151
|
Vega-López A, Pagadala NS, López-Tapia BP, Madera-Sandoval RL, Rosales-Cruz E, Nájera-Martínez M, Reyes-Maldonado E. Is related the hematopoietic stem cells differentiation in the Nile tilapia with GABA exposure? FISH & SHELLFISH IMMUNOLOGY 2019; 93:801-814. [PMID: 31419534 DOI: 10.1016/j.fsi.2019.08.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 08/07/2019] [Accepted: 08/12/2019] [Indexed: 06/10/2023]
Abstract
The signaling mediated by small non-proteinogenic molecules, which probably have the capacity to serve as a bridge amongst complex systems is one of the most exiting challenges for the study. In the current report, stem cells differentiation of the immune system in Nile tilapia treated with sub-basal doses of GABA evaluated as c-kit+ and Sca-1+ cells disappearance on pronephros, thymus, spleen and peripheral blood mononuclear cells by flow cytometry was assessed. Explanation of biological response was performed by molecular docking approach and multiparametric analysis. Stem cell differentiation depends on a delicate balance of negative and positive interactions of this neurotransmitter with receptors and transcription factors involved in this process. This in turn depends on the type of interaction with hematopoietic niche to differentiate into primordial, early or late hematopoiesis as well as from the dose delivery. In fish treated with the low doses of GABA (0.1% over basal value) primordial hematopoiesis is regulated by interaction of glutamate (Glu) with the Ly-6 antigen. Early hematopoiesis was influenced by the bond of GABA near or adjacent to turns of FLTR3-Ig-IV domain. During late hematopoiesis, negative regulation by structural modifications on PU.1/IRF-4 complex, IL-7Rα and GM-CSFR mainly prevails. Results of molecular docking were in agreement with the percentages of the main blood cells lineages estimated in pronephros by flow cytometry. Current study provides the first evidences about the role of inhibitory and excitatory neurotransmitters such as GABA and Glu, respectively with the most transcriptional factors and receptors involved on hematopoiesis in adult Nile tilapia.
Collapse
Affiliation(s)
- Armando Vega-López
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Toxicología Ambiental, Av. Wilfrido Massieu S/n, Unidad Profesional Zacatenco, México, CP 07738, Mexico.
| | | | - Brenda P López-Tapia
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Toxicología Ambiental, Av. Wilfrido Massieu S/n, Unidad Profesional Zacatenco, México, CP 07738, Mexico
| | - Ruth L Madera-Sandoval
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Toxicología Ambiental, Av. Wilfrido Massieu S/n, Unidad Profesional Zacatenco, México, CP 07738, Mexico
| | - Erika Rosales-Cruz
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Citología, Carpio y Plan de Ayala S/n, Casco de Santo Tomás, México, CP 11340, Mexico
| | - Minerva Nájera-Martínez
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Toxicología Ambiental, Av. Wilfrido Massieu S/n, Unidad Profesional Zacatenco, México, CP 07738, Mexico
| | - Elba Reyes-Maldonado
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Citología, Carpio y Plan de Ayala S/n, Casco de Santo Tomás, México, CP 11340, Mexico
| |
Collapse
|
152
|
Popescu DM, Botting RA, Stephenson E, Green K, Webb S, Jardine L, Calderbank EF, Polanski K, Goh I, Efremova M, Acres M, Maunder D, Vegh P, Gitton Y, Park JE, Vento-Tormo R, Miao Z, Dixon D, Rowell R, McDonald D, Fletcher J, Poyner E, Reynolds G, Mather M, Moldovan C, Mamanova L, Greig F, Young MD, Meyer KB, Lisgo S, Bacardit J, Fuller A, Millar B, Innes B, Lindsay S, Stubbington MJT, Kowalczyk MS, Li B, Ashenberg O, Tabaka M, Dionne D, Tickle TL, Slyper M, Rozenblatt-Rosen O, Filby A, Carey P, Villani AC, Roy A, Regev A, Chédotal A, Roberts I, Göttgens B, Behjati S, Laurenti E, Teichmann SA, Haniffa M. Decoding human fetal liver haematopoiesis. Nature 2019; 574:365-371. [PMID: 31597962 PMCID: PMC6861135 DOI: 10.1038/s41586-019-1652-y] [Citation(s) in RCA: 336] [Impact Index Per Article: 67.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 09/09/2019] [Indexed: 11/09/2022]
Abstract
Definitive haematopoiesis in the fetal liver supports self-renewal and differentiation of haematopoietic stem cells and multipotent progenitors (HSC/MPPs) but remains poorly defined in humans. Here, using single-cell transcriptome profiling of approximately 140,000 liver and 74,000 skin, kidney and yolk sac cells, we identify the repertoire of human blood and immune cells during development. We infer differentiation trajectories from HSC/MPPs and evaluate the influence of the tissue microenvironment on blood and immune cell development. We reveal physiological erythropoiesis in fetal skin and the presence of mast cells, natural killer and innate lymphoid cell precursors in the yolk sac. We demonstrate a shift in the haemopoietic composition of fetal liver during gestation away from being predominantly erythroid, accompanied by a parallel change in differentiation potential of HSC/MPPs, which we functionally validate. Our integrated map of fetal liver haematopoiesis provides a blueprint for the study of paediatric blood and immune disorders, and a reference for harnessing the therapeutic potential of HSC/MPPs.
