Chronic Pain Research GroupHungary, Szigeti Street 12, H-7624 Pécs, HungaryInstitute of Animal ScienceCentre for Agricultural and Applied Economic Sciences, University of Debrecen, PO Box 36, H-4015 Debrecen, Hungary
| | - Levente Czeglédi
- Department of Pharmacology and PharmacotherapyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryJanos Szentagothai Research CentreUniversity of Pécs, Ifjúság Street 20, H-7624 Pécs, HungaryDepartments of PathologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of PhysiologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of Pathophysiology and GerontologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryMTA-PTE NAP B Chronic Pain Research GroupHungary, Szigeti Street 12, H-7624 Pécs, HungaryInstitute of Animal ScienceCentre for Agricultural and Applied Economic Sciences, University of Debrecen, PO Box 36, H-4015 Debrecen, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and PharmacotherapyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryJanos Szentagothai Research CentreUniversity of Pécs, Ifjúság Street 20, H-7624 Pécs, HungaryDepartments of PathologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of PhysiologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of Pathophysiology and GerontologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryMTA-PTE NAP B Chronic Pain Research GroupHungary, Szigeti Street 12, H-7624 Pécs, HungaryInstitute of Animal ScienceCentre for Agricultural and Applied Economic Sciences, University of Debrecen, PO Box 36, H-4015 Debrecen, Hungary Department of Pharmacology and PharmacotherapyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryJanos Szentagothai Research CentreUniversity of Pécs, Ifjúság Street 20, H-7624 Pécs, HungaryDepartments of PathologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of PhysiologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of Pathophysiology and GerontologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryMTA-PTE NAP B Chronic Pain Research GroupHungary, Szigeti Street 12, H-7624 Pécs, HungaryInstitute of Animal ScienceCentre for Agricultural and Applied Economic Sciences, University of Debrecen, PO Box 36, H-4015 Debrecen, Hungary Department of Pharmacology and PharmacotherapyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryJanos Szentagothai Research CentreUniversity of Pécs, Ifjúság Street 20, H-7624 Pécs, HungaryDepartments of PathologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of PhysiologyUniversity of Pécs Medical School, Szigeti Street 12, H-7624 Pécs, HungaryDepartment of Pathophysiology and Ger
| |
Collapse
|
159
|
Nalvarte I, Töhönen V, Lindeberg M, Varshney M, Gustafsson JÅ, Inzunza J. Estrogen receptor β controls MMP-19 expression in mouse ovaries during ovulation. Reproduction 2015; 151:253-9. [PMID: 26700939 DOI: 10.1530/rep-15-0522] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 12/22/2015] [Indexed: 02/06/2023]
Abstract
Estrogen receptor beta (ERβ/ESR2) has a central role in mouse ovaries, as ERβ knockout (BERKO) mice are subfertile due to an increase in fibrosis around the maturing follicle and a decrease in blood supply. This has a consequence that these follicles rarely rupture to release the mature oocyte. Matrix metalloproteinases (MMPs) are modulators of the extracellular matrix, and the expression of one specific MMP, MMP-19, is normally increased in granulosa cells during their maturation until ovulation. In this study, we demonstrate that MMP-19 levels are downregulated in BERKO mouse ovaries. Using human MCF-7 cells that overexpress ERβ, we could identify MMP-19 to be a transcriptional target of ligand-bound activated ERβ acting on a specificity protein-1 binding site. These data provide a molecular explanation for the observed follicle rupture defect that contributes to the subfertility of female BERKO mice.
Collapse
Affiliation(s)
- Ivan Nalvarte
- Department of Biosciences and NutritionKarolinska Institutet, SE-14183 Huddinge, SwedenCenter for Nuclear Receptors and SignalingUniversity of Houston, Houston, Texas 77204-5056, USA
| | - Virpi Töhönen
- Department of Biosciences and NutritionKarolinska Institutet, SE-14183 Huddinge, SwedenCenter for Nuclear Receptors and SignalingUniversity of Houston, Houston, Texas 77204-5056, USA
| | - Maria Lindeberg
- Department of Biosciences and NutritionKarolinska Institutet, SE-14183 Huddinge, SwedenCenter for Nuclear Receptors and SignalingUniversity of Houston, Houston, Texas 77204-5056, USA
| | - Mukesh Varshney
- Department of Biosciences and NutritionKarolinska Institutet, SE-14183 Huddinge, SwedenCenter for Nuclear Receptors and SignalingUniversity of Houston, Houston, Texas 77204-5056, USA
| | - Jan-Åke Gustafsson
- Department of Biosciences and NutritionKarolinska Institutet, SE-14183 Huddinge, SwedenCenter for Nuclear Receptors and SignalingUniversity of Houston, Houston, Texas 77204-5056, USA Department of Biosciences and NutritionKarolinska Institutet, SE-14183 Huddinge, SwedenCenter for Nuclear Receptors and SignalingUniversity of Houston, Houston, Texas 77204-5056, USA
| | - José Inzunza
- Department of Biosciences and NutritionKarolinska Institutet, SE-14183 Huddinge, SwedenCenter for Nuclear Receptors and SignalingUniversity of Houston, Houston, Texas 77204-5056, USA
| |
Collapse
|
160
|
Peng J, Gao K, Gao T, Lei Y, Han P, Xin H, An X, Cao B. Expression and regulation of tissue inhibitors of metalloproteinases (TIMP1 and TIMP3) in goat oviduct. Theriogenology 2015; 84:1636-43. [DOI: 10.1016/j.theriogenology.2015.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 07/27/2015] [Accepted: 09/02/2015] [Indexed: 12/21/2022]
|
161
|
Prophylactic strategy with herbal remedy to reduce puerperal metritis risk in dairy cows: A randomized clinical trial. Livest Sci 2015. [DOI: 10.1016/j.livsci.2015.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
162
|
Deady LD, Sun J. A Follicle Rupture Assay Reveals an Essential Role for Follicular Adrenergic Signaling in Drosophila Ovulation. PLoS Genet 2015; 11:e1005604. [PMID: 26473732 PMCID: PMC4608792 DOI: 10.1371/journal.pgen.1005604] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/24/2015] [Indexed: 11/18/2022] Open
Abstract
Ovulation is essential for the propagation of the species and involves a proteolytic degradation of the follicle wall for the release of the fertilizable oocyte. However, the precise mechanisms for regulating these proteolytic events are largely unknown. Work from our lab and others have shown that there are several parallels between Drosophila and mammalian ovulation at both the cellular and molecular levels. During ovulation in Drosophila, posterior follicle cells surrounding a mature oocyte are selectively degraded and the residual follicle cells remain in the ovary to form a corpus luteum after follicle rupture. Like in mammals, this rupturing process also depends on matrix metalloproteinase 2 (Mmp2) activity localized at the posterior end of mature follicles, where oocytes exit. In the present study, we show that Mmp2 activity is regulated by the octopaminergic signaling in mature follicle cells. Exogenous octopamine (OA; equivalent to norepinephrine, NE) is sufficient to induce follicle rupture when isolated mature follicles are cultured ex vivo, in the absence of the oviduct or ovarian muscle sheath. Knocking down the alpha-like adrenergic receptor Oamb (Octoampine receptor in mushroom bodies) in mature follicle cells prevents OA-induced follicle rupture ex vivo and ovulation in vivo. We also show that follicular OA-Oamb signaling induces Mmp2 enzymatic activation but not Mmp2 protein expression, likely via intracellular Ca2+ as the second messenger. Our work develops a novel ex vivo follicle rupture assay and demonstrates the role for follicular adrenergic signaling in Mmp2 activation and ovulation in Drosophila, which is likely conserved in other species. Ovulation is the process of releasing fertilizable oocytes from the ovary and is essential for metazoan reproduction. Our recent work has demonstrated principles governing ovulation process that are highly conserved across species, such that both mammals and Drosophila utilize matrix metalloproteinase (Mmp) to degrade extracellular matrix and weaken the follicle wall for follicle rupture. However, a fundamental question remaining in the field is how Mmp activity is precisely regulated during ovulation. This paper reports that Drosophila octopamine (OA), the insect equivalent of norepinephrine (NE), is the signal to induce Mmp activity through activating its receptor Oamb on mature follicle cells and that this may induce ovulation. These findings allow us to develop the first ex vivo follicle rupture assay for Drosophila, which gives us unprecedented ability to characterize the entire follicle rupturing process ex vivo and to identify essential factors for ovulation. Furthermore, we show that NE partially fulfills OA’s role in inducing follicle rupture ex vivo, indicating that follicular adrenergic signal is a conserved signal to regulating Mmp activity and ovulation. Our work not only sheds light on the long-standing question of Mmp regulation, but also may lead to a better understanding of Mmp and NE linked pathological processes including cancer metastasis and polycystic ovary syndrome.
Collapse
Affiliation(s)
- Lylah D. Deady
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, United States of America
| | - Jianjun Sun
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, United States of America
- Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
163
|
Peng J, Xin H, Han P, Gao K, Gao T, Lei Y, Ji S, An X, Cao B. Expression and regulative function of tissue inhibitor of metalloproteinase 3 in the goat ovary and its role in cultured granulosa cells. Mol Cell Endocrinol 2015; 412:104-15. [PMID: 26054746 DOI: 10.1016/j.mce.2015.06.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 05/16/2015] [Accepted: 06/01/2015] [Indexed: 10/23/2022]
Abstract
Tissue inhibitor of metalloproteinase 3 (TIMP3) played a key role in female reproduction. However, its expression and function in goat are still unclear. In the present study, the full-length cDNA of goat TIMP3 was cloned from adult goat ovary; meanwhile, we demonstrated that putative TIMP3 protein shared a highly conserved amino acid sequence with known mammalian homologs. Real-time PCR results showed that TIMP3 was widely expressed in the tissues of adult goat. In the ovary, increasing expression of TIMP3 mRNA was discovered during the growth process of follicle and corpus luteum. Immunohistochemistry results suggested that TIMP3 protein existed in oocytes of all types of follicles, corpus luteum and granulosa and theca cells of primary, secondary, and antral but not primordial follicles. In vitro, human chorionic gonadotropin (hCG) stimulated the expression of TIMP3 in goat granulosa cells. hCG-induced TIMP3 mRNA expression was reduced by the inhibitors of protein kinase A, protein kinase C, MAPK kinase, or p38 kinase. Functionally, over-expression of TIMP3 significantly increased apoptosis and decreased the viability of cultured granulosa cells. Knockdown of TIMP3 could decrease hCG-induced progesterone secretion and the mRNA abundance of key steroidogenic enzymes (StAR, p450scc and HSD3B) as well as ECM proteins (DCN and FN). These findings provided evidence that the hCG induced expression of TIMP3 may play an important role in regulating goat granulosa cell survival and steroidogenesis.
