151
|
Abstract
The proteoglycans are multifunctional macromolecules composed of a core polypeptide and a variable number of glycosaminoglycan chains. The structural diversity and complexities of proteoglycan expression in the developing and adult Nervous System underlies the variety of biological functions that these molecules fulfill. Thus, in the Nervous System, proteoglycans regulate the structural organisation of the extracellular matrix, modulate growth factor activities and cellular adhesive and motility events, such as cell migration and axon outgrowth. This review summarises the evidences indicating that proteoglycans have an important role as modulators of neurite outgrowth and neuronal polarity. Special emphasis will be placed on those studies that have shown that proteoglycans of certain subtypes inhibit neurite extension either during the development and/or the regeneration of the vertebrate Central Nervous System.
Collapse
Affiliation(s)
- P Bovolenta
- Departamento de Neurobiología del Desarrollo, Instituto Cajal, Consejo Superior de Investigaciones Científicas, Dr. Arce 37, 28002, Madrid, Spain.
| | | |
Collapse
|
152
|
Abstract
While it has been long appreciated that sugar-modified proteins coat the cell surface, their functions are poorly understood. Here, I describe recent genetic studies that demonstrate that one class of sugar-modified proteins, cell-surface proteoglycans, play crucial roles in morphogenesis, growth regulation and tumor suppression. Mutations that affect individual proteoglycans or the enzymes required for glycosaminoglycan synthesis regulate Wingless and Decapentaplegic signaling in Drosophila, and body size in mice and humans. Compromising proteoglycan function is also associated with the development of Wilm's tumors and hereditary multiple exostoses. In this review, these biological findings are placed in the context of proteoglycan biochemistry and molecular function.
Collapse
Affiliation(s)
- S B Selleck
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
153
|
Perrimon N, Bernfield M. Specificities of heparan sulphate proteoglycans in developmental processes. Nature 2000; 404:725-8. [PMID: 10783877 DOI: 10.1038/35008000] [Citation(s) in RCA: 569] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Heparan sulphate proteoglycans are abundant cell-surface molecules that consist of a protein core to which heparan sulphate glycosaminoglycan chains are attached. The functions of these molecules have remained mostly underappreciated by developmental biologists; however, the actions of important signalling molecules, for example Wnt and Hedgehog, depend on them. To understand both the mechanisms by which ligands involved in development interact with their receptors and how morphogens pattern tissues, biologists need to consider the functions of heparan sulphate proteoglycans in signalling and developmental patterning.
Collapse
Affiliation(s)
- N Perrimon
- Department of Genetics, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
154
|
Habuchi O. Diversity and functions of glycosaminoglycan sulfotransferases. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1474:115-27. [PMID: 10742590 DOI: 10.1016/s0304-4165(00)00016-7] [Citation(s) in RCA: 138] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Sulfate residues attached to the specific position of the component sugar residues of glycosaminoglycans play important roles in the formation of functional domain structures. The introduction of a sulfate group is catalyzed by various sulfotransferases with strict substrate specificities. A rapid development achieved in the cloning of various glycosaminoglycan sulfotransferases has allowed us to study the biological functions of glycosaminoglycan sulfotransferases and their products, sulfated glycosaminoglycans.
Collapse
Affiliation(s)
- O Habuchi
- Department of Life Science, Aichi University of Education, Kariya, Aichi, Japan.
| |
Collapse
|
155
|
Abstract
Wnt, Hedgehog and bone morphogenetic proteins function as either short-range or long-range signaling molecules depending on the tissue in which they are expressed. In the past year, filapodia-like cytoplasmic extensions, cell-surface proteogylcans and/or extracellular binding proteins have been identified that may enable these molecules to signal at a distance. Furthermore, recent studies suggest that variations in the signaling range of these molecules may be due to tissue-specific differences in intracellular processing or tissue-restricted expression of binding proteins.
Collapse
Affiliation(s)
- J L Christian
- Oregon Health Sciences University, School of Medicine, Department of Cell and Developmental Biology, Portland 97201, USA.
| |
Collapse
|
156
|
Abstract
BACKGROUND Secreted signaling proteins of the Wingless (Wg)/Wnt, Hedgehog and bone morphogenetic protein (BMP)/Decapentaplegic (Dpp) families function as morphogens to control growth and pattern formation during development. Although these proteins have been shown to act directly on distant cells in the developing limbs of the fruit fly Drosophila, little is known about how ligand gradients form in vivo. Wg protein is found in vesicles in Wg-responsive cells in the embryo and imaginal discs. It has been proposed that Wg may be transported by a vesicle-mediated mechanism. RESULTS A novel method to visualize extracellular Wg protein was used to show that Wg forms an unstable gradient on the basolateral surface of the wing imaginal disc epithelium. Wg movement did not require internalization by dynamin-mediated endocytosis. Dynamin activity was, however, required for Wg secretion. By reversibly blocking Wg secretion, we found that Wg moves rapidly to form a long-range extracellular gradient. CONCLUSIONS The Wg morphogen gradient forms by rapid movement of ligand through the extracellular space, and depends on continuous secretion and rapid turnover. Endocytosis is not required for Wg movement, but contributes to shaping the gradient by removing extracellular Wg. We propose that the extracellular Wg gradient forms by diffusion.
Collapse
Affiliation(s)
- M Strigini
- European Molecular Biology Laboratory, Heidelberg, 69117, Germany
| | | |
Collapse
|
157
|
Abstract
Wingless is a key morphogen in Drosophila. Although it is evident that Wingless acts at a distance from its site of synthesis, there is considerable debate about how the protein travels across a field of cells. Recent studies have provided important new insights into this process, though the issue is still far from being resolved.
Collapse
Affiliation(s)
- R Howes
- Department of Anatomy, University of Cambridge, Cambridge, CB2 3DY, UK
| | | |
Collapse
|
158
|
Myat MM, Andrew DJ. Organ shape in the Drosophila salivary gland is controlled by regulated, sequential internalization of the primordia. Development 2000; 127:679-91. [PMID: 10648227 DOI: 10.1242/dev.127.4.679] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During Drosophila development, the salivary primordia are internalized to form the salivary gland tubes. By analyzing immuno-stained histological sections and scanning electron micrographs of multiple stages of salivary gland development, we show that internalization occurs in a defined series of steps, involves coordinated cell shape changes and begins with the dorsal-posterior cells of the primordia. The ordered pattern of internalization is critical for the final shape of the salivary gland. In embryos mutant for huckebein (hkb), which encodes a transcription factor, or faint sausage (fas), which encodes a cell adhesion molecule, internalization begins in the center of the primordia, and completely aberrant tubes are formed. The sequential expression of hkb in selected cells of the primordia presages the sequence of cell movements. We propose that hkb dictates the initial site of internalization, the order in which invagination progresses and, consequently, the final shape of the organ. We propose that fas is required for hkb-dependent signaling events that coordinate internalization.