Collapse
Affiliation(s)
- Dorin-Mirel Popescu
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Rachel A Botting
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Emily Stephenson
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Kile Green
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Simone Webb
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Laura Jardine
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Emily F Calderbank
- Department of Haematology and Wellcome and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Krzysztof Polanski
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Issac Goh
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Mirjana Efremova
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Meghan Acres
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Daniel Maunder
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Peter Vegh
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Yorick Gitton
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Jong-Eun Park
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Roser Vento-Tormo
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Zhichao Miao
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge, UK
| | - David Dixon
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Rachel Rowell
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - David McDonald
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - James Fletcher
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Elizabeth Poyner
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Gary Reynolds
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Michael Mather
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Corina Moldovan
- Department of Pathology, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Lira Mamanova
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Frankie Greig
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Matthew D Young
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Kerstin B Meyer
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Steven Lisgo
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Jaume Bacardit
- School of Computing, Newcastle University, Newcastle upon Tyne, UK
| | - Andrew Fuller
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Ben Millar
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Barbara Innes
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Susan Lindsay
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | | | - Monika S Kowalczyk
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Bo Li
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Data Sciences Platform, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Orr Ashenberg
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Marcin Tabaka
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Danielle Dionne
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Timothy L Tickle
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Haematology Department, Royal Victoria Infirmary, Newcastle-upon-Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Michal Slyper
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | | | - Andrew Filby
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Peter Carey
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Alexandra-Chloé Villani
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
- Data Sciences Platform, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Anindita Roy
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Howard Hughes Medical Institute, Koch Institute of Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alain Chédotal
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Irene Roberts
- Department of Paediatrics, University of Oxford, Oxford, UK
- MRC Molecular Haematology Unit and Department of Paediatrics, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
- BRC Blood Theme, NIHR Oxford Biomedical Centre, Oxford, UK
| | - Berthold Göttgens
- Department of Haematology and Wellcome and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Sam Behjati
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.
- Department of Paediatrics, University of Cambridge, Cambridge, UK.
| | - Elisa Laurenti
- Department of Haematology and Wellcome and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
| | - Sarah A Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.
- Theory of Condensed Matter Group, Cavendish Laboratory/Department of Physics, University of Cambridge, Cambridge, UK.
| | - Muzlifah Haniffa
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK.
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.
- Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
| |
Collapse
|
153
|
Manca R, Glomski C, Pica A. Hematopoietic stem cells debut in embryonic lymphomyeloid tissues of elasmobranchs. Eur J Histochem 2019; 63:3060. [PMID: 31577110 PMCID: PMC6778817 DOI: 10.4081/ejh.2019.3060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/21/2019] [Indexed: 12/23/2022] Open
Abstract
The evolutionary initiation of the appearance in lymphomyeloid tissue of the hemopoietic stem cell in the earliest (most primitive) vertebrate model, i.e. the elasmobranch (chondroichthyan) Torpedo marmorata Risso, has been studied. The three consecutive developmental stages of torpedo embryos were obtained by cesarean section from a total of six pregnant torpedoes. Lymphomyeloid tissue was identified in the Leydig organ and epigonal tissue. The sections were treated with monoclonal anti-CD34 and anti-CD38 antibodies to detect hematopoietic stem cells. At stage I (2-cm-long embryos with external gills) and at stage II (3-4 cm-long embryos with a discoidal shape and internal gills), some lymphoid-like cells that do not demonstrate any immunolabeling for these antibodies are present. Neither CD34+ nor CD38+ cells are identifiable in lymphomyeloid tissue of stage I and stage II embryos, while a CD34+CD38- cell was identified in the external yolk sac of stage II embryo. The stage III (10-11-cm-long embryos), the lymphomyeloid tissue contained four cell populations, respectively CD34+CD38-, CD34+CD38+, CD34-CD38+, and CD34-CD38- cells. The spleen and lymphomyeloid tissue are the principal sites for the development of hematopoietic progenitors in embryonic Torpedo marmorata Risso. The results demonstrated that the CD34 expression on hematopoietic progenitor cells and its extraembryonic origin is conserved throughout the vertebrate evolutionary scale.
Collapse
Affiliation(s)
- Rosa Manca
- Department of Biology, University of Naples Federico II.
| | | | | |
Collapse
|
154
|
Tracing the first hematopoietic stem cell generation in human embryo by single-cell RNA sequencing. Cell Res 2019; 29:881-894. [PMID: 31501518 PMCID: PMC6888893 DOI: 10.1038/s41422-019-0228-6] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 08/13/2019] [Indexed: 12/20/2022] Open
Abstract
Tracing the emergence of the first hematopoietic stem cells (HSCs) in human embryos, particularly the scarce and transient precursors thereof, is so far challenging, largely due to the technical limitations and the material rarity. Here, using single-cell RNA sequencing, we constructed the first genome-scale gene expression landscape covering the entire course of endothelial-to-HSC transition during human embryogenesis. The transcriptomically defined HSC-primed hemogenic endothelial cells (HECs) were captured at Carnegie stage (CS) 12–14 in an unbiased way, showing an unambiguous feature of arterial endothelial cells (ECs) with the up-regulation of RUNX1, MYB and ANGPT1. Importantly, subcategorizing CD34+CD45− ECs into a CD44+ population strikingly enriched HECs by over 10-fold. We further mapped the developmental path from arterial ECs via HSC-primed HECs to hematopoietic stem progenitor cells, and revealed a distinct expression pattern of genes that were transiently over-represented upon the hemogenic fate choice of arterial ECs, including EMCN, PROCR and RUNX1T1. We also uncovered another temporally and molecularly distinct intra-embryonic HEC population, which was detected mainly at earlier CS 10 and lacked the arterial feature. Finally, we revealed the cellular components of the putative aortic niche and potential cellular interactions acting on the HSC-primed HECs. The cellular and molecular programs that underlie the generation of the first HSCs from HECs in human embryos, together with the ability to distinguish the HSC-primed HECs from others, will shed light on the strategies for the production of clinically useful HSCs from pluripotent stem cells.