Collapse
Affiliation(s)
- Jiayin Peng
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Haiyun Xin
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Peng Han
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Kexin Gao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Teyang Gao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yingnan Lei
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shengyue Ji
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaopeng An
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Binyun Cao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
164
|
Yang M, Jiang C, Chen H, Nian Y, Bai Z, Ha C. The involvement of osteopontin and matrix metalloproteinase- 9 in the migration of endometrial epithelial cells in patients with endometriosis. Reprod Biol Endocrinol 2015; 13:95. [PMID: 26289107 PMCID: PMC4545920 DOI: 10.1186/s12958-015-0090-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Accepted: 08/05/2015] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Endometriosis, which shares certain characteristics with cancers, may cause abnormal expression of proteins involved in cell migration. Endometrial epithelial cells (EECs) are believed to play an important role in endometriotic migration. The aim of this study was to investigate the relationship between the expression of osteopontin (OPN) and matrix metalloproteinase-9 (MMP-9) in endometriotic migration. METHODS We performed primary culture of EECs and investigated the expression of OPN and MMP-9 in EECs regulated by 17beta-estradiol (E2). OPN-specific siRNA interference was used to down-regulate OPN and to explore the corresponding change in MMP-9 expression. Real-time RT-PCR, western blot analysis and flow cytometry were used to determine the expression levels of OPN and MMP-9. Gelatin zymography was performed to observe the enzymatic activity of MMP-9 in conditioned media. Transwell and wound scratch assays were performed to investigate the migration ability of EECs. RESULTS The expression levels of OPN and MMP-9 in normal EECs (NEECs) were inferior to those in EECs from patients with endometriosis (EEECs). The expression levels of OPN and MMP-9 from stage III/IV EEECs and secretory-phase EECs were higher than those of stage I/II EEECs or proliferative-phase EECs. The expression levels of OPN and MMP-9 in EEECs were increased by E2 treatment and remarkably decreased by siRNA interference. Active MMP-9 expression increased with E2 treatment and decreased with siRNA treatment in EEECs compared with the same treatments in NEECs. The migratory abilities of EEECs were enhanced after cells were treated with E2; in contrast, these abilities were reduced by siRNA interference. In NEECs, active MMP-9 and cellular migration abilities were only minimally influenced by E2 and siRNA treatment. CONCLUSIONS The present study suggests that the up-regulation of MMP-9 via activation of OPN induced by estrogen may correlate with the migration of endometrial epithelial cells in patients with endometriosis.
Collapse
Affiliation(s)
- Mei Yang
- Ningxia Medical University, Yinchuan, Ningxia, China.
- Department of Obstetrics and Gynecology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China.
| | - Chunfan Jiang
- Department of Pathology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China.
| | - Hua Chen
- Department of Obstetrics and Gynecology in General Hospital, Key Laboratory of Fertility Preservation and Maintenance of the Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia, China.
| | - Yan Nian
- Ningxia Medical University, Yinchuan, Ningxia, China.
| | - Zhimiao Bai
- Ningxia Medical University, Yinchuan, Ningxia, China.
| | - Chunfang Ha
- Department of Obstetrics and Gynecology in General Hospital, Key Laboratory of Fertility Preservation and Maintenance of the Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia, China.
| |
Collapse
|
165
|
Ke F, Wang Y, Hong J, Xu C, Chen H, Zhou SB. Characterization of MMP-9 gene from a normalized cDNA library of kidney tissue of yellow catfish (Pelteobagrus fulvidraco). FISH & SHELLFISH IMMUNOLOGY 2015; 45:260-267. [PMID: 25910849 DOI: 10.1016/j.fsi.2015.04.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 04/11/2015] [Accepted: 04/14/2015] [Indexed: 06/04/2023]
Abstract
Matrix metalloproteinase-9 (MMP-9), one of members of the MMP family, is important for the cleaving of structural extracellular matrix (ECM) molecules and involved in inflammatory processes. In this study, MMP-9 cDNA was isolated and characterized from a normalized cDNA library of kidney tissue of yellow catfish (designated as YcMMP-9). The complete sequence of YcMMP-9 cDNA consisted of 2561 nucleotides. The open reading frame potentially encoded a protein of 685 amino acids with a calculated molecular mass of approximately 77.182 kDa. Amino acid sequence of YcMMP-9 have typical characteristics of MMP-9 family and showed highest identity (85.3%) to channel catfish MMP-9. The YcMMP-9 genomic DNA contains 13 exons and 12 introns. Quantitative RT-PCR (qRT-PCR) analysis showed that YcMMP-9 mRNA was constitutively expressed in all examined tissues in normal fish with high expression in head kidney, trunk kidney, blood, and spleen. However, expression of YcMMP-9 mRNA was induced by Aeromonas hydrophila stimulation, especially in these four tissues mentioned above. It indicated that YcMMP-9 was involved in innate immune responses against bacterial infection.
Collapse
Affiliation(s)
- Fei Ke
- College of Life Sciences and Engineering, Henan University of Urban Construction, Pingdingshan 467036, China
| | - Yun Wang
- College of Life Sciences and Engineering, Henan University of Urban Construction, Pingdingshan 467036, China.
| | - Jun Hong
- College of Life Sciences and Engineering, Henan University of Urban Construction, Pingdingshan 467036, China
| | - Chen Xu
- College of Life Sciences and Engineering, Henan University of Urban Construction, Pingdingshan 467036, China
| | - Huan Chen
- College of Life Sciences and Engineering, Henan University of Urban Construction, Pingdingshan 467036, China
| | - Shuai-Bang Zhou
- College of Life Sciences and Engineering, Henan University of Urban Construction, Pingdingshan 467036, China
| |
Collapse
|
166
|
Light A, Hammes SR. LH-Induced Steroidogenesis in the Mouse Ovary, but Not Testis, Requires Matrix Metalloproteinase 2- and 9-Mediated Cleavage of Upregulated EGF Receptor Ligands. Biol Reprod 2015. [PMID: 26203177 DOI: 10.1095/biolreprod.115.130971] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Oocyte maturation and cumulus cell expansion depend on luteinizing hormone (LH)-mediated upregulation of membrane-bound epidermal growth factor (EGF)-like ligands, including amphiregulin, epiregulin, and betacellulin. These ligands then transactivate the EGF receptor (EGFR) after release by matrix metalloproteinases (MMPs). However, direct measurement of released EGF-like ligands or MMPs from granulosa cells has not been formally evaluated, nor has direct identification of responsible MMPs. Here we address these issues by analyzing LH-induced steroidogenesis, which is also MMP and EGFR dependent, in freshly isolated mouse primary granulosa cells. We demonstrate a correlation between amphiregulin and epiregulin mRNA induction and steroid production in LH-treated granulosa cells as well as in ovaries of human chorionic gonadotropin-treated mice. In contrast, LH does not alter Mmp1, Mmp2, Mmp3, Mmp8, Mmp9, or Adam17 mRNA expression. We demonstrate that, in primary mouse granulosa cells, LH triggers release of soluble amphiregulin that correlates with steroid production, both of which are blocked by MMP2/9 inhibition, confirming that MMP2/9 likely regulates LH-induced amphiregulin release and downstream processes. Notably, LH does not alter secretion of MMP2/9 from primary granulosa cells, nor does it modulate MMP activity. These findings indicate that, in the ovary, LH dictates EGFR-mediated processes not by regulating MMPs, but instead by increasing EGF-like ligand availability. In contrast, LH stimulation of primary mouse Leydig cells does not induce EGF-like ligand expression or require MMP2/9 for steroidogenesis, confirming marked differences in LH receptor-induced processes in the testes. Our results suggest that MMP inhibition may be a means of attenuating excess ovarian steroid production in diseases like polycystic ovary syndrome.
Collapse
Affiliation(s)
- Allison Light
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Stephen R Hammes
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York
| |
Collapse
|
167
|
Shahed A, McMichael CF, Young KA. Rapid changes in ovarian mRNA induced by brief photostimulation in Siberian hamsters (Phodopus sungorus). ACTA ACUST UNITED AC 2015; 323:627-36. [PMID: 26174001 DOI: 10.1002/jez.1953] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 06/15/2015] [Accepted: 06/19/2015] [Indexed: 11/06/2022]
Abstract
This study sought to characterize the rapid intraovarian mRNA response of key folliculogenic factors that may contribute to the restoration of folliculogenesis during 2-10 days of photostimulation in Siberian hamsters. Adult hamsters were exposed to short photoperiod (8L:16D) for 14 weeks (SD). A subset were then transferred to long photoperiod (16L:8D) for 2 (PT day-2), 4 (PT day-4), or 10 days (PT day-10). Quantitative real-time PCR was used to measure intraovarian mRNA expression of: gonadotropin releasing hormone (GnRH), follicle stimulating hormone β-subunit (FSHβ-subunit), luteinizing hormone β-subunit (LHβ-subunit), FSH and LH receptors, estrogen receptors α and β (Esr1 and Esr2), matrix metalloproteinase (MMP)-2 and -9, anti-Müllerian hormone (AMH), inhibin-α subunit, fibroblast growth factor-2 (FGF-2) and proliferating cell nuclear antigen (PCNA). Compared to SD, plasma FSH concentrations increased on PT day-4 and the number of antral follicles and corpora lutea increased on PT day-10. FSHR and inhibin-α mRNA expression also increased on PT day-4, whereas LHR and proliferation marker PCNA both increased on PT day-10 as compared to SD. Esr1 mRNA increased on PT day-2 and remained significantly increased as compared to SD, whereas Esr1 mRNA increased only on PT day-2, similar to FGF-2 and MMP-2 results. No differences were observed in mRNA expression in ovarian GnRH, FSHβ- and LHβ-subunits, AMH, and MMP-9 mRNA with 2-10 days of photostimulation. Rapid increases in intraovarian FSHR and inhibin-α mRNA and antral follicle/corpora lutea numbers suggest that the ovary is primed to react quickly to the FSH released in response to brief periods of photostimulation.