Collapse
Affiliation(s)
- M M Myat
- Department of Cell Biology and Anatomy, The Johns Hopkins University, School of Medicine, Baltimore, MD 21205-2196, USA
| | | |
Collapse
|
159
|
Uren A, Reichsman F, Anest V, Taylor WG, Muraiso K, Bottaro DP, Cumberledge S, Rubin JS. Secreted frizzled-related protein-1 binds directly to Wingless and is a biphasic modulator of Wnt signaling. J Biol Chem 2000; 275:4374-82. [PMID: 10660608 DOI: 10.1074/jbc.275.6.4374] [Citation(s) in RCA: 296] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Secreted Frizzled-related protein-1 (sFRP-1) contains a cysteine-rich domain homologous to the putative Wnt-binding site of Frizzleds. To facilitate the biochemical and biological analysis of sFRP-1, we developed a mammalian recombinant expression system that yields approximately 3 mg of purified protein/liter of conditioned medium. Using this recombinant protein, we demonstrated that sFRP-1 and Wg (wingless) interact in enzyme-linked immunosorbent and co-precipitation assays. Surprisingly, a derivative lacking the cysteine-rich domain retained the ability to bind Wg. Cross-linking experiments performed with radioiodinated sFRP-1 provided definitive evidence that sFRP-1 and Wg bind directly to each other. Besides detecting a cross-linked complex consistent in size with 1:1 stoichiometry of sFRP-1 and Wg, we also observed a larger complex whose size suggested the presence of a second sFRP-1 molecule. The formation of both complexes was markedly enhanced by an optimal concentration of exogenous heparin, emphasizing the potential importance of heparan-sulfate proteoglycan in Wnt binding and signaling. sFRP-1 exerted a biphasic effect on Wg activity in an armadillo stabilization assay, increasing armadillo level at low concentrations but reducing it at higher concentrations. These results provide new insights about the Wnt binding and biological activity of sFRPs.
Collapse
Affiliation(s)
- A Uren
- Laboratory of Cellular and Molecular Biology, Division of Basic Sciences, NCI, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
160
|
Fan G, Xiao L, Cheng L, Wang X, Sun B, Hu G. Targeted disruption of NDST-1 gene leads to pulmonary hypoplasia and neonatal respiratory distress in mice. FEBS Lett 2000; 467:7-11. [PMID: 10664446 DOI: 10.1016/s0014-5793(00)01111-x] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In order to address the biological function of GlcNAc N-deacetylase/N-sulfotransferase-1 (NDST-1), we disrupted the NDST-1 gene by homologous recombination in mouse embryonic stem cells. The NDST-1 null mice developed respiratory distress and atelectasis that subsequently caused neonatal death. Morphological examination revealed type II pneumocyte immaturity, which was characterized by an increased glycogen content and a reduced number of lamellar bodies and microvilli. Biochemical analysis further indicated that both total phospholipids and disaturated phosphatidylcholine were reduced in the mutant lung. Our data revealed that NDST-1 was essential for the maturation of type II pneumocytes and its inactivation led to a neonatal respiratory distress syndrome.
Collapse
Affiliation(s)
- G Fan
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | | | | | | | | | |
Collapse
|
161
|
Habuchi H, Tanaka M, Habuchi O, Yoshida K, Suzuki H, Ban K, Kimata K. The occurrence of three isoforms of heparan sulfate 6-O-sulfotransferase having different specificities for hexuronic acid adjacent to the targeted N-sulfoglucosamine. J Biol Chem 2000; 275:2859-68. [PMID: 10644753 DOI: 10.1074/jbc.275.4.2859] [Citation(s) in RCA: 184] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously cloned heparan sulfate 6-O-sulfotransferase (HS6ST) (Habuchi, H., Kobayashi, M., and Kimata, K. (1998) J. Biol. Chem. 273, 9208-9213). In this study, we report the cloning and characterization of three mouse isoforms of HS6ST, a mouse homologue to the original human HS6ST (HS6ST-1) and two novel HS6STs (HS6ST-2 and HS6ST-3). The cDNAs have been obtained from mouse brain cDNA library by cross-hybridization with human HS6ST cDNA. The three cDNAs contained single open reading frames that predicted type II transmembrane proteins composed of 401, 506, and 470 amino acid residues, respectively. Amino acid sequence of HS6ST-1 was 51 and 57% identical to those of HS6ST-2 and HS6ST-3, respectively. HS6ST-2 and HS6ST-3 had the 50% identity. Overexpression of each isoform in COS-7 cells resulted in about 10-fold increase of HS6ST activity. The three isoforms purified with anti-FLAG antibody affinity column transferred sulfate to heparan sulfate and heparin but not to other glycosaminoglycans. Each isoform showed different specificity toward the isomeric hexuronic acid adjacent to the targeted N-sulfoglucosamine; HS6ST-1 appeared to prefer the iduronosyl N-sulfoglucosamine while HS6ST-2 had a different preference, depending upon the substrate concentrations, and HS6ST-3 acted on either substrate. Northern analysis showed that the expression of each message in various tissues was characteristic to the respective isoform. HS6ST-1 was expressed strongly in liver, and HS6ST-2 was expressed mainly in brain and spleen. In contrast, HS6ST-3 was expressed rather ubiquitously. These results suggest that the expression of these isoforms may be regulated in tissue-specific manners and that each isoform may be involved in the synthesis of heparan sulfates with tissue-specific structures and functions.
Collapse
Affiliation(s)
- H Habuchi
- Institute for Molecular Science of Medicine, Aichi Medical University, Nagakute, Aichi 480-1195, Japan
| | | | | | | | | | | | | |
Collapse
|
162
|
Toyoda H, Kinoshita-Toyoda A, Selleck SB. Structural analysis of glycosaminoglycans in Drosophila and Caenorhabditis elegans and demonstration that tout-velu, a Drosophila gene related to EXT tumor suppressors, affects heparan sulfate in vivo. J Biol Chem 2000; 275:2269-75. [PMID: 10644674 DOI: 10.1074/jbc.275.4.2269] [Citation(s) in RCA: 221] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have devised a sensitive method for the isolation and structural analysis of glycosaminoglycans from two genetically tractable model organisms, the fruit fly, Drosophila melanogaster, and the nematode, Caenorhabditis elegans. We detected chondroitin/chondroitin sulfate- and heparan sulfate-derived disaccharides in both organisms. Chondroitinase digestion of glycosaminoglycans from adult Drosophila produced both nonsulfated and 4-O-sulfated unsaturated disaccharides, whereas only unsulfated forms were detected in C. elegans. Heparin lyases released disaccharides bearing N-, 2-O-, and 6-O-sulfated species, including mono-, di-, and trisulfated forms. We observed tissue- and stage-specific differences in both chondroitin sulfate and heparan sulfate composition in Drosophila. We have also applied these methods toward the analysis of tout-velu, an EXT-related gene in Drosophila that controls the tissue distribution of the growth factor Hedgehog. The proteins encoded by the vertebrate tumor suppressor genes EXT1 and 2, show heparan sulfate co-polymerase activity, and it has been proposed that tout-velu affects Hedgehog activity via its role in heparan sulfate biosynthesis. Analysis of total glycosaminoglycans from tout-velu mutant larvae show marked reductions in heparan sulfate but not chondroitin sulfate, consistent with its proposed function as a heparan sulfate co-polymerase.