Collapse
|
155
|
Ghosn E, Yoshimoto M, Nakauchi H, Weissman IL, Herzenberg LA. Hematopoietic stem cell-independent hematopoiesis and the origins of innate-like B lymphocytes. Development 2019; 146:146/15/dev170571. [PMID: 31371526 DOI: 10.1242/dev.170571] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The current paradigm that a single long-term hematopoietic stem cell can regenerate all components of the mammalian immune system has been challenged by recent findings in mice. These findings show that adult tissue-resident macrophages and innate-like lymphocytes develop early in fetal hematopoiesis from progenitors that emerge prior to, and apparently independently of, conventional long-term hematopoietic stem cells. Here, we discuss these recent findings, which show that an early and distinct wave of hematopoiesis occurs for all major hematopoietic lineages. These data provide evidence that fetal hematopoietic progenitors not derived from the bona fide long-term hematopoietic stem cells give rise to tissue-resident immune cells that persist throughout adulthood. We also discuss recent insights into B lymphocyte development and attempt to synthesize seemingly contradictory recent findings on the origins of innate-like B-1a lymphocytes during fetal hematopoiesis.
Collapse
Affiliation(s)
- Eliver Ghosn
- Departments of Medicine and Pediatrics, Lowance Center for Human Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Momoko Yoshimoto
- Center for Stem Cell and Regenerative Medicine, Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Hiromitsu Nakauchi
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Irving L Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Leonore A Herzenberg
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
156
|
Wilkinson AC, Ryan DJ, Kucinski I, Wang W, Yang J, Nestorowa S, Diamanti E, Tsang JCH, Wang J, Campos LS, Yang F, Fu B, Wilson N, Liu P, Gottgens B. Expanded potential stem cell media as a tool to study human developmental hematopoiesis in vitro. Exp Hematol 2019; 76:1-12.e5. [PMID: 31326613 PMCID: PMC6859476 DOI: 10.1016/j.exphem.2019.07.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 01/05/2023]
Abstract
Pluripotent stem cell (PSC) differentiation in vitro represents a powerful and tractable model to study mammalian development and an unlimited source of cells for regenerative medicine. Within hematology, in vitro PSC hematopoiesis affords novel insights into blood formation and represents an exciting potential approach to generate hematopoietic and immune cell types for transplantation and transfusion. Most studies to date have focused on in vitro hematopoiesis from mouse PSCs and human PSCs. However, differences in mouse and human PSC culture protocols have complicated the translation of discoveries between these systems. We recently developed a novel chemical media formulation, expanded potential stem cell medium (EPSCM), that maintains mouse PSCs in a unique cellular state and extraembryonic differentiation capacity. Herein, we describe how EPSCM can be directly used to stably maintain human PSCs. We further demonstrate that human PSCs maintained in EPSCM can spontaneously form embryoid bodies and undergo in vitro hematopoiesis using a simple differentiation protocol, similar to mouse PSC differentiation. EPSCM-maintained human PSCs generated at least two hematopoietic cell populations, which displayed distinct transcriptional profiles by RNA-sequencing (RNA-seq) analysis. EPSCM also supports gene targeting using homologous recombination, affording generation of an SPI1 (PU.1) reporter PSC line to study and track in vitro hematopoiesis. EPSCM therefore provides a useful tool not only to study pluripotency but also hematopoietic cell specification and developmental-lineage commitment.
Collapse
Affiliation(s)
- Adam C Wilkinson
- Department of Haematology, Wellcome & MRC Cambridge Stem Cell Institute, Cambridge, UK
| | - David J Ryan
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Iwo Kucinski
- Department of Haematology, Wellcome & MRC Cambridge Stem Cell Institute, Cambridge, UK
| | - Wei Wang
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Jian Yang
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Sonia Nestorowa
- Department of Haematology, Wellcome & MRC Cambridge Stem Cell Institute, Cambridge, UK
| | - Evangelia Diamanti
- Department of Haematology, Wellcome & MRC Cambridge Stem Cell Institute, Cambridge, UK
| | | | - Juexuan Wang
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Lia S Campos
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Fengtang Yang
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Beiyuan Fu
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Nicola Wilson
- Department of Haematology, Wellcome & MRC Cambridge Stem Cell Institute, Cambridge, UK
| | - Pentao Liu
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK; School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, Stem Cell and Regenerative Medicine Consortium, University of Hong Kong, Hong Kong, China
| | - Berthold Gottgens
- Department of Haematology, Wellcome & MRC Cambridge Stem Cell Institute, Cambridge, UK.
| |
Collapse
|
157
|
Rybtsov SA, Lagarkova MA. Development of Hematopoietic Stem Cells in the Early Mammalian Embryo. BIOCHEMISTRY (MOSCOW) 2019; 84:190-204. [PMID: 31221058 DOI: 10.1134/s0006297919030027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Hematopoietic stem cells (HSCs) were the first stem cells discovered in humans. A. A. Maximov proposed an idea of blood stem cells that was confirmed later by McCulloch and Till experimentally. HSCs were the first type of stem cells to be used in clinics and ever since are being continually used. Indeed, a single HSC transplanted intravenously is capable of giving rise to all types of blood cells. In recent decades, human and animal HSC origin, development, hierarchy, and gene signature have been extensively investigated. Due to the constant need for donor blood and HSCs suitable for therapeutic transplants, the experimental possibility of obtaining HSCs in vitro by directed differentiation of pluripotent stem cells (PSCs) has been considered in recent years. However, despite all efforts, it is not yet possible to reproduce in vitro the ontogenesis of HSCs and obtain cells capable of long-term maintenance of hematopoiesis. The study of hematopoiesis in embryonic development facilitates the establishment and improvement of protocols for deriving blood cells from PCSs and allows a better understanding of the pathogenesis of various types of proliferative blood diseases, anemia, and immunodeficiency. This review focuses on the development of hematopoiesis in mammalian ontogenesis.
