151
|
de la Rosa J, Weber J, Friedrich MJ, Li Y, Rad L, Ponstingl H, Liang Q, de Quirós SB, Noorani I, Metzakopian E, Strong A, Li MA, Astudillo A, Fernández-García MT, Fernández-García MS, Hoffman GJ, Fuente R, Vassiliou GS, Rad R, López-Otín C, Bradley A, Cadiñanos J. A single-copy Sleeping Beauty transposon mutagenesis screen identifies new PTEN-cooperating tumor suppressor genes. Nat Genet 2017; 49:730-741. [PMID: 28319090 PMCID: PMC5409503 DOI: 10.1038/ng.3817] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/24/2017] [Indexed: 12/11/2022]
Abstract
The overwhelming number of genetic alterations identified through cancer genome sequencing requires complementary approaches to interpret their significance and interactions. Here we developed a novel whole-body insertional mutagenesis screen in mice, which was designed for the discovery of Pten-cooperating tumor suppressors. Toward this aim, we coupled mobilization of a single-copy inactivating Sleeping Beauty transposon to Pten disruption within the same genome. The analysis of 278 transposition-induced prostate, breast and skin tumors detected tissue-specific and shared data sets of known and candidate genes involved in cancer. We validated ZBTB20, CELF2, PARD3, AKAP13 and WAC, which were identified by our screens in multiple cancer types, as new tumor suppressor genes in prostate cancer. We demonstrated their synergy with PTEN in preventing invasion in vitro and confirmed their clinical relevance. Further characterization of Wac in vivo showed obligate haploinsufficiency for this gene (which encodes an autophagy-regulating factor) in a Pten-deficient context. Our study identified complex PTEN-cooperating tumor suppressor networks in different cancer types, with potential clinical implications.
Collapse
Affiliation(s)
- Jorge de la Rosa
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK.,Instituto de Medicina Oncológica y Molecular de Asturias (IMOMA), Oviedo, Spain.,Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain
| | - Julia Weber
- Department of Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, München, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | - Yilong Li
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Lena Rad
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Hannes Ponstingl
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Qi Liang
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | | | - Imran Noorani
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | | | - Alexander Strong
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Meng Amy Li
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Aurora Astudillo
- Servicio de Anatomía Patológica, Hospital Universitario Central de Asturias, Oviedo, Spain
| | | | | | - Gary J Hoffman
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK.,School of Medicine, University of Western Australia, Crawley, Western Australia, Australia
| | - Rocío Fuente
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - George S Vassiliou
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Roland Rad
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK.,Department of Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, München, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain.,Centro de Investigación Biomédica en Red de Cáncer, Spain
| | - Allan Bradley
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Juan Cadiñanos
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK.,Instituto de Medicina Oncológica y Molecular de Asturias (IMOMA), Oviedo, Spain
| |
Collapse
|
152
|
Gupta A, Anjomani-Virmouni S, Koundouros N, Dimitriadi M, Choo-Wing R, Valle A, Zheng Y, Chiu YH, Agnihotri S, Zadeh G, Asara JM, Anastasiou D, Arends MJ, Cantley LC, Poulogiannis G. PARK2 Depletion Connects Energy and Oxidative Stress to PI3K/Akt Activation via PTEN S-Nitrosylation. Mol Cell 2017; 65:999-1013.e7. [PMID: 28306514 PMCID: PMC5426642 DOI: 10.1016/j.molcel.2017.02.019] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 12/13/2016] [Accepted: 02/17/2017] [Indexed: 11/23/2022]
Abstract
PARK2 is a gene implicated in disease states with opposing responses in cell fate determination, yet its contribution in pro-survival signaling is largely unknown. Here we show that PARK2 is altered in over a third of all human cancers, and its depletion results in enhanced phosphatidylinositol 3-kinase/Akt (PI3K/Akt) activation and increased vulnerability to PI3K/Akt/mTOR inhibitors. PARK2 depletion contributes to AMPK-mediated activation of endothelial nitric oxide synthase (eNOS), enhanced levels of reactive oxygen species, and a concomitant increase in oxidized nitric oxide levels, thereby promoting the inhibition of PTEN by S-nitrosylation and ubiquitination. Notably, AMPK activation alone is sufficient to induce PTEN S-nitrosylation in the absence of PARK2 depletion. Park2 loss and Pten loss also display striking cooperativity to promote tumorigenesis in vivo. Together, our findings reveal an important missing mechanism that might account for PTEN suppression in PARK2-deficient tumors, and they highlight the importance of PTEN S-nitrosylation in supporting cell survival and proliferation under conditions of energy deprivation.
Collapse
Affiliation(s)
- Amit Gupta
- Signalling and Cancer Metabolism Team, Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Sara Anjomani-Virmouni
- Signalling and Cancer Metabolism Team, Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | - Nikos Koundouros
- Signalling and Cancer Metabolism Team, Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK; Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK
| | - Maria Dimitriadi
- Signalling and Cancer Metabolism Team, Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK; Department of Biological and Environmental Sciences, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Rayman Choo-Wing
- Novartis Institutes for BioMedical Research, Inc., 181 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Adamo Valle
- Signalling and Cancer Metabolism Team, Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK; Energy Metabolism and Nutrition, University of Balearic Islands, Research Institute of Health Sciences (IUNICS) and Medical Research Institute of Palma (IdISPa), 07122 Palma de Mallorca, Spain; Biomedical Research Networking Center for Physiopathology of Obesity and Nutrition (CIBERobn), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Yuxiang Zheng
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Yu-Hsin Chiu
- Novartis Institutes for BioMedical Research, Inc., 22 Windsor Street, Cambridge, MA 02139, USA
| | - Sameer Agnihotri
- MacFeeters-Hamilton Neurooncology Program, Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada
| | - Gelareh Zadeh
- MacFeeters-Hamilton Neurooncology Program, Princess Margaret Cancer Centre, Toronto, ON M5G 2M9, Canada
| | - John M Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02175, USA
| | | | - Mark J Arends
- University of Edinburgh, Division of Pathology, Edinburgh Cancer Research Centre, Institute of Genetics & Molecular Medicine, Western General Hospital, Edinburgh EH4 2XR, UK
| | - Lewis C Cantley
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA.
| | - George Poulogiannis
- Signalling and Cancer Metabolism Team, Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK; Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
153
|
Blattner M, Liu D, Robinson BD, Huang D, Poliakov A, Gao D, Nataraj S, Deonarine LD, Augello MA, Sailer V, Ponnala L, Ittmann M, Chinnaiyan AM, Sboner A, Chen Y, Rubin MA, Barbieri CE. SPOP Mutation Drives Prostate Tumorigenesis In Vivo through Coordinate Regulation of PI3K/mTOR and AR Signaling. Cancer Cell 2017; 31:436-451. [PMID: 28292441 PMCID: PMC5384998 DOI: 10.1016/j.ccell.2017.02.004] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/18/2016] [Accepted: 02/03/2017] [Indexed: 02/08/2023]
Abstract
Recurrent point mutations in SPOP define a distinct molecular subclass of prostate cancer. Here, we describe a mouse model showing that mutant SPOP drives prostate tumorigenesis in vivo. Conditional expression of mutant SPOP in the prostate dramatically altered phenotypes in the setting of Pten loss, with early neoplastic lesions (high-grade prostatic intraepithelial neoplasia) with striking nuclear atypia and invasive, poorly differentiated carcinoma. In mouse prostate organoids, mutant SPOP drove increased proliferation and a transcriptional signature consistent with human prostate cancer. Using these models and human prostate cancer samples, we show that SPOP mutation activates both PI3K/mTOR and androgen receptor signaling, effectively uncoupling the normal negative feedback between these two pathways.
Collapse
Affiliation(s)
- Mirjam Blattner
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Deli Liu
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA; Department of Urology, Weill Cornell Medicine, New York, NY 10065, USA; HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Brian D Robinson
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Dennis Huang
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Anton Poliakov
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dong Gao
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Srilakshmi Nataraj
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Lesa D Deonarine
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| | - Michael A Augello
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA; Department of Urology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Verena Sailer
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Lalit Ponnala
- Computational Biology Service Unit, Cornell University, Ithaca, NY 14853, USA
| | - Michael Ittmann
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Arul M Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Departments of Pathology and Urology, and Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Andrea Sboner
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10065, USA; Englander Institute for Precision Medicine of Weill Cornell Medicine, and New York-Presbyterian Hospital, New York, NY 10065, USA
| | - Yu Chen
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Medicine, MSKCC, New York, NY 10065, USA
| | - Mark A Rubin
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA; Department of Urology, Weill Cornell Medicine, New York, NY 10065, USA; Englander Institute for Precision Medicine of Weill Cornell Medicine, and New York-Presbyterian Hospital, New York, NY 10065, USA.
| | - Christopher E Barbieri
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA; Department of Urology, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
154
|
Rebello RJ, Pearson RB, Hannan RD, Furic L. Therapeutic Approaches Targeting MYC-Driven Prostate Cancer. Genes (Basel) 2017; 8:genes8020071. [PMID: 28212321 PMCID: PMC5333060 DOI: 10.3390/genes8020071] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/06/2017] [Accepted: 02/09/2017] [Indexed: 02/02/2023] Open
Abstract
The transcript encoding the proto-oncogene MYC is commonly overexpressed in prostate cancer (PC). MYC protein abundance is also increased in the majority of cases of advanced and metastatic castrate-resistant PC (mCRPC). Accordingly, the MYC-directed transcriptional program directly contributes to PC by upregulating the expression of a number of pro-tumorigenic factors involved in cell growth and proliferation. A key cellular process downstream of MYC activity is the regulation of ribosome biogenesis which sustains tumor growth. MYC activity also cooperates with the dysregulation of the phosphoinositol-3-kinase (PI3K)/AKT/mTOR pathway to promote PC cell survival. Recent advances in the understanding of these interactions through the use of animal models have provided significant insight into the therapeutic efficacy of targeting MYC activity by interfering with its transcriptional program, and indirectly by targeting downstream cellular events linked to MYC transformation potential.
Collapse
Affiliation(s)
- Richard J Rebello
- Prostate Cancer Translational Research Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia.
- Cancer Program, Biomedicine Discovery Institute and Department of Anatomy & Developmental Biology, Monash University, Melbourne, VIC 3800, Australia.
| | - Richard B Pearson
- Oncogenic Signalling and Growth Control Program, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia.
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia.
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia.
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia.
| | - Ross D Hannan
- Oncogenic Signalling and Growth Control Program, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia.
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia.
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia.
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia.
- The ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Acton, ACT 2601, Australia.
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD 4072, Australia.
| | - Luc Furic
- Prostate Cancer Translational Research Laboratory, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia.
- Cancer Program, Biomedicine Discovery Institute and Department of Anatomy & Developmental Biology, Monash University, Melbourne, VIC 3800, Australia.
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
155
|
Chen M, Nowak DG, Narula N, Robinson B, Watrud K, Ambrico A, Herzka TM, Zeeman ME, Minderer M, Zheng W, Ebbesen SH, Plafker KS, Stahlhut C, Wang VMY, Wills L, Nasar A, Castillo-Martin M, Cordon-Cardo C, Wilkinson JE, Powers S, Sordella R, Altorki NK, Mittal V, Stiles BM, Plafker SM, Trotman LC. The nuclear transport receptor Importin-11 is a tumor suppressor that maintains PTEN protein. J Cell Biol 2017; 216:641-656. [PMID: 28193700 PMCID: PMC5350510 DOI: 10.1083/jcb.201604025] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 08/21/2016] [Accepted: 01/19/2017] [Indexed: 12/25/2022] Open
Abstract
Phosphatase and tensin homologue (PTEN) protein levels are critical for tumor suppression. However, the search for a recurrent cancer-associated gene alteration that causes PTEN degradation has remained futile. In this study, we show that Importin-11 (Ipo11) is a transport receptor for PTEN that is required to physically separate PTEN from elements of the PTEN degradation machinery. Mechanistically, we find that the E2 ubiquitin-conjugating enzyme and IPO11 cargo, UBE2E1, is a limiting factor for PTEN degradation. Using in vitro and in vivo gene-targeting methods, we show that Ipo11 loss results in degradation of Pten, lung adenocarcinoma, and neoplasia in mouse prostate with aberrantly high levels of Ube2e1 in the cytoplasm. These findings explain the correlation between loss of IPO11 and PTEN protein in human lung tumors. Furthermore, we find that IPO11 status predicts disease recurrence and progression to metastasis in patients choosing radical prostatectomy. Thus, our data introduce the IPO11 gene as a tumor-suppressor locus, which is of special importance in cancers that still retain at least one intact PTEN allele.
Collapse
Affiliation(s)
- Muhan Chen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Dawid G Nowak
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Navneet Narula
- Department of Pathology, Neuberger Berman Lung Cancer Research Center, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY 10065.,Department of Cell and Developmental Biology, Neuberger Berman Lung Cancer Research Center, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY 10065
| | - Brian Robinson
- Department of Pathology, Neuberger Berman Lung Cancer Research Center, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY 10065.,Department of Cell and Developmental Biology, Neuberger Berman Lung Cancer Research Center, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY 10065
| | - Kaitlin Watrud
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | | | - Tali M Herzka
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | | | | | - Wu Zheng
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Saya H Ebbesen
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724.,The Watson School of Biological Sciences, Cold Spring Harbor, NY 11724
| | - Kendra S Plafker
- Free Radical Biology and Aging Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | | | | | - Lorna Wills
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | - Abu Nasar
- Department of Cardiothoracic Surgery, Neuberger Berman Lung Cancer Research Center, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY 10065
| | | | | | - John E Wilkinson
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Scott Powers
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724
| | | | - Nasser K Altorki
- Department of Cardiothoracic Surgery, Neuberger Berman Lung Cancer Research Center, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY 10065
| | - Vivek Mittal
- Department of Cardiothoracic Surgery, Neuberger Berman Lung Cancer Research Center, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY 10065
| | - Brendon M Stiles
- Department of Cardiothoracic Surgery, Neuberger Berman Lung Cancer Research Center, New York-Presbyterian Hospital, Weill Cornell Medical College, New York, NY 10065
| | - Scott M Plafker
- Free Radical Biology and Aging Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | | |
Collapse
|
156
|
Ku SY, Rosario S, Wang Y, Mu P, Seshadri M, Goodrich ZW, Goodrich MM, Labbé DP, Gomez EC, Wang J, Long HW, Xu B, Brown M, Loda M, Sawyers CL, Ellis L, Goodrich DW. Rb1 and Trp53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance. Science 2017; 355:78-83. [PMID: 28059767 PMCID: PMC5367887 DOI: 10.1126/science.aah4199] [Citation(s) in RCA: 741] [Impact Index Per Article: 105.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 12/05/2016] [Indexed: 12/20/2022]
Abstract
Prostate cancer relapsing from antiandrogen therapies can exhibit variant histology with altered lineage marker expression, suggesting that lineage plasticity facilitates therapeutic resistance. The mechanisms underlying prostate cancer lineage plasticity are incompletely understood. Studying mouse models, we demonstrate that Rb1 loss facilitates lineage plasticity and metastasis of prostate adenocarcinoma initiated by Pten mutation. Additional loss of Trp53 causes resistance to antiandrogen therapy. Gene expression profiling indicates that mouse tumors resemble human prostate cancer neuroendocrine variants; both mouse and human tumors exhibit increased expression of epigenetic reprogramming factors such as Ezh2 and Sox2. Clinically relevant Ezh2 inhibitors restore androgen receptor expression and sensitivity to antiandrogen therapy. These findings uncover genetic mutations that enable prostate cancer progression; identify mouse models for studying prostate cancer lineage plasticity; and suggest an epigenetic approach for extending clinical responses to antiandrogen therapy.