Collapse
Affiliation(s)
- Asha Shahed
- Reproductive Biology Group, Department of Biological Sciences, California State University Long Beach, Long Beach, California
| | - Carling F McMichael
- Reproductive Biology Group, Department of Biological Sciences, California State University Long Beach, Long Beach, California
| | - Kelly A Young
- Reproductive Biology Group, Department of Biological Sciences, California State University Long Beach, Long Beach, California
| |
Collapse
|
168
|
Ahn JH, Choi YS, Choi JH. Leptin promotes human endometriotic cell migration and invasion by up-regulating MMP-2 through the JAK2/STAT3 signaling pathway. Mol Hum Reprod 2015; 21:792-802. [PMID: 26153131 DOI: 10.1093/molehr/gav039] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 06/30/2015] [Indexed: 12/23/2022] Open
Abstract
Despite evidence that leptin may play a role in the pathogenesis of endometriosis, the specific function of leptin in the migration and invasion of endometriotic cells is not well characterized. In this study, we investigated the effect of leptin on the migration, invasion and matrix metalloproteinase (MMP) expression levels of human endometriotic cells. We found that leptin stimulated the migration and invasion of endometriotic cells (11Z, 12Z and 22B) in a dose-dependent manner. Leptin receptor (ObR) siRNA significantly inhibited the migration and invasion induced by leptin in 11Z and 12Z cells. Leptin-induced migration and invasion were significantly attenuated by pretreatment with SB-3CT, a specific gelatinase (MMP-2 and MMP-9) inhibitor. In addition, leptin-induced increases in the mRNA and protein expression and enzyme activity of MMP-2 in 11Z and 12Z cells. Selectively inhibiting MMP-2 using siRNA and an inhibitor (GM6003), impaired the ability of leptin to stimulate the migration and invasion of endometriotic cells, suggesting that MMP-2 plays an essential role in leptin-induced migration and invasion. Janus Kinase 2/Signal Transducer and Activator of Transcription 3 (JAK2/STAT3) inhibitor (AG490) significantly inhibited the migration, invasion and MMP-2 expression induced by leptin in endometriotic cells. Furthermore, the Extracellular signal-Regulated Kinase inhibitor PD98059 neutralized the migration and invasion promoting effects of leptin. Taken together, these results suggest that leptin may contribute to the migration and invasion abilities of endometriotic cells via the up-regulation of MMP-2 through an ObR-dependent JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Ji-Hye Ahn
- Department of Life & Nanopharmaceutical Science, Kyung Hee University, Seoul, South Korea Division of Molecular Biology, College of Pharmacy, Kyung Hee University, Seoul, South Korea
| | - Youn Seok Choi
- Department of Obstetrics and Gynecology, School of Medicine, Catholic University of Daegu, Daegu, South Korea
| | - Jung-Hye Choi
- Department of Life & Nanopharmaceutical Science, Kyung Hee University, Seoul, South Korea Division of Molecular Biology, College of Pharmacy, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
169
|
Shahed A, Simmons JJ, Featherstone SL, Young KA. Matrix metalloproteinase inhibition influences aspects of photoperiod stimulated ovarian recrudescence in Siberian hamsters. Gen Comp Endocrinol 2015; 216:46-53. [PMID: 25910436 PMCID: PMC4457603 DOI: 10.1016/j.ygcen.2015.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 03/04/2015] [Accepted: 04/12/2015] [Indexed: 11/25/2022]
Abstract
Blocking matrix metalloproteinase (MMP) activity in vivo with inhibitor GM6001 impedes photostimulated ovarian recrudescence in photoregressed Siberian hamsters. Since direct and indirect effects of MMPs influence a myriad of ovarian functions, we investigated the effect of in vivo MMP inhibition during recrudescence on ovarian mRNA expression of steroidogenic acute regulatory protein (StAR), 3β-hydroxysteroid dehydrogenase (3β-HSD), Cyp19a1 aromatase, epidermal growth factor receptor (EGFR), amphiregulin (Areg), estrogen receptors (Esr1 and Esr2), tissue inhibitors of MMPs (TIMP-1,-2,-3), proliferating cell nuclear antigen (PCNA), vascular endothelial growth factor A (VEGFA), its receptor VEGFR-2, and angiopoietin-2 (Ang-2). Female Siberian hamsters were randomly assigned to one of four photoperiod groups: stimulatory long (LD) or inhibitory short (SD) photoperiods, or transferred from SD to LD for 2 weeks (post-transfer, PT). Half of the PT hamsters were injected (ip) daily with GM6001 (PTG). SD exposure reduced ovarian StAR, 3β-HSD, Cyp19a1, Esr1, Esr2, TIMPs 2-3, PCNA, VEGFR-2 and Ang-2 mRNA expression (p<0.05), and 2 weeks of photostimulation restored mRNA expression of 3β-HSD and PCNA and increased Areg and VEGFA mRNA expression in the PT group. GM6001 treatment during photostimulation (PTG) increased TIMP-1, -2 and -3 and PCNA mRNA, but inhibited Areg mRNA expression compared to PT. Neither photoperiod nor GM6001 altered EGFR expression. Results of this study suggest that in vivo inhibition of MMP activity by GM6001 may impede ovarian recrudescence, particularly follicular growth, in two ways: (1) directly by partially inhibiting the release of EGFR ligands like Areg, thereby potentially affecting EGFR activation and its downstream pathway, and (2) indirectly by its effect on TIMPs which themselves can affect proliferation, angiogenesis and follicular growth.
Collapse
Affiliation(s)
- Asha Shahed
- Reproductive Biology Group, Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, United States
| | - Jamie J Simmons
- Reproductive Biology Group, Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, United States
| | - Sydney L Featherstone
- Reproductive Biology Group, Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, United States
| | - Kelly A Young
- Reproductive Biology Group, Department of Biological Sciences, California State University Long Beach, Long Beach, CA 90840, United States.
| |
Collapse
|
170
|
Al-Alem L, Curry TE. Ovarian cancer: involvement of the matrix metalloproteinases. Reproduction 2015; 150:R55-64. [PMID: 25918438 DOI: 10.1530/rep-14-0546] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 04/24/2015] [Indexed: 12/12/2022]
Abstract
Ovarian cancer is the leading cause of death from gynecologic malignancies. One of the reasons for the high mortality rate associated with ovarian cancer is its late diagnosis, which often occurs after the cancer has metastasized throughout the peritoneal cavity. Cancer metastasis is facilitated by the remodeling of the extracellular tumor matrix by a family of proteolytic enzymes known as the matrix metalloproteinases (MMPs). There are 23 members of the MMP family, many of which have been reported to be associated with ovarian cancer. In the current paradigm, ovarian tumor cells and the surrounding stromal cells stimulate the synthesis and/or activation of various MMPs to aid in tumor growth, invasion, and eventual metastasis. The present review sheds light on the different MMPs in the various types of ovarian cancer and on their impact on the progression of this gynecologic malignancy.
Collapse
Affiliation(s)
- Linah Al-Alem
- Department of Obstetrics and GynecologyUniversity of Kentucky Medical Center, 800 Rose Street, Room C355, Lexington, Kentucky 40536-0293, USA
| | - Thomas E Curry
- Department of Obstetrics and GynecologyUniversity of Kentucky Medical Center, 800 Rose Street, Room C355, Lexington, Kentucky 40536-0293, USA
| |
Collapse
|
171
|
Michel KG, Huijbregts RP, Gleason JL, Richter HE, Hel Z. Effect of hormonal contraception on the function of plasmacytoid dendritic cells and distribution of immune cell populations in the female reproductive tract. J Acquir Immune Defic Syndr 2015; 68:511-8. [PMID: 25763784 PMCID: PMC4874780 DOI: 10.1097/qai.0000000000000531] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Epidemiological evidence suggests an association between the use of hormonal contraception and an increased risk of acquiring sexually transmitted diseases including HIV-1. We sought to elucidate the biological mechanisms underlying the effect of hormonal contraception on the immune system. DESIGN Cross-sectional study. METHODS To delineate the biological mechanisms underlying the effect of hormonal contraceptives on the immune system, we analyzed the functional capacity of circulating plasmacytoid dendritic cells (pDCs), the distribution of vaginal immune cell populations, and the systemic and genital levels of immune mediators in women using depot medroxyprogesterone acetate (DMPA), NuvaRing, or combined oral contraceptives (COC). RESULTS The use of DMPA or NuvaRing was associated with reduced capacity of circulating pDCs to produce interferon (IFN)-α and tumor necrosis (TNF-α) in response to TLR-9 stimulation. Systemic levels of IFN-α and cervicovaginal fluid levels of IFN-α, CXCL10, monocyte chemotactic protein-1, and granulocyte-colony stimulating factor were significantly lower in DMPA users compared to control volunteers not using hormonal contraception. The density of CD207 Langerhans cells in the vaginal epithelium was reduced in NuvaRing and combined oral contraceptive users but not in DMPA users. CONCLUSIONS The presented evidence suggests that the use of some types of hormonal contraception is associated with reduced functional capacity of circulating pDCs and altered immune environment in the female reproductive tract.
Collapse
Affiliation(s)
- Katherine G. Michel
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Jonathan L. Gleason
- Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Holly E. Richter
- Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Zdenek Hel
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Center for AIDS Research, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
172
|
Knight OM, Van Der Kraak G. The role of eicosanoids in 17α, 20β-dihydroxy-4-pregnen-3-one-induced ovulation and spawning in Danio rerio. Gen Comp Endocrinol 2015; 213:50-8. [PMID: 25573385 DOI: 10.1016/j.ygcen.2014.12.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 12/19/2014] [Accepted: 12/26/2014] [Indexed: 11/16/2022]
Abstract
This study employed a hormone bioassay to characterize the eicosanoids involved in zebrafish ovulation and spawning, in particular the prostaglandin (PG) products of cyclooxygenase (COX) metabolism and the leukotriene (LT) products of lipoxygenase (LOX) metabolism. Exposure to the teleost progestogen 17α, 20β-dihydroxy-4-pregnen-3-one (17,20βP) induced ovulation, but not spawning, in solitary females and both ovulation and spawning in male-female pairs. Transcription of the eicosanoid-synthesizing enzymes cytosolic phospholipase A2 (cPLA(2)) and COX-2 increased and LTC(4) synthase decreased in peri-ovulatory ovaries of 17,20βP-exposed fish. Ovarian PGF(2α) levels increased post-spawning in 17,20βP-exposed fish, but there was no difference in LTB(4) or LTC(4). Pre-exposure to cPLA(2) or LOX inhibitors reduced 17,20βP-induced ovulation rates, while a COX inhibitor had no effect on ovulation or spawning. Collectively, these findings suggest that eicosanoids, in particular LOX metabolites, mediate 17,20βP-induced ovulation in zebrafish. COX metabolites also appear to be involved in ovulation and spawning but their role remains undefined.