Collapse
Affiliation(s)
- S A Rybtsov
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, EH16 4U, United Kingdom.
| | - M A Lagarkova
- Federal Research and Clinical Centre of Physical-Chemical Medicine, Federal Medical-Biological Agency, Moscow, 119435, Russia.
| |
Collapse
|
158
|
Human Hematopoietic Stem Cells: Concepts and Perspectives on the Biology and Use of Fresh Versus In Vitro–Generated Cells for Therapeutic Applications. CURRENT STEM CELL REPORTS 2019. [DOI: 10.1007/s40778-019-00162-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
159
|
Ciau-Uitz A, Patient R. Gene Regulatory Networks Governing the Generation and Regeneration of Blood. J Comput Biol 2019; 26:719-725. [DOI: 10.1089/cmb.2019.0114] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Aldo Ciau-Uitz
- Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Roger Patient
- Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
160
|
Georgomanoli M, Papapetrou EP. Modeling blood diseases with human induced pluripotent stem cells. Dis Model Mech 2019; 12:12/6/dmm039321. [PMID: 31171568 PMCID: PMC6602313 DOI: 10.1242/dmm.039321] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) are derived from somatic cells through a reprogramming process, which converts them to a pluripotent state, akin to that of embryonic stem cells. Over the past decade, iPSC models have found increasing applications in the study of human diseases, with blood disorders featuring prominently. Here, we discuss methodological aspects pertaining to iPSC generation, hematopoietic differentiation and gene editing, and provide an overview of uses of iPSCs in modeling the cell and gene therapy of inherited genetic blood disorders, as well as their more recent use as models of myeloid malignancies. We also discuss the strengths and limitations of iPSCs compared to model organisms and other cellular systems commonly used in hematology research.
Collapse
Affiliation(s)
- Maria Georgomanoli
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Eirini P Papapetrou
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
161
|
Wang Y, Gao J, Wang H, Wang M, Wen Y, Guo J, Su P, Shi L, Zhou W, Zhou J. R-spondin2 promotes hematopoietic differentiation of human pluripotent stem cells by activating TGF beta signaling. Stem Cell Res Ther 2019; 10:136. [PMID: 31109354 PMCID: PMC6528258 DOI: 10.1186/s13287-019-1242-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/28/2019] [Accepted: 04/22/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Human pluripotent stem cells (hPSCs) provide supplies of potential functional blood cells to suffice the clinical needs. However, the underlying mechanism of generating genuine hematopoietic stem cells (HSCs) and functional blood cells from hPSCs remains largely elusive. METHOD In this study, we supplied R-spondin2 exogenously during hematopoietic differentiation of hPSCs under various culture conditions and analyzed the production of hematopoietic progenitor cells (HPCs). We further added R-spondin2 at different temporal window to pin down the stage at which R-spondin2 conferred its effects. RNA-SEQ-based gene profiling was applied to analyze genes with significantly altered expression and altered signaling pathways. Finally, megakaryocytic differentiation and platelet generation were determined using HPCs with R-spondin2 treatment. RESULTS We found that R-spondin2 generated by hematopoiesis-supporting stromal cells significantly enhances hematopoietic differentiation of hPSCs. Supply of R-spondin2 exogenously at the early stage of mesoderm differentiation elevates the generation of APLNR+ cells. Furthermore, early treatment of cells with R-spondin2 enables us to increase the output of hPSC-derived platelet-like particles (PLPs) with intact function. At the mechanistic level, R-spondin2 activates TGF-β signaling to promote the hematopoietic differentiation. CONCLUSIONS Our results demonstrate that a transient supply of R-spondin2 can efficiently promote hematopoietic development by activating both WNT and TGF-β signaling. R-spondin2 can be therefore used as a powerful tool for large-scale generation of functional hematopoietic progenitors and platelets for translational medicine.
Collapse
Affiliation(s)
- Yv Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Tianjin, 300020, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin, 300020, China
| | - Jie Gao
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Tianjin, 300020, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin, 300020, China
| | - Hongtao Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Tianjin, 300020, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin, 300020, China
| | - Mengge Wang
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Tianjin, 300020, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin, 300020, China
| | - Yuqi Wen
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Tianjin, 300020, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin, 300020, China
| | - Jiaojiao Guo
- School of Basic Medical Science and Cancer Research Institute, Central South University, Changsha, 410013, China
| | - Pei Su
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Tianjin, 300020, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin, 300020, China
| | - Lihong Shi
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Tianjin, 300020, China.,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin, 300020, China
| | - Wen Zhou
- School of Basic Medical Science and Cancer Research Institute, Central South University, Changsha, 410013, China.
| | - Jiaxi Zhou
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Tianjin, 300020, China. .,Center for Stem Cell Medicine, Chinese Academy of Medical Sciences and Department of Stem Cells and Regenerative Medicine, Peking Union Medical College, Tianjin, 300020, China.
| |
Collapse
|
162
|
Understanding the Journey of Human Hematopoietic Stem Cell Development. Stem Cells Int 2019; 2019:2141475. [PMID: 31198425 PMCID: PMC6526542 DOI: 10.1155/2019/2141475] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 04/11/2019] [Indexed: 12/17/2022] Open
Abstract
Hematopoietic stem cells (HSCs) surface during embryogenesis leading to the genesis of the hematopoietic system, which is vital for immune function, homeostasis balance, and inflammatory responses in the human body. Hematopoiesis is the process of blood cell formation, which initiates from hematopoietic stem/progenitor cells (HSPCs) and is responsible for the generation of all adult blood cells. With their self-renewing and pluripotent properties, human pluripotent stem cells (hPSCs) provide an unprecedented opportunity to create in vitro models of differentiation that will revolutionize our understanding of human development, especially of the human blood system. The utilization of hPSCs provides newfound approaches for studying the origins of human blood cell diseases and generating progenitor populations for cell-based treatments. Current shortages in our knowledge of adult HSCs and the molecular mechanisms that control hematopoietic development in physiological and pathological conditions can be resolved with better understanding of the regulatory networks involved in hematopoiesis, their impact on gene expression, and further enhance our ability to develop novel strategies of clinical importance. In this review, we delve into the recent advances in the understanding of the various cellular and molecular pathways that lead to blood development from hPSCs and examine the current knowledge of human hematopoietic development. We also review how in vitro differentiation of hPSCs can undergo hematopoietic transition and specification, including major subtypes, and consider techniques and protocols that facilitate the generation of hematopoietic stem cells.