Collapse
Affiliation(s)
- H Toyoda
- Department of Molecular Biology, University of Arizona, Tucson, Arizona 85721, USA
| | | | | |
Collapse
|
163
|
Affiliation(s)
- A D Lander
- Department of Developmental Biology, University of California, Irvine, California 92697, USA.
| | | |
Collapse
|
164
|
Kaltschmidt JA, Davidson CM, Brown NH, Brand AH. Rotation and asymmetry of the mitotic spindle direct asymmetric cell division in the developing central nervous system. Nat Cell Biol 2000; 2:7-12. [PMID: 10620800 DOI: 10.1038/71323] [Citation(s) in RCA: 250] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The asymmetric segregation of cell-fate determinants and the generation of daughter cells of different sizes rely on the correct orientation and position of the mitotic spindle. In the Drosophila embryo, the determinant Prospero is localized basally and is segregated equally to daughters of similar cell size during epidermal cell division. In contrast, during neuroblast division Prospero is segregated asymmetrically to the smaller daughter cell. This simple switch between symmetric and asymmetric segregation is achieved by changing the orientation of cell division: neural cells divide in a plane perpendicular to that of epidermoblast division. Here, by labelling mitotic spindles in living Drosophila embryos, we show that neuroblast spindles are initially formed in the same axis as epidermal cells, but rotate before cell division. We find that daughter cells of different sizes arise because the spindle itself becomes asymmetric at anaphase: apical microtubules elongate, basal microtubules shorten, and the midbody moves basally until it is positioned asymmetrically between the two spindle poles. This observation contradicts the widely held hypothesis that the cleavage furrow is always placed midway between the two centrosomes.
Collapse
Affiliation(s)
- J A Kaltschmidt
- Wellcome/CRC Institute and Department of Genetics, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | | | | | | |
Collapse
|
165
|
Miller JR, Hocking AM, Brown JD, Moon RT. Mechanism and function of signal transduction by the Wnt/beta-catenin and Wnt/Ca2+ pathways. Oncogene 1999; 18:7860-72. [PMID: 10630639 DOI: 10.1038/sj.onc.1203245] [Citation(s) in RCA: 533] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Communication between cells is often mediated by secreted signaling molecules that bind cell surface receptors and modulate the activity of specific intracellular effectors. The Wnt family of secreted glycoproteins is one group of signaling molecules that has been shown to control a variety of developmental processes including cell fate specification, cell proliferation, cell polarity and cell migration. In addition, mis-regulation of Wnt signaling can cause developmental defects and is implicated in the genesis of several human cancers. The importance of Wnt signaling in development and in clinical pathologies is underscored by the large number of primary research papers examining various aspects of Wnt signaling that have been published in the past several years. In this review, we will present a synopsis of current research with particular attention paid to molecular mechanism of Wnt signal transduction and how the mis-regulation of Wnt signaling leads to cancer.
Collapse
Affiliation(s)
- J R Miller
- Department of Pharmacology and Center for Developmental Biology, Howard Hughes Medical Institute, University of Washington, Seattle 98195, USA
| | | | | | | |
Collapse
|
166
|
Uusitalo M, Heikkilä M, Vainio S. Molecular genetic studies of Wnt signaling in the mouse. Exp Cell Res 1999; 253:336-48. [PMID: 10585256 DOI: 10.1006/excr.1999.4710] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- M Uusitalo
- Faculties of Science and Medicine, University of Oulu, Oulu, 90570, Finland
| | | | | |
Collapse
|
167
|
Abstract
Wingless (Wg) protein is a founding member of the Wnt family of secreted proteins which have profound organizing roles in animal development. Two members of the Frizzled (Fz) family of seven-pass transmembrane proteins, Drosophila Fz and Fz2, can bind Wg and are candidate Wg receptors. However, null mutations of the fz gene have little effect on Wg signal transduction and the lack of mutations in the fz2 gene has thus far prevented a rigorous examination of its role in vivo. Here we describe the isolation of an amber mutation of fz2 which truncates the coding sequence just after the amino-terminal extracellular domain and behaves genetically as a loss-of-function allele. Using this mutation, we show that Wg signal transduction is abolished in virtually all cells lacking both Fz and Fz2 activity in embryos as well as in the wing imaginal disc. We also show that Fz and Fz2 are functionally redundant: the presence of either protein is sufficient to confer Wg transducing activity on most or all cells throughout development. These results extend prior evidence of a ligand-receptor relationship between Wnt and Frizzled proteins and suggest that Fz and Fz2 are the primary receptors for Wg in Drosophila.
Collapse
Affiliation(s)
- C M Chen
- Howard Hughes Medical Institute, Department of Genetics and Development, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | |
Collapse
|
168
|
Müller U, Brändli AW. Cell adhesion molecules and extracellular-matrix constituents in kidney development and disease. J Cell Sci 1999; 112 ( Pt 22):3855-67. [PMID: 10547347 DOI: 10.1242/jcs.112.22.3855] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Functional analyses of cell-matrix interactions during kidney organogenesis have provided compelling evidence that extracellular-matrix glycoproteins and their receptors play instructive roles during kidney development. Two concepts are worthy of emphasis. First, matrix molecules appear to regulate signal transduction pathways, either by activating cell-surface receptors such as integrins directly or by modulating the activity of signaling molecules such as WNTs. Second, basement membranes are highly organized structures and have distinct molecular compositions, which are optimized for their diverse functions. The importance of these findings is highlighted by the fact that mutations affecting basement-membrane components lead to inherited forms of kidney disease.
Collapse
Affiliation(s)
- U Müller
- Friedrich Miescher Institute, Maulbeerstrasse 66, CH-4058 Basel, Switzerland.
| | | |
Collapse
|
169
|
Lapointe J, Labrie C. Identification and cloning of a novel androgen-responsive gene, uridine diphosphoglucose dehydrogenase, in human breast cancer cells. Endocrinology 1999; 140:4486-93. [PMID: 10499502 DOI: 10.1210/endo.140.10.7071] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Androgens inhibit the growth of breast cancer cells, but the mechanism of androgen-induced growth inhibition has not yet been elucidated, and few androgen-responsive genes have been identified. We, therefore, used differential display PCR to identify novel androgen-responsive genes in ZR-75-1 human breast cancer cells. The human UDP-glucose dehydrogenase gene (UDPGDH), which was not known to be androgen regulated, was detected and cloned by complementary DNA library screening. The UDPGDH open reading frame codes for a protein of 494 amino acids that migrates at an apparent molecular mass of approximately 54 kDa. Northern blot analysis revealed the existence of two messenger RNA species of approximately 3.5 and 2.7 kb in all of the human breast cancer cell lines examined. The major UDPGDH transcript was induced rapidly (within 6 h) by dihydrotestosterone in ZR-75-1 cells, and a maximal 13-fold induction was observed after 24 h of treatment. The increase in UDPGDH messenger RNA was completely prevented by coincubation with the pure antiandrogen hydroxyflutamide, but not by cycloheximide, indicating that UDPGDH is directly regulated by the androgen receptor. As UDPGDH is required for the production of uridine 5'-diphosphoglucuronic acid, a substrate for the steroid-conjugating uridine diphospho-glucuronosyltransferase enzymes, up-regulation of UDPGDH expression by androgens might play an important role in the control of sex steroid inactivation via glucuronidation in breast cancer cells.