Collapse
Affiliation(s)
- Olivia M Knight
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | - Glen Van Der Kraak
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
173
|
Akcalı A, Bostanci N, Özçaka Ö, Öztürk-Ceyhan B, Gümüş P, Tervahartiala T, Husu H, Buduneli N, Sorsa T, Belibasakis GN. Elevated matrix metalloproteinase-8 in saliva and serum in polycystic ovary syndrome and association with gingival inflammation. Innate Immun 2015; 21:619-25. [DOI: 10.1177/1753425915572172] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 01/15/2015] [Indexed: 11/16/2022] Open
Abstract
This study aimed to investigate the levels of matrix metalloproteinase-8 (MMP-8) and tissue inhibitors of MMP-1 (TIMP-1) in saliva and serum samples of women with polycystic ovary syndrome (PCOS; n = 80) and matched systemically healthy controls ( n = 45), with varying degrees of gingival inflammation. Salivary levels of MMP-8 and the MMP-8/TIMP-1 ratio were significantly elevated in women with PCOS, who also exhibited more gingivitis than systemically healthy women. No major changes were observed in salivary TIMP-1 levels with regard to PCOS. Serum levels of MMP-8 and the MMP-8/TIMP-1 ratio were significantly higher in women with PCOS, irrespective of the presence of gingivitis, while there were no differences in TIMP-1 levels. A positive correlation was indicated between probing depth, bleeding on probing, plaque index and salivary or serum MMP-8 levels or MMP-8/TIMP-1 ratio in the case of PCOS, while a negative such correlation was revealed for TIMP-1 in systemically healthy women. Increased levels of MMP-8 in saliva and serum seem to be more pronounced in women with PCOS, and potentiated in the presence of gingival inflammation. Alterations in MMP/TIMP system triggered by local and systemic inflammation may be implicated in the pathogenesis of PCOS, or the deterioration of its clinical presentation.
Collapse
Affiliation(s)
- Aliye Akcalı
- Institute of Oral Biology, Center of Dental Medicine, University of Zürich, Zurich, Switzerland
- Department of Periodontology, School of Dentistry, Ege University, İzmir, Turkey
| | - Nagihan Bostanci
- Institute of Oral Biology, Center of Dental Medicine, University of Zürich, Zurich, Switzerland
| | - Özgun Özçaka
- Department of Periodontology, School of Dentistry, Ege University, İzmir, Turkey
| | - Banu Öztürk-Ceyhan
- Department of Endocrinology, School of Medicine, Aydın Government Hospital, Aydın, Turkey
| | - Pınar Gümüş
- Department of Periodontology, School of Dentistry, Ege University, İzmir, Turkey
| | - Taina Tervahartiala
- University of Helsinki, Institute of Dentistry, Department of Oral and Maxillofacial Diseases, Helsinki University Hospital, Helsinki, Finland
| | - Heidi Husu
- University of Helsinki, Institute of Dentistry, Department of Oral and Maxillofacial Diseases, Helsinki University Hospital, Helsinki, Finland
| | - Nurcan Buduneli
- Department of Periodontology, School of Dentistry, Ege University, İzmir, Turkey
| | - Timo Sorsa
- University of Helsinki, Institute of Dentistry, Department of Oral and Maxillofacial Diseases, Helsinki University Hospital, Helsinki, Finland
- Division of Periodontology, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Georgios N Belibasakis
- Institute of Oral Biology, Center of Dental Medicine, University of Zürich, Zurich, Switzerland
| |
Collapse
|
174
|
Deady LD, Shen W, Mosure SA, Spradling AC, Sun J. Matrix metalloproteinase 2 is required for ovulation and corpus luteum formation in Drosophila. PLoS Genet 2015; 11:e1004989. [PMID: 25695427 PMCID: PMC4335033 DOI: 10.1371/journal.pgen.1004989] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 01/06/2015] [Indexed: 01/08/2023] Open
Abstract
Ovulation is critical for successful reproduction and correlates with ovarian cancer risk, yet genetic studies of ovulation have been limited. It has long been thought that the mechanism controlling ovulation is highly divergent due to speciation and fast evolution. Using genetic tools available in Drosophila, we now report that ovulation in Drosophila strongly resembles mammalian ovulation at both the cellular and molecular levels. Just one of up to 32 mature follicles per ovary pair loses posterior follicle cells (“trimming”) and protrudes into the oviduct, showing that a selection process prefigures ovulation. Follicle cells that remain after egg release form a “corpus luteum (CL)” at the end of the ovariole, develop yellowish pigmentation, and express genes encoding steroid hormone biosynthetic enzymes that are required for full fertility. Finally, matrix metalloproteinase 2 (Mmp2), a type of protease thought to facilitate mammalian ovulation, is expressed in mature follicle and CL cells. Mmp2 activity is genetically required for trimming, ovulation and CL formation. Our studies provide new insights into the regulation of Drosophila ovulation and establish Drosophila as a model for genetically investigating ovulation in diverse organisms, including mammals. Sexual reproduction is thought to be a highly divergent process due to fast evolution and speciation. For example, sperm from one species can seldom fertilize eggs from another species, indicating that different molecular machinery for fertilization is applied in different species. In contrast to this divergent view, ovulation, the process of liberating mature eggs from the ovary, is a general phenomenon throughout the Metazoa. We provide evidence that basic mechanisms of ovulation are conserved. Like mammalian follicles, Drosophila follicles consist of single oocytes surrounded by a layer of follicle cells. Drosophila follicles degrade their posterior follicle cells to allow the oocyte to rupture into the oviduct during ovulation. The residual postovulatory follicles reside in the ovary, accumulate yellowish pigmentation, and produce the steroid hormone ecdysone, features which resemble the mammalian corpus luteum. We also showed that matrix metalloproteinase, a type of proteinase proposed to degrade the mammalian follicle wall during ovulation, is required in Drosophila for posterior follicle cell degradation and ovulation. These findings are particularly important because this simple genetic model system will speed up the identification of many conserved regulators required for regulating matrix metalloproteinase activity and ovulation in human, processes that influence ovarian cancer formation and cancer metastasis.
Collapse
Affiliation(s)
- Lylah D. Deady
- Department of Physiology & Neurobiology, University of Connecticut, Storrs, Storrs, Connecticut, United States of America
| | - Wei Shen
- Department of Physiology & Neurobiology, University of Connecticut, Storrs, Storrs, Connecticut, United States of America
| | - Sarah A. Mosure
- Department of Physiology & Neurobiology, University of Connecticut, Storrs, Storrs, Connecticut, United States of America
| | - Allan C. Spradling
- Howard Hughes Medical Institute Research Laboratories, Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland, United States of America
- * E-mail: (ACS); (JS)
| | - Jianjun Sun
- Department of Physiology & Neurobiology, University of Connecticut, Storrs, Storrs, Connecticut, United States of America
- Institute for Systems Genomics, University of Connecticut, Storrs, Storrs, Connecticut, United States of America
- * E-mail: (ACS); (JS)
| |
Collapse
|
175
|
Voronkina IV, Vakhromova EA, Kirpichnikova KM, Smagina LV, Gamaley IA. Matrix metalloproteinase activity in transformed cells exposed to an antioxidant. ACTA ACUST UNITED AC 2015. [DOI: 10.1134/s1990519x15010113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
176
|
Wen J, Hanna CW, Martell S, Leung PC, Lewis SM, Robinson WP, Stephenson MD, Rajcan-Separovic E. Functional consequences of copy number variants in miscarriage. Mol Cytogenet 2015; 8:6. [PMID: 25674159 PMCID: PMC4324423 DOI: 10.1186/s13039-015-0109-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 01/09/2015] [Indexed: 02/01/2023] Open
Abstract
Background The presence of unique copy number variations (CNVs) in miscarriages suggests that their integral genes have a role in maintaining early pregnancy. In our previous work, we identified 19 unique CNVs in ~40% of studied euploid miscarriages, which were predominantly familial in origin. In our current work, we assessed their relevance to miscarriage by expression analysis of 14 genes integral to CNVs in available miscarriage chorionic villi. As familial CNVs could cause miscarriage due to imprinting effect, we investigated the allelic expression of one of the genes (TIMP2) previously suggested to be maternally expressed in placenta and involved in placental remodelling and embryo development. Results Six out of fourteen genes had detectable expression in villi and for three genes the RNA and protein expression was altered due to maternal CNVs. These genes were integral to duplication on Xp22.2 (TRAPPC2 and OFD1) or disrupted by a duplication mapping to 17q25.3 (TIMP2). RNA and protein expression was increased for TRAPPC2 and OFD1 and reduced for TIMP2 in carrier miscarriages. The three genes have roles in processes important for pregnancy development such as extracellular matrix homeostasis (TIMP2 and TRAPPC2) and cilia function (OFD1). TIMP2 allelic expression was not affected by the CNV in miscarriages in comparison to control elective terminations. Conclusion We propose that functional studies of CNVs could help determine if and how the miscarriage CNVs affect the expression of integral genes. In case of parental CNVs, assessment of the function of their integral genes in parental reproductive tissues should be also considered in the future, especially if they affect processes relevant for pregnancy development and support. Electronic supplementary material The online version of this article (doi:10.1186/s13039-015-0109-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jiadi Wen
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, V6T 2B5 Canada.,Child & Family Research Institute, Vancouver, V5Z 4H4 Canada
| | - Courtney W Hanna
- Child & Family Research Institute, Vancouver, V5Z 4H4 Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, V6T 1Z3 Canada
| | - Sally Martell
- Child & Family Research Institute, Vancouver, V5Z 4H4 Canada
| | - Peter Ck Leung
- Child & Family Research Institute, Vancouver, V5Z 4H4 Canada.,Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, V6Z 2 K5 Canada
| | - Suzanne Me Lewis
- Department of Medical Genetics, University of British Columbia, Vancouver, V6T 1Z3 Canada
| | - Wendy P Robinson
- Child & Family Research Institute, Vancouver, V5Z 4H4 Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, V6T 1Z3 Canada
| | - Mary D Stephenson
- Department of Obstetrics and Gynecology, University of Illinois at Chicago, Chicago, 60612 USA
| | - Evica Rajcan-Separovic