Collapse
|
163
|
Rameshwar P. VCAM-1+ macrophage subset as 'educators' in fetal liver for transition to definitive hematopoiesis. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:187. [PMID: 31205905 DOI: 10.21037/atm.2019.03.48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
164
|
Global MicroRNA Profiling Uncovers miR-206 as a Negative Regulator of Hematopoietic Commitment in Human Pluripotent Stem Cells. Int J Mol Sci 2019; 20:ijms20071737. [PMID: 30965622 PMCID: PMC6479521 DOI: 10.3390/ijms20071737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/02/2019] [Accepted: 04/06/2019] [Indexed: 02/08/2023] Open
Abstract
Although human pluripotent stem cells (hPSCs) can theoretically differentiate into any cell type, their ability to produce hematopoietic cells is highly variable from one cell line to another. The underlying mechanisms of this heterogeneity are not clearly understood. Here, using a whole miRNome analysis approach in hPSCs, we discovered that their hematopoietic competency was associated with the expression of several miRNAs and conversely correlated to that of miR-206 specifically. Lentiviral-based miR-206 ectopic expression in H1 hematopoietic competent embryonic stem (ES) cells markedly impaired their differentiation toward the blood lineage. Integrative bioinformatics identified a potential miR-206 target gene network which included hematopoietic master regulators RUNX1 and TAL1. This work sheds light on the critical role of miR-206 in the generation of blood cells off hPSCs. Our results pave the way for future genetic manipulation of hPSCs aimed at increasing their blood regenerative potential and designing better protocols for the generation of bona fide hPSC-derived hematopoietic stem cells.
Collapse
|
165
|
Easterbrook J, Rybtsov S, Gordon-Keylock S, Ivanovs A, Taoudi S, Anderson RA, Medvinsky A. Analysis of the Spatiotemporal Development of Hematopoietic Stem and Progenitor Cells in the Early Human Embryo. Stem Cell Reports 2019; 12:1056-1068. [PMID: 30956115 PMCID: PMC6525107 DOI: 10.1016/j.stemcr.2019.03.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/09/2019] [Accepted: 03/11/2019] [Indexed: 02/02/2023] Open
Abstract
Definitive hematopoietic stem cells (HSCs) first emerge in the aorta-gonad-mesonephros (AGM) region in both mice and humans. An ex vivo culture approach has enabled recapitulation and analysis of murine HSC development. Knowledge of early human HSC development is hampered by scarcity of tissue: analysis of both CFU-C and HSC development in the human embryo is limited. Here, we characterized the spatial distribution and temporal kinetics of CFU-C development within early human embryonic tissues. We then sought to adapt the murine ex vivo culture system to recapitulate human HSC development. We show robust expansion of CFU-Cs and maintenance, but no significant expansion, of human HSCs in culture. Furthermore, we demonstrate that HSCs emerge predominantly in the middle section of the dorsal aorta in our culture system. We conclude that there are important differences between early mouse and human hematopoiesis, which currently hinder the quest to recapitulate human HSC development ex vivo. Ex vivo culture efficiently expands CFU-Cs derived from human embryonic tissue Human AGM-derived HSCs can be maintained in explant culture Human HSCs emerge predominantly in the middle section of the dorsal aorta
Collapse
Affiliation(s)
- Jennifer Easterbrook
- Ontogeny of Haematopoietic Stem Cells Group, Institute for Stem Cell Research, MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Stanislav Rybtsov
- Ontogeny of Haematopoietic Stem Cells Group, Institute for Stem Cell Research, MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Sabrina Gordon-Keylock
- Ontogeny of Haematopoietic Stem Cells Group, Institute for Stem Cell Research, MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Andrejs Ivanovs
- Ontogeny of Haematopoietic Stem Cells Group, Institute for Stem Cell Research, MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK; Institute of Anatomy and Anthropology, Riga Stradiņš University, Riga 1007, Latvia
| | - Samir Taoudi
- Molecular Medicine Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052 Australia; Department of Medical Biology, University of Melbourne, Melbourne, VIC 3052, Australia; Cancer and Haematology Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia
| | - Richard A Anderson
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Alexander Medvinsky
- Ontogeny of Haematopoietic Stem Cells Group, Institute for Stem Cell Research, MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK.
| |
Collapse
|
166
|
Zhang Y, Clay D, Mitjavila-Garcia MT, Alama A, Mennesson B, Berseneff H, Louache F, Bennaceur-Griscelli A, Oberlin E. VE-Cadherin and ACE Co-Expression Marks Highly Proliferative Hematopoietic Stem Cells in Human Embryonic Liver. Stem Cells Dev 2019; 28:165-185. [PMID: 30426841 DOI: 10.1089/scd.2018.0154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Despite advances to engineer transplantable hematopoietic stem and progenitor cells (HSPCs) for research and therapy, an in-depth characterization of the developing human hematopoietic system is still lacking. The human embryonic liver is at the crossroad of several hematopoietic sites and harbors a complex hematopoietic hierarchy, including the first actively dividing HSPCs that will further seed the definitive hematopoietic organs. However, few are known about the phenotypic and functional HSPC organization operating at these stages of development. In this study, using a combination of four endothelial and hematopoietic surface markers, that is, the endothelial-specific marker vascular endothelial-cadherin (Cdh5, CD144), the pan-leukocyte antigen CD45, the hemato-endothelial marker CD34, and the angiotensin-converting enzyme (ACE, CD143), we identified distinct HSPC subsets, and among them, a population co-expressing the four markers that uniquely harbored an outstanding proliferation potential both ex vivo and in vivo. Moreover, we traced back this population to the yolk sac (YS) and aorta-gonad-mesonephros (AGM) sites of hematopoietic emergence. Taken together, our data will help to identify human HSPC self-renewal and amplification mechanisms for future cell therapies.
