151
|
Zhao CT, Shi KH, Su Y, Liang LY, Yan Y, Postlethwait J, Meng AM. Two variants of zebrafish p100 are expressed during embryogenesis and regulated by Nodal signaling. FEBS Lett 2003; 543:190-5. [PMID: 12753931 DOI: 10.1016/s0014-5793(03)00445-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human p100 protein was first identified as a transcriptional coactivator of Epstein-Barr virus nuclear antigen 2, and has been shown to be a coactivator of other cellular transactivators. Its roles in development of vertebrate embryos, however, have not been reported. We have identified a zebrafish ortholog of the human p100 coactivator. The zebrafish p100 transcript is processed to two alternative variants, long and short forms, referred to as p100L and p100S, respectively. Both GFP-p100L and GFP-p100S fusion proteins are located in the cytoplasm of transfected culture cells and microinjected embryonic cells. Analysis of transcripts with Northern blots revealed the presence of p100L and lower amounts of p100S mRNAs from the one-cell stage throughout the life cycle. Whole-mount in situ hybridization shows that p100L and p100S share the same spatiotemporal expression pattern. Their zygotic expression is initially restricted to axial mesoderm precursors during gastrulation, and then spreads over other tissues during segmentation, and finally is constrained to some internal organs at day 5. We also find that Nodal signaling is essential for the zygotic expression of p100. These studies pave the way to understanding in depth the role of p100 during vertebrate embryogenesis.
Collapse
Affiliation(s)
- C T Zhao
- Department of Biological Sciences and Biotechnology, Protein Sciences Laboratory of the MOE, Tsinghua University, 100084, Beijing, PR China
| | | | | | | | | | | | | |
Collapse
|
152
|
Lam CS, Sleptsova-Friedrich I, Munro AD, Korzh V. SHH and FGF8 play distinct roles during development of noradrenergic neurons in the locus coeruleus of the zebrafish. Mol Cell Neurosci 2003; 22:501-15. [PMID: 12727446 DOI: 10.1016/s1044-7431(03)00031-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Several signaling pathways have been implicated in the development of dopaminergic and serotonergic neurons. Here, we analyzed the formation of noradrenergic (NAergic) cells in the locus coeruleus (LC) of zebrafish. In the sonic hedgehog (shh) mutant, cells positive for tyrosine hydroxylase, a marker for putative NAergic cells in the LC were reduced. Similarly, the inhibition of translation of all hh genes and the perturbation of Shh signaling by forskolin resulted in a decrease in the number of cells. Conversely, when SHH was overexpressed, an increase in number was observed. Thus, Shh is involved in maintaining the appropriate number of cells in the LC. While elevated levels of bone morphogenetic protein 4 (BMP4) did not attenuate tyrosine hydroxylase-positive cells, exogenous fibroblast growth factor 8 (FGF8) rescued NAergic neurons in the acerebellar (ace) mutant, providing direct in vivo evidence that Fgf8 is required for the induction of NAergic neurons in the LC.
Collapse
Affiliation(s)
- Chen Sok Lam
- Institute of Molecular and Cell Biology, National University of Singapore, Singapore, Republic of Singapore
| | | | | | | |
Collapse
|
153
|
Ryan K, Chin AJ. T-box genes and cardiac development. BIRTH DEFECTS RESEARCH. PART C, EMBRYO TODAY : REVIEWS 2003; 69:25-37. [PMID: 12768655 DOI: 10.1002/bdrc.10001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND T-box genes play roles in vertebrate gastrulation and in later organogenesis. Their existence in all metazoans examined so far indicates that this is an evolutionarily ancient gene family. Drosophila melanogaster has eight T-box genes, whereas Caenorhabditis elegans has 22. Mammals appear to have at least 18 T-box genes, comprising five subfamilies. METHODS A full range of cytological, developmental, molecular and genetic methodologies have recently been applied to the study of T-box genes. RESULTS Over the last 5 years, mutations in TBX1 and TBX5 have been implicated in two human disorders with haplo-insufficient cardiovascular phenotypes, DiGeorge/velocardiofacial syndrome and Holt-Oram ("heart-hand") syndrome. Interestingly, the number of T-box gene family members discovered to have cardiac or pharyngeal arch expression domains during vertebrate embryonic development has steadily grown. In addition, various Tbx5 loss-of-function models in organisms as distant as the mouse and zebrafish do indeed phenocopy Holt-Oram syndrome. Finally, the intriguing discovery earlier this year that a T-box gene is expressed in a subset of cardioblasts in D. melanogaster suggests that members of this gene family may have fundamental, conserved roles in cardiovascular pattern formation. CONCLUSIONS These developments prompted us to review the current understanding of the contribution of T-box genes to cardiovascular morphogenesis.
Collapse
Affiliation(s)
- Kenneth Ryan
- Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Joseph Stokes Jr. Research Institute, Division of Cardiology, Abramson Research Center, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
154
|
Spitsbergen JM, Kent ML. The state of the art of the zebrafish model for toxicology and toxicologic pathology research--advantages and current limitations. Toxicol Pathol 2003; 31 Suppl:62-87. [PMID: 12597434 PMCID: PMC1909756 DOI: 10.1080/01926230390174959] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The zebrafish (Danio rerio) is now the pre-eminent vertebrate model system for clarification of the roles of specific genes and signaling pathways in development. The zebrafish genome will be completely sequenced within the next 1-2 years. Together with the substantial historical database regarding basic developmental biology, toxicology, and gene transfer, the rich foundation of molecular genetic and genomic data makes zebrafish a powerful model system for clarifying mechanisms in toxicity. In contrast to the highly advanced knowledge base on molecular developmental genetics in zebrafish, our database regarding infectious and noninfectious diseases and pathologic lesions in zebrafish lags far behind the information available on most other domestic mammalian and avian species, particularly rodents. Currently, minimal data are available regarding spontaneous neoplasm rates or spontaneous aging lesions in any of the commonly used wild-type or mutant lines of zebrafish. Therefore, to fully utilize the potential of zebrafish as an animal model for understanding human development, disease, and toxicology we must greatly advance our knowledge on zebrafish diseases and pathology.
Collapse
Affiliation(s)
- Jan M Spitsbergen
- Department of Environmental and Molecular Toxicology and Marine/Freshwater Biomedical Sciences Center, Oregon State University, Corvallis, Oregon 97333, USA.
| | | |
Collapse
|
155
|
Abstract
Recent studies in zebrafish have contributed to our understanding of early endoderm formation in vertebrates. Specifically, they have illustrated the importance of Nodal signaling as well as three transcription factors, Faust/Gata5, Bonnie and Clyde, and Casanova, in this process. Ongoing genetic and embryological studies in zebrafish are also contributing to our understanding of later aspects of endoderm development, including the formation of the gut and its associated organs, the liver and pancreas. The generation of transgenic lines expressing GFP in these organs promises to be particularly helpful in such studies.
Collapse
Affiliation(s)
- Elke A Ober
- Department of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics and Human Genetics, University of California, San Francisco, CA 94143-0448, USA
| | | | | |
Collapse
|
156
|
Albert S, Müller F, Fischer N, Biellmann D, Neumann C, Blader P, Strähle U. Cyclops-independent floor plate differentiation in zebrafish embryos. Dev Dyn 2003; 226:59-66. [PMID: 12508225 DOI: 10.1002/dvdy.10211] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
In zebrafish, development of the ventral neural tube depends on the Nodal-related signal Cyclops (Cyc). One-day-old cyc mutant embryos lack the medial floor plate (MFP). We show here that cells expressing MFP marker genes differentiate gradually in cyc mutant embryos in a delayed manner during the second day of development. This late differentiation is restricted to the hindbrain and spinal cord and depends on an intact Hedgehog (Hh) signalling pathway. Cells expressing MFP marker genes in cyc mutant embryos appear to be derived from lateral floor plate (LFP) cells as they coexpress LFP and MFP marker genes. This finding suggests that the correct temporal development of the MFP is required for the distinction of LFP and MFP cells in wild-type embryos.