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, V6T 2B5 Canada.,Child & Family Research Institute, Vancouver, V5Z 4H4 Canada
| |
Collapse
|
177
|
Izumi G, Koga K, Nagai M, Urata Y, Takamura M, Harada M, Hirata T, Hirota Y, Ogawa K, Inoue S, Fujii T, Osuga Y. Cyclic Stretch Augments Production of Neutrophil Chemokines, Matrix Metalloproteinases, and Activin A in Human Endometrial Stromal Cells. Am J Reprod Immunol 2015; 73:501-6. [DOI: 10.1111/aji.12359] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 01/02/2015] [Indexed: 12/16/2022] Open
Affiliation(s)
- Gentaro Izumi
- Obstetrics and Gynecology; The University of Tokyo; Tokyo Japan
| | - Kaori Koga
- Obstetrics and Gynecology; The University of Tokyo; Tokyo Japan
| | - Miwako Nagai
- Obstetrics and Gynecology; The University of Tokyo; Tokyo Japan
| | - Yoko Urata
- Obstetrics and Gynecology; The University of Tokyo; Tokyo Japan
| | | | - Miyuki Harada
- Obstetrics and Gynecology; The University of Tokyo; Tokyo Japan
| | - Tetsuya Hirata
- Obstetrics and Gynecology; The University of Tokyo; Tokyo Japan
| | - Yasushi Hirota
- Obstetrics and Gynecology; The University of Tokyo; Tokyo Japan
| | - Kenji Ogawa
- Chemical Genetics Laboratory; RIKEN; Saitama Japan
| | - Satoshi Inoue
- Anti-Aging Medicine; The University of Tokyo; Tokyo Japan
| | - Tomoyuki Fujii
- Obstetrics and Gynecology; The University of Tokyo; Tokyo Japan
| | - Yutaka Osuga
- Obstetrics and Gynecology; The University of Tokyo; Tokyo Japan
| |
Collapse
|
178
|
Seanpong P, Srisaowakarn C, Thammaporn A, Leardkamolkarn V, Kumkate S. Different Responses in MMP/TIMP Expression of U937 and HepG2 Cells to Dengue Virus Infection. Jpn J Infect Dis 2015; 68:221-9. [PMID: 25672410 DOI: 10.7883/yoken.jjid.2013.481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
| | | | | | - Vijittra Leardkamolkarn
- Center for Emerging and Neglected Infectious Diseases, Mahidol University
- Department of Anatomy, Faculty of Science, Mahidol University
| | | |
Collapse
|
179
|
Hunzicker-Dunn M, Mayo K. Gonadotropin Signaling in the Ovary. KNOBIL AND NEILL'S PHYSIOLOGY OF REPRODUCTION 2015:895-945. [DOI: 10.1016/b978-0-12-397175-3.00020-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
180
|
Induction of proteinases in the human preovulatory follicle of the menstrual cycle by human chorionic gonadotropin. Fertil Steril 2014; 103:826-33. [PMID: 25516084 DOI: 10.1016/j.fertnstert.2014.11.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 11/06/2014] [Accepted: 11/12/2014] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To explore the temporal expression in granulosa and theca cells of key members of the MMP and ADAMTS families across the periovulatory period in women to gain insight into their possible roles during ovulation and early luteinization. DESIGN Experimental prospective clinical study and laboratory-based investigation. SETTING University medical center and private IVF center. ANIMAL AND PATIENT(S) Thirty-eight premenopausal women undergoing surgery for tubal ligation and six premenopausal women undergoing assisted reproductive techniques. INTERVENTION(S) Administration of hCG and harvesting of follicles by laparoscopy and collection of granulosa-lutein cells at oocyte retrieval. MAIN OUTCOME MEASURE(S) Expression of mRNA for matrix metalloproteinase (MMPs) and the A disintegrin and metalloproteinase with thrombospondin-like motifs (ADAMTS) in human granulosa cells and theca cells collected across the periovulatory period of the menstrual cycle and in cultured granulosa-lutein cells after hCG. Localization of MMPs and ADAMTSs by immunohistochemistry. RESULT(S) Expression of MMP1 and MMP19 mRNA increased in both granulosa and theca cells after hCG administration. ADAMTS1 and ADAMTS9 mRNA increased in granulosa cells after hCG treatment, however, thecal cell expression for ADAMTS1 was unchanged, while ADAMTS9 expression was decreased. Expression of MMP8 and MMP13 mRNA was unchanged. Immunohistochemistry confirmed the localization of MMP1, MMP19, ADAMTS1, and ADAMTS9 to the granulosa and thecal cell layers. CONCLUSION(S) The collection of the dominant follicle throughout the periovulatory period has allowed the identification of proteolytic remodeling enzymes in the granulosa and theca compartments that may be critically involved in human ovulation. These proteinases may work in concert to regulate breakdown of the follicular wall and release of the oocyte.
Collapse
|
181
|
Thorne JT, Segal TR, Chang S, Jorge S, Segars JH, Leppert PC. Dynamic reciprocity between cells and their microenvironment in reproduction. Biol Reprod 2014; 92:25. [PMID: 25411389 DOI: 10.1095/biolreprod.114.121368] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Dynamic reciprocity (DR) refers to the ongoing, bidirectional interaction between cells and their microenvironment, specifically the extracellular matrix (ECM). The continuous remodeling of the ECM exerts mechanical force on cells and modifies biochemical mediators near the cell membrane, thereby initiating cell-signaling cascades that produce changes in gene expression and cell behavior. Cellular changes, in turn, affect the composition and organization of ECM components. These continuous interactions are the fundamental principle behind DR, and its critical role throughout development and adult tissue homeostasis has been extensively investigated. While DR in the mammary gland has been well described, we provide direct evidence that similar dynamic interactions occur in other areas of reproductive biology as well. In order to establish the importance of DR in the adaptive functioning of the female reproductive tract, we present our most current understanding of DR in reproductive tissues, exploring the mammary gland, ovary, and uterus. In addition to explaining normal physiological function, investigating DR may shed new light into pathologic processes that occur in these tissues and provide an exciting opportunity for novel therapeutic intervention.
Collapse
Affiliation(s)
- Jeffrey T Thorne
- Department of Obstetrics & Gynecology, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Thalia R Segal
- Department of Obstetrics & Gynecology, North Shore - Long Island Jewish Hospital, Manhasset, New York
| | - Sydney Chang
- Unit of Reproductive Endocrinology and Infertility, Eunice Kennedy Shriver National Institute of Child Health & Human Development, National Institutes of Health, Bethesda, Maryland Department of Obstetrics & Gynecology, Duke University School of Medicine, Durham, North Carolina
| | - Soledad Jorge
- Unit of Reproductive Endocrinology and Infertility, Eunice Kennedy Shriver National Institute of Child Health & Human Development, National Institutes of Health, Bethesda, Maryland Yale University School of Medicine, New Haven, Connecticut
| | - James H Segars
- Unit of Reproductive Endocrinology and Infertility, Eunice Kennedy Shriver National Institute of Child Health & Human Development, National Institutes of Health, Bethesda, Maryland
| | - Phyllis C Leppert
- Department of Obstetrics & Gynecology, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
182
|
Gene expression of matrix metalloproteinases and LH receptors in mare follicular development. Theriogenology 2014; 82:1131-6. [DOI: 10.1016/j.theriogenology.2014.07.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 07/22/2014] [Accepted: 07/26/2014] [Indexed: 11/24/2022]
|
183
|
Zhu G, Jiang Y. Polymorphism, genetic effect and association with egg production traits of chicken matrix metalloproteinases 9 promoter. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 27:1526-31. [PMID: 25358310 PMCID: PMC4213695 DOI: 10.5713/ajas.2014.14209] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 06/05/2014] [Accepted: 07/17/2014] [Indexed: 11/27/2022]
Abstract
Matrix metalloproteinases (MMP) are key enzymes involved in cell and tissue remodeling during ovarian follicle development and ovulation. The control of MMP9 transcription in ovarian follicles occurs through a core promoter region (−2,400 to −1,700 bp). The aim of this study was to screen genetic variations in the core promoter region and examine MMP9 transcription regulation and reproduction performance. A single cytosine deletion/insertion polymorphism was found at −1954 C+/C−. Genetic association analysis indicated significant correlation between the deletion genotype (C−) with total egg numbers at 28 weeks (p = 0.031). Furthermore, luciferase-reporter assay showed the deletion genotype (C−) had significantly lower promoter activity than the insertion genotype (C+) in primary granulosa cells (p<0.01). Therefore, the identified polymorphism could be used for marker-assisted selection to improve chicken laying performance.
Collapse
Affiliation(s)
- Guiyu Zhu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, China ; Department of Biology Science and Technology, Taishan University, Taian 271021, China
| | - Yunliang Jiang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian 271018, China
| |
Collapse
|
184
|
Ali A, Tirloni L, Isezaki M, Seixas A, Konnai S, Ohashi K, da Silva Vaz Junior I, Termignoni C. Reprolysin metalloproteases from Ixodes persulcatus, Rhipicephalus sanguineus and Rhipicephalus microplus ticks. EXPERIMENTAL & APPLIED ACAROLOGY 2014; 63:559-578. [PMID: 24687173 DOI: 10.1007/s10493-014-9796-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 03/05/2014] [Indexed: 06/03/2023]
Abstract
Metalloproteases (MPs) have been considered essential for blood feeding and other physiological functions in several hematophagous animals, including ticks. We report the characterization of MP sequences of three important ticks from Asia, Africa and America: Ixodes persulcatus (Ip-MPs), Rhipicephalus sanguineus (Rs-MPs) and R. microplus (BrRm-MPs). Amino acid sequence identity between R. microplus and R. sanguineus MPs ranged from 76 to 100 %, and identities among I. persulcatus, I. ricinus and I. scapularis MP sequences ranged from 88 to 97 %. This high sequence identity and typical functional motifs show that all sequences are MPs. The presence of a zinc binding site, a Met-turn and cysteine rich domain at the C-terminal region indicates that these proteins belong to the reproplysin family of MPs. Differences in amino acid sequences of BrRm-MP1, BrRm-MP2, BrRm-MP4 and BrRm-MP5 (from Porto Alegre strain ticks) were 6, 2, 7 and 5 %, respectively, when compared with sequences deposited in GenBank for the same genes from other R. microplus isolates. Analyses of MPs predicted that they have various highly antigenic regions. Semi-quantitative RT-PCR analysis revealed the presence of transcripts in salivary glands of partially and fully fed female ticks. None of these transcripts were observed in males (except BrRm-MP4) and eggs. These enzymes may be functional components required during tick feeding to manipulate host defenses and support tick hematophagy.