Collapse
Affiliation(s)
- Yanyan Zhang
- 1 Inserm, UMR 1170, Villejuif, France.,2 Paris-Saclay University, Villejuif, France.,3 Gustave Roussy, Villejuif, France
| | - Denis Clay
- 4 Inserm UMS 33, Villejuif, France.,5 André Lwoff Institute (IFR89), Villejuif, France.,6 Paris-Saclay University, Villejuif, France
| | - Maria Teresa Mitjavila-Garcia
- 5 André Lwoff Institute (IFR89), Villejuif, France.,6 Paris-Saclay University, Villejuif, France.,7 Inserm UMR 935, Villejuif, France
| | - Aurélie Alama
- 5 André Lwoff Institute (IFR89), Villejuif, France.,6 Paris-Saclay University, Villejuif, France.,7 Inserm UMR 935, Villejuif, France
| | - Benoit Mennesson
- 8 Obstetrics and Gynecology Department, René-Dubos Hospital, Pontoise, France
| | - Helene Berseneff
- 8 Obstetrics and Gynecology Department, René-Dubos Hospital, Pontoise, France
| | - Fawzia Louache
- 1 Inserm, UMR 1170, Villejuif, France.,2 Paris-Saclay University, Villejuif, France.,3 Gustave Roussy, Villejuif, France
| | - Annelise Bennaceur-Griscelli
- 5 André Lwoff Institute (IFR89), Villejuif, France.,6 Paris-Saclay University, Villejuif, France.,7 Inserm UMR 935, Villejuif, France
| | - Estelle Oberlin
- 5 André Lwoff Institute (IFR89), Villejuif, France.,6 Paris-Saclay University, Villejuif, France.,7 Inserm UMR 935, Villejuif, France
| |
Collapse
|
167
|
Slukvin II, Uenishi GI. Arterial identity of hemogenic endothelium: a key to unlock definitive hematopoietic commitment in human pluripotent stem cell cultures. Exp Hematol 2018; 71:3-12. [PMID: 30500414 DOI: 10.1016/j.exphem.2018.11.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/09/2018] [Accepted: 11/21/2018] [Indexed: 02/06/2023]
Abstract
Human pluripotent stem cells (hPSCs) have been suggested as a potential source for the de novo production of blood cells for transfusion, immunotherapies, and transplantation. However, even with advanced hematopoietic differentiation methods, the primitive and myeloid-restricted waves of hematopoiesis dominate in hPSC differentiation cultures, whereas cell surface markers to distinguish these waves of hematopoiesis from lympho-myeloid hematopoiesis remain unknown. In the embryo, hematopoietic stem cells (HSCs) arise from hemogenic endothelium (HE) lining arteries, but not veins. This observation led to a long-standing hypothesis that arterial specification is an essential prerequisite to initiate the HSC program. It has also been established that lymphoid potential in the yolk sac and extraembryonic vasculature is mostly confined to arteries, whereas myeloid-restricted hematopoiesis is not specific to arterial vessels. Here, we review how the link between arterialization and the subsequent definitive multilineage hematopoietic program can be exploited to identify HE enriched in lymphoid progenitors and aid in in vitro approaches to enhance the production of lymphoid cells and potentially HSCs from hPSCs. We also discuss alternative models of hematopoietic specification at arterial sites and recent advances in our understanding of hematopoietic development and the production of engraftable hematopoietic cells from hPSCs.
Collapse
Affiliation(s)
- Igor I Slukvin
- National Primate Research Center, University of Wisconsin Graduate School, Madison, WI, USA; Department of Pathology and Laboratory Medicine, University of Wisconsin Medical School, Madison, WI, USA; Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| | - Gene I Uenishi
- National Primate Research Center, University of Wisconsin Graduate School, Madison, WI, USA
| |
Collapse
|
168
|
Garcia-Alegria E, Menegatti S, Fadlullah MZH, Menendez P, Lacaud G, Kouskoff V. Early Human Hemogenic Endothelium Generates Primitive and Definitive Hematopoiesis In Vitro. Stem Cell Reports 2018; 11:1061-1074. [PMID: 30449319 PMCID: PMC6234921 DOI: 10.1016/j.stemcr.2018.09.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 09/24/2018] [Accepted: 09/25/2018] [Indexed: 01/11/2023] Open
Abstract
The differentiation of human embryonic stem cells (hESCs) to hematopoietic lineages initiates with the specification of hemogenic endothelium, a transient specialized endothelial precursor of all blood cells. This in vitro system provides an invaluable model to dissect the emergence of hematopoiesis in humans. However, the study of hematopoiesis specification is hampered by a lack of consensus in the timing of hemogenic endothelium analysis and the full hematopoietic potential of this population. Here, our data reveal a sharp decline in the hemogenic potential of endothelium populations isolated over the course of hESC differentiation. Furthermore, by tracking the dynamic expression of CD31 and CD235a at the onset of hematopoiesis, we identified three populations of hematopoietic progenitors, representing primitive and definitive subsets that all emerge from the earliest specified hemogenic endothelium. Our data establish that hemogenic endothelium populations endowed with primitive and definitive hematopoietic potential are specified simultaneously from the mesoderm in differentiating hESCs.