Collapse
Affiliation(s)
- Stéphanie Albert
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, C.U. de Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
157
|
Abstract
Organogenesis is a dynamic process involving multiple phases of pattern formation and morphogenesis. For example, heart formation involves the specification and differentiation of cardiac precursors, the integration of precursors into a tube, and the remodeling of the embryonic tube to create a fully functional organ. Recently, the zebrafish has emerged as a powerful model organism for the analysis of cardiac development. In particular, zebrafish mutations have revealed specific genetic requirements for cardiac fate determination, migration, fusion, tube assembly, looping, and remodeling. These processes ensure proper cardiac function; likewise, cardiac function may influence aspects of cardiac morphogenesis.
Collapse
Affiliation(s)
- Nathalia S Glickman
- Developmental Genetics Program and Department of Cell Biology, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
| | | |
Collapse
|
158
|
Rastegar S, Albert S, Le Roux I, Fischer N, Blader P, Müller F, Strähle U. A floor plate enhancer of the zebrafish netrin1 gene requires Cyclops (Nodal) signalling and the winged helix transcription factor FoxA2. Dev Biol 2002; 252:1-14. [PMID: 12453456 DOI: 10.1006/dbio.2002.0837] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The floor plate is an organising centre that controls neural differentiation and axonogenesis in the neural tube. The axon guidance molecule Netrin1 is expressed in the floor plate of zebrafish embryos. To elucidate the regulatory mechanisms underlying expression in the floor plate, we scanned the netrin1 locus for regulatory regions and identified an enhancer that drives expression in the floor plate and hypochord of transgenic embryos. The expression of the transgene is ectopically activated by Cyclops (Nodal) signals but does not respond to Hedgehog signals. The winged-helix transcription factor foxA2 (also HNF3beta, axial) is expressed in the notochord and floor plate. We show that knock-down of FoxA2 leads to loss of floor plate, while notochord and hypochord development is unaffected, suggesting a specific requirement of FoxA2 in the floor plate. The transgene is ectopically activated by FoxA2, and expression of FoxA2 leads to rescue of floor plate differentiation in mutant embryos that are deficient in Cyclops signalling. Zebrafish and mouse use different signalling systems to specify floor plate. The zebrafish netrin1 regulatory region also drives expression in the floor plate of mouse and chicken embryos. This suggests that components of the regulatory circuits controlling expression in the floor plate are conserved and that FoxA2-given its importance for midline development also in the mouse-may be one such component.
Collapse
Affiliation(s)
- Sepand Rastegar
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, B.P. 10142, 67404, Illkirch Cedex, C.U. de Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
159
|
Ming JE, Muenke M. Multiple hits during early embryonic development: digenic diseases and holoprosencephaly. Am J Hum Genet 2002; 71:1017-32. [PMID: 12395298 PMCID: PMC385082 DOI: 10.1086/344412] [Citation(s) in RCA: 258] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2002] [Accepted: 08/20/2002] [Indexed: 01/16/2023] Open
Affiliation(s)
- Jeffrey E. Ming
- Division of Human Genetics and Molecular Biology, Department of Pediatrics, The Children's Hospital of Philadelphia and the University of Pennsylvania School of Medicine, Philadelphia; and Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda
| | - Maximilian Muenke
- Division of Human Genetics and Molecular Biology, Department of Pediatrics, The Children's Hospital of Philadelphia and the University of Pennsylvania School of Medicine, Philadelphia; and Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda
| |
Collapse
|
160
|
Griffin KJP, Kimelman D. One-Eyed Pinhead and Spadetail are essential for heart and somite formation. Nat Cell Biol 2002; 4:821-5. [PMID: 12360294 DOI: 10.1038/ncb862] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2002] [Revised: 06/26/2002] [Accepted: 08/08/2002] [Indexed: 11/09/2022]
Abstract
Mutant analysis in the zebrafish Danio rerio has demonstrated distinct developmental roles for the T-box transcription factor Spadetail (Spt) and the Nodal-receptor cofactor One-Eyed Pinhead (Oep) in the formation of mesoderm and endoderm. Here, we show that spt and oep genetically interact and are together essential for the formation of cardiac and somitic mesoderm. These two mesodermal defects are dependent on different effectors of Nodal signalling; cardiac mesoderm formation involves the mix-like transcription factor Bonnie and Clyde (Bon), whereas somitogenesis is dependent on a different pathway. Analysis of the somite defect in Zoep;spt embryos has provided insights into the control of somitic mesoderm formation by Spt, which was previously implicated in the regulation of cell adhesion and motility. We show that the failure to form somites in Zoep;spt embryos is independent of this and that Spt must have an additional function. We propose that the major role of Spt in somitogenesis is to promote the differentiation of presomitic mesoderm from tailbud progenitors by antagonizing progenitor-type gene expression and behaviour.
Collapse
Affiliation(s)
- Kevin J P Griffin
- Department of Biochemistry, Box 357350, University of Washington, Seattle WA 98195-7350, USA
| | | |
Collapse
|
161
|
Hoshijima K, Metherall JE, Grunwald DJ. A protein disulfide isomerase expressed in the embryonic midline is required for left/right asymmetries. Genes Dev 2002; 16:2518-29. [PMID: 12368263 PMCID: PMC187449 DOI: 10.1101/gad.1001302] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Although the vertebrate embryonic midline plays a critical role in determining the left/right asymmetric development of multiple organs, few genes expressed in the midline are known to function specifically in establishing laterality patterning. Here we show that a gene encoding protein disulfide isomerase P5 (PDI-P5) is expressed at high levels in the organizer and axial mesoderm and is required for establishing left/right asymmetries in the zebrafish embryo. pdi-p5 was discovered in a screen to detect genes down-regulated in the zebrafish midline mutant one-eyed pinhead and expressed predominantly in midline tissues of wild-type embryos. Depletion of the pdi-p5 product with morpholino antisense oligonucleotides results in loss of the asymmetric development of the heart, liver, pancreas, and gut. In addition, PDI-P5 depletion results in bilateral expression of all genes known to be expressed asymmetrically in the lateral plate mesoderm and the brain during embryogenesis. The laterality defects caused by pdi-p5 antisense treatment arise solely due to loss of the PDI-P5 protein, as they are reversed when treated embryos are supplied with an exogenous source of the PDI-P5 protein. Thus the spectrum of laterality defects resulting from depletion of the PDI-P5 protein fully recapitulates that resulting from loss of the midline. As loss of PDI-P5 does not appear to interfere with other aspects of midline development or function, we propose that PDI-P5 is specifically involved in the production of midline-derived signals required to establish left/right asymmetry.
Collapse
Affiliation(s)
- Kazuyuki Hoshijima
- Department of Human Genetics, University of Utah, Salt Lake City, Utah 84112, USA
| | | | | |
Collapse
|
162
|
Lacbawan FL, Muenke M. Central nervous system embryogenesis and its failures. Pediatr Dev Pathol 2002; 5:425-47. [PMID: 12202995 DOI: 10.1007/s10024-002-0003-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2001] [Accepted: 12/01/2001] [Indexed: 11/29/2022]
Abstract
The well-orchestrated development of the central nervous system (CNS) requires highly integrated regulatory processes to ensure its precise spatial organization that provides the foundation for proper function. As emphasized in this review, the type, timing, and location of regulatory molecules influence the different stages of development from neuronal induction, regional specification, neuronal specification, and neuronal migration to axonal growth and guidance, neuronal survival, and synapse formation. The known molecular mechanisms are summarized from studies of invertebrates and lower vertebrates, in which we have learned more about the different ligands, receptors, transcription factors, and the intracellular signaling pathways that play specific roles in the different stages of development. Despite known molecular mechanisms of some disturbances, most of the clinical entities that arise from failures of CNS embryogenesis remain unexplained. As more novel genes and their functions are discovered, existing mechanisms will be refined and tenable explanations will be made. With these limitations, two specific clinical entities that have been relatively well studied, holoprosencephaly and neuronal migration defects, are discussed in more detail to illustrate the complexity of regulatory mechanisms that govern well-defined stages of CNS development.