Collapse
Affiliation(s)
- J Lapointe
- Laboratory of Molecular Endocrinology, Laval University Medical Research Center and Laval University, Ste-Foy, Québec, Canada
| | | |
Collapse
|
170
|
Bhanot P, Fish M, Jemison JA, Nusse R, Nathans J, Cadigan KM. Frizzled and Dfrizzled-2 function as redundant receptors for Wingless during Drosophila embryonic development. Development 1999; 126:4175-86. [PMID: 10457026 DOI: 10.1242/dev.126.18.4175] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In cell culture assays, Frizzled and Dfrizzled2, two members of the Frizzled family of integral membrane proteins, are able to bind Wingless and transduce the Wingless signal. To address the role of these proteins in the intact organism and to explore the question of specificity of ligand-receptor interactions in vivo, we have conducted a genetic analysis of frizzled and Dfrizzled2 in the embryo. These experiments utilize a small gamma-ray-induced deficiency that uncovers Dfrizzled2. Mutants lacking maternal frizzled and zygotic frizzled and Dfrizzled2 exhibit defects in the embryonic epidermis, CNS, heart and midgut that are indistinguishable from those observed in wingless mutants. Epidermal patterning defects in the frizzled, Dfrizzled2 double-mutant embryos can be rescued by ectopic expression of either gene. In frizzled, Dfrizzled2 mutant embryos, ectopic production of Wingless does not detectably alter the epidermal patterning defect, but ectopic production of an activated form of Armadillo produces a naked cuticle phenotype indistinguishable from that produced by ectopic production of activated Armadillo in wild-type embryos. These experiments indicate that frizzled and Dfrizzled2 function downstream of wingless and upstream of armadillo, consistent with their proposed roles as Wingless receptors. The lack of an effect on epidermal patterning of ectopic Wingless in a frizzled, Dfrizzled2 double mutant argues against the existence of additional Wingless receptors in the embryo or a model in which Frizzled and Dfrizzled2 act simply to present the ligand to its bona fide receptor. These data lead to the conclusion that Frizzled and Dfrizzled2 function as redundant Wingless receptors in multiple embryonic tissues and that this role is accurately reflected in tissue culture experiments. The redundancy of Frizzled and Dfrizzled2 explains why Wingless receptors were not identified in earlier genetic screens for mutants defective in embryonic patterning.
Collapse
Affiliation(s)
- P Bhanot
- Department of Molecular Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | |
Collapse
|
171
|
Spradling AC, Stern D, Beaton A, Rhem EJ, Laverty T, Mozden N, Misra S, Rubin GM. The Berkeley Drosophila Genome Project gene disruption project: Single P-element insertions mutating 25% of vital Drosophila genes. Genetics 1999; 153:135-77. [PMID: 10471706 PMCID: PMC1460730 DOI: 10.1093/genetics/153.1.135] [Citation(s) in RCA: 614] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A fundamental goal of genetics and functional genomics is to identify and mutate every gene in model organisms such as Drosophila melanogaster. The Berkeley Drosophila Genome Project (BDGP) gene disruption project generates single P-element insertion strains that each mutate unique genomic open reading frames. Such strains strongly facilitate further genetic and molecular studies of the disrupted loci, but it has remained unclear if P elements can be used to mutate all Drosophila genes. We now report that the primary collection has grown to contain 1045 strains that disrupt more than 25% of the estimated 3600 Drosophila genes that are essential for adult viability. Of these P insertions, 67% have been verified by genetic tests to cause the associated recessive mutant phenotypes, and the validity of most of the remaining lines is predicted on statistical grounds. Sequences flanking >920 insertions have been determined to exactly position them in the genome and to identify 376 potentially affected transcripts from collections of EST sequences. Strains in the BDGP collection are available from the Bloomington Stock Center and have already assisted the research community in characterizing >250 Drosophila genes. The likely identity of 131 additional genes in the collection is reported here. Our results show that Drosophila genes have a wide range of sensitivity to inactivation by P elements, and provide a rationale for greatly expanding the BDGP primary collection based entirely on insertion site sequencing. We predict that this approach can bring >85% of all Drosophila open reading frames under experimental control.
Collapse
Affiliation(s)
- A C Spradling
- Department of Embryology, Howard Hughes Medical Institute Research Laboratories, Carnegie Institution of Washington, Baltimore, Maryland 21210, USA.
| | | | | | | | | | | | | | | |
Collapse
|
172
|
Lin X, Buff EM, Perrimon N, Michelson AM. Heparan sulfate proteoglycans are essential for FGF receptor signaling during Drosophila embryonic development. Development 1999; 126:3715-23. [PMID: 10433902 DOI: 10.1242/dev.126.17.3715] [Citation(s) in RCA: 256] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Drosophila sugarless and sulfateless genes encode enzymes required for the biosynthesis of heparan sulfate glycosaminoglycans. Biochemical studies have shown that heparan sulfate glycosaminoglycans are involved in signaling by fibroblast growth factor receptors, but evidence for such a requirement in an intact organism has not been available. We now demonstrate that sugarless and sulfateless mutant embryos have phenotypes similar to those lacking the functions of two Drosophila fibroblast growth factor receptors, Heartless and Breathless. Moreover, both Heartless- and Breathless-dependent MAPK activation is significantly reduced in embryos which fail to synthesize heparan sulfate glycosaminoglycans. Consistent with an involvement of Sulfateless and Sugarless in fibroblast growth factor receptor signaling, a constitutively activated form of Heartless partially rescues sugarless and sulfateless mutants, and dosage-sensitive interactions occur between heartless and the heparan sulfate glycosaminoglycan biosynthetic enzyme genes. We also find that overexpression of Branchless, the Breathless ligand, can partially overcome the requirement of Sugarless and Sulfateless for Breathless activity. These results provide the first genetic evidence that heparan sulfate glycosaminoglycans are essential for fibroblast growth factor receptor signaling in a well defined developmental context, and support a model in which heparan sulfate glycosaminoglycans facilitate fibroblast growth factor ligand and/or ligand-receptor oligomerization.
Collapse
Affiliation(s)
- X Lin
- Department of Genetics and Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
173
|
Forsberg E, Pejler G, Ringvall M, Lunderius C, Tomasini-Johansson B, Kusche-Gullberg M, Eriksson I, Ledin J, Hellman L, Kjellén L. Abnormal mast cells in mice deficient in a heparin-synthesizing enzyme. Nature 1999; 400:773-6. [PMID: 10466727 DOI: 10.1038/23488] [Citation(s) in RCA: 367] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Heparin is a sulphated polysaccharide, synthesized exclusively by connective-tissue-type mast cells and stored in the secretory granules in complex with histamine and various mast-cell proteases. Although heparin has long been used as an antithrombotic drug, endogenous heparin is not present in the blood, so it cannot have a physiological role in regulating blood coagulation. The biosynthesis of heparin involves a series of enzymatic reactions, including sulphation at various positions. The initial modification step, catalysed by the enzyme glucosaminyl N-deacetylase/N-sulphotransferase-2, NDST-2, is essential for the subsequent reactions. Here we report that mice carrying a targeted disruption of the gene encoding NDST-2 are unable to synthesize sulphated heparin. These NDST-2-deficient mice are viable and fertile but have fewer connective-tissue-type mast cells; these cells have an altered morphology and contain severely reduced amounts of histamine and mast-cell proteases. Our results indicate that one site of physiological action for heparin could be inside connective-tissue-type mast cells, where its absence results in severe defects in the secretory granules.
Collapse
Affiliation(s)
- E Forsberg
- Department of Cell and Molecular Biology, University of Uppsala, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
174
|
Abstract
Members of the Wnt family of secreted glycoproteins participate in many signalling events during development. Recent findings suggest that Wnt signals can sometimes play a permissive role during cell-fate assignment. Wnt proteins have been shown to interact with a number of extracellular and cell-surface proteins, whereas many intracellular components of the Wnt-signalling pathway are also involved in other cellular functions. The consequences of Wnt signalling can be affected by members of the MAP kinase family. These observations suggest that the future understanding of Wnt signalling may require models that are based on a signalling network rather than a single linear pathway.