Collapse
Affiliation(s)
- Sheng Yu Ku
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute (RPCI), Buffalo, NY 14263, USA
| | - Spencer Rosario
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute (RPCI), Buffalo, NY 14263, USA
| | - Yanqing Wang
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute (RPCI), Buffalo, NY 14263, USA
| | - Ping Mu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | - Mukund Seshadri
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute (RPCI), Buffalo, NY 14263, USA
| | - Zachary W Goodrich
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute (RPCI), Buffalo, NY 14263, USA
| | - Maxwell M Goodrich
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute (RPCI), Buffalo, NY 14263, USA
| | - David P Labbé
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | - Jianmin Wang
- Department of Biostatistics and Bioinformatics, RPCI, Buffalo, NY 14263, USA
| | - Henry W Long
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Bo Xu
- Department of Pathology, RPCI, Buffalo, NY 14263, USA
| | - Myles Brown
- Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | - Massimo Loda
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Department of Medical Oncology, Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, MA 02115, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, MA 02115, USA
- Division of Cancer Studies, King's College London, London SE1 9RT, UK
| | - Charles L Sawyers
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Leigh Ellis
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute (RPCI), Buffalo, NY 14263, USA.
| | - David W Goodrich
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute (RPCI), Buffalo, NY 14263, USA.
| |
Collapse
|
157
|
Yang Z, Peng YC, Gopalan A, Gao D, Chen Y, Joyner AL. Stromal hedgehog signaling maintains smooth muscle and hampers micro-invasive prostate cancer. Dis Model Mech 2017; 10:39-52. [PMID: 27935821 PMCID: PMC5278527 DOI: 10.1242/dmm.027417] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 11/23/2016] [Indexed: 12/12/2022] Open
Abstract
It is widely appreciated that reactive stroma or carcinoma-associated fibroblasts can influence epithelial tumor progression. In prostate cancer (PCa), the second most common male malignancy worldwide, the amount of reactive stroma is variable and has predictive value for tumor recurrence. By analyzing human PCa protein and RNA expression databases, we found smooth muscle cells (SMCs) are decreased in advanced tumors, whereas fibroblasts are maintained. In three mouse models of PCa, PB-MYC, ERG/PTEN and TRAMP, we found the composition of the stroma is distinct. SMCs are greatly depleted in advanced PB-MYC tumors and locally reduced in ERG/PTEN prostates, whereas in TRAMP tumors the SMC layers are increased. In addition, interductal fibroblast-like cells expand in PB-MYC and ERG/PTEN tumors, whereas in TRAMP PCa they expand little and stromal cells invade into intraductal adenomas. Fate mapping of SMCs showed that in PB-MYC tumors the cells are depleted, whereas they expand in TRAMP tumors and interestingly contribute to the stromal cells in intraductal adenomas. Hedgehog (HH) ligands secreted by epithelial cells are known to regulate prostate mesenchyme expansion differentially during development and regeneration. Any possible role of HH signaling in stromal cells during PCa progression is poorly understood. We found that HH signaling is high in SMCs and fibroblasts near tumor cells in all models, and epithelial Shh expression is decreased whereas Ihh and Dhh are increased. In human primary PCa, expression of IHH is the highest of the three HH genes, and elevated HH signaling correlates with high stromal gene expression. Moreover, increasing HH signaling in the stroma of PB-MYC PCa resulted in more intact SMC layers and decreased tumor progression (micro-invasive carcinoma). Thus, we propose HH signaling restrains tumor progression by maintaining the smooth muscle and preventing invasion by tumor cells. Our studies highlight the importance of understanding how HH signaling and stromal composition impact on PCa to optimize drug treatments.
Collapse
Affiliation(s)
- Zhaohui Yang
- Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
- Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Yu-Ching Peng
- Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
- Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Anuradha Gopalan
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Dong Gao
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alexandra L Joyner
- Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10065, USA
- Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| |
Collapse
|
158
|
Inhibition of Notch pathway arrests PTEN-deficient advanced prostate cancer by triggering p27-driven cellular senescence. Nat Commun 2016; 7:13719. [PMID: 27941799 PMCID: PMC5159884 DOI: 10.1038/ncomms13719] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 10/27/2016] [Indexed: 12/17/2022] Open
Abstract
Activation of NOTCH signalling is associated with advanced prostate cancer and treatment resistance in prostate cancer patients. However, the mechanism that drives NOTCH activation in prostate cancer remains still elusive. Moreover, preclinical evidence of the therapeutic efficacy of NOTCH inhibitors in prostate cancer is lacking. Here, we provide evidence that PTEN loss in prostate tumours upregulates the expression of ADAM17, thereby activating NOTCH signalling. Using prostate conditional inactivation of both Pten and Notch1 along with preclinical trials carried out in Pten-null prostate conditional mouse models, we demonstrate that Pten-deficient prostate tumours are addicted to the NOTCH signalling. Importantly, we find that pharmacological inhibition of γ-secretase promotes growth arrest in both Pten-null and Pten/Trp53-null prostate tumours by triggering cellular senescence. Altogether, our findings describe a novel pro-tumorigenic network that links PTEN loss to ADAM17 and NOTCH signalling, thus providing the rational for the use of γ-secretase inhibitors in advanced prostate cancer patients.
Notch signalling is involved in prostate cancer progression and therapeutic resistance. Here, the authors show that loss of PTEN in prostate cancer models results in increased Notch1 cleavage and activation through CUX1-mediated transactivation of ADAM17.
Collapse
|
159
|
Parvez S, Long MJC, Lin HY, Zhao Y, Haegele JA, Pham VN, Lee DK, Aye Y. T-REX on-demand redox targeting in live cells. Nat Protoc 2016; 11:2328-2356. [PMID: 27809314 PMCID: PMC5260244 DOI: 10.1038/nprot.2016.114] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This protocol describes targetable reactive electrophiles and oxidants (T-REX)-a live-cell-based tool designed to (i) interrogate the consequences of specific and time-resolved redox events, and (ii) screen for bona fide redox-sensor targets. A small-molecule toolset comprising photocaged precursors to specific reactive redox signals is constructed such that these inert precursors specifically and irreversibly tag any HaloTag-fused protein of interest (POI) in mammalian and Escherichia coli cells. Syntheses of the alkyne-functionalized endogenous reactive signal 4-hydroxynonenal (HNE(alkyne)) and the HaloTag-targetable photocaged precursor to HNE(alkyne) (also known as Ht-PreHNE or HtPHA) are described. Low-energy light prompts photo-uncaging (t1/2 <1-2 min) and target-specific modification. The targeted modification of the POI enables precisely timed and spatially controlled redox events with no off-target modification. Two independent pathways are described, along with a simple setup to functionally validate known targets or discover novel sensors. T-REX sidesteps mixed responses caused by uncontrolled whole-cell swamping with reactive signals. Modification and downstream response can be analyzed by in-gel fluorescence, proteomics, qRT-PCR, immunofluorescence, fluorescence resonance energy transfer (FRET)-based and dual-luciferase reporters, or flow cytometry assays. T-REX targeting takes 4 h from initial probe treatment. Analysis of targeted redox responses takes an additional 4-24 h, depending on the nature of the pathway and the type of readouts used.
Collapse
Affiliation(s)
- Saba Parvez
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | - Marcus J C Long
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | - Hong-Yu Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | - Yi Zhao
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | - Joseph A Haegele
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | - Vanha N Pham
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | - Dustin K Lee
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
| | - Yimon Aye
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York, USA
- Department of Biochemistry, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
160
|
Abstract
The phosphatase and tensin homolog gene PTEN is one of the most frequently mutated tumor suppressor genes in human cancer. Loss of PTEN function occurs in a variety of human cancers via its mutation, deletion, transcriptional silencing, or protein instability. PTEN deficiency in cancer has been associated with advanced disease, chemotherapy resistance, and poor survival. Impaired PTEN function, which antagonizes phosphoinositide 3-kinase (PI3K) signaling, causes the accumulation of phosphatidylinositol (3,4,5)-triphosphate and thereby the suppression of downstream components of the PI3K pathway, including the protein kinase B and mammalian target of rapamycin kinases. In addition to having lipid phosphorylation activity, PTEN has critical roles in the regulation of genomic instability, DNA repair, stem cell self-renewal, cellular senescence, and cell migration. Although PTEN deficiency in solid tumors has been studied extensively, rare studies have investigated PTEN alteration in lymphoid malignancies. However, genomic or epigenomic aberrations of PTEN and dysregulated signaling are likely critical in lymphoma pathogenesis and progression. This review provides updated summary on the role of PTEN deficiency in human cancers, specifically in lymphoid malignancies; the molecular mechanisms of PTEN regulation; and the distinct functions of nuclear PTEN. Therapeutic strategies for rescuing PTEN deficiency in human cancers are proposed.
Collapse
Affiliation(s)
- Xiaoxiao Wang
- Department of Hematopathology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77230, USA.,Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Huiqiang Huang
- Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Ken H Young
- Department of Hematopathology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77230, USA.,The University of Texas Graduate School of Biomedical Science, Houston, TX 77230, USA
| |
Collapse
|
161
|
Nip H, Dar AA, Saini S, Colden M, Varahram S, Chowdhary H, Yamamura S, Mitsui Y, Tanaka Y, Kato T, Hashimoto Y, Shiina M, Kulkarni P, Dasgupta P, Imai-Sumida M, Tabatabai ZL, Greene K, Deng G, Dahiya R, Majid S. Oncogenic microRNA-4534 regulates PTEN pathway in prostate cancer. Oncotarget 2016; 7:68371-68384. [PMID: 27634912 PMCID: PMC5356562 DOI: 10.18632/oncotarget.12031] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 08/26/2016] [Indexed: 12/25/2022] Open
Abstract
Prostate carcinogenesis involves alterations in several signaling pathways, the most prominent being the PI3K/AKT pathway. This pathway is constitutively active and drives prostate cancer (PCa) progression to advanced metastatic disease. PTEN, a critical tumor and metastasis suppressor gene negatively regulates cell survival, proliferation, migration and angiogenesis via the PI3K/Akt pathway. PTEN is mutated, downregulated/dysfunctional in many cancers and its dysregulation correlates with poor prognosis in PCa. Here, we demonstrate that microRNA-4534 (miR-4534) is overexpressed in PCa and show that miR-4534 is hypermethylated in normal tissues and cell lines compared to PCa tissues/cells. miR-4534 exerts its oncogenic effects partly by downregulating the tumor suppressor PTEN gene. Knockdown of miR-4534 impaired cell proliferation, migration/invasion and induced G0/G1 cell cycle arrest and apoptosis in PCa. Suppression of miR-4534 and its effects on tumor growth was confirmed in a xenograft mouse model. We performed parallel experiments in non-cancer RWPE1 cells by overexpessing miR-4534 followed by functional assays. Overexpression of miR-4534 induced pro-cancerous characteristics in this non-cancer cell line. Statistical analyses revealed that miR-4534 has potential to independently distinguish malignant from normal tissues and positively correlated with poor overall and PSA recurrence free survival. Taken together, our results show that depletion of miR-4534 in PCa induces a tumor suppressor phenotype partly through induction of PTEN. These results have important implications for identifying and defining the role of new PTEN regulators such as microRNAs in prostate tumorigenesis. Understanding aberrantly overexpressed miR-4534 and its downregulation of PTEN will provide mechanistic insight and therapeutic targets for PCa therapy.
Collapse
Affiliation(s)
- Hannah Nip
- Department of Urology, VA Medical Center and UCSF, San Francisco, California, USA
| | - Altaf A. Dar
- Research Institute, California Pacific Medical Center, San Francisco, California, USA
| | - Sharanjot Saini
- Department of Urology, VA Medical Center and UCSF, San Francisco, California, USA
| | - Melissa Colden
- Department of Urology, VA Medical Center and UCSF, San Francisco, California, USA
| | - Shahryari Varahram
- Department of Urology, VA Medical Center and UCSF, San Francisco, California, USA
| | - Harshika Chowdhary
- Department of Urology, VA Medical Center and UCSF, San Francisco, California, USA
| | - Soichiro Yamamura
- Department of Urology, VA Medical Center and UCSF, San Francisco, California, USA
| | - Yozo Mitsui
- Department of Urology, VA Medical Center and UCSF, San Francisco, California, USA
| | - Yuichiro Tanaka
- Department of Urology, VA Medical Center and UCSF, San Francisco, California, USA
| | - Taku Kato
- Department of Urology, VA Medical Center and UCSF, San Francisco, California, USA
| | - Yutaka Hashimoto
- Department of Urology, VA Medical Center and UCSF, San Francisco, California, USA
| | - Marisa Shiina
- Department of Urology, VA Medical Center and UCSF, San Francisco, California, USA
| | - Priyanka Kulkarni
- Department of Urology, VA Medical Center and UCSF, San Francisco, California, USA
| | - Pritha Dasgupta
- Department of Urology, VA Medical Center and UCSF, San Francisco, California, USA
| | - Mitsuho Imai-Sumida
- Department of Urology, VA Medical Center and UCSF, San Francisco, California, USA
| | - Z. Laura Tabatabai
- Department of Urology, VA Medical Center and UCSF, San Francisco, California, USA
| | - Kirsten Greene
- Department of Urology, VA Medical Center and UCSF, San Francisco, California, USA
| | - Guoren Deng
- Department of Urology, VA Medical Center and UCSF, San Francisco, California, USA
| | - Rajvir Dahiya
- Department of Urology, VA Medical Center and UCSF, San Francisco, California, USA
| | - Shahana Majid
- Department of Urology, VA Medical Center and UCSF, San Francisco, California, USA
| |
Collapse
|
162
|
Ren W, Joshi R, Mathew P. Synthetic Lethality in PTEN-Mutant Prostate Cancer Is Induced by Combinatorial PI3K/Akt and BCL-XL Inhibition. Mol Cancer Res 2016; 14:1176-1181. [PMID: 27590631 DOI: 10.1158/1541-7786.mcr-16-0202] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/18/2016] [Accepted: 08/25/2016] [Indexed: 11/16/2022]
Abstract
The bone-conserved metastatic phenotype of prostate cancer is a prototype of nonrandom metastatic behavior. Adhesion of prostate cancer cells to fibronectin via the integrin α5 (ITGA5) has been proposed as a candidate bone marrow niche localization mechanism. We hypothesized that the mechanisms whereby ITGA5 regulates the adhesion-mediated survival of prostate cancer cells will define novel therapeutic approaches. ITGA5 shRNA reduced expression of BCL-2 family members and induced apoptosis in PC-3 cells. In these PTEN-mutant cells, pharmacologic inhibition of the PI3K signaling pathway in combination with ITGA5 knockdown enhanced apoptosis. Chemical parsing studies with BH3 mimetics indicated that PI3K/Akt inhibition in combination with BCL-XL-specific inhibition induces synergistic apoptosis specifically in PTEN-mutant prostate cancer cells, whereas single-agent PI3K/Akt inhibitors did not. Given the importance of PTEN loss in the progression of prostate and other cancers, synthetic lethality induced by combinatorial PI3K/Akt and BCL-XL inhibition represents a valuable therapeutic strategy. IMPLICATIONS Activation of the PI3K pathway through PTEN loss represents a major molecular pathway in the progression of prostate and other cancers. This study defines a synthetic lethal therapeutic combination with significant translational potential. OVERVIEW Synthetic lethality in PTEN-mutant prostate cancer cells with combined PI3K/Akt and BCL-XL inhibition. PTEN-mutant prostate cancer cells expressing ITGA5 bind to fibronectin in the putative bone marrow niche and transduce survival signals to BCL-XL Additional PTEN-regulated signals independent of the PI3K/Akt pathway likely feed into the BCL-XL-regulated survival program to explain synthetic lethality observed with the combination.Visual Overview: http://mcr.aacrjournals.org/content/early/2016/12/02/1541-7786.MCR-16-0202/F1.large.jpg. Mol Cancer Res; 14(12); 1176-81. ©2016 AACR.