Collapse
Affiliation(s)
- Abid Ali
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Avenida Bento Gonçalves, 9500, Prédio 43421, C.P. 15005, Porto Alegre, RS, 91501-970, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
185
|
Silva JF, Ocarino NM, Serakides R. Luteal activity of pregnant rats with hypo-and hyperthyroidism. J Ovarian Res 2014; 7:75. [PMID: 25298361 PMCID: PMC4107585 DOI: 10.1186/1757-2215-7-75] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 07/08/2014] [Indexed: 12/24/2022] Open
Abstract
Background Luteal activity is dependent on the interaction of various growth factors, cytokines and hormones, including the thyroid hormones, being that hypo- and hyperthyroidism alter the gestational period and are also a cause of miscarriage and stillbirth. Because of that, we evaluated the proliferation, apoptosis and expression of angiogenic factors and COX-2 in the corpus luteum of hypo- and hyperthyroid pregnant rats. Methods Seventy-two adult female rats were equally distributed into three groups: hypothyroid, hyperthyroid and control. Hypo- and hyperthyroidism were induced by the daily administration of propylthiouracil and L-thyroxine, respectively. The administration began five days before becoming pregnant and the animals were sacrificed at days 10, 14, and 19 of gestation. We performed an immunohistochemical analysis to evaluate the expression of CDC-47, VEGF, Flk-1 (VEGF receptor) and COX-2. Apoptosis was evaluated by the TUNEL assay. We assessed the gene expression of VEGF, Flk-1, caspase 3, COX-2 and PGF2α receptor using real time RT-PCR. The data were analyzed by SNK test. Results Hypothyroidism reduced COX-2 expression on day 10 and 19 (P < 0.05), endothelial/pericyte and luteal cell proliferation on day 10 and 14 (p < 0.05), apoptotic cell numbers on day 19 (p < 0.05) and the expression of Flk-1 and VEGF on day 14 and 19, respectively (p < 0.05). Hyperthyroidism increased the expression of COX-2 on day 19 (P < 0.05) and the proliferative activity of endothelial/pericytes cells on day 14 (p <0.05), as well as the expression of VEGF and Flk-1 on day 19 (P < 0.05). Conclusions Hypothyroidism reduces the proliferation, apoptosis and expression of angiogenic factors and COX-2in the corpus luteum of pregnant rats, contrary to what is observed in hyperthyroid animals, being this effect dependent of the gestational period.
Collapse
|
186
|
Leppert PC, Jayes FL, Segars JH. The extracellular matrix contributes to mechanotransduction in uterine fibroids. Obstet Gynecol Int 2014; 2014:783289. [PMID: 25110476 PMCID: PMC4106177 DOI: 10.1155/2014/783289] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 05/28/2014] [Accepted: 06/11/2014] [Indexed: 02/02/2023] Open
Abstract
The role of the extracellular matrix (ECM) and mechanotransduction as an important signaling factor in the human uterus is just beginning to be appreciated. The ECM is not only the substance that surrounds cells, but ECM stiffness will either compress cells or stretch them resulting in signals converted into chemical changes within the cell, depending on the amount of collagen, cross-linking, and hydration, as well as other ECM components. In this review we present evidence that the stiffness of fibroid tissue has a direct effect on the growth of the tumor through the induction of fibrosis. Fibrosis has two characteristics: (1) resistance to apoptosis leading to the persistence of cells and (2) secretion of collagen and other components of the ECM such a proteoglycans by those cells leading to abundant disposition of highly cross-linked, disoriented, and often widely dispersed collagen fibrils. Fibrosis affects cell growth by mechanotransduction, the dynamic signaling system whereby mechanical forces initiate chemical signaling in cells. Data indicate that the structurally disordered and abnormally formed ECM of uterine fibroids contributes to fibroid formation and growth. An appreciation of the critical role of ECM stiffness to fibroid growth may lead to new strategies for treatment of this common disease.
Collapse
Affiliation(s)
| | | | - James H. Segars
- Unit on Reproductive Endocrinology and Infertility, Program on Pediatric and Adult Endocrinology, NICHD, NIH, Bethesda, MD 20892-1109, USA
| |
Collapse
|
187
|
Puttabyatappa M, Jacot TA, Al-Alem LF, Rosewell KL, Duffy DM, Brännström M, Curry TE. Ovarian membrane-type matrix metalloproteinases: induction of MMP14 and MMP16 during the periovulatory period in the rat, macaque, and human. Biol Reprod 2014; 91:34. [PMID: 24920038 DOI: 10.1095/biolreprod.113.115717] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
An intrafollicular increase in proteolytic activity drives ovulatory events. Surprisingly, the periovulatory expression profile of the membrane-type matrix metalloproteinases (MT-MMPs), unique proteases anchored to the cell surface, has not been extensively examined. Expression profiles of the MT-MMPs were investigated in ovarian tissue from well-characterized rat and macaque periovulatory models and naturally cycling women across the periovulatory period. Among the six known MT-MMPs, mRNA expression of Mmp14, Mmp16, and Mmp25 was increased after human chorionic gonadotropin (hCG) administration in rats. In human granulosa cells, mRNA expression of MMP14 and MMP16 increased following hCG treatment. In contrast, mRNA levels of MMP16 and MMP25 in human theca cells were unchanged before ovulation but declined by the postovulatory stage. In macaque granulosa cells, hCG increased mRNA for MMP16 but not MMP14. Immunoblotting showed that protein levels of MMP14 and MMP16 in rats increased, similar to their mRNA expression. In macaque granulosa cells, only the active form of the MMP14 protein increased after hCG, unlike its mRNA or the proprotein. By immunohistochemistry, both MMP14 and MMP16 localized to the different ovarian cell types in rats and humans. Treatment with hCG resulted in intense immunoreactivity of MMP14 and MMP16 proteins in the granulosa and theca cells. The present study shows that MMP14 and MMP16 are increased by hCG administration in the ovulating follicle, demonstrating that these MMPs are conserved among rats, macaques, and humans. These findings suggest that MT-MMPs could have an important role in promoting ovulation and remodeling of the ovulated follicle into the corpus luteum.
Collapse
Affiliation(s)
- Muraly Puttabyatappa
- Department of Obstetrics and Gynecology, Chandler Medical Center, University of Kentucky, Lexington, Kentucky
| | - Terry A Jacot
- Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, Virginia
| | - Linah F Al-Alem
- Department of Obstetrics and Gynecology, Chandler Medical Center, University of Kentucky, Lexington, Kentucky
| | - Katherine L Rosewell
- Department of Obstetrics and Gynecology, Chandler Medical Center, University of Kentucky, Lexington, Kentucky
| | - Diane M Duffy
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia
| | - Mats Brännström
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Thomas E Curry
- Department of Obstetrics and Gynecology, Chandler Medical Center, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
188
|
Kim SO, Harris SM, Duffy DM. Prostaglandin E2 (EP) receptors mediate PGE2-specific events in ovulation and luteinization within primate ovarian follicles. Endocrinology 2014; 155:1466-75. [PMID: 24506073 PMCID: PMC3959600 DOI: 10.1210/en.2013-2096] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Prostaglandin E2 (PGE2) is a key mediator of ovulation. All 4 PGE2 receptors (EP receptors) are expressed in the primate follicle, but the specific role of each EP receptor in ovulatory events is poorly understood. To examine the ovulatory events mediated via these EP receptors, preovulatory monkey follicles were injected with vehicle, the PG synthesis inhibitor indomethacin, or indomethacin plus PGE2. An ovulatory dose of human chorionic gonadotropin was administered; the injected ovary was collected 48 hours later and serially sectioned. Vehicle-injected follicles showed normal ovulatory events, including follicle rupture, absence of an oocyte, and thickening of the granulosa cell layer. Indomethacin-injected follicles did not rupture and contained oocytes surrounded by unexpanded cumulus; granulosa cell hypertrophy did not occur. Follicles injected with indomethacin plus PGE2 were similar to vehicle-injected ovaries, indicating that PGE2 restored the ovulatory changes inhibited by indomethacin. Additional follicles were injected with indomethacin plus an agonist for each EP receptor. EP1, EP2, and EP4 agonists each promoted aspects of follicle rupture, but no single EP agonist recapitulated normal follicle rupture as seen in follicles injected with either vehicle or indomethacin plus PGE2. Although EP4 agonist-injected follicles contained oocytes in unexpanded cumulus, the absence of oocytes in EP1 agonist- and EP2 agonist-injected follicles suggests that these EP receptors promote cumulus expansion. Surprisingly, the EP3 agonist did not stimulate any of these ovulatory changes, despite the high level of EP3 receptor expression in the monkey follicle. Therefore, agonists and antagonists selective for EP1 and EP2 receptors hold the most promise for control of ovulatory events in women.
Collapse
Affiliation(s)
- Soon Ok Kim
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia 23501
| | | | | |
Collapse
|
189
|
Zhu G, Kang L, Wei Q, Cui X, Wang S, Chen Y, Jiang Y. Expression and regulation of MMP1, MMP3, and MMP9 in the chicken ovary in response to gonadotropins, sex hormones, and TGFB1. Biol Reprod 2014; 90:57. [PMID: 24451989 DOI: 10.1095/biolreprod.113.114249] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are a specific class of proteolytic enzymes that play critical roles in follicular development and luteinization in mammals. However, the role of MMPs in avian ovary remains largely unknown. We found that three MMP genes (MMP1, MMP3, and MMP9) were significantly up-regulated in 23-wk-old (laying phase) chicken ovaries compared with 6-wk-old ovaries (prepubertal phase). In reproductively active chicken ovary, MMP1 expression (both mRNA and protein) remained low in prehierarchical and preovulatory follicles but increased in postovulatory follicles (POFs). Both MMP3 and MMP9 expression levels increased during follicular maturation. MMP3 reached maximal expression in the first largest follicle (F1), while MMP9 levels continued to rise in POF1 and POF2 after ovulation. Immunohistochemistry, Western blot analysis, and zymography experiments indicated that MMP1, MMP3, and MMP9 were synthesized and secreted by granulosa cells of different follicles in the chicken ovary. The mRNA expression of MMP1 and MMP3 in the granulosa cells was stimulated by follicle-stimulating hormone, luteinizing hormone, progesterone, and estrogen but not by transforming growth factor beta 1 (TGFB1). However, the mRNA of MMP9 was induced by TGFB1 but not follicle-stimulating hormone, luteinizing hormone, progesterone, or estrogen. Luciferase reporter and mutagenesis analysis indicated the AP1 and NFkappaB elements located in the promoter region from -1700 to -2400 bp were critical for both basal and TGFB1-induced MMP9 transcription. These data provide the first spatial-temporal expression analysis of MMP system in the chicken ovary.