Collapse
Affiliation(s)
- A M Arias
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, UK.
| | | | | |
Collapse
|
175
|
Capdevila J, lzpisúa Belmonte JC. Extracellular modulation of the Hedgehog, Wnt and TGF-beta signalling pathways during embryonic development. Curr Opin Genet Dev 1999; 9:427-33. [PMID: 10449357 DOI: 10.1016/s0959-437x(99)80065-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Localized embryonic expression of members of the Hedgehog, Wnt and TGF-beta families of secreted factors has been shown to organize pattern and provide positional information in many developing systems. Recently, several extracellular factors have been described that act either as facilitators or inhibitors of the activities of those secreted proteins. The variety of molecular strategies involved in the extracellular modulation of signalling activities in the embryo underscores the importance of maintaining a tight spatial and temporal control of the activities of organizing centers during development.
Collapse
Affiliation(s)
- J Capdevila
- The Salk Institute for Biological Studies, Gene Expression Laboratory, 10010 North Torrey Pines Road, La Jolla, California 92037, USA
| | | |
Collapse
|
176
|
Tsuda M, Kamimura K, Nakato H, Archer M, Staatz W, Fox B, Humphrey M, Olson S, Futch T, Kaluza V, Siegfried E, Stam L, Selleck SB. The cell-surface proteoglycan Dally regulates Wingless signalling in Drosophila. Nature 1999; 400:276-80. [PMID: 10421371 DOI: 10.1038/22336] [Citation(s) in RCA: 315] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Wingless (Wg) is a member of the Wnt family of growth factors, secreted proteins that control proliferation and differentiation during development. Studies in Drosophila have shown that responses to Wg require cell-surface heparan sulphate, a glycosaminoglycan component of proteoglycans. These findings suggest that a cell-surface proteoglycan is a component of a Wg/Wnt receptor complex. We demonstrate here that the protein encoded by the division abnormally delayed (dally) gene is a cell-surface, heparan-sulphate-modified proteoglycan. dally partial loss-of-function mutations compromise Wg-directed events, and disruption of dally function with RNA interference produces phenotypes comparable to those found with RNA interference of wg or frizzled (fz)/Dfz2. Ectopic expression of Dally potentiates Wg signalling without altering levels of Wg and can rescue a wg partial loss-of-function mutant. We also show that dally, a regulator of Decapentaplegic (Dpp) signalling during post-embryonic development, has tissue-specific effects on Wg and Dpp signalling. Dally can therefore differentially influence signalling mediated by two growth factors, and may form a regulatory component of both Wg and Dpp receptor complexes.
Collapse
Affiliation(s)
- M Tsuda
- Department of Biology, Tokyo Metropolitan University, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
177
|
Lin X, Perrimon N. Dally cooperates with Drosophila Frizzled 2 to transduce Wingless signalling. Nature 1999; 400:281-4. [PMID: 10421372 DOI: 10.1038/22343] [Citation(s) in RCA: 387] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Drosophila wingless gene (wg) encodes a protein of the Wnt family and is a critical regulator in many developmental processes. Biochemical studies have indicated that heparan sulphate proteoglycans, consisting of a protein core to which heparan sulphate glycosaminoglycans are attached, are important for Wg function. Here we show that, consistent with these findings, the Drosophila gene sulfateless (sfl), which encodes a homologue of vertebrate heparan sulphate N-deacetylase/N-sulphotransferase (an enzyme needed for the modification of heparan sulphate) is essential for Wg signalling. We have identified the product of division abnormally delayed (dally), a glycosyl-phosphatidyl inositol (GPI)-linked glypican, as a heparan sulphate proteoglycan molecule involved in Wg signalling. Our results indicate that Dally may act as a co-receptor for Wg, and that Dally, together with Drosophila Frizzled 2, modulates both short- and long-range activities of Wg.
Collapse
Affiliation(s)
- X Lin
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
178
|
Merry CL, Lyon M, Deakin JA, Hopwood JJ, Gallagher JT. Highly sensitive sequencing of the sulfated domains of heparan sulfate. J Biol Chem 1999; 274:18455-62. [PMID: 10373453 DOI: 10.1074/jbc.274.26.18455] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The heparan sulfates (HS) are hypervariable linear polysaccharides that act as membrane co-receptors for growth factors, chemokines, and extracellular matrix proteins. In most instances, the molecular basis of protein recognition by HS is poorly understood. We have sequenced 75% of the sulfated domains (S-domains) of fibroblast HS, including all of the major ones. This analysis revealed tight coupling of N- and 2-O-sulfation and a low frequency but precise positioning of 6-O-sulfates, which are required functional groups for HS-mediated activation of the fibroblast growth factors. S-domain sequencing was conducted using a novel and highly sensitive method based on a new way of reading the sequence from high performance liquid chromatography separation profiles of metabolically labeled HS-saccharides following specific chemical and enzymatic scission. The implications of the patterns seen in the sulfated domains for better understanding of the synthesis and function of HS are discussed.
Collapse
Affiliation(s)
- C L Merry
- Cancer Research Campaign and University of Manchester Department of Medical Oncology, Christie Hospital NHS Trust, Manchester, M20 4BX, United Kingdom
| | | | | | | | | |
Collapse
|
179
|
Pfeiffer S, Vincent JP. Signalling at a distance: transport of Wingless in the embryonic epidermis of Drosophila. Semin Cell Dev Biol 1999; 10:303-9. [PMID: 10441544 DOI: 10.1006/scdb.1999.0306] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Secreted signalling molecules affect the behavior of cells at a distance. Here we discuss how the Wnt family member Wingless reaches distant cells within the embryonic epidermis of Drosophila. We consider three possible mechanisms: free diffusion, restricted diffusion and active transport. We argue that free diffusion is unlikely to occur. However, a variant of restricted diffusion may account for Wingless transport. It may be that Wingless is carried from one side of a cell to the other by a drifting transmembrane protein such as a specific receptor or a glycosaminoglycan. Transfer from cell-to-cell would involve release from the donor cell and recapture in an adjacent cell. Alternatively, Wingless might be transported by a mechanism akin to transcytosis. This would involve the packaging of Wingless in specialized vesicles at one end of a cell, active transport across the cell, and vesicle fusion and Wingless release on the other side. We describe the evidence in favor and against these two alternatives.
Collapse
Affiliation(s)
- S Pfeiffer
- The Ridgeway, The National Institute for Medical Research (N.I.M.R.), Mill Hill, London, NW7 1AA, UK
| | | |
Collapse
|
180
|
Abstract
Patterning of multicellular fields requires mechanisms to coordinate developmental decisions made by populations of cells. Evidence is accumulating that the necessary information is provided by localized sources of secreted signalling proteins which act as morphogens. We review evidence that Wingless, Dpp and Hedgehog proteins act as morphogens in the developing wing of Drosophila and discuss recent work illustrating that signalling helps to shape their activity gradients by regulating ligand distribution and by modulating the responsiveness of target cells. These studies suggest that there is more to being a morphogen than formation of a ligand gradient by passive diffusion.