Collapse
Affiliation(s)
- Wenying Ren
- Molecular Oncology Research Institute, Department of Hematology-Oncology, Tufts Medical Center, Boston, Massachusetts
| | - Raghav Joshi
- Molecular Oncology Research Institute, Department of Hematology-Oncology, Tufts Medical Center, Boston, Massachusetts
| | - Paul Mathew
- Molecular Oncology Research Institute, Department of Hematology-Oncology, Tufts Medical Center, Boston, Massachusetts.
| |
Collapse
|
163
|
Gao D, Zhan Y, Di W, Moore AR, Sher JJ, Guan Y, Wang S, Zhang Z, Murphy DA, Sawyers CL, Chi P, Chen Y. A Tmprss2-CreERT2 Knock-In Mouse Model for Cancer Genetic Studies on Prostate and Colon. PLoS One 2016; 11:e0161084. [PMID: 27536883 PMCID: PMC4990297 DOI: 10.1371/journal.pone.0161084] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 07/31/2016] [Indexed: 01/29/2023] Open
Abstract
Fusion between TMPRSS2 and ERG, placing ERG under the control of the TMPRSS2 promoter, is the most frequent genetic alteration in prostate cancer, present in 40–50% of cases. The fusion event is an early, if not initiating, event in prostate cancer, implicating the TMPRSS2-positive prostate epithelial cell as the cancer cell of origin in fusion-positive prostate cancer. To introduce genetic alterations into Tmprss2-positive cells in mice in a temporal-specific manner, we generated a Tmprss2-CreERT2 knock-in mouse. We found robust tamoxifen-dependent Cre activation in the prostate luminal cells but not basal epithelial cells, as well as epithelial cells of the bladder and gastrointestinal (GI) tract. The knock-in allele on the Tmprss2 locus does not noticeably impact prostate, bladder, or gastrointestinal function. Deletion of Pten in Tmprss2-positive cells of adult mice generated neoplasia only in the prostate, while deletion of Apc in these cells generated neoplasia only in the GI tract. These results suggest that this new Tmprss2-CreERT2 mouse model will be a useful resource for genetic studies on prostate and colon.
Collapse
Affiliation(s)
- Dong Gao
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York, 10065, United States of America
- * E-mail: (DG); (YC)
| | - Yu Zhan
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York, 10065, United States of America
| | - Wei Di
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York, 10065, United States of America
| | - Amanda R. Moore
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York, 10065, United States of America
- Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York, United States of America
| | - Jessica J. Sher
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York, 10065, United States of America
| | - Youxin Guan
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York, 10065, United States of America
| | - Shangqian Wang
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York, 10065, United States of America
| | - Zeda Zhang
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York, 10065, United States of America
| | - Devan A. Murphy
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York, 10065, United States of America
| | - Charles L. Sawyers
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York, 10065, United States of America
| | - Ping Chi
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York, 10065, United States of America
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York, 10065, United States of America
- Department of Medicine, Weill Cornell Medical College and New York–Presbyterian Hospital, New York, New York, 10065, United States of America
| | - Yu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, New York, 10065, United States of America
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York, 10065, United States of America
- Department of Medicine, Weill Cornell Medical College and New York–Presbyterian Hospital, New York, New York, 10065, United States of America
- * E-mail: (DG); (YC)
| |
Collapse
|
164
|
Dhar S, Kumar A, Rimando AM, Zhang X, Levenson AS. Resveratrol and pterostilbene epigenetically restore PTEN expression by targeting oncomiRs of the miR-17 family in prostate cancer. Oncotarget 2016; 6:27214-26. [PMID: 26318586 PMCID: PMC4694984 DOI: 10.18632/oncotarget.4877] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 07/24/2015] [Indexed: 01/10/2023] Open
Abstract
In recent years, not only has the role of miRNAs in cancer become increasingly clear but also their utilization as potential biomarkers and therapeutic targets has gained ground. Although the importance of dietary stilbenes such as resveratrol and pterostilbene as anti-cancer agents is well recognized, our understanding of their miRNA-targeting capabilities is still limited. In our previous study, we reported that resveratrol downregulates PTEN-targeting members of the oncogenic miR-17 family, which are overexpressed in prostate cancer. This study investigates the resveratrol and pterostilbene induced miRNA-mediated regulation of PTEN in prostate cancer. Here, we show that both compounds decrease the levels of endogenous as well as exogenously expressed miR-17, miR-20a and miR-106b thereby upregulating their target PTEN. Using functional luciferase reporter assays, we demonstrate that ectopically expressed miR-17, miR-20a and miR-106b directly target PTEN 3′UTR to reduce its expression, an effect rescued upon treatment with resveratrol and pterostilbene. Moreover, while stable lentiviral expression of miR-17/106a significantly decreased PTEN mRNA and protein levels and conferred survival advantage to the cells, resveratrol and more so pterostilbene was able to dramatically suppress these effects. Further, pterostilbene through downregulation of miR-17-5p and miR-106a-5p expression both in tumors and systemic circulation, rescued PTEN mRNA and protein levels leading to reduced tumor growth in vivo. Our findings implicate dietary stilbenes as an attractive miRNA-mediated chemopreventive and therapeutic strategy, and circulating miRNAs as potential chemopreventive and predictive biomarkers for clinical development in prostate cancer.
Collapse
Affiliation(s)
- Swati Dhar
- Cancer Institute, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Avinash Kumar
- Cancer Institute, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Agnes M Rimando
- United States Department of Agriculture, Agricultural Research Service, Natural Products Utilization Research Unit, University, Mississippi, USA
| | - Xu Zhang
- Center of Biostatistics and Bioinformatics, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Anait S Levenson
- Cancer Institute, University of Mississippi Medical Center, Jackson, Mississippi, USA.,Department of Pathology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
165
|
Rebello RJ, Kusnadi E, Cameron DP, Pearson HB, Lesmana A, Devlin JR, Drygin D, Clark AK, Porter L, Pedersen J, Sandhu S, Risbridger GP, Pearson RB, Hannan RD, Furic L. The Dual Inhibition of RNA Pol I Transcription and PIM Kinase as a New Therapeutic Approach to Treat Advanced Prostate Cancer. Clin Cancer Res 2016; 22:5539-5552. [PMID: 27486174 DOI: 10.1158/1078-0432.ccr-16-0124] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 07/15/2016] [Accepted: 07/21/2016] [Indexed: 11/16/2022]
Abstract
PURPOSE The MYC oncogene is frequently overexpressed in prostate cancer. Upregulation of ribosome biogenesis and function is characteristic of MYC-driven tumors. In addition, PIM kinases activate MYC signaling and mRNA translation in prostate cancer and cooperate with MYC to accelerate tumorigenesis. Here, we investigate the efficacy of a single and dual approach targeting ribosome biogenesis and function to treat prostate cancer. EXPERIMENTAL DESIGN The inhibition of ribosomal RNA (rRNA) synthesis with CX-5461, a potent, selective, and orally bioavailable inhibitor of RNA polymerase I (Pol I) transcription, has been successfully exploited therapeutically but only in models of hematologic malignancy. CX-5461 and CX-6258, a pan-PIM kinase inhibitor, were tested alone and in combination in prostate cancer cell lines, in Hi-MYC- and PTEN-deficient mouse models and in patient-derived xenografts (PDX) of metastatic tissue obtained from a patient with castration-resistant prostate cancer. RESULTS CX-5461 inhibited anchorage-independent growth and induced cell-cycle arrest in prostate cancer cell lines at nanomolar concentrations. Oral administration of 50 mg/kg CX-5461 induced TP53 expression and activity and reduced proliferation (MKI67) and invasion (loss of ductal actin) in Hi-MYC tumors, but not in PTEN-null (low MYC) tumors. While 100 mg/kg CX-6258 showed limited effect alone, its combination with CX-5461 further suppressed proliferation and dramatically reduced large invasive lesions in both models. This rational combination strategy significantly inhibited proliferation and induced cell death in PDX of prostate cancer. CONCLUSIONS Our results demonstrate preclinical efficacy of targeting the ribosome at multiple levels and provide a new approach for the treatment of prostate cancer. Clin Cancer Res; 22(22); 5539-52. ©2016 AACR.
Collapse
Affiliation(s)
- Richard J Rebello
- Cancer Program, Biomedicine Discovery Institute and Department of Anatomy & Developmental Biology, Monash University, Victoria, Australia
| | - Eric Kusnadi
- Oncogenic Signaling and Growth Control Program, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, Victoria, Australia
| | - Donald P Cameron
- Oncogenic Signaling and Growth Control Program, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, Victoria, Australia.,Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | - Helen B Pearson
- Oncogenic Signaling and Growth Control Program, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, Victoria, Australia
| | - Analia Lesmana
- Oncogenic Signaling and Growth Control Program, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, Victoria, Australia
| | - Jennifer R Devlin
- Oncogenic Signaling and Growth Control Program, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, Victoria, Australia
| | | | - Ashlee K Clark
- Cancer Program, Biomedicine Discovery Institute and Department of Anatomy & Developmental Biology, Monash University, Victoria, Australia
| | - Laura Porter
- Cancer Program, Biomedicine Discovery Institute and Department of Anatomy & Developmental Biology, Monash University, Victoria, Australia
| | | | - Shahneen Sandhu
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia
| | - Gail P Risbridger
- Cancer Program, Biomedicine Discovery Institute and Department of Anatomy & Developmental Biology, Monash University, Victoria, Australia
| | - Richard B Pearson
- Oncogenic Signaling and Growth Control Program, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, Victoria, Australia. .,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia.,Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Victoria, Australia
| | - Ross D Hannan
- Oncogenic Signaling and Growth Control Program, Peter MacCallum Cancer Centre, St Andrews Place, East Melbourne, Victoria, Australia. .,Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria, Australia.,Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Victoria, Australia.,School of Biomedical Sciences, University of Queensland, Brisbane, Queensland, Australia
| | - Luc Furic
- Cancer Program, Biomedicine Discovery Institute and Department of Anatomy & Developmental Biology, Monash University, Victoria, Australia.
| |
Collapse
|
166
|
Benhamou D, Labi V, Novak R, Dai I, Shafir-Alon S, Weiss A, Gaujoux R, Arnold R, Shen-Orr SS, Rajewsky K, Melamed D. A c-Myc/miR17-92/Pten Axis Controls PI3K-Mediated Positive and Negative Selection in B Cell Development and Reconstitutes CD19 Deficiency. Cell Rep 2016; 16:419-431. [DOI: 10.1016/j.celrep.2016.05.084] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/14/2016] [Accepted: 05/19/2016] [Indexed: 01/13/2023] Open
|
167
|
Pencik J, Pham HTT, Schmoellerl J, Javaheri T, Schlederer M, Culig Z, Merkel O, Moriggl R, Grebien F, Kenner L. JAK-STAT signaling in cancer: From cytokines to non-coding genome. Cytokine 2016; 87:26-36. [PMID: 27349799 DOI: 10.1016/j.cyto.2016.06.017] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 06/15/2016] [Indexed: 12/13/2022]
Abstract
In the past decades, studies of the Janus kinases (JAKs) and signal transducers and activators of transcription (STATs) signaling have uncovered highly conserved programs linking cytokine signaling to the regulation of essential cellular mechanisms such as proliferation, invasion, survival, inflammation and immunity. Inhibitors of the JAK/STAT pathway are used for treatment of autoimmune diseases, such as rheumatoid arthritis or psoriasis. Aberrant JAK/STAT signaling has been identified to contribute to cancer progression and metastatic development. Targeting of JAK/STAT pathway is currently one of the most promising therapeutic strategies in prostate cancer (PCa), hematopoietic malignancies and sarcomas. Notably, newly identified regulators of JAK/STAT signaling, the non-coding RNAs transcripts and their role as important targets and potential clinical biomarkers are highlighted in this review. In addition to the established role of the JAK/STAT signaling pathway in traditional cytokine signaling the non-coding RNAs add yet another layer of hidden regulation and function. Understanding the crosstalk of non-coding RNA with JAK/STAT signaling in cancer is of critical importance and may result in better patient stratification not only in terms of prognosis but also in the context of therapy.
Collapse
Affiliation(s)
- Jan Pencik
- Clinical Institute of Pathology, Medical University of Vienna, 1090 Vienna, Austria; Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, 1090 Vienna, Austria; Ludwig Boltzmann Institute for Cancer Research, Medical University of Vienna, 1090 Vienna, Austria.
| | - Ha Thi Thanh Pham
- Ludwig Boltzmann Institute for Cancer Research, Medical University of Vienna, 1090 Vienna, Austria; Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Medical University of Vienna, 1210 Vienna, Austria
| | - Johannes Schmoellerl
- Ludwig Boltzmann Institute for Cancer Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Tahereh Javaheri
- Ludwig Boltzmann Institute for Cancer Research, Medical University of Vienna, 1090 Vienna, Austria; Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Medical University of Vienna, 1210 Vienna, Austria
| | - Michaela Schlederer
- Clinical Institute of Pathology, Medical University of Vienna, 1090 Vienna, Austria; Ludwig Boltzmann Institute for Cancer Research, Medical University of Vienna, 1090 Vienna, Austria; Department for Pathology of Laboratory Animals, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Zoran Culig
- Department of Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Olaf Merkel
- Clinical Institute of Pathology, Medical University of Vienna, 1090 Vienna, Austria
| | - Richard Moriggl
- Ludwig Boltzmann Institute for Cancer Research, Medical University of Vienna, 1090 Vienna, Austria; Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Medical University of Vienna, 1210 Vienna, Austria
| | - Florian Grebien
- Ludwig Boltzmann Institute for Cancer Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Lukas Kenner
- Clinical Institute of Pathology, Medical University of Vienna, 1090 Vienna, Austria; Ludwig Boltzmann Institute for Cancer Research, Medical University of Vienna, 1090 Vienna, Austria; Department for Pathology of Laboratory Animals, University of Veterinary Medicine Vienna, 1210 Vienna, Austria.
| |
Collapse
|
168
|
Goldstein J, Borowsky AD, Goyal R, Roland JT, Arnold SA, Gellert LL, Clark PE, Hameed O, Giannico GA. MAGI-2 in prostate cancer: an immunohistochemical study. Hum Pathol 2016; 52:83-91. [PMID: 26980016 DOI: 10.1016/j.humpath.2016.01.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 01/06/2016] [Accepted: 01/14/2016] [Indexed: 12/19/2022]
Abstract
Membrane-associated guanylate kinase, WW and PDZ domain-containing protein 2 (MAGI-2) is a scaffolding protein that links cell adhesion molecules, receptors, and signaling molecules to the cytoskeleton and maintains the architecture of cell junctions. MAGI-2 gene rearrangements have recently been described in prostate cancer. We studied the immunohistochemical expression of MAGI-2 protein in prostate tissue. Seventy-eight radical prostatectomies were used to construct 3 tissue microarrays consisting of 512 cores, including benign tissue, benign prostatic hyperplasia, high-grade prostatic intraepithelial neoplasia (HGPIN), and adenocarcinoma, Gleason patterns 3 to 5. Immunohistochemistry for phosphatase and tensin homologue (PTEN) and double-stain MAGI-2/p63 was performed and analyzed by visual and image analysis, the latter as percent of analyzed area (%AREA), and mean optical density multiplied by %AREA (STAIN). By visual and image analysis, MAGI-2 was significantly higher in adenocarcinoma and HGPIN compared with benign (benign versus HGPIN P < .001; benign versus adenocarcinoma, P < .001). HGPIN and adenocarcinoma did not significantly differ by either modality. Using visual intensity to distinguish benign tissue and adenocarcinoma, a receiver operating curve yielded an area under the curve of 0.902. A STAIN threshold of 1470 yielded a sensitivity of 0.66 and specificity of 0.96. There was a significant correlation between PTEN and MAGI-2 staining for normal and benign prostatic hyperplasia, but this was lost in HGPIN and cancer. We conclude that MAGI-2 immunoreactivity is elevated in prostate cancer and HGPIN compared with normal tissue, and suggest that MAGI-2 may contribute to prostate carcinogenesis. This is the first report of MAGI-2 staining by immunohistochemistry in prostate cancer.