Collapse
Affiliation(s)
- Guiyu Zhu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, China
| | | | | | | | | | | | | |
Collapse
|
190
|
Sessions-Bresnahan DR, Carnevale EM. The effect of equine metabolic syndrome on the ovarian follicular environment. J Anim Sci 2014; 92:1485-94. [PMID: 24663160 DOI: 10.2527/jas.2013-7275] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Obesity in many species is associated with reduced fertility and increased risk of metabolic disorders and cardiovascular dysfunction in offspring. Equine metabolic syndrome (EMS) is associated with obesity and characterized by insulin resistance, decreased adiponectin, and elevated insulin, leptin, and pro-inflammatory cytokines. These alterations can potentially disrupt follicular development and impair fertility. We hypothesized that mares with EMS have an altered follicular environment when compared to their normal counterparts, affecting gene regulation for follicle and oocyte maturation. Samples were collected from light-horse mares (11 to 27 yr) in a clinical assisted reproductive program. Mares were screened based on phenotype. Insulin sensitivity was determined by using two proxies, the reciprocal of the square root of insulin (RISQI) and the modified insulin-to-glucose ratio (MIRG). Insulin resistant mares (RISQI < 0.32 and MIRG > 5.50) were allocated to the EMS group (n = 8), and the remaining mares were considered normal controls (CON, n = 12). Follicular fluid (FF) and granulosa cells (GC) from preovulatory follicles were aspirated 24 ± 2 h after administration of a GnRH analog (SucroMate, 0.9 to 1.4 mg, i.m.) and hCG (Chorion, 1500 to 2000 IU, i.v.). After an overnight fast, blood was collected on the morning of follicle aspiration to evaluate serum concentrations of insulin, leptin, adiponectin, and inflammatory cytokines. Expression of 32 genes related to metabolism, follicle maturation, and oocyte maturation were assessed in GC. Concentrations of insulin, leptin, adiponectin, and cytokines were highly correlated between serum and FF (P < 0.001). Insulin was lower (P < 0.001) in serum and FF of CON compared to EMS, but leptin and IL1β tended (P = 0.07 and P = 0.10, respectively) to be lower in FF of CON than EMS. Tumor necrosis factor-α in serum and FF was lower (P < 0.07 and P < 0.05, respectively) in CON than EMS. Conversely, adiponectin was higher (P < 0.05) in serum and FF in CON versus EMS. In GC from CON when compared to EMS, gene expression for epiregulin was elevated (P < 0.05) and tissue inhibitor of matrix metalloproteinase-2 tended to be lower (P = 0.09). Our findings demonstrate that the intrafollicular environment in the mare is influenced by metabolic disease, consistent with findings in other species. Influences on follicular development, oocyte maturation, and subsequent offspring by perturbations due to metabolic disease need further study.
Collapse
Affiliation(s)
- D R Sessions-Bresnahan
- Equine Reproduction Laboratory, Department of Biomedical Sciences, Colorado State University, Fort Collins 80523
| | | |
Collapse
|
191
|
Vos MC, van der Wurff AAM, Last JTJ, de Boed EAM, Smeenk JMJ, van Kuppevelt TH, Massuger LFAG. Immunohistochemical expression of MMP-14 and MMP-2, and MMP-2 activity during human ovarian follicular development. Reprod Biol Endocrinol 2014; 12:12. [PMID: 24485069 PMCID: PMC3937151 DOI: 10.1186/1477-7827-12-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 01/27/2014] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND The aim of this study was to investigate the presence of MMP-14 and MMP-2 during human ovarian follicular development using immunohistochemistry, and the activity of MMP-2 in follicular fluid using zymography. METHODS Ovarian tissue collected from the archives of the Department of Pathology was examined and medical records and histopathology were reviewed. Follicular fluids were collected at the IVF-department and analyzed using zymography. RESULTS MMP-14 and MMP-2 were increasingly found in the growing follicles and MMP-2 was highly expressed in the corpus luteum. Pro-MMP-2 was present in follicular fluid of IVF-patients. CONCLUSIONS The presence of MMP-14 and MMP-2 during human ovarian follicular development from the primordial follicle to the tertiary follicle and corpus luteum is confirmed, as was indicated by earlier animal studies following stimulation with gonadotrophins.
Collapse
Affiliation(s)
- Maria Caroline Vos
- Department of Obstetrics and Gynaecology, St. Elisabeth Hospital, PO Box 90151, 5000 LC Tilburg, the Netherlands
- Department of Obstetrics and Gynaecology, Radboud university medical center, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Anneke AM van der Wurff
- Department of Pathology, St. Elisabeth Hospital, PO Box 90151, 5000 LC Tilburg, the Netherlands
| | - Jessie TJ Last
- Department of Pathology, St. Elisabeth Hospital, PO Box 90151, 5000 LC Tilburg, the Netherlands
| | - Ella AM de Boed
- Department of Pathology, St. Elisabeth Hospital, PO Box 90151, 5000 LC Tilburg, the Netherlands
| | - Jesper MJ Smeenk
- Department of Obstetrics and Gynaecology, St. Elisabeth Hospital, PO Box 90151, 5000 LC Tilburg, the Netherlands
| | - Toin H van Kuppevelt
- Department of Biochemistry, Nijmegen Centre for Molecular Life Sciences, Radboud university medical center, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - Leon FAG Massuger
- Department of Obstetrics and Gynaecology, Radboud university medical center, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| |
Collapse
|
192
|
McGowen MR, Erez O, Romero R, Wildman DE. The evolution of embryo implantation. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2014; 58:155-61. [PMID: 25023681 PMCID: PMC6053685 DOI: 10.1387/ijdb.140020dw] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Embryo implantation varies widely in placental mammals. We review this variation in mammals with a special focus on two features: the depth of implantation and embryonic diapause. We discuss the two major types of implantation depth, superficial and interstitial, and map this character on a well-resolved molecular phylogenetic tree of placental mammals. We infer that relatively deep interstitial implantation has independently evolved at least eight times within placental mammals. Moreover, the superficial type of implantation represents the ancestral state for placental mammals. In addition, we review the genes involved in various phases of implantation, and suggest a future direction in investigating the molecular evolution of implantation-related genes.
Collapse
Affiliation(s)
- Michael R McGowen
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA.
| | | | | | | |
Collapse
|
193
|
Cervinková M, Horák P, Kanchev I, Matěj R, Fanta J, Sequens R, Kašpárek P, Sarnová L, Turečková J, Sedláček R. Differential expression and processing of matrix metalloproteinase 19 marks progression of gastrointestinal diseases. Folia Biol (Praha) 2014; 60:113-22. [PMID: 25056434 DOI: 10.14712/fb2014060030113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Matrix metalloproteinases (MMPs), responsible for extracellular matrix remodelling and processing of numerous soluble and cell-surface proteins, appear to play important roles in pathogenesis of gastrointestinal diseases. MMPs influence migration of inflammatory cells, mucosal destruction, matrix deposition and degradation. In this study, we analysed the expression of MMP-19 in the main forms of gastrointestinal diseases including inflammatory bowel diseases (IBD) such as ulcerative colitis and Crohn's disease, and colorectal carcinoma. We identified prominent MMP-19 expression in unaffected areas of intestinal epithelia and macrophages but not in other cells or tissues. Abundant expression of MMP-19 was also found in the endothelium of blood and lymphatic vessels of inflamed intestinal tissue. High MMP-19 immunoreactivity was also associated with macrophages in inflamed areas and myenteric plexuses. In comparison to the intestinal epithelium, all these cell types and compartments appeared to express MMP-19 irrespective of the disease pathogenesis and progression. Intestinal epithelia exhibited striking differential immunoreactivity for MMP-19. While immunoreactivity of monoclonal antibody recognizing the propeptide domain declined in virtually all IBD and colorectal carcinoma samples, other polyclonal antibodies against the hinge region and propetide domain did not show such an obvious decrease. Additional Western blotting analysis revealed that the antibodies against MMP-19 recognize differently processed forms of this MMP. The disappearance of immunoreactivity of the monoclonal anti-propeptide domain antibody does not mean down-regulation of MMP-19, but processing of the immature form. As this processing likely leads to the activation of this MMP, the differential staining pattern may be an important sign of disease progression.
Collapse
Affiliation(s)
- M Cervinková
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the ASCR, v. v. i., Prague, Czech Republic
| | - P Horák
- Department of Surgery, First Faculty of Medicine, Charles University in Prague and Na Bulovce Hospital, Prague, Czech Republic
| | - I Kanchev
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the ASCR, v. v. i., Prague, Czech Republic
| | - R Matěj
- Department of Pathology and Molecular Medicine, Thomayer Hospital, Prague, Czech Republic
| | - J Fanta
- Department of Surgery, First Faculty of Medicine, Charles University in Prague and Na Bulovce Hospital, Prague, Czech Republic
| | - R Sequens
- Gastroenterology Surgical Centre, Hospital of Merciful Sisters of St. Borromeo, Prague, Czech Republic
| | - P Kašpárek
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the ASCR, v. v. i., Prague, Czech Republic
| | - L Sarnová
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the ASCR, v. v. i., Prague, Czech Republic
| | - J Turečková
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the ASCR, v. v. i., Prague, Czech Republic
| | - R Sedláček
- Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the ASCR, v. v. i., Prague, Czech Republic
| |
Collapse
|
194
|
Field SL, Dasgupta T, Cummings M, Orsi NM. Cytokines in ovarian folliculogenesis, oocyte maturation and luteinisation. Mol Reprod Dev 2013; 81:284-314. [DOI: 10.1002/mrd.22285] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 11/18/2013] [Indexed: 01/22/2023]
Affiliation(s)
- Sarah L Field
- Women's Health Research Group; Leeds Institute of Cancer; Anatomy and Pathology; Wellcome Trust Brenner Building; St James's University Hospital; Leeds UK
| | - Tathagata Dasgupta
- Department of Systems Biology; Harvard Medical School; 200 Longwood Avenue Boston Massachusetts
| | - Michele Cummings
- Women's Health Research Group; Leeds Institute of Cancer; Anatomy and Pathology; Wellcome Trust Brenner Building; St James's University Hospital; Leeds UK
| | - Nicolas M. Orsi
- Women's Health Research Group; Leeds Institute of Cancer; Anatomy and Pathology; Wellcome Trust Brenner Building; St James's University Hospital; Leeds UK
| |
Collapse
|
195
|
Rosewell KL, Li F, Puttabyatappa M, Akin JW, Brännström M, Curry TE. Ovarian expression, localization, and function of tissue inhibitor of metalloproteinase 3 (TIMP3) during the periovulatory period of the human menstrual cycle. Biol Reprod 2013; 89:121. [PMID: 24048576 DOI: 10.1095/biolreprod.112.106989] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Ovulation involves reorganization of the extracellular matrix of the follicle. This study examines the expression, localization, and potential function of the tissue inhibitor of metalloproteinase 3 (TIMP3) during ovulation in women. The dominant follicle of the menstrual cycle was collected at specified times throughout the ovulatory process: pre-, early, late, and postovulatory. For quantitative studies, the follicle was bisected; granulosa and theca cells were separated and collected. For immunohistochemistry (IHC), the intact follicle was embedded and TIMP3 was localized. Additionally, granulosa cells were collected from women undergoing in vitro fertilization and treated with increasing concentrations of recombinant TIMP3, and cell viability was assessed. Real-time PCR for TIMP3 mRNA revealed an increase in TIMP3 mRNA expression in granulosa cells from the early to the late ovulatory stage. Thecal TIMP3 mRNA expression was constitutive across the periovulatory period. TIMP3 protein was localized by IHC to the granulosa and theca cell layers in pre-, early, and late ovulatory follicles as well as to the vascular bed. The staining was most intense in the granulosa and theca cells in the late ovulatory group. Treatment of human granulosa-lutein cells with exogenous recombinant TIMP3 for 24 h decreased cell viability by 60%. Using human follicles collected throughout the periovulatory period of the menstrual cycle, we have demonstrated that TIMP3 mRNA expression increases and that TIMP3 protein is in the appropriate cellular layers to regulate proteolytic remodeling as the follicle progresses toward ovulation. In addition, we have shown that elevated levels of TIMP3 lead to decreased cell viability.