Collapse
Affiliation(s)
- M Strigini
- European Molecular Biology Laboratory, Meyerhofstrasse, 1, Heidelberg, D-69117, Germany
| | | |
Collapse
|
181
|
Lind T, Falk E, Hjertson E, Kusche-Gullberg M, Lidholt K. cDNA cloning and expression of UDP-glucose dehydrogenase from bovine kidney. Glycobiology 1999; 9:595-600. [PMID: 10336992 DOI: 10.1093/glycob/9.6.595] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have isolated a cDNA encoding UDP-glucose dehydrogenase from a bovine kidney cDNA-library, the first mammalian cDNA clone published. [After submission of the manuscript, a study appeared describing the molecular cloning and characterization of the human and mouse UDP-glucose dehydrogenase genes (Spicer et al., 1998).] The enzyme catalyzes the conversion of UDP-glucose to UDP-glucuronic acid, an essential precursor in glycosaminoglycan biosynthesis. The cDNA has an open reading frame of 1482 nucleotides coding for a 55 kDa protein. Expression of the enzyme in COS-7 cells showed a 3-fold increase in UDP-glucose dehydrogenase activity; also, the C-terminal 23 amino acids was shown not to be necessary for enzyme activity. Northern blots from human and mouse tissues reveal high expression in liver and low in skeletal muscle. Human tissues have a major transcript size of 3.2 kilobases and a minor of 2.6 whereas mouse tissues have a single 2.6 kilobase transcript. We have also developed a sensitive and direct assay using UDP-[14C]Glc as a substrate for detection of small amounts of UDPGDH activity.
Collapse
Affiliation(s)
- T Lind
- Department of Medical Biochemistry and Microbiology, University of Uppsala, The Biomedical Center, S-751 23 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
182
|
Paine-Saunders S, Viviano BL, Saunders S. GPC6, a novel member of the glypican gene family, encodes a product structurally related to GPC4 and is colocalized with GPC5 on human chromosome 13. Genomics 1999; 57:455-8. [PMID: 10329016 DOI: 10.1006/geno.1999.5793] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Glypicans are a family of cell surface heparan sulfate proteoglycans that appear to play an important role in cellular growth control and differentiation, as is supported by the observation that mutations in GPC3 are responsible for Simpson-Golabi-Behmel syndrome (SGBS) in humans. Recently it has been shown that the GPC4 gene is tightly clustered with GPC3 on the X chromosome and that some patients with SGBS apparently have deletions affecting both genes. We report here the identification of a human cDNA encoding a novel glypican family member, glypican-6. This cDNA encodes a predicted protein of 554 amino acids and is structurally analogous to other members of the glypican gene family, but most highly related to glypican-4. A single GPC6 mRNA of 6.2 kb is detected most abundantly in the ovary, liver, and kidney, with lower levels of mRNA expression also detected in a wide range of other adult tissues. Radiation hybrid analysis mapped the GPC6 gene to human chromosome 13 very near the GPC5 gene, a member of the glypican family bearing strong similarity to GPC3.
Collapse
Affiliation(s)
- S Paine-Saunders
- Department of Pediatrics, Washington University Medical School, St. Louis, Missouri 63110, USA.
| | | | | |
Collapse
|
183
|
Kakuta Y, Sueyoshi T, Negishi M, Pedersen LC. Crystal structure of the sulfotransferase domain of human heparan sulfate N-deacetylase/ N-sulfotransferase 1. J Biol Chem 1999; 274:10673-6. [PMID: 10196134 DOI: 10.1074/jbc.274.16.10673] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heparan sulfate N-deacetylase/N-sulfotransferase (HSNST) catalyzes the first and obligatory step in the biosynthesis of heparan sulfates and heparin. The crystal structure of the sulfotransferase domain (NST1) of human HSNST-1 has been determined at 2.3-A resolution in a binary complex with 3'-phosphoadenosine 5'-phosphate (PAP). NST1 is approximately spherical with an open cleft, and consists of a single alpha/beta fold with a central five-stranded parallel beta-sheet and a three-stranded anti-parallel beta-sheet bearing an interstrand disulfide bond. The structural regions alpha1, alpha6, beta1, beta7, 5'-phosphosulfate binding loop (between beta1 and alpha1), and a random coil (between beta8 and alpha13) constitute the PAP binding site of NST1. The alpha6 and random coil (between beta2 and alpha2), which form an open cleft near the 5'-phosphate of the PAP molecule, may provide interactions for substrate binding. The conserved residue Lys-614 is in position to form a hydrogen bond with the bridge oxygen of the 5'-phosphate.
Collapse
Affiliation(s)
- Y Kakuta
- Pharmacogenetics Section, Laboratory of Reproductive and Developmental Toxicology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | | | | | | |
Collapse
|
184
|
Hsieh JC, Rattner A, Smallwood PM, Nathans J. Biochemical characterization of Wnt-frizzled interactions using a soluble, biologically active vertebrate Wnt protein. Proc Natl Acad Sci U S A 1999; 96:3546-51. [PMID: 10097073 PMCID: PMC22330 DOI: 10.1073/pnas.96.7.3546] [Citation(s) in RCA: 276] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Biochemical studies of Wnt signaling have been hampered by difficulties in obtaining large quantities of soluble, biologically active Wnt proteins. In this paper, we report the production in Drosophila S2 cells of biologically active Xenopus Wnt8 (XWnt8). Epitope- or alkaline phosphatase-tagged XWnt8 proteins are secreted by concentrated S2 cells in a form that is suitable for quantitative biochemical experiments with yields of 5 and 0.5 mg per liter, respectively. Conditions also are described for the production in 293 cells of an IgG fusion of the cysteine-rich domain (CRD) of mouse Frizzled 8 with a yield of 20 mg/liter. We demonstrate the use of these proteins for studying the interactions between soluble XWnt8 and various Frizzled proteins, membrane anchored or secreted CRDs, and a set of insertion mutants in the CRD of Drosophila Frizzled 2. In a solid phase binding assay, the affinity of the XWnt8-alkaline phosphatase fusion for the purified mouse Frizzled 8-CRD-IgG fusion is approximately 9 nM.
Collapse
Affiliation(s)
- J C Hsieh
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
185
|
Müller HA, Samanta R, Wieschaus E. Wingless signaling in the Drosophila embryo: zygotic requirements and the role of the frizzled genes. Development 1999; 126:577-86. [PMID: 9876186 DOI: 10.1242/dev.126.3.577] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Wingless signaling plays a central role during epidermal patterning in Drosophila. We have analyzed zygotic requirements for Wingless signaling in the embryonic ectoderm by generating synthetic deficiencies that uncover more than 99% of the genome. We found no genes required for initial wingless expression, other than previously identified segmentation genes. In contrast, maintenance of wingless expression shows a high degree of zygotic transcriptional requirements. Besides known genes, we have identified at least two additional genomic regions containing new genes involved in Wingless maintenance. We also assayed for the zygotic requirements for Wingless response and found that no single genomic region was required for the cytoplasmic accumulation of Armadillo in the receiving cells. Surprisingly, embryos homozygously deleted for the candidate Wingless receptor, Dfrizzled2, showed a normal Wingless response. However, the Armadillo response to Wingless was strongly reduced in double mutants of both known members of the frizzled family in Drosophila, frizzled and Dfrizzled2. Based on their expression pattern during embryogenesis, different Frizzled receptors may play unique but overlapping roles in development. In particular, we suggest that Frizzled and Dfrizzled2 are both required for Wingless autoregulation, but might be dispensable for late Engrailed maintenance. While Wingless signaling in embryos mutant for frizzled and Dfrizzled2 is affected, Wingless protein is still internalized into cells adjacent to wingless-expressing cells. Incorporation of Wingless protein may therefore involve cell surface molecules in addition to the genetically defined signaling receptors of the frizzled family.