Collapse
Affiliation(s)
- Jeffery Goldstein
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232.
| | - Alexander D Borowsky
- Department of Pathology and Laboratory Medicine, UC Davis School of Medicine, Center for Comparative Medicine and Comprehensive Cancer Center, University of California Davis, Davis, CA 95616.
| | - Rajen Goyal
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232.
| | - Joseph T Roland
- Epithelial Biology Center, Department of Surgery, Vanderbilt University Medical Center, Nashville, TN 37232.
| | - Shanna A Arnold
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232; Department of Veterans Affairs, Nashville, TN 37212.
| | - Lan L Gellert
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232.
| | - Peter E Clark
- Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232.
| | - Omar Hameed
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232; Department of Urologic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232.
| | - Giovanna A Giannico
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232.
| |
Collapse
|
169
|
Abstract
Oncolytic virotherapy is a cancer treatment in which replication-competent viruses are used that specifically infect, replicate in and lyse malignant tumour cells, while minimizing harm to normal cells. Anecdotal evidence of the effectiveness of this strategy has existed since the late nineteenth century, but advances and innovations in biotechnological methods in the 1980s and 1990s led to a renewed interest in this type of therapy. Multiple clinical trials investigating the use of agents constructed from a wide range of viruses have since been performed, and several of these enrolled patients with urological malignancies. Data from these clinical trials and from preclinical studies revealed a number of challenges to the effectiveness of oncolytic virotherapy that have prompted the development of further sophisticated strategies. Urological cancers have a range of distinctive features, such as specific genetic mutations and cell surface markers, which enable improving both effectiveness and safety of oncolytic virus treatments. The strategies employed in creating advanced oncolytic agents include alteration of the virus tropism, regulating transcription and translation of viral genes, combination with chemotherapy, radiotherapy or gene therapy, arming viruses with factors that stimulate the immune response against tumour cells and delivery technologies to ensure that the viral agent reaches its target tissue.
Collapse
Affiliation(s)
- Zahid Delwar
- Department of Surgery, University of British Columbia, 2211 Wesbrook Mall, Vancouver, British Columbia V6T 2B5, Canada
| | - Kaixin Zhang
- Department of Urology, University of British Columbia, Level 6, 2775 Laurel Street, Vancouver, British Columbia V5Z 1M9, Canada
| | - Paul S Rennie
- Prostate Research Centre, Vancouver General Hospital, 2660 Oak Street, Vancouver, British Columbia V6H 3Z6, Canada
| | - William Jia
- Department of Surgery, University of British Columbia, 2211 Wesbrook Mall, Vancouver, British Columbia V6T 2B5, Canada
| |
Collapse
|
170
|
Novel roles for class II Phosphoinositide 3-Kinase C2β in signalling pathways involved in prostate cancer cell invasion. Sci Rep 2016; 6:23277. [PMID: 26983806 PMCID: PMC4794650 DOI: 10.1038/srep23277] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 03/03/2016] [Indexed: 12/14/2022] Open
Abstract
Phosphoinositide 3-kinases (PI3Ks) regulate several cellular functions such as proliferation, growth, survival and migration. The eight PI3K isoforms are grouped into three classes and the three enzymes belonging to the class II subfamily (PI3K-C2α, β and γ) are the least investigated amongst all PI3Ks. Interest on these isoforms has been recently fuelled by the identification of specific physiological roles for class II PI3Ks and by accumulating evidence indicating their involvement in human diseases. While it is now established that these isoforms can regulate distinct cellular functions compared to other PI3Ks, there is still a limited understanding of the signalling pathways that can be specifically regulated by class II PI3Ks. Here we show that PI3K-C2β regulates mitogen-activated protein kinase kinase (MEK1/2) and extracellular signal-regulated kinase (ERK1/2) activation in prostate cancer (PCa) cells. We further demonstrate that MEK/ERK and PI3K-C2β are required for PCa cell invasion but not proliferation. In addition we show that PI3K-C2β but not MEK/ERK regulates PCa cell migration as well as expression of the transcription factor Slug. These data identify novel signalling pathways specifically regulated by PI3K-C2β and they further identify this enzyme as a key regulator of PCa cell migration and invasion.
Collapse
|
171
|
Discrete functions of GSK3α and GSK3β isoforms in prostate tumor growth and micrometastasis. Oncotarget 2016; 6:5947-62. [PMID: 25714023 PMCID: PMC4467413 DOI: 10.18632/oncotarget.3335] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 01/04/2015] [Indexed: 11/25/2022] Open
Abstract
Isoform specific function of glycogen synthase kinase-3 (GSK3) in cancer is not well defined. We report that silencing of GSK3α, but not GSK3β expression inhibited proliferation, survival and colony formation by the PC3, DU145 and LNCaP prostate cancer cells, and the growth of PC3 tumor xenografts in athymic nude mice. Silencing of GSK3α, but not GSK3β resulted in reduced proliferation and enhanced apoptosis in tumor xenografts. ShRNA-mediated knockdown of GSK3α and GSK3β equally inhibited the ability of prostate cancer cells to migrate and invade the endothelial-barrier in vitro, and PC3 cell micrometastasis to lungs in vivo. Mechanistically, whereas silencing GSK3α resulted in increased expression of pro-apoptotic markers cleaved caspase-3 and cleaved caspase-9 in LNCaP, PC3 and DU145 cells, silencing GSK3β resulted in the inhibition of cell scattering, establishment of cell-cell contacts, increased expression and membrane localization of β-catenin, and reduced expression of epithelial to mesenchymal transition (EMT) markers such as Snail and MMP-9. This indicated the specific role of GSK3β in EMT, acquisition of motility and invasive potential. Overall, our data demonstrated the isoform specific role of GSK3α and GSK3β in prostate cancer cells in vitro, and tumor growth and micrometastasis in vivo, via distinct molecular and cellular mechanisms.
Collapse
|
172
|
Abstract
The phosphatase and tensin homologue deleted on chromosome 10 (PTEN) phosphatase dephosphorylates PIP3, the lipid product of the class I PI 3-kinases, and suppresses the growth and proliferation of many cell types. It has been heavily studied, in large part due to its status as a tumour suppressor, the loss of function of which is observed through diverse mechanisms in many tumour types. Here we present a concise review of our understanding of the PTEN protein and highlight recent advances, particularly in our understanding of its localization and regulation by ubiquitination and SUMOylation.
Collapse
|
173
|
He S, Lin J, Yu S, Sun S. Upregulation of PREX2 promotes the proliferation and migration of hepatocellular carcinoma cells via PTEN-AKT signaling. Oncol Lett 2016; 11:2223-2228. [PMID: 26998152 DOI: 10.3892/ol.2016.4164] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 12/15/2015] [Indexed: 12/11/2022] Open
Abstract
Phosphatidylinositol-3,4,5-trisphosphate Rac exchanger 2 (PREX2), a regulator of the small guanosine triphosphatase Rac, demonstrates an inhibitory effect on the activity of phosphatase and tensin homolog (PTEN). Previously, PREX2 was implicated in the regulation of cell invasion in hepatocellular carcinoma (HCC). However, the exact role of PREX2 in the regulation of HCC cell proliferation and migration, as well as the underlying mechanisms, remains unclear. In the present study, reverse transcription-quantitative polymerase chain reaction revealed that PREX2 was upregulated in HCC tissue compared with matched adjacent non-tumorous tissue. In addition, the present study demonstrated that the messenger RNA and protein levels of PREX2 increased in human HCC HepG2, LH86, LMH and PLHC-1 cell lines compared with normal human liver THLE-3 cells. Overexpression of PREX2 significantly enhanced the proliferation and migration of HCC cells, and knockdown of PREX2 expression significantly suppressed the proliferation and migration of HCC cells. Additional investigation revealed that overexpression of PREX2 suppressed the activity of PTEN, leading to an enhancement in the activity of protein kinase B (AKT). By contrast, knockdown of PREX2 expression upregulated the activity of PTEN and suppressed the activity of AKT. Overall, the present study suggests that PREX2 promotes the proliferation and migration of HCC cells by inhibiting PTEN-AKT signaling.
Collapse
Affiliation(s)
- Shujie He
- Department of Hepatobiliary Surgery, Yantai Mountain Hospital, Yantai, Shandong 264000, P.R. China
| | - Juan Lin
- Department of Hepatobiliary Surgery, Government Hospital of Yantai City, Yantai, Shandong 264000, P.R. China
| | - Shaoping Yu
- Department of Hepatobiliary Surgery, Yuhuangding Hospital, Yantai, Shandong 264001, P.R. China
| | - Shijie Sun
- Department of Hepatobiliary Surgery, Yuhuangding Hospital, Yantai, Shandong 264001, P.R. China
| |
Collapse
|
174
|
Grego-Bessa J, Bloomekatz J, Castel P, Omelchenko T, Baselga J, Anderson KV. The tumor suppressor PTEN and the PDK1 kinase regulate formation of the columnar neural epithelium. eLife 2016; 5:e12034. [PMID: 26809587 PMCID: PMC4739759 DOI: 10.7554/elife.12034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 12/02/2015] [Indexed: 01/16/2023] Open
Abstract
Epithelial morphogenesis and stability are essential for normal development and organ homeostasis. The mouse neural plate is a cuboidal epithelium that remodels into a columnar pseudostratified epithelium over the course of 24 hr. Here we show that the transition to a columnar epithelium fails in mutant embryos that lack the tumor suppressor PTEN, although proliferation, patterning and apical-basal polarity markers are normal in the mutants. The Pten phenotype is mimicked by constitutive activation of PI3 kinase and is rescued by the removal of PDK1 (PDPK1), but does not depend on the downstream kinases AKT and mTORC1. High resolution imaging shows that PTEN is required for stabilization of planar cell packing in the neural plate and for the formation of stable apical-basal microtubule arrays. The data suggest that appropriate levels of membrane-associated PDPK1 are required for stabilization of apical junctions, which promotes cell elongation, during epithelial morphogenesis.
Collapse
Affiliation(s)
- Joaquim Grego-Bessa
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Joshua Bloomekatz
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Pau Castel
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Tatiana Omelchenko
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| | - José Baselga
- Human Oncology and Pathogenesis Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Kathryn V Anderson
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, United States
| |
Collapse
|
175
|
Korsten H, Ziel-van der Made ACJ, van Weerden WM, van der Kwast T, Trapman J, Van Duijn PW. Characterization of Heterogeneous Prostate Tumors in Targeted Pten Knockout Mice. PLoS One 2016; 11:e0147500. [PMID: 26807730 PMCID: PMC4726760 DOI: 10.1371/journal.pone.0147500] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/05/2016] [Indexed: 11/18/2022] Open
Abstract
Previously, we generated a preclinical mouse prostate tumor model based on PSA-Cre driven inactivation of Pten. In this model homogeneous hyperplastic prostates (4-5m) developed at older age (>10m) into tumors. Here, we describe the molecular and histological characterization of the tumors in order to better understand the processes that are associated with prostate tumorigenesis in this targeted mouse Pten knockout model. The morphologies of the tumors that developed were very heterogeneous. Different histopathological growth patterns could be identified, including intraductal carcinoma (IDC), adenocarcinoma and undifferentiated carcinoma, all strongly positive for the epithelial cell marker Cytokeratin (CK), and carcinosarcomas, which were negative for CK. IDC pattern was already detected in prostates of 7-8 month old mice, indicating that it could be a precursor stage. At more than 10 months IDC and carcinosarcoma were most frequently observed. Gene expression profiling discriminated essentially two molecular subtypes, denoted tumor class 1 (TC1) and tumor class 2 (TC2). TC1 tumors were characterized by high expression of epithelial markers like Cytokeratin 8 and E-Cadherin whereas TC2 tumors showed high expression of mesenchyme/stroma markers such as Snail and Fibronectin. These molecular subtypes corresponded with histological growth patterns: where TC1 tumors mainly represented adenocarcinoma/intraductal carcinoma, in TC2 tumors carcinosarcoma was the dominant growth pattern. Further molecular characterization of the prostate tumors revealed an increased expression of genes associated with the inflammatory response. Moreover, functional markers for senescence, proliferation, angiogenesis and apoptosis were higher expressed in tumors compared to hyperplasia. The highest expression of proliferation and angiogenesis markers was detected in TC2 tumors. Our data clearly showed that in the genetically well-defined PSA-Cre;Pten-loxP/loxP prostate tumor model, histopathological, molecular and biological heterogeneity occurred during later stages of tumor development.
Collapse
MESH Headings
- Adenocarcinoma/chemistry
- Adenocarcinoma/genetics
- Adenocarcinoma/pathology
- Animals
- Apoptosis/genetics
- Biomarkers
- Biomarkers, Tumor
- Cadherins/analysis
- Carcinoma/chemistry
- Carcinoma/genetics
- Carcinoma/pathology
- Carcinosarcoma/chemistry
- Carcinosarcoma/genetics
- Carcinosarcoma/pathology
- Cellular Senescence/genetics
- Disease Progression
- Epithelial Cells/chemistry
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Inflammation/genetics
- Keratins/analysis
- Male
- Mesoderm/chemistry
- Mice
- Mice, Inbred Strains
- Mice, Knockout
- Neoplasm Proteins/analysis
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/pathology
- PTEN Phosphohydrolase/deficiency
- Prostatic Hyperplasia/genetics
- Prostatic Hyperplasia/pathology
- Prostatic Neoplasms/chemistry
- Prostatic Neoplasms/classification
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/pathology
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Neoplasm/biosynthesis
- RNA, Neoplasm/genetics
- Stromal Cells/chemistry
Collapse
Affiliation(s)
- Hanneke Korsten
- Department of Pathology, Josephine Nefkens Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Wytske M. van Weerden
- Department of Urology, Josephine Nefkens Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Theo van der Kwast
- Department of Pathology, Josephine Nefkens Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jan Trapman
- Department of Pathology, Josephine Nefkens Institute, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Petra W. Van Duijn
- Department of Pathology, Josephine Nefkens Institute, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Urology, Josephine Nefkens Institute, Erasmus Medical Center, Rotterdam, The Netherlands
- * E-mail:
| |
Collapse
|
176
|
LIU LIANG, LIU ZHIXIONG, WANG HAO, CHEN LONG, RUAN FUQIANG, ZHANG JIHUI, HU YI, LUO HENGSHAN, WEN SHUAI. Knockdown of PREX2a inhibits the malignant phenotype of glioma cells. Mol Med Rep 2016; 13:2301-7. [DOI: 10.3892/mmr.2016.4799] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 11/19/2015] [Indexed: 11/06/2022] Open
|
177
|
Kim TD, Jin F, Shin S, Oh S, Lightfoot SA, Grande JP, Johnson AJ, van Deursen JM, Wren JD, Janknecht R. Histone demethylase JMJD2A drives prostate tumorigenesis through transcription factor ETV1. J Clin Invest 2016; 126:706-20. [PMID: 26731476 DOI: 10.1172/jci78132] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 11/13/2015] [Indexed: 02/06/2023] Open
Abstract
Histone demethylase upregulation has been observed in human cancers, yet it is unknown whether this is a bystander event or a driver of tumorigenesis. We found that overexpression of lysine-specific demethylase 4A (KDM4A, also known as JMJD2A) was positively correlated with Gleason score and metastasis in human prostate tumors. Overexpression of JMJD2A resulted in the development of prostatic intraepithelial neoplasia in mice, demonstrating that JMJD2A can initiate prostate cancer development. Moreover, combined overexpression of JMJD2A and the ETS transcription factor ETV1, a JMJD2A-binding protein, resulted in prostate carcinoma formation in mice haplodeficient for the phosphatase and tensin homolog (Pten) tumor-suppressor gene. Additionally, JMJD2A cooperated with ETV1 to increase expression of yes associated protein 1 (YAP1), a Hippo pathway component that itself was associated with prostate tumor aggressiveness. ETV1 facilitated the recruitment of JMJD2A to the YAP1 promoter, leading to changes in histone lysine methylation in a human prostate cancer cell line. Further, YAP1 expression largely rescued the growth inhibitory effects of JMJD2A depletion in prostate cancer cells, indicating that YAP1 is a downstream effector of JMJD2A. Taken together, these data reveal a JMJD2A/ETV1/YAP1 axis that promotes prostate cancer initiation and that may be a suitable target for therapeutic inhibition.