Collapse
Affiliation(s)
- Felicitas L Lacbawan
- Department of Medical Genetics, Children's National Medical Center, 111 Michigan Avenue NW, Washington, DC 20010, USA
| | | |
Collapse
|
163
|
Ohkubo Y, Chiang C, Rubenstein JLR. Coordinate regulation and synergistic actions of BMP4, SHH and FGF8 in the rostral prosencephalon regulate morphogenesis of the telencephalic and optic vesicles. Neuroscience 2002; 111:1-17. [PMID: 11955708 DOI: 10.1016/s0306-4522(01)00616-9] [Citation(s) in RCA: 217] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We investigated the roles of bare morphogenetic protein (BMP), sonic hedgehog (SHH) and fibroblast growth factor (FGF)-expressing signaling centers in regulating the patterned outgrowth of the telencephalic and optic vesicles. Implantation of BMP4 beads in the anterior neuropore of stage 10 chicken embryos repressed FGF8 and SHH expression. Similarly, loss of SHH expression in Shh mutant mice leads to increased BMP signaling and loss of Fgf8 expression in the prosencephalon. Increased BMP signaling and loss of FGF and SHH expression was correlated with decreased proliferation, increased cell death, and hypoplasia of the telencephalic and optic vesicles. However, decreased BMP signaling, through ectopic expression of Noggin, a BMP-binding protein, also caused decreased proliferation and hypoplasia of the telencephalic and optic vesicles, but with maintenance of Fgf8 and Shh expression, and no detectable increase in cell death. These results suggest that optimal growth requires a balance of BMP, FGF8 and SHH signaling. We suggest that the juxtaposition of Fgf8, Bmp4 and Shh expression domains generate patterning centers that coordinate the growth of the telencephalic and optic vesicles, similar to how Fgf8, Bmp4 and Shh regulate growth of the limb bud. Furthermore, these patterning centers regulate regional specification within the forebrain and eye, as exemplified by the regulation of Emx2 expression by different levels of BMP signaling. In summary, we present evidence that there is cross-regulation between BMP-, FGF- and SHH-expressing signaling centers in the prosencephalon which regulate morphogenesis of, and regional specification within, the telencephalic and optic vesicles.
Collapse
Affiliation(s)
- Y Ohkubo
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, LPPI, University of California, San Francisco, 401 Parnassus, P.O. Box 0984, San Francisco, CA 94143-0984, USA
| | | | | |
Collapse
|
164
|
Yan YT, Liu JJ, Luo Y, E C, Haltiwanger RS, Abate-Shen C, Shen MM. Dual roles of Cripto as a ligand and coreceptor in the nodal signaling pathway. Mol Cell Biol 2002; 22:4439-49. [PMID: 12052855 PMCID: PMC133918 DOI: 10.1128/mcb.22.13.4439-4449.2002] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The EGF-CFC gene Cripto encodes an extracellular protein that has been implicated in the signaling pathway for the transforming growth factor beta (TGF beta) ligand Nodal. Although recent findings in frog and fish embryos have suggested that EGF-CFC proteins function as coreceptors for Nodal, studies in cell culture have implicated Cripto as a growth factor-like signaling molecule. Here we reconcile these apparently disparate models of Cripto function by using a mammalian cell culture assay to investigate the signaling activities of Nodal and EGF-CFC proteins. Using a luciferase reporter assay, we found that Cripto has activities consistent with its being a coreceptor for Nodal. However, Cripto can also function as a secreted signaling factor in cell coculture assays, suggesting that it may also act as a coligand for Nodal. Furthermore, we found that the ability of Cripto to bind to Nodal and mediate Nodal signaling requires the addition of an O-linked fucose monosaccharide to a conserved site within EGF-CFC proteins. We propose a model in which Cripto has dual roles as a coreceptor as well as a coligand for Nodal and that this signaling interaction with Nodal is regulated by an unusual form of glycosylation. Our findings highlight the significance of extracellular modulation of ligand activity as an important means of regulating TGF beta signaling pathways during vertebrate development.
Collapse
Affiliation(s)
- Yu-Ting Yan
- Center for Advanced Biotechnology and Medicine and Department of Pediatric, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | | | |
Collapse
|
165
|
Affiliation(s)
- Didier Y R Stainier
- Department of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics, and Human Genetics, University of California, San Francisco, San Francisco, California 94143-0448, USA.
| |
Collapse
|
166
|
Cohen MM, Shiota K. Teratogenesis of holoprosencephaly. AMERICAN JOURNAL OF MEDICAL GENETICS 2002; 109:1-15. [PMID: 11932986 DOI: 10.1002/ajmg.10258] [Citation(s) in RCA: 156] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Teratogenic causes of holoprosencephaly are critically assessed. A brief general review of holoprosencephaly is followed by four tables summarizing etiologic factors. Subjects evaluated here include: 1) maternal diabetes; 2) ethyl alcohol; 3) retinoic acid; 4) mutated genes and teratogens involving the sonic hedgehog signaling network and cholesterol biosynthesis; and 5) cholesterol trafficking, sterol adducts, target tissue response, and sterol sensing domain.
Collapse
Affiliation(s)
- M Michael Cohen
- Department of Oral & Maxillofacial Sciences, Dalhousie University, Halifax, Nova Scotia, Canada.
| | | |
Collapse
|
167
|
Stainier DY. Contribution du poisson zèbre à l’étude moléculaire du développement du cœur des vertébrés. Med Sci (Paris) 2002. [DOI: 10.1051/medsci/2002184448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
168
|
Thisse B, Thisse C. Établissement des axes embryonnaires au cours du développement du poisson zèbre. Med Sci (Paris) 2002. [DOI: 10.1051/medsci/2002182193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
169
|
Abstract
The developing eye is a favorite model for the study of pattern formation and cell fate determination. Retinal neuron development, in particular, is an approachable system to study molecular and cellular aspects of cell determination and differentiation. Basic helix-loop-helix (bHLH) transcription factors are important regulators of retinal neurogenesis. Proneural bHLH genes have highly defined expression in the developing retina that are influenced by pattern formation and cell specification pathways. Each retinal cell class has unique bHLH requirements, implying that these genes regulate neuronal identity and function. Therefore, proneural genes represent a molecular focal point through which epithelial cells are transformed into a precise neural network. In this review, we focus on the bHLH factor Ath5, an important regulator of retinal ganglion cell development, and discuss factors that regulate its expression in the retina and the target genes through which it may confer specific neuronal properties.
Collapse
Affiliation(s)
- M L Vetter
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
170
|
Sakaguchi T, Kuroiwa A, Takeda H. A novel sox gene, 226D7, acts downstream of Nodal signaling to specify endoderm precursors in zebrafish. Mech Dev 2001; 107:25-38. [PMID: 11520661 DOI: 10.1016/s0925-4773(01)00453-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Vertebrate endoderm development has recently become the focus of intense investigation. We have identified a novel sox gene, 226D7, which is important in zebrafish endoderm development. 226D7 was isolated by an in situ hybridization screening for genes expressed in the yolk syncytial layer (YSL) at the blastula stage. 226D7 is expressed mainly in the YSL at this stage and, during gastrulation, its expression is also detected in the forerunner cells and endodermal precursor cells. The expression of 226D7 is positively regulated by Nodal signaling. The knockdown of 226D7 using morpholino antisense oligonucleotides results in a lack of sox17-expressing endodermal precursor cells during gastrulation, and, consequently, lacks endodermal derivatives such as gut tissue. The effect is strictly restricted to the endodermal lineage, while the mesoderm is normally formed, a phenotype that is nearly identical to that of the casanova mutant (Dev. Biol. 215 (1999) 343). We further demonstrate that overexpression of 226D7 increases the number of sox17-expressing endodermal progenitor cells without upregulating the expression of the Nodal genes, cyclops and squint. Region-specific knockdown and overexpression of 226D7 by injection into the YSL suggest that 226D7 in the YSL is not involved in endoderm formation and 226D7 in the endoderm progenitor cells is important for endoderm development. Taken together, our data demonstrate that 226D7 is a downstream target of Nodal signal and a critical transcriptional regulator of early endoderm formation.