Collapse
Affiliation(s)
- H A Müller
- Institut für Genetik, Heinrich Heine Universität Düsseldorf, Germany. muellear@uni-duesseldorf
| | | | | |
Collapse
|
186
|
Selleck SB. Overgrowth syndromes and the regulation of signaling complexes by proteoglycans. Am J Hum Genet 1999; 64:372-7. [PMID: 9973275 PMCID: PMC1377747 DOI: 10.1086/302266] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- S B Selleck
- Department of Molecular and Cellular Biology, Division of Neurobiology, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
187
|
Abstract
Wnt genes encode a large family of secreted, cysteine-rich proteins that play key roles as intercellular signaling molecules in development. Genetic studies in Drosophila and Caenorhabditis elegans, ectopic gene expression in Xenopus, and gene knockouts in the mouse have demonstrated the involvement of Wnts in processes as diverse as segmentation, CNS patterning, and control of asymmetric cell divisions. The transduction of Wnt signals between cells proceeds in a complex series of events including post-translational modification and secretion of Wnts, binding to transmembrane receptors, activation of cytoplasmic effectors, and, finally, transcriptional regulation of target genes. Over the past two years our understanding of Wnt signaling has been substantially improved by the identification of Frizzled proteins as cell surface receptors for Wnts and by the finding that beta-catenin, a component downstream of the receptor, can translocate to the nucleus and function as a transcriptional activator. Here we review recent data that have started to unravel the mechanisms of Wnt signaling.
Collapse
Affiliation(s)
- A Wodarz
- Institut für Genetik, Universität Düsseldorf, Germany.
| | | |
Collapse
|
188
|
Abstract
Wg/Wnt signaling regulates cell proliferation and differentiation in species as divergent as nematodes, flies, frogs, and humans. Many components of this highly conserved process have been characterized and work from a number of laboratories is beginning to elucidate the mechanism by which this class of secreted growth factor triggers cellular decisions. The Wg/Wnt ligand apparently binds to Frizzled family receptor molecules to initiate a signal transduction cascade involving the novel cytosolic protein Dishevelled and the serine/threonine kinase Zeste-white 3/GSK3. Antagonism of Zw3 activity leads to stabilization of Armadillo/beta-catenin, which provides a transactivation domain when complexed with the HMG box transcription factor dTCF/LEF-1 and thereby activates expression of Wg/Wnt-responsive genes. The Wg/Wnt ligands pass through the secretory pathway and associate with extracellular matrix components; recent work shows that sulfated glycosaminoglycans are essential for proper transduction of the signal. Mutant forms of Wg in Drosophila reveal separable aspects of Wg function and suggest that proper transport of the protein across cells is essential for cell fate specification. Complex interactions with the Notch and EGF/Ras signaling pathways also play a role in cell fate decisions during different phases of Drosophila development. These many facets of Wg/Wnt signaling have been elucidated through studies in a variety of species, each with powerful and unique experimental approaches. The remarkable conservation of this pathway suggests that Wg/Wnt signal transduction represents a fundamental mechanism for the generation of diverse cell fates in animal embryos.
Collapse
Affiliation(s)
- H Dierick
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208, USA
| | | |
Collapse
|
189
|
Dierick HA, Bejsovec A. Functional analysis of Wingless reveals a link between intercellular ligand transport and dorsal-cell-specific signaling. Development 1998; 125:4729-38. [PMID: 9806921 DOI: 10.1242/dev.125.23.4729] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The Drosophila segment polarity gene wingless (wg) is essential for cell fate decisions in the developing embryonic epidermis. Wg protein is produced in one row of cells near the posterior of every segment and is secreted and distributed throughout the segment to generate wild-type pattern elements. Ventrally, epidermal cells secrete a diverse array of anterior denticle types and a posterior expanse of naked cuticle; dorsally, a stereotyped pattern of fine hairs is secreted. We describe three new wg alleles that promote naked cuticle cell fate but show reduced denticle diversity and dorsal patterning. These mutations cause single amino acid substitutions in a cluster of residues that are highly conserved throughout the Wnt family. By manipulating expression of transgenic proteins, we demonstrate that all three mutant molecules retain the intrinsic capacity to signal ventrally but fail to be distributed across the segment. Thus, movement of Wg protein through the epidermal epithelium is essential for proper ventral denticle specification and this planar movement is distinct from the apical-basal transcytosis previously described in polarized epithelia. Furthermore, ectopic overexpression of the mutant proteins fails to rescue dorsal pattern elements. Thus we have identified a region of Wingless that is required for both the transcytotic process and signal transduction in dorsal cell populations, revealing an unexpected link between these two aspects of Wg function.
Collapse
Affiliation(s)
- H A Dierick
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, IL 60208-3500, USA
| | | |
Collapse
|
190
|
Kispert A, Vainio S, McMahon AP. Wnt-4 is a mesenchymal signal for epithelial transformation of metanephric mesenchyme in the developing kidney. Development 1998; 125:4225-34. [PMID: 9753677 DOI: 10.1242/dev.125.21.4225] [Citation(s) in RCA: 319] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Development of the mammalian kidney is initiated by ingrowth of the ureteric bud into the metanephric blastema. In response to signal(s) from the ureter, mesenchymal cells condense, aggregate into pretubular clusters, and undergo epithelialisation to form simple epithelial tubules. Subsequent morphogenesis and differentiation of the tubular epithelium lead to the establishment of a functional nephron. Here we demonstrate that Wnt-4, a secreted glycoprotein which is required for tubule formation, is sufficient to trigger tubulogenesis in isolated metanephric mesenchyme, whereas Wnt-11 which is expressed in the tip of the growing ureter is not. Wnt-4 signaling depends on cell contact and sulphated glycosaminoglycans and is only required for triggering tubulogenesis but not for later events. The Wnt-4 signal can be replaced by other members of the Wnt gene family including Wnt-1, Wnt-3a, Wnt-7a and Wnt-7b. Further, dorsal spinal cord, which has been thought to mimic ureteric signaling in tubule induction induces Wnt-4 mutant as well as wild-type mesenchyme suggesting that spinal cord derived signal(s) most likely act by mimicking the normal mesenchymal action of Wnt-4. These results lend additional support to the notion that Wnt-4 is a key auto-regulator of the mesenchymal to epithelial transformation that underpins nephrogenesis adding another level of complexity in the hierarchy of molecular events mediating tubulogenesis.
Collapse
Affiliation(s)
- A Kispert
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| | | | | |
Collapse
|
191
|
Affiliation(s)
- S Selleck
- Department of Molecular and Cellular Biology, University of Arizona, Tucson 85721, USA
| |
Collapse
|
192
|
Shibamoto S, Higano K, Takada R, Ito F, Takeichi M, Takada S. Cytoskeletal reorganization by soluble Wnt-3a protein signalling. Genes Cells 1998; 3:659-70. [PMID: 9893023 DOI: 10.1046/j.1365-2443.1998.00221.x] [Citation(s) in RCA: 225] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Wnt-3a is an intercellular signalling molecule that is involved in a variety of morphogenetic events. However, the molecular mechanisms underlying Wnt-3a signalling are poorly understood. We have sought to establish in vitro systems to assay the activity of this protein and investigate its biological roles. RESULTS We prepared mouse L cells transfected with Wnt-3a cDNA, and found that their beta-catenin protein level was up-regulated. When conditioned medium (CM) was collected from cultures of the transfectants and added to nontransfected L cells, the beta-catenin level of the latter was also increased. Approximately 50% of the Wnt-3a proteins synthesized by the transfectants were secreted into the CM in a soluble form. These secreted Wnt-3a proteins formed an activity gradient in the environment surrounding the transfectants. Then, we studied whether Wnt-3a had any effect on cellular behaviour in vitro. When the CM containing Wnt-3a (W3a-CM) was added to cultures of C57MG mammary epithelial cells, their morphology was altered to exhibit closer intercellular contacts. Immunostaining for various adhesion and cytoskeletal proteins showed that the actin-microfilamental system was re-organized by the W3a-CM treatment. It induced a directional alignment of actin stress fibres and other actin-associated proteins. Moreover, villin, localized only at the perinuclear regions in untreated C57MG cells, was re-distributed to the leading edges of the cells, co-localizing with F-actin, in the presence of Wnt-3a. CONCLUSION Our findings suggest that Wnt-3a protein, in the soluble form, can act to re-organize cytoskeletal structures.