Collapse
|
178
|
Abstract
Starting from the discovery of "inhibitory chromosomes" by Theodor Boveri to the finding by Henry Harris that fusing a normal cell to a cancer cell reduced tumorigenic potential, the notion of tumor suppression was recognized well before any tumor-suppressor genes were discovered. Although not the first to be revealed, PTEN has been demonstrated to be one of the most frequently altered tumor suppressors in cancer. This introductory chapter provides a historical perspective on our current understanding of PTEN including some of the seminal discoveries in the tumor suppressor field, the events leading to PTEN's discovery, and an introduction to some of the most important researchers and their studies which have shed light on PTEN biology and function as we know it today.
Collapse
Affiliation(s)
- Leonardo Salmena
- Department of Pharmacology and Toxicology, University of Toronto, Princess Margaret Cancer Centre, Room 4211, Medical Sciences Building, 1 King's College Circle, Toronto, ON, Canada, M5S 1A8.
| |
Collapse
|
179
|
Abstract
PTEN expression can be dysregulated in cancers via multiple mechanisms including genomic loss, epigenetic silencing, transcriptional repression, and posttranscriptional regulation by microRNAs. MicroRNAs are short, noncoding RNAs that regulate gene expression by binding to recognition sites on target transcripts. Recent studies have demonstrated that the competition for shared microRNAs between both protein-coding and noncoding transcripts represents an additional facet of gene regulation. Here, we describe in detail an integrated computational and experimental approach to identify and validate these competing endogenous RNA (ceRNA) interactions.
Collapse
Affiliation(s)
- Yvonne Tay
- Cancer Science Institute of Singapore, Centre for Translational Medicine, National University of Singapore, 14 Medical Drive, #12-01, Singapore, 117599, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
| | - Pier Paolo Pandolfi
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, 3 Blackfan Circle, Boston, MA, 02215, USA.
| |
Collapse
|
180
|
Caserta E, Egriboz O, Wang H, Martin C, Koivisto C, Pecót T, Kladney RD, Shen C, Shim KS, Pham T, Karikomi MK, Mauntel MJ, Majumder S, Cuitino MC, Tang X, Srivastava A, Yu L, Wallace J, Mo X, Park M, Fernandez SA, Pilarski R, La Perle KMD, Rosol TJ, Coppola V, Castrillon DH, Timmers C, Cohn DE, O'Malley DM, Backes F, Suarez AA, Goodfellow P, Chamberlin HM, Macrae ER, Shapiro CL, Ostrowski MC, Leone G. Noncatalytic PTEN missense mutation predisposes to organ-selective cancer development in vivo. Genes Dev 2015; 29:1707-20. [PMID: 26302789 PMCID: PMC4561480 DOI: 10.1101/gad.262568.115] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Caserta et al. generated and analyzed Pten knock-in mice harboring a C2 domain missense mutation at phenylalanine 341 (PtenFV), found in human cancer. This PTEN noncatalytic missense mutation exposes a core tumor suppressor function distinct from inhibition of canonical AKT signaling that predisposes to organ-selective cancer development in vivo. Inactivation of phosphatase and tensin homology deleted on chromosome 10 (PTEN) is linked to increased PI3K–AKT signaling, enhanced organismal growth, and cancer development. Here we generated and analyzed Pten knock-in mice harboring a C2 domain missense mutation at phenylalanine 341 (PtenFV), found in human cancer. Despite having reduced levels of PTEN protein, homozygous PtenFV/FV embryos have intact AKT signaling, develop normally, and are carried to term. Heterozygous PtenFV/+ mice develop carcinoma in the thymus, stomach, adrenal medulla, and mammary gland but not in other organs typically sensitive to Pten deficiency, including the thyroid, prostate, and uterus. Progression to carcinoma in sensitive organs ensues in the absence of overt AKT activation. Carcinoma in the uterus, a cancer-resistant organ, requires a second clonal event associated with the spontaneous activation of AKT and downstream signaling. In summary, this PTEN noncatalytic missense mutation exposes a core tumor suppressor function distinct from inhibition of canonical AKT signaling that predisposes to organ-selective cancer development in vivo.
Collapse
Affiliation(s)
- Enrico Caserta
- Solid Tumor Biology Program, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Department of Molecular Genetics, College of Arts and Sciences, The Ohio State University, Columbus, Ohio 43210, USA; Department of Molecular Virology, Immunology, and Medical Genetics, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - Onur Egriboz
- Solid Tumor Biology Program, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Department of Molecular Genetics, College of Arts and Sciences, The Ohio State University, Columbus, Ohio 43210, USA; Department of Molecular Virology, Immunology, and Medical Genetics, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - Hui Wang
- Solid Tumor Biology Program, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Department of Molecular Genetics, College of Arts and Sciences, The Ohio State University, Columbus, Ohio 43210, USA; Department of Molecular Virology, Immunology, and Medical Genetics, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - Chelsea Martin
- Solid Tumor Biology Program, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Department of Molecular Genetics, College of Arts and Sciences, The Ohio State University, Columbus, Ohio 43210, USA; Department of Molecular Virology, Immunology, and Medical Genetics, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - Christopher Koivisto
- Solid Tumor Biology Program, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Department of Molecular Genetics, College of Arts and Sciences, The Ohio State University, Columbus, Ohio 43210, USA; Department of Molecular Virology, Immunology, and Medical Genetics, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - Thierry Pecót
- Solid Tumor Biology Program, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Department of Molecular Genetics, College of Arts and Sciences, The Ohio State University, Columbus, Ohio 43210, USA; Department of Molecular Virology, Immunology, and Medical Genetics, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - Raleigh D Kladney
- Solid Tumor Biology Program, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Department of Molecular Genetics, College of Arts and Sciences, The Ohio State University, Columbus, Ohio 43210, USA; Department of Molecular Virology, Immunology, and Medical Genetics, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - Changxian Shen
- Solid Tumor Biology Program, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Department of Molecular Genetics, College of Arts and Sciences, The Ohio State University, Columbus, Ohio 43210, USA; Department of Molecular Virology, Immunology, and Medical Genetics, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - Kang-Sup Shim
- Solid Tumor Biology Program, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Department of Molecular Genetics, College of Arts and Sciences, The Ohio State University, Columbus, Ohio 43210, USA; Department of Molecular Virology, Immunology, and Medical Genetics, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - Thac Pham
- Solid Tumor Biology Program, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Department of Molecular Genetics, College of Arts and Sciences, The Ohio State University, Columbus, Ohio 43210, USA; Department of Molecular Virology, Immunology, and Medical Genetics, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - Matthew K Karikomi
- Solid Tumor Biology Program, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Department of Molecular Genetics, College of Arts and Sciences, The Ohio State University, Columbus, Ohio 43210, USA; Department of Molecular Virology, Immunology, and Medical Genetics, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - Melissa J Mauntel
- Solid Tumor Biology Program, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Department of Molecular Genetics, College of Arts and Sciences, The Ohio State University, Columbus, Ohio 43210, USA; Department of Molecular Virology, Immunology, and Medical Genetics, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - Sarmila Majumder
- Solid Tumor Biology Program, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Department of Molecular Genetics, College of Arts and Sciences, The Ohio State University, Columbus, Ohio 43210, USA; Department of Molecular Virology, Immunology, and Medical Genetics, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - Maria C Cuitino
- Solid Tumor Biology Program, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Department of Molecular Genetics, College of Arts and Sciences, The Ohio State University, Columbus, Ohio 43210, USA; Department of Molecular Virology, Immunology, and Medical Genetics, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - Xing Tang
- Solid Tumor Biology Program, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Department of Molecular Genetics, College of Arts and Sciences, The Ohio State University, Columbus, Ohio 43210, USA; Department of Molecular Virology, Immunology, and Medical Genetics, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - Arunima Srivastava
- Solid Tumor Biology Program, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Department of Molecular Genetics, College of Arts and Sciences, The Ohio State University, Columbus, Ohio 43210, USA; Department of Molecular Virology, Immunology, and Medical Genetics, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - Lianbo Yu
- Center for Biostatistics, The Ohio State University, Columbus, Ohio 43210, USA; Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - Julie Wallace
- Solid Tumor Biology Program, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Department of Molecular Genetics, College of Arts and Sciences, The Ohio State University, Columbus, Ohio 43210, USA; Department of Molecular Virology, Immunology, and Medical Genetics, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - Xiaokui Mo
- Center for Biostatistics, The Ohio State University, Columbus, Ohio 43210, USA; Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - Morag Park
- Department of Biochemistry, McGill University, Montreal, Quebec H3A 1A1, Canada; Rosalind and Morris Goodman Cancer Center, McGill University, Montreal, Quebec H3A 1A1, Canada; Department of Oncology, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - Soledad A Fernandez
- Center for Biostatistics, The Ohio State University, Columbus, Ohio 43210, USA; Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - Robert Pilarski
- Department of Internal Medicine, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA
| | - Krista M D La Perle
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - Thomas J Rosol
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - Vincenzo Coppola
- Solid Tumor Biology Program, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Department of Molecular Virology, Immunology, and Medical Genetics, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - Diego H Castrillon
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Cynthia Timmers
- Solid Tumor Biology Program, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA
| | - David E Cohn
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, The Ohio State University, Columbus, Ohio 43210, USA
| | - David M O'Malley
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Floor Backes
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Adrian A Suarez
- Department of Pathology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Paul Goodfellow
- Department of Molecular Virology, Immunology, and Medical Genetics, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Helen M Chamberlin
- Department of Molecular Genetics, College of Arts and Sciences, The Ohio State University, Columbus, Ohio 43210, USA
| | - Erin R Macrae
- Division of Medical Oncology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - Charles L Shapiro
- Division of Medical Oncology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - Michael C Ostrowski
- Solid Tumor Biology Program, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Department of Molecular Virology, Immunology, and Medical Genetics, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| | - Gustavo Leone
- Solid Tumor Biology Program, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, USA; Department of Molecular Genetics, College of Arts and Sciences, The Ohio State University, Columbus, Ohio 43210, USA; Department of Molecular Virology, Immunology, and Medical Genetics, College of Medicine, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
181
|
Garcia-Rendueles MER, Ricarte-Filho JC, Untch BR, Landa I, Knauf JA, Voza F, Smith VE, Ganly I, Taylor BS, Persaud Y, Oler G, Fang Y, Jhanwar SC, Viale A, Heguy A, Huberman KH, Giancotti F, Ghossein R, Fagin JA. NF2 Loss Promotes Oncogenic RAS-Induced Thyroid Cancers via YAP-Dependent Transactivation of RAS Proteins and Sensitizes Them to MEK Inhibition. Cancer Discov 2015; 5:1178-93. [PMID: 26359368 PMCID: PMC4642441 DOI: 10.1158/2159-8290.cd-15-0330] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 09/08/2015] [Indexed: 11/16/2022]
Abstract
UNLABELLED Ch22q LOH is preferentially associated with RAS mutations in papillary and in poorly differentiated thyroid cancer (PDTC). The 22q tumor suppressor NF2, encoding merlin, is implicated in this interaction because of its frequent loss of function in human thyroid cancer cell lines. Nf2 deletion or Hras mutation is insufficient for transformation, whereas their combined disruption leads to murine PDTC with increased MAPK signaling. Merlin loss induces RAS signaling in part through inactivation of Hippo, which activates a YAP-TEAD transcriptional program. We find that the three RAS genes are themselves YAP-TEAD1 transcriptional targets, providing a novel mechanism of promotion of RAS-induced tumorigenesis. Moreover, pharmacologic disruption of YAP-TEAD with verteporfin blocks RAS transcription and signaling and inhibits cell growth. The increased MAPK output generated by NF2 loss in RAS-mutant cancers may inform therapeutic strategies, as it generates greater dependency on the MAPK pathway for viability. SIGNIFICANCE Intensification of mutant RAS signaling through copy-number imbalances is commonly associated with transformation. We show that NF2/merlin inactivation augments mutant RAS signaling by promoting YAP/TEAD-driven transcription of oncogenic and wild-type RAS, resulting in greater MAPK output and increased sensitivity to MEK inhibitors.
Collapse
MESH Headings
- Animals
- Binding Sites
- Cell Cycle Proteins
- Cell Line, Tumor
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Chromosome Deletion
- Chromosomes, Human, Pair 22
- DNA Copy Number Variations
- Disease Models, Animal
- Drug Resistance, Neoplasm/genetics
- Gene Deletion
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Order
- Gene Targeting
- Genes, ras
- Humans
- Mice
- Mice, Transgenic
- Mitogen-Activated Protein Kinases/antagonists & inhibitors
- Models, Biological
- Neoplasm Staging
- Neurofibromin 2/genetics
- Nuclear Proteins/metabolism
- Nucleotide Motifs
- Position-Specific Scoring Matrices
- Promoter Regions, Genetic
- Protein Binding
- Protein Kinase Inhibitors/pharmacology
- Signal Transduction/drug effects
- Thyroid Neoplasms/drug therapy
- Thyroid Neoplasms/genetics
- Thyroid Neoplasms/metabolism
- Thyroid Neoplasms/pathology
- Transcription Factors/metabolism
- Transcriptional Activation
Collapse
Affiliation(s)
| | - Julio C Ricarte-Filho
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Brian R Untch
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York. Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Iňigo Landa
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jeffrey A Knauf
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York. Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Francesca Voza
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Vicki E Smith
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ian Ganly
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Barry S Taylor
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York. Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yogindra Persaud
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Gisele Oler
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yuqiang Fang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Suresh C Jhanwar
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Agnes Viale
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Adriana Heguy
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Kety H Huberman
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Filippo Giancotti
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York. Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Ronald Ghossein
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - James A Fagin
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York. Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York. Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York. Department of Medicine, Weill Cornell Medical College, New York, New York.
| |
Collapse
|
182
|
Li J, Yao L, Li G, Ma D, Sun C, Gao S, Zhang P, Gao F. miR-221 Promotes Epithelial-Mesenchymal Transition through Targeting PTEN and Forms a Positive Feedback Loop with β-catenin/c-Jun Signaling Pathway in Extra-Hepatic Cholangiocarcinoma. PLoS One 2015; 10:e0141168. [PMID: 26501139 PMCID: PMC4621024 DOI: 10.1371/journal.pone.0141168] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/04/2015] [Indexed: 12/21/2022] Open
Abstract
Extrahepatic cholangiocarcinoma (EHCC) is a refractory malignancy with poor prognosis due to its early invasion, metastasis and recurrence after operation. Therefore, understanding the mechanisms of invasion and metastasis is the key to the development of new and effective therapeutic strategies for EHCC. In the present study we demonstrated that miR-221 promoted EHCC invasion and metastasis through targeting PTEN and formed a positive feedback loop with β-catenin/c-Jun signaling pathway. We found miR-221 was upregulated in EHCC specimens and CC cell lines. Moreover, miR-221 was found strongly associated with the metastasis and prognosis of EHCC patients. The expression of PTEN was downregulated in EHCC patients and CC cell lines, and was further demonstrated as one of the downstream targets of miR-221. In addition, our data indicated that β-catenin activated miR-221 through c-jun, while miR-221 enhanced β-catenin signaling induced-epithelial-mesenchymal transition (EMT) by targeting PTEN, hence forming a positive feedback loop in EHCC cell lines. In conclusion, our results suggested that miR-221 promotes EMT through targeting PTEN and forms a positive feedback loop with β-catenin/c-Jun signaling pathway in EHCC.