Collapse
Affiliation(s)
- T Sakaguchi
- Division of Early Embryogenesis, National Institute of Genetics, Mishima 411-8540, Shizuoka, Japan
| | | | | |
Collapse
|
171
|
Muñoz-Sanjuán I, H-Brivanlou A. Early posterior/ventral fate specification in the vertebrate embryo. Dev Biol 2001; 237:1-17. [PMID: 11518501 DOI: 10.1006/dbio.2001.0350] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
One of the central questions in developmental biology is that of how one cell can give rise to all specialized cell types and organs in the organism. Within the embryo, all tissues are composed of cells derived from one or more of the three germ layers, the ectoderm, the mesoderm, and the endoderm. Understanding the molecular events that underlie both the specification and patterning of the germ layers has been a long-standing interest for developmental biologists. Recent years have seen a rapid advancement in the elucidation of the molecular players implicated in patterning the vertebrate embryo. In this review, we will focus solely on the ventral and posterior fate acquisition in the ventral-lateral domains of the pregastrula embryo. We will address the embryonic origins of various tissues and will present embryological and experimental evidence to illustrate how "classically defined" ventral and posterior structures develop in all three germ layers. We will discuss the status of our current knowledge by focusing on the African frog Xenopus laevis, although we will also gather evidence from other vertebrates, where available. In particular, genetic studies in the zebrafish and mouse have been very informative in addressing the requirement for individual genes in these processes. The amphibian system has enjoyed great interest since the early days of experimental embryology, and constitutes the best understood system in terms of early patterning signals and axis specification. We want to draw interest to the embryological origins of cells that will develop into what we have collectively termed "posterior" and "ventral" cells/tissues, and we will address the involvement of the major signaling pathways implicated in posterior/ventral fate specification. Particular emphasis is given as to how these signaling pathways are integrated during early development for the specification of posterior and ventral fates.
Collapse
Affiliation(s)
- I Muñoz-Sanjuán
- Laboratory of Vertebrate Embryology, The Rockefeller University, New York, New York 10021, USA
| | | |
Collapse
|
172
|
Abstract
During gastrulation, germ layers are formed as prospective mesodermal and endodermal cells internalize and come to underlie the ectoderm [1-9]. Despite the pivotal role of gastrulation in animal development, the cellular interactions underlying this process are poorly understood. In zebrafish, mesoderm and endoderm formation requires the Nodal signals Cyclops and Squint and their cofactor One-eyed pinhead (Oep) [10-14]. We found that marginal cells in maternal-zygotic oep (MZoep) mutants do not internalize during gastrulation and acquire neural and tail fates at the expense of head and trunk mesendoderm. The lack of internalization in MZoep embryos and the cell-autonomous requirement for oep in Nodal signaling enabled us to test whether internalization can be achieved by individual cells or whether it depends on interactions within a group of cells. We found that individual MZoep mutant cells transplanted to the margin of wild-type blastula embryos initially internalize with their neighbors but are unable to contribute to the mesendoderm. In the reciprocal experiment, single wild-type cells transplanted to the margin of MZoep mutant embryos autonomously internalize and can express the mesendodermal markers axial/foxA2 and sox17. These results suggest that internalization and mesendoderm formation in zebrafish can be attained autonomously by single cells.
Collapse
Affiliation(s)
- A Carmany-Rampey
- Developmental Genetics Program, Skirball Institute of Biomolecular Medicine and Department of Cell Biology, New York University School of Medicine, 540 First Avenue, New York, NY 10016, USA
| | | |
Collapse
|
173
|
Abstract
A large collection of mutations affecting zebrafish embryogenesis was described in 1996. The cloning of the affected genes has now provided novel insights into the role and regulation of signaling by BMP, Nodal, Wnt, FGF, Hedgehog, Delta, Slit, retinoic acid and lipids. Detailed analyses have revealed a complex genetic network that patterns the early embryo.
Collapse
Affiliation(s)
- A F Schier
- Developmental Genetics Program, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York 10016, New York, USA.
| |
Collapse
|
174
|
Bisgrove BW, Yost HJ. Classification of left-right patterning defects in zebrafish, mice, and humans. AMERICAN JOURNAL OF MEDICAL GENETICS 2001; 101:315-23. [PMID: 11471153 DOI: 10.1002/ajmg.1180] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Numerous genes and developmental processes have been implicated in the establishment of the vertebrate left-right axis. Although the mechanisms that initiate left-right patterning may be distinct in different classes of vertebrates, it is clear that the asymmetric gene expression patterns of nodal, lefty, and pitx2 in the left lateral plate mesoderm are conserved and that left-right development of the brain, heart, and gut is tightly linked to the development of the embryonic midline. This review categorizes left-right patterning defects based on asymmetric gene expression patterns, midline phenotypes, and situs phenotypes. In so doing, we hope to provide a framework to assess the genetic bases of laterality defects in humans and other vertebrates.
Collapse
Affiliation(s)
- B W Bisgrove
- Huntsman Cancer Institute, Center for Children, Department of Oncological Sciences, University of Utah, Salt Lake City, Utah 84112, USA
| | | |
Collapse
|
175
|
Phillips BT, Bolding K, Riley BB. Zebrafish fgf3 and fgf8 encode redundant functions required for otic placode induction. Dev Biol 2001; 235:351-65. [PMID: 11437442 DOI: 10.1006/dbio.2001.0297] [Citation(s) in RCA: 200] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Members of the fibroblast growth factor (FGF) family of peptide ligands have been implicated in otic placode induction in several vertebrate species. Here, we have functionally analyzed the roles of fgf3 and fgf8 in zebrafish otic development. The role of fgf8 was assessed by analyzing acerebellar (ace) mutants. fgf3 function was disrupted by injecting embryos with antisense morpholino oligomers (MO) specifically designed to block translation of fgf3 transcripts. Disruption of either fgf3 or fgf8 causes moderate reduction in the size of the otic vesicle. Injection of fgf3-MO into ace/ace mutants causes much more severe reduction or complete loss of otic tissue. Moreover, preplacode cells fail to express pax8 and pax2.1, indicating disruption of early stages of otic induction in fgf3-depleted ace/ace mutants. Both fgf3 and fgf8 are normally expressed in the germring by 50% epiboly and are induced in the primordium of rhombomere 4 by 80% epibloy. In addition, fgf3 is expressed during the latter half of gastrulation in the prechordal plate and paraxial cephalic mesendoderm, tissues that either pass beneath or persist near the prospective otic ectoderm. Conditions that alter the pattern of expression of fgf3 and/or fgf8 cause corresponding changes in otic induction. Loss of maternal and zygotic one-eyed pinhead (oep) does not alter expression of fgf3 or fgf8 in the hindbrain, but ablates mesendodermal sources of fgf signaling and delays otic induction by several hours. Conversely, treatment of wild-type embryos with retinoic acid greatly expands the periotic domains of expression of fgf3, fgf8, and pax8 and leads to formation of supernumerary and ectopic otic vesicles. These data support the hypothesis that fgf3 and fgf8 cooperate during the latter half of gastrulation to induce differentiation of otic placodes.
Collapse
Affiliation(s)
- B T Phillips
- Biology Department, Texas A&M University, College Station, TX 77843-3258, USA
| | | | | |
Collapse
|
176
|
Kudoh T, Dawid IB. Role of the iroquois3 homeobox gene in organizer formation. Proc Natl Acad Sci U S A 2001; 98:7852-7. [PMID: 11438735 PMCID: PMC35431 DOI: 10.1073/pnas.141224098] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In zebrafish, the organizer is thought to consist of two regions, the yolk syncytial layer (YSL) and the shield. The dorsal YSL appears to send signals that affect formation of the shield in the overlying mesendoderm. We show here that a domain of dorsal deep cells located between the YSL and the shield is marked by expression of the iro3 gene. As gastrulation proceeds, the iro3 positive domain involutes and migrates to the animal pole. Iro3 expression is regulated by Nodal and bone morphogenic protein antagonists. Overexpression of iro3 induced ectopic expression of shield-specific genes. This effect was mimicked by an Iro3-Engrailed transcriptional repressor domain fusion, whereas an Iro3-VP16 activator domain fusion behaved as a dominant negative or antimorphic form. These results suggest that Iro3 acts as a transcriptional repressor and further implicate the iro3 gene in regulating organizer formation. We propose that the iro3-expressing dorsal deep cells represent a distinct organizer domain that receives signals from the YSL and in turn sends signals to the forming shield, thereby influencing its expansion and differentiation.
Collapse
Affiliation(s)
- T Kudoh
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
177
|
Dickmeis T, Mourrain P, Saint-Etienne L, Fischer N, Aanstad P, Clark M, Strähle U, Rosa F. A crucial component of the endoderm formation pathway, CASANOVA, is encoded by a novel sox-related gene. Genes Dev 2001; 15:1487-92. [PMID: 11410529 PMCID: PMC312720 DOI: 10.1101/gad.196901] [Citation(s) in RCA: 159] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
casanova (cas) mutant zebrafish embryos lack endoderm and develop cardia bifida. In a substractive screen for Nodal-responsive genes, we isolated an HMG box-containing gene, 10J3, which is expressed in the endoderm. The cas phenotype is rescued by overexpression of 10J3 and can be mimicked by 10J3-directed morpholinos. Furthermore, we identified a mutation within 10J3 coding sequence that cosegregates with the cas phenotype, clearly demonstrating that cas is encoded by 10J3. Epistasis experiments are consistent with an instructive role for cas in endoderm formation downstream of Nodal signals and upstream of sox17. In the absence of cas activity, endoderm progenitors differentiate into mesodermal derivatives. Thus, cas is an HMG box-containing gene involved in the fate decision between endoderm and mesoderm that acts downstream of Nodal signals.
Collapse
Affiliation(s)
- T Dickmeis
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, F-67404 Illkirch Cedex, C.U. de Strasbourg, France
| | | | | | | | | | | | | | | |
Collapse
|
178
|
Kikuchi Y, Agathon A, Alexander J, Thisse C, Waldron S, Yelon D, Thisse B, Stainier DY. casanova encodes a novel Sox-related protein necessary and sufficient for early endoderm formation in zebrafish. Genes Dev 2001; 15:1493-505. [PMID: 11410530 PMCID: PMC312713 DOI: 10.1101/gad.892301] [Citation(s) in RCA: 250] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Early endoderm formation in zebrafish requires at least three loci that function downstream of Nodal signaling but upstream of the early endodermal marker sox17: bonnie and clyde (bon), faust (fau), and casanova (cas). cas mutants show the most severe phenotype as they do not form any gut tissue and lack all sox17 expression. Activation of the Nodal signaling pathway or overexpression of Bon or Fau/Gata5 fails to restore any sox17 expression in cas mutants, demonstrating that cas plays a central role in endoderm formation. Here we show that cas encodes a novel member of the Sox family of transcription factors. Initial cas expression appears in the dorsal yolk syncytial layer (YSL) in the early blastula, and is independent of Nodal signaling. In contrast, endodermal expression of cas, which begins in the late blastula, is regulated by Nodal signaling. Cas is a potent inducer of sox17 expression in wild-type embryos as well as in bon and fau/gata5 mutants. Cas is also a potent inducer of sox17 expression in MZoep mutants, which cannot respond to Nodal signaling. In addition, ectopic expression of cas in presumptive mesodermal cells leads to their transfating into endoderm. Altogether, these data indicate that Cas is the principal transcriptional effector of Nodal signaling during zebrafish endoderm formation.
Collapse
Affiliation(s)
- Y Kikuchi
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143-0448, USA
| | | | | | | | | | | | | | | |
Collapse
|
179
|
Reiter JF, Verkade H, Stainier DY. Bmp2b and Oep promote early myocardial differentiation through their regulation of gata5. Dev Biol 2001; 234:330-8. [PMID: 11397003 DOI: 10.1006/dbio.2001.0259] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Members of both the bone morphogenetic protein (Bmp) and EGF-CFC families have been implicated in vertebrate myocardial development. Zebrafish swirl (swr) encodes Bmp2b, a member of the Bmp family required for patterning the dorsoventral axis. Zebrafish one-eyed pinhead (oep) encodes a maternally and zygotically expressed member of the EGF-CFC family essential for Nodal signaling. Both swr/bmp2b and oep mutants exhibit severe defects in myocardial development. swr/bmp2b mutants exhibit reduced or absent expression of nkx2.5, an early marker of the myocardial precursors. Embryos lacking zygotic oep (Zoep mutants) display cardia bifida and, as we show here, also display reduced or absent nkx2.5 expression. Recently, we have demonstrated that the zinc finger transcription factor Gata5 is an essential regulator of nkx2.5 expression. In this paper, we investigate the relationships between bmp2b, oep, gata5, and nkx2.5. We show that both swr/bmp2b and Zoep mutants exhibit defects in gata5 expression in the myocardial precursors. Forced expression of gata5 in swr/bmp2b and Zoep mutants restores robust nkx2.5 expression. Moreover, overexpression of gata5 in Zoep mutants restores expression of cmlc1, a myocardial sarcomeric gene. These results indicate that both Bmp2b and Oep regulate gata5 expression in the myocardial precursors, and that Gata5 does not require Bmp2b or Oep to promote early myocardial differentiation. We conclude that Bmp2b and Oep function at least partly through Gata5 to regulate nkx2.5 expression and promote myocardial differentiation. We integrate these and other data to propose a pathway of the molecular events regulating early myocardial differentiation in zebrafish.
Collapse
Affiliation(s)
- J F Reiter
- Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143-0448, USA
| | | | | |
Collapse
|
180
|
Abstract
Secreted morphogens induce distinct cellular responses in a concentration-dependent manner and act directly at a distance. The existence of morphogens during mesoderm induction and patterning in vertebrates has been highly controversial, and it remains unknown whether endogenous mesoderm inducers act directly as morphogens, function locally or act through relay mechanisms. Here we test the morphogen properties of Cyclops and Squint-two Nodal-related transforming growth factor-beta signals required for mesoderm formation and patterning in zebrafish. Whereas different levels of both Squint and Cyclops can induce different downstream genes, we find that only Squint can function directly at a distance. These results indicate that Squint acts as a secreted morphogen that does not require a relay mechanism.
Collapse
Affiliation(s)
- Y Chen
- Developmental Genetics Program, Skirball Institute of Biomolecular Medicine, Department for Cell Biology, New York University School of Medicine, New York 10016, USA
| | | |
Collapse
|
181
|
Abstract
Xenopus has been widely used to study early embryogenesis because the embryos allow for efficient functional assays of gene products by the overexpression of RNA. The first asymmetry of the embryo is initiated during oogenesis and is manifested by the darkly pigmented animal hemisphere and lightly pigmented vegetal hemisphere. Upon fertilization a second asymmetry, the dorsal-ventral asymmetry, is established, with the sperm entry site defining the prospective ventral region. During the cleavage stage, a vegetal cortical cytoplasm (VCC)/beta-catenin signaling pathway is differentially activated on the prospective dorsal side of the embryo. The overlapping of the VCC/beta-catenin and transforming growth factor beta (TGF-beta) pathways in the dorsal vegetal quadrant specifies dorsal-vental axis formation by regulating formation of the Spemann organizer, including the anterior endomesoderm. The organizer initiates gastrulation to form a triploblastic embryo in which the mesoderm layer is located between the ectoderm layer and the endoderm layer. The interplay between maternal and zygotic TGF-beta s and the T-box transcription factors in the vegetal hemisphere initiates the specification of germ-layer lineages. TGF-beta signaling originating from the vegetal region induces mesoderm in the equatorial region, and initiates endoderm differentiation directly in the vegetal region. The ectoderm develops from the animal region, which does not come into contact with the vegetal TGF-beta signals. A large number of the downstream components and transcriptional targets of early developmental pathways have been identified and characterized. This review gives an overview of recent advances in the understanding of the functional roles and interactions of the molecular players important for axis determination and germ-layer specification during early Xenopus embryogenesis.
Collapse
Affiliation(s)
- A P Chan
- Department of Molecular Genetics, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | |
Collapse
|
182
|
Lowe LA, Yamada S, Kuehn MR. Genetic dissection of nodal function in patterning the mouse embryo. Development 2001; 128:1831-43. [PMID: 11311163 DOI: 10.1242/dev.128.10.1831] [Citation(s) in RCA: 234] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Loss-of-function analysis has shown that the transforming growth factor-like signaling molecule nodal is essential for mouse mesoderm development. However, definitive proof of nodal function in other developmental processes in the mouse embryo has been lacking because the null mutation blocks gastrulation. We describe the generation and analysis of a hypomorphic nodal allele. Mouse embryos heterozygous for the hypomorphic allele and a null allele undergo gastrulation but then display abnormalities that fall into three distinct mutant phenotypic classes, which may result from expression levels falling below critical thresholds in one or more domains of nodal expression. Our analysis of each of these classes provides conclusive evidence for nodal-mediated regulation of several developmental processes in the mouse embryo, beyond its role in mesoderm formation. We find that nodal signaling is required for correct positioning of the anteroposterior axis, normal anterior and midline patterning, and the left-right asymmetric development of the heart, vasculature, lungs and stomach.
Collapse
Affiliation(s)
- L A Lowe
- Experimental Immunology Branch, Division of Basic Sciences, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
183
|
Korzh S, Emelyanov A, Korzh V. Developmental analysis of ceruloplasmin gene and liver formation in zebrafish. Mech Dev 2001; 103:137-9. [PMID: 11335121 DOI: 10.1016/s0925-4773(01)00330-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Formation of the liver in zebrafish has been analyzed during normal embryogenesis using ceruloplasmin (Cp) as a specific marker. The asymmetric expression of Cp has been detected in dorsal endoderm at 16 hpf and later in the early hepatic cells in the yolk sac. The liver primordium can be detected after 32 hpf. In oep-/- mutant, which lacks dorsal endoderm, the liver fails to form. In the notochordless flh-/- mutant, the asymmetry of the liver has been lost. Therefore the notochord, dorsal endoderm and endoderm of the yolk sac play a role in liver formation in zebrafish.
Collapse
Affiliation(s)
- S Korzh
- The Institute of Molecular Agrobiology, The National University of Singapore, 1 Research Link, Singapore 117604, Singapore
| | | | | |
Collapse
|
184
|
Clements D, Rex M, Woodland HR. Initiation and early patterning of the endoderm. INTERNATIONAL REVIEW OF CYTOLOGY 2001; 203:383-446. [PMID: 11131522 DOI: 10.1016/s0074-7696(01)03012-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We review the early stages of endoderm formation in the major animal models. In Amphibia maternal molecules are important in initiating endoderm formation. This is followed by successive signaling events that establish and then pattern the endoderm. In other organisms there are differences in endodermal development, particularly in the initial, prephylotypic stages. Later many of the same key families of transcription factors and signaling cassettes are used in all animals, but more work will be needed to establish exact evolutionary homologies.
Collapse
Affiliation(s)
- D Clements
- Department of Biological Sciences, University of Warwick, Coventry, United Kingdom
| | | | | |
Collapse
|
185
|
Yang Z, Liu N, Lin S. A zebrafish forebrain-specific zinc finger gene can induce ectopic dlx2 and dlx6 expression. Dev Biol 2001; 231:138-48. [PMID: 11180958 DOI: 10.1006/dbio.2000.0139] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Identification of the earliest forebrain-specific markers should facilitate the elucidation of molecular events underlying vertebrate forebrain determination and specification. Here we report the sequence and characterization of fez (forebrain embryonic zinc finger), a gene that is specifically expressed in the embryonic forebrain of zebrafish. Fez encodes a putative nuclear zinc finger protein that is highly conserved in Drosophila, zebrafish, Xenopus, mouse, and human. In zebrafish, the expression of fez becomes detectable at the anterior edge of the presumptive neuroectoderm by 70% epiboly. During the segmentation period, its expression is completely restricted to the rostral region of the prospective forebrain. At approximately 24 h postfertilization, fez expression is mostly confined to the telencephalon and the anterior-ventral region of the diencephalon. Although fez expression is present in one-eyed pinhead (oep) and cyclops (cyc) zebrafish mutants, the pattern is altered. Forced expression of fez induces ectopic expression of dlx2 and dlx6, two genes involved in brain development. Knockdown of fez function using a morpholino-based antisense oligo inhibited dlx2 expression in the ventral forebrain. Our studies indicate that fez is one of the earliest markers specific for the anterior neuroectoderm and it may play a role in forebrain development by regulating Dlx gene expression.
Collapse
Affiliation(s)
- Z Yang
- Institute of Molecular Medicine and Genetics, Medical College of Georgia, Augusta, Georgia 30912, USA
| | | | | |
Collapse
|
186
|
Affiliation(s)
- J Malicki
- Dept. of Ophthalmology, Harvard Medical School/MEEI, Boston, Massachusetts 02114, USA
| |
Collapse
|
187
|
Biemar F, Argenton F, Schmidtke R, Epperlein S, Peers B, Driever W. Pancreas development in zebrafish: early dispersed appearance of endocrine hormone expressing cells and their convergence to form the definitive islet. Dev Biol 2001; 230:189-203. [PMID: 11161572 DOI: 10.1006/dbio.2000.0103] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To begin to understand pancreas development and the control of endocrine lineage formation in zebrafish, we have examined the expression pattern of several genes shown to act in vertebrate pancreatic development: pdx-1, insulin (W. M. Milewski et al., 1998, Endocrinology 139, 1440-1449), glucagon, somatostatin (F. Argenton et al., 1999, Mech. Dev. 87, 217-221), islet-1 (Korzh et al., 1993, Development 118, 417-425), nkx2.2 (Barth and Wilson, 1995, Development 121, 1755-1768), and pax6.2 (Nornes et al., 1998, Mech. Dev. 77, 185-196). To determine the spatial relationship between the exocrine and the endocrine compartments, we have cloned the zebrafish trypsin gene, a digestive enzyme expressed in differentiated pancreatic exocrine cells. We found expression of all these genes in the developing pancreas throughout organogenesis. Endocrine cells first appear in a scattered fashion in two bilateral rows close to the midline during mid-somitogenesis and converge during late-somitogenesis to form a single islet dorsal to the nascent duodenum. We have examined development of the endocrine lineage in a number of previously described zebrafish mutations. Deletion of chordamesoderm in floating head (Xnot homolog) mutants reduces islet formation to small remnants, but does not delete the pancreas, indicating that notochord is involved in proper pancreas development, but not required for differentiation of pancreatic cell fates. In the absence of knypek gene function, which is involved in convergence movements, the bilateral endocrine primordia do not merge. Presence of trunk paraxial mesoderm also appears to be instrumental for convergence since the bilateral endocrine primordia do not merge in spadetail mutants. We discuss our findings on zebrafish pancreatogenesis in the light of evolution of the pancreas in chordates.
Collapse
Affiliation(s)
- F Biemar
- Institut für Biologie I, Abt. Entwicklungsbiologie, Universität Freiburg, Hauptstrasse 1, Freiburg, D-79104, Germany
| | | | | | | | | | | |
Collapse
|
188
|
Rohr KB, Barth KA, Varga ZM, Wilson SW. The nodal pathway acts upstream of hedgehog signaling to specify ventral telencephalic identity. Neuron 2001; 29:341-51. [PMID: 11239427 DOI: 10.1016/s0896-6273(01)00210-0] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The Nodal and Hedgehog signaling pathways influence dorsoventral patterning at all axial levels of the CNS, but it remains largely unclear how these pathways interact to mediate patterning. Here we show that, in zebrafish, Nodal signaling is required for induction of the homeobox genes nk2.1a in the ventral diencephalon and nk2.1b in the ventral telencephalon. Hedgehog signaling is also required for telencephalic nk2.1b expression but may not be essential to establish diencephalic nk2.1a expression. Furthermore, Shh does not restore ventral diencephalic development in embryos lacking Nodal activity. In contrast, Shh does restore telencephalic nk2.1b expression in the absence of Nodal activity, suggesting that Hedgehog signaling acts downstream of Nodal activity to pattern the ventral telencephalon. Thus, the Nodal pathway regulates ventral forebrain patterning through both Hedgehog signaling-dependent and -independent mechanisms.
Collapse
Affiliation(s)
- K B Rohr
- Department of Anatomy and Developmental Biology, University College London, Gower Street, WC1E 6BT, London, United Kingdom
| | | | | | | |
Collapse
|
189
|
Abstract
For three-quarters of a century, developmental biologists have been asking how the nervous system is specified as distinct from the rest of the ectoderm during early development, and how it becomes subdivided initially into distinct regions such as forebrain, midbrain, hindbrain and spinal cord. The two events of 'neural induction' and 'early neural patterning' seem to be intertwined, and many models have been put forward to explain how these processes work at a molecular level. Here I consider early neural patterning and discuss the evidence for and against the two most popular models proposed for its explanation: the idea that multiple signalling centres (organizers) are responsible for inducing different regions of the nervous system, and a model first articulated by Nieuwkoop that invokes two steps (activation/transformation) necessary for neural patterning. As recent evidence from several systems challenges both models, I propose a modification of Nieuwkoop's model that most easily accommodates both classical and more recent data, and end by outlining some possible directions for future research.
Collapse
Affiliation(s)
- C D Stern
- Department of Anatomy and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
190
|
Yeo SY, Little MH, Yamada T, Miyashita T, Halloran MC, Kuwada JY, Huh TL, Okamoto H. Overexpression of a slit homologue impairs convergent extension of the mesoderm and causes cyclopia in embryonic zebrafish. Dev Biol 2001; 230:1-17. [PMID: 11161558 DOI: 10.1006/dbio.2000.0105] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Slit is expressed in the midline of the central nervous system both in vertebrates and invertebrates. In Drosophila, it is the midline repellent acting as a ligand for the Roundabout (Robo) protein, the repulsive receptor which is expressed on the growth cones of the commissural neurons. We have isolated cDNA fragments of the zebrafish slit2 and slit3 homologues and found that both genes start to be expressed by the midgastrula stage well before the axonogenesis begins in the nervous system, both in the axial mesoderm, and slit2 in the anterior margin of the neural plate and slit3 in the polster at the anterior end of the prechordal mesoderm. Later, expression of slit2 mRNA is detected mainly in midline structures such as the floor plate cells and the hypochord, and in the anterior margins of the neural plates in the zebrafish embryo, while slit3 expression is observed in the anterior margin of the prechordal plate, the floorplate cells in the hindbrain, and the motor neurons both in the hindbrain and the spinal cord. To study the role of Slit in early embryos, we overexpressed Slit2 in the whole embryos either by injection of its mRNA into one-cell stage embryos or by heat-shock treatment of the transgenic embryos which carries the slit2 gene under control of the heat-shock promoter. Overexpression of Slit2 in such ways impaired the convergent extension movement of the mesoderm and the rostral migration of the cells in the dorsal diencephalon and resulted in cyclopia. Our results shed light on a novel aspect of Slit function as a regulatory factor of mesodermal cell movement during gastrulation.
Collapse
Affiliation(s)
- S Y Yeo
- Laboratory for Development Gene Regulation, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | | | | | | | | | | | | | | |
Collapse
|
191
|
Faucourt M, Houliston E, Besnardeau L, Kimelman D, Lepage T. The pitx2 homeobox protein is required early for endoderm formation and nodal signaling. . Dev Biol 2001; 229:287-306. [PMID: 11203696 DOI: 10.1006/dbio.2000.9950] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nodal and Nodal-related factors play fundamental roles in a number of developmental processes, including mesoderm and endoderm formation, patterning of the anterior neural plate, and determination of bilateral asymmetry in vertebrates. pitx2, a paired-like homeobox gene, has been proposed to act downstream of Nodal in the gene cascade providing left-right cues to the developing organs. Here, we report that pitx2 is required early in the Nodal signaling pathway for specification of the endodermal and mesodermal germ layers. We found that pitx2 is expressed very early during Xenopus and zebrafish development and in many regions where Nodal signaling is required, including the presumptive mesoderm and endoderm at the blastula and gastrula stages and the prechordal mesoderm at later stages. In Xenopus embryos, overexpression of pitx2 caused ectopic expression of goosecoid and sox-17 and interfered with mesoderm formation. Overexpression of pitx2 in Xenopus animal cap explants partially mimics the effects of Nodal overexpression, suggesting that pitx2 is a mediator of Nodal signaling during specification of the endoderm and prechordal plate, but not during mesoderm induction. We further demonstrate that pitx2 is induced by Nodal signaling in Xenopus animal caps and that the early expression of zebrafish pitx2 is absent when the Nodal signaling pathway is inactive. Inhibition of pitx2 function using a chimeric EnR-pitx2 blocked specification of the mesoderm and endoderm and caused severe embryonic defects resembling those seen when Nodal signaling is inhibited. Following inhibition of pitx2 function, the fate of ventral vegetal blastomeres was shifted from an endodermal to a more mesodermal fate, an effect that was reversed by wild-type pitx2. Finally, we show that inhibition of pitx2 function interferes with the response of cells to Nodal signaling. Our results provide direct evidence that pitx2 function is required for normal specification of the endodermal and mesodermal germ layers.
Collapse
Affiliation(s)
- M Faucourt
- Observatoire Oceanologique, UMR 7009 CNRS, Université de Paris VI, 06230, Villefranche-sur-Mer, France
| | | | | | | | | |
Collapse
|
192
|
Abstract
The T-box gene family was uncovered less than a decade ago but has been recognized as important in controlling many and varied aspects of development in metazoans from hydra to humans. Extensive screening and database searching has revealed several subfamilies of genes with orthologs in species as diverse as Caenorhabditis elegans and humans. The defining feature of the family is a conserved sequence coding for a DNA-binding motif known as the T-box, named after the first-discovered T-box gene, T or Brachyury. Although several T-box proteins have been shown to function as transcriptional regulators, to date only a handful of downstream target genes have been discovered. Similarly, little is known about regulation of the T-box genes themselves. Although not limited to the embryo, expression of T-box genes is characteristically seen in dynamic and highly specific patterns in many tissues and organs during embryogenesis and organogenesis. The essential role of several T-box genes has been demonstrated by the developmental phenotypes of mutant animals.
Collapse
Affiliation(s)
- V E Papaioannou
- Department of Genetics and Development, College of Physicians and Surgeons of Columbia University, New York, New York 10032, USA
| |
Collapse
|
193
|
Abstract
Forward-genetic analyses in Drosophila and Caenorhabditis elegans have given us unprecedented insights into many developmental mechanisms. To study the formation of organs that contain cell types and structures not present in invertebrates, a vertebrate model system amenable to forward genetics would be very useful. Recent work shows that a newly initiated genetic approach in zebrafish is already making significant contributions to understanding the development of the vertebrate heart, an organ that contains several vertebrate-specific features. These and other studies point to the utility of the zebrafish system for studying a wide range of vertebrate-specific processes.
Collapse
Affiliation(s)
- D Y Stainier
- Department of Biochemistry and Biophysics, University of California, San Francisco, 513 Parnassus Avenue, Box 0448, San Francisco, California 94143-0448, USA.
| |
Collapse
|
194
|
Abstract
Previous studies have indicated that gata5, a zinc-finger transcription factor gene, is required for the development of the zebrafish gut tube. Here, we show that gata5 mutants also display defects in the development of other endodermal organs such as the liver, pancreas, thyroid and thymus. gata5 is expressed in the endodermal progenitors from late blastula stages, suggesting that it functions early during endoderm development. We indeed find that during gastrulation stages, gata5 mutants form fewer endodermal cells than their wild-type siblings. In addition, the endodermal cells that form in gata5 mutants appear to express lower than wild-type levels of endodermal genes such as sox17 and axial/foxA2. Conversely, overexpression of gata5 leads to expanded endodermal gene expression. These data indicate that Gata5 is involved both in the generation of endodermal cells at late blastula stages and in the maintenance of endodermal sox17 expression during gastrulation. We have also analyzed the relationship of Gata5 to other factors involved in endoderm formation. Using complementary mutant and overexpression analyses, we show that Gata5 regulates endoderm formation in cooperation with the Mix-type transcription factor Bon, that Gata5 and Bon function downstream of Nodal signaling, and that cas function is usually required for the activity of Gata5 in endoderm formation. Finally, we show that fau/gata5, bon and cas exhibit dominant genetic interactions providing additional support that they function in the same pathway. Together, these data demonstrate that Gata5 plays multiple roles in endoderm development in zebrafish, and position Gata5 relative to other regulators of endoderm formation.
Collapse
Affiliation(s)
- J F Reiter
- Department of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics and Human Genetics, University of California, San Francisco, San Francisco, CA 94143-0448, USA
| | | | | |
Collapse
|
195
|
Kazanskaya O, Glinka A, Niehrs C. The role of Xenopus dickkopf1 in prechordal plate specification and neural patterning. Development 2000; 127:4981-92. [PMID: 11044411 DOI: 10.1242/dev.127.22.4981] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dickkopf1 (dkk1) encodes a secreted WNT inhibitor expressed in Spemann's organizer, which has been implicated in head induction in Xenopus. Here we have analyzed the role of dkk1 in endomesoderm specification and neural patterning by gain- and loss-of-function approaches. We find that dkk1, unlike other WNT inhibitors, is able to induce functional prechordal plate, which explains its ability to induce secondary heads with bilateral eyes. This may be due to differential WNT inhibition since dkk1, unlike frzb, inhibits Wnt3a signalling. Injection of inhibitory antiDkk1 antibodies reveals that dkk1 is not only sufficient but also required for prechordal plate formation but not for notochord formation. In the neural plate dkk1 is required for anteroposterior and dorsoventral patterning between mes- and telencephalon, where dkk1 promotes anterior and ventral fates. Both the requirement of anterior explants for dkk1 function and their ability to respond to dkk1 terminate at late gastrula stage. Xenopus embryos posteriorized with bFGF, BMP4 and Smads are rescued by dkk1. dkk1 does not interfere with the ability of bFGF to induce its immediate early target gene Xbra, indicating that its effect is indirect. In contrast, there is cross-talk between BMP and WNT signalling, since induction of BMP target genes is sensitive to WNT inhibitors until the early gastrula stage. Embryos treated with retinoic acid (RA) are not rescued by dkk1 and RA affects the central nervous system (CNS) more posterior than dkk1, suggesting that WNTs and retinoids may act to pattern anterior and posterior CNS, respectively, during gastrulation.
Collapse
Affiliation(s)
- O Kazanskaya
- Division of Molecular Embryology, Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| | | | | |
Collapse
|
196
|
Shinya M, Eschbach C, Clark M, Lehrach H, Furutani-Seiki M. Zebrafish Dkk1, induced by the pre-MBT Wnt signaling, is secreted from the prechordal plate and patterns the anterior neural plate. Mech Dev 2000; 98:3-17. [PMID: 11044603 DOI: 10.1016/s0925-4773(00)00433-0] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
mRNA injection into the ventral blastomeres of Xenopus embryos of mRNA encoding Wnt pathway genes induces a secondary axis with complete head structures. To identify target genes of the pre-MBT dorsalization pathway that might be responsible for head formation in zebrafish, we have cloned zebrafish dickkopf1 (dkk1), which is expressed in tissues implicated in head patterning. We found that dkk1 blocks the post-MBT Wnt signaling and dkk1 is a target of the pre-MBT Wnt signaling. Dkk1 overexpression in the prechordal plate suggests that Dkk1, secreted from the prechordal plate, expands the forebrain at the expense of the midbrain in the anterior neural plate. Furthermore, dkk1 acts in parallel to the homeobox gene bozozok and bozozok is required for the maintenance of dkk1 expression. The nodal gene squint is also required for the maintenance of dkk1 expression. Among the mutually dependent target genes of the pre-MBT Wnt signaling, dkk1 plays an important role in patterning the anterior head of zebrafish.
Collapse
Affiliation(s)
- M Shinya
- Abteilung für Entwicklungsbiologie, Institut für Biologie I, Universität Freiburg, D-79104, Freiburg, Germany
| | | | | | | | | |
Collapse
|
197
|
Concha ML, Burdine RD, Russell C, Schier AF, Wilson SW. A nodal signaling pathway regulates the laterality of neuroanatomical asymmetries in the zebrafish forebrain. Neuron 2000; 28:399-409. [PMID: 11144351 DOI: 10.1016/s0896-6273(00)00120-3] [Citation(s) in RCA: 190] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Animals show behavioral asymmetries that are mediated by differences between the left and right sides of the brain. We report that the laterality of asymmetric development of the diencephalic habenular nuclei and the photoreceptive pineal complex is regulated by the Nodal signaling pathway and by midline tissue. Analysis of zebrafish embryos with compromised Nodal signaling reveals an early role for this pathway in the repression of asymmetrically expressed genes in the diencephalon. Later signaling mediated by the EGF-CFC protein One-eyed pinhead and the forkhead transcription factor Schmalspur is required to overcome this repression. When expression of Nodal pathway genes is either absent or symmetrical, neuroanatomical asymmetries are still established but are randomized. This indicates that Nodal signaling is not required for asymmetric development per se but is essential to determine the laterality of the asymmetry.
Collapse
Affiliation(s)
- M L Concha
- Department of Anatomy and Developmental Biology, University College London, United Kingdom
| | | | | | | | | |
Collapse
|
198
|
Neidert AH, Panopoulou G, Langeland JA. Amphioxus goosecoid and the evolution of the head organizer and prechordal plate. Evol Dev 2000; 2:303-10. [PMID: 11256375 DOI: 10.1046/j.1525-142x.2000.00073.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The organizer is a central feature of vertebrate embryogenesis and is functionally subdivided into the head organizer that gives rise primarily to the prechordal plate and induces forebrain structures, and the trunk/tail organizer that gives rise primarily to the notochord and induces more posterior structures. Goosecoid(gsc) encodes a homeodomain-containing transcription factor that is expressed in the vertebrate head organizer and prechordal plate, and can induce a secondary axis when expressed ectopically. To investigate the evolution of the vertebrate head organizer and prechordal plate, we have cloned and characterized a gsc homolog from the cephalochordate amphioxus. Amphioxus, it is important to note, lacks a prechordal plate in that the notochord extends to the extreme anterior end of the animal, and lacks elaborate differentiation of its forebrain. Gsc expression in amphioxus is initially localized during gastrulation to the mesendodermal layer of the dorsal lip of the blastopore. However, gsc expression in amphioxus is not maintained in anterior axial mesoderm, as is the case with the vertebrate prechordal plate. Rather, gsc is expressed in the dorsal axial mesoderm of the blastopore lip throughout gastrulation, appearing transiently in the presumptive notochord that underlies all regions of the amphioxus brain. The similarities in gsc expression in amphioxus and vertebrates suggest that a primitive version of the head organizer evolved prior to the origin of the vertebrates. The differences in gsc expression can be interpreted either as the loss of the prechordal plate domain in the cephalochordate lineage, or the gain of a distinct gsc-expressing prechordal plate that plays a role in forebrain induction in the vertebrate lineage.
Collapse
Affiliation(s)
- A H Neidert
- Department of Biology, Kalamazoo College, MI 49006-3291, USA
| | | | | |
Collapse
|
199
|
Abstract
Bone morphogenetic proteins (BMP) are members of the TGFbeta superfamily of secreted factors with important regulatory functions during embryogenesis. We have isolated the zebrafish gene, nma, that encodes a protein with high sequence similarity to human NMA and Xenopus Bambi. It is also similar to TGFbeta type I serine/theronine kinase receptors in the extracellular ligand-binding domain but lacks a cytoplasmic kinase domain. During development, nma expression is similar to that of bmp2b and bmp4, and analysis in the dorsalized and ventralized zebrafish mutants swirl and chordino indicates that nma is regulated by BMP signaling. Overexpression of nma during zebrafish and Xenopus development resulted in phenotypes that appear to be based on inhibition of BMP signaling. Biochemically, NMA can associate with TGFbeta type II receptors and bind to TGFbeta ligand. We propose that nma is a BMP-regulated gene whose function is to attenuate BMP signaling during development through interactions with type II receptors and ligands.
Collapse
Affiliation(s)
- M Tsang
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
200
|
Hashimoto H, Yabe T, Hirata T, Shimizu T, Bae Y, Yamanaka Y, Hirano T, Hibi M. Expression of the zinc finger gene fez-like in zebrafish forebrain. Mech Dev 2000; 97:191-5. [PMID: 11025224 DOI: 10.1016/s0925-4773(00)00418-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Anterior-posterior (A-P) patterning in the neuroectoderm is established during gastrulation in zebrafish and amphibians. We isolated a novel zinc-finger gene fez-like (fezl) from zebrafish, which displays sequence similarities to Xenopus Fez. The fezl transcripts were detected in the anterior edge of neuroectoderm, the prospective dorsal forebrain, from the late gastrula (80% epiboly stage) to the mid-segmentation period. fezl was also expressed in the ventral forebrain overlying the prechordal plate at these stages. The expression of fezl was enhanced in embryos expressing the Wnt inhibitor Dkk1 and reduced in embryos expressing Wnt8b. The expression in the ventral forebrain was eliminated in the one-eyed pinhead mutant and the antivin RNA-injected embryos, which lack the prechordal plate. Radiation hybrid mapping revealed that the fezl gene is localized to linkage group 11.
Collapse
Affiliation(s)
- H Hashimoto
- Division of Molecular Oncology (C7), Biomedical Research Center, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, 565-0871, Osaka, Japan
| | | | | | | | | | | | | | | |
Collapse
|