Collapse
Affiliation(s)
- S Shibamoto
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka 573-0101, Japan
| | | | | | | | | | | |
Collapse
|
193
|
Spicer AP, Kaback LA, Smith TJ, Seldin MF. Molecular cloning and characterization of the human and mouse UDP-glucose dehydrogenase genes. J Biol Chem 1998; 273:25117-24. [PMID: 9737970 DOI: 10.1074/jbc.273.39.25117] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The enzyme UDP-glucose dehydrogenase (Udpgdh) (EC 1.1.1.22) converts UDP-glucose to UDP-glucuronate, a critical component of the glycosaminoglycans, hyaluronan, chondroitin sulfate, and heparan sulfate. Although Udpgdh is a comparatively well characterized enzyme, no vertebrate genes encoding this enzyme have been reported to date. We report the cloning and characterization of the human and mouse UDP-glucose dehydrogenase genes. Mouse and human cDNAs predicted proteins of 493 and 494 amino acids, 24-25 residues longer at their carboxyl termini than the previously reported bovine Udpgdh sequence. The mouse Ugdh gene is composed of 10 exons, spanning 15 kilobases. Northern analyses indicated widespread expression of the gene in embryo and adult. Through interspecific backcross analyses, we localized the Ugdh gene to mouse chromosome 5 at approximately 39 centimorgans, suggesting that the human UGDH gene is localized to chromosome 4p13-15. Results from Southern analyses strongly suggest that Udpgdh is encoded by a single gene in the mouse. Transfection of mouse Ugdh expression vectors led to an increase in detectable Udpgdh activity in mammalian cells. Preliminary expression studies indicated that proinflammatory cytokines, such as interleukin 1beta, can substantially increase the expression of human UGDH in cultured human fibroblasts, suggesting that glycosaminoglycan biosynthesis may be partly regulated by the availability of activated UDP-glucuronate, as determined by relative Udpgdh expression levels.
Collapse
Affiliation(s)
- A P Spicer
- Rowe Program in Human Genetics and Molecular Medicine, Department of Biological Chemistry, School of Medicine, Tupper Hall, University of California, Davis, California 95616, USA.
| | | | | | | |
Collapse
|
194
|
Taylor WH, Sinha A, Khan IA, McDaniel ST, Esko JD. Primers of glycosaminoglycan biosynthesis from Peruvian rain forest plants. J Biol Chem 1998; 273:22260-6. [PMID: 9712841 DOI: 10.1074/jbc.273.35.22260] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We have developed a rapid, high throughput screening assay for compounds that alter the assembly of glycosaminoglycan chains in Chinese hamster ovary cells. The assay uses autoradiography to measure the binding of newly synthesized [35S]proteoglycans and [35S]glycosaminoglycans to a positively charged membrane. Screening over 1000 extracts from a random plant collection obtained from the Amazon rain forest yielded five plants that stimulated glycosaminoglycan assembly in both wild-type cells and a mutant cell line defective in xylosyltransferase (the first committed enzyme involved in glycosaminoglycan biosynthesis). Fractionation of an extract of Maieta guianensis by silica gel and reverse-phase chromatography yielded two pure compounds with stimulatory activity. Spectroscopic analysis by NMR and mass spectrometry revealed that the active principles were xylosides of dimethylated ellagic acid. One of the compounds also contained a galloyl group at C-3 of the xylose moiety. These findings suggest that plants and other natural products may be a source of agents that can potentially alter glycosaminoglycan and proteoglycan formation in animal cells.
Collapse
Affiliation(s)
- W H Taylor
- Division of Cellular and Molecular Medicine, Department of Medicine, and the Glycobiology Program, University of California, La Jolla, California 92093-0687, USA
| | | | | | | | | |
Collapse
|
195
|
Abstract
Cellular mechanisms for the transport and localization of Wnt signaling components are important for the propagation, distribution, and polarization of Wnt signals in embryonic tissues. Wnt signals are distributed through tissues by vesicular transport of Wnt proteins, localized in embryos by directed transport of cytoplasmic Wnt-signaling components, and propagated asymmetrically during cell division.
Collapse
Affiliation(s)
- B M Gumbiner
- Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA.
| |
Collapse
|
196
|
Bullock SL, Fletcher JM, Beddington RS, Wilson VA. Renal agenesis in mice homozygous for a gene trap mutation in the gene encoding heparan sulfate 2-sulfotransferase. Genes Dev 1998; 12:1894-906. [PMID: 9637690 PMCID: PMC316906 DOI: 10.1101/gad.12.12.1894] [Citation(s) in RCA: 338] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Heparan sulfate proteoglycans have been implicated in the presentation of a number of secreted signaling molecules to their signal-transducing receptors. We have characterized a gene trap mutation in the gene encoding a heparan sulfate biosynthetic enzyme, heparan sulfate 2-sulfotransferase (HS2ST). Transgenic mice were generated from embryonic stem cells harboring this insertion. lacZ reporter gene activity in heterozygous embryos demonstrates that the gene is expressed differentially during embryogenesis, presumably directing dynamic changes in heparan sulfate structure. Moreover, mice homozygous for the Hs2st gene trap allele die in the neonatal period, exhibiting bilateral renal agenesis and defects of the eye and the skeleton. Analysis of kidney development in Hs2st mutants reveals that the gene is not required for two early events-ureteric bud outgrowth from the Wolffian duct and initial induction of Pax-2 expression in the metanephric mesenchyme. It is required, however, for mesenchymal condensation around the ureteric bud and initiation of branching morphogenesis. Because 2-O-sulfation has been shown to influence the functional interactions of ligands with heparan sulfate in vitro, we discuss the possibility that the Hs2st mutant phenotype is a consequence of compromised interactions between growth factors and their signal-transducing receptors. These data provide the first genetic evidence that the regulated synthesis of differentially glycosylated proteoglycans can affect morphogenesis during vertebrate development.
Collapse
Affiliation(s)
- S L Bullock
- Laboratory of Mammalian Development, Medical Research Council (MRC) National Institute for Medical Research, The Ridgeway, London NW7 1AA, UK
| | | | | | | |
Collapse
|
197
|
Affiliation(s)
- K M Cadigan
- Howard Hughes Medical Institute, Department of Developmental Biology, Beckman Center, Stanford University Medical Center, Stanford, California 94305-5323, USA
| | | |
Collapse
|
198
|
Abstract
Within the past year, Armadillo and beta-catenin's role in transducing the Wingless/Wnt signal has been substantially clarified. It is now clear that Armadillo and beta-catenin bind directly to members of the T-cell factor/lymphoid enhancer factor subfamily of HMG box DNA-binding proteins, forming bipartite transcription factors that regulate Wingless/Wnt responsive genes in both Drosophila and vertebrates. These partners not only play key roles in a variety of cell fate decisions during normal development but, when inappropriately activated, contribute to both colon cancer and melanoma.
Collapse
Affiliation(s)
- R Cavallo
- Department of Dermatology, University of North Carolina at Chapel Hill 27599-3280, USA
| | | | | |
Collapse
|