Collapse
Affiliation(s)
- Jianguo Li
- Department of General Surgery, the First Affiliated Hospital of JILIN University, Changchun, 130021, P.R. China
| | - Lei Yao
- Department of General Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, P.R. China
| | - Guodong Li
- Department of General Surgery, the Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, P.R. China
| | - Donglai Ma
- Department of General Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, P.R. China
| | - Chen Sun
- Department of General Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, P.R. China
| | - Shuang Gao
- Heilongjiang Nursing College, Harbin, 150086, P.R. China
| | - Ping Zhang
- Department of General Surgery, the First Affiliated Hospital of JILIN University, Changchun, 130021, P.R. China
- * E-mail: (PZ); (FG)
| | - Feng Gao
- Department of General Surgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, P.R. China
- * E-mail: (PZ); (FG)
| |
Collapse
|
183
|
Chen M, Nowak DG, Trotman LC. Molecular pathways: PI3K pathway phosphatases as biomarkers for cancer prognosis and therapy. Clin Cancer Res 2015; 20:3057-63. [PMID: 24928944 DOI: 10.1158/1078-0432.ccr-12-3680] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cancer research has seen tremendous changes over the past decade. Fast progress in sequencing technology has afforded us with landmark genetic alterations, which had immediate impact on clinical science and practice by pointing to new kinase targets, such as phosphoinositide 3-kinase (PI3K), the EGF receptor, or BRAF. The PI3K pathway for growth control has emerged as a prime example for both oncogene activation and tumor suppressor loss in cancer. Here, we discuss how therapy using PI3K pathway inhibitors could benefit from information on specific phosphatases, which naturally antagonize the kinase targets. This PI3K pathway is found mutated in most cancer types, including prostate, breast, colon, and brain tumors. The tumor-suppressing phosphatases operate at two levels. Lipid-level phosphatases, such as PTEN and INPP4B, revert PI3K activity to keep the lipid second messengers inactive. At the protein level, PHLPP1/2 protein phosphatases inactivate AKT kinase, thus antagonizing mTOR complex 2 activity. However, in contrast with their kinase counterparts the phosphatases are unlikely drug targets. They would need to be stimulated by therapy and are commonly deleted and mutated in cancer. Yet, because they occupy critical nodes in preventing cancer initiation and progression, the information on their status has tremendous potential in outcome prediction, and in matching the available kinase inhibitor repertoire with the right patients. Clin Cancer Res; 20(12); 3057-63. ©2014 AACR.
Collapse
Affiliation(s)
- Muhan Chen
- Authors' Affiliation: Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Dawid G Nowak
- Authors' Affiliation: Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | - Lloyd C Trotman
- Authors' Affiliation: Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| |
Collapse
|
184
|
Abstract
Translational control plays a critical role in the regulation of gene expression in eukaryotes and affects many essential cellular processes, including proliferation, apoptosis and differentiation. Under most circumstances, translational control occurs at the initiation step at which the ribosome is recruited to the mRNA. The eukaryotic translation initiation factor 4E (eIF4E), as part of the eIF4F complex, interacts first with the mRNA and facilitates the recruitment of the 40S ribosomal subunit. The activity of eIF4E is regulated at many levels, most profoundly by two major signalling pathways: PI3K (phosphoinositide 3-kinase)/Akt (also known and Protein Kinase B, PKB)/mTOR (mechanistic/mammalian target of rapamycin) and Ras (rat sarcoma)/MAPK (mitogen-activated protein kinase)/Mnk (MAPK-interacting kinases). mTOR directly phosphorylates the 4E-BPs (eIF4E-binding proteins), which are inhibitors of eIF4E, to relieve translational suppression, whereas Mnk phosphorylates eIF4E to stimulate translation. Hyperactivation of these pathways occurs in the majority of cancers, which results in increased eIF4E activity. Thus, translational control via eIF4E acts as a convergence point for hyperactive signalling pathways to promote tumorigenesis. Consequently, recent works have aimed to target these pathways and ultimately the translational machinery for cancer therapy.
Collapse
Affiliation(s)
- Nadeem Siddiqui
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Montreal, Quebec, Canada H3A 1A3
| | - Nahum Sonenberg
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, 1160 Pine Avenue West, Montreal, Quebec, Canada H3A 1A3
| |
Collapse
|
185
|
Bingham V, Ong CW, James J, Maxwell P, Waugh D, Salto-Tellez M, McQuaid S. PTEN mRNA detection by chromogenic, RNA in situ technologies: a reliable alternative to PTEN immunohistochemistry. Hum Pathol 2015; 47:95-103. [PMID: 26518664 DOI: 10.1016/j.humpath.2015.09.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 08/21/2015] [Accepted: 09/02/2015] [Indexed: 01/23/2023]
Abstract
Immunohistochemical staining for phosphatase and tensin homolog (PTEN) does not have either an acceptable standard protocol or concordance of scoring between pathologists. Evaluation of PTEN mRNA with a unique and verified sequence probe may offer a realistic alternative providing a robust and reproducible protocol. In this study, we have evaluated an in situ hybridization (ISH) protocol for PTEN mRNA using RNAScope technology and compared it with a standard protocol for PTEN immunohistochemistry (IHC). PTEN mRNA expression by ISH was consistently more sensitive than PTEN IHC, with 56% of samples on a mixed-tumor tissue microarray (TMA) showing high expression by ISH compared with 42% by IHC. On a prostate TMA, 49% of cases showed high expression by ISH compared with 43% by IHC. Variations in PTEN mRNA expression within malignant epithelium were quantifiable using image analysis on the prostate TMAs. Within tumors, clear overexpression of PTEN mRNA on malignant epithelium compared with benign epithelium was frequently observed and quantified. The use of SpotStudio software in the mixed-tumor TMA allowed for clear demonstration of varying levels of PTEN mRNA between tumor samples by the mRNA methodology. This was evident by the quantifiable differences between distinct oropharyngeal tumors (up to 3-fold increase in average number of spots per cell between 2 cases). mRNA detection of PTEN or other biomarkers, for which optimal or standardized immunohistochemical techniques are not available, represents a means by which heterogeneity of expression within focal regions of tumor can be explored with more confidence.
Collapse
Affiliation(s)
- Victoria Bingham
- Molecular Pathology Programme, Centre for Cancer Research and Cell Biology, Queen's University, Belfast, UK BT9 7AE
| | - Chee Wee Ong
- Prostate Cancer Research Group, Centre for Cancer Research and Cell Biology, Queen's University, Belfast, UK BT9 7AE
| | - Jacqueline James
- Molecular Pathology Programme, Centre for Cancer Research and Cell Biology, Queen's University, Belfast, UK BT9 7AE; Tissue Pathology, Belfast Health and Social Care Trust, Belfast City Hospital, Lisburn Rd BT9 7AB
| | - Pamela Maxwell
- Prostate Cancer Research Group, Centre for Cancer Research and Cell Biology, Queen's University, Belfast, UK BT9 7AE
| | - David Waugh
- Prostate Cancer Research Group, Centre for Cancer Research and Cell Biology, Queen's University, Belfast, UK BT9 7AE
| | - Manuel Salto-Tellez
- Molecular Pathology Programme, Centre for Cancer Research and Cell Biology, Queen's University, Belfast, UK BT9 7AE; Tissue Pathology, Belfast Health and Social Care Trust, Belfast City Hospital, Lisburn Rd BT9 7AB
| | - Stephen McQuaid
- Molecular Pathology Programme, Centre for Cancer Research and Cell Biology, Queen's University, Belfast, UK BT9 7AE; Tissue Pathology, Belfast Health and Social Care Trust, Belfast City Hospital, Lisburn Rd BT9 7AB.
| |
Collapse
|
186
|
Herranz D, Ambesi-Impiombato A, Sudderth J, Sánchez-Martín M, Belver L, Tosello V, Xu L, Wendorff AA, Castillo M, Haydu JE, Márquez J, Matés JM, Kung AL, Rayport S, Cordon-Cardo C, DeBerardinis RJ, Ferrando AA. Metabolic reprogramming induces resistance to anti-NOTCH1 therapies in T cell acute lymphoblastic leukemia. Nat Med 2015; 21:1182-9. [PMID: 26390244 PMCID: PMC4598309 DOI: 10.1038/nm.3955] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/27/2015] [Indexed: 12/14/2022]
Abstract
Activating mutations in NOTCH1 are common in T-cell acute lymphoblastic leukemia (TALL). Here we identify glutaminolysis as a critical pathway for leukemia cell growth downstream of NOTCH1 and a key determinant of clinical response to anti-NOTCH1 therapies. Mechanistically, inhibition of NOTCH1 signaling in T-ALL induces a metabolic shutdown with prominent inhibition of glutaminolysis and triggers autophagy as a salvage pathway supporting leukemia cell metabolism. Consequently, both inhibition of glutaminolysis and inhibition of autophagy strongly and synergistically enhance the antileukemic effects of anti-NOTCH1 therapies. Moreover, we demonstrate that Pten loss induces increased glycolysis and consequently rescues leukemic cell metabolism abrogating the antileukemic effects of NOTCH1 inhibition. Overall, these results identify glutaminolysis as a major node in cancer metabolism controlled by NOTCH1 and as therapeutic target for the treatment of T-ALL.
Collapse
Affiliation(s)
- Daniel Herranz
- Institute for Cancer Genetics, Columbia University, New York, New York, USA
| | | | - Jessica Sudderth
- Children's Medical Center Research Institute, University of Texas-Southwestern Medical Center, Dallas, Texas, USA
| | | | - Laura Belver
- Institute for Cancer Genetics, Columbia University, New York, New York, USA
| | - Valeria Tosello
- Institute for Cancer Genetics, Columbia University, New York, New York, USA
| | - Luyao Xu
- Institute for Cancer Genetics, Columbia University, New York, New York, USA
| | | | - Mireia Castillo
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - J Erika Haydu
- Institute for Cancer Genetics, Columbia University, New York, New York, USA
| | - Javier Márquez
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, Campus de Teatinos, University of Málaga-Instituto de Investigación Biomédica de Málaga, Málaga, Spain
| | - José M Matés
- Department of Molecular Biology and Biochemistry, Faculty of Sciences, Campus de Teatinos, University of Málaga-Instituto de Investigación Biomédica de Málaga, Málaga, Spain
| | - Andrew L Kung
- Department of Pediatrics, Columbia University Medical Center, New York, New York, USA
| | - Stephen Rayport
- Department of Psychiatry, Columbia University Medical Center, New York, New York, USA
| | - Carlos Cordon-Cardo
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, University of Texas-Southwestern Medical Center, Dallas, Texas, USA
| | - Adolfo A Ferrando
- Institute for Cancer Genetics, Columbia University, New York, New York, USA.,Department of Pediatrics, Columbia University Medical Center, New York, New York, USA.,Department of Pathology, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
187
|
Cowley D, Pandya K, Khan I, Kerwin J, Owen K, Griner E. Registered report: A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. eLife 2015; 4. [PMID: 26335297 PMCID: PMC4558562 DOI: 10.7554/elife.08245] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/08/2015] [Indexed: 01/04/2023] Open
Abstract
The Reproducibility Project: Cancer Biology seeks to address growing concerns about reproducibility in scientific research by conducting replications of selected experiments from a number of high-profile papers in the field of cancer biology. The papers, which were published between 2010 and 2012, were selected on the basis of citations and Altmetric scores (Errington et al., 2014). This Registered report describes the proposed replication plan of key experiments from ‘A coding-independent function of gene and pseudogene mRNAs regulates tumour biology’ by Poliseno et al. (2010), published in Nature in 2010. The key experiments to be replicated are reported in Figures 1D, 2F-H, and 4A. In these experiments, Poliseno and colleagues report microRNAs miR-19b and miR-20a transcriptionally suppress both PTEN and PTENP1 in prostate cancer cells (Figure 1D; Poliseno et al., 2010). Decreased expression of PTEN and/or PTENP1 resulted in downregulated PTEN protein levels (Figure 2H), downregulation of both mRNAs (Figure 2G), and increased tumor cell proliferation (Figure 2F; Poliseno et al., 2010). Furthermore, overexpression of the PTEN 3′ UTR enhanced PTENP1 mRNA abundance limiting tumor cell proliferation, providing additional evidence for the co-regulation of PTEN and PTENP1 (Figure 4A; Poliseno et al., 2010). The Reproducibility Project: Cancer Biology is collaboration between the Center for Open Science and Science Exchange, and the results of the replications will be published in eLife. DOI:http://dx.doi.org/10.7554/eLife.08245.001
Collapse
Affiliation(s)
- Dale Cowley
- TransViragen Inc, Chapel Hill, North Carolina
| | | | - Israr Khan
- Alamo Laboratories Inc, San Antonio, Texas
| | - John Kerwin
- Biotechnology Research and Education Program, University of Maryland, College Park, Maryland
| | - Kate Owen
- University of Virginia, Charlottesville, Virginia
| | - Erin Griner
- University of Virginia, Charlottesville, Virginia
| | | | | |
Collapse
|
188
|
Filtz EA, Emery A, Lu H, Forster CL, Karasch C, Hallstrom TC. Rb1 and Pten Co-Deletion in Osteoblast Precursor Cells Causes Rapid Lipoma Formation in Mice. PLoS One 2015; 10:e0136729. [PMID: 26317218 PMCID: PMC4552947 DOI: 10.1371/journal.pone.0136729] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 08/08/2015] [Indexed: 12/13/2022] Open
Abstract
The Rb and Pten tumor suppressor genes are important regulators of bone development and both are frequently mutated in the bone cancer osteosarcoma (OS). To determine if Rb1 and Pten synergize as tumor suppressor genes for osteosarcoma, we co-deleted them in osteoprogenitor cells. Surprisingly, we observed rapid development of adipogenic but not osteosarcoma tumors in the ΔRb1/Pten mice. ΔPten solo deleted mice also developed lipoma tumors but at a much reduced frequency and later onset than those co-deleted for Rb1. Pten deletion also led to a marked increase in adipocytes in the bone marrow. To better understand the function of Pten in bone development in vivo, we conditionally deleted Pten in OSX+ osteoprogenitor cells using OSX-Cre mice. μCT analysis revealed a significant thickening of the calvaria and an increase in trabeculae volume and number in the femur, consistent with increased bone formation in these mice. To determine if Pten and Rb1 deletion actively promotes adipogenic differentiation, we isolated calvarial cells from Ptenfl/fl and Ptenfl/fl; Rb1fl/fl mice, infected them with CRE or GFP expressing adenovirus, treated with differentiation media. We observed slightly increased adipogenic, and osteogenic differentiation in the ΔPten cells. Both phenotypes were greatly increased upon Rb1/Pten co-deletion. This was accompanied by an increase in expression of genes required for adipogenesis. These data indicate that Pten deletion in osteoblast precursors is sufficient to promote frequent adipogenic, but only rare osteogenic tumors. Rb1 hetero- or homo-zygous co-deletion greatly increases the incidence and the rapidity of onset of adipogenic tumors, again, with only rare osteosarcoma tumors.
Collapse
Affiliation(s)
- Emma A. Filtz
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States of America
| | - Ann Emery
- Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, United States of America
| | - Huarui Lu
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States of America
| | - Colleen L. Forster
- BioNet, Academic Health Center, University of Minnesota, Minneapolis, MN, United States of America
| | - Chris Karasch
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States of America
| | - Timothy C. Hallstrom
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States of America
- * E-mail:
| |
Collapse
|
189
|
Combined PDGFR and HDAC Inhibition Overcomes PTEN Disruption in Chordoma. PLoS One 2015; 10:e0134426. [PMID: 26247786 PMCID: PMC4527706 DOI: 10.1371/journal.pone.0134426] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 07/10/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The majority of chordomas show activation of the platelet-derived growth factor receptor (PDGFR). Based on in vitro intertumoral variation in response to recombinant PDGF protein and PDGFR inhibition, and variable tumor response to imatinib, we hypothesized that chordomas resistant to PDGFR inhibition may possess downstream activation of the pathway. METHODS Molecular profiling was performed on 23 consecutive chordoma primary tissue specimens. Primary cultures established from 20 of the 23 specimens, and chordoma cell lines, UCH-1 and UCH-2, were used for in vitro experiments. RESULTS Loss of heterozygosity (LOH) at the phosphatase and tensin homolog (PTEN) locus was observed in 6 specimens (26%). PTEN disruption statistically correlated with increased Ki-67 proliferation index, an established marker of poor outcome for chordoma. Compared to wild type, PTEN deficient chordomas displayed increased proliferative rate, and responded less favorably to PDGFR inhibition. PTEN gene restoration abrogated this growth advantage. Chordomas are characterized by intratumoral hypoxia and local invasion, and histone deacetylase (HDAC) inhibitors are capable of attenuating both hypoxic signaling and cell migration. The combination of PDGFR and HDAC inhibition effectively disrupted growth and invasion of PTEN deficient chordoma cells. CONCLUSIONS Loss of heterozygosity of the PTEN gene seen in a subset of chordomas is associated with aggressive in vitro behavior and strongly correlates with increased Ki-67 proliferative index. Combined inhibition of PDGFR and HDAC attenuates proliferation and invasion in chordoma cells deficient for PTEN.