Collapse
Affiliation(s)
- Katherine L Rosewell
- Department of Obstetrics and Gynecology, University of Kentucky College of Medicine, Lexington, Kentucky
| | | | | | | | | | | |
Collapse
|
196
|
Usta A, Guzin K, Kanter M, Ozgül M, Usta CS. Expression of matrix metalloproteinase-1 in round ligament and uterosacral ligament tissue from women with pelvic organ prolapse. J Mol Histol 2013; 45:275-81. [PMID: 24202438 DOI: 10.1007/s10735-013-9550-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 10/28/2013] [Indexed: 11/28/2022]
Abstract
To evaluate the matrix metalloproteinase-1 (MMP-1) expression in different parts of pelvic connective tissue in postmenopausal women with and without pelvic organ prolapse (POP). Ninety-one samples were obtained from only postmenopausal women (42 with POP and 49 non-POP subjects). All women were evaluated by pelvic organ prolapse quantitation. The POP group had stage 2 or more, and the controls had stage 1 or less. Round ligament (RL) and uterosacral ligament (USL) biopsies were obtained from women with POP and controls. Immunohistochemistry for MMP-1 was performed on formalin-fixed and paraffin-embedded sections. The two groups were matched for age, body mass index, parity and postmenopausal status. MedCalc Statistical Software Programme Version 12.0.5 was used for statistical analysis. Expression of MMP-1 were significantly higher in both RL and USL tissue from postmenopausal women with POP, compared with controls. MMP-1 immunoreactivities were identified in both RL and USL biopsies from all women with and without POP. The expression pattern of MMP-1 were similar in these ligaments and were significantly higher in POP group compared with control subjects. These changes indicate a possible relation between MMP-1 expression of RL and USL in women with and without POP.
Collapse
Affiliation(s)
- Akın Usta
- Department of Gynecology and Obstetrics, Goztepe Training and Research Hospital, Istanbul Medeniyet University, Istanbul, Turkey
| | | | | | | | | |
Collapse
|
197
|
Wen J, Zhu H, Leung PCK. Gonadal steroids regulate the expression of aggrecanases in human endometrial stromal cells in vitro. J Cell Mol Med 2013; 17:1325-34. [PMID: 23947778 PMCID: PMC4159026 DOI: 10.1111/jcmm.12110] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 07/10/2013] [Indexed: 12/21/2022] Open
Abstract
The human endometrium undergoes cyclic change during each menstrual cycle in response to gonadal steroids. Proteolysis of endometrial extracellular matrix (ECM) is necessary to prepare this dynamic tissue for pregnancy. Proteolytic enzymes such as matrix metalloproteinase (MMP) and closely related a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) have been assigned key roles in the highly regulated cyclic remodelling of the endometrial ECM. We have previously shown that ADAMTS-1 undergoes spatiotemporal changes in human endometrial stromal cells under the regulation of gonadal steroids. This suggests that other ADAMTS subtypes, known as aggrecanases, may contribute to the ECM remodelling events that occur in female physiological cycles and in preparation for pregnancy. To determine whether progesterone (P4), 17β-estradiol (E2), or dihydrotestosterone (DHT), alone or in combination, are capable of regulating ADAMTS-4, -5, -8 or -9 expression in human endometrial stromal cells in vitro. Real-time quantitative PCR and Western blot analysis were used to measure ADAMTSs mRNA and protein levels in primary cultures of human endometrial stromal cells (n = 12). P4, DHT but not E2 have regulatory effects on ADAMTS-8, -9 and -5 expression. Combined treatment with gonadal steroids did not show any synergistic or antagonistic effects. However, the synthetic steroid antagonists RU486 and hydroxyflutamide specifically inhibited the P4- or DHT-mediated regulatory effects on ADAMTS expression. These studies provide evidence that the regulation of aggrecanases by gonadal steroids in human endometrial stromal cells may play an important role during decidualization.
Collapse
Affiliation(s)
- Jiadi Wen
- Department of Obstetrics and Gynecology, University of British ColumbiaVancouver, BC, Canada
| | - Hua Zhu
- Department of Obstetrics and Gynecology, University of British ColumbiaVancouver, BC, Canada
| | - Peter CK Leung
- Department of Obstetrics and Gynecology, University of British ColumbiaVancouver, BC, Canada
| |
Collapse
|
198
|
Al-Alem LF, McCord LA, Southard RC, Kilgore MW, Curry TE. Activation of the PKC pathway stimulates ovarian cancer cell proliferation, migration, and expression of MMP7 and MMP10. Biol Reprod 2013; 89:73. [PMID: 23843242 DOI: 10.1095/biolreprod.112.102327] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Postmenopausal women are at a higher risk of ovarian cancer due, in part, to increased levels of gonadotropins such as luteinizing hormone (LH). Gonadotropins and other stimuli are capable of activating two pathways, PKA and PKC, that are altered in ovarian cancer. To determine the role of LH on ovarian cancer, we explored the effects of human chorionic gonadotropin (hCG), an LH mimic, and an activator of the PKC pathway, phorbol-12-myristate 13-acetate (PMA), on ovarian cancer cell-cycle kinetics and apoptosis in Ovcar3 cells. PMA treatment increased cells in the S phase of the cell cycle and initially increased apoptosis after 4 h before diminishing apoptosis after 8 h. Treatment of ovarian cancer cells with hCG had no effect on these parameters. The PKC pathway is known to differentially regulate matrix metalloproteinase (MMP) expression. Results showed that ovarian cancer cells treated with PMA increased MMP7 and MMP10 mRNA levels after 8 h of treatment, and expression remained high after 12 h before decreasing at 24 h. The mRNA expression of extracellular matrix metalloproteinase inducer (BSG), an activator of MMPs, was unaffected by PMA. Due to the role that MMPs play in migration, we investigated the effect of PMA activation of MMPs on ovarian cancer cell migration. The use of the MMP inhibitor GM6001 blocked the increased migratory effects of PMA on ovarian cancer cells. Together, these studies show that activating the PKC pathway causes significant changes in cell cycle kinetics and selective expression of MMPs that are involved in enhancing ovarian cancer cell proliferation and migration.
Collapse
Affiliation(s)
- Linah F Al-Alem
- Department of Molecular and Biomedical Pharmacology, University of Kentucky College of Medicine, Lexington, Kentucky
| | | | | | | | | |
Collapse
|
199
|
Jana SK, Banerjee P, Mukherjee R, Chakravarty B, Chaudhury K. HOXA-11 mediated dysregulation of matrix remodeling during implantation window in women with endometriosis. J Assist Reprod Genet 2013; 30:1505-12. [PMID: 23979130 DOI: 10.1007/s10815-013-0088-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 08/14/2013] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To investigate the Homeobox genes HOXA-10 and HOXA-11 mediated endometrial molecular defects during implantation window in endometriosis-associated infertility cases. METHODS Endometrial biopsies were obtained during implantation window from 31 infertile women with endometriosis (age < 35 years) and 26 age and BMI-matched infertile women without endometriosis were included in the study for comparison purposes. Endometrial expression of HOXA-10 and HOXA-11 genes, MMP-2, -9, α(v)β(3) integrin, leukemia inhibitory factor and surface characteristics including average roughness and topology were assessed. RESULTS A significantly lower expression of HOXA-10 and HOXA-11 were observed in endometriotic women compared to non-endometriotic controls. Further, a significantly higher endometrial expression of MMP-2 and -9 were observed in women with endometriosis when compared with controls. Interestingly, endometrial surface were observed to be grossly affected in terms of average roughness and topology in women with endometriosis compared to controls. CONCLUSIONS The findings suggest that aberrant expression of HOXA-10 and -11 genes adversely affects endometrial remodelling and expression of receptivity markers.
Collapse
Affiliation(s)
- Saikat Kumar Jana
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, Pin- 721 302, West Bengal, India
| | | | | | | | | |
Collapse
|
200
|
Agca C, Yakan A, Agca Y. Estrus synchronization and ovarian hyper-stimulation treatments have negligible effects on cumulus oocyte complex gene expression whereas induction of ovulation causes major expression changes. Mol Reprod Dev 2013; 80:102-17. [PMID: 23239112 DOI: 10.1002/mrd.22141] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 11/29/2012] [Indexed: 02/02/2023]
Abstract
The effects of exogenous hormones, used for estrus synchronization and ovarian hyper stimulation, on cumulus oocyte complexes (COCs) gene expression in sexually mature rats were determined using microarrays. Gene expression in COCs collected from GnRH (G(trt)), GnRH + eCG (G + E(trt)), and GnRH + eCG + hCG (G + E + H(trt)) treatments were compared to COCs from naturally cycling (NC) rats before the preovulatory luteninizing hormone surge. There was no significant difference in gene expression among NC, G(trt), and G + E(trt); however, over 2,600 genes were significantly different between NC and G + E + H(trt) (P < 0.05). Genes upregulated in G + E + H(trt) encode for: proteins that are involved in prostaglandin synthesis (Ptgs2, Pla2g4a, and Runx1) and cholesterol biosynthesis (Hmgcr, Sc4mol, and Dhcr24); receptors that allow cholesterol uptake (Ldlr and Scarb1), regulate progesterone synthesis (Star), and inactivate estrogen (Sult1e1); and downstream effectors of LH signal (Pgr, Cebpb, Creb3l1, Areg, Ereg, and Adamts1). Conversely, G + E + H(trt) downregulated genes encoding proteins involved in: DNA replication and cell cycle progression (Ccne2, Orc5l, Rad50, and Mcm6); reproductive developmental process; and granulosa cell expansion (Gdf9, Bmp15, Amh, Amhr2, Bmpr1b, Tgfb2, Foxl2, Pde3a, Esr2, Fshr, Ybx2, Ccnd2, Ccnb1ip1, and Zp3); maternal effect genes required for embryo development (Zar1, Npm2, Nlrp5, Dnmt1, H1foo, and Zfp57); amino acid degradation; and ketogenesis (Hmgcs2, and Cpt1b). These results from the rat show that hormones used for estrus synchronization (G(trt)) and ovarian hyper stimulation (G + E(trt)) had minimal effects on gene expression, whereas induction of ovulation (G + E + H(trt)) caused major changes in gene expression of rat COCs. This study provides comprehensive information about regulated genes during late follicle development and ovulation induction.
Collapse
Affiliation(s)
- Cansu Agca
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | | | | |
Collapse
|