Collapse
Affiliation(s)
- Eva Garcia-Alegria
- Developmental Haematopoiesis Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Sara Menegatti
- Developmental Haematopoiesis Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Muhammad Z H Fadlullah
- Stem Cell Biology Group, CRUK Manchester Institute, The University of Manchester, Manchester M20 4BX, UK
| | - Pablo Menendez
- Josep Carreras Leukemia Research Institute and Department of Biomedicine, School of Medicine, University of Barcelona, Barcelona, Spain; Instituciò Catalana Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Georges Lacaud
- Stem Cell Biology Group, CRUK Manchester Institute, The University of Manchester, Manchester M20 4BX, UK.
| | - Valerie Kouskoff
- Developmental Haematopoiesis Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK.
| |
Collapse
|
169
|
Argentati C, Morena F, Bazzucchi M, Armentano I, Emiliani C, Martino S. Adipose Stem Cell Translational Applications: From Bench-to-Bedside. Int J Mol Sci 2018; 19:E3475. [PMID: 30400641 PMCID: PMC6275042 DOI: 10.3390/ijms19113475] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/22/2018] [Accepted: 11/01/2018] [Indexed: 02/08/2023] Open
Abstract
During the last five years, there has been a significantly increasing interest in adult adipose stem cells (ASCs) as a suitable tool for translational medicine applications. The abundant and renewable source of ASCs and the relatively simple procedure for cell isolation are only some of the reasons for this success. Here, we document the advances in the biology and in the innovative biotechnological applications of ASCs. We discuss how the multipotential property boosts ASCs toward mesenchymal and non-mesenchymal differentiation cell lineages and how their character is maintained even if they are combined with gene delivery systems and/or biomaterials, both in vitro and in vivo.
Collapse
Affiliation(s)
- Chiara Argentati
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy.
| | - Francesco Morena
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy.
| | - Martina Bazzucchi
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy.
| | - Ilaria Armentano
- Department of Ecological and Biological Sciences, Tuscia University Largo dell'Università, snc, 01100 Viterbo, Italy.
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy.
- CEMIN, Center of Excellence on Nanostructured Innovative Materials, Via del Giochetto, 06126 Perugia, Italy.
| | - Sabata Martino
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via del Giochetto, 06126 Perugia, Italy.
- CEMIN, Center of Excellence on Nanostructured Innovative Materials, Via del Giochetto, 06126 Perugia, Italy.
| |
Collapse
|
170
|
Tremblay M, Sanchez-Ferras O, Bouchard M. GATA transcription factors in development and disease. Development 2018; 145:145/20/dev164384. [DOI: 10.1242/dev.164384] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
ABSTRACT
The GATA family of transcription factors is of crucial importance during embryonic development, playing complex and widespread roles in cell fate decisions and tissue morphogenesis. GATA proteins are essential for the development of tissues derived from all three germ layers, including the skin, brain, gonads, liver, hematopoietic, cardiovascular and urogenital systems. The crucial activity of GATA factors is underscored by the fact that inactivating mutations in most GATA members lead to embryonic lethality in mouse models and are often associated with developmental diseases in humans. In this Primer, we discuss the unique and redundant functions of GATA proteins in tissue morphogenesis, with an emphasis on their regulation of lineage specification and early organogenesis.
Collapse
Affiliation(s)
- Mathieu Tremblay
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal H3A 1A3, Canada
| | - Oraly Sanchez-Ferras
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal H3A 1A3, Canada
| | - Maxime Bouchard
- Goodman Cancer Research Centre and Department of Biochemistry, McGill University, Montreal H3A 1A3, Canada
| |
Collapse
|
171
|
Mechanism of hematopoiesis and vasculogenesis in mouse placenta. Placenta 2018; 69:140-145. [DOI: 10.1016/j.placenta.2018.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 12/20/2022]
|
172
|
Vanuytsel K, Matte T, Leung A, Naing ZH, Morrison T, Chui DHK, Steinberg MH, Murphy GJ. Induced pluripotent stem cell-based mapping of β-globin expression throughout human erythropoietic development. Blood Adv 2018; 2:1998-2011. [PMID: 30108108 PMCID: PMC6093724 DOI: 10.1182/bloodadvances.2018020560] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/09/2018] [Indexed: 02/01/2023] Open
Abstract
Robust β-globin expression in erythroid cells derived from induced pluripotent stem cells (iPSCs) increases the resolution with which red blood cell disorders such as sickle cell disease and β thalassemia can be modeled in vitro. To better quantify efforts in augmenting β-globin expression, we report the creation of a β-globin reporter iPSC line that allows for the mapping of β-globin expression throughout human erythropoietic development in real time at single-cell resolution. Coupling this tool with single-cell RNA sequencing (scRNAseq) identified features that distinguish β-globin-expressing cells and allowed for the dissection of the developmental and maturational statuses of iPSC-derived erythroid lineage cells. Coexpression of embryonic, fetal, and adult globins in individual cells indicated that these cells correspond to a yolk sac erythromyeloid progenitor program of hematopoietic development, representing the onset of definitive erythropoiesis. Within this developmental program, scRNAseq analysis identified a gradient of erythroid maturation, with β-globin-expressing cells showing increased maturation. Compared with other cells, β-globin-expressing cells showed a reduction in transcripts coding for ribosomal proteins, increased expression of members of the ubiquitin-proteasome system recently identified to be involved in remodeling of the erythroid proteome, and upregulation of genes involved in the dynamic translational control of red blood cell maturation. These findings emphasize that definitively patterned iPSC-derived erythroblasts resemble their postnatal counterparts in terms of gene expression and essential biological processes, confirming their potential for disease modeling and regenerative medicine applications.
Collapse
Affiliation(s)
- Kim Vanuytsel
- Section of Hematology and Medical Oncology, School of Medicine, Boston University, Boston, MA; and
- Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, Boston, MA
| | - Taylor Matte
- Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, Boston, MA
| | - Amy Leung
- Section of Hematology and Medical Oncology, School of Medicine, Boston University, Boston, MA; and
- Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, Boston, MA
| | - Zaw Htut Naing
- Section of Hematology and Medical Oncology, School of Medicine, Boston University, Boston, MA; and
- Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, Boston, MA
| | - Tasha Morrison
- Section of Hematology and Medical Oncology, School of Medicine, Boston University, Boston, MA; and
| | - David H K Chui
- Section of Hematology and Medical Oncology, School of Medicine, Boston University, Boston, MA; and
| | - Martin H Steinberg
- Section of Hematology and Medical Oncology, School of Medicine, Boston University, Boston, MA; and
| | - George J Murphy
- Section of Hematology and Medical Oncology, School of Medicine, Boston University, Boston, MA; and
- Center for Regenerative Medicine (CReM), Boston University and Boston Medical Center, Boston, MA
| |
Collapse
|
173
|
The Ontogeny of a Neutrophil: Mechanisms of Granulopoiesis and Homeostasis. Microbiol Mol Biol Rev 2018; 82:82/1/e00057-17. [PMID: 29436479 DOI: 10.1128/mmbr.00057-17] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Comprising the majority of leukocytes in humans, neutrophils are the first immune cells to respond to inflammatory or infectious etiologies and are crucial participants in the proper functioning of both innate and adaptive immune responses. From their initial appearance in the liver, thymus, and spleen at around the eighth week of human gestation to their generation in large numbers in the bone marrow at the end of term gestation, the differentiation of the pluripotent hematopoietic stem cell into a mature, segmented neutrophil is a highly controlled process where the transcriptional regulators C/EBP-α and C/EBP-ε play a vital role. Recent advances in neutrophil biology have clarified the life cycle of these cells and revealed striking differences between neonatal and adult neutrophils based on fetal maturation and environmental factors. Here we detail neutrophil ontogeny, granulopoiesis, and neutrophil homeostasis and highlight important differences between neonatal and adult neutrophil populations.
Collapse
|
174
|
Laurenti E, Göttgens B. From haematopoietic stem cells to complex differentiation landscapes. Nature 2018; 553:418-426. [PMID: 29364285 PMCID: PMC6555401 DOI: 10.1038/nature25022] [Citation(s) in RCA: 495] [Impact Index Per Article: 82.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 11/08/2017] [Indexed: 12/18/2022]
Abstract
The development of mature blood cells from haematopoietic stem cells has long served as a model for stem-cell research, with the haematopoietic differentiation tree being widely used as a model for the maintenance of hierarchically organized tissues. Recent results and new technologies have challenged the demarcations between stem and progenitor cell populations, the timing of cell-fate choices and the contribution of stem and multipotent progenitor cells to the maintenance of steady-state blood production. These evolving views of haematopoiesis have broad implications for our understanding of the functions of adult stem cells, as well as the development of new therapies for malignant and non-malignant haematopoietic diseases.
Collapse
Affiliation(s)
- Elisa Laurenti
- Department of Haematology and Wellcome Trust and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge UK
| | - Berthold Göttgens
- Department of Haematology and Wellcome Trust and MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge UK
| |
Collapse
|
175
|
Bresnick EH, Hewitt KJ, Mehta C, Keles S, Paulson RF, Johnson KD. Mechanisms of erythrocyte development and regeneration: implications for regenerative medicine and beyond. Development 2018; 145:145/1/dev151423. [PMID: 29321181 DOI: 10.1242/dev.151423] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hemoglobin-expressing erythrocytes (red blood cells) act as fundamental metabolic regulators by providing oxygen to cells and tissues throughout the body. Whereas the vital requirement for oxygen to support metabolically active cells and tissues is well established, almost nothing is known regarding how erythrocyte development and function impact regeneration. Furthermore, many questions remain unanswered relating to how insults to hematopoietic stem/progenitor cells and erythrocytes can trigger a massive regenerative process termed 'stress erythropoiesis' to produce billions of erythrocytes. Here, we review the cellular and molecular mechanisms governing erythrocyte development and regeneration, and discuss the potential links between these events and other regenerative processes.
Collapse
Affiliation(s)
- Emery H Bresnick
- Department of Cell and Regenerative Biology, UW-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Kyle J Hewitt
- Department of Cell and Regenerative Biology, UW-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Charu Mehta
- Department of Cell and Regenerative Biology, UW-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Sunduz Keles
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Robert F Paulson
- Department of Veterinary and Biomedical Sciences, Center for Molecular Immunology and Infectious Disease, Penn State University, University Park, PA 16802, USA
| | - Kirby D Johnson
- Department of Cell and Regenerative Biology, UW-Madison Blood Research Program, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
176
|
Yoder MC. Endothelial stem and progenitor cells (stem cells): (2017 Grover Conference Series). Pulm Circ 2018; 8:2045893217743950. [PMID: 29099663 PMCID: PMC5731724 DOI: 10.1177/2045893217743950] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 10/31/2017] [Indexed: 12/11/2022] Open
Abstract
The capacity of existing blood vessels to give rise to new blood vessels via endothelial cell sprouting is called angiogenesis and is a well-studied biologic process. In contrast, little is known about the mechanisms for endothelial cell replacement or regeneration within established blood vessels. Since clear definitions exist for identifying cells with stem and progenitor cell properties in many tissues and organs of the body, several groups have begun to accumulate evidence that endothelial stem and progenitor cells exist within the endothelial intima of existing blood vessels. This paper will review stem and progenitor cell definitions and highlight several recent papers purporting to have identified resident vascular endothelial stem and progenitor cells.
Collapse
Affiliation(s)
- Mervin C. Yoder
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|