Collapse
|
190
|
Dorr C, Janik C, Weg M, Been RA, Bader J, Kang R, Ng B, Foran L, Landman SR, O'Sullivan MG, Steinbach M, Sarver AL, Silverstein KAT, Largaespada DA, Starr TK. Transposon Mutagenesis Screen Identifies Potential Lung Cancer Drivers and CUL3 as a Tumor Suppressor. Mol Cancer Res 2015; 13:1238-47. [PMID: 25995385 PMCID: PMC4543426 DOI: 10.1158/1541-7786.mcr-14-0674-t] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 04/30/2015] [Indexed: 02/06/2023]
Abstract
UNLABELLED Non-small cell lung cancers (NSCLC) harbor thousands of passenger events that hide genetic drivers. Even highly recurrent events in NSCLC, such as mutations in PTEN, EGFR, KRAS, and ALK, are detected, at most, in only 30% of patients. Thus, many unidentified low-penetrant events are causing a significant portion of lung cancers. To detect low-penetrance drivers of NSCLC, a forward genetic screen was performed in mice using the Sleeping Beauty (SB) DNA transposon as a random mutagen to generate lung tumors in a Pten-deficient background. SB mutations coupled with Pten deficiency were sufficient to produce lung tumors in 29% of mice. Pten deficiency alone, without SB mutations, resulted in lung tumors in 11% of mice, whereas the rate in control mice was approximately 3%. In addition, thyroid cancer and other carcinomas, as well as the presence of bronchiolar and alveolar epithelialization, in mice deficient for Pten were also identified. Analysis of common transposon insertion sites identified 76 candidate cancer driver genes. These genes are frequently dysregulated in human lung cancers and implicate several signaling pathways. Cullin3 (Cul3), a member of a ubiquitin ligase complex that plays a role in the oxidative stress response pathway, was identified in the screen and evidence demonstrates that Cul3 functions as a tumor suppressor. IMPLICATIONS This study identifies many novel candidate genetic drivers of lung cancer and demonstrates that CUL3 acts as a tumor suppressor by regulating oxidative stress.
Collapse
Affiliation(s)
- Casey Dorr
- Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, Minnesota. Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota. Minneapolis Medical Research Foundation, Minneapolis, Minnesota
| | - Callie Janik
- Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, Minnesota
| | - Madison Weg
- Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, Minnesota
| | - Raha A Been
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota. Department of Comparative and Molecular Biosciences, University of Minnesota, St. Paul, Minnesota
| | - Justin Bader
- Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Ryan Kang
- Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, Minnesota
| | - Brandon Ng
- Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, Minnesota
| | - Lindsey Foran
- Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, Minnesota
| | - Sean R Landman
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, Minnesota
| | - M Gerard O'Sullivan
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota. Comparative Pathology Shared Resource, Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota
| | - Michael Steinbach
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Aaron L Sarver
- Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, Minnesota
| | | | - David A Largaespada
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota. Department of Genetic, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota
| | - Timothy K Starr
- Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, Minnesota. Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota. Department of Genetic, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
191
|
Belair CD, Paikari A, Moltzahn F, Shenoy A, Yau C, Dall'Era M, Simko J, Benz C, Blelloch R. DGCR8 is essential for tumor progression following PTEN loss in the prostate. EMBO Rep 2015. [PMID: 26206718 DOI: 10.15252/embr.201439925] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In human prostate cancer, the microRNA biogenesis machinery increases with prostate cancer progression. Here, we show that deletion of the Dgcr8 gene, a critical component of this complex, inhibits tumor progression in a Pten-knockout mouse model of prostate cancer. Early stages of tumor development were unaffected, but progression to advanced prostatic intraepithelial neoplasia was severely inhibited. Dgcr8 loss blocked Pten null-induced expansion of the basal-like, but not luminal, cellular compartment. Furthermore, while late-stage Pten knockout tumors exhibit decreased senescence-associated beta-galactosidase activity and increased proliferation, the simultaneous deletion of Dgcr8 blocked these changes resulting in levels similar to wild type. Sequencing of small RNAs in isolated epithelial cells uncovered numerous miRNA changes associated with PTEN loss. Consistent with a Pten-Dgcr8 association, analysis of a large cohort of human prostate tumors shows a strong correlation between Akt activation and increased Dgcr8 mRNA levels. Together, these findings uncover a critical role for microRNAs in enhancing proliferation and enabling the expansion of the basal cell compartment associated with tumor progression following Pten loss.
Collapse
Affiliation(s)
- Cassandra D Belair
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California - San Francisco, San Francisco, CA, USA Center for Reproductive Sciences, University of California - San Francisco, San Francisco, CA, USA Department of Urology, University of California - San Francisco, San Francisco, CA, USA
| | - Alireza Paikari
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California - San Francisco, San Francisco, CA, USA Center for Reproductive Sciences, University of California - San Francisco, San Francisco, CA, USA
| | - Felix Moltzahn
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California - San Francisco, San Francisco, CA, USA Department of Urology, University of California - San Francisco, San Francisco, CA, USA
| | - Archana Shenoy
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California - San Francisco, San Francisco, CA, USA Department of Urology, University of California - San Francisco, San Francisco, CA, USA
| | - Christina Yau
- Department of Medicine, University of California - San Francisco, San Francisco, CA, USA Buck Institute for Research on Aging, Novato, CA, USA
| | - Marc Dall'Era
- Department of Urology, University of California - San Francisco, San Francisco, CA, USA
| | - Jeff Simko
- Department of Urology, University of California - San Francisco, San Francisco, CA, USA Department of Anatomic Pathology, University of California - San Francisco, San Francisco, CA, USA
| | - Christopher Benz
- Department of Medicine, University of California - San Francisco, San Francisco, CA, USA Buck Institute for Research on Aging, Novato, CA, USA
| | - Robert Blelloch
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California - San Francisco, San Francisco, CA, USA Center for Reproductive Sciences, University of California - San Francisco, San Francisco, CA, USA Department of Urology, University of California - San Francisco, San Francisco, CA, USA Department of Anatomic Pathology, University of California - San Francisco, San Francisco, CA, USA
| |
Collapse
|
192
|
Pencik J, Schlederer M, Gruber W, Unger C, Walker SM, Chalaris A, Marié IJ, Hassler MR, Javaheri T, Aksoy O, Blayney JK, Prutsch N, Skucha A, Herac M, Krämer OH, Mazal P, Grebien F, Egger G, Poli V, Mikulits W, Eferl R, Esterbauer H, Kennedy R, Fend F, Scharpf M, Braun M, Perner S, Levy DE, Malcolm T, Turner SD, Haitel A, Susani M, Moazzami A, Rose-John S, Aberger F, Merkel O, Moriggl R, Culig Z, Dolznig H, Kenner L. STAT3 regulated ARF expression suppresses prostate cancer metastasis. Nat Commun 2015. [PMID: 26198641 PMCID: PMC4525303 DOI: 10.1038/ncomms8736] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Prostate cancer (PCa) is the most prevalent cancer in men. Hyperactive STAT3 is thought to be oncogenic in PCa. However, targeting of the IL-6/STAT3 axis in PCa patients has failed to provide therapeutic benefit. Here we show that genetic inactivation of Stat3 or IL-6 signalling in a Pten-deficient PCa mouse model accelerates cancer progression leading to metastasis. Mechanistically, we identify p19ARF as a direct Stat3 target. Loss of Stat3 signalling disrupts the ARF–Mdm2–p53 tumour suppressor axis bypassing senescence. Strikingly, we also identify STAT3 and CDKN2A mutations in primary human PCa. STAT3 and CDKN2A deletions co-occurred with high frequency in PCa metastases. In accordance, loss of STAT3 and p14ARF expression in patient tumours correlates with increased risk of disease recurrence and metastatic PCa. Thus, STAT3 and ARF may be prognostic markers to stratify high from low risk PCa patients. Our findings challenge the current discussion on therapeutic benefit or risk of IL-6/STAT3 inhibition. IL6-STAT3 signaling is activated in prostate cancer, however inhibiting this pathway has not lead to a survival advantage in patients. Here, Pencik et al. show that loss of the IL6-STAT3 axis in mice and humans leads to metastasis due to loss of ARF, unravelling STAT3 and ARF as potential prognostic markers in prostate cancer.
Collapse
Affiliation(s)
- Jan Pencik
- 1] Ludwig Boltzmann Institute for Cancer Research, Waehringerstrasse 13A, 1090 Vienna, Austria. [2] Clinical Institute of Pathology, Medical University of Vienna, 1090 Vienna, Austria
| | - Michaela Schlederer
- 1] Ludwig Boltzmann Institute for Cancer Research, Waehringerstrasse 13A, 1090 Vienna, Austria [2] Clinical Institute of Pathology, Medical University of Vienna, 1090 Vienna, Austria
| | - Wolfgang Gruber
- Department of Molecular Biology, Paris-Lodron University of Salzburg, 5020 Salzburg, Austria
| | - Christine Unger
- Institute of Medical Genetics, Medical University of Vienna, 1090 Vienna, Austria
| | - Steven M Walker
- Center for Cancer Research and Cell Biology, Queen's University Belfast, BT7 1NN Belfast, UK
| | - Athena Chalaris
- Institute of Biochemistry, University of Kiel, 24098 Kiel, Germany
| | - Isabelle J Marié
- 1] Department of Pathology and NYU Cancer Institute, NYU School of Medicine, New York 10016, USA [2] Department of Microbiology and NYU Cancer Institute, NYU School of Medicine, New York 10016, USA
| | - Melanie R Hassler
- Clinical Institute of Pathology, Medical University of Vienna, 1090 Vienna, Austria
| | - Tahereh Javaheri
- Ludwig Boltzmann Institute for Cancer Research, Waehringerstrasse 13A, 1090 Vienna, Austria
| | - Osman Aksoy
- Clinical Institute of Pathology, Medical University of Vienna, 1090 Vienna, Austria
| | - Jaine K Blayney
- NI Stratified Medicine Research Group, University of Ulster, BT47 6SB Londonderry, UK
| | - Nicole Prutsch
- Clinical Institute of Pathology, Medical University of Vienna, 1090 Vienna, Austria
| | - Anna Skucha
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Merima Herac
- Clinical Institute of Pathology, Medical University of Vienna, 1090 Vienna, Austria
| | - Oliver H Krämer
- Department of Toxicology, University Medical Center, 55131 Mainz, Germany
| | - Peter Mazal
- Clinical Institute of Pathology, Medical University of Vienna, 1090 Vienna, Austria
| | - Florian Grebien
- Ludwig Boltzmann Institute for Cancer Research, Waehringerstrasse 13A, 1090 Vienna, Austria
| | - Gerda Egger
- Clinical Institute of Pathology, Medical University of Vienna, 1090 Vienna, Austria
| | - Valeria Poli
- Molecular Biotechnology Center (MBC), Department of Genetics, Biology and Biochemistry, University of Turin, Turin 10126, Italy
| | - Wolfgang Mikulits
- Department of Medicine I, Division: Institute for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Robert Eferl
- Department of Medicine I, Division: Institute for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Harald Esterbauer
- Department of Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Richard Kennedy
- Center for Cancer Research and Cell Biology, Queen's University Belfast, BT7 1NN Belfast, UK
| | - Falko Fend
- Institute of Pathology and Neuropathology, University Hospital Tuebingen, 72076 Tuebingen, Germany
| | - Marcus Scharpf
- Institute of Pathology and Neuropathology, University Hospital Tuebingen, 72076 Tuebingen, Germany
| | - Martin Braun
- Institute of Pathology, Center for Integrated Oncology Cologne/Bonn, University Hospital of Bonn, 53127 Bonn, Germany
| | - Sven Perner
- Institute of Pathology, Center for Integrated Oncology Cologne/Bonn, University Hospital of Bonn, 53127 Bonn, Germany
| | - David E Levy
- 1] Department of Pathology and NYU Cancer Institute, NYU School of Medicine, New York 10016, USA [2] Department of Microbiology and NYU Cancer Institute, NYU School of Medicine, New York 10016, USA
| | - Tim Malcolm
- Department of Pathology, University of Cambridge, CB2 0QQ Cambridge, UK
| | - Suzanne D Turner
- Department of Pathology, University of Cambridge, CB2 0QQ Cambridge, UK
| | - Andrea Haitel
- Clinical Institute of Pathology, Medical University of Vienna, 1090 Vienna, Austria
| | - Martin Susani
- Clinical Institute of Pathology, Medical University of Vienna, 1090 Vienna, Austria
| | - Ali Moazzami
- Department of Chemistry and Biotechnology, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
| | - Stefan Rose-John
- Institute of Biochemistry, University of Kiel, 24098 Kiel, Germany
| | - Fritz Aberger
- Department of Molecular Biology, Paris-Lodron University of Salzburg, 5020 Salzburg, Austria
| | - Olaf Merkel
- Clinical Institute of Pathology, Medical University of Vienna, 1090 Vienna, Austria
| | - Richard Moriggl
- 1] Ludwig Boltzmann Institute for Cancer Research, Waehringerstrasse 13A, 1090 Vienna, Austria [2] Unit for Translational Methods in Cancer Research, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Zoran Culig
- Department of Urology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Helmut Dolznig
- Institute of Medical Genetics, Medical University of Vienna, 1090 Vienna, Austria
| | - Lukas Kenner
- 1] Ludwig Boltzmann Institute for Cancer Research, Waehringerstrasse 13A, 1090 Vienna, Austria [2] Clinical Institute of Pathology, Medical University of Vienna, 1090 Vienna, Austria [3] Unit of Pathology of Laboratory Animals (UPLA), University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| |
Collapse
|
193
|
Dual inhibition of survivin and MAOA synergistically impairs growth of PTEN-negative prostate cancer. Br J Cancer 2015; 113:242-51. [PMID: 26103574 PMCID: PMC4506394 DOI: 10.1038/bjc.2015.228] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/12/2015] [Accepted: 05/28/2015] [Indexed: 01/20/2023] Open
Abstract
Background: Survivin and monoamine oxidase A (MAOA) levels are elevated in prostate cancer (PCa) compared to normal prostate glands. However, the relationship between survivin and MAOA in PCa is unclear. Methods: We examined MAOA expression in the prostate lobes of a conditional PTEN-deficient mouse model mirroring human PCa, with or without survivin knockout. We also silenced one gene at a time and examined the expression of the other. We further evaluated the combination of MAOA inhibitors and survivin suppressants on the growth, viability, migration and invasion of PCa cells. Results: Survivin and MAOA levels are both increased in clinical PCa tissues and significantly associated with patients' survival. Survivin depletion delayed MAOA increase during PCa progression, and silencing MAOA decreased survivin expression. The combination of MAOA inhibitors and the survivin suppressants (YM155 and SC144) showed significant synergy on the inhibition of PCa cell growth, migration and invasion with concomitant decrease in survivin and MMP-9 levels. Conclusions: There is a positive feedback loop between survivin and MAOA expression in PCa. Considering that survivin suppressants and MAOA inhibitors are currently available in clinical trials and clinical use, their synergistic effects in PCa support a rapid translation of this combination to clinical practice.
Collapse
|
194
|
A Transition Zone Showing Highly Discontinuous or Alternating Levels of Stem Cell and Proliferation Markers Characterizes the Development of PTEN-Haploinsufficient Colorectal Cancer. PLoS One 2015; 10:e0131108. [PMID: 26098881 PMCID: PMC4476594 DOI: 10.1371/journal.pone.0131108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 05/28/2015] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Stepwise acquisition of oncogene mutations and deletion/inactivation of tumor suppressor genes characterize the development of colorectal cancer (CRC). These genetic events interact with discrete morphologic transitions from hyperplastic mucosa to adenomatous areas, followed by in situ malignant transformation and finally invasive carcinoma. The goal of this study was to identify tissue markers of the adenoma-carcinoma morphogenetic transitions in CRC. METHODS AND FINDINGS We analyzed the patterns of expression of growth regulatory and stem cell markers across these distinct morphologic transition zones in 735 primary CRC tumors. In 202 cases with preserved adenoma-adenocarcinoma transition, we identified, in 37.1% of cases, a zone of adenomatous epithelium, located immediately adjacent to the invasive component, that showed rapidly alternating intraglandular stretches of PTEN+ and PTEN- epithelium. This zone exactly overlapped with similar alternating expression of Ki-67 and inversely with the transforming growth factor-beta (TGF-β) growth regulator SMAD4. These zones also show parallel alternating levels and/or subcellular localization of multiple cancer stem/progenitor cell (CSC) markers, including β-catenin/CTNNB1, ALDH1, and CD44. PTEN was always re-expressed in the invasive tumor in these cases, unlike those with complete loss of PTEN expression. Genomic microarray analysis of CRC with prominent CSC-like expansions demonstrated a high frequency of PTEN genomic deletion/haploinsufficiency in tumors with CSC-like transition zones (62.5%) but not in tumors with downregulated but non-alternating PTEN expression (14.3%). There were no significant differences in the levels of KRAS mutation or CTNNB1 mutation in CSC-like tumors as compared to unselected CRC cases. CONCLUSIONS In conclusion, we have identified a distinctive CSC-like pre-invasive transition zone in PTEN-haploinsufficient CRC that shows convergent on-off regulation of the PTEN/AKT, TGF-β/SMAD and Wnt/β-catenin pathways. This bottleneck-like zone is usually followed by the emergence of invasive tumors with intact PTEN expression but dysregulated TP53 and uniformly high proliferation rates.
Collapse
|
195
|
Prostate-specific G-protein-coupled receptor collaborates with loss of PTEN to promote prostate cancer progression. Oncogene 2015; 35:1153-62. [PMID: 26028029 DOI: 10.1038/onc.2015.170] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 03/25/2015] [Accepted: 03/29/2015] [Indexed: 12/31/2022]
Abstract
Among frequent events in prostate cancer are loss of the tumor-suppressor phosphatase and tensin homologue (PTEN) and overexpression of prostate-specific G-protein-coupled receptor (PSGR), but the potential tumorigenic synergy between these lesions is unknown. Here, we report a new mouse model (PSGR-Pten(Δ/Δ)) combining prostate-specific loss of Pten with probasin promoter-driven PSGR overexpression. By 12 months PSGR-Pten(Δ/Δ) mice developed invasive prostate tumors featuring Akt activation and extensive inflammatory cell infiltration. PSGR-Pten(Δ/Δ) tumors exhibited E-cadherin loss and increased stromal androgen receptor (AR) expression. PSGR overexpression increased LNCaP proliferation, whereas PSGR short hairpin RNA knockdown inhibited proliferation and migration. In conclusion, we demonstrate that PSGR overexpression synergizes with loss of PTEN to accelerate prostate cancer development, and present a novel bigenic mouse model that mimics the human condition, where both PSGR overexpression and loss of PTEN occur concordantly in the majority of advanced prostate cancers, yielding an environment more relevant to studying human prostate cancer.
Collapse
|
196
|
Maxwell PJ, Neisen J, Messenger J, Waugh DJJ. Tumor-derived CXCL8 signaling augments stroma-derived CCL2-promoted proliferation and CXCL12-mediated invasion of PTEN-deficient prostate cancer cells. Oncotarget 2015; 5:4895-908. [PMID: 24970800 PMCID: PMC4148108 DOI: 10.18632/oncotarget.2052] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Impaired PTEN function is a genetic hallmark of aggressive prostate cancers (CaP) and is associated with increased CXCL8 expression and signaling. The current aim was to further characterize biological responses and mechanisms underpinning CXCL8-promoted progression of PTEN-depleted prostate cancer, focusing on characterizing the potential interplay between CXCL8 and other disease-promoting chemokines resident within the prostate tumor microenvironment. Autocrine CXCL8-stimulation (i) increased expression of CXCR1 and CXCR2 in PTEN-deficient CaP cells suggesting a self-potentiating signaling axis and (ii) induced expression of CXCR4 and CCR2 in PTEN-wild-type and PTEN-depleted CaP cells. In contrast, paracrine CXCL8 signaling induced expression and secretion of the chemokines CCL2 and CXCL12 from prostate stromal WPMY-1 fibroblasts and monocytic macrophage-like THP-1 cells. In vitro studies demonstrated functional co-operation of tumor-derived CXCL8 with stromal-derived chemokines. CXCL12-induced migration of PC3 cells and CCL2-induced proliferation of prostate cancer cells were dependent upon intrinsic CXCL8 signaling within the prostate cancer cells. For example, in co-culture experiments, CXCL12/CXCR4 signaling but not CCL2/CCR2 signaling supported fibroblast-mediated migration of PC3 cells while CXCL12/CXCR4 and CCL2/CCR2 signaling underpinned monocyte-enhanced migration of PC3 cells. Combined inhibition of both CXCL8 and CXCL12 signaling was more effective in inhibiting fibroblast-promoted cell motility while repression of CXCL8 attenuated CCL2-promoted proliferation of prostate cancer cells. We conclude that tumor-derived CXCL8 signaling from PTEN-deficient tumor cells increases the sensitivity and responsiveness of CaP cells to stromal chemokines by concurrently upregulating receptor expression in cancer cells and inducing stromal chemokine synthesis. Combined chemokine targeting may be required to inhibit their multi-faceted actions in promoting the invasion and proliferation of aggressive CaP.
Collapse
Affiliation(s)
- Pamela J Maxwell
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland
| | - Jessica Neisen
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland
| | - Johanna Messenger
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland
| | - David J J Waugh
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland
| |
Collapse
|
197
|
Ugalde-Olano A, Egia A, Fernández-Ruiz S, Loizaga-Iriarte A, Zuñiga-García P, Garcia S, Royo F, Lacasa-Viscasillas I, Castro E, Cortazar AR, Zabala-Letona A, Martín-Martín N, Arruabarrena-Aristorena A, Torrano-Moya V, Valcárcel-Jiménez L, Sánchez-Mosquera P, Caro-Maldonado A, González-Tampan J, Cachi-Fuentes G, Bilbao E, Montero R, Fernández S, Arrieta E, Zorroza K, Castillo-Martín M, Serra V, Salazar E, Macías-Cámara N, Tabernero J, Baselga J, Cordón-Cardo C, Aransay AM, Villar AD, Iovanna JL, Falcón-Pérez JM, Unda M, Bilbao R, Carracedo A. Methodological aspects of the molecular and histological study of prostate cancer: focus on PTEN. Methods 2015; 77-78:25-30. [PMID: 25697760 PMCID: PMC4503808 DOI: 10.1016/j.ymeth.2015.02.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 02/09/2015] [Accepted: 02/10/2015] [Indexed: 12/31/2022] Open
Abstract
Prostate cancer is among the most frequent cancers in men, and despite its high rate of cure, the high number of cases results in an elevated mortality worldwide. Importantly, prostate cancer incidence is dramatically increasing in western societies in the past decades, suggesting that this type of tumor is exquisitely sensitive to lifestyle changes. Prostate cancer frequently exhibits alterations in the PTEN gene (inactivating mutations or gene deletions) or at the protein level (reduced protein expression or altered sub-cellular compartmentalization). The relevance of PTEN in this type of cancer is further supported by the fact that the sole deletion of PTEN in the murine prostate epithelium recapitulates many of the features of the human disease. In order to study the molecular alterations in prostate cancer, we need to overcome the methodological challenges that this tissue imposes. In this review we present protocols and methods, using PTEN as proof of concept, to study different molecular characteristics of prostate cancer.
Collapse
Affiliation(s)
| | - Ainara Egia
- Basque Biobank, Basque Foundation for Health Innovation and Research-BIOEF, Barakaldo, Spain
| | | | | | | | - Stephane Garcia
- Centre de Recherche en Carcérologie de Marseille (CRCM), INSERM UMR 1068, CNRS UMR 7258, Aix-Marseille University and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Félix Royo
- CIC bioGUNE, Bizkaia Technology Park, 801 Building, 48160 Derio, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Spain
| | | | - Erika Castro
- Basque Biobank, Basque Foundation for Health Innovation and Research-BIOEF, Barakaldo, Spain
| | - Ana R Cortazar
- CIC bioGUNE, Bizkaia Technology Park, 801 Building, 48160 Derio, Spain
| | | | | | | | | | | | | | | | | | | | - Elena Bilbao
- Department of Urology, Basurto University Hospital, 48013 Bilbao, Spain
| | - Rocío Montero
- Department of Urology, Basurto University Hospital, 48013 Bilbao, Spain
| | - Sara Fernández
- Department of Pathology, Basurto University Hospital, 48013 Bilbao, Spain; Basque Biobank, Basque Foundation for Health Innovation and Research-BIOEF, Barakaldo, Spain
| | - Edurne Arrieta
- Basque Biobank, Basque Foundation for Health Innovation and Research-BIOEF, Barakaldo, Spain
| | - Kerman Zorroza
- Basque Biobank, Basque Foundation for Health Innovation and Research-BIOEF, Barakaldo, Spain
| | | | - Violeta Serra
- Molecular Therapeutics Research Unit, Medical Oncology Department, Vall d'Hebron University Hospital, Barcelona, Spain; Experimental Therapeutics Group, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Eider Salazar
- Basque Biobank, Basque Foundation for Health Innovation and Research-BIOEF, Barakaldo, Spain
| | | | - Jose Tabernero
- Molecular Therapeutics Research Unit, Medical Oncology Department, Vall d'Hebron University Hospital, Barcelona, Spain; Experimental Therapeutics Group, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Jose Baselga
- Molecular Therapeutics Research Unit, Medical Oncology Department, Vall d'Hebron University Hospital, Barcelona, Spain; Experimental Therapeutics Group, Vall d'Hebron University Hospital, Barcelona, Spain; Human Oncology & Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Carlos Cordón-Cardo
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ana M Aransay
- CIC bioGUNE, Bizkaia Technology Park, 801 Building, 48160 Derio, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Spain
| | - Amaia Del Villar
- Basque Biobank, Basque Foundation for Health Innovation and Research-BIOEF, Barakaldo, Spain
| | - Juan L Iovanna
- Centre de Recherche en Carcérologie de Marseille (CRCM), INSERM UMR 1068, CNRS UMR 7258, Aix-Marseille University and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Juan M Falcón-Pérez
- CIC bioGUNE, Bizkaia Technology Park, 801 Building, 48160 Derio, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Miguel Unda
- Department of Urology, Basurto University Hospital, 48013 Bilbao, Spain
| | - Roberto Bilbao
- Basque Biobank, Basque Foundation for Health Innovation and Research-BIOEF, Barakaldo, Spain
| | - Arkaitz Carracedo
- CIC bioGUNE, Bizkaia Technology Park, 801 Building, 48160 Derio, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain; Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), Bilbao, Spain.
| |
Collapse
|
198
|
Harishchandra RK, Neumann BM, Gericke A, Ross AH. Biophysical methods for the characterization of PTEN/lipid bilayer interactions. Methods 2015; 77-78:125-35. [PMID: 25697761 PMCID: PMC4388815 DOI: 10.1016/j.ymeth.2015.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 02/09/2015] [Accepted: 02/10/2015] [Indexed: 12/22/2022] Open
Abstract
PTEN, a tumor suppressor protein that dephosphorylates phosphoinositides at the 3-position of the inositol ring, is a cytosolic protein that needs to associate with the plasma membrane or other subcellular membranes to exert its lipid phosphatase function. Upon membrane association PTEN interacts with at least three different lipid entities: An anionic lipid that is present in sufficiently high concentration to create a negative potential that allows PTEN to interact electrostatically with the membrane, phosphatidylinositol-4,5-bisphosphate, which interacts with PTEN's N-terminal end and the substrate, usually phosphatidylinositol-3,4,5-trisphosphate. Many parameters influence PTEN's interaction with the lipid bilayer, for example, the lateral organization of the lipids or the presence of other chemical species like cholesterol or other lipids. To investigate systematically the different steps of PTEN's complex binding mechanism and to explore its dynamic behavior in the membrane bound state, in vitro methods need to be employed that allow for a systematic variation of the experimental conditions. In this review we survey a variety of methods that can be used to assess PTEN lipid binding affinity, the dynamics of its membrane association as well as its dynamic behavior in the membrane bound state.
Collapse
Affiliation(s)
- Rakesh K Harishchandra
- Worcester Polytechnic Institute, Department of Chemistry and Biochemistry, Worcester, MA 01605, USA
| | - Brittany M Neumann
- Worcester Polytechnic Institute, Department of Chemistry and Biochemistry, Worcester, MA 01605, USA
| | - Arne Gericke
- Worcester Polytechnic Institute, Department of Chemistry and Biochemistry, Worcester, MA 01605, USA
| | - Alonzo H Ross
- University of Massachusetts Medical School, Department of Biochemistry and Molecular Pharmacology, Worcester, MA 01605, USA.
| |
Collapse
|
199
|
Xie C, Lu H, Nomura A, Hanse EA, Forster CL, Parker JB, Linden MA, Karasch C, Hallstrom TC. Co-deleting Pten with Rb in retinal progenitor cells in mice results in fully penetrant bilateral retinoblastomas. Mol Cancer 2015; 14:93. [PMID: 25907958 PMCID: PMC4411757 DOI: 10.1186/s12943-015-0360-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 04/06/2015] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Rb1 is the most frequently mutated gene in the pediatric cancer retinoblastoma, and its loss causes E2F transcription factors to induce proliferation related genes. However, high E2F levels following pRB loss also induce apoptosis-promoting genes as a safeguard mechanism to suppress emergent tumors. Although p53 accumulation and apoptosis induction is believed to be a primary mechanism to eliminate cells with excess E2F activity, p53 deletion doesn't suppress RB/E2F induced apoptosis in vivo in the retina. This prompted us to test the PTEN/PI3K/AKT signaling pathway on RB/E2F apoptosis suppression in vivo, to ascertain if the PI3K pathway may provide a potential avenue for retinoblastoma therapy. METHODS We developed a mouse model in which Rb1 and Pten were conditionally deleted from retinal progenitor cells using Chx10-Cre, whereas Rbl1 (p107) was constitutively deleted. Pathway components were also tested individually by in vivo electroporation into newborn retinas for an effect on apoptosis and tumor initiation. Mouse retinal tissues were analyzed by immunohistochemistry (IHC) for proliferation, apoptosis, and pathway activation. ShRNAs were used in vitro to assess effects on apoptosis and gene expression. RESULTS Co-deleting Pten with Rb1 and Rbl1 in mouse retinal progenitor cells (RPCs) causes fully penetrant bilateral retinoblastomas by 30 days and strongly suppresses Rb/E2F-induced apoptosis. In vivo electroporation of constitutively active (ca)-Pik3ca, ca-Akt, or dominant-negative (dn)-Foxo1 into apoptosis prone newborn murine retina with deleted Rb/p107 eliminate Rb/E2F induced apoptosis and induce retinoblastoma emergence. Retinal deletion of Pten activates p-AKT and p-FOXO1 signaling in incipient retinoblastoma. An unbiased shRNA screen focusing on Akt phosphorylation targets identified FOXOs as critical mediators of Rb/E2F induced apoptosis and expression of Bim and p73 pro-apoptotic genes. CONCLUSIONS These data indicate that we defined a key molecular trigger involving E2F/FOXO functioning to control retinal progenitor cell homeostasis and retinoblastoma tumor initiation. We anticipate that our findings could provide contextual understanding of the proliferation of other progenitor cells, considering the high frequency of co-altered signaling from RB/E2F and PTEN/PI3K/AKT pathways in a wide variety of normal and malignant settings.
Collapse
Affiliation(s)
- Chencheng Xie
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Huarui Lu
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Alice Nomura
- Department of Surgery, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Eric Allan Hanse
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Colleen Lynn Forster
- BioNet, Academic Health Center, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Josh Berken Parker
- Department of Veterinary Population Medicine, University of Minnesota, St Paul, MN, 55108, USA.
| | - Michael Andrew Linden
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Chris Karasch
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55455, USA.
| | | |
Collapse
|
200